1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Request reply cache. This is currently a global cache, but this may
4 * change in the future and be a per-client cache.
5 *
6 * This code is heavily inspired by the 44BSD implementation, although
7 * it does things a bit differently.
8 *
9 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
10 */
11
12 #include <linux/sunrpc/svc_xprt.h>
13 #include <linux/slab.h>
14 #include <linux/vmalloc.h>
15 #include <linux/sunrpc/addr.h>
16 #include <linux/highmem.h>
17 #include <linux/log2.h>
18 #include <linux/hash.h>
19 #include <net/checksum.h>
20
21 #include "nfsd.h"
22 #include "cache.h"
23 #include "trace.h"
24
25 /*
26 * We use this value to determine the number of hash buckets from the max
27 * cache size, the idea being that when the cache is at its maximum number
28 * of entries, then this should be the average number of entries per bucket.
29 */
30 #define TARGET_BUCKET_SIZE 64
31
32 struct nfsd_drc_bucket {
33 struct rb_root rb_head;
34 struct list_head lru_head;
35 spinlock_t cache_lock;
36 };
37
38 static struct kmem_cache *drc_slab;
39
40 static int nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
41 static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
42 struct shrink_control *sc);
43 static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
44 struct shrink_control *sc);
45
46 /*
47 * Put a cap on the size of the DRC based on the amount of available
48 * low memory in the machine.
49 *
50 * 64MB: 8192
51 * 128MB: 11585
52 * 256MB: 16384
53 * 512MB: 23170
54 * 1GB: 32768
55 * 2GB: 46340
56 * 4GB: 65536
57 * 8GB: 92681
58 * 16GB: 131072
59 *
60 * ...with a hard cap of 256k entries. In the worst case, each entry will be
61 * ~1k, so the above numbers should give a rough max of the amount of memory
62 * used in k.
63 *
64 * XXX: these limits are per-container, so memory used will increase
65 * linearly with number of containers. Maybe that's OK.
66 */
67 static unsigned int
nfsd_cache_size_limit(void)68 nfsd_cache_size_limit(void)
69 {
70 unsigned int limit;
71 unsigned long low_pages = totalram_pages() - totalhigh_pages();
72
73 limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
74 return min_t(unsigned int, limit, 256*1024);
75 }
76
77 /*
78 * Compute the number of hash buckets we need. Divide the max cachesize by
79 * the "target" max bucket size, and round up to next power of two.
80 */
81 static unsigned int
nfsd_hashsize(unsigned int limit)82 nfsd_hashsize(unsigned int limit)
83 {
84 return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
85 }
86
87 static struct nfsd_cacherep *
nfsd_cacherep_alloc(struct svc_rqst * rqstp,__wsum csum,struct nfsd_net * nn)88 nfsd_cacherep_alloc(struct svc_rqst *rqstp, __wsum csum,
89 struct nfsd_net *nn)
90 {
91 struct nfsd_cacherep *rp;
92
93 rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
94 if (rp) {
95 rp->c_state = RC_UNUSED;
96 rp->c_type = RC_NOCACHE;
97 RB_CLEAR_NODE(&rp->c_node);
98 INIT_LIST_HEAD(&rp->c_lru);
99
100 memset(&rp->c_key, 0, sizeof(rp->c_key));
101 rp->c_key.k_xid = rqstp->rq_xid;
102 rp->c_key.k_proc = rqstp->rq_proc;
103 rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp));
104 rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp)));
105 rp->c_key.k_prot = rqstp->rq_prot;
106 rp->c_key.k_vers = rqstp->rq_vers;
107 rp->c_key.k_len = rqstp->rq_arg.len;
108 rp->c_key.k_csum = csum;
109 }
110 return rp;
111 }
112
nfsd_cacherep_free(struct nfsd_cacherep * rp)113 static void nfsd_cacherep_free(struct nfsd_cacherep *rp)
114 {
115 if (rp->c_type == RC_REPLBUFF)
116 kfree(rp->c_replvec.iov_base);
117 kmem_cache_free(drc_slab, rp);
118 }
119
120 static unsigned long
nfsd_cacherep_dispose(struct list_head * dispose)121 nfsd_cacherep_dispose(struct list_head *dispose)
122 {
123 struct nfsd_cacherep *rp;
124 unsigned long freed = 0;
125
126 while (!list_empty(dispose)) {
127 rp = list_first_entry(dispose, struct nfsd_cacherep, c_lru);
128 list_del(&rp->c_lru);
129 nfsd_cacherep_free(rp);
130 freed++;
131 }
132 return freed;
133 }
134
135 static void
nfsd_cacherep_unlink_locked(struct nfsd_net * nn,struct nfsd_drc_bucket * b,struct nfsd_cacherep * rp)136 nfsd_cacherep_unlink_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b,
137 struct nfsd_cacherep *rp)
138 {
139 if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base)
140 nfsd_stats_drc_mem_usage_sub(nn, rp->c_replvec.iov_len);
141 if (rp->c_state != RC_UNUSED) {
142 rb_erase(&rp->c_node, &b->rb_head);
143 list_del(&rp->c_lru);
144 atomic_dec(&nn->num_drc_entries);
145 nfsd_stats_drc_mem_usage_sub(nn, sizeof(*rp));
146 }
147 }
148
149 static void
nfsd_reply_cache_free_locked(struct nfsd_drc_bucket * b,struct nfsd_cacherep * rp,struct nfsd_net * nn)150 nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp,
151 struct nfsd_net *nn)
152 {
153 nfsd_cacherep_unlink_locked(nn, b, rp);
154 nfsd_cacherep_free(rp);
155 }
156
157 static void
nfsd_reply_cache_free(struct nfsd_drc_bucket * b,struct nfsd_cacherep * rp,struct nfsd_net * nn)158 nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp,
159 struct nfsd_net *nn)
160 {
161 spin_lock(&b->cache_lock);
162 nfsd_cacherep_unlink_locked(nn, b, rp);
163 spin_unlock(&b->cache_lock);
164 nfsd_cacherep_free(rp);
165 }
166
nfsd_drc_slab_create(void)167 int nfsd_drc_slab_create(void)
168 {
169 drc_slab = kmem_cache_create("nfsd_drc",
170 sizeof(struct nfsd_cacherep), 0, 0, NULL);
171 return drc_slab ? 0: -ENOMEM;
172 }
173
nfsd_drc_slab_free(void)174 void nfsd_drc_slab_free(void)
175 {
176 kmem_cache_destroy(drc_slab);
177 }
178
179 /**
180 * nfsd_net_reply_cache_init - per net namespace reply cache set-up
181 * @nn: nfsd_net being initialized
182 *
183 * Returns zero on succes; otherwise a negative errno is returned.
184 */
nfsd_net_reply_cache_init(struct nfsd_net * nn)185 int nfsd_net_reply_cache_init(struct nfsd_net *nn)
186 {
187 return nfsd_percpu_counters_init(nn->counter, NFSD_NET_COUNTERS_NUM);
188 }
189
190 /**
191 * nfsd_net_reply_cache_destroy - per net namespace reply cache tear-down
192 * @nn: nfsd_net being freed
193 *
194 */
nfsd_net_reply_cache_destroy(struct nfsd_net * nn)195 void nfsd_net_reply_cache_destroy(struct nfsd_net *nn)
196 {
197 nfsd_percpu_counters_destroy(nn->counter, NFSD_NET_COUNTERS_NUM);
198 }
199
nfsd_reply_cache_init(struct nfsd_net * nn)200 int nfsd_reply_cache_init(struct nfsd_net *nn)
201 {
202 unsigned int hashsize;
203 unsigned int i;
204 int status = 0;
205
206 nn->max_drc_entries = nfsd_cache_size_limit();
207 atomic_set(&nn->num_drc_entries, 0);
208 hashsize = nfsd_hashsize(nn->max_drc_entries);
209 nn->maskbits = ilog2(hashsize);
210
211 nn->nfsd_reply_cache_shrinker.scan_objects = nfsd_reply_cache_scan;
212 nn->nfsd_reply_cache_shrinker.count_objects = nfsd_reply_cache_count;
213 nn->nfsd_reply_cache_shrinker.seeks = 1;
214 status = register_shrinker(&nn->nfsd_reply_cache_shrinker,
215 "nfsd-reply:%s", nn->nfsd_name);
216 if (status)
217 return status;
218
219 nn->drc_hashtbl = kvzalloc(array_size(hashsize,
220 sizeof(*nn->drc_hashtbl)), GFP_KERNEL);
221 if (!nn->drc_hashtbl)
222 goto out_shrinker;
223
224 for (i = 0; i < hashsize; i++) {
225 INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head);
226 spin_lock_init(&nn->drc_hashtbl[i].cache_lock);
227 }
228 nn->drc_hashsize = hashsize;
229
230 return 0;
231 out_shrinker:
232 unregister_shrinker(&nn->nfsd_reply_cache_shrinker);
233 printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
234 return -ENOMEM;
235 }
236
nfsd_reply_cache_shutdown(struct nfsd_net * nn)237 void nfsd_reply_cache_shutdown(struct nfsd_net *nn)
238 {
239 struct nfsd_cacherep *rp;
240 unsigned int i;
241
242 unregister_shrinker(&nn->nfsd_reply_cache_shrinker);
243
244 for (i = 0; i < nn->drc_hashsize; i++) {
245 struct list_head *head = &nn->drc_hashtbl[i].lru_head;
246 while (!list_empty(head)) {
247 rp = list_first_entry(head, struct nfsd_cacherep, c_lru);
248 nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i],
249 rp, nn);
250 }
251 }
252
253 kvfree(nn->drc_hashtbl);
254 nn->drc_hashtbl = NULL;
255 nn->drc_hashsize = 0;
256
257 }
258
259 /*
260 * Move cache entry to end of LRU list, and queue the cleaner to run if it's
261 * not already scheduled.
262 */
263 static void
lru_put_end(struct nfsd_drc_bucket * b,struct nfsd_cacherep * rp)264 lru_put_end(struct nfsd_drc_bucket *b, struct nfsd_cacherep *rp)
265 {
266 rp->c_timestamp = jiffies;
267 list_move_tail(&rp->c_lru, &b->lru_head);
268 }
269
270 static noinline struct nfsd_drc_bucket *
nfsd_cache_bucket_find(__be32 xid,struct nfsd_net * nn)271 nfsd_cache_bucket_find(__be32 xid, struct nfsd_net *nn)
272 {
273 unsigned int hash = hash_32((__force u32)xid, nn->maskbits);
274
275 return &nn->drc_hashtbl[hash];
276 }
277
278 /*
279 * Remove and return no more than @max expired entries in bucket @b.
280 * If @max is zero, do not limit the number of removed entries.
281 */
282 static void
nfsd_prune_bucket_locked(struct nfsd_net * nn,struct nfsd_drc_bucket * b,unsigned int max,struct list_head * dispose)283 nfsd_prune_bucket_locked(struct nfsd_net *nn, struct nfsd_drc_bucket *b,
284 unsigned int max, struct list_head *dispose)
285 {
286 unsigned long expiry = jiffies - RC_EXPIRE;
287 struct nfsd_cacherep *rp, *tmp;
288 unsigned int freed = 0;
289
290 lockdep_assert_held(&b->cache_lock);
291
292 /* The bucket LRU is ordered oldest-first. */
293 list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
294 /*
295 * Don't free entries attached to calls that are still
296 * in-progress, but do keep scanning the list.
297 */
298 if (rp->c_state == RC_INPROG)
299 continue;
300
301 if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries &&
302 time_before(expiry, rp->c_timestamp))
303 break;
304
305 nfsd_cacherep_unlink_locked(nn, b, rp);
306 list_add(&rp->c_lru, dispose);
307
308 if (max && ++freed > max)
309 break;
310 }
311 }
312
313 /**
314 * nfsd_reply_cache_count - count_objects method for the DRC shrinker
315 * @shrink: our registered shrinker context
316 * @sc: garbage collection parameters
317 *
318 * Returns the total number of entries in the duplicate reply cache. To
319 * keep things simple and quick, this is not the number of expired entries
320 * in the cache (ie, the number that would be removed by a call to
321 * nfsd_reply_cache_scan).
322 */
323 static unsigned long
nfsd_reply_cache_count(struct shrinker * shrink,struct shrink_control * sc)324 nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
325 {
326 struct nfsd_net *nn = container_of(shrink,
327 struct nfsd_net, nfsd_reply_cache_shrinker);
328
329 return atomic_read(&nn->num_drc_entries);
330 }
331
332 /**
333 * nfsd_reply_cache_scan - scan_objects method for the DRC shrinker
334 * @shrink: our registered shrinker context
335 * @sc: garbage collection parameters
336 *
337 * Free expired entries on each bucket's LRU list until we've released
338 * nr_to_scan freed objects. Nothing will be released if the cache
339 * has not exceeded it's max_drc_entries limit.
340 *
341 * Returns the number of entries released by this call.
342 */
343 static unsigned long
nfsd_reply_cache_scan(struct shrinker * shrink,struct shrink_control * sc)344 nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
345 {
346 struct nfsd_net *nn = container_of(shrink,
347 struct nfsd_net, nfsd_reply_cache_shrinker);
348 unsigned long freed = 0;
349 LIST_HEAD(dispose);
350 unsigned int i;
351
352 for (i = 0; i < nn->drc_hashsize; i++) {
353 struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i];
354
355 if (list_empty(&b->lru_head))
356 continue;
357
358 spin_lock(&b->cache_lock);
359 nfsd_prune_bucket_locked(nn, b, 0, &dispose);
360 spin_unlock(&b->cache_lock);
361
362 freed += nfsd_cacherep_dispose(&dispose);
363 if (freed > sc->nr_to_scan)
364 break;
365 }
366
367 trace_nfsd_drc_gc(nn, freed);
368 return freed;
369 }
370
371 /**
372 * nfsd_cache_csum - Checksum incoming NFS Call arguments
373 * @buf: buffer containing a whole RPC Call message
374 * @start: starting byte of the NFS Call header
375 * @remaining: size of the NFS Call header, in bytes
376 *
377 * Compute a weak checksum of the leading bytes of an NFS procedure
378 * call header to help verify that a retransmitted Call matches an
379 * entry in the duplicate reply cache.
380 *
381 * To avoid assumptions about how the RPC message is laid out in
382 * @buf and what else it might contain (eg, a GSS MIC suffix), the
383 * caller passes us the exact location and length of the NFS Call
384 * header.
385 *
386 * Returns a 32-bit checksum value, as defined in RFC 793.
387 */
nfsd_cache_csum(struct xdr_buf * buf,unsigned int start,unsigned int remaining)388 static __wsum nfsd_cache_csum(struct xdr_buf *buf, unsigned int start,
389 unsigned int remaining)
390 {
391 unsigned int base, len;
392 struct xdr_buf subbuf;
393 __wsum csum = 0;
394 void *p;
395 int idx;
396
397 if (remaining > RC_CSUMLEN)
398 remaining = RC_CSUMLEN;
399 if (xdr_buf_subsegment(buf, &subbuf, start, remaining))
400 return csum;
401
402 /* rq_arg.head first */
403 if (subbuf.head[0].iov_len) {
404 len = min_t(unsigned int, subbuf.head[0].iov_len, remaining);
405 csum = csum_partial(subbuf.head[0].iov_base, len, csum);
406 remaining -= len;
407 }
408
409 /* Continue into page array */
410 idx = subbuf.page_base / PAGE_SIZE;
411 base = subbuf.page_base & ~PAGE_MASK;
412 while (remaining) {
413 p = page_address(subbuf.pages[idx]) + base;
414 len = min_t(unsigned int, PAGE_SIZE - base, remaining);
415 csum = csum_partial(p, len, csum);
416 remaining -= len;
417 base = 0;
418 ++idx;
419 }
420 return csum;
421 }
422
423 static int
nfsd_cache_key_cmp(const struct nfsd_cacherep * key,const struct nfsd_cacherep * rp,struct nfsd_net * nn)424 nfsd_cache_key_cmp(const struct nfsd_cacherep *key,
425 const struct nfsd_cacherep *rp, struct nfsd_net *nn)
426 {
427 if (key->c_key.k_xid == rp->c_key.k_xid &&
428 key->c_key.k_csum != rp->c_key.k_csum) {
429 nfsd_stats_payload_misses_inc(nn);
430 trace_nfsd_drc_mismatch(nn, key, rp);
431 }
432
433 return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key));
434 }
435
436 /*
437 * Search the request hash for an entry that matches the given rqstp.
438 * Must be called with cache_lock held. Returns the found entry or
439 * inserts an empty key on failure.
440 */
441 static struct nfsd_cacherep *
nfsd_cache_insert(struct nfsd_drc_bucket * b,struct nfsd_cacherep * key,struct nfsd_net * nn)442 nfsd_cache_insert(struct nfsd_drc_bucket *b, struct nfsd_cacherep *key,
443 struct nfsd_net *nn)
444 {
445 struct nfsd_cacherep *rp, *ret = key;
446 struct rb_node **p = &b->rb_head.rb_node,
447 *parent = NULL;
448 unsigned int entries = 0;
449 int cmp;
450
451 while (*p != NULL) {
452 ++entries;
453 parent = *p;
454 rp = rb_entry(parent, struct nfsd_cacherep, c_node);
455
456 cmp = nfsd_cache_key_cmp(key, rp, nn);
457 if (cmp < 0)
458 p = &parent->rb_left;
459 else if (cmp > 0)
460 p = &parent->rb_right;
461 else {
462 ret = rp;
463 goto out;
464 }
465 }
466 rb_link_node(&key->c_node, parent, p);
467 rb_insert_color(&key->c_node, &b->rb_head);
468 out:
469 /* tally hash chain length stats */
470 if (entries > nn->longest_chain) {
471 nn->longest_chain = entries;
472 nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries);
473 } else if (entries == nn->longest_chain) {
474 /* prefer to keep the smallest cachesize possible here */
475 nn->longest_chain_cachesize = min_t(unsigned int,
476 nn->longest_chain_cachesize,
477 atomic_read(&nn->num_drc_entries));
478 }
479
480 lru_put_end(b, ret);
481 return ret;
482 }
483
484 /**
485 * nfsd_cache_lookup - Find an entry in the duplicate reply cache
486 * @rqstp: Incoming Call to find
487 * @start: starting byte in @rqstp->rq_arg of the NFS Call header
488 * @len: size of the NFS Call header, in bytes
489 * @cacherep: OUT: DRC entry for this request
490 *
491 * Try to find an entry matching the current call in the cache. When none
492 * is found, we try to grab the oldest expired entry off the LRU list. If
493 * a suitable one isn't there, then drop the cache_lock and allocate a
494 * new one, then search again in case one got inserted while this thread
495 * didn't hold the lock.
496 *
497 * Return values:
498 * %RC_DOIT: Process the request normally
499 * %RC_REPLY: Reply from cache
500 * %RC_DROPIT: Do not process the request further
501 */
nfsd_cache_lookup(struct svc_rqst * rqstp,unsigned int start,unsigned int len,struct nfsd_cacherep ** cacherep)502 int nfsd_cache_lookup(struct svc_rqst *rqstp, unsigned int start,
503 unsigned int len, struct nfsd_cacherep **cacherep)
504 {
505 struct nfsd_net *nn;
506 struct nfsd_cacherep *rp, *found;
507 __wsum csum;
508 struct nfsd_drc_bucket *b;
509 int type = rqstp->rq_cachetype;
510 unsigned long freed;
511 LIST_HEAD(dispose);
512 int rtn = RC_DOIT;
513
514 if (type == RC_NOCACHE) {
515 nfsd_stats_rc_nocache_inc();
516 goto out;
517 }
518
519 csum = nfsd_cache_csum(&rqstp->rq_arg, start, len);
520
521 /*
522 * Since the common case is a cache miss followed by an insert,
523 * preallocate an entry.
524 */
525 nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
526 rp = nfsd_cacherep_alloc(rqstp, csum, nn);
527 if (!rp)
528 goto out;
529
530 b = nfsd_cache_bucket_find(rqstp->rq_xid, nn);
531 spin_lock(&b->cache_lock);
532 found = nfsd_cache_insert(b, rp, nn);
533 if (found != rp)
534 goto found_entry;
535 *cacherep = rp;
536 rp->c_state = RC_INPROG;
537 nfsd_prune_bucket_locked(nn, b, 3, &dispose);
538 spin_unlock(&b->cache_lock);
539
540 freed = nfsd_cacherep_dispose(&dispose);
541 trace_nfsd_drc_gc(nn, freed);
542
543 nfsd_stats_rc_misses_inc();
544 atomic_inc(&nn->num_drc_entries);
545 nfsd_stats_drc_mem_usage_add(nn, sizeof(*rp));
546 goto out;
547
548 found_entry:
549 /* We found a matching entry which is either in progress or done. */
550 nfsd_reply_cache_free_locked(NULL, rp, nn);
551 nfsd_stats_rc_hits_inc();
552 rtn = RC_DROPIT;
553 rp = found;
554
555 /* Request being processed */
556 if (rp->c_state == RC_INPROG)
557 goto out_trace;
558
559 /* From the hall of fame of impractical attacks:
560 * Is this a user who tries to snoop on the cache? */
561 rtn = RC_DOIT;
562 if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
563 goto out_trace;
564
565 /* Compose RPC reply header */
566 switch (rp->c_type) {
567 case RC_NOCACHE:
568 break;
569 case RC_REPLSTAT:
570 xdr_stream_encode_be32(&rqstp->rq_res_stream, rp->c_replstat);
571 rtn = RC_REPLY;
572 break;
573 case RC_REPLBUFF:
574 if (!nfsd_cache_append(rqstp, &rp->c_replvec))
575 goto out_unlock; /* should not happen */
576 rtn = RC_REPLY;
577 break;
578 default:
579 WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type);
580 }
581
582 out_trace:
583 trace_nfsd_drc_found(nn, rqstp, rtn);
584 out_unlock:
585 spin_unlock(&b->cache_lock);
586 out:
587 return rtn;
588 }
589
590 /**
591 * nfsd_cache_update - Update an entry in the duplicate reply cache.
592 * @rqstp: svc_rqst with a finished Reply
593 * @rp: IN: DRC entry for this request
594 * @cachetype: which cache to update
595 * @statp: pointer to Reply's NFS status code, or NULL
596 *
597 * This is called from nfsd_dispatch when the procedure has been
598 * executed and the complete reply is in rqstp->rq_res.
599 *
600 * We're copying around data here rather than swapping buffers because
601 * the toplevel loop requires max-sized buffers, which would be a waste
602 * of memory for a cache with a max reply size of 100 bytes (diropokres).
603 *
604 * If we should start to use different types of cache entries tailored
605 * specifically for attrstat and fh's, we may save even more space.
606 *
607 * Also note that a cachetype of RC_NOCACHE can legally be passed when
608 * nfsd failed to encode a reply that otherwise would have been cached.
609 * In this case, nfsd_cache_update is called with statp == NULL.
610 */
nfsd_cache_update(struct svc_rqst * rqstp,struct nfsd_cacherep * rp,int cachetype,__be32 * statp)611 void nfsd_cache_update(struct svc_rqst *rqstp, struct nfsd_cacherep *rp,
612 int cachetype, __be32 *statp)
613 {
614 struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
615 struct kvec *resv = &rqstp->rq_res.head[0], *cachv;
616 struct nfsd_drc_bucket *b;
617 int len;
618 size_t bufsize = 0;
619
620 if (!rp)
621 return;
622
623 b = nfsd_cache_bucket_find(rp->c_key.k_xid, nn);
624
625 len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
626 len >>= 2;
627
628 /* Don't cache excessive amounts of data and XDR failures */
629 if (!statp || len > (256 >> 2)) {
630 nfsd_reply_cache_free(b, rp, nn);
631 return;
632 }
633
634 switch (cachetype) {
635 case RC_REPLSTAT:
636 if (len != 1)
637 printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
638 rp->c_replstat = *statp;
639 break;
640 case RC_REPLBUFF:
641 cachv = &rp->c_replvec;
642 bufsize = len << 2;
643 cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
644 if (!cachv->iov_base) {
645 nfsd_reply_cache_free(b, rp, nn);
646 return;
647 }
648 cachv->iov_len = bufsize;
649 memcpy(cachv->iov_base, statp, bufsize);
650 break;
651 case RC_NOCACHE:
652 nfsd_reply_cache_free(b, rp, nn);
653 return;
654 }
655 spin_lock(&b->cache_lock);
656 nfsd_stats_drc_mem_usage_add(nn, bufsize);
657 lru_put_end(b, rp);
658 rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
659 rp->c_type = cachetype;
660 rp->c_state = RC_DONE;
661 spin_unlock(&b->cache_lock);
662 return;
663 }
664
665 static int
nfsd_cache_append(struct svc_rqst * rqstp,struct kvec * data)666 nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
667 {
668 __be32 *p;
669
670 p = xdr_reserve_space(&rqstp->rq_res_stream, data->iov_len);
671 if (unlikely(!p))
672 return false;
673 memcpy(p, data->iov_base, data->iov_len);
674 xdr_commit_encode(&rqstp->rq_res_stream);
675 return true;
676 }
677
678 /*
679 * Note that fields may be added, removed or reordered in the future. Programs
680 * scraping this file for info should test the labels to ensure they're
681 * getting the correct field.
682 */
nfsd_reply_cache_stats_show(struct seq_file * m,void * v)683 int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
684 {
685 struct nfsd_net *nn = net_generic(file_inode(m->file)->i_sb->s_fs_info,
686 nfsd_net_id);
687
688 seq_printf(m, "max entries: %u\n", nn->max_drc_entries);
689 seq_printf(m, "num entries: %u\n",
690 atomic_read(&nn->num_drc_entries));
691 seq_printf(m, "hash buckets: %u\n", 1 << nn->maskbits);
692 seq_printf(m, "mem usage: %lld\n",
693 percpu_counter_sum_positive(&nn->counter[NFSD_NET_DRC_MEM_USAGE]));
694 seq_printf(m, "cache hits: %lld\n",
695 percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_HITS]));
696 seq_printf(m, "cache misses: %lld\n",
697 percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_MISSES]));
698 seq_printf(m, "not cached: %lld\n",
699 percpu_counter_sum_positive(&nfsdstats.counter[NFSD_STATS_RC_NOCACHE]));
700 seq_printf(m, "payload misses: %lld\n",
701 percpu_counter_sum_positive(&nn->counter[NFSD_NET_PAYLOAD_MISSES]));
702 seq_printf(m, "longest chain len: %u\n", nn->longest_chain);
703 seq_printf(m, "cachesize at longest: %u\n", nn->longest_chain_cachesize);
704 return 0;
705 }
706