1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Request reply cache. This is currently a global cache, but this may
4  * change in the future and be a per-client cache.
5  *
6  * This code is heavily inspired by the 44BSD implementation, although
7  * it does things a bit differently.
8  *
9  * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
10  */
11 
12 #include <linux/sunrpc/svc_xprt.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/sunrpc/addr.h>
16 #include <linux/highmem.h>
17 #include <linux/log2.h>
18 #include <linux/hash.h>
19 #include <net/checksum.h>
20 
21 #include "nfsd.h"
22 #include "cache.h"
23 #include "trace.h"
24 
25 /*
26  * We use this value to determine the number of hash buckets from the max
27  * cache size, the idea being that when the cache is at its maximum number
28  * of entries, then this should be the average number of entries per bucket.
29  */
30 #define TARGET_BUCKET_SIZE	64
31 
32 struct nfsd_drc_bucket {
33 	struct rb_root rb_head;
34 	struct list_head lru_head;
35 	spinlock_t cache_lock;
36 };
37 
38 static struct kmem_cache	*drc_slab;
39 
40 static int	nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
41 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
42 					    struct shrink_control *sc);
43 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
44 					   struct shrink_control *sc);
45 
46 /*
47  * Put a cap on the size of the DRC based on the amount of available
48  * low memory in the machine.
49  *
50  *  64MB:    8192
51  * 128MB:   11585
52  * 256MB:   16384
53  * 512MB:   23170
54  *   1GB:   32768
55  *   2GB:   46340
56  *   4GB:   65536
57  *   8GB:   92681
58  *  16GB:  131072
59  *
60  * ...with a hard cap of 256k entries. In the worst case, each entry will be
61  * ~1k, so the above numbers should give a rough max of the amount of memory
62  * used in k.
63  *
64  * XXX: these limits are per-container, so memory used will increase
65  * linearly with number of containers.  Maybe that's OK.
66  */
67 static unsigned int
nfsd_cache_size_limit(void)68 nfsd_cache_size_limit(void)
69 {
70 	unsigned int limit;
71 	unsigned long low_pages = totalram_pages() - totalhigh_pages();
72 
73 	limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
74 	return min_t(unsigned int, limit, 256*1024);
75 }
76 
77 /*
78  * Compute the number of hash buckets we need. Divide the max cachesize by
79  * the "target" max bucket size, and round up to next power of two.
80  */
81 static unsigned int
nfsd_hashsize(unsigned int limit)82 nfsd_hashsize(unsigned int limit)
83 {
84 	return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
85 }
86 
87 static struct nfsd_cacherep *
nfsd_cacherep_alloc(struct svc_rqst * rqstp,__wsum csum,struct nfsd_net * nn)88 nfsd_cacherep_alloc(struct svc_rqst *rqstp, __wsum csum,
89 		    struct nfsd_net *nn)
90 {
91 	struct nfsd_cacherep *rp;
92 
93 	rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
94 	if (rp) {
95 		rp->c_state = RC_UNUSED;
96 		rp->c_type = RC_NOCACHE;
97 		RB_CLEAR_NODE(&rp->c_node);
98 		INIT_LIST_HEAD(&rp->c_lru);
99 
100 		memset(&rp->c_key, 0, sizeof(rp->c_key));
101 		rp->c_key.k_xid = rqstp->rq_xid;
102 		rp->c_key.k_proc = rqstp->rq_proc;
103 		rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp));
104 		rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp)));
105 		rp->c_key.k_prot = rqstp->rq_prot;
106 		rp->c_key.k_vers = rqstp->rq_vers;
107 		rp->c_key.k_len = rqstp->rq_arg.len;
108 		rp->c_key.k_csum = csum;
109 	}
110 	return rp;
111 }
112 
nfsd_cacherep_free(struct nfsd_cacherep * rp)113 static void nfsd_cacherep_free(struct nfsd_cacherep *rp)
114 {
115 	if (rp->c_type == RC_REPLBUFF)
116 		kfree(rp->c_replvec.iov_base);
117 	kmem_cache_free(drc_slab, rp);
118 }
119 
120 static unsigned long
nfsd_cacherep_dispose(struct list_head * dispose)121 nfsd_cacherep_dispose(struct list_head *dispose)
122 {
123 	struct nfsd_cacherep *rp;
124 	unsigned long freed = 0;
125 
126 	while (!list_empty(dispose)) {
127 		rp = list_first_entry(dispose, struct nfsd_cacherep, c_lru);
128 		list_del(&rp->c_lru);
129 		nfsd_cacherep_free(rp);
130 		freed++;
131 	}
132 	return freed;
133 }
134 
135 static void
nfsd_cacherep_unlink_locked(struct nfsd_net * nn,struct nfsd_drc_bucket * b,struct nfsd_cacherep * rp)136 nfsd_cacherep_unlink_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b,
137 			    struct nfsd_cacherep *rp)
138 {
139 	if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base)
140 		nfsd_stats_drc_mem_usage_sub(nn, rp->c_replvec.iov_len);
141 	if (rp->c_state != RC_UNUSED) {
142 		rb_erase(&rp->c_node, &b->rb_head);
143 		list_del(&rp->c_lru);
144 		atomic_dec(&nn->num_drc_entries);
145 		nfsd_stats_drc_mem_usage_sub(nn, sizeof(*rp));
146 	}
147 }
148 
149 static void
nfsd_reply_cache_free_locked(struct nfsd_drc_bucket * b,struct nfsd_cacherep * rp,struct nfsd_net * nn)150 nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp,
151 				struct nfsd_net *nn)
152 {
153 	nfsd_cacherep_unlink_locked(nn, b, rp);
154 	nfsd_cacherep_free(rp);
155 }
156 
157 static void
nfsd_reply_cache_free(struct nfsd_drc_bucket * b,struct nfsd_cacherep * rp,struct nfsd_net * nn)158 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp,
159 			struct nfsd_net *nn)
160 {
161 	spin_lock(&b->cache_lock);
162 	nfsd_cacherep_unlink_locked(nn, b, rp);
163 	spin_unlock(&b->cache_lock);
164 	nfsd_cacherep_free(rp);
165 }
166 
nfsd_drc_slab_create(void)167 int nfsd_drc_slab_create(void)
168 {
169 	drc_slab = kmem_cache_create("nfsd_drc",
170 				sizeof(struct nfsd_cacherep), 0, 0, NULL);
171 	return drc_slab ? 0: -ENOMEM;
172 }
173 
nfsd_drc_slab_free(void)174 void nfsd_drc_slab_free(void)
175 {
176 	kmem_cache_destroy(drc_slab);
177 }
178 
179 /**
180  * nfsd_net_reply_cache_init - per net namespace reply cache set-up
181  * @nn: nfsd_net being initialized
182  *
183  * Returns zero on succes; otherwise a negative errno is returned.
184  */
nfsd_net_reply_cache_init(struct nfsd_net * nn)185 int nfsd_net_reply_cache_init(struct nfsd_net *nn)
186 {
187 	return nfsd_percpu_counters_init(nn->counter, NFSD_NET_COUNTERS_NUM);
188 }
189 
190 /**
191  * nfsd_net_reply_cache_destroy - per net namespace reply cache tear-down
192  * @nn: nfsd_net being freed
193  *
194  */
nfsd_net_reply_cache_destroy(struct nfsd_net * nn)195 void nfsd_net_reply_cache_destroy(struct nfsd_net *nn)
196 {
197 	nfsd_percpu_counters_destroy(nn->counter, NFSD_NET_COUNTERS_NUM);
198 }
199 
nfsd_reply_cache_init(struct nfsd_net * nn)200 int nfsd_reply_cache_init(struct nfsd_net *nn)
201 {
202 	unsigned int hashsize;
203 	unsigned int i;
204 	int status = 0;
205 
206 	nn->max_drc_entries = nfsd_cache_size_limit();
207 	atomic_set(&nn->num_drc_entries, 0);
208 	hashsize = nfsd_hashsize(nn->max_drc_entries);
209 	nn->maskbits = ilog2(hashsize);
210 
211 	nn->nfsd_reply_cache_shrinker.scan_objects = nfsd_reply_cache_scan;
212 	nn->nfsd_reply_cache_shrinker.count_objects = nfsd_reply_cache_count;
213 	nn->nfsd_reply_cache_shrinker.seeks = 1;
214 	status = register_shrinker(&nn->nfsd_reply_cache_shrinker,
215 				   "nfsd-reply:%s", nn->nfsd_name);
216 	if (status)
217 		return status;
218 
219 	nn->drc_hashtbl = kvzalloc(array_size(hashsize,
220 				sizeof(*nn->drc_hashtbl)), GFP_KERNEL);
221 	if (!nn->drc_hashtbl)
222 		goto out_shrinker;
223 
224 	for (i = 0; i < hashsize; i++) {
225 		INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head);
226 		spin_lock_init(&nn->drc_hashtbl[i].cache_lock);
227 	}
228 	nn->drc_hashsize = hashsize;
229 
230 	return 0;
231 out_shrinker:
232 	unregister_shrinker(&nn->nfsd_reply_cache_shrinker);
233 	printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
234 	return -ENOMEM;
235 }
236 
nfsd_reply_cache_shutdown(struct nfsd_net * nn)237 void nfsd_reply_cache_shutdown(struct nfsd_net *nn)
238 {
239 	struct nfsd_cacherep *rp;
240 	unsigned int i;
241 
242 	unregister_shrinker(&nn->nfsd_reply_cache_shrinker);
243 
244 	for (i = 0; i < nn->drc_hashsize; i++) {
245 		struct list_head *head = &nn->drc_hashtbl[i].lru_head;
246 		while (!list_empty(head)) {
247 			rp = list_first_entry(head, struct nfsd_cacherep, c_lru);
248 			nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i],
249 									rp, nn);
250 		}
251 	}
252 
253 	kvfree(nn->drc_hashtbl);
254 	nn->drc_hashtbl = NULL;
255 	nn->drc_hashsize = 0;
256 
257 }
258 
259 /*
260  * Move cache entry to end of LRU list, and queue the cleaner to run if it's
261  * not already scheduled.
262  */
263 static void
lru_put_end(struct nfsd_drc_bucket * b,struct nfsd_cacherep * rp)264 lru_put_end(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp)
265 {
266 	rp->c_timestamp = jiffies;
267 	list_move_tail(&rp->c_lru, &b->lru_head);
268 }
269 
270 static noinline struct nfsd_drc_bucket *
nfsd_cache_bucket_find(__be32 xid,struct nfsd_net * nn)271 nfsd_cache_bucket_find(__be32 xid, struct nfsd_net *nn)
272 {
273 	unsigned int hash = hash_32((__force u32)xid, nn->maskbits);
274 
275 	return &nn->drc_hashtbl[hash];
276 }
277 
278 /*
279  * Remove and return no more than @max expired entries in bucket @b.
280  * If @max is zero, do not limit the number of removed entries.
281  */
282 static void
nfsd_prune_bucket_locked(struct nfsd_net * nn,struct nfsd_drc_bucket * b,unsigned int max,struct list_head * dispose)283 nfsd_prune_bucket_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b,
284 			 unsigned int max, struct list_head *dispose)
285 {
286 	unsigned long expiry = jiffies - RC_EXPIRE;
287 	struct nfsd_cacherep *rp, *tmp;
288 	unsigned int freed = 0;
289 
290 	lockdep_assert_held(&b->cache_lock);
291 
292 	/* The bucket LRU is ordered oldest-first. */
293 	list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
294 		/*
295 		 * Don't free entries attached to calls that are still
296 		 * in-progress, but do keep scanning the list.
297 		 */
298 		if (rp->c_state == RC_INPROG)
299 			continue;
300 
301 		if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries &&
302 		    time_before(expiry, rp->c_timestamp))
303 			break;
304 
305 		nfsd_cacherep_unlink_locked(nn, b, rp);
306 		list_add(&rp->c_lru, dispose);
307 
308 		if (max && ++freed > max)
309 			break;
310 	}
311 }
312 
313 /**
314  * nfsd_reply_cache_count - count_objects method for the DRC shrinker
315  * @shrink: our registered shrinker context
316  * @sc: garbage collection parameters
317  *
318  * Returns the total number of entries in the duplicate reply cache. To
319  * keep things simple and quick, this is not the number of expired entries
320  * in the cache (ie, the number that would be removed by a call to
321  * nfsd_reply_cache_scan).
322  */
323 static unsigned long
nfsd_reply_cache_count(struct shrinker * shrink,struct shrink_control * sc)324 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
325 {
326 	struct nfsd_net *nn = container_of(shrink,
327 				struct nfsd_net, nfsd_reply_cache_shrinker);
328 
329 	return atomic_read(&nn->num_drc_entries);
330 }
331 
332 /**
333  * nfsd_reply_cache_scan - scan_objects method for the DRC shrinker
334  * @shrink: our registered shrinker context
335  * @sc: garbage collection parameters
336  *
337  * Free expired entries on each bucket's LRU list until we've released
338  * nr_to_scan freed objects. Nothing will be released if the cache
339  * has not exceeded it's max_drc_entries limit.
340  *
341  * Returns the number of entries released by this call.
342  */
343 static unsigned long
nfsd_reply_cache_scan(struct shrinker * shrink,struct shrink_control * sc)344 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
345 {
346 	struct nfsd_net *nn = container_of(shrink,
347 				struct nfsd_net, nfsd_reply_cache_shrinker);
348 	unsigned long freed = 0;
349 	LIST_HEAD(dispose);
350 	unsigned int i;
351 
352 	for (i = 0; i < nn->drc_hashsize; i++) {
353 		struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i];
354 
355 		if (list_empty(&b->lru_head))
356 			continue;
357 
358 		spin_lock(&b->cache_lock);
359 		nfsd_prune_bucket_locked(nn, b, 0, &dispose);
360 		spin_unlock(&b->cache_lock);
361 
362 		freed += nfsd_cacherep_dispose(&dispose);
363 		if (freed > sc->nr_to_scan)
364 			break;
365 	}
366 
367 	trace_nfsd_drc_gc(nn, freed);
368 	return freed;
369 }
370 
371 /**
372  * nfsd_cache_csum - Checksum incoming NFS Call arguments
373  * @buf: buffer containing a whole RPC Call message
374  * @start: starting byte of the NFS Call header
375  * @remaining: size of the NFS Call header, in bytes
376  *
377  * Compute a weak checksum of the leading bytes of an NFS procedure
378  * call header to help verify that a retransmitted Call matches an
379  * entry in the duplicate reply cache.
380  *
381  * To avoid assumptions about how the RPC message is laid out in
382  * @buf and what else it might contain (eg, a GSS MIC suffix), the
383  * caller passes us the exact location and length of the NFS Call
384  * header.
385  *
386  * Returns a 32-bit checksum value, as defined in RFC 793.
387  */
nfsd_cache_csum(struct xdr_buf * buf,unsigned int start,unsigned int remaining)388 static __wsum nfsd_cache_csum(struct xdr_buf *buf, unsigned int start,
389 			      unsigned int remaining)
390 {
391 	unsigned int base, len;
392 	struct xdr_buf subbuf;
393 	__wsum csum = 0;
394 	void *p;
395 	int idx;
396 
397 	if (remaining > RC_CSUMLEN)
398 		remaining = RC_CSUMLEN;
399 	if (xdr_buf_subsegment(buf, &subbuf, start, remaining))
400 		return csum;
401 
402 	/* rq_arg.head first */
403 	if (subbuf.head[0].iov_len) {
404 		len = min_t(unsigned int, subbuf.head[0].iov_len, remaining);
405 		csum = csum_partial(subbuf.head[0].iov_base, len, csum);
406 		remaining -= len;
407 	}
408 
409 	/* Continue into page array */
410 	idx = subbuf.page_base / PAGE_SIZE;
411 	base = subbuf.page_base & ~PAGE_MASK;
412 	while (remaining) {
413 		p = page_address(subbuf.pages[idx]) + base;
414 		len = min_t(unsigned int, PAGE_SIZE - base, remaining);
415 		csum = csum_partial(p, len, csum);
416 		remaining -= len;
417 		base = 0;
418 		++idx;
419 	}
420 	return csum;
421 }
422 
423 static int
nfsd_cache_key_cmp(const struct nfsd_cacherep * key,const struct nfsd_cacherep * rp,struct nfsd_net * nn)424 nfsd_cache_key_cmp(const struct nfsd_cacherep *key,
425 		   const struct nfsd_cacherep *rp, struct nfsd_net *nn)
426 {
427 	if (key->c_key.k_xid == rp->c_key.k_xid &&
428 	    key->c_key.k_csum != rp->c_key.k_csum) {
429 		nfsd_stats_payload_misses_inc(nn);
430 		trace_nfsd_drc_mismatch(nn, key, rp);
431 	}
432 
433 	return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key));
434 }
435 
436 /*
437  * Search the request hash for an entry that matches the given rqstp.
438  * Must be called with cache_lock held. Returns the found entry or
439  * inserts an empty key on failure.
440  */
441 static struct nfsd_cacherep *
nfsd_cache_insert(struct nfsd_drc_bucket * b,struct nfsd_cacherep * key,struct nfsd_net * nn)442 nfsd_cache_insert(struct nfsd_drc_bucket *b, struct nfsd_cacherep *key,
443 			struct nfsd_net *nn)
444 {
445 	struct nfsd_cacherep	*rp, *ret = key;
446 	struct rb_node		**p = &b->rb_head.rb_node,
447 				*parent = NULL;
448 	unsigned int		entries = 0;
449 	int cmp;
450 
451 	while (*p != NULL) {
452 		++entries;
453 		parent = *p;
454 		rp = rb_entry(parent, struct nfsd_cacherep, c_node);
455 
456 		cmp = nfsd_cache_key_cmp(key, rp, nn);
457 		if (cmp < 0)
458 			p = &parent->rb_left;
459 		else if (cmp > 0)
460 			p = &parent->rb_right;
461 		else {
462 			ret = rp;
463 			goto out;
464 		}
465 	}
466 	rb_link_node(&key->c_node, parent, p);
467 	rb_insert_color(&key->c_node, &b->rb_head);
468 out:
469 	/* tally hash chain length stats */
470 	if (entries > nn->longest_chain) {
471 		nn->longest_chain = entries;
472 		nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries);
473 	} else if (entries == nn->longest_chain) {
474 		/* prefer to keep the smallest cachesize possible here */
475 		nn->longest_chain_cachesize = min_t(unsigned int,
476 				nn->longest_chain_cachesize,
477 				atomic_read(&nn->num_drc_entries));
478 	}
479 
480 	lru_put_end(b, ret);
481 	return ret;
482 }
483 
484 /**
485  * nfsd_cache_lookup - Find an entry in the duplicate reply cache
486  * @rqstp: Incoming Call to find
487  * @start: starting byte in @rqstp->rq_arg of the NFS Call header
488  * @len: size of the NFS Call header, in bytes
489  * @cacherep: OUT: DRC entry for this request
490  *
491  * Try to find an entry matching the current call in the cache. When none
492  * is found, we try to grab the oldest expired entry off the LRU list. If
493  * a suitable one isn't there, then drop the cache_lock and allocate a
494  * new one, then search again in case one got inserted while this thread
495  * didn't hold the lock.
496  *
497  * Return values:
498  *   %RC_DOIT: Process the request normally
499  *   %RC_REPLY: Reply from cache
500  *   %RC_DROPIT: Do not process the request further
501  */
nfsd_cache_lookup(struct svc_rqst * rqstp,unsigned int start,unsigned int len,struct nfsd_cacherep ** cacherep)502 int nfsd_cache_lookup(struct svc_rqst *rqstp, unsigned int start,
503 		      unsigned int len, struct nfsd_cacherep **cacherep)
504 {
505 	struct nfsd_net		*nn;
506 	struct nfsd_cacherep	*rp, *found;
507 	__wsum			csum;
508 	struct nfsd_drc_bucket	*b;
509 	int type = rqstp->rq_cachetype;
510 	unsigned long freed;
511 	LIST_HEAD(dispose);
512 	int rtn = RC_DOIT;
513 
514 	if (type == RC_NOCACHE) {
515 		nfsd_stats_rc_nocache_inc();
516 		goto out;
517 	}
518 
519 	csum = nfsd_cache_csum(&rqstp->rq_arg, start, len);
520 
521 	/*
522 	 * Since the common case is a cache miss followed by an insert,
523 	 * preallocate an entry.
524 	 */
525 	nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
526 	rp = nfsd_cacherep_alloc(rqstp, csum, nn);
527 	if (!rp)
528 		goto out;
529 
530 	b = nfsd_cache_bucket_find(rqstp->rq_xid, nn);
531 	spin_lock(&b->cache_lock);
532 	found = nfsd_cache_insert(b, rp, nn);
533 	if (found != rp)
534 		goto found_entry;
535 	*cacherep = rp;
536 	rp->c_state = RC_INPROG;
537 	nfsd_prune_bucket_locked(nn, b, 3, &dispose);
538 	spin_unlock(&b->cache_lock);
539 
540 	freed = nfsd_cacherep_dispose(&dispose);
541 	trace_nfsd_drc_gc(nn, freed);
542 
543 	nfsd_stats_rc_misses_inc();
544 	atomic_inc(&nn->num_drc_entries);
545 	nfsd_stats_drc_mem_usage_add(nn, sizeof(*rp));
546 	goto out;
547 
548 found_entry:
549 	/* We found a matching entry which is either in progress or done. */
550 	nfsd_reply_cache_free_locked(NULL, rp, nn);
551 	nfsd_stats_rc_hits_inc();
552 	rtn = RC_DROPIT;
553 	rp = found;
554 
555 	/* Request being processed */
556 	if (rp->c_state == RC_INPROG)
557 		goto out_trace;
558 
559 	/* From the hall of fame of impractical attacks:
560 	 * Is this a user who tries to snoop on the cache? */
561 	rtn = RC_DOIT;
562 	if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
563 		goto out_trace;
564 
565 	/* Compose RPC reply header */
566 	switch (rp->c_type) {
567 	case RC_NOCACHE:
568 		break;
569 	case RC_REPLSTAT:
570 		xdr_stream_encode_be32(&rqstp->rq_res_stream, rp->c_replstat);
571 		rtn = RC_REPLY;
572 		break;
573 	case RC_REPLBUFF:
574 		if (!nfsd_cache_append(rqstp, &rp->c_replvec))
575 			goto out_unlock; /* should not happen */
576 		rtn = RC_REPLY;
577 		break;
578 	default:
579 		WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type);
580 	}
581 
582 out_trace:
583 	trace_nfsd_drc_found(nn, rqstp, rtn);
584 out_unlock:
585 	spin_unlock(&b->cache_lock);
586 out:
587 	return rtn;
588 }
589 
590 /**
591  * nfsd_cache_update - Update an entry in the duplicate reply cache.
592  * @rqstp: svc_rqst with a finished Reply
593  * @rp: IN: DRC entry for this request
594  * @cachetype: which cache to update
595  * @statp: pointer to Reply's NFS status code, or NULL
596  *
597  * This is called from nfsd_dispatch when the procedure has been
598  * executed and the complete reply is in rqstp->rq_res.
599  *
600  * We're copying around data here rather than swapping buffers because
601  * the toplevel loop requires max-sized buffers, which would be a waste
602  * of memory for a cache with a max reply size of 100 bytes (diropokres).
603  *
604  * If we should start to use different types of cache entries tailored
605  * specifically for attrstat and fh's, we may save even more space.
606  *
607  * Also note that a cachetype of RC_NOCACHE can legally be passed when
608  * nfsd failed to encode a reply that otherwise would have been cached.
609  * In this case, nfsd_cache_update is called with statp == NULL.
610  */
nfsd_cache_update(struct svc_rqst * rqstp,struct nfsd_cacherep * rp,int cachetype,__be32 * statp)611 void nfsd_cache_update(struct svc_rqst *rqstp, struct nfsd_cacherep *rp,
612 		       int cachetype, __be32 *statp)
613 {
614 	struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
615 	struct kvec	*resv = &rqstp->rq_res.head[0], *cachv;
616 	struct nfsd_drc_bucket *b;
617 	int		len;
618 	size_t		bufsize = 0;
619 
620 	if (!rp)
621 		return;
622 
623 	b = nfsd_cache_bucket_find(rp->c_key.k_xid, nn);
624 
625 	len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
626 	len >>= 2;
627 
628 	/* Don't cache excessive amounts of data and XDR failures */
629 	if (!statp || len > (256 >> 2)) {
630 		nfsd_reply_cache_free(b, rp, nn);
631 		return;
632 	}
633 
634 	switch (cachetype) {
635 	case RC_REPLSTAT:
636 		if (len != 1)
637 			printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
638 		rp->c_replstat = *statp;
639 		break;
640 	case RC_REPLBUFF:
641 		cachv = &rp->c_replvec;
642 		bufsize = len << 2;
643 		cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
644 		if (!cachv->iov_base) {
645 			nfsd_reply_cache_free(b, rp, nn);
646 			return;
647 		}
648 		cachv->iov_len = bufsize;
649 		memcpy(cachv->iov_base, statp, bufsize);
650 		break;
651 	case RC_NOCACHE:
652 		nfsd_reply_cache_free(b, rp, nn);
653 		return;
654 	}
655 	spin_lock(&b->cache_lock);
656 	nfsd_stats_drc_mem_usage_add(nn, bufsize);
657 	lru_put_end(b, rp);
658 	rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
659 	rp->c_type = cachetype;
660 	rp->c_state = RC_DONE;
661 	spin_unlock(&b->cache_lock);
662 	return;
663 }
664 
665 static int
nfsd_cache_append(struct svc_rqst * rqstp,struct kvec * data)666 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
667 {
668 	__be32 *p;
669 
670 	p = xdr_reserve_space(&rqstp->rq_res_stream, data->iov_len);
671 	if (unlikely(!p))
672 		return false;
673 	memcpy(p, data->iov_base, data->iov_len);
674 	xdr_commit_encode(&rqstp->rq_res_stream);
675 	return true;
676 }
677 
678 /*
679  * Note that fields may be added, removed or reordered in the future. Programs
680  * scraping this file for info should test the labels to ensure they're
681  * getting the correct field.
682  */
nfsd_reply_cache_stats_show(struct seq_file * m,void * v)683 int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
684 {
685 	struct nfsd_net *nn = net_generic(file_inode(m->file)->i_sb->s_fs_info,
686 					  nfsd_net_id);
687 
688 	seq_printf(m, "max entries:           %u\n", nn->max_drc_entries);
689 	seq_printf(m, "num entries:           %u\n",
690 		   atomic_read(&nn->num_drc_entries));
691 	seq_printf(m, "hash buckets:          %u\n", 1 << nn->maskbits);
692 	seq_printf(m, "mem usage:             %lld\n",
693 		   percpu_counter_sum_positive(&nn->counter[NFSD_NET_DRC_MEM_USAGE]));
694 	seq_printf(m, "cache hits:            %lld\n",
695 		   percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_HITS]));
696 	seq_printf(m, "cache misses:          %lld\n",
697 		   percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_MISSES]));
698 	seq_printf(m, "not cached:            %lld\n",
699 		   percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_NOCACHE]));
700 	seq_printf(m, "payload misses:        %lld\n",
701 		   percpu_counter_sum_positive(&nn->counter[NFSD_NET_PAYLOAD_MISSES]));
702 	seq_printf(m, "longest chain len:     %u\n", nn->longest_chain);
703 	seq_printf(m, "cachesize at longest:  %u\n", nn->longest_chain_cachesize);
704 	return 0;
705 }
706