1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/fiemap.h>
9 #include <linux/fs.h>
10 #include <linux/minmax.h>
11 #include <linux/vmalloc.h>
12 
13 #include "debug.h"
14 #include "ntfs.h"
15 #include "ntfs_fs.h"
16 #ifdef CONFIG_NTFS3_LZX_XPRESS
17 #include "lib/lib.h"
18 #endif
19 
ni_ins_mi(struct ntfs_inode * ni,struct rb_root * tree,CLST ino,struct rb_node * ins)20 static struct mft_inode *ni_ins_mi(struct ntfs_inode *ni, struct rb_root *tree,
21 				   CLST ino, struct rb_node *ins)
22 {
23 	struct rb_node **p = &tree->rb_node;
24 	struct rb_node *pr = NULL;
25 
26 	while (*p) {
27 		struct mft_inode *mi;
28 
29 		pr = *p;
30 		mi = rb_entry(pr, struct mft_inode, node);
31 		if (mi->rno > ino)
32 			p = &pr->rb_left;
33 		else if (mi->rno < ino)
34 			p = &pr->rb_right;
35 		else
36 			return mi;
37 	}
38 
39 	if (!ins)
40 		return NULL;
41 
42 	rb_link_node(ins, pr, p);
43 	rb_insert_color(ins, tree);
44 	return rb_entry(ins, struct mft_inode, node);
45 }
46 
47 /*
48  * ni_find_mi - Find mft_inode by record number.
49  */
ni_find_mi(struct ntfs_inode * ni,CLST rno)50 static struct mft_inode *ni_find_mi(struct ntfs_inode *ni, CLST rno)
51 {
52 	return ni_ins_mi(ni, &ni->mi_tree, rno, NULL);
53 }
54 
55 /*
56  * ni_add_mi - Add new mft_inode into ntfs_inode.
57  */
ni_add_mi(struct ntfs_inode * ni,struct mft_inode * mi)58 static void ni_add_mi(struct ntfs_inode *ni, struct mft_inode *mi)
59 {
60 	ni_ins_mi(ni, &ni->mi_tree, mi->rno, &mi->node);
61 }
62 
63 /*
64  * ni_remove_mi - Remove mft_inode from ntfs_inode.
65  */
ni_remove_mi(struct ntfs_inode * ni,struct mft_inode * mi)66 void ni_remove_mi(struct ntfs_inode *ni, struct mft_inode *mi)
67 {
68 	rb_erase(&mi->node, &ni->mi_tree);
69 }
70 
71 /*
72  * ni_std - Return: Pointer into std_info from primary record.
73  */
ni_std(struct ntfs_inode * ni)74 struct ATTR_STD_INFO *ni_std(struct ntfs_inode *ni)
75 {
76 	const struct ATTRIB *attr;
77 
78 	attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
79 	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO))
80 		    : NULL;
81 }
82 
83 /*
84  * ni_std5
85  *
86  * Return: Pointer into std_info from primary record.
87  */
ni_std5(struct ntfs_inode * ni)88 struct ATTR_STD_INFO5 *ni_std5(struct ntfs_inode *ni)
89 {
90 	const struct ATTRIB *attr;
91 
92 	attr = mi_find_attr(&ni->mi, NULL, ATTR_STD, NULL, 0, NULL);
93 
94 	return attr ? resident_data_ex(attr, sizeof(struct ATTR_STD_INFO5))
95 		    : NULL;
96 }
97 
98 /*
99  * ni_clear - Clear resources allocated by ntfs_inode.
100  */
ni_clear(struct ntfs_inode * ni)101 void ni_clear(struct ntfs_inode *ni)
102 {
103 	struct rb_node *node;
104 
105 	if (!ni->vfs_inode.i_nlink && is_rec_inuse(ni->mi.mrec))
106 		ni_delete_all(ni);
107 
108 	al_destroy(ni);
109 
110 	for (node = rb_first(&ni->mi_tree); node;) {
111 		struct rb_node *next = rb_next(node);
112 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
113 
114 		rb_erase(node, &ni->mi_tree);
115 		mi_put(mi);
116 		node = next;
117 	}
118 
119 	/* Bad inode always has mode == S_IFREG. */
120 	if (ni->ni_flags & NI_FLAG_DIR)
121 		indx_clear(&ni->dir);
122 	else {
123 		run_close(&ni->file.run);
124 #ifdef CONFIG_NTFS3_LZX_XPRESS
125 		if (ni->file.offs_page) {
126 			/* On-demand allocated page for offsets. */
127 			put_page(ni->file.offs_page);
128 			ni->file.offs_page = NULL;
129 		}
130 #endif
131 	}
132 
133 	mi_clear(&ni->mi);
134 }
135 
136 /*
137  * ni_load_mi_ex - Find mft_inode by record number.
138  */
ni_load_mi_ex(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)139 int ni_load_mi_ex(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
140 {
141 	int err;
142 	struct mft_inode *r;
143 
144 	r = ni_find_mi(ni, rno);
145 	if (r)
146 		goto out;
147 
148 	err = mi_get(ni->mi.sbi, rno, &r);
149 	if (err)
150 		return err;
151 
152 	ni_add_mi(ni, r);
153 
154 out:
155 	if (mi)
156 		*mi = r;
157 	return 0;
158 }
159 
160 /*
161  * ni_load_mi - Load mft_inode corresponded list_entry.
162  */
ni_load_mi(struct ntfs_inode * ni,const struct ATTR_LIST_ENTRY * le,struct mft_inode ** mi)163 int ni_load_mi(struct ntfs_inode *ni, const struct ATTR_LIST_ENTRY *le,
164 	       struct mft_inode **mi)
165 {
166 	CLST rno;
167 
168 	if (!le) {
169 		*mi = &ni->mi;
170 		return 0;
171 	}
172 
173 	rno = ino_get(&le->ref);
174 	if (rno == ni->mi.rno) {
175 		*mi = &ni->mi;
176 		return 0;
177 	}
178 	return ni_load_mi_ex(ni, rno, mi);
179 }
180 
181 /*
182  * ni_find_attr
183  *
184  * Return: Attribute and record this attribute belongs to.
185  */
ni_find_attr(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le_o,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const CLST * vcn,struct mft_inode ** mi)186 struct ATTRIB *ni_find_attr(struct ntfs_inode *ni, struct ATTRIB *attr,
187 			    struct ATTR_LIST_ENTRY **le_o, enum ATTR_TYPE type,
188 			    const __le16 *name, u8 name_len, const CLST *vcn,
189 			    struct mft_inode **mi)
190 {
191 	struct ATTR_LIST_ENTRY *le;
192 	struct mft_inode *m;
193 
194 	if (!ni->attr_list.size ||
195 	    (!name_len && (type == ATTR_LIST || type == ATTR_STD))) {
196 		if (le_o)
197 			*le_o = NULL;
198 		if (mi)
199 			*mi = &ni->mi;
200 
201 		/* Look for required attribute in primary record. */
202 		return mi_find_attr(&ni->mi, attr, type, name, name_len, NULL);
203 	}
204 
205 	/* First look for list entry of required type. */
206 	le = al_find_ex(ni, le_o ? *le_o : NULL, type, name, name_len, vcn);
207 	if (!le)
208 		return NULL;
209 
210 	if (le_o)
211 		*le_o = le;
212 
213 	/* Load record that contains this attribute. */
214 	if (ni_load_mi(ni, le, &m))
215 		return NULL;
216 
217 	/* Look for required attribute. */
218 	attr = mi_find_attr(m, NULL, type, name, name_len, &le->id);
219 
220 	if (!attr)
221 		goto out;
222 
223 	if (!attr->non_res) {
224 		if (vcn && *vcn)
225 			goto out;
226 	} else if (!vcn) {
227 		if (attr->nres.svcn)
228 			goto out;
229 	} else if (le64_to_cpu(attr->nres.svcn) > *vcn ||
230 		   *vcn > le64_to_cpu(attr->nres.evcn)) {
231 		goto out;
232 	}
233 
234 	if (mi)
235 		*mi = m;
236 	return attr;
237 
238 out:
239 	ntfs_set_state(ni->mi.sbi, NTFS_DIRTY_ERROR);
240 	return NULL;
241 }
242 
243 /*
244  * ni_enum_attr_ex - Enumerates attributes in ntfs_inode.
245  */
ni_enum_attr_ex(struct ntfs_inode * ni,struct ATTRIB * attr,struct ATTR_LIST_ENTRY ** le,struct mft_inode ** mi)246 struct ATTRIB *ni_enum_attr_ex(struct ntfs_inode *ni, struct ATTRIB *attr,
247 			       struct ATTR_LIST_ENTRY **le,
248 			       struct mft_inode **mi)
249 {
250 	struct mft_inode *mi2;
251 	struct ATTR_LIST_ENTRY *le2;
252 
253 	/* Do we have an attribute list? */
254 	if (!ni->attr_list.size) {
255 		*le = NULL;
256 		if (mi)
257 			*mi = &ni->mi;
258 		/* Enum attributes in primary record. */
259 		return mi_enum_attr(&ni->mi, attr);
260 	}
261 
262 	/* Get next list entry. */
263 	le2 = *le = al_enumerate(ni, attr ? *le : NULL);
264 	if (!le2)
265 		return NULL;
266 
267 	/* Load record that contains the required attribute. */
268 	if (ni_load_mi(ni, le2, &mi2))
269 		return NULL;
270 
271 	if (mi)
272 		*mi = mi2;
273 
274 	/* Find attribute in loaded record. */
275 	return rec_find_attr_le(mi2, le2);
276 }
277 
278 /*
279  * ni_load_attr - Load attribute that contains given VCN.
280  */
ni_load_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,CLST vcn,struct mft_inode ** pmi)281 struct ATTRIB *ni_load_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
282 			    const __le16 *name, u8 name_len, CLST vcn,
283 			    struct mft_inode **pmi)
284 {
285 	struct ATTR_LIST_ENTRY *le;
286 	struct ATTRIB *attr;
287 	struct mft_inode *mi;
288 	struct ATTR_LIST_ENTRY *next;
289 
290 	if (!ni->attr_list.size) {
291 		if (pmi)
292 			*pmi = &ni->mi;
293 		return mi_find_attr(&ni->mi, NULL, type, name, name_len, NULL);
294 	}
295 
296 	le = al_find_ex(ni, NULL, type, name, name_len, NULL);
297 	if (!le)
298 		return NULL;
299 
300 	/*
301 	 * Unfortunately ATTR_LIST_ENTRY contains only start VCN.
302 	 * So to find the ATTRIB segment that contains 'vcn' we should
303 	 * enumerate some entries.
304 	 */
305 	if (vcn) {
306 		for (;; le = next) {
307 			next = al_find_ex(ni, le, type, name, name_len, NULL);
308 			if (!next || le64_to_cpu(next->vcn) > vcn)
309 				break;
310 		}
311 	}
312 
313 	if (ni_load_mi(ni, le, &mi))
314 		return NULL;
315 
316 	if (pmi)
317 		*pmi = mi;
318 
319 	attr = mi_find_attr(mi, NULL, type, name, name_len, &le->id);
320 	if (!attr)
321 		return NULL;
322 
323 	if (!attr->non_res)
324 		return attr;
325 
326 	if (le64_to_cpu(attr->nres.svcn) <= vcn &&
327 	    vcn <= le64_to_cpu(attr->nres.evcn))
328 		return attr;
329 
330 	return NULL;
331 }
332 
333 /*
334  * ni_load_all_mi - Load all subrecords.
335  */
ni_load_all_mi(struct ntfs_inode * ni)336 int ni_load_all_mi(struct ntfs_inode *ni)
337 {
338 	int err;
339 	struct ATTR_LIST_ENTRY *le;
340 
341 	if (!ni->attr_list.size)
342 		return 0;
343 
344 	le = NULL;
345 
346 	while ((le = al_enumerate(ni, le))) {
347 		CLST rno = ino_get(&le->ref);
348 
349 		if (rno == ni->mi.rno)
350 			continue;
351 
352 		err = ni_load_mi_ex(ni, rno, NULL);
353 		if (err)
354 			return err;
355 	}
356 
357 	return 0;
358 }
359 
360 /*
361  * ni_add_subrecord - Allocate + format + attach a new subrecord.
362  */
ni_add_subrecord(struct ntfs_inode * ni,CLST rno,struct mft_inode ** mi)363 bool ni_add_subrecord(struct ntfs_inode *ni, CLST rno, struct mft_inode **mi)
364 {
365 	struct mft_inode *m;
366 
367 	m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
368 	if (!m)
369 		return false;
370 
371 	if (mi_format_new(m, ni->mi.sbi, rno, 0, ni->mi.rno == MFT_REC_MFT)) {
372 		mi_put(m);
373 		return false;
374 	}
375 
376 	mi_get_ref(&ni->mi, &m->mrec->parent_ref);
377 
378 	ni_add_mi(ni, m);
379 	*mi = m;
380 	return true;
381 }
382 
383 /*
384  * ni_remove_attr - Remove all attributes for the given type/name/id.
385  */
ni_remove_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,size_t name_len,bool base_only,const __le16 * id)386 int ni_remove_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
387 		   const __le16 *name, size_t name_len, bool base_only,
388 		   const __le16 *id)
389 {
390 	int err;
391 	struct ATTRIB *attr;
392 	struct ATTR_LIST_ENTRY *le;
393 	struct mft_inode *mi;
394 	u32 type_in;
395 	int diff;
396 
397 	if (base_only || type == ATTR_LIST || !ni->attr_list.size) {
398 		attr = mi_find_attr(&ni->mi, NULL, type, name, name_len, id);
399 		if (!attr)
400 			return -ENOENT;
401 
402 		mi_remove_attr(ni, &ni->mi, attr);
403 		return 0;
404 	}
405 
406 	type_in = le32_to_cpu(type);
407 	le = NULL;
408 
409 	for (;;) {
410 		le = al_enumerate(ni, le);
411 		if (!le)
412 			return 0;
413 
414 next_le2:
415 		diff = le32_to_cpu(le->type) - type_in;
416 		if (diff < 0)
417 			continue;
418 
419 		if (diff > 0)
420 			return 0;
421 
422 		if (le->name_len != name_len)
423 			continue;
424 
425 		if (name_len &&
426 		    memcmp(le_name(le), name, name_len * sizeof(short)))
427 			continue;
428 
429 		if (id && le->id != *id)
430 			continue;
431 		err = ni_load_mi(ni, le, &mi);
432 		if (err)
433 			return err;
434 
435 		al_remove_le(ni, le);
436 
437 		attr = mi_find_attr(mi, NULL, type, name, name_len, id);
438 		if (!attr)
439 			return -ENOENT;
440 
441 		mi_remove_attr(ni, mi, attr);
442 
443 		if (PtrOffset(ni->attr_list.le, le) >= ni->attr_list.size)
444 			return 0;
445 		goto next_le2;
446 	}
447 }
448 
449 /*
450  * ni_ins_new_attr - Insert the attribute into record.
451  *
452  * Return: Not full constructed attribute or NULL if not possible to create.
453  */
454 static struct ATTRIB *
ni_ins_new_attr(struct ntfs_inode * ni,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTR_LIST_ENTRY ** ins_le)455 ni_ins_new_attr(struct ntfs_inode *ni, struct mft_inode *mi,
456 		struct ATTR_LIST_ENTRY *le, enum ATTR_TYPE type,
457 		const __le16 *name, u8 name_len, u32 asize, u16 name_off,
458 		CLST svcn, struct ATTR_LIST_ENTRY **ins_le)
459 {
460 	int err;
461 	struct ATTRIB *attr;
462 	bool le_added = false;
463 	struct MFT_REF ref;
464 
465 	mi_get_ref(mi, &ref);
466 
467 	if (type != ATTR_LIST && !le && ni->attr_list.size) {
468 		err = al_add_le(ni, type, name, name_len, svcn, cpu_to_le16(-1),
469 				&ref, &le);
470 		if (err) {
471 			/* No memory or no space. */
472 			return ERR_PTR(err);
473 		}
474 		le_added = true;
475 
476 		/*
477 		 * al_add_le -> attr_set_size (list) -> ni_expand_list
478 		 * which moves some attributes out of primary record
479 		 * this means that name may point into moved memory
480 		 * reinit 'name' from le.
481 		 */
482 		name = le->name;
483 	}
484 
485 	attr = mi_insert_attr(mi, type, name, name_len, asize, name_off);
486 	if (!attr) {
487 		if (le_added)
488 			al_remove_le(ni, le);
489 		return NULL;
490 	}
491 
492 	if (type == ATTR_LIST) {
493 		/* Attr list is not in list entry array. */
494 		goto out;
495 	}
496 
497 	if (!le)
498 		goto out;
499 
500 	/* Update ATTRIB Id and record reference. */
501 	le->id = attr->id;
502 	ni->attr_list.dirty = true;
503 	le->ref = ref;
504 
505 out:
506 	if (ins_le)
507 		*ins_le = le;
508 	return attr;
509 }
510 
511 /*
512  * ni_repack
513  *
514  * Random write access to sparsed or compressed file may result to
515  * not optimized packed runs.
516  * Here is the place to optimize it.
517  */
ni_repack(struct ntfs_inode * ni)518 static int ni_repack(struct ntfs_inode *ni)
519 {
520 	int err = 0;
521 	struct ntfs_sb_info *sbi = ni->mi.sbi;
522 	struct mft_inode *mi, *mi_p = NULL;
523 	struct ATTRIB *attr = NULL, *attr_p;
524 	struct ATTR_LIST_ENTRY *le = NULL, *le_p;
525 	CLST alloc = 0;
526 	u8 cluster_bits = sbi->cluster_bits;
527 	CLST svcn, evcn = 0, svcn_p, evcn_p, next_svcn;
528 	u32 roff, rs = sbi->record_size;
529 	struct runs_tree run;
530 
531 	run_init(&run);
532 
533 	while ((attr = ni_enum_attr_ex(ni, attr, &le, &mi))) {
534 		if (!attr->non_res)
535 			continue;
536 
537 		svcn = le64_to_cpu(attr->nres.svcn);
538 		if (svcn != le64_to_cpu(le->vcn)) {
539 			err = -EINVAL;
540 			break;
541 		}
542 
543 		if (!svcn) {
544 			alloc = le64_to_cpu(attr->nres.alloc_size) >>
545 				cluster_bits;
546 			mi_p = NULL;
547 		} else if (svcn != evcn + 1) {
548 			err = -EINVAL;
549 			break;
550 		}
551 
552 		evcn = le64_to_cpu(attr->nres.evcn);
553 
554 		if (svcn > evcn + 1) {
555 			err = -EINVAL;
556 			break;
557 		}
558 
559 		if (!mi_p) {
560 			/* Do not try if not enogh free space. */
561 			if (le32_to_cpu(mi->mrec->used) + 8 >= rs)
562 				continue;
563 
564 			/* Do not try if last attribute segment. */
565 			if (evcn + 1 == alloc)
566 				continue;
567 			run_close(&run);
568 		}
569 
570 		roff = le16_to_cpu(attr->nres.run_off);
571 
572 		if (roff > le32_to_cpu(attr->size)) {
573 			err = -EINVAL;
574 			break;
575 		}
576 
577 		err = run_unpack(&run, sbi, ni->mi.rno, svcn, evcn, svcn,
578 				 Add2Ptr(attr, roff),
579 				 le32_to_cpu(attr->size) - roff);
580 		if (err < 0)
581 			break;
582 
583 		if (!mi_p) {
584 			mi_p = mi;
585 			attr_p = attr;
586 			svcn_p = svcn;
587 			evcn_p = evcn;
588 			le_p = le;
589 			err = 0;
590 			continue;
591 		}
592 
593 		/*
594 		 * Run contains data from two records: mi_p and mi
595 		 * Try to pack in one.
596 		 */
597 		err = mi_pack_runs(mi_p, attr_p, &run, evcn + 1 - svcn_p);
598 		if (err)
599 			break;
600 
601 		next_svcn = le64_to_cpu(attr_p->nres.evcn) + 1;
602 
603 		if (next_svcn >= evcn + 1) {
604 			/* We can remove this attribute segment. */
605 			al_remove_le(ni, le);
606 			mi_remove_attr(NULL, mi, attr);
607 			le = le_p;
608 			continue;
609 		}
610 
611 		attr->nres.svcn = le->vcn = cpu_to_le64(next_svcn);
612 		mi->dirty = true;
613 		ni->attr_list.dirty = true;
614 
615 		if (evcn + 1 == alloc) {
616 			err = mi_pack_runs(mi, attr, &run,
617 					   evcn + 1 - next_svcn);
618 			if (err)
619 				break;
620 			mi_p = NULL;
621 		} else {
622 			mi_p = mi;
623 			attr_p = attr;
624 			svcn_p = next_svcn;
625 			evcn_p = evcn;
626 			le_p = le;
627 			run_truncate_head(&run, next_svcn);
628 		}
629 	}
630 
631 	if (err) {
632 		ntfs_inode_warn(&ni->vfs_inode, "repack problem");
633 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
634 
635 		/* Pack loaded but not packed runs. */
636 		if (mi_p)
637 			mi_pack_runs(mi_p, attr_p, &run, evcn_p + 1 - svcn_p);
638 	}
639 
640 	run_close(&run);
641 	return err;
642 }
643 
644 /*
645  * ni_try_remove_attr_list
646  *
647  * Can we remove attribute list?
648  * Check the case when primary record contains enough space for all attributes.
649  */
ni_try_remove_attr_list(struct ntfs_inode * ni)650 static int ni_try_remove_attr_list(struct ntfs_inode *ni)
651 {
652 	int err = 0;
653 	struct ntfs_sb_info *sbi = ni->mi.sbi;
654 	struct ATTRIB *attr, *attr_list, *attr_ins;
655 	struct ATTR_LIST_ENTRY *le;
656 	struct mft_inode *mi;
657 	u32 asize, free;
658 	struct MFT_REF ref;
659 	struct MFT_REC *mrec;
660 	__le16 id;
661 
662 	if (!ni->attr_list.dirty)
663 		return 0;
664 
665 	err = ni_repack(ni);
666 	if (err)
667 		return err;
668 
669 	attr_list = mi_find_attr(&ni->mi, NULL, ATTR_LIST, NULL, 0, NULL);
670 	if (!attr_list)
671 		return 0;
672 
673 	asize = le32_to_cpu(attr_list->size);
674 
675 	/* Free space in primary record without attribute list. */
676 	free = sbi->record_size - le32_to_cpu(ni->mi.mrec->used) + asize;
677 	mi_get_ref(&ni->mi, &ref);
678 
679 	le = NULL;
680 	while ((le = al_enumerate(ni, le))) {
681 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
682 			continue;
683 
684 		if (le->vcn)
685 			return 0;
686 
687 		mi = ni_find_mi(ni, ino_get(&le->ref));
688 		if (!mi)
689 			return 0;
690 
691 		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
692 				    le->name_len, &le->id);
693 		if (!attr)
694 			return 0;
695 
696 		asize = le32_to_cpu(attr->size);
697 		if (asize > free)
698 			return 0;
699 
700 		free -= asize;
701 	}
702 
703 	/* Make a copy of primary record to restore if error. */
704 	mrec = kmemdup(ni->mi.mrec, sbi->record_size, GFP_NOFS);
705 	if (!mrec)
706 		return 0; /* Not critical. */
707 
708 	/* It seems that attribute list can be removed from primary record. */
709 	mi_remove_attr(NULL, &ni->mi, attr_list);
710 
711 	/*
712 	 * Repeat the cycle above and copy all attributes to primary record.
713 	 * Do not remove original attributes from subrecords!
714 	 * It should be success!
715 	 */
716 	le = NULL;
717 	while ((le = al_enumerate(ni, le))) {
718 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
719 			continue;
720 
721 		mi = ni_find_mi(ni, ino_get(&le->ref));
722 		if (!mi) {
723 			/* Should never happened, 'cause already checked. */
724 			goto out;
725 		}
726 
727 		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
728 				    le->name_len, &le->id);
729 		if (!attr) {
730 			/* Should never happened, 'cause already checked. */
731 			goto out;
732 		}
733 		asize = le32_to_cpu(attr->size);
734 
735 		/* Insert into primary record. */
736 		attr_ins = mi_insert_attr(&ni->mi, le->type, le_name(le),
737 					  le->name_len, asize,
738 					  le16_to_cpu(attr->name_off));
739 		if (!attr_ins) {
740 			/*
741 			 * No space in primary record (already checked).
742 			 */
743 			goto out;
744 		}
745 
746 		/* Copy all except id. */
747 		id = attr_ins->id;
748 		memcpy(attr_ins, attr, asize);
749 		attr_ins->id = id;
750 	}
751 
752 	/*
753 	 * Repeat the cycle above and remove all attributes from subrecords.
754 	 */
755 	le = NULL;
756 	while ((le = al_enumerate(ni, le))) {
757 		if (!memcmp(&le->ref, &ref, sizeof(ref)))
758 			continue;
759 
760 		mi = ni_find_mi(ni, ino_get(&le->ref));
761 		if (!mi)
762 			continue;
763 
764 		attr = mi_find_attr(mi, NULL, le->type, le_name(le),
765 				    le->name_len, &le->id);
766 		if (!attr)
767 			continue;
768 
769 		/* Remove from original record. */
770 		mi_remove_attr(NULL, mi, attr);
771 	}
772 
773 	run_deallocate(sbi, &ni->attr_list.run, true);
774 	run_close(&ni->attr_list.run);
775 	ni->attr_list.size = 0;
776 	kfree(ni->attr_list.le);
777 	ni->attr_list.le = NULL;
778 	ni->attr_list.dirty = false;
779 
780 	kfree(mrec);
781 	return 0;
782 out:
783 	/* Restore primary record. */
784 	swap(mrec, ni->mi.mrec);
785 	kfree(mrec);
786 	return 0;
787 }
788 
789 /*
790  * ni_create_attr_list - Generates an attribute list for this primary record.
791  */
ni_create_attr_list(struct ntfs_inode * ni)792 int ni_create_attr_list(struct ntfs_inode *ni)
793 {
794 	struct ntfs_sb_info *sbi = ni->mi.sbi;
795 	int err;
796 	u32 lsize;
797 	struct ATTRIB *attr;
798 	struct ATTRIB *arr_move[7];
799 	struct ATTR_LIST_ENTRY *le, *le_b[7];
800 	struct MFT_REC *rec;
801 	bool is_mft;
802 	CLST rno = 0;
803 	struct mft_inode *mi;
804 	u32 free_b, nb, to_free, rs;
805 	u16 sz;
806 
807 	is_mft = ni->mi.rno == MFT_REC_MFT;
808 	rec = ni->mi.mrec;
809 	rs = sbi->record_size;
810 
811 	/*
812 	 * Skip estimating exact memory requirement.
813 	 * Looks like one record_size is always enough.
814 	 */
815 	le = kmalloc(al_aligned(rs), GFP_NOFS);
816 	if (!le) {
817 		err = -ENOMEM;
818 		goto out;
819 	}
820 
821 	mi_get_ref(&ni->mi, &le->ref);
822 	ni->attr_list.le = le;
823 
824 	attr = NULL;
825 	nb = 0;
826 	free_b = 0;
827 	attr = NULL;
828 
829 	for (; (attr = mi_enum_attr(&ni->mi, attr)); le = Add2Ptr(le, sz)) {
830 		sz = le_size(attr->name_len);
831 		le->type = attr->type;
832 		le->size = cpu_to_le16(sz);
833 		le->name_len = attr->name_len;
834 		le->name_off = offsetof(struct ATTR_LIST_ENTRY, name);
835 		le->vcn = 0;
836 		if (le != ni->attr_list.le)
837 			le->ref = ni->attr_list.le->ref;
838 		le->id = attr->id;
839 
840 		if (attr->name_len)
841 			memcpy(le->name, attr_name(attr),
842 			       sizeof(short) * attr->name_len);
843 		else if (attr->type == ATTR_STD)
844 			continue;
845 		else if (attr->type == ATTR_LIST)
846 			continue;
847 		else if (is_mft && attr->type == ATTR_DATA)
848 			continue;
849 
850 		if (!nb || nb < ARRAY_SIZE(arr_move)) {
851 			le_b[nb] = le;
852 			arr_move[nb++] = attr;
853 			free_b += le32_to_cpu(attr->size);
854 		}
855 	}
856 
857 	lsize = PtrOffset(ni->attr_list.le, le);
858 	ni->attr_list.size = lsize;
859 
860 	to_free = le32_to_cpu(rec->used) + lsize + SIZEOF_RESIDENT;
861 	if (to_free <= rs) {
862 		to_free = 0;
863 	} else {
864 		to_free -= rs;
865 
866 		if (to_free > free_b) {
867 			err = -EINVAL;
868 			goto out1;
869 		}
870 	}
871 
872 	/* Allocate child MFT. */
873 	err = ntfs_look_free_mft(sbi, &rno, is_mft, ni, &mi);
874 	if (err)
875 		goto out1;
876 
877 	/* Call mi_remove_attr() in reverse order to keep pointers 'arr_move' valid. */
878 	while (to_free > 0) {
879 		struct ATTRIB *b = arr_move[--nb];
880 		u32 asize = le32_to_cpu(b->size);
881 		u16 name_off = le16_to_cpu(b->name_off);
882 
883 		attr = mi_insert_attr(mi, b->type, Add2Ptr(b, name_off),
884 				      b->name_len, asize, name_off);
885 		WARN_ON(!attr);
886 
887 		mi_get_ref(mi, &le_b[nb]->ref);
888 		le_b[nb]->id = attr->id;
889 
890 		/* Copy all except id. */
891 		memcpy(attr, b, asize);
892 		attr->id = le_b[nb]->id;
893 
894 		/* Remove from primary record. */
895 		WARN_ON(!mi_remove_attr(NULL, &ni->mi, b));
896 
897 		if (to_free <= asize)
898 			break;
899 		to_free -= asize;
900 		WARN_ON(!nb);
901 	}
902 
903 	attr = mi_insert_attr(&ni->mi, ATTR_LIST, NULL, 0,
904 			      lsize + SIZEOF_RESIDENT, SIZEOF_RESIDENT);
905 	WARN_ON(!attr);
906 
907 	attr->non_res = 0;
908 	attr->flags = 0;
909 	attr->res.data_size = cpu_to_le32(lsize);
910 	attr->res.data_off = SIZEOF_RESIDENT_LE;
911 	attr->res.flags = 0;
912 	attr->res.res = 0;
913 
914 	memcpy(resident_data_ex(attr, lsize), ni->attr_list.le, lsize);
915 
916 	ni->attr_list.dirty = false;
917 
918 	mark_inode_dirty(&ni->vfs_inode);
919 	goto out;
920 
921 out1:
922 	kfree(ni->attr_list.le);
923 	ni->attr_list.le = NULL;
924 	ni->attr_list.size = 0;
925 
926 out:
927 	return err;
928 }
929 
930 /*
931  * ni_ins_attr_ext - Add an external attribute to the ntfs_inode.
932  */
ni_ins_attr_ext(struct ntfs_inode * ni,struct ATTR_LIST_ENTRY * le,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,CLST svcn,u16 name_off,bool force_ext,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)933 static int ni_ins_attr_ext(struct ntfs_inode *ni, struct ATTR_LIST_ENTRY *le,
934 			   enum ATTR_TYPE type, const __le16 *name, u8 name_len,
935 			   u32 asize, CLST svcn, u16 name_off, bool force_ext,
936 			   struct ATTRIB **ins_attr, struct mft_inode **ins_mi,
937 			   struct ATTR_LIST_ENTRY **ins_le)
938 {
939 	struct ATTRIB *attr;
940 	struct mft_inode *mi;
941 	CLST rno;
942 	u64 vbo;
943 	struct rb_node *node;
944 	int err;
945 	bool is_mft, is_mft_data;
946 	struct ntfs_sb_info *sbi = ni->mi.sbi;
947 
948 	is_mft = ni->mi.rno == MFT_REC_MFT;
949 	is_mft_data = is_mft && type == ATTR_DATA && !name_len;
950 
951 	if (asize > sbi->max_bytes_per_attr) {
952 		err = -EINVAL;
953 		goto out;
954 	}
955 
956 	/*
957 	 * Standard information and attr_list cannot be made external.
958 	 * The Log File cannot have any external attributes.
959 	 */
960 	if (type == ATTR_STD || type == ATTR_LIST ||
961 	    ni->mi.rno == MFT_REC_LOG) {
962 		err = -EINVAL;
963 		goto out;
964 	}
965 
966 	/* Create attribute list if it is not already existed. */
967 	if (!ni->attr_list.size) {
968 		err = ni_create_attr_list(ni);
969 		if (err)
970 			goto out;
971 	}
972 
973 	vbo = is_mft_data ? ((u64)svcn << sbi->cluster_bits) : 0;
974 
975 	if (force_ext)
976 		goto insert_ext;
977 
978 	/* Load all subrecords into memory. */
979 	err = ni_load_all_mi(ni);
980 	if (err)
981 		goto out;
982 
983 	/* Check each of loaded subrecord. */
984 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
985 		mi = rb_entry(node, struct mft_inode, node);
986 
987 		if (is_mft_data &&
988 		    (mi_enum_attr(mi, NULL) ||
989 		     vbo <= ((u64)mi->rno << sbi->record_bits))) {
990 			/* We can't accept this record 'cause MFT's bootstrapping. */
991 			continue;
992 		}
993 		if (is_mft &&
994 		    mi_find_attr(mi, NULL, ATTR_DATA, NULL, 0, NULL)) {
995 			/*
996 			 * This child record already has a ATTR_DATA.
997 			 * So it can't accept any other records.
998 			 */
999 			continue;
1000 		}
1001 
1002 		if ((type != ATTR_NAME || name_len) &&
1003 		    mi_find_attr(mi, NULL, type, name, name_len, NULL)) {
1004 			/* Only indexed attributes can share same record. */
1005 			continue;
1006 		}
1007 
1008 		/*
1009 		 * Do not try to insert this attribute
1010 		 * if there is no room in record.
1011 		 */
1012 		if (le32_to_cpu(mi->mrec->used) + asize > sbi->record_size)
1013 			continue;
1014 
1015 		/* Try to insert attribute into this subrecord. */
1016 		attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1017 				       name_off, svcn, ins_le);
1018 		if (!attr)
1019 			continue;
1020 		if (IS_ERR(attr))
1021 			return PTR_ERR(attr);
1022 
1023 		if (ins_attr)
1024 			*ins_attr = attr;
1025 		if (ins_mi)
1026 			*ins_mi = mi;
1027 		return 0;
1028 	}
1029 
1030 insert_ext:
1031 	/* We have to allocate a new child subrecord. */
1032 	err = ntfs_look_free_mft(sbi, &rno, is_mft_data, ni, &mi);
1033 	if (err)
1034 		goto out;
1035 
1036 	if (is_mft_data && vbo <= ((u64)rno << sbi->record_bits)) {
1037 		err = -EINVAL;
1038 		goto out1;
1039 	}
1040 
1041 	attr = ni_ins_new_attr(ni, mi, le, type, name, name_len, asize,
1042 			       name_off, svcn, ins_le);
1043 	if (!attr) {
1044 		err = -EINVAL;
1045 		goto out2;
1046 	}
1047 
1048 	if (IS_ERR(attr)) {
1049 		err = PTR_ERR(attr);
1050 		goto out2;
1051 	}
1052 
1053 	if (ins_attr)
1054 		*ins_attr = attr;
1055 	if (ins_mi)
1056 		*ins_mi = mi;
1057 
1058 	return 0;
1059 
1060 out2:
1061 	ni_remove_mi(ni, mi);
1062 	mi_put(mi);
1063 
1064 out1:
1065 	ntfs_mark_rec_free(sbi, rno, is_mft);
1066 
1067 out:
1068 	return err;
1069 }
1070 
1071 /*
1072  * ni_insert_attr - Insert an attribute into the file.
1073  *
1074  * If the primary record has room, it will just insert the attribute.
1075  * If not, it may make the attribute external.
1076  * For $MFT::Data it may make room for the attribute by
1077  * making other attributes external.
1078  *
1079  * NOTE:
1080  * The ATTR_LIST and ATTR_STD cannot be made external.
1081  * This function does not fill new attribute full.
1082  * It only fills 'size'/'type'/'id'/'name_len' fields.
1083  */
ni_insert_attr(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off,CLST svcn,struct ATTRIB ** ins_attr,struct mft_inode ** ins_mi,struct ATTR_LIST_ENTRY ** ins_le)1084 static int ni_insert_attr(struct ntfs_inode *ni, enum ATTR_TYPE type,
1085 			  const __le16 *name, u8 name_len, u32 asize,
1086 			  u16 name_off, CLST svcn, struct ATTRIB **ins_attr,
1087 			  struct mft_inode **ins_mi,
1088 			  struct ATTR_LIST_ENTRY **ins_le)
1089 {
1090 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1091 	int err;
1092 	struct ATTRIB *attr, *eattr;
1093 	struct MFT_REC *rec;
1094 	bool is_mft;
1095 	struct ATTR_LIST_ENTRY *le;
1096 	u32 list_reserve, max_free, free, used, t32;
1097 	__le16 id;
1098 	u16 t16;
1099 
1100 	is_mft = ni->mi.rno == MFT_REC_MFT;
1101 	rec = ni->mi.mrec;
1102 
1103 	list_reserve = SIZEOF_NONRESIDENT + 3 * (1 + 2 * sizeof(u32));
1104 	used = le32_to_cpu(rec->used);
1105 	free = sbi->record_size - used;
1106 
1107 	if (is_mft && type != ATTR_LIST) {
1108 		/* Reserve space for the ATTRIB list. */
1109 		if (free < list_reserve)
1110 			free = 0;
1111 		else
1112 			free -= list_reserve;
1113 	}
1114 
1115 	if (asize <= free) {
1116 		attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len,
1117 				       asize, name_off, svcn, ins_le);
1118 		if (IS_ERR(attr)) {
1119 			err = PTR_ERR(attr);
1120 			goto out;
1121 		}
1122 
1123 		if (attr) {
1124 			if (ins_attr)
1125 				*ins_attr = attr;
1126 			if (ins_mi)
1127 				*ins_mi = &ni->mi;
1128 			err = 0;
1129 			goto out;
1130 		}
1131 	}
1132 
1133 	if (!is_mft || type != ATTR_DATA || svcn) {
1134 		/* This ATTRIB will be external. */
1135 		err = ni_ins_attr_ext(ni, NULL, type, name, name_len, asize,
1136 				      svcn, name_off, false, ins_attr, ins_mi,
1137 				      ins_le);
1138 		goto out;
1139 	}
1140 
1141 	/*
1142 	 * Here we have: "is_mft && type == ATTR_DATA && !svcn"
1143 	 *
1144 	 * The first chunk of the $MFT::Data ATTRIB must be the base record.
1145 	 * Evict as many other attributes as possible.
1146 	 */
1147 	max_free = free;
1148 
1149 	/* Estimate the result of moving all possible attributes away. */
1150 	attr = NULL;
1151 
1152 	while ((attr = mi_enum_attr(&ni->mi, attr))) {
1153 		if (attr->type == ATTR_STD)
1154 			continue;
1155 		if (attr->type == ATTR_LIST)
1156 			continue;
1157 		max_free += le32_to_cpu(attr->size);
1158 	}
1159 
1160 	if (max_free < asize + list_reserve) {
1161 		/* Impossible to insert this attribute into primary record. */
1162 		err = -EINVAL;
1163 		goto out;
1164 	}
1165 
1166 	/* Start real attribute moving. */
1167 	attr = NULL;
1168 
1169 	for (;;) {
1170 		attr = mi_enum_attr(&ni->mi, attr);
1171 		if (!attr) {
1172 			/* We should never be here 'cause we have already check this case. */
1173 			err = -EINVAL;
1174 			goto out;
1175 		}
1176 
1177 		/* Skip attributes that MUST be primary record. */
1178 		if (attr->type == ATTR_STD || attr->type == ATTR_LIST)
1179 			continue;
1180 
1181 		le = NULL;
1182 		if (ni->attr_list.size) {
1183 			le = al_find_le(ni, NULL, attr);
1184 			if (!le) {
1185 				/* Really this is a serious bug. */
1186 				err = -EINVAL;
1187 				goto out;
1188 			}
1189 		}
1190 
1191 		t32 = le32_to_cpu(attr->size);
1192 		t16 = le16_to_cpu(attr->name_off);
1193 		err = ni_ins_attr_ext(ni, le, attr->type, Add2Ptr(attr, t16),
1194 				      attr->name_len, t32, attr_svcn(attr), t16,
1195 				      false, &eattr, NULL, NULL);
1196 		if (err)
1197 			return err;
1198 
1199 		id = eattr->id;
1200 		memcpy(eattr, attr, t32);
1201 		eattr->id = id;
1202 
1203 		/* Remove from primary record. */
1204 		mi_remove_attr(NULL, &ni->mi, attr);
1205 
1206 		/* attr now points to next attribute. */
1207 		if (attr->type == ATTR_END)
1208 			goto out;
1209 	}
1210 	while (asize + list_reserve > sbi->record_size - le32_to_cpu(rec->used))
1211 		;
1212 
1213 	attr = ni_ins_new_attr(ni, &ni->mi, NULL, type, name, name_len, asize,
1214 			       name_off, svcn, ins_le);
1215 	if (!attr) {
1216 		err = -EINVAL;
1217 		goto out;
1218 	}
1219 
1220 	if (IS_ERR(attr)) {
1221 		err = PTR_ERR(attr);
1222 		goto out;
1223 	}
1224 
1225 	if (ins_attr)
1226 		*ins_attr = attr;
1227 	if (ins_mi)
1228 		*ins_mi = &ni->mi;
1229 
1230 out:
1231 	return err;
1232 }
1233 
1234 /* ni_expand_mft_list - Split ATTR_DATA of $MFT. */
ni_expand_mft_list(struct ntfs_inode * ni)1235 static int ni_expand_mft_list(struct ntfs_inode *ni)
1236 {
1237 	int err = 0;
1238 	struct runs_tree *run = &ni->file.run;
1239 	u32 asize, run_size, done = 0;
1240 	struct ATTRIB *attr;
1241 	struct rb_node *node;
1242 	CLST mft_min, mft_new, svcn, evcn, plen;
1243 	struct mft_inode *mi, *mi_min, *mi_new;
1244 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1245 
1246 	/* Find the nearest MFT. */
1247 	mft_min = 0;
1248 	mft_new = 0;
1249 	mi_min = NULL;
1250 
1251 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
1252 		mi = rb_entry(node, struct mft_inode, node);
1253 
1254 		attr = mi_enum_attr(mi, NULL);
1255 
1256 		if (!attr) {
1257 			mft_min = mi->rno;
1258 			mi_min = mi;
1259 			break;
1260 		}
1261 	}
1262 
1263 	if (ntfs_look_free_mft(sbi, &mft_new, true, ni, &mi_new)) {
1264 		mft_new = 0;
1265 		/* Really this is not critical. */
1266 	} else if (mft_min > mft_new) {
1267 		mft_min = mft_new;
1268 		mi_min = mi_new;
1269 	} else {
1270 		ntfs_mark_rec_free(sbi, mft_new, true);
1271 		mft_new = 0;
1272 		ni_remove_mi(ni, mi_new);
1273 	}
1274 
1275 	attr = mi_find_attr(&ni->mi, NULL, ATTR_DATA, NULL, 0, NULL);
1276 	if (!attr) {
1277 		err = -EINVAL;
1278 		goto out;
1279 	}
1280 
1281 	asize = le32_to_cpu(attr->size);
1282 
1283 	evcn = le64_to_cpu(attr->nres.evcn);
1284 	svcn = bytes_to_cluster(sbi, (u64)(mft_min + 1) << sbi->record_bits);
1285 	if (evcn + 1 >= svcn) {
1286 		err = -EINVAL;
1287 		goto out;
1288 	}
1289 
1290 	/*
1291 	 * Split primary attribute [0 evcn] in two parts [0 svcn) + [svcn evcn].
1292 	 *
1293 	 * Update first part of ATTR_DATA in 'primary MFT.
1294 	 */
1295 	err = run_pack(run, 0, svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1296 		       asize - SIZEOF_NONRESIDENT, &plen);
1297 	if (err < 0)
1298 		goto out;
1299 
1300 	run_size = ALIGN(err, 8);
1301 	err = 0;
1302 
1303 	if (plen < svcn) {
1304 		err = -EINVAL;
1305 		goto out;
1306 	}
1307 
1308 	attr->nres.evcn = cpu_to_le64(svcn - 1);
1309 	attr->size = cpu_to_le32(run_size + SIZEOF_NONRESIDENT);
1310 	/* 'done' - How many bytes of primary MFT becomes free. */
1311 	done = asize - run_size - SIZEOF_NONRESIDENT;
1312 	le32_sub_cpu(&ni->mi.mrec->used, done);
1313 
1314 	/* Estimate packed size (run_buf=NULL). */
1315 	err = run_pack(run, svcn, evcn + 1 - svcn, NULL, sbi->record_size,
1316 		       &plen);
1317 	if (err < 0)
1318 		goto out;
1319 
1320 	run_size = ALIGN(err, 8);
1321 	err = 0;
1322 
1323 	if (plen < evcn + 1 - svcn) {
1324 		err = -EINVAL;
1325 		goto out;
1326 	}
1327 
1328 	/*
1329 	 * This function may implicitly call expand attr_list.
1330 	 * Insert second part of ATTR_DATA in 'mi_min'.
1331 	 */
1332 	attr = ni_ins_new_attr(ni, mi_min, NULL, ATTR_DATA, NULL, 0,
1333 			       SIZEOF_NONRESIDENT + run_size,
1334 			       SIZEOF_NONRESIDENT, svcn, NULL);
1335 	if (!attr) {
1336 		err = -EINVAL;
1337 		goto out;
1338 	}
1339 
1340 	if (IS_ERR(attr)) {
1341 		err = PTR_ERR(attr);
1342 		goto out;
1343 	}
1344 
1345 	attr->non_res = 1;
1346 	attr->name_off = SIZEOF_NONRESIDENT_LE;
1347 	attr->flags = 0;
1348 
1349 	/* This function can't fail - cause already checked above. */
1350 	run_pack(run, svcn, evcn + 1 - svcn, Add2Ptr(attr, SIZEOF_NONRESIDENT),
1351 		 run_size, &plen);
1352 
1353 	attr->nres.svcn = cpu_to_le64(svcn);
1354 	attr->nres.evcn = cpu_to_le64(evcn);
1355 	attr->nres.run_off = cpu_to_le16(SIZEOF_NONRESIDENT);
1356 
1357 out:
1358 	if (mft_new) {
1359 		ntfs_mark_rec_free(sbi, mft_new, true);
1360 		ni_remove_mi(ni, mi_new);
1361 	}
1362 
1363 	return !err && !done ? -EOPNOTSUPP : err;
1364 }
1365 
1366 /*
1367  * ni_expand_list - Move all possible attributes out of primary record.
1368  */
ni_expand_list(struct ntfs_inode * ni)1369 int ni_expand_list(struct ntfs_inode *ni)
1370 {
1371 	int err = 0;
1372 	u32 asize, done = 0;
1373 	struct ATTRIB *attr, *ins_attr;
1374 	struct ATTR_LIST_ENTRY *le;
1375 	bool is_mft = ni->mi.rno == MFT_REC_MFT;
1376 	struct MFT_REF ref;
1377 
1378 	mi_get_ref(&ni->mi, &ref);
1379 	le = NULL;
1380 
1381 	while ((le = al_enumerate(ni, le))) {
1382 		if (le->type == ATTR_STD)
1383 			continue;
1384 
1385 		if (memcmp(&ref, &le->ref, sizeof(struct MFT_REF)))
1386 			continue;
1387 
1388 		if (is_mft && le->type == ATTR_DATA)
1389 			continue;
1390 
1391 		/* Find attribute in primary record. */
1392 		attr = rec_find_attr_le(&ni->mi, le);
1393 		if (!attr) {
1394 			err = -EINVAL;
1395 			goto out;
1396 		}
1397 
1398 		asize = le32_to_cpu(attr->size);
1399 
1400 		/* Always insert into new record to avoid collisions (deep recursive). */
1401 		err = ni_ins_attr_ext(ni, le, attr->type, attr_name(attr),
1402 				      attr->name_len, asize, attr_svcn(attr),
1403 				      le16_to_cpu(attr->name_off), true,
1404 				      &ins_attr, NULL, NULL);
1405 
1406 		if (err)
1407 			goto out;
1408 
1409 		memcpy(ins_attr, attr, asize);
1410 		ins_attr->id = le->id;
1411 		/* Remove from primary record. */
1412 		mi_remove_attr(NULL, &ni->mi, attr);
1413 
1414 		done += asize;
1415 		goto out;
1416 	}
1417 
1418 	if (!is_mft) {
1419 		err = -EFBIG; /* Attr list is too big(?) */
1420 		goto out;
1421 	}
1422 
1423 	/* Split MFT data as much as possible. */
1424 	err = ni_expand_mft_list(ni);
1425 
1426 out:
1427 	return !err && !done ? -EOPNOTSUPP : err;
1428 }
1429 
1430 /*
1431  * ni_insert_nonresident - Insert new nonresident attribute.
1432  */
ni_insert_nonresident(struct ntfs_inode * ni,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const struct runs_tree * run,CLST svcn,CLST len,__le16 flags,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1433 int ni_insert_nonresident(struct ntfs_inode *ni, enum ATTR_TYPE type,
1434 			  const __le16 *name, u8 name_len,
1435 			  const struct runs_tree *run, CLST svcn, CLST len,
1436 			  __le16 flags, struct ATTRIB **new_attr,
1437 			  struct mft_inode **mi, struct ATTR_LIST_ENTRY **le)
1438 {
1439 	int err;
1440 	CLST plen;
1441 	struct ATTRIB *attr;
1442 	bool is_ext =
1443 		(flags & (ATTR_FLAG_SPARSED | ATTR_FLAG_COMPRESSED)) && !svcn;
1444 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
1445 	u32 name_off = is_ext ? SIZEOF_NONRESIDENT_EX : SIZEOF_NONRESIDENT;
1446 	u32 run_off = name_off + name_size;
1447 	u32 run_size, asize;
1448 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1449 
1450 	/* Estimate packed size (run_buf=NULL). */
1451 	err = run_pack(run, svcn, len, NULL, sbi->max_bytes_per_attr - run_off,
1452 		       &plen);
1453 	if (err < 0)
1454 		goto out;
1455 
1456 	run_size = ALIGN(err, 8);
1457 
1458 	if (plen < len) {
1459 		err = -EINVAL;
1460 		goto out;
1461 	}
1462 
1463 	asize = run_off + run_size;
1464 
1465 	if (asize > sbi->max_bytes_per_attr) {
1466 		err = -EINVAL;
1467 		goto out;
1468 	}
1469 
1470 	err = ni_insert_attr(ni, type, name, name_len, asize, name_off, svcn,
1471 			     &attr, mi, le);
1472 
1473 	if (err)
1474 		goto out;
1475 
1476 	attr->non_res = 1;
1477 	attr->name_off = cpu_to_le16(name_off);
1478 	attr->flags = flags;
1479 
1480 	/* This function can't fail - cause already checked above. */
1481 	run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size, &plen);
1482 
1483 	attr->nres.svcn = cpu_to_le64(svcn);
1484 	attr->nres.evcn = cpu_to_le64((u64)svcn + len - 1);
1485 
1486 	if (new_attr)
1487 		*new_attr = attr;
1488 
1489 	*(__le64 *)&attr->nres.run_off = cpu_to_le64(run_off);
1490 
1491 	attr->nres.alloc_size =
1492 		svcn ? 0 : cpu_to_le64((u64)len << ni->mi.sbi->cluster_bits);
1493 	attr->nres.data_size = attr->nres.alloc_size;
1494 	attr->nres.valid_size = attr->nres.alloc_size;
1495 
1496 	if (is_ext) {
1497 		if (flags & ATTR_FLAG_COMPRESSED)
1498 			attr->nres.c_unit = COMPRESSION_UNIT;
1499 		attr->nres.total_size = attr->nres.alloc_size;
1500 	}
1501 
1502 out:
1503 	return err;
1504 }
1505 
1506 /*
1507  * ni_insert_resident - Inserts new resident attribute.
1508  */
ni_insert_resident(struct ntfs_inode * ni,u32 data_size,enum ATTR_TYPE type,const __le16 * name,u8 name_len,struct ATTRIB ** new_attr,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1509 int ni_insert_resident(struct ntfs_inode *ni, u32 data_size,
1510 		       enum ATTR_TYPE type, const __le16 *name, u8 name_len,
1511 		       struct ATTRIB **new_attr, struct mft_inode **mi,
1512 		       struct ATTR_LIST_ENTRY **le)
1513 {
1514 	int err;
1515 	u32 name_size = ALIGN(name_len * sizeof(short), 8);
1516 	u32 asize = SIZEOF_RESIDENT + name_size + ALIGN(data_size, 8);
1517 	struct ATTRIB *attr;
1518 
1519 	err = ni_insert_attr(ni, type, name, name_len, asize, SIZEOF_RESIDENT,
1520 			     0, &attr, mi, le);
1521 	if (err)
1522 		return err;
1523 
1524 	attr->non_res = 0;
1525 	attr->flags = 0;
1526 
1527 	attr->res.data_size = cpu_to_le32(data_size);
1528 	attr->res.data_off = cpu_to_le16(SIZEOF_RESIDENT + name_size);
1529 	if (type == ATTR_NAME) {
1530 		attr->res.flags = RESIDENT_FLAG_INDEXED;
1531 
1532 		/* is_attr_indexed(attr)) == true */
1533 		le16_add_cpu(&ni->mi.mrec->hard_links, 1);
1534 		ni->mi.dirty = true;
1535 	}
1536 	attr->res.res = 0;
1537 
1538 	if (new_attr)
1539 		*new_attr = attr;
1540 
1541 	return 0;
1542 }
1543 
1544 /*
1545  * ni_remove_attr_le - Remove attribute from record.
1546  */
ni_remove_attr_le(struct ntfs_inode * ni,struct ATTRIB * attr,struct mft_inode * mi,struct ATTR_LIST_ENTRY * le)1547 void ni_remove_attr_le(struct ntfs_inode *ni, struct ATTRIB *attr,
1548 		       struct mft_inode *mi, struct ATTR_LIST_ENTRY *le)
1549 {
1550 	mi_remove_attr(ni, mi, attr);
1551 
1552 	if (le)
1553 		al_remove_le(ni, le);
1554 }
1555 
1556 /*
1557  * ni_delete_all - Remove all attributes and frees allocates space.
1558  *
1559  * ntfs_evict_inode->ntfs_clear_inode->ni_delete_all (if no links).
1560  */
ni_delete_all(struct ntfs_inode * ni)1561 int ni_delete_all(struct ntfs_inode *ni)
1562 {
1563 	int err;
1564 	struct ATTR_LIST_ENTRY *le = NULL;
1565 	struct ATTRIB *attr = NULL;
1566 	struct rb_node *node;
1567 	u16 roff;
1568 	u32 asize;
1569 	CLST svcn, evcn;
1570 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1571 	bool nt3 = is_ntfs3(sbi);
1572 	struct MFT_REF ref;
1573 
1574 	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
1575 		if (!nt3 || attr->name_len) {
1576 			;
1577 		} else if (attr->type == ATTR_REPARSE) {
1578 			mi_get_ref(&ni->mi, &ref);
1579 			ntfs_remove_reparse(sbi, 0, &ref);
1580 		} else if (attr->type == ATTR_ID && !attr->non_res &&
1581 			   le32_to_cpu(attr->res.data_size) >=
1582 				   sizeof(struct GUID)) {
1583 			ntfs_objid_remove(sbi, resident_data(attr));
1584 		}
1585 
1586 		if (!attr->non_res)
1587 			continue;
1588 
1589 		svcn = le64_to_cpu(attr->nres.svcn);
1590 		evcn = le64_to_cpu(attr->nres.evcn);
1591 
1592 		if (evcn + 1 <= svcn)
1593 			continue;
1594 
1595 		asize = le32_to_cpu(attr->size);
1596 		roff = le16_to_cpu(attr->nres.run_off);
1597 
1598 		if (roff > asize)
1599 			return -EINVAL;
1600 
1601 		/* run==1 means unpack and deallocate. */
1602 		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
1603 			      Add2Ptr(attr, roff), asize - roff);
1604 	}
1605 
1606 	if (ni->attr_list.size) {
1607 		run_deallocate(ni->mi.sbi, &ni->attr_list.run, true);
1608 		al_destroy(ni);
1609 	}
1610 
1611 	/* Free all subrecords. */
1612 	for (node = rb_first(&ni->mi_tree); node;) {
1613 		struct rb_node *next = rb_next(node);
1614 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
1615 
1616 		clear_rec_inuse(mi->mrec);
1617 		mi->dirty = true;
1618 		mi_write(mi, 0);
1619 
1620 		ntfs_mark_rec_free(sbi, mi->rno, false);
1621 		ni_remove_mi(ni, mi);
1622 		mi_put(mi);
1623 		node = next;
1624 	}
1625 
1626 	/* Free base record. */
1627 	clear_rec_inuse(ni->mi.mrec);
1628 	ni->mi.dirty = true;
1629 	err = mi_write(&ni->mi, 0);
1630 
1631 	ntfs_mark_rec_free(sbi, ni->mi.rno, false);
1632 
1633 	return err;
1634 }
1635 
1636 /* ni_fname_name
1637  *
1638  * Return: File name attribute by its value.
1639  */
ni_fname_name(struct ntfs_inode * ni,const struct cpu_str * uni,const struct MFT_REF * home_dir,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1640 struct ATTR_FILE_NAME *ni_fname_name(struct ntfs_inode *ni,
1641 				     const struct cpu_str *uni,
1642 				     const struct MFT_REF *home_dir,
1643 				     struct mft_inode **mi,
1644 				     struct ATTR_LIST_ENTRY **le)
1645 {
1646 	struct ATTRIB *attr = NULL;
1647 	struct ATTR_FILE_NAME *fname;
1648 
1649 	if (le)
1650 		*le = NULL;
1651 
1652 	/* Enumerate all names. */
1653 next:
1654 	attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1655 	if (!attr)
1656 		return NULL;
1657 
1658 	fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1659 	if (!fname)
1660 		goto next;
1661 
1662 	if (home_dir && memcmp(home_dir, &fname->home, sizeof(*home_dir)))
1663 		goto next;
1664 
1665 	if (!uni)
1666 		return fname;
1667 
1668 	if (uni->len != fname->name_len)
1669 		goto next;
1670 
1671 	if (ntfs_cmp_names_cpu(uni, (struct le_str *)&fname->name_len, NULL,
1672 			       false))
1673 		goto next;
1674 
1675 	return fname;
1676 }
1677 
1678 /*
1679  * ni_fname_type
1680  *
1681  * Return: File name attribute with given type.
1682  */
ni_fname_type(struct ntfs_inode * ni,u8 name_type,struct mft_inode ** mi,struct ATTR_LIST_ENTRY ** le)1683 struct ATTR_FILE_NAME *ni_fname_type(struct ntfs_inode *ni, u8 name_type,
1684 				     struct mft_inode **mi,
1685 				     struct ATTR_LIST_ENTRY **le)
1686 {
1687 	struct ATTRIB *attr = NULL;
1688 	struct ATTR_FILE_NAME *fname;
1689 
1690 	*le = NULL;
1691 
1692 	if (name_type == FILE_NAME_POSIX)
1693 		return NULL;
1694 
1695 	/* Enumerate all names. */
1696 	for (;;) {
1697 		attr = ni_find_attr(ni, attr, le, ATTR_NAME, NULL, 0, NULL, mi);
1698 		if (!attr)
1699 			return NULL;
1700 
1701 		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
1702 		if (fname && name_type == fname->type)
1703 			return fname;
1704 	}
1705 }
1706 
1707 /*
1708  * ni_new_attr_flags
1709  *
1710  * Process compressed/sparsed in special way.
1711  * NOTE: You need to set ni->std_fa = new_fa
1712  * after this function to keep internal structures in consistency.
1713  */
ni_new_attr_flags(struct ntfs_inode * ni,enum FILE_ATTRIBUTE new_fa)1714 int ni_new_attr_flags(struct ntfs_inode *ni, enum FILE_ATTRIBUTE new_fa)
1715 {
1716 	struct ATTRIB *attr;
1717 	struct mft_inode *mi;
1718 	__le16 new_aflags;
1719 	u32 new_asize;
1720 
1721 	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
1722 	if (!attr)
1723 		return -EINVAL;
1724 
1725 	new_aflags = attr->flags;
1726 
1727 	if (new_fa & FILE_ATTRIBUTE_SPARSE_FILE)
1728 		new_aflags |= ATTR_FLAG_SPARSED;
1729 	else
1730 		new_aflags &= ~ATTR_FLAG_SPARSED;
1731 
1732 	if (new_fa & FILE_ATTRIBUTE_COMPRESSED)
1733 		new_aflags |= ATTR_FLAG_COMPRESSED;
1734 	else
1735 		new_aflags &= ~ATTR_FLAG_COMPRESSED;
1736 
1737 	if (new_aflags == attr->flags)
1738 		return 0;
1739 
1740 	if ((new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) ==
1741 	    (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED)) {
1742 		ntfs_inode_warn(&ni->vfs_inode,
1743 				"file can't be sparsed and compressed");
1744 		return -EOPNOTSUPP;
1745 	}
1746 
1747 	if (!attr->non_res)
1748 		goto out;
1749 
1750 	if (attr->nres.data_size) {
1751 		ntfs_inode_warn(
1752 			&ni->vfs_inode,
1753 			"one can change sparsed/compressed only for empty files");
1754 		return -EOPNOTSUPP;
1755 	}
1756 
1757 	/* Resize nonresident empty attribute in-place only. */
1758 	new_asize = (new_aflags & (ATTR_FLAG_COMPRESSED | ATTR_FLAG_SPARSED))
1759 			    ? (SIZEOF_NONRESIDENT_EX + 8)
1760 			    : (SIZEOF_NONRESIDENT + 8);
1761 
1762 	if (!mi_resize_attr(mi, attr, new_asize - le32_to_cpu(attr->size)))
1763 		return -EOPNOTSUPP;
1764 
1765 	if (new_aflags & ATTR_FLAG_SPARSED) {
1766 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1767 		/* Windows uses 16 clusters per frame but supports one cluster per frame too. */
1768 		attr->nres.c_unit = 0;
1769 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1770 	} else if (new_aflags & ATTR_FLAG_COMPRESSED) {
1771 		attr->name_off = SIZEOF_NONRESIDENT_EX_LE;
1772 		/* The only allowed: 16 clusters per frame. */
1773 		attr->nres.c_unit = NTFS_LZNT_CUNIT;
1774 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops_cmpr;
1775 	} else {
1776 		attr->name_off = SIZEOF_NONRESIDENT_LE;
1777 		/* Normal files. */
1778 		attr->nres.c_unit = 0;
1779 		ni->vfs_inode.i_mapping->a_ops = &ntfs_aops;
1780 	}
1781 	attr->nres.run_off = attr->name_off;
1782 out:
1783 	attr->flags = new_aflags;
1784 	mi->dirty = true;
1785 
1786 	return 0;
1787 }
1788 
1789 /*
1790  * ni_parse_reparse
1791  *
1792  * buffer - memory for reparse buffer header
1793  */
ni_parse_reparse(struct ntfs_inode * ni,struct ATTRIB * attr,struct REPARSE_DATA_BUFFER * buffer)1794 enum REPARSE_SIGN ni_parse_reparse(struct ntfs_inode *ni, struct ATTRIB *attr,
1795 				   struct REPARSE_DATA_BUFFER *buffer)
1796 {
1797 	const struct REPARSE_DATA_BUFFER *rp = NULL;
1798 	u8 bits;
1799 	u16 len;
1800 	typeof(rp->CompressReparseBuffer) *cmpr;
1801 
1802 	/* Try to estimate reparse point. */
1803 	if (!attr->non_res) {
1804 		rp = resident_data_ex(attr, sizeof(struct REPARSE_DATA_BUFFER));
1805 	} else if (le64_to_cpu(attr->nres.data_size) >=
1806 		   sizeof(struct REPARSE_DATA_BUFFER)) {
1807 		struct runs_tree run;
1808 
1809 		run_init(&run);
1810 
1811 		if (!attr_load_runs_vcn(ni, ATTR_REPARSE, NULL, 0, &run, 0) &&
1812 		    !ntfs_read_run_nb(ni->mi.sbi, &run, 0, buffer,
1813 				      sizeof(struct REPARSE_DATA_BUFFER),
1814 				      NULL)) {
1815 			rp = buffer;
1816 		}
1817 
1818 		run_close(&run);
1819 	}
1820 
1821 	if (!rp)
1822 		return REPARSE_NONE;
1823 
1824 	len = le16_to_cpu(rp->ReparseDataLength);
1825 	switch (rp->ReparseTag) {
1826 	case (IO_REPARSE_TAG_MICROSOFT | IO_REPARSE_TAG_SYMBOLIC_LINK):
1827 		break; /* Symbolic link. */
1828 	case IO_REPARSE_TAG_MOUNT_POINT:
1829 		break; /* Mount points and junctions. */
1830 	case IO_REPARSE_TAG_SYMLINK:
1831 		break;
1832 	case IO_REPARSE_TAG_COMPRESS:
1833 		/*
1834 		 * WOF - Windows Overlay Filter - Used to compress files with
1835 		 * LZX/Xpress.
1836 		 *
1837 		 * Unlike native NTFS file compression, the Windows
1838 		 * Overlay Filter supports only read operations. This means
1839 		 * that it doesn't need to sector-align each compressed chunk,
1840 		 * so the compressed data can be packed more tightly together.
1841 		 * If you open the file for writing, the WOF just decompresses
1842 		 * the entire file, turning it back into a plain file.
1843 		 *
1844 		 * Ntfs3 driver decompresses the entire file only on write or
1845 		 * change size requests.
1846 		 */
1847 
1848 		cmpr = &rp->CompressReparseBuffer;
1849 		if (len < sizeof(*cmpr) ||
1850 		    cmpr->WofVersion != WOF_CURRENT_VERSION ||
1851 		    cmpr->WofProvider != WOF_PROVIDER_SYSTEM ||
1852 		    cmpr->ProviderVer != WOF_PROVIDER_CURRENT_VERSION) {
1853 			return REPARSE_NONE;
1854 		}
1855 
1856 		switch (cmpr->CompressionFormat) {
1857 		case WOF_COMPRESSION_XPRESS4K:
1858 			bits = 0xc; // 4k
1859 			break;
1860 		case WOF_COMPRESSION_XPRESS8K:
1861 			bits = 0xd; // 8k
1862 			break;
1863 		case WOF_COMPRESSION_XPRESS16K:
1864 			bits = 0xe; // 16k
1865 			break;
1866 		case WOF_COMPRESSION_LZX32K:
1867 			bits = 0xf; // 32k
1868 			break;
1869 		default:
1870 			bits = 0x10; // 64k
1871 			break;
1872 		}
1873 		ni_set_ext_compress_bits(ni, bits);
1874 		return REPARSE_COMPRESSED;
1875 
1876 	case IO_REPARSE_TAG_DEDUP:
1877 		ni->ni_flags |= NI_FLAG_DEDUPLICATED;
1878 		return REPARSE_DEDUPLICATED;
1879 
1880 	default:
1881 		if (rp->ReparseTag & IO_REPARSE_TAG_NAME_SURROGATE)
1882 			break;
1883 
1884 		return REPARSE_NONE;
1885 	}
1886 
1887 	if (buffer != rp)
1888 		memcpy(buffer, rp, sizeof(struct REPARSE_DATA_BUFFER));
1889 
1890 	/* Looks like normal symlink. */
1891 	return REPARSE_LINK;
1892 }
1893 
1894 /*
1895  * ni_fiemap - Helper for file_fiemap().
1896  *
1897  * Assumed ni_lock.
1898  * TODO: Less aggressive locks.
1899  */
ni_fiemap(struct ntfs_inode * ni,struct fiemap_extent_info * fieinfo,__u64 vbo,__u64 len)1900 int ni_fiemap(struct ntfs_inode *ni, struct fiemap_extent_info *fieinfo,
1901 	      __u64 vbo, __u64 len)
1902 {
1903 	int err = 0;
1904 	struct ntfs_sb_info *sbi = ni->mi.sbi;
1905 	u8 cluster_bits = sbi->cluster_bits;
1906 	struct runs_tree *run;
1907 	struct rw_semaphore *run_lock;
1908 	struct ATTRIB *attr;
1909 	CLST vcn = vbo >> cluster_bits;
1910 	CLST lcn, clen;
1911 	u64 valid = ni->i_valid;
1912 	u64 lbo, bytes;
1913 	u64 end, alloc_size;
1914 	size_t idx = -1;
1915 	u32 flags;
1916 	bool ok;
1917 
1918 	if (S_ISDIR(ni->vfs_inode.i_mode)) {
1919 		run = &ni->dir.alloc_run;
1920 		attr = ni_find_attr(ni, NULL, NULL, ATTR_ALLOC, I30_NAME,
1921 				    ARRAY_SIZE(I30_NAME), NULL, NULL);
1922 		run_lock = &ni->dir.run_lock;
1923 	} else {
1924 		run = &ni->file.run;
1925 		attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL,
1926 				    NULL);
1927 		if (!attr) {
1928 			err = -EINVAL;
1929 			goto out;
1930 		}
1931 		if (is_attr_compressed(attr)) {
1932 			/* Unfortunately cp -r incorrectly treats compressed clusters. */
1933 			err = -EOPNOTSUPP;
1934 			ntfs_inode_warn(
1935 				&ni->vfs_inode,
1936 				"fiemap is not supported for compressed file (cp -r)");
1937 			goto out;
1938 		}
1939 		run_lock = &ni->file.run_lock;
1940 	}
1941 
1942 	if (!attr || !attr->non_res) {
1943 		err = fiemap_fill_next_extent(
1944 			fieinfo, 0, 0,
1945 			attr ? le32_to_cpu(attr->res.data_size) : 0,
1946 			FIEMAP_EXTENT_DATA_INLINE | FIEMAP_EXTENT_LAST |
1947 				FIEMAP_EXTENT_MERGED);
1948 		goto out;
1949 	}
1950 
1951 	end = vbo + len;
1952 	alloc_size = le64_to_cpu(attr->nres.alloc_size);
1953 	if (end > alloc_size)
1954 		end = alloc_size;
1955 
1956 	down_read(run_lock);
1957 
1958 	while (vbo < end) {
1959 		if (idx == -1) {
1960 			ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1961 		} else {
1962 			CLST vcn_next = vcn;
1963 
1964 			ok = run_get_entry(run, ++idx, &vcn, &lcn, &clen) &&
1965 			     vcn == vcn_next;
1966 			if (!ok)
1967 				vcn = vcn_next;
1968 		}
1969 
1970 		if (!ok) {
1971 			up_read(run_lock);
1972 			down_write(run_lock);
1973 
1974 			err = attr_load_runs_vcn(ni, attr->type,
1975 						 attr_name(attr),
1976 						 attr->name_len, run, vcn);
1977 
1978 			up_write(run_lock);
1979 			down_read(run_lock);
1980 
1981 			if (err)
1982 				break;
1983 
1984 			ok = run_lookup_entry(run, vcn, &lcn, &clen, &idx);
1985 
1986 			if (!ok) {
1987 				err = -EINVAL;
1988 				break;
1989 			}
1990 		}
1991 
1992 		if (!clen) {
1993 			err = -EINVAL; // ?
1994 			break;
1995 		}
1996 
1997 		if (lcn == SPARSE_LCN) {
1998 			vcn += clen;
1999 			vbo = (u64)vcn << cluster_bits;
2000 			continue;
2001 		}
2002 
2003 		flags = FIEMAP_EXTENT_MERGED;
2004 		if (S_ISDIR(ni->vfs_inode.i_mode)) {
2005 			;
2006 		} else if (is_attr_compressed(attr)) {
2007 			CLST clst_data;
2008 
2009 			err = attr_is_frame_compressed(
2010 				ni, attr, vcn >> attr->nres.c_unit, &clst_data);
2011 			if (err)
2012 				break;
2013 			if (clst_data < NTFS_LZNT_CLUSTERS)
2014 				flags |= FIEMAP_EXTENT_ENCODED;
2015 		} else if (is_attr_encrypted(attr)) {
2016 			flags |= FIEMAP_EXTENT_DATA_ENCRYPTED;
2017 		}
2018 
2019 		vbo = (u64)vcn << cluster_bits;
2020 		bytes = (u64)clen << cluster_bits;
2021 		lbo = (u64)lcn << cluster_bits;
2022 
2023 		vcn += clen;
2024 
2025 		if (vbo + bytes >= end)
2026 			bytes = end - vbo;
2027 
2028 		if (vbo + bytes <= valid) {
2029 			;
2030 		} else if (vbo >= valid) {
2031 			flags |= FIEMAP_EXTENT_UNWRITTEN;
2032 		} else {
2033 			/* vbo < valid && valid < vbo + bytes */
2034 			u64 dlen = valid - vbo;
2035 
2036 			if (vbo + dlen >= end)
2037 				flags |= FIEMAP_EXTENT_LAST;
2038 
2039 			err = fiemap_fill_next_extent(fieinfo, vbo, lbo, dlen,
2040 						      flags);
2041 			if (err < 0)
2042 				break;
2043 			if (err == 1) {
2044 				err = 0;
2045 				break;
2046 			}
2047 
2048 			vbo = valid;
2049 			bytes -= dlen;
2050 			if (!bytes)
2051 				continue;
2052 
2053 			lbo += dlen;
2054 			flags |= FIEMAP_EXTENT_UNWRITTEN;
2055 		}
2056 
2057 		if (vbo + bytes >= end)
2058 			flags |= FIEMAP_EXTENT_LAST;
2059 
2060 		err = fiemap_fill_next_extent(fieinfo, vbo, lbo, bytes, flags);
2061 		if (err < 0)
2062 			break;
2063 		if (err == 1) {
2064 			err = 0;
2065 			break;
2066 		}
2067 
2068 		vbo += bytes;
2069 	}
2070 
2071 	up_read(run_lock);
2072 
2073 out:
2074 	return err;
2075 }
2076 
2077 /*
2078  * ni_readpage_cmpr
2079  *
2080  * When decompressing, we typically obtain more than one page per reference.
2081  * We inject the additional pages into the page cache.
2082  */
ni_readpage_cmpr(struct ntfs_inode * ni,struct page * page)2083 int ni_readpage_cmpr(struct ntfs_inode *ni, struct page *page)
2084 {
2085 	int err;
2086 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2087 	struct address_space *mapping = page->mapping;
2088 	pgoff_t index = page->index;
2089 	u64 frame_vbo, vbo = (u64)index << PAGE_SHIFT;
2090 	struct page **pages = NULL; /* Array of at most 16 pages. stack? */
2091 	u8 frame_bits;
2092 	CLST frame;
2093 	u32 i, idx, frame_size, pages_per_frame;
2094 	gfp_t gfp_mask;
2095 	struct page *pg;
2096 
2097 	if (vbo >= ni->vfs_inode.i_size) {
2098 		SetPageUptodate(page);
2099 		err = 0;
2100 		goto out;
2101 	}
2102 
2103 	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2104 		/* Xpress or LZX. */
2105 		frame_bits = ni_ext_compress_bits(ni);
2106 	} else {
2107 		/* LZNT compression. */
2108 		frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2109 	}
2110 	frame_size = 1u << frame_bits;
2111 	frame = vbo >> frame_bits;
2112 	frame_vbo = (u64)frame << frame_bits;
2113 	idx = (vbo - frame_vbo) >> PAGE_SHIFT;
2114 
2115 	pages_per_frame = frame_size >> PAGE_SHIFT;
2116 	pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2117 	if (!pages) {
2118 		err = -ENOMEM;
2119 		goto out;
2120 	}
2121 
2122 	pages[idx] = page;
2123 	index = frame_vbo >> PAGE_SHIFT;
2124 	gfp_mask = mapping_gfp_mask(mapping);
2125 
2126 	for (i = 0; i < pages_per_frame; i++, index++) {
2127 		if (i == idx)
2128 			continue;
2129 
2130 		pg = find_or_create_page(mapping, index, gfp_mask);
2131 		if (!pg) {
2132 			err = -ENOMEM;
2133 			goto out1;
2134 		}
2135 		pages[i] = pg;
2136 	}
2137 
2138 	err = ni_read_frame(ni, frame_vbo, pages, pages_per_frame);
2139 
2140 out1:
2141 	if (err)
2142 		SetPageError(page);
2143 
2144 	for (i = 0; i < pages_per_frame; i++) {
2145 		pg = pages[i];
2146 		if (i == idx)
2147 			continue;
2148 		unlock_page(pg);
2149 		put_page(pg);
2150 	}
2151 
2152 out:
2153 	/* At this point, err contains 0 or -EIO depending on the "critical" page. */
2154 	kfree(pages);
2155 	unlock_page(page);
2156 
2157 	return err;
2158 }
2159 
2160 #ifdef CONFIG_NTFS3_LZX_XPRESS
2161 /*
2162  * ni_decompress_file - Decompress LZX/Xpress compressed file.
2163  *
2164  * Remove ATTR_DATA::WofCompressedData.
2165  * Remove ATTR_REPARSE.
2166  */
ni_decompress_file(struct ntfs_inode * ni)2167 int ni_decompress_file(struct ntfs_inode *ni)
2168 {
2169 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2170 	struct inode *inode = &ni->vfs_inode;
2171 	loff_t i_size = inode->i_size;
2172 	struct address_space *mapping = inode->i_mapping;
2173 	gfp_t gfp_mask = mapping_gfp_mask(mapping);
2174 	struct page **pages = NULL;
2175 	struct ATTR_LIST_ENTRY *le;
2176 	struct ATTRIB *attr;
2177 	CLST vcn, cend, lcn, clen, end;
2178 	pgoff_t index;
2179 	u64 vbo;
2180 	u8 frame_bits;
2181 	u32 i, frame_size, pages_per_frame, bytes;
2182 	struct mft_inode *mi;
2183 	int err;
2184 
2185 	/* Clusters for decompressed data. */
2186 	cend = bytes_to_cluster(sbi, i_size);
2187 
2188 	if (!i_size)
2189 		goto remove_wof;
2190 
2191 	/* Check in advance. */
2192 	if (cend > wnd_zeroes(&sbi->used.bitmap)) {
2193 		err = -ENOSPC;
2194 		goto out;
2195 	}
2196 
2197 	frame_bits = ni_ext_compress_bits(ni);
2198 	frame_size = 1u << frame_bits;
2199 	pages_per_frame = frame_size >> PAGE_SHIFT;
2200 	pages = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2201 	if (!pages) {
2202 		err = -ENOMEM;
2203 		goto out;
2204 	}
2205 
2206 	/*
2207 	 * Step 1: Decompress data and copy to new allocated clusters.
2208 	 */
2209 	index = 0;
2210 	for (vbo = 0; vbo < i_size; vbo += bytes) {
2211 		u32 nr_pages;
2212 		bool new;
2213 
2214 		if (vbo + frame_size > i_size) {
2215 			bytes = i_size - vbo;
2216 			nr_pages = (bytes + PAGE_SIZE - 1) >> PAGE_SHIFT;
2217 		} else {
2218 			nr_pages = pages_per_frame;
2219 			bytes = frame_size;
2220 		}
2221 
2222 		end = bytes_to_cluster(sbi, vbo + bytes);
2223 
2224 		for (vcn = vbo >> sbi->cluster_bits; vcn < end; vcn += clen) {
2225 			err = attr_data_get_block(ni, vcn, cend - vcn, &lcn,
2226 						  &clen, &new);
2227 			if (err)
2228 				goto out;
2229 		}
2230 
2231 		for (i = 0; i < pages_per_frame; i++, index++) {
2232 			struct page *pg;
2233 
2234 			pg = find_or_create_page(mapping, index, gfp_mask);
2235 			if (!pg) {
2236 				while (i--) {
2237 					unlock_page(pages[i]);
2238 					put_page(pages[i]);
2239 				}
2240 				err = -ENOMEM;
2241 				goto out;
2242 			}
2243 			pages[i] = pg;
2244 		}
2245 
2246 		err = ni_read_frame(ni, vbo, pages, pages_per_frame);
2247 
2248 		if (!err) {
2249 			down_read(&ni->file.run_lock);
2250 			err = ntfs_bio_pages(sbi, &ni->file.run, pages,
2251 					     nr_pages, vbo, bytes,
2252 					     REQ_OP_WRITE);
2253 			up_read(&ni->file.run_lock);
2254 		}
2255 
2256 		for (i = 0; i < pages_per_frame; i++) {
2257 			unlock_page(pages[i]);
2258 			put_page(pages[i]);
2259 		}
2260 
2261 		if (err)
2262 			goto out;
2263 
2264 		cond_resched();
2265 	}
2266 
2267 remove_wof:
2268 	/*
2269 	 * Step 2: Deallocate attributes ATTR_DATA::WofCompressedData
2270 	 * and ATTR_REPARSE.
2271 	 */
2272 	attr = NULL;
2273 	le = NULL;
2274 	while ((attr = ni_enum_attr_ex(ni, attr, &le, NULL))) {
2275 		CLST svcn, evcn;
2276 		u32 asize, roff;
2277 
2278 		if (attr->type == ATTR_REPARSE) {
2279 			struct MFT_REF ref;
2280 
2281 			mi_get_ref(&ni->mi, &ref);
2282 			ntfs_remove_reparse(sbi, 0, &ref);
2283 		}
2284 
2285 		if (!attr->non_res)
2286 			continue;
2287 
2288 		if (attr->type != ATTR_REPARSE &&
2289 		    (attr->type != ATTR_DATA ||
2290 		     attr->name_len != ARRAY_SIZE(WOF_NAME) ||
2291 		     memcmp(attr_name(attr), WOF_NAME, sizeof(WOF_NAME))))
2292 			continue;
2293 
2294 		svcn = le64_to_cpu(attr->nres.svcn);
2295 		evcn = le64_to_cpu(attr->nres.evcn);
2296 
2297 		if (evcn + 1 <= svcn)
2298 			continue;
2299 
2300 		asize = le32_to_cpu(attr->size);
2301 		roff = le16_to_cpu(attr->nres.run_off);
2302 
2303 		if (roff > asize) {
2304 			err = -EINVAL;
2305 			goto out;
2306 		}
2307 
2308 		/*run==1  Means unpack and deallocate. */
2309 		run_unpack_ex(RUN_DEALLOCATE, sbi, ni->mi.rno, svcn, evcn, svcn,
2310 			      Add2Ptr(attr, roff), asize - roff);
2311 	}
2312 
2313 	/*
2314 	 * Step 3: Remove attribute ATTR_DATA::WofCompressedData.
2315 	 */
2316 	err = ni_remove_attr(ni, ATTR_DATA, WOF_NAME, ARRAY_SIZE(WOF_NAME),
2317 			     false, NULL);
2318 	if (err)
2319 		goto out;
2320 
2321 	/*
2322 	 * Step 4: Remove ATTR_REPARSE.
2323 	 */
2324 	err = ni_remove_attr(ni, ATTR_REPARSE, NULL, 0, false, NULL);
2325 	if (err)
2326 		goto out;
2327 
2328 	/*
2329 	 * Step 5: Remove sparse flag from data attribute.
2330 	 */
2331 	attr = ni_find_attr(ni, NULL, NULL, ATTR_DATA, NULL, 0, NULL, &mi);
2332 	if (!attr) {
2333 		err = -EINVAL;
2334 		goto out;
2335 	}
2336 
2337 	if (attr->non_res && is_attr_sparsed(attr)) {
2338 		/* Sparsed attribute header is 8 bytes bigger than normal. */
2339 		struct MFT_REC *rec = mi->mrec;
2340 		u32 used = le32_to_cpu(rec->used);
2341 		u32 asize = le32_to_cpu(attr->size);
2342 		u16 roff = le16_to_cpu(attr->nres.run_off);
2343 		char *rbuf = Add2Ptr(attr, roff);
2344 
2345 		memmove(rbuf - 8, rbuf, used - PtrOffset(rec, rbuf));
2346 		attr->size = cpu_to_le32(asize - 8);
2347 		attr->flags &= ~ATTR_FLAG_SPARSED;
2348 		attr->nres.run_off = cpu_to_le16(roff - 8);
2349 		attr->nres.c_unit = 0;
2350 		rec->used = cpu_to_le32(used - 8);
2351 		mi->dirty = true;
2352 		ni->std_fa &= ~(FILE_ATTRIBUTE_SPARSE_FILE |
2353 				FILE_ATTRIBUTE_REPARSE_POINT);
2354 
2355 		mark_inode_dirty(inode);
2356 	}
2357 
2358 	/* Clear cached flag. */
2359 	ni->ni_flags &= ~NI_FLAG_COMPRESSED_MASK;
2360 	if (ni->file.offs_page) {
2361 		put_page(ni->file.offs_page);
2362 		ni->file.offs_page = NULL;
2363 	}
2364 	mapping->a_ops = &ntfs_aops;
2365 
2366 out:
2367 	kfree(pages);
2368 	if (err)
2369 		_ntfs_bad_inode(inode);
2370 
2371 	return err;
2372 }
2373 
2374 /*
2375  * decompress_lzx_xpress - External compression LZX/Xpress.
2376  */
decompress_lzx_xpress(struct ntfs_sb_info * sbi,const char * cmpr,size_t cmpr_size,void * unc,size_t unc_size,u32 frame_size)2377 static int decompress_lzx_xpress(struct ntfs_sb_info *sbi, const char *cmpr,
2378 				 size_t cmpr_size, void *unc, size_t unc_size,
2379 				 u32 frame_size)
2380 {
2381 	int err;
2382 	void *ctx;
2383 
2384 	if (cmpr_size == unc_size) {
2385 		/* Frame not compressed. */
2386 		memcpy(unc, cmpr, unc_size);
2387 		return 0;
2388 	}
2389 
2390 	err = 0;
2391 	if (frame_size == 0x8000) {
2392 		mutex_lock(&sbi->compress.mtx_lzx);
2393 		/* LZX: Frame compressed. */
2394 		ctx = sbi->compress.lzx;
2395 		if (!ctx) {
2396 			/* Lazy initialize LZX decompress context. */
2397 			ctx = lzx_allocate_decompressor();
2398 			if (!ctx) {
2399 				err = -ENOMEM;
2400 				goto out1;
2401 			}
2402 
2403 			sbi->compress.lzx = ctx;
2404 		}
2405 
2406 		if (lzx_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2407 			/* Treat all errors as "invalid argument". */
2408 			err = -EINVAL;
2409 		}
2410 out1:
2411 		mutex_unlock(&sbi->compress.mtx_lzx);
2412 	} else {
2413 		/* XPRESS: Frame compressed. */
2414 		mutex_lock(&sbi->compress.mtx_xpress);
2415 		ctx = sbi->compress.xpress;
2416 		if (!ctx) {
2417 			/* Lazy initialize Xpress decompress context. */
2418 			ctx = xpress_allocate_decompressor();
2419 			if (!ctx) {
2420 				err = -ENOMEM;
2421 				goto out2;
2422 			}
2423 
2424 			sbi->compress.xpress = ctx;
2425 		}
2426 
2427 		if (xpress_decompress(ctx, cmpr, cmpr_size, unc, unc_size)) {
2428 			/* Treat all errors as "invalid argument". */
2429 			err = -EINVAL;
2430 		}
2431 out2:
2432 		mutex_unlock(&sbi->compress.mtx_xpress);
2433 	}
2434 	return err;
2435 }
2436 #endif
2437 
2438 /*
2439  * ni_read_frame
2440  *
2441  * Pages - Array of locked pages.
2442  */
ni_read_frame(struct ntfs_inode * ni,u64 frame_vbo,struct page ** pages,u32 pages_per_frame)2443 int ni_read_frame(struct ntfs_inode *ni, u64 frame_vbo, struct page **pages,
2444 		  u32 pages_per_frame)
2445 {
2446 	int err;
2447 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2448 	u8 cluster_bits = sbi->cluster_bits;
2449 	char *frame_ondisk = NULL;
2450 	char *frame_mem = NULL;
2451 	struct page **pages_disk = NULL;
2452 	struct ATTR_LIST_ENTRY *le = NULL;
2453 	struct runs_tree *run = &ni->file.run;
2454 	u64 valid_size = ni->i_valid;
2455 	u64 vbo_disk;
2456 	size_t unc_size;
2457 	u32 frame_size, i, npages_disk, ondisk_size;
2458 	struct page *pg;
2459 	struct ATTRIB *attr;
2460 	CLST frame, clst_data;
2461 
2462 	/*
2463 	 * To simplify decompress algorithm do vmap for source
2464 	 * and target pages.
2465 	 */
2466 	for (i = 0; i < pages_per_frame; i++)
2467 		kmap(pages[i]);
2468 
2469 	frame_size = pages_per_frame << PAGE_SHIFT;
2470 	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL);
2471 	if (!frame_mem) {
2472 		err = -ENOMEM;
2473 		goto out;
2474 	}
2475 
2476 	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, NULL);
2477 	if (!attr) {
2478 		err = -ENOENT;
2479 		goto out1;
2480 	}
2481 
2482 	if (!attr->non_res) {
2483 		u32 data_size = le32_to_cpu(attr->res.data_size);
2484 
2485 		memset(frame_mem, 0, frame_size);
2486 		if (frame_vbo < data_size) {
2487 			ondisk_size = data_size - frame_vbo;
2488 			memcpy(frame_mem, resident_data(attr) + frame_vbo,
2489 			       min(ondisk_size, frame_size));
2490 		}
2491 		err = 0;
2492 		goto out1;
2493 	}
2494 
2495 	if (frame_vbo >= valid_size) {
2496 		memset(frame_mem, 0, frame_size);
2497 		err = 0;
2498 		goto out1;
2499 	}
2500 
2501 	if (ni->ni_flags & NI_FLAG_COMPRESSED_MASK) {
2502 #ifndef CONFIG_NTFS3_LZX_XPRESS
2503 		err = -EOPNOTSUPP;
2504 		goto out1;
2505 #else
2506 		u32 frame_bits = ni_ext_compress_bits(ni);
2507 		u64 frame64 = frame_vbo >> frame_bits;
2508 		u64 frames, vbo_data;
2509 
2510 		if (frame_size != (1u << frame_bits)) {
2511 			err = -EINVAL;
2512 			goto out1;
2513 		}
2514 		switch (frame_size) {
2515 		case 0x1000:
2516 		case 0x2000:
2517 		case 0x4000:
2518 		case 0x8000:
2519 			break;
2520 		default:
2521 			/* Unknown compression. */
2522 			err = -EOPNOTSUPP;
2523 			goto out1;
2524 		}
2525 
2526 		attr = ni_find_attr(ni, attr, &le, ATTR_DATA, WOF_NAME,
2527 				    ARRAY_SIZE(WOF_NAME), NULL, NULL);
2528 		if (!attr) {
2529 			ntfs_inode_err(
2530 				&ni->vfs_inode,
2531 				"external compressed file should contains data attribute \"WofCompressedData\"");
2532 			err = -EINVAL;
2533 			goto out1;
2534 		}
2535 
2536 		if (!attr->non_res) {
2537 			run = NULL;
2538 		} else {
2539 			run = run_alloc();
2540 			if (!run) {
2541 				err = -ENOMEM;
2542 				goto out1;
2543 			}
2544 		}
2545 
2546 		frames = (ni->vfs_inode.i_size - 1) >> frame_bits;
2547 
2548 		err = attr_wof_frame_info(ni, attr, run, frame64, frames,
2549 					  frame_bits, &ondisk_size, &vbo_data);
2550 		if (err)
2551 			goto out2;
2552 
2553 		if (frame64 == frames) {
2554 			unc_size = 1 + ((ni->vfs_inode.i_size - 1) &
2555 					(frame_size - 1));
2556 			ondisk_size = attr_size(attr) - vbo_data;
2557 		} else {
2558 			unc_size = frame_size;
2559 		}
2560 
2561 		if (ondisk_size > frame_size) {
2562 			err = -EINVAL;
2563 			goto out2;
2564 		}
2565 
2566 		if (!attr->non_res) {
2567 			if (vbo_data + ondisk_size >
2568 			    le32_to_cpu(attr->res.data_size)) {
2569 				err = -EINVAL;
2570 				goto out1;
2571 			}
2572 
2573 			err = decompress_lzx_xpress(
2574 				sbi, Add2Ptr(resident_data(attr), vbo_data),
2575 				ondisk_size, frame_mem, unc_size, frame_size);
2576 			goto out1;
2577 		}
2578 		vbo_disk = vbo_data;
2579 		/* Load all runs to read [vbo_disk-vbo_to). */
2580 		err = attr_load_runs_range(ni, ATTR_DATA, WOF_NAME,
2581 					   ARRAY_SIZE(WOF_NAME), run, vbo_disk,
2582 					   vbo_data + ondisk_size);
2583 		if (err)
2584 			goto out2;
2585 		npages_disk = (ondisk_size + (vbo_disk & (PAGE_SIZE - 1)) +
2586 			       PAGE_SIZE - 1) >>
2587 			      PAGE_SHIFT;
2588 #endif
2589 	} else if (is_attr_compressed(attr)) {
2590 		/* LZNT compression. */
2591 		if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2592 			err = -EOPNOTSUPP;
2593 			goto out1;
2594 		}
2595 
2596 		if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2597 			err = -EOPNOTSUPP;
2598 			goto out1;
2599 		}
2600 
2601 		down_write(&ni->file.run_lock);
2602 		run_truncate_around(run, le64_to_cpu(attr->nres.svcn));
2603 		frame = frame_vbo >> (cluster_bits + NTFS_LZNT_CUNIT);
2604 		err = attr_is_frame_compressed(ni, attr, frame, &clst_data);
2605 		up_write(&ni->file.run_lock);
2606 		if (err)
2607 			goto out1;
2608 
2609 		if (!clst_data) {
2610 			memset(frame_mem, 0, frame_size);
2611 			goto out1;
2612 		}
2613 
2614 		frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2615 		ondisk_size = clst_data << cluster_bits;
2616 
2617 		if (clst_data >= NTFS_LZNT_CLUSTERS) {
2618 			/* Frame is not compressed. */
2619 			down_read(&ni->file.run_lock);
2620 			err = ntfs_bio_pages(sbi, run, pages, pages_per_frame,
2621 					     frame_vbo, ondisk_size,
2622 					     REQ_OP_READ);
2623 			up_read(&ni->file.run_lock);
2624 			goto out1;
2625 		}
2626 		vbo_disk = frame_vbo;
2627 		npages_disk = (ondisk_size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2628 	} else {
2629 		__builtin_unreachable();
2630 		err = -EINVAL;
2631 		goto out1;
2632 	}
2633 
2634 	pages_disk = kzalloc(npages_disk * sizeof(struct page *), GFP_NOFS);
2635 	if (!pages_disk) {
2636 		err = -ENOMEM;
2637 		goto out2;
2638 	}
2639 
2640 	for (i = 0; i < npages_disk; i++) {
2641 		pg = alloc_page(GFP_KERNEL);
2642 		if (!pg) {
2643 			err = -ENOMEM;
2644 			goto out3;
2645 		}
2646 		pages_disk[i] = pg;
2647 		lock_page(pg);
2648 		kmap(pg);
2649 	}
2650 
2651 	/* Read 'ondisk_size' bytes from disk. */
2652 	down_read(&ni->file.run_lock);
2653 	err = ntfs_bio_pages(sbi, run, pages_disk, npages_disk, vbo_disk,
2654 			     ondisk_size, REQ_OP_READ);
2655 	up_read(&ni->file.run_lock);
2656 	if (err)
2657 		goto out3;
2658 
2659 	/*
2660 	 * To simplify decompress algorithm do vmap for source and target pages.
2661 	 */
2662 	frame_ondisk = vmap(pages_disk, npages_disk, VM_MAP, PAGE_KERNEL_RO);
2663 	if (!frame_ondisk) {
2664 		err = -ENOMEM;
2665 		goto out3;
2666 	}
2667 
2668 	/* Decompress: Frame_ondisk -> frame_mem. */
2669 #ifdef CONFIG_NTFS3_LZX_XPRESS
2670 	if (run != &ni->file.run) {
2671 		/* LZX or XPRESS */
2672 		err = decompress_lzx_xpress(
2673 			sbi, frame_ondisk + (vbo_disk & (PAGE_SIZE - 1)),
2674 			ondisk_size, frame_mem, unc_size, frame_size);
2675 	} else
2676 #endif
2677 	{
2678 		/* LZNT - Native NTFS compression. */
2679 		unc_size = decompress_lznt(frame_ondisk, ondisk_size, frame_mem,
2680 					   frame_size);
2681 		if ((ssize_t)unc_size < 0)
2682 			err = unc_size;
2683 		else if (!unc_size || unc_size > frame_size)
2684 			err = -EINVAL;
2685 	}
2686 	if (!err && valid_size < frame_vbo + frame_size) {
2687 		size_t ok = valid_size - frame_vbo;
2688 
2689 		memset(frame_mem + ok, 0, frame_size - ok);
2690 	}
2691 
2692 	vunmap(frame_ondisk);
2693 
2694 out3:
2695 	for (i = 0; i < npages_disk; i++) {
2696 		pg = pages_disk[i];
2697 		if (pg) {
2698 			kunmap(pg);
2699 			unlock_page(pg);
2700 			put_page(pg);
2701 		}
2702 	}
2703 	kfree(pages_disk);
2704 
2705 out2:
2706 #ifdef CONFIG_NTFS3_LZX_XPRESS
2707 	if (run != &ni->file.run)
2708 		run_free(run);
2709 #endif
2710 out1:
2711 	vunmap(frame_mem);
2712 out:
2713 	for (i = 0; i < pages_per_frame; i++) {
2714 		pg = pages[i];
2715 		kunmap(pg);
2716 		ClearPageError(pg);
2717 		SetPageUptodate(pg);
2718 	}
2719 
2720 	return err;
2721 }
2722 
2723 /*
2724  * ni_write_frame
2725  *
2726  * Pages - Array of locked pages.
2727  */
ni_write_frame(struct ntfs_inode * ni,struct page ** pages,u32 pages_per_frame)2728 int ni_write_frame(struct ntfs_inode *ni, struct page **pages,
2729 		   u32 pages_per_frame)
2730 {
2731 	int err;
2732 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2733 	u8 frame_bits = NTFS_LZNT_CUNIT + sbi->cluster_bits;
2734 	u32 frame_size = sbi->cluster_size << NTFS_LZNT_CUNIT;
2735 	u64 frame_vbo = (u64)pages[0]->index << PAGE_SHIFT;
2736 	CLST frame = frame_vbo >> frame_bits;
2737 	char *frame_ondisk = NULL;
2738 	struct page **pages_disk = NULL;
2739 	struct ATTR_LIST_ENTRY *le = NULL;
2740 	char *frame_mem;
2741 	struct ATTRIB *attr;
2742 	struct mft_inode *mi;
2743 	u32 i;
2744 	struct page *pg;
2745 	size_t compr_size, ondisk_size;
2746 	struct lznt *lznt;
2747 
2748 	attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL, &mi);
2749 	if (!attr) {
2750 		err = -ENOENT;
2751 		goto out;
2752 	}
2753 
2754 	if (WARN_ON(!is_attr_compressed(attr))) {
2755 		err = -EINVAL;
2756 		goto out;
2757 	}
2758 
2759 	if (sbi->cluster_size > NTFS_LZNT_MAX_CLUSTER) {
2760 		err = -EOPNOTSUPP;
2761 		goto out;
2762 	}
2763 
2764 	if (!attr->non_res) {
2765 		down_write(&ni->file.run_lock);
2766 		err = attr_make_nonresident(ni, attr, le, mi,
2767 					    le32_to_cpu(attr->res.data_size),
2768 					    &ni->file.run, &attr, pages[0]);
2769 		up_write(&ni->file.run_lock);
2770 		if (err)
2771 			goto out;
2772 	}
2773 
2774 	if (attr->nres.c_unit != NTFS_LZNT_CUNIT) {
2775 		err = -EOPNOTSUPP;
2776 		goto out;
2777 	}
2778 
2779 	pages_disk = kcalloc(pages_per_frame, sizeof(struct page *), GFP_NOFS);
2780 	if (!pages_disk) {
2781 		err = -ENOMEM;
2782 		goto out;
2783 	}
2784 
2785 	for (i = 0; i < pages_per_frame; i++) {
2786 		pg = alloc_page(GFP_KERNEL);
2787 		if (!pg) {
2788 			err = -ENOMEM;
2789 			goto out1;
2790 		}
2791 		pages_disk[i] = pg;
2792 		lock_page(pg);
2793 		kmap(pg);
2794 	}
2795 
2796 	/* To simplify compress algorithm do vmap for source and target pages. */
2797 	frame_ondisk = vmap(pages_disk, pages_per_frame, VM_MAP, PAGE_KERNEL);
2798 	if (!frame_ondisk) {
2799 		err = -ENOMEM;
2800 		goto out1;
2801 	}
2802 
2803 	for (i = 0; i < pages_per_frame; i++)
2804 		kmap(pages[i]);
2805 
2806 	/* Map in-memory frame for read-only. */
2807 	frame_mem = vmap(pages, pages_per_frame, VM_MAP, PAGE_KERNEL_RO);
2808 	if (!frame_mem) {
2809 		err = -ENOMEM;
2810 		goto out2;
2811 	}
2812 
2813 	mutex_lock(&sbi->compress.mtx_lznt);
2814 	lznt = NULL;
2815 	if (!sbi->compress.lznt) {
2816 		/*
2817 		 * LZNT implements two levels of compression:
2818 		 * 0 - Standard compression
2819 		 * 1 - Best compression, requires a lot of cpu
2820 		 * use mount option?
2821 		 */
2822 		lznt = get_lznt_ctx(0);
2823 		if (!lznt) {
2824 			mutex_unlock(&sbi->compress.mtx_lznt);
2825 			err = -ENOMEM;
2826 			goto out3;
2827 		}
2828 
2829 		sbi->compress.lznt = lznt;
2830 		lznt = NULL;
2831 	}
2832 
2833 	/* Compress: frame_mem -> frame_ondisk */
2834 	compr_size = compress_lznt(frame_mem, frame_size, frame_ondisk,
2835 				   frame_size, sbi->compress.lznt);
2836 	mutex_unlock(&sbi->compress.mtx_lznt);
2837 	kfree(lznt);
2838 
2839 	if (compr_size + sbi->cluster_size > frame_size) {
2840 		/* Frame is not compressed. */
2841 		compr_size = frame_size;
2842 		ondisk_size = frame_size;
2843 	} else if (compr_size) {
2844 		/* Frame is compressed. */
2845 		ondisk_size = ntfs_up_cluster(sbi, compr_size);
2846 		memset(frame_ondisk + compr_size, 0, ondisk_size - compr_size);
2847 	} else {
2848 		/* Frame is sparsed. */
2849 		ondisk_size = 0;
2850 	}
2851 
2852 	down_write(&ni->file.run_lock);
2853 	run_truncate_around(&ni->file.run, le64_to_cpu(attr->nres.svcn));
2854 	err = attr_allocate_frame(ni, frame, compr_size, ni->i_valid);
2855 	up_write(&ni->file.run_lock);
2856 	if (err)
2857 		goto out2;
2858 
2859 	if (!ondisk_size)
2860 		goto out2;
2861 
2862 	down_read(&ni->file.run_lock);
2863 	err = ntfs_bio_pages(sbi, &ni->file.run,
2864 			     ondisk_size < frame_size ? pages_disk : pages,
2865 			     pages_per_frame, frame_vbo, ondisk_size,
2866 			     REQ_OP_WRITE);
2867 	up_read(&ni->file.run_lock);
2868 
2869 out3:
2870 	vunmap(frame_mem);
2871 
2872 out2:
2873 	for (i = 0; i < pages_per_frame; i++)
2874 		kunmap(pages[i]);
2875 
2876 	vunmap(frame_ondisk);
2877 out1:
2878 	for (i = 0; i < pages_per_frame; i++) {
2879 		pg = pages_disk[i];
2880 		if (pg) {
2881 			kunmap(pg);
2882 			unlock_page(pg);
2883 			put_page(pg);
2884 		}
2885 	}
2886 	kfree(pages_disk);
2887 out:
2888 	return err;
2889 }
2890 
2891 /*
2892  * ni_remove_name - Removes name 'de' from MFT and from directory.
2893  * 'de2' and 'undo_step' are used to restore MFT/dir, if error occurs.
2894  */
ni_remove_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE ** de2,int * undo_step)2895 int ni_remove_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2896 		   struct NTFS_DE *de, struct NTFS_DE **de2, int *undo_step)
2897 {
2898 	int err;
2899 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2900 	struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
2901 	struct ATTR_FILE_NAME *fname;
2902 	struct ATTR_LIST_ENTRY *le;
2903 	struct mft_inode *mi;
2904 	u16 de_key_size = le16_to_cpu(de->key_size);
2905 	u8 name_type;
2906 
2907 	*undo_step = 0;
2908 
2909 	/* Find name in record. */
2910 	mi_get_ref(&dir_ni->mi, &de_name->home);
2911 
2912 	fname = ni_fname_name(ni, (struct cpu_str *)&de_name->name_len,
2913 			      &de_name->home, &mi, &le);
2914 	if (!fname)
2915 		return -ENOENT;
2916 
2917 	memcpy(&de_name->dup, &fname->dup, sizeof(struct NTFS_DUP_INFO));
2918 	name_type = paired_name(fname->type);
2919 
2920 	/* Mark ntfs as dirty. It will be cleared at umount. */
2921 	ntfs_set_state(sbi, NTFS_DIRTY_DIRTY);
2922 
2923 	/* Step 1: Remove name from directory. */
2924 	err = indx_delete_entry(&dir_ni->dir, dir_ni, fname, de_key_size, sbi);
2925 	if (err)
2926 		return err;
2927 
2928 	/* Step 2: Remove name from MFT. */
2929 	ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2930 
2931 	*undo_step = 2;
2932 
2933 	/* Get paired name. */
2934 	fname = ni_fname_type(ni, name_type, &mi, &le);
2935 	if (fname) {
2936 		u16 de2_key_size = fname_full_size(fname);
2937 
2938 		*de2 = Add2Ptr(de, 1024);
2939 		(*de2)->key_size = cpu_to_le16(de2_key_size);
2940 
2941 		memcpy(*de2 + 1, fname, de2_key_size);
2942 
2943 		/* Step 3: Remove paired name from directory. */
2944 		err = indx_delete_entry(&dir_ni->dir, dir_ni, fname,
2945 					de2_key_size, sbi);
2946 		if (err)
2947 			return err;
2948 
2949 		/* Step 4: Remove paired name from MFT. */
2950 		ni_remove_attr_le(ni, attr_from_name(fname), mi, le);
2951 
2952 		*undo_step = 4;
2953 	}
2954 	return 0;
2955 }
2956 
2957 /*
2958  * ni_remove_name_undo - Paired function for ni_remove_name.
2959  *
2960  * Return: True if ok
2961  */
ni_remove_name_undo(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * de2,int undo_step)2962 bool ni_remove_name_undo(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
2963 			 struct NTFS_DE *de, struct NTFS_DE *de2, int undo_step)
2964 {
2965 	struct ntfs_sb_info *sbi = ni->mi.sbi;
2966 	struct ATTRIB *attr;
2967 	u16 de_key_size = de2 ? le16_to_cpu(de2->key_size) : 0;
2968 
2969 	switch (undo_step) {
2970 	case 4:
2971 		if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2972 				       &attr, NULL, NULL)) {
2973 			return false;
2974 		}
2975 		memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de2 + 1, de_key_size);
2976 
2977 		mi_get_ref(&ni->mi, &de2->ref);
2978 		de2->size = cpu_to_le16(ALIGN(de_key_size, 8) +
2979 					sizeof(struct NTFS_DE));
2980 		de2->flags = 0;
2981 		de2->res = 0;
2982 
2983 		if (indx_insert_entry(&dir_ni->dir, dir_ni, de2, sbi, NULL,
2984 				      1)) {
2985 			return false;
2986 		}
2987 		fallthrough;
2988 
2989 	case 2:
2990 		de_key_size = le16_to_cpu(de->key_size);
2991 
2992 		if (ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0,
2993 				       &attr, NULL, NULL)) {
2994 			return false;
2995 		}
2996 
2997 		memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de + 1, de_key_size);
2998 		mi_get_ref(&ni->mi, &de->ref);
2999 
3000 		if (indx_insert_entry(&dir_ni->dir, dir_ni, de, sbi, NULL, 1))
3001 			return false;
3002 	}
3003 
3004 	return true;
3005 }
3006 
3007 /*
3008  * ni_add_name - Add new name into MFT and into directory.
3009  */
ni_add_name(struct ntfs_inode * dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de)3010 int ni_add_name(struct ntfs_inode *dir_ni, struct ntfs_inode *ni,
3011 		struct NTFS_DE *de)
3012 {
3013 	int err;
3014 	struct ATTRIB *attr;
3015 	struct ATTR_LIST_ENTRY *le;
3016 	struct mft_inode *mi;
3017 	struct ATTR_FILE_NAME *fname;
3018 	struct ATTR_FILE_NAME *de_name = (struct ATTR_FILE_NAME *)(de + 1);
3019 	u16 de_key_size = le16_to_cpu(de->key_size);
3020 
3021 	mi_get_ref(&ni->mi, &de->ref);
3022 	mi_get_ref(&dir_ni->mi, &de_name->home);
3023 
3024 	/* Fill duplicate from any ATTR_NAME. */
3025 	fname = ni_fname_name(ni, NULL, NULL, NULL, NULL);
3026 	if (fname)
3027 		memcpy(&de_name->dup, &fname->dup, sizeof(fname->dup));
3028 	de_name->dup.fa = ni->std_fa;
3029 
3030 	/* Insert new name into MFT. */
3031 	err = ni_insert_resident(ni, de_key_size, ATTR_NAME, NULL, 0, &attr,
3032 				 &mi, &le);
3033 	if (err)
3034 		return err;
3035 
3036 	memcpy(Add2Ptr(attr, SIZEOF_RESIDENT), de_name, de_key_size);
3037 
3038 	/* Insert new name into directory. */
3039 	err = indx_insert_entry(&dir_ni->dir, dir_ni, de, ni->mi.sbi, NULL, 0);
3040 	if (err)
3041 		ni_remove_attr_le(ni, attr, mi, le);
3042 
3043 	return err;
3044 }
3045 
3046 /*
3047  * ni_rename - Remove one name and insert new name.
3048  */
ni_rename(struct ntfs_inode * dir_ni,struct ntfs_inode * new_dir_ni,struct ntfs_inode * ni,struct NTFS_DE * de,struct NTFS_DE * new_de,bool * is_bad)3049 int ni_rename(struct ntfs_inode *dir_ni, struct ntfs_inode *new_dir_ni,
3050 	      struct ntfs_inode *ni, struct NTFS_DE *de, struct NTFS_DE *new_de,
3051 	      bool *is_bad)
3052 {
3053 	int err;
3054 	struct NTFS_DE *de2 = NULL;
3055 	int undo = 0;
3056 
3057 	/*
3058 	 * There are two possible ways to rename:
3059 	 * 1) Add new name and remove old name.
3060 	 * 2) Remove old name and add new name.
3061 	 *
3062 	 * In most cases (not all!) adding new name into MFT and into directory can
3063 	 * allocate additional cluster(s).
3064 	 * Second way may result to bad inode if we can't add new name
3065 	 * and then can't restore (add) old name.
3066 	 */
3067 
3068 	/*
3069 	 * Way 1 - Add new + remove old.
3070 	 */
3071 	err = ni_add_name(new_dir_ni, ni, new_de);
3072 	if (!err) {
3073 		err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3074 		if (err && ni_remove_name(new_dir_ni, ni, new_de, &de2, &undo))
3075 			*is_bad = true;
3076 	}
3077 
3078 	/*
3079 	 * Way 2 - Remove old + add new.
3080 	 */
3081 	/*
3082 	 *	err = ni_remove_name(dir_ni, ni, de, &de2, &undo);
3083 	 *	if (!err) {
3084 	 *		err = ni_add_name(new_dir_ni, ni, new_de);
3085 	 *		if (err && !ni_remove_name_undo(dir_ni, ni, de, de2, undo))
3086 	 *			*is_bad = true;
3087 	 *	}
3088 	 */
3089 
3090 	return err;
3091 }
3092 
3093 /*
3094  * ni_is_dirty - Return: True if 'ni' requires ni_write_inode.
3095  */
ni_is_dirty(struct inode * inode)3096 bool ni_is_dirty(struct inode *inode)
3097 {
3098 	struct ntfs_inode *ni = ntfs_i(inode);
3099 	struct rb_node *node;
3100 
3101 	if (ni->mi.dirty || ni->attr_list.dirty ||
3102 	    (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3103 		return true;
3104 
3105 	for (node = rb_first(&ni->mi_tree); node; node = rb_next(node)) {
3106 		if (rb_entry(node, struct mft_inode, node)->dirty)
3107 			return true;
3108 	}
3109 
3110 	return false;
3111 }
3112 
3113 /*
3114  * ni_update_parent
3115  *
3116  * Update duplicate info of ATTR_FILE_NAME in MFT and in parent directories.
3117  */
ni_update_parent(struct ntfs_inode * ni,struct NTFS_DUP_INFO * dup,int sync)3118 static bool ni_update_parent(struct ntfs_inode *ni, struct NTFS_DUP_INFO *dup,
3119 			     int sync)
3120 {
3121 	struct ATTRIB *attr;
3122 	struct mft_inode *mi;
3123 	struct ATTR_LIST_ENTRY *le = NULL;
3124 	struct ntfs_sb_info *sbi = ni->mi.sbi;
3125 	struct super_block *sb = sbi->sb;
3126 	bool re_dirty = false;
3127 
3128 	if (ni->mi.mrec->flags & RECORD_FLAG_DIR) {
3129 		dup->fa |= FILE_ATTRIBUTE_DIRECTORY;
3130 		attr = NULL;
3131 		dup->alloc_size = 0;
3132 		dup->data_size = 0;
3133 	} else {
3134 		dup->fa &= ~FILE_ATTRIBUTE_DIRECTORY;
3135 
3136 		attr = ni_find_attr(ni, NULL, &le, ATTR_DATA, NULL, 0, NULL,
3137 				    &mi);
3138 		if (!attr) {
3139 			dup->alloc_size = dup->data_size = 0;
3140 		} else if (!attr->non_res) {
3141 			u32 data_size = le32_to_cpu(attr->res.data_size);
3142 
3143 			dup->alloc_size = cpu_to_le64(ALIGN(data_size, 8));
3144 			dup->data_size = cpu_to_le64(data_size);
3145 		} else {
3146 			u64 new_valid = ni->i_valid;
3147 			u64 data_size = le64_to_cpu(attr->nres.data_size);
3148 			__le64 valid_le;
3149 
3150 			dup->alloc_size = is_attr_ext(attr)
3151 						  ? attr->nres.total_size
3152 						  : attr->nres.alloc_size;
3153 			dup->data_size = attr->nres.data_size;
3154 
3155 			if (new_valid > data_size)
3156 				new_valid = data_size;
3157 
3158 			valid_le = cpu_to_le64(new_valid);
3159 			if (valid_le != attr->nres.valid_size) {
3160 				attr->nres.valid_size = valid_le;
3161 				mi->dirty = true;
3162 			}
3163 		}
3164 	}
3165 
3166 	/* TODO: Fill reparse info. */
3167 	dup->reparse = 0;
3168 	dup->ea_size = 0;
3169 
3170 	if (ni->ni_flags & NI_FLAG_EA) {
3171 		attr = ni_find_attr(ni, attr, &le, ATTR_EA_INFO, NULL, 0, NULL,
3172 				    NULL);
3173 		if (attr) {
3174 			const struct EA_INFO *info;
3175 
3176 			info = resident_data_ex(attr, sizeof(struct EA_INFO));
3177 			/* If ATTR_EA_INFO exists 'info' can't be NULL. */
3178 			if (info)
3179 				dup->ea_size = info->size_pack;
3180 		}
3181 	}
3182 
3183 	attr = NULL;
3184 	le = NULL;
3185 
3186 	while ((attr = ni_find_attr(ni, attr, &le, ATTR_NAME, NULL, 0, NULL,
3187 				    &mi))) {
3188 		struct inode *dir;
3189 		struct ATTR_FILE_NAME *fname;
3190 
3191 		fname = resident_data_ex(attr, SIZEOF_ATTRIBUTE_FILENAME);
3192 		if (!fname || !memcmp(&fname->dup, dup, sizeof(fname->dup)))
3193 			continue;
3194 
3195 		/* ntfs_iget5 may sleep. */
3196 		dir = ntfs_iget5(sb, &fname->home, NULL);
3197 		if (IS_ERR(dir)) {
3198 			ntfs_inode_warn(
3199 				&ni->vfs_inode,
3200 				"failed to open parent directory r=%lx to update",
3201 				(long)ino_get(&fname->home));
3202 			continue;
3203 		}
3204 
3205 		if (!is_bad_inode(dir)) {
3206 			struct ntfs_inode *dir_ni = ntfs_i(dir);
3207 
3208 			if (!ni_trylock(dir_ni)) {
3209 				re_dirty = true;
3210 			} else {
3211 				indx_update_dup(dir_ni, sbi, fname, dup, sync);
3212 				ni_unlock(dir_ni);
3213 				memcpy(&fname->dup, dup, sizeof(fname->dup));
3214 				mi->dirty = true;
3215 			}
3216 		}
3217 		iput(dir);
3218 	}
3219 
3220 	return re_dirty;
3221 }
3222 
3223 /*
3224  * ni_write_inode - Write MFT base record and all subrecords to disk.
3225  */
ni_write_inode(struct inode * inode,int sync,const char * hint)3226 int ni_write_inode(struct inode *inode, int sync, const char *hint)
3227 {
3228 	int err = 0, err2;
3229 	struct ntfs_inode *ni = ntfs_i(inode);
3230 	struct super_block *sb = inode->i_sb;
3231 	struct ntfs_sb_info *sbi = sb->s_fs_info;
3232 	bool re_dirty = false;
3233 	struct ATTR_STD_INFO *std;
3234 	struct rb_node *node, *next;
3235 	struct NTFS_DUP_INFO dup;
3236 
3237 	if (is_bad_inode(inode) || sb_rdonly(sb))
3238 		return 0;
3239 
3240 	if (!ni_trylock(ni)) {
3241 		/* 'ni' is under modification, skip for now. */
3242 		mark_inode_dirty_sync(inode);
3243 		return 0;
3244 	}
3245 
3246 	if (is_rec_inuse(ni->mi.mrec) &&
3247 	    !(sbi->flags & NTFS_FLAGS_LOG_REPLAYING) && inode->i_nlink) {
3248 		bool modified = false;
3249 
3250 		/* Update times in standard attribute. */
3251 		std = ni_std(ni);
3252 		if (!std) {
3253 			err = -EINVAL;
3254 			goto out;
3255 		}
3256 
3257 		/* Update the access times if they have changed. */
3258 		dup.m_time = kernel2nt(&inode->i_mtime);
3259 		if (std->m_time != dup.m_time) {
3260 			std->m_time = dup.m_time;
3261 			modified = true;
3262 		}
3263 
3264 		dup.c_time = kernel2nt(&inode->i_ctime);
3265 		if (std->c_time != dup.c_time) {
3266 			std->c_time = dup.c_time;
3267 			modified = true;
3268 		}
3269 
3270 		dup.a_time = kernel2nt(&inode->i_atime);
3271 		if (std->a_time != dup.a_time) {
3272 			std->a_time = dup.a_time;
3273 			modified = true;
3274 		}
3275 
3276 		dup.fa = ni->std_fa;
3277 		if (std->fa != dup.fa) {
3278 			std->fa = dup.fa;
3279 			modified = true;
3280 		}
3281 
3282 		if (modified)
3283 			ni->mi.dirty = true;
3284 
3285 		if (!ntfs_is_meta_file(sbi, inode->i_ino) &&
3286 		    (modified || (ni->ni_flags & NI_FLAG_UPDATE_PARENT))
3287 		    /* Avoid __wait_on_freeing_inode(inode). */
3288 		    && (sb->s_flags & SB_ACTIVE)) {
3289 			dup.cr_time = std->cr_time;
3290 			/* Not critical if this function fail. */
3291 			re_dirty = ni_update_parent(ni, &dup, sync);
3292 
3293 			if (re_dirty)
3294 				ni->ni_flags |= NI_FLAG_UPDATE_PARENT;
3295 			else
3296 				ni->ni_flags &= ~NI_FLAG_UPDATE_PARENT;
3297 		}
3298 
3299 		/* Update attribute list. */
3300 		if (ni->attr_list.size && ni->attr_list.dirty) {
3301 			if (inode->i_ino != MFT_REC_MFT || sync) {
3302 				err = ni_try_remove_attr_list(ni);
3303 				if (err)
3304 					goto out;
3305 			}
3306 
3307 			err = al_update(ni, sync);
3308 			if (err)
3309 				goto out;
3310 		}
3311 	}
3312 
3313 	for (node = rb_first(&ni->mi_tree); node; node = next) {
3314 		struct mft_inode *mi = rb_entry(node, struct mft_inode, node);
3315 		bool is_empty;
3316 
3317 		next = rb_next(node);
3318 
3319 		if (!mi->dirty)
3320 			continue;
3321 
3322 		is_empty = !mi_enum_attr(mi, NULL);
3323 
3324 		if (is_empty)
3325 			clear_rec_inuse(mi->mrec);
3326 
3327 		err2 = mi_write(mi, sync);
3328 		if (!err && err2)
3329 			err = err2;
3330 
3331 		if (is_empty) {
3332 			ntfs_mark_rec_free(sbi, mi->rno, false);
3333 			rb_erase(node, &ni->mi_tree);
3334 			mi_put(mi);
3335 		}
3336 	}
3337 
3338 	if (ni->mi.dirty) {
3339 		err2 = mi_write(&ni->mi, sync);
3340 		if (!err && err2)
3341 			err = err2;
3342 	}
3343 out:
3344 	ni_unlock(ni);
3345 
3346 	if (err) {
3347 		ntfs_err(sb, "%s r=%lx failed, %d.", hint, inode->i_ino, err);
3348 		ntfs_set_state(sbi, NTFS_DIRTY_ERROR);
3349 		return err;
3350 	}
3351 
3352 	if (re_dirty)
3353 		mark_inode_dirty_sync(inode);
3354 
3355 	return 0;
3356 }
3357