1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17 
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 #include <linux/export.h>
24 
25 #include <asm/uaccess.h>
26 
27 #include "delegation.h"
28 #include "internal.h"
29 #include "iostat.h"
30 #include "nfs4_fs.h"
31 #include "fscache.h"
32 #include "pnfs.h"
33 
34 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
35 
36 #define MIN_POOL_WRITE		(32)
37 #define MIN_POOL_COMMIT		(4)
38 
39 /*
40  * Local function declarations
41  */
42 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
43 				  struct inode *inode, int ioflags);
44 static void nfs_redirty_request(struct nfs_page *req);
45 static const struct rpc_call_ops nfs_write_partial_ops;
46 static const struct rpc_call_ops nfs_write_full_ops;
47 static const struct rpc_call_ops nfs_commit_ops;
48 
49 static struct kmem_cache *nfs_wdata_cachep;
50 static mempool_t *nfs_wdata_mempool;
51 static mempool_t *nfs_commit_mempool;
52 
nfs_commitdata_alloc(void)53 struct nfs_write_data *nfs_commitdata_alloc(void)
54 {
55 	struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
56 
57 	if (p) {
58 		memset(p, 0, sizeof(*p));
59 		INIT_LIST_HEAD(&p->pages);
60 	}
61 	return p;
62 }
63 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
64 
nfs_commit_free(struct nfs_write_data * p)65 void nfs_commit_free(struct nfs_write_data *p)
66 {
67 	if (p && (p->pagevec != &p->page_array[0]))
68 		kfree(p->pagevec);
69 	mempool_free(p, nfs_commit_mempool);
70 }
71 EXPORT_SYMBOL_GPL(nfs_commit_free);
72 
nfs_writedata_alloc(unsigned int pagecount)73 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
74 {
75 	struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
76 
77 	if (p) {
78 		memset(p, 0, sizeof(*p));
79 		INIT_LIST_HEAD(&p->pages);
80 		p->npages = pagecount;
81 		if (pagecount <= ARRAY_SIZE(p->page_array))
82 			p->pagevec = p->page_array;
83 		else {
84 			p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
85 			if (!p->pagevec) {
86 				mempool_free(p, nfs_wdata_mempool);
87 				p = NULL;
88 			}
89 		}
90 	}
91 	return p;
92 }
93 
nfs_writedata_free(struct nfs_write_data * p)94 void nfs_writedata_free(struct nfs_write_data *p)
95 {
96 	if (p && (p->pagevec != &p->page_array[0]))
97 		kfree(p->pagevec);
98 	mempool_free(p, nfs_wdata_mempool);
99 }
100 
nfs_writedata_release(struct nfs_write_data * wdata)101 void nfs_writedata_release(struct nfs_write_data *wdata)
102 {
103 	put_nfs_open_context(wdata->args.context);
104 	nfs_writedata_free(wdata);
105 }
106 
nfs_context_set_write_error(struct nfs_open_context * ctx,int error)107 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
108 {
109 	ctx->error = error;
110 	smp_wmb();
111 	set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
112 }
113 
nfs_page_find_request_locked(struct page * page)114 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
115 {
116 	struct nfs_page *req = NULL;
117 
118 	if (PagePrivate(page)) {
119 		req = (struct nfs_page *)page_private(page);
120 		if (req != NULL)
121 			kref_get(&req->wb_kref);
122 	}
123 	return req;
124 }
125 
nfs_page_find_request(struct page * page)126 static struct nfs_page *nfs_page_find_request(struct page *page)
127 {
128 	struct inode *inode = page->mapping->host;
129 	struct nfs_page *req = NULL;
130 
131 	spin_lock(&inode->i_lock);
132 	req = nfs_page_find_request_locked(page);
133 	spin_unlock(&inode->i_lock);
134 	return req;
135 }
136 
137 /* Adjust the file length if we're writing beyond the end */
nfs_grow_file(struct page * page,unsigned int offset,unsigned int count)138 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
139 {
140 	struct inode *inode = page->mapping->host;
141 	loff_t end, i_size;
142 	pgoff_t end_index;
143 
144 	spin_lock(&inode->i_lock);
145 	i_size = i_size_read(inode);
146 	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
147 	if (i_size > 0 && page->index < end_index)
148 		goto out;
149 	end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
150 	if (i_size >= end)
151 		goto out;
152 	i_size_write(inode, end);
153 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
154 out:
155 	spin_unlock(&inode->i_lock);
156 }
157 
158 /* A writeback failed: mark the page as bad, and invalidate the page cache */
nfs_set_pageerror(struct page * page)159 static void nfs_set_pageerror(struct page *page)
160 {
161 	SetPageError(page);
162 	nfs_zap_mapping(page->mapping->host, page->mapping);
163 }
164 
165 /* We can set the PG_uptodate flag if we see that a write request
166  * covers the full page.
167  */
nfs_mark_uptodate(struct page * page,unsigned int base,unsigned int count)168 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
169 {
170 	if (PageUptodate(page))
171 		return;
172 	if (base != 0)
173 		return;
174 	if (count != nfs_page_length(page))
175 		return;
176 	SetPageUptodate(page);
177 }
178 
wb_priority(struct writeback_control * wbc)179 static int wb_priority(struct writeback_control *wbc)
180 {
181 	if (wbc->for_reclaim)
182 		return FLUSH_HIGHPRI | FLUSH_STABLE;
183 	if (wbc->for_kupdate || wbc->for_background)
184 		return FLUSH_LOWPRI | FLUSH_COND_STABLE;
185 	return FLUSH_COND_STABLE;
186 }
187 
188 /*
189  * NFS congestion control
190  */
191 
192 int nfs_congestion_kb;
193 
194 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
195 #define NFS_CONGESTION_OFF_THRESH	\
196 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
197 
nfs_set_page_writeback(struct page * page)198 static int nfs_set_page_writeback(struct page *page)
199 {
200 	int ret = test_set_page_writeback(page);
201 
202 	if (!ret) {
203 		struct inode *inode = page->mapping->host;
204 		struct nfs_server *nfss = NFS_SERVER(inode);
205 
206 		page_cache_get(page);
207 		if (atomic_long_inc_return(&nfss->writeback) >
208 				NFS_CONGESTION_ON_THRESH) {
209 			set_bdi_congested(&nfss->backing_dev_info,
210 						BLK_RW_ASYNC);
211 		}
212 	}
213 	return ret;
214 }
215 
nfs_end_page_writeback(struct page * page)216 static void nfs_end_page_writeback(struct page *page)
217 {
218 	struct inode *inode = page->mapping->host;
219 	struct nfs_server *nfss = NFS_SERVER(inode);
220 
221 	end_page_writeback(page);
222 	page_cache_release(page);
223 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
224 		clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
225 }
226 
nfs_find_and_lock_request(struct page * page,bool nonblock)227 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
228 {
229 	struct inode *inode = page->mapping->host;
230 	struct nfs_page *req;
231 	int ret;
232 
233 	spin_lock(&inode->i_lock);
234 	for (;;) {
235 		req = nfs_page_find_request_locked(page);
236 		if (req == NULL)
237 			break;
238 		if (nfs_lock_request_dontget(req))
239 			break;
240 		/* Note: If we hold the page lock, as is the case in nfs_writepage,
241 		 *	 then the call to nfs_lock_request_dontget() will always
242 		 *	 succeed provided that someone hasn't already marked the
243 		 *	 request as dirty (in which case we don't care).
244 		 */
245 		spin_unlock(&inode->i_lock);
246 		if (!nonblock)
247 			ret = nfs_wait_on_request(req);
248 		else
249 			ret = -EAGAIN;
250 		nfs_release_request(req);
251 		if (ret != 0)
252 			return ERR_PTR(ret);
253 		spin_lock(&inode->i_lock);
254 	}
255 	spin_unlock(&inode->i_lock);
256 	return req;
257 }
258 
259 /*
260  * Find an associated nfs write request, and prepare to flush it out
261  * May return an error if the user signalled nfs_wait_on_request().
262  */
nfs_page_async_flush(struct nfs_pageio_descriptor * pgio,struct page * page,bool nonblock)263 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
264 				struct page *page, bool nonblock)
265 {
266 	struct nfs_page *req;
267 	int ret = 0;
268 
269 	req = nfs_find_and_lock_request(page, nonblock);
270 	if (!req)
271 		goto out;
272 	ret = PTR_ERR(req);
273 	if (IS_ERR(req))
274 		goto out;
275 
276 	ret = nfs_set_page_writeback(page);
277 	BUG_ON(ret != 0);
278 	BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
279 
280 	if (!nfs_pageio_add_request(pgio, req)) {
281 		nfs_redirty_request(req);
282 		ret = pgio->pg_error;
283 	}
284 out:
285 	return ret;
286 }
287 
nfs_do_writepage(struct page * page,struct writeback_control * wbc,struct nfs_pageio_descriptor * pgio)288 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
289 {
290 	struct inode *inode = page->mapping->host;
291 	int ret;
292 
293 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
294 	nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
295 
296 	nfs_pageio_cond_complete(pgio, page->index);
297 	ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
298 	if (ret == -EAGAIN) {
299 		redirty_page_for_writepage(wbc, page);
300 		ret = 0;
301 	}
302 	return ret;
303 }
304 
305 /*
306  * Write an mmapped page to the server.
307  */
nfs_writepage_locked(struct page * page,struct writeback_control * wbc)308 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
309 {
310 	struct nfs_pageio_descriptor pgio;
311 	int err;
312 
313 	nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
314 	err = nfs_do_writepage(page, wbc, &pgio);
315 	nfs_pageio_complete(&pgio);
316 	if (err < 0)
317 		return err;
318 	if (pgio.pg_error < 0)
319 		return pgio.pg_error;
320 	return 0;
321 }
322 
nfs_writepage(struct page * page,struct writeback_control * wbc)323 int nfs_writepage(struct page *page, struct writeback_control *wbc)
324 {
325 	int ret;
326 
327 	ret = nfs_writepage_locked(page, wbc);
328 	unlock_page(page);
329 	return ret;
330 }
331 
nfs_writepages_callback(struct page * page,struct writeback_control * wbc,void * data)332 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
333 {
334 	int ret;
335 
336 	ret = nfs_do_writepage(page, wbc, data);
337 	unlock_page(page);
338 	return ret;
339 }
340 
nfs_writepages(struct address_space * mapping,struct writeback_control * wbc)341 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
342 {
343 	struct inode *inode = mapping->host;
344 	unsigned long *bitlock = &NFS_I(inode)->flags;
345 	struct nfs_pageio_descriptor pgio;
346 	int err;
347 
348 	/* Stop dirtying of new pages while we sync */
349 	err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
350 			nfs_wait_bit_killable, TASK_KILLABLE);
351 	if (err)
352 		goto out_err;
353 
354 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
355 
356 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
357 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
358 	nfs_pageio_complete(&pgio);
359 
360 	clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
361 	smp_mb__after_clear_bit();
362 	wake_up_bit(bitlock, NFS_INO_FLUSHING);
363 
364 	if (err < 0)
365 		goto out_err;
366 	err = pgio.pg_error;
367 	if (err < 0)
368 		goto out_err;
369 	return 0;
370 out_err:
371 	return err;
372 }
373 
374 /*
375  * Insert a write request into an inode
376  */
nfs_inode_add_request(struct inode * inode,struct nfs_page * req)377 static void nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
378 {
379 	struct nfs_inode *nfsi = NFS_I(inode);
380 
381 	/* Lock the request! */
382 	nfs_lock_request_dontget(req);
383 
384 	spin_lock(&inode->i_lock);
385 	if (!nfsi->npages && nfs_have_delegation(inode, FMODE_WRITE))
386 		inode->i_version++;
387 	set_bit(PG_MAPPED, &req->wb_flags);
388 	SetPagePrivate(req->wb_page);
389 	set_page_private(req->wb_page, (unsigned long)req);
390 	nfsi->npages++;
391 	kref_get(&req->wb_kref);
392 	spin_unlock(&inode->i_lock);
393 }
394 
395 /*
396  * Remove a write request from an inode
397  */
nfs_inode_remove_request(struct nfs_page * req)398 static void nfs_inode_remove_request(struct nfs_page *req)
399 {
400 	struct inode *inode = req->wb_context->dentry->d_inode;
401 	struct nfs_inode *nfsi = NFS_I(inode);
402 
403 	BUG_ON (!NFS_WBACK_BUSY(req));
404 
405 	spin_lock(&inode->i_lock);
406 	set_page_private(req->wb_page, 0);
407 	ClearPagePrivate(req->wb_page);
408 	clear_bit(PG_MAPPED, &req->wb_flags);
409 	nfsi->npages--;
410 	spin_unlock(&inode->i_lock);
411 	nfs_release_request(req);
412 }
413 
414 static void
nfs_mark_request_dirty(struct nfs_page * req)415 nfs_mark_request_dirty(struct nfs_page *req)
416 {
417 	__set_page_dirty_nobuffers(req->wb_page);
418 }
419 
420 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
421 /**
422  * nfs_request_add_commit_list - add request to a commit list
423  * @req: pointer to a struct nfs_page
424  * @head: commit list head
425  *
426  * This sets the PG_CLEAN bit, updates the inode global count of
427  * number of outstanding requests requiring a commit as well as
428  * the MM page stats.
429  *
430  * The caller must _not_ hold the inode->i_lock, but must be
431  * holding the nfs_page lock.
432  */
433 void
nfs_request_add_commit_list(struct nfs_page * req,struct list_head * head)434 nfs_request_add_commit_list(struct nfs_page *req, struct list_head *head)
435 {
436 	struct inode *inode = req->wb_context->dentry->d_inode;
437 
438 	set_bit(PG_CLEAN, &(req)->wb_flags);
439 	spin_lock(&inode->i_lock);
440 	nfs_list_add_request(req, head);
441 	NFS_I(inode)->ncommit++;
442 	spin_unlock(&inode->i_lock);
443 	inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
444 	inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
445 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
446 }
447 EXPORT_SYMBOL_GPL(nfs_request_add_commit_list);
448 
449 /**
450  * nfs_request_remove_commit_list - Remove request from a commit list
451  * @req: pointer to a nfs_page
452  *
453  * This clears the PG_CLEAN bit, and updates the inode global count of
454  * number of outstanding requests requiring a commit
455  * It does not update the MM page stats.
456  *
457  * The caller _must_ hold the inode->i_lock and the nfs_page lock.
458  */
459 void
nfs_request_remove_commit_list(struct nfs_page * req)460 nfs_request_remove_commit_list(struct nfs_page *req)
461 {
462 	struct inode *inode = req->wb_context->dentry->d_inode;
463 
464 	if (!test_and_clear_bit(PG_CLEAN, &(req)->wb_flags))
465 		return;
466 	nfs_list_remove_request(req);
467 	NFS_I(inode)->ncommit--;
468 }
469 EXPORT_SYMBOL_GPL(nfs_request_remove_commit_list);
470 
471 
472 /*
473  * Add a request to the inode's commit list.
474  */
475 static void
nfs_mark_request_commit(struct nfs_page * req,struct pnfs_layout_segment * lseg)476 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
477 {
478 	struct inode *inode = req->wb_context->dentry->d_inode;
479 
480 	if (pnfs_mark_request_commit(req, lseg))
481 		return;
482 	nfs_request_add_commit_list(req, &NFS_I(inode)->commit_list);
483 }
484 
485 static void
nfs_clear_page_commit(struct page * page)486 nfs_clear_page_commit(struct page *page)
487 {
488 	dec_zone_page_state(page, NR_UNSTABLE_NFS);
489 	dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
490 }
491 
492 static void
nfs_clear_request_commit(struct nfs_page * req)493 nfs_clear_request_commit(struct nfs_page *req)
494 {
495 	if (test_bit(PG_CLEAN, &req->wb_flags)) {
496 		struct inode *inode = req->wb_context->dentry->d_inode;
497 
498 		if (!pnfs_clear_request_commit(req)) {
499 			spin_lock(&inode->i_lock);
500 			nfs_request_remove_commit_list(req);
501 			spin_unlock(&inode->i_lock);
502 		}
503 		nfs_clear_page_commit(req->wb_page);
504 	}
505 }
506 
507 static inline
nfs_write_need_commit(struct nfs_write_data * data)508 int nfs_write_need_commit(struct nfs_write_data *data)
509 {
510 	if (data->verf.committed == NFS_DATA_SYNC)
511 		return data->lseg == NULL;
512 	else
513 		return data->verf.committed != NFS_FILE_SYNC;
514 }
515 
516 static inline
nfs_reschedule_unstable_write(struct nfs_page * req,struct nfs_write_data * data)517 int nfs_reschedule_unstable_write(struct nfs_page *req,
518 				  struct nfs_write_data *data)
519 {
520 	if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
521 		nfs_mark_request_commit(req, data->lseg);
522 		return 1;
523 	}
524 	if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
525 		nfs_mark_request_dirty(req);
526 		return 1;
527 	}
528 	return 0;
529 }
530 #else
531 static void
nfs_mark_request_commit(struct nfs_page * req,struct pnfs_layout_segment * lseg)532 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
533 {
534 }
535 
536 static void
nfs_clear_request_commit(struct nfs_page * req)537 nfs_clear_request_commit(struct nfs_page *req)
538 {
539 }
540 
541 static inline
nfs_write_need_commit(struct nfs_write_data * data)542 int nfs_write_need_commit(struct nfs_write_data *data)
543 {
544 	return 0;
545 }
546 
547 static inline
nfs_reschedule_unstable_write(struct nfs_page * req,struct nfs_write_data * data)548 int nfs_reschedule_unstable_write(struct nfs_page *req,
549 				  struct nfs_write_data *data)
550 {
551 	return 0;
552 }
553 #endif
554 
555 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
556 static int
nfs_need_commit(struct nfs_inode * nfsi)557 nfs_need_commit(struct nfs_inode *nfsi)
558 {
559 	return nfsi->ncommit > 0;
560 }
561 
562 /* i_lock held by caller */
563 static int
nfs_scan_commit_list(struct list_head * src,struct list_head * dst,int max,spinlock_t * lock)564 nfs_scan_commit_list(struct list_head *src, struct list_head *dst, int max,
565 		spinlock_t *lock)
566 {
567 	struct nfs_page *req, *tmp;
568 	int ret = 0;
569 
570 	list_for_each_entry_safe(req, tmp, src, wb_list) {
571 		if (!nfs_lock_request(req))
572 			continue;
573 		if (cond_resched_lock(lock))
574 			list_safe_reset_next(req, tmp, wb_list);
575 		nfs_request_remove_commit_list(req);
576 		nfs_list_add_request(req, dst);
577 		ret++;
578 		if (ret == max)
579 			break;
580 	}
581 	return ret;
582 }
583 
584 /*
585  * nfs_scan_commit - Scan an inode for commit requests
586  * @inode: NFS inode to scan
587  * @dst: destination list
588  *
589  * Moves requests from the inode's 'commit' request list.
590  * The requests are *not* checked to ensure that they form a contiguous set.
591  */
592 static int
nfs_scan_commit(struct inode * inode,struct list_head * dst)593 nfs_scan_commit(struct inode *inode, struct list_head *dst)
594 {
595 	struct nfs_inode *nfsi = NFS_I(inode);
596 	int ret = 0;
597 
598 	spin_lock(&inode->i_lock);
599 	if (nfsi->ncommit > 0) {
600 		const int max = INT_MAX;
601 
602 		ret = nfs_scan_commit_list(&nfsi->commit_list, dst, max,
603 				&inode->i_lock);
604 		ret += pnfs_scan_commit_lists(inode, max - ret,
605 				&inode->i_lock);
606 	}
607 	spin_unlock(&inode->i_lock);
608 	return ret;
609 }
610 
611 #else
nfs_need_commit(struct nfs_inode * nfsi)612 static inline int nfs_need_commit(struct nfs_inode *nfsi)
613 {
614 	return 0;
615 }
616 
nfs_scan_commit(struct inode * inode,struct list_head * dst)617 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst)
618 {
619 	return 0;
620 }
621 #endif
622 
623 /*
624  * Search for an existing write request, and attempt to update
625  * it to reflect a new dirty region on a given page.
626  *
627  * If the attempt fails, then the existing request is flushed out
628  * to disk.
629  */
nfs_try_to_update_request(struct inode * inode,struct page * page,unsigned int offset,unsigned int bytes)630 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
631 		struct page *page,
632 		unsigned int offset,
633 		unsigned int bytes)
634 {
635 	struct nfs_page *req;
636 	unsigned int rqend;
637 	unsigned int end;
638 	int error;
639 
640 	if (!PagePrivate(page))
641 		return NULL;
642 
643 	end = offset + bytes;
644 	spin_lock(&inode->i_lock);
645 
646 	for (;;) {
647 		req = nfs_page_find_request_locked(page);
648 		if (req == NULL)
649 			goto out_unlock;
650 
651 		rqend = req->wb_offset + req->wb_bytes;
652 		/*
653 		 * Tell the caller to flush out the request if
654 		 * the offsets are non-contiguous.
655 		 * Note: nfs_flush_incompatible() will already
656 		 * have flushed out requests having wrong owners.
657 		 */
658 		if (offset > rqend
659 		    || end < req->wb_offset)
660 			goto out_flushme;
661 
662 		if (nfs_lock_request_dontget(req))
663 			break;
664 
665 		/* The request is locked, so wait and then retry */
666 		spin_unlock(&inode->i_lock);
667 		error = nfs_wait_on_request(req);
668 		nfs_release_request(req);
669 		if (error != 0)
670 			goto out_err;
671 		spin_lock(&inode->i_lock);
672 	}
673 
674 	/* Okay, the request matches. Update the region */
675 	if (offset < req->wb_offset) {
676 		req->wb_offset = offset;
677 		req->wb_pgbase = offset;
678 	}
679 	if (end > rqend)
680 		req->wb_bytes = end - req->wb_offset;
681 	else
682 		req->wb_bytes = rqend - req->wb_offset;
683 out_unlock:
684 	spin_unlock(&inode->i_lock);
685 	if (req)
686 		nfs_clear_request_commit(req);
687 	return req;
688 out_flushme:
689 	spin_unlock(&inode->i_lock);
690 	nfs_release_request(req);
691 	error = nfs_wb_page(inode, page);
692 out_err:
693 	return ERR_PTR(error);
694 }
695 
696 /*
697  * Try to update an existing write request, or create one if there is none.
698  *
699  * Note: Should always be called with the Page Lock held to prevent races
700  * if we have to add a new request. Also assumes that the caller has
701  * already called nfs_flush_incompatible() if necessary.
702  */
nfs_setup_write_request(struct nfs_open_context * ctx,struct page * page,unsigned int offset,unsigned int bytes)703 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
704 		struct page *page, unsigned int offset, unsigned int bytes)
705 {
706 	struct inode *inode = page->mapping->host;
707 	struct nfs_page	*req;
708 
709 	req = nfs_try_to_update_request(inode, page, offset, bytes);
710 	if (req != NULL)
711 		goto out;
712 	req = nfs_create_request(ctx, inode, page, offset, bytes);
713 	if (IS_ERR(req))
714 		goto out;
715 	nfs_inode_add_request(inode, req);
716 out:
717 	return req;
718 }
719 
nfs_writepage_setup(struct nfs_open_context * ctx,struct page * page,unsigned int offset,unsigned int count)720 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
721 		unsigned int offset, unsigned int count)
722 {
723 	struct nfs_page	*req;
724 
725 	req = nfs_setup_write_request(ctx, page, offset, count);
726 	if (IS_ERR(req))
727 		return PTR_ERR(req);
728 	/* Update file length */
729 	nfs_grow_file(page, offset, count);
730 	nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
731 	nfs_mark_request_dirty(req);
732 	nfs_unlock_request(req);
733 	return 0;
734 }
735 
nfs_flush_incompatible(struct file * file,struct page * page)736 int nfs_flush_incompatible(struct file *file, struct page *page)
737 {
738 	struct nfs_open_context *ctx = nfs_file_open_context(file);
739 	struct nfs_page	*req;
740 	int do_flush, status;
741 	/*
742 	 * Look for a request corresponding to this page. If there
743 	 * is one, and it belongs to another file, we flush it out
744 	 * before we try to copy anything into the page. Do this
745 	 * due to the lack of an ACCESS-type call in NFSv2.
746 	 * Also do the same if we find a request from an existing
747 	 * dropped page.
748 	 */
749 	do {
750 		req = nfs_page_find_request(page);
751 		if (req == NULL)
752 			return 0;
753 		do_flush = req->wb_page != page || req->wb_context != ctx ||
754 			req->wb_lock_context->lockowner != current->files ||
755 			req->wb_lock_context->pid != current->tgid;
756 		nfs_release_request(req);
757 		if (!do_flush)
758 			return 0;
759 		status = nfs_wb_page(page->mapping->host, page);
760 	} while (status == 0);
761 	return status;
762 }
763 
764 /*
765  * If the page cache is marked as unsafe or invalid, then we can't rely on
766  * the PageUptodate() flag. In this case, we will need to turn off
767  * write optimisations that depend on the page contents being correct.
768  */
nfs_write_pageuptodate(struct page * page,struct inode * inode)769 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
770 {
771 	return PageUptodate(page) &&
772 		!(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
773 }
774 
775 /*
776  * Update and possibly write a cached page of an NFS file.
777  *
778  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
779  * things with a page scheduled for an RPC call (e.g. invalidate it).
780  */
nfs_updatepage(struct file * file,struct page * page,unsigned int offset,unsigned int count)781 int nfs_updatepage(struct file *file, struct page *page,
782 		unsigned int offset, unsigned int count)
783 {
784 	struct nfs_open_context *ctx = nfs_file_open_context(file);
785 	struct inode	*inode = page->mapping->host;
786 	int		status = 0;
787 
788 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
789 
790 	dprintk("NFS:       nfs_updatepage(%s/%s %d@%lld)\n",
791 		file->f_path.dentry->d_parent->d_name.name,
792 		file->f_path.dentry->d_name.name, count,
793 		(long long)(page_offset(page) + offset));
794 
795 	/* If we're not using byte range locks, and we know the page
796 	 * is up to date, it may be more efficient to extend the write
797 	 * to cover the entire page in order to avoid fragmentation
798 	 * inefficiencies.
799 	 */
800 	if (nfs_write_pageuptodate(page, inode) &&
801 			inode->i_flock == NULL &&
802 			!(file->f_flags & O_DSYNC)) {
803 		count = max(count + offset, nfs_page_length(page));
804 		offset = 0;
805 	}
806 
807 	status = nfs_writepage_setup(ctx, page, offset, count);
808 	if (status < 0)
809 		nfs_set_pageerror(page);
810 	else
811 		__set_page_dirty_nobuffers(page);
812 
813 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
814 			status, (long long)i_size_read(inode));
815 	return status;
816 }
817 
nfs_writepage_release(struct nfs_page * req,struct nfs_write_data * data)818 static void nfs_writepage_release(struct nfs_page *req,
819 				  struct nfs_write_data *data)
820 {
821 	struct page *page = req->wb_page;
822 
823 	if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req, data))
824 		nfs_inode_remove_request(req);
825 	nfs_unlock_request(req);
826 	nfs_end_page_writeback(page);
827 }
828 
flush_task_priority(int how)829 static int flush_task_priority(int how)
830 {
831 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
832 		case FLUSH_HIGHPRI:
833 			return RPC_PRIORITY_HIGH;
834 		case FLUSH_LOWPRI:
835 			return RPC_PRIORITY_LOW;
836 	}
837 	return RPC_PRIORITY_NORMAL;
838 }
839 
nfs_initiate_write(struct nfs_write_data * data,struct rpc_clnt * clnt,const struct rpc_call_ops * call_ops,int how)840 int nfs_initiate_write(struct nfs_write_data *data,
841 		       struct rpc_clnt *clnt,
842 		       const struct rpc_call_ops *call_ops,
843 		       int how)
844 {
845 	struct inode *inode = data->inode;
846 	int priority = flush_task_priority(how);
847 	struct rpc_task *task;
848 	struct rpc_message msg = {
849 		.rpc_argp = &data->args,
850 		.rpc_resp = &data->res,
851 		.rpc_cred = data->cred,
852 	};
853 	struct rpc_task_setup task_setup_data = {
854 		.rpc_client = clnt,
855 		.task = &data->task,
856 		.rpc_message = &msg,
857 		.callback_ops = call_ops,
858 		.callback_data = data,
859 		.workqueue = nfsiod_workqueue,
860 		.flags = RPC_TASK_ASYNC,
861 		.priority = priority,
862 	};
863 	int ret = 0;
864 
865 	/* Set up the initial task struct.  */
866 	NFS_PROTO(inode)->write_setup(data, &msg);
867 
868 	dprintk("NFS: %5u initiated write call "
869 		"(req %s/%lld, %u bytes @ offset %llu)\n",
870 		data->task.tk_pid,
871 		inode->i_sb->s_id,
872 		(long long)NFS_FILEID(inode),
873 		data->args.count,
874 		(unsigned long long)data->args.offset);
875 
876 	task = rpc_run_task(&task_setup_data);
877 	if (IS_ERR(task)) {
878 		ret = PTR_ERR(task);
879 		goto out;
880 	}
881 	if (how & FLUSH_SYNC) {
882 		ret = rpc_wait_for_completion_task(task);
883 		if (ret == 0)
884 			ret = task->tk_status;
885 	}
886 	rpc_put_task(task);
887 out:
888 	return ret;
889 }
890 EXPORT_SYMBOL_GPL(nfs_initiate_write);
891 
892 /*
893  * Set up the argument/result storage required for the RPC call.
894  */
nfs_write_rpcsetup(struct nfs_page * req,struct nfs_write_data * data,unsigned int count,unsigned int offset,int how)895 static void nfs_write_rpcsetup(struct nfs_page *req,
896 		struct nfs_write_data *data,
897 		unsigned int count, unsigned int offset,
898 		int how)
899 {
900 	struct inode *inode = req->wb_context->dentry->d_inode;
901 
902 	/* Set up the RPC argument and reply structs
903 	 * NB: take care not to mess about with data->commit et al. */
904 
905 	data->req = req;
906 	data->inode = inode = req->wb_context->dentry->d_inode;
907 	data->cred = req->wb_context->cred;
908 
909 	data->args.fh     = NFS_FH(inode);
910 	data->args.offset = req_offset(req) + offset;
911 	/* pnfs_set_layoutcommit needs this */
912 	data->mds_offset = data->args.offset;
913 	data->args.pgbase = req->wb_pgbase + offset;
914 	data->args.pages  = data->pagevec;
915 	data->args.count  = count;
916 	data->args.context = get_nfs_open_context(req->wb_context);
917 	data->args.lock_context = req->wb_lock_context;
918 	data->args.stable  = NFS_UNSTABLE;
919 	switch (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
920 	case 0:
921 		break;
922 	case FLUSH_COND_STABLE:
923 		if (nfs_need_commit(NFS_I(inode)))
924 			break;
925 	default:
926 		data->args.stable = NFS_FILE_SYNC;
927 	}
928 
929 	data->res.fattr   = &data->fattr;
930 	data->res.count   = count;
931 	data->res.verf    = &data->verf;
932 	nfs_fattr_init(&data->fattr);
933 }
934 
nfs_do_write(struct nfs_write_data * data,const struct rpc_call_ops * call_ops,int how)935 static int nfs_do_write(struct nfs_write_data *data,
936 		const struct rpc_call_ops *call_ops,
937 		int how)
938 {
939 	struct inode *inode = data->args.context->dentry->d_inode;
940 
941 	return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how);
942 }
943 
nfs_do_multiple_writes(struct list_head * head,const struct rpc_call_ops * call_ops,int how)944 static int nfs_do_multiple_writes(struct list_head *head,
945 		const struct rpc_call_ops *call_ops,
946 		int how)
947 {
948 	struct nfs_write_data *data;
949 	int ret = 0;
950 
951 	while (!list_empty(head)) {
952 		int ret2;
953 
954 		data = list_entry(head->next, struct nfs_write_data, list);
955 		list_del_init(&data->list);
956 
957 		ret2 = nfs_do_write(data, call_ops, how);
958 		 if (ret == 0)
959 			 ret = ret2;
960 	}
961 	return ret;
962 }
963 
964 /* If a nfs_flush_* function fails, it should remove reqs from @head and
965  * call this on each, which will prepare them to be retried on next
966  * writeback using standard nfs.
967  */
nfs_redirty_request(struct nfs_page * req)968 static void nfs_redirty_request(struct nfs_page *req)
969 {
970 	struct page *page = req->wb_page;
971 
972 	nfs_mark_request_dirty(req);
973 	nfs_unlock_request(req);
974 	nfs_end_page_writeback(page);
975 }
976 
977 /*
978  * Generate multiple small requests to write out a single
979  * contiguous dirty area on one page.
980  */
nfs_flush_multi(struct nfs_pageio_descriptor * desc,struct list_head * res)981 static int nfs_flush_multi(struct nfs_pageio_descriptor *desc, struct list_head *res)
982 {
983 	struct nfs_page *req = nfs_list_entry(desc->pg_list.next);
984 	struct page *page = req->wb_page;
985 	struct nfs_write_data *data;
986 	size_t wsize = desc->pg_bsize, nbytes;
987 	unsigned int offset;
988 	int requests = 0;
989 	int ret = 0;
990 
991 	nfs_list_remove_request(req);
992 
993 	if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
994 	    (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit ||
995 	     desc->pg_count > wsize))
996 		desc->pg_ioflags &= ~FLUSH_COND_STABLE;
997 
998 
999 	offset = 0;
1000 	nbytes = desc->pg_count;
1001 	do {
1002 		size_t len = min(nbytes, wsize);
1003 
1004 		data = nfs_writedata_alloc(1);
1005 		if (!data)
1006 			goto out_bad;
1007 		data->pagevec[0] = page;
1008 		nfs_write_rpcsetup(req, data, len, offset, desc->pg_ioflags);
1009 		list_add(&data->list, res);
1010 		requests++;
1011 		nbytes -= len;
1012 		offset += len;
1013 	} while (nbytes != 0);
1014 	atomic_set(&req->wb_complete, requests);
1015 	desc->pg_rpc_callops = &nfs_write_partial_ops;
1016 	return ret;
1017 
1018 out_bad:
1019 	while (!list_empty(res)) {
1020 		data = list_entry(res->next, struct nfs_write_data, list);
1021 		list_del(&data->list);
1022 		nfs_writedata_release(data);
1023 	}
1024 	nfs_redirty_request(req);
1025 	return -ENOMEM;
1026 }
1027 
1028 /*
1029  * Create an RPC task for the given write request and kick it.
1030  * The page must have been locked by the caller.
1031  *
1032  * It may happen that the page we're passed is not marked dirty.
1033  * This is the case if nfs_updatepage detects a conflicting request
1034  * that has been written but not committed.
1035  */
nfs_flush_one(struct nfs_pageio_descriptor * desc,struct list_head * res)1036 static int nfs_flush_one(struct nfs_pageio_descriptor *desc, struct list_head *res)
1037 {
1038 	struct nfs_page		*req;
1039 	struct page		**pages;
1040 	struct nfs_write_data	*data;
1041 	struct list_head *head = &desc->pg_list;
1042 	int ret = 0;
1043 
1044 	data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base,
1045 						      desc->pg_count));
1046 	if (!data) {
1047 		while (!list_empty(head)) {
1048 			req = nfs_list_entry(head->next);
1049 			nfs_list_remove_request(req);
1050 			nfs_redirty_request(req);
1051 		}
1052 		ret = -ENOMEM;
1053 		goto out;
1054 	}
1055 	pages = data->pagevec;
1056 	while (!list_empty(head)) {
1057 		req = nfs_list_entry(head->next);
1058 		nfs_list_remove_request(req);
1059 		nfs_list_add_request(req, &data->pages);
1060 		*pages++ = req->wb_page;
1061 	}
1062 	req = nfs_list_entry(data->pages.next);
1063 
1064 	if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
1065 	    (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit))
1066 		desc->pg_ioflags &= ~FLUSH_COND_STABLE;
1067 
1068 	/* Set up the argument struct */
1069 	nfs_write_rpcsetup(req, data, desc->pg_count, 0, desc->pg_ioflags);
1070 	list_add(&data->list, res);
1071 	desc->pg_rpc_callops = &nfs_write_full_ops;
1072 out:
1073 	return ret;
1074 }
1075 
nfs_generic_flush(struct nfs_pageio_descriptor * desc,struct list_head * head)1076 int nfs_generic_flush(struct nfs_pageio_descriptor *desc, struct list_head *head)
1077 {
1078 	if (desc->pg_bsize < PAGE_CACHE_SIZE)
1079 		return nfs_flush_multi(desc, head);
1080 	return nfs_flush_one(desc, head);
1081 }
1082 
nfs_generic_pg_writepages(struct nfs_pageio_descriptor * desc)1083 static int nfs_generic_pg_writepages(struct nfs_pageio_descriptor *desc)
1084 {
1085 	LIST_HEAD(head);
1086 	int ret;
1087 
1088 	ret = nfs_generic_flush(desc, &head);
1089 	if (ret == 0)
1090 		ret = nfs_do_multiple_writes(&head, desc->pg_rpc_callops,
1091 				desc->pg_ioflags);
1092 	return ret;
1093 }
1094 
1095 static const struct nfs_pageio_ops nfs_pageio_write_ops = {
1096 	.pg_test = nfs_generic_pg_test,
1097 	.pg_doio = nfs_generic_pg_writepages,
1098 };
1099 
nfs_pageio_init_write_mds(struct nfs_pageio_descriptor * pgio,struct inode * inode,int ioflags)1100 void nfs_pageio_init_write_mds(struct nfs_pageio_descriptor *pgio,
1101 				  struct inode *inode, int ioflags)
1102 {
1103 	nfs_pageio_init(pgio, inode, &nfs_pageio_write_ops,
1104 				NFS_SERVER(inode)->wsize, ioflags);
1105 }
1106 
nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor * pgio)1107 void nfs_pageio_reset_write_mds(struct nfs_pageio_descriptor *pgio)
1108 {
1109 	pgio->pg_ops = &nfs_pageio_write_ops;
1110 	pgio->pg_bsize = NFS_SERVER(pgio->pg_inode)->wsize;
1111 }
1112 EXPORT_SYMBOL_GPL(nfs_pageio_reset_write_mds);
1113 
nfs_pageio_init_write(struct nfs_pageio_descriptor * pgio,struct inode * inode,int ioflags)1114 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1115 				  struct inode *inode, int ioflags)
1116 {
1117 	if (!pnfs_pageio_init_write(pgio, inode, ioflags))
1118 		nfs_pageio_init_write_mds(pgio, inode, ioflags);
1119 }
1120 
1121 /*
1122  * Handle a write reply that flushed part of a page.
1123  */
nfs_writeback_done_partial(struct rpc_task * task,void * calldata)1124 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1125 {
1126 	struct nfs_write_data	*data = calldata;
1127 
1128 	dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1129 		task->tk_pid,
1130 		data->req->wb_context->dentry->d_inode->i_sb->s_id,
1131 		(long long)
1132 		  NFS_FILEID(data->req->wb_context->dentry->d_inode),
1133 		data->req->wb_bytes, (long long)req_offset(data->req));
1134 
1135 	nfs_writeback_done(task, data);
1136 }
1137 
nfs_writeback_release_partial(void * calldata)1138 static void nfs_writeback_release_partial(void *calldata)
1139 {
1140 	struct nfs_write_data	*data = calldata;
1141 	struct nfs_page		*req = data->req;
1142 	struct page		*page = req->wb_page;
1143 	int status = data->task.tk_status;
1144 
1145 	if (status < 0) {
1146 		nfs_set_pageerror(page);
1147 		nfs_context_set_write_error(req->wb_context, status);
1148 		dprintk(", error = %d\n", status);
1149 		goto out;
1150 	}
1151 
1152 	if (nfs_write_need_commit(data)) {
1153 		struct inode *inode = page->mapping->host;
1154 
1155 		spin_lock(&inode->i_lock);
1156 		if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1157 			/* Do nothing we need to resend the writes */
1158 		} else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1159 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1160 			dprintk(" defer commit\n");
1161 		} else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1162 			set_bit(PG_NEED_RESCHED, &req->wb_flags);
1163 			clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1164 			dprintk(" server reboot detected\n");
1165 		}
1166 		spin_unlock(&inode->i_lock);
1167 	} else
1168 		dprintk(" OK\n");
1169 
1170 out:
1171 	if (atomic_dec_and_test(&req->wb_complete))
1172 		nfs_writepage_release(req, data);
1173 	nfs_writedata_release(calldata);
1174 }
1175 
nfs_write_prepare(struct rpc_task * task,void * calldata)1176 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1177 {
1178 	struct nfs_write_data *data = calldata;
1179 	NFS_PROTO(data->inode)->write_rpc_prepare(task, data);
1180 }
1181 
1182 static const struct rpc_call_ops nfs_write_partial_ops = {
1183 	.rpc_call_prepare = nfs_write_prepare,
1184 	.rpc_call_done = nfs_writeback_done_partial,
1185 	.rpc_release = nfs_writeback_release_partial,
1186 };
1187 
1188 /*
1189  * Handle a write reply that flushes a whole page.
1190  *
1191  * FIXME: There is an inherent race with invalidate_inode_pages and
1192  *	  writebacks since the page->count is kept > 1 for as long
1193  *	  as the page has a write request pending.
1194  */
nfs_writeback_done_full(struct rpc_task * task,void * calldata)1195 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1196 {
1197 	struct nfs_write_data	*data = calldata;
1198 
1199 	nfs_writeback_done(task, data);
1200 }
1201 
nfs_writeback_release_full(void * calldata)1202 static void nfs_writeback_release_full(void *calldata)
1203 {
1204 	struct nfs_write_data	*data = calldata;
1205 	int status = data->task.tk_status;
1206 
1207 	/* Update attributes as result of writeback. */
1208 	while (!list_empty(&data->pages)) {
1209 		struct nfs_page *req = nfs_list_entry(data->pages.next);
1210 		struct page *page = req->wb_page;
1211 
1212 		nfs_list_remove_request(req);
1213 
1214 		dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1215 			data->task.tk_pid,
1216 			req->wb_context->dentry->d_inode->i_sb->s_id,
1217 			(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1218 			req->wb_bytes,
1219 			(long long)req_offset(req));
1220 
1221 		if (status < 0) {
1222 			nfs_set_pageerror(page);
1223 			nfs_context_set_write_error(req->wb_context, status);
1224 			dprintk(", error = %d\n", status);
1225 			goto remove_request;
1226 		}
1227 
1228 		if (nfs_write_need_commit(data)) {
1229 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1230 			nfs_mark_request_commit(req, data->lseg);
1231 			dprintk(" marked for commit\n");
1232 			goto next;
1233 		}
1234 		dprintk(" OK\n");
1235 remove_request:
1236 		nfs_inode_remove_request(req);
1237 	next:
1238 		nfs_unlock_request(req);
1239 		nfs_end_page_writeback(page);
1240 	}
1241 	nfs_writedata_release(calldata);
1242 }
1243 
1244 static const struct rpc_call_ops nfs_write_full_ops = {
1245 	.rpc_call_prepare = nfs_write_prepare,
1246 	.rpc_call_done = nfs_writeback_done_full,
1247 	.rpc_release = nfs_writeback_release_full,
1248 };
1249 
1250 
1251 /*
1252  * This function is called when the WRITE call is complete.
1253  */
nfs_writeback_done(struct rpc_task * task,struct nfs_write_data * data)1254 void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1255 {
1256 	struct nfs_writeargs	*argp = &data->args;
1257 	struct nfs_writeres	*resp = &data->res;
1258 	int status;
1259 
1260 	dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1261 		task->tk_pid, task->tk_status);
1262 
1263 	/*
1264 	 * ->write_done will attempt to use post-op attributes to detect
1265 	 * conflicting writes by other clients.  A strict interpretation
1266 	 * of close-to-open would allow us to continue caching even if
1267 	 * another writer had changed the file, but some applications
1268 	 * depend on tighter cache coherency when writing.
1269 	 */
1270 	status = NFS_PROTO(data->inode)->write_done(task, data);
1271 	if (status != 0)
1272 		return;
1273 	nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1274 
1275 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1276 	if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1277 		/* We tried a write call, but the server did not
1278 		 * commit data to stable storage even though we
1279 		 * requested it.
1280 		 * Note: There is a known bug in Tru64 < 5.0 in which
1281 		 *	 the server reports NFS_DATA_SYNC, but performs
1282 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1283 		 *	 as a dprintk() in order to avoid filling syslog.
1284 		 */
1285 		static unsigned long    complain;
1286 
1287 		/* Note this will print the MDS for a DS write */
1288 		if (time_before(complain, jiffies)) {
1289 			dprintk("NFS:       faulty NFS server %s:"
1290 				" (committed = %d) != (stable = %d)\n",
1291 				NFS_SERVER(data->inode)->nfs_client->cl_hostname,
1292 				resp->verf->committed, argp->stable);
1293 			complain = jiffies + 300 * HZ;
1294 		}
1295 	}
1296 #endif
1297 	/* Is this a short write? */
1298 	if (task->tk_status >= 0 && resp->count < argp->count) {
1299 		static unsigned long    complain;
1300 
1301 		nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1302 
1303 		/* Has the server at least made some progress? */
1304 		if (resp->count != 0) {
1305 			/* Was this an NFSv2 write or an NFSv3 stable write? */
1306 			if (resp->verf->committed != NFS_UNSTABLE) {
1307 				/* Resend from where the server left off */
1308 				data->mds_offset += resp->count;
1309 				argp->offset += resp->count;
1310 				argp->pgbase += resp->count;
1311 				argp->count -= resp->count;
1312 			} else {
1313 				/* Resend as a stable write in order to avoid
1314 				 * headaches in the case of a server crash.
1315 				 */
1316 				argp->stable = NFS_FILE_SYNC;
1317 			}
1318 			rpc_restart_call_prepare(task);
1319 			return;
1320 		}
1321 		if (time_before(complain, jiffies)) {
1322 			printk(KERN_WARNING
1323 			       "NFS: Server wrote zero bytes, expected %u.\n",
1324 					argp->count);
1325 			complain = jiffies + 300 * HZ;
1326 		}
1327 		/* Can't do anything about it except throw an error. */
1328 		task->tk_status = -EIO;
1329 	}
1330 	return;
1331 }
1332 
1333 
1334 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
nfs_commit_set_lock(struct nfs_inode * nfsi,int may_wait)1335 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1336 {
1337 	int ret;
1338 
1339 	if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1340 		return 1;
1341 	if (!may_wait)
1342 		return 0;
1343 	ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
1344 				NFS_INO_COMMIT,
1345 				nfs_wait_bit_killable,
1346 				TASK_KILLABLE);
1347 	return (ret < 0) ? ret : 1;
1348 }
1349 
nfs_commit_clear_lock(struct nfs_inode * nfsi)1350 void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1351 {
1352 	clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1353 	smp_mb__after_clear_bit();
1354 	wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1355 }
1356 EXPORT_SYMBOL_GPL(nfs_commit_clear_lock);
1357 
nfs_commitdata_release(void * data)1358 void nfs_commitdata_release(void *data)
1359 {
1360 	struct nfs_write_data *wdata = data;
1361 
1362 	put_nfs_open_context(wdata->args.context);
1363 	nfs_commit_free(wdata);
1364 }
1365 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1366 
nfs_initiate_commit(struct nfs_write_data * data,struct rpc_clnt * clnt,const struct rpc_call_ops * call_ops,int how)1367 int nfs_initiate_commit(struct nfs_write_data *data, struct rpc_clnt *clnt,
1368 			const struct rpc_call_ops *call_ops,
1369 			int how)
1370 {
1371 	struct rpc_task *task;
1372 	int priority = flush_task_priority(how);
1373 	struct rpc_message msg = {
1374 		.rpc_argp = &data->args,
1375 		.rpc_resp = &data->res,
1376 		.rpc_cred = data->cred,
1377 	};
1378 	struct rpc_task_setup task_setup_data = {
1379 		.task = &data->task,
1380 		.rpc_client = clnt,
1381 		.rpc_message = &msg,
1382 		.callback_ops = call_ops,
1383 		.callback_data = data,
1384 		.workqueue = nfsiod_workqueue,
1385 		.flags = RPC_TASK_ASYNC,
1386 		.priority = priority,
1387 	};
1388 	/* Set up the initial task struct.  */
1389 	NFS_PROTO(data->inode)->commit_setup(data, &msg);
1390 
1391 	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1392 
1393 	task = rpc_run_task(&task_setup_data);
1394 	if (IS_ERR(task))
1395 		return PTR_ERR(task);
1396 	if (how & FLUSH_SYNC)
1397 		rpc_wait_for_completion_task(task);
1398 	rpc_put_task(task);
1399 	return 0;
1400 }
1401 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1402 
1403 /*
1404  * Set up the argument/result storage required for the RPC call.
1405  */
nfs_init_commit(struct nfs_write_data * data,struct list_head * head,struct pnfs_layout_segment * lseg)1406 void nfs_init_commit(struct nfs_write_data *data,
1407 			    struct list_head *head,
1408 			    struct pnfs_layout_segment *lseg)
1409 {
1410 	struct nfs_page *first = nfs_list_entry(head->next);
1411 	struct inode *inode = first->wb_context->dentry->d_inode;
1412 
1413 	/* Set up the RPC argument and reply structs
1414 	 * NB: take care not to mess about with data->commit et al. */
1415 
1416 	list_splice_init(head, &data->pages);
1417 
1418 	data->inode	  = inode;
1419 	data->cred	  = first->wb_context->cred;
1420 	data->lseg	  = lseg; /* reference transferred */
1421 	data->mds_ops     = &nfs_commit_ops;
1422 
1423 	data->args.fh     = NFS_FH(data->inode);
1424 	/* Note: we always request a commit of the entire inode */
1425 	data->args.offset = 0;
1426 	data->args.count  = 0;
1427 	data->args.context = get_nfs_open_context(first->wb_context);
1428 	data->res.count   = 0;
1429 	data->res.fattr   = &data->fattr;
1430 	data->res.verf    = &data->verf;
1431 	nfs_fattr_init(&data->fattr);
1432 }
1433 EXPORT_SYMBOL_GPL(nfs_init_commit);
1434 
nfs_retry_commit(struct list_head * page_list,struct pnfs_layout_segment * lseg)1435 void nfs_retry_commit(struct list_head *page_list,
1436 		      struct pnfs_layout_segment *lseg)
1437 {
1438 	struct nfs_page *req;
1439 
1440 	while (!list_empty(page_list)) {
1441 		req = nfs_list_entry(page_list->next);
1442 		nfs_list_remove_request(req);
1443 		nfs_mark_request_commit(req, lseg);
1444 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1445 		dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1446 			     BDI_RECLAIMABLE);
1447 		nfs_unlock_request(req);
1448 	}
1449 }
1450 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1451 
1452 /*
1453  * Commit dirty pages
1454  */
1455 static int
nfs_commit_list(struct inode * inode,struct list_head * head,int how)1456 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1457 {
1458 	struct nfs_write_data	*data;
1459 
1460 	data = nfs_commitdata_alloc();
1461 
1462 	if (!data)
1463 		goto out_bad;
1464 
1465 	/* Set up the argument struct */
1466 	nfs_init_commit(data, head, NULL);
1467 	return nfs_initiate_commit(data, NFS_CLIENT(inode), data->mds_ops, how);
1468  out_bad:
1469 	nfs_retry_commit(head, NULL);
1470 	nfs_commit_clear_lock(NFS_I(inode));
1471 	return -ENOMEM;
1472 }
1473 
1474 /*
1475  * COMMIT call returned
1476  */
nfs_commit_done(struct rpc_task * task,void * calldata)1477 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1478 {
1479 	struct nfs_write_data	*data = calldata;
1480 
1481         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1482                                 task->tk_pid, task->tk_status);
1483 
1484 	/* Call the NFS version-specific code */
1485 	NFS_PROTO(data->inode)->commit_done(task, data);
1486 }
1487 
nfs_commit_release_pages(struct nfs_write_data * data)1488 void nfs_commit_release_pages(struct nfs_write_data *data)
1489 {
1490 	struct nfs_page	*req;
1491 	int status = data->task.tk_status;
1492 
1493 	while (!list_empty(&data->pages)) {
1494 		req = nfs_list_entry(data->pages.next);
1495 		nfs_list_remove_request(req);
1496 		nfs_clear_page_commit(req->wb_page);
1497 
1498 		dprintk("NFS:       commit (%s/%lld %d@%lld)",
1499 			req->wb_context->dentry->d_sb->s_id,
1500 			(long long)NFS_FILEID(req->wb_context->dentry->d_inode),
1501 			req->wb_bytes,
1502 			(long long)req_offset(req));
1503 		if (status < 0) {
1504 			nfs_context_set_write_error(req->wb_context, status);
1505 			nfs_inode_remove_request(req);
1506 			dprintk(", error = %d\n", status);
1507 			goto next;
1508 		}
1509 
1510 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1511 		 * returned by the server against all stored verfs. */
1512 		if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1513 			/* We have a match */
1514 			nfs_inode_remove_request(req);
1515 			dprintk(" OK\n");
1516 			goto next;
1517 		}
1518 		/* We have a mismatch. Write the page again */
1519 		dprintk(" mismatch\n");
1520 		nfs_mark_request_dirty(req);
1521 	next:
1522 		nfs_unlock_request(req);
1523 	}
1524 }
1525 EXPORT_SYMBOL_GPL(nfs_commit_release_pages);
1526 
nfs_commit_release(void * calldata)1527 static void nfs_commit_release(void *calldata)
1528 {
1529 	struct nfs_write_data *data = calldata;
1530 
1531 	nfs_commit_release_pages(data);
1532 	nfs_commit_clear_lock(NFS_I(data->inode));
1533 	nfs_commitdata_release(calldata);
1534 }
1535 
1536 static const struct rpc_call_ops nfs_commit_ops = {
1537 	.rpc_call_prepare = nfs_write_prepare,
1538 	.rpc_call_done = nfs_commit_done,
1539 	.rpc_release = nfs_commit_release,
1540 };
1541 
nfs_commit_inode(struct inode * inode,int how)1542 int nfs_commit_inode(struct inode *inode, int how)
1543 {
1544 	LIST_HEAD(head);
1545 	int may_wait = how & FLUSH_SYNC;
1546 	int res;
1547 
1548 	res = nfs_commit_set_lock(NFS_I(inode), may_wait);
1549 	if (res <= 0)
1550 		goto out_mark_dirty;
1551 	res = nfs_scan_commit(inode, &head);
1552 	if (res) {
1553 		int error;
1554 
1555 		error = pnfs_commit_list(inode, &head, how);
1556 		if (error == PNFS_NOT_ATTEMPTED)
1557 			error = nfs_commit_list(inode, &head, how);
1558 		if (error < 0)
1559 			return error;
1560 		if (!may_wait)
1561 			goto out_mark_dirty;
1562 		error = wait_on_bit(&NFS_I(inode)->flags,
1563 				NFS_INO_COMMIT,
1564 				nfs_wait_bit_killable,
1565 				TASK_KILLABLE);
1566 		if (error < 0)
1567 			return error;
1568 	} else
1569 		nfs_commit_clear_lock(NFS_I(inode));
1570 	return res;
1571 	/* Note: If we exit without ensuring that the commit is complete,
1572 	 * we must mark the inode as dirty. Otherwise, future calls to
1573 	 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1574 	 * that the data is on the disk.
1575 	 */
1576 out_mark_dirty:
1577 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1578 	return res;
1579 }
1580 
nfs_commit_unstable_pages(struct inode * inode,struct writeback_control * wbc)1581 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1582 {
1583 	struct nfs_inode *nfsi = NFS_I(inode);
1584 	int flags = FLUSH_SYNC;
1585 	int ret = 0;
1586 
1587 	/* no commits means nothing needs to be done */
1588 	if (!nfsi->ncommit)
1589 		return ret;
1590 
1591 	if (wbc->sync_mode == WB_SYNC_NONE) {
1592 		/* Don't commit yet if this is a non-blocking flush and there
1593 		 * are a lot of outstanding writes for this mapping.
1594 		 */
1595 		if (nfsi->ncommit <= (nfsi->npages >> 1))
1596 			goto out_mark_dirty;
1597 
1598 		/* don't wait for the COMMIT response */
1599 		flags = 0;
1600 	}
1601 
1602 	ret = nfs_commit_inode(inode, flags);
1603 	if (ret >= 0) {
1604 		if (wbc->sync_mode == WB_SYNC_NONE) {
1605 			if (ret < wbc->nr_to_write)
1606 				wbc->nr_to_write -= ret;
1607 			else
1608 				wbc->nr_to_write = 0;
1609 		}
1610 		return 0;
1611 	}
1612 out_mark_dirty:
1613 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1614 	return ret;
1615 }
1616 #else
nfs_commit_unstable_pages(struct inode * inode,struct writeback_control * wbc)1617 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1618 {
1619 	return 0;
1620 }
1621 #endif
1622 
nfs_write_inode(struct inode * inode,struct writeback_control * wbc)1623 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1624 {
1625 	int ret;
1626 
1627 	ret = nfs_commit_unstable_pages(inode, wbc);
1628 	if (ret >= 0 && test_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(inode)->flags)) {
1629 		int status;
1630 		bool sync = true;
1631 
1632 		if (wbc->sync_mode == WB_SYNC_NONE)
1633 			sync = false;
1634 
1635 		status = pnfs_layoutcommit_inode(inode, sync);
1636 		if (status < 0)
1637 			return status;
1638 	}
1639 	return ret;
1640 }
1641 
1642 /*
1643  * flush the inode to disk.
1644  */
nfs_wb_all(struct inode * inode)1645 int nfs_wb_all(struct inode *inode)
1646 {
1647 	struct writeback_control wbc = {
1648 		.sync_mode = WB_SYNC_ALL,
1649 		.nr_to_write = LONG_MAX,
1650 		.range_start = 0,
1651 		.range_end = LLONG_MAX,
1652 	};
1653 
1654 	return sync_inode(inode, &wbc);
1655 }
1656 
nfs_wb_page_cancel(struct inode * inode,struct page * page)1657 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1658 {
1659 	struct nfs_page *req;
1660 	int ret = 0;
1661 
1662 	BUG_ON(!PageLocked(page));
1663 	for (;;) {
1664 		wait_on_page_writeback(page);
1665 		req = nfs_page_find_request(page);
1666 		if (req == NULL)
1667 			break;
1668 		if (nfs_lock_request_dontget(req)) {
1669 			nfs_clear_request_commit(req);
1670 			nfs_inode_remove_request(req);
1671 			/*
1672 			 * In case nfs_inode_remove_request has marked the
1673 			 * page as being dirty
1674 			 */
1675 			cancel_dirty_page(page, PAGE_CACHE_SIZE);
1676 			nfs_unlock_request(req);
1677 			break;
1678 		}
1679 		ret = nfs_wait_on_request(req);
1680 		nfs_release_request(req);
1681 		if (ret < 0)
1682 			break;
1683 	}
1684 	return ret;
1685 }
1686 
1687 /*
1688  * Write back all requests on one page - we do this before reading it.
1689  */
nfs_wb_page(struct inode * inode,struct page * page)1690 int nfs_wb_page(struct inode *inode, struct page *page)
1691 {
1692 	loff_t range_start = page_offset(page);
1693 	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1694 	struct writeback_control wbc = {
1695 		.sync_mode = WB_SYNC_ALL,
1696 		.nr_to_write = 0,
1697 		.range_start = range_start,
1698 		.range_end = range_end,
1699 	};
1700 	int ret;
1701 
1702 	for (;;) {
1703 		wait_on_page_writeback(page);
1704 		if (clear_page_dirty_for_io(page)) {
1705 			ret = nfs_writepage_locked(page, &wbc);
1706 			if (ret < 0)
1707 				goto out_error;
1708 			continue;
1709 		}
1710 		if (!PagePrivate(page))
1711 			break;
1712 		ret = nfs_commit_inode(inode, FLUSH_SYNC);
1713 		if (ret < 0)
1714 			goto out_error;
1715 	}
1716 	return 0;
1717 out_error:
1718 	return ret;
1719 }
1720 
1721 #ifdef CONFIG_MIGRATION
nfs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page,enum migrate_mode mode)1722 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1723 		struct page *page, enum migrate_mode mode)
1724 {
1725 	/*
1726 	 * If PagePrivate is set, then the page is currently associated with
1727 	 * an in-progress read or write request. Don't try to migrate it.
1728 	 *
1729 	 * FIXME: we could do this in principle, but we'll need a way to ensure
1730 	 *        that we can safely release the inode reference while holding
1731 	 *        the page lock.
1732 	 */
1733 	if (PagePrivate(page))
1734 		return -EBUSY;
1735 
1736 	nfs_fscache_release_page(page, GFP_KERNEL);
1737 
1738 	return migrate_page(mapping, newpage, page, mode);
1739 }
1740 #endif
1741 
nfs_init_writepagecache(void)1742 int __init nfs_init_writepagecache(void)
1743 {
1744 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1745 					     sizeof(struct nfs_write_data),
1746 					     0, SLAB_HWCACHE_ALIGN,
1747 					     NULL);
1748 	if (nfs_wdata_cachep == NULL)
1749 		return -ENOMEM;
1750 
1751 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1752 						     nfs_wdata_cachep);
1753 	if (nfs_wdata_mempool == NULL)
1754 		goto out_destroy_write_cache;
1755 
1756 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1757 						      nfs_wdata_cachep);
1758 	if (nfs_commit_mempool == NULL)
1759 		goto out_destroy_write_mempool;
1760 
1761 	/*
1762 	 * NFS congestion size, scale with available memory.
1763 	 *
1764 	 *  64MB:    8192k
1765 	 * 128MB:   11585k
1766 	 * 256MB:   16384k
1767 	 * 512MB:   23170k
1768 	 *   1GB:   32768k
1769 	 *   2GB:   46340k
1770 	 *   4GB:   65536k
1771 	 *   8GB:   92681k
1772 	 *  16GB:  131072k
1773 	 *
1774 	 * This allows larger machines to have larger/more transfers.
1775 	 * Limit the default to 256M
1776 	 */
1777 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1778 	if (nfs_congestion_kb > 256*1024)
1779 		nfs_congestion_kb = 256*1024;
1780 
1781 	return 0;
1782 
1783 out_destroy_write_mempool:
1784 	mempool_destroy(nfs_wdata_mempool);
1785 out_destroy_write_cache:
1786 	kmem_cache_destroy(nfs_wdata_cachep);
1787 	return -ENOMEM;
1788 }
1789 
nfs_destroy_writepagecache(void)1790 void nfs_destroy_writepagecache(void)
1791 {
1792 	mempool_destroy(nfs_commit_mempool);
1793 	mempool_destroy(nfs_wdata_mempool);
1794 	kmem_cache_destroy(nfs_wdata_cachep);
1795 }
1796 
1797