1 /*
2 * linux/fs/nfs/dir.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * nfs directory handling functions
7 *
8 * 10 Apr 1996 Added silly rename for unlink --okir
9 * 28 Sep 1996 Improved directory cache --okir
10 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
11 * Re-implemented silly rename for unlink, newly implemented
12 * silly rename for nfs_rename() following the suggestions
13 * of Olaf Kirch (okir) found in this file.
14 * Following Linus comments on my original hack, this version
15 * depends only on the dcache stuff and doesn't touch the inode
16 * layer (iput() and friends).
17 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
18 */
19
20 #include <linux/time.h>
21 #include <linux/errno.h>
22 #include <linux/stat.h>
23 #include <linux/fcntl.h>
24 #include <linux/string.h>
25 #include <linux/kernel.h>
26 #include <linux/slab.h>
27 #include <linux/mm.h>
28 #include <linux/sunrpc/clnt.h>
29 #include <linux/nfs_fs.h>
30 #include <linux/nfs_mount.h>
31 #include <linux/pagemap.h>
32 #include <linux/pagevec.h>
33 #include <linux/namei.h>
34 #include <linux/mount.h>
35 #include <linux/sched.h>
36 #include <linux/kmemleak.h>
37 #include <linux/xattr.h>
38
39 #include "delegation.h"
40 #include "iostat.h"
41 #include "internal.h"
42 #include "fscache.h"
43
44 /* #define NFS_DEBUG_VERBOSE 1 */
45
46 static int nfs_opendir(struct inode *, struct file *);
47 static int nfs_closedir(struct inode *, struct file *);
48 static int nfs_readdir(struct file *, void *, filldir_t);
49 static struct dentry *nfs_lookup(struct inode *, struct dentry *, struct nameidata *);
50 static int nfs_create(struct inode *, struct dentry *, umode_t, struct nameidata *);
51 static int nfs_mkdir(struct inode *, struct dentry *, umode_t);
52 static int nfs_rmdir(struct inode *, struct dentry *);
53 static int nfs_unlink(struct inode *, struct dentry *);
54 static int nfs_symlink(struct inode *, struct dentry *, const char *);
55 static int nfs_link(struct dentry *, struct inode *, struct dentry *);
56 static int nfs_mknod(struct inode *, struct dentry *, umode_t, dev_t);
57 static int nfs_rename(struct inode *, struct dentry *,
58 struct inode *, struct dentry *);
59 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
60 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
61 static void nfs_readdir_clear_array(struct page*);
62
63 const struct file_operations nfs_dir_operations = {
64 .llseek = nfs_llseek_dir,
65 .read = generic_read_dir,
66 .readdir = nfs_readdir,
67 .open = nfs_opendir,
68 .release = nfs_closedir,
69 .fsync = nfs_fsync_dir,
70 };
71
72 const struct inode_operations nfs_dir_inode_operations = {
73 .create = nfs_create,
74 .lookup = nfs_lookup,
75 .link = nfs_link,
76 .unlink = nfs_unlink,
77 .symlink = nfs_symlink,
78 .mkdir = nfs_mkdir,
79 .rmdir = nfs_rmdir,
80 .mknod = nfs_mknod,
81 .rename = nfs_rename,
82 .permission = nfs_permission,
83 .getattr = nfs_getattr,
84 .setattr = nfs_setattr,
85 };
86
87 const struct address_space_operations nfs_dir_aops = {
88 .freepage = nfs_readdir_clear_array,
89 };
90
91 #ifdef CONFIG_NFS_V3
92 const struct inode_operations nfs3_dir_inode_operations = {
93 .create = nfs_create,
94 .lookup = nfs_lookup,
95 .link = nfs_link,
96 .unlink = nfs_unlink,
97 .symlink = nfs_symlink,
98 .mkdir = nfs_mkdir,
99 .rmdir = nfs_rmdir,
100 .mknod = nfs_mknod,
101 .rename = nfs_rename,
102 .permission = nfs_permission,
103 .getattr = nfs_getattr,
104 .setattr = nfs_setattr,
105 .listxattr = nfs3_listxattr,
106 .getxattr = nfs3_getxattr,
107 .setxattr = nfs3_setxattr,
108 .removexattr = nfs3_removexattr,
109 };
110 #endif /* CONFIG_NFS_V3 */
111
112 #ifdef CONFIG_NFS_V4
113
114 static struct dentry *nfs_atomic_lookup(struct inode *, struct dentry *, struct nameidata *);
115 static int nfs_open_create(struct inode *dir, struct dentry *dentry, umode_t mode, struct nameidata *nd);
116 const struct inode_operations nfs4_dir_inode_operations = {
117 .create = nfs_open_create,
118 .lookup = nfs_atomic_lookup,
119 .link = nfs_link,
120 .unlink = nfs_unlink,
121 .symlink = nfs_symlink,
122 .mkdir = nfs_mkdir,
123 .rmdir = nfs_rmdir,
124 .mknod = nfs_mknod,
125 .rename = nfs_rename,
126 .permission = nfs_permission,
127 .getattr = nfs_getattr,
128 .setattr = nfs_setattr,
129 .getxattr = generic_getxattr,
130 .setxattr = generic_setxattr,
131 .listxattr = generic_listxattr,
132 .removexattr = generic_removexattr,
133 };
134
135 #endif /* CONFIG_NFS_V4 */
136
alloc_nfs_open_dir_context(struct inode * dir,struct rpc_cred * cred)137 static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, struct rpc_cred *cred)
138 {
139 struct nfs_open_dir_context *ctx;
140 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
141 if (ctx != NULL) {
142 ctx->duped = 0;
143 ctx->attr_gencount = NFS_I(dir)->attr_gencount;
144 ctx->dir_cookie = 0;
145 ctx->dup_cookie = 0;
146 ctx->cred = get_rpccred(cred);
147 return ctx;
148 }
149 return ERR_PTR(-ENOMEM);
150 }
151
put_nfs_open_dir_context(struct nfs_open_dir_context * ctx)152 static void put_nfs_open_dir_context(struct nfs_open_dir_context *ctx)
153 {
154 put_rpccred(ctx->cred);
155 kfree(ctx);
156 }
157
158 /*
159 * Open file
160 */
161 static int
nfs_opendir(struct inode * inode,struct file * filp)162 nfs_opendir(struct inode *inode, struct file *filp)
163 {
164 int res = 0;
165 struct nfs_open_dir_context *ctx;
166 struct rpc_cred *cred;
167
168 dfprintk(FILE, "NFS: open dir(%s/%s)\n",
169 filp->f_path.dentry->d_parent->d_name.name,
170 filp->f_path.dentry->d_name.name);
171
172 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
173
174 cred = rpc_lookup_cred();
175 if (IS_ERR(cred))
176 return PTR_ERR(cred);
177 ctx = alloc_nfs_open_dir_context(inode, cred);
178 if (IS_ERR(ctx)) {
179 res = PTR_ERR(ctx);
180 goto out;
181 }
182 filp->private_data = ctx;
183 if (filp->f_path.dentry == filp->f_path.mnt->mnt_root) {
184 /* This is a mountpoint, so d_revalidate will never
185 * have been called, so we need to refresh the
186 * inode (for close-open consistency) ourselves.
187 */
188 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
189 }
190 out:
191 put_rpccred(cred);
192 return res;
193 }
194
195 static int
nfs_closedir(struct inode * inode,struct file * filp)196 nfs_closedir(struct inode *inode, struct file *filp)
197 {
198 put_nfs_open_dir_context(filp->private_data);
199 return 0;
200 }
201
202 struct nfs_cache_array_entry {
203 u64 cookie;
204 u64 ino;
205 struct qstr string;
206 unsigned char d_type;
207 };
208
209 struct nfs_cache_array {
210 int size;
211 int eof_index;
212 u64 last_cookie;
213 struct nfs_cache_array_entry array[0];
214 };
215
216 typedef int (*decode_dirent_t)(struct xdr_stream *, struct nfs_entry *, int);
217 typedef struct {
218 struct file *file;
219 struct page *page;
220 unsigned long page_index;
221 u64 *dir_cookie;
222 u64 last_cookie;
223 loff_t current_index;
224 decode_dirent_t decode;
225
226 unsigned long timestamp;
227 unsigned long gencount;
228 unsigned int cache_entry_index;
229 unsigned int plus:1;
230 unsigned int eof:1;
231 } nfs_readdir_descriptor_t;
232
233 /*
234 * The caller is responsible for calling nfs_readdir_release_array(page)
235 */
236 static
nfs_readdir_get_array(struct page * page)237 struct nfs_cache_array *nfs_readdir_get_array(struct page *page)
238 {
239 void *ptr;
240 if (page == NULL)
241 return ERR_PTR(-EIO);
242 ptr = kmap(page);
243 if (ptr == NULL)
244 return ERR_PTR(-ENOMEM);
245 return ptr;
246 }
247
248 static
nfs_readdir_release_array(struct page * page)249 void nfs_readdir_release_array(struct page *page)
250 {
251 kunmap(page);
252 }
253
254 /*
255 * we are freeing strings created by nfs_add_to_readdir_array()
256 */
257 static
nfs_readdir_clear_array(struct page * page)258 void nfs_readdir_clear_array(struct page *page)
259 {
260 struct nfs_cache_array *array;
261 int i;
262
263 array = kmap_atomic(page);
264 for (i = 0; i < array->size; i++)
265 kfree(array->array[i].string.name);
266 kunmap_atomic(array);
267 }
268
269 /*
270 * the caller is responsible for freeing qstr.name
271 * when called by nfs_readdir_add_to_array, the strings will be freed in
272 * nfs_clear_readdir_array()
273 */
274 static
nfs_readdir_make_qstr(struct qstr * string,const char * name,unsigned int len)275 int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
276 {
277 string->len = len;
278 string->name = kmemdup(name, len, GFP_KERNEL);
279 if (string->name == NULL)
280 return -ENOMEM;
281 /*
282 * Avoid a kmemleak false positive. The pointer to the name is stored
283 * in a page cache page which kmemleak does not scan.
284 */
285 kmemleak_not_leak(string->name);
286 string->hash = full_name_hash(name, len);
287 return 0;
288 }
289
290 static
nfs_readdir_add_to_array(struct nfs_entry * entry,struct page * page)291 int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
292 {
293 struct nfs_cache_array *array = nfs_readdir_get_array(page);
294 struct nfs_cache_array_entry *cache_entry;
295 int ret;
296
297 if (IS_ERR(array))
298 return PTR_ERR(array);
299
300 cache_entry = &array->array[array->size];
301
302 /* Check that this entry lies within the page bounds */
303 ret = -ENOSPC;
304 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
305 goto out;
306
307 cache_entry->cookie = entry->prev_cookie;
308 cache_entry->ino = entry->ino;
309 cache_entry->d_type = entry->d_type;
310 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
311 if (ret)
312 goto out;
313 array->last_cookie = entry->cookie;
314 array->size++;
315 if (entry->eof != 0)
316 array->eof_index = array->size;
317 out:
318 nfs_readdir_release_array(page);
319 return ret;
320 }
321
322 static
nfs_readdir_search_for_pos(struct nfs_cache_array * array,nfs_readdir_descriptor_t * desc)323 int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
324 {
325 loff_t diff = desc->file->f_pos - desc->current_index;
326 unsigned int index;
327
328 if (diff < 0)
329 goto out_eof;
330 if (diff >= array->size) {
331 if (array->eof_index >= 0)
332 goto out_eof;
333 return -EAGAIN;
334 }
335
336 index = (unsigned int)diff;
337 *desc->dir_cookie = array->array[index].cookie;
338 desc->cache_entry_index = index;
339 return 0;
340 out_eof:
341 desc->eof = 1;
342 return -EBADCOOKIE;
343 }
344
345 static
nfs_readdir_search_for_cookie(struct nfs_cache_array * array,nfs_readdir_descriptor_t * desc)346 int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
347 {
348 int i;
349 loff_t new_pos;
350 int status = -EAGAIN;
351
352 for (i = 0; i < array->size; i++) {
353 if (array->array[i].cookie == *desc->dir_cookie) {
354 struct nfs_inode *nfsi = NFS_I(desc->file->f_path.dentry->d_inode);
355 struct nfs_open_dir_context *ctx = desc->file->private_data;
356
357 new_pos = desc->current_index + i;
358 if (ctx->attr_gencount != nfsi->attr_gencount
359 || (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))) {
360 ctx->duped = 0;
361 ctx->attr_gencount = nfsi->attr_gencount;
362 } else if (new_pos < desc->file->f_pos) {
363 if (ctx->duped > 0
364 && ctx->dup_cookie == *desc->dir_cookie) {
365 if (printk_ratelimit()) {
366 pr_notice("NFS: directory %s/%s contains a readdir loop."
367 "Please contact your server vendor. "
368 "The file: %s has duplicate cookie %llu\n",
369 desc->file->f_dentry->d_parent->d_name.name,
370 desc->file->f_dentry->d_name.name,
371 array->array[i].string.name,
372 *desc->dir_cookie);
373 }
374 status = -ELOOP;
375 goto out;
376 }
377 ctx->dup_cookie = *desc->dir_cookie;
378 ctx->duped = -1;
379 }
380 desc->file->f_pos = new_pos;
381 desc->cache_entry_index = i;
382 return 0;
383 }
384 }
385 if (array->eof_index >= 0) {
386 status = -EBADCOOKIE;
387 if (*desc->dir_cookie == array->last_cookie)
388 desc->eof = 1;
389 }
390 out:
391 return status;
392 }
393
394 static
nfs_readdir_search_array(nfs_readdir_descriptor_t * desc)395 int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
396 {
397 struct nfs_cache_array *array;
398 int status;
399
400 array = nfs_readdir_get_array(desc->page);
401 if (IS_ERR(array)) {
402 status = PTR_ERR(array);
403 goto out;
404 }
405
406 if (*desc->dir_cookie == 0)
407 status = nfs_readdir_search_for_pos(array, desc);
408 else
409 status = nfs_readdir_search_for_cookie(array, desc);
410
411 if (status == -EAGAIN) {
412 desc->last_cookie = array->last_cookie;
413 desc->current_index += array->size;
414 desc->page_index++;
415 }
416 nfs_readdir_release_array(desc->page);
417 out:
418 return status;
419 }
420
421 /* Fill a page with xdr information before transferring to the cache page */
422 static
nfs_readdir_xdr_filler(struct page ** pages,nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct file * file,struct inode * inode)423 int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
424 struct nfs_entry *entry, struct file *file, struct inode *inode)
425 {
426 struct nfs_open_dir_context *ctx = file->private_data;
427 struct rpc_cred *cred = ctx->cred;
428 unsigned long timestamp, gencount;
429 int error;
430
431 again:
432 timestamp = jiffies;
433 gencount = nfs_inc_attr_generation_counter();
434 error = NFS_PROTO(inode)->readdir(file->f_path.dentry, cred, entry->cookie, pages,
435 NFS_SERVER(inode)->dtsize, desc->plus);
436 if (error < 0) {
437 /* We requested READDIRPLUS, but the server doesn't grok it */
438 if (error == -ENOTSUPP && desc->plus) {
439 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
440 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
441 desc->plus = 0;
442 goto again;
443 }
444 goto error;
445 }
446 desc->timestamp = timestamp;
447 desc->gencount = gencount;
448 error:
449 return error;
450 }
451
xdr_decode(nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct xdr_stream * xdr)452 static int xdr_decode(nfs_readdir_descriptor_t *desc,
453 struct nfs_entry *entry, struct xdr_stream *xdr)
454 {
455 int error;
456
457 error = desc->decode(xdr, entry, desc->plus);
458 if (error)
459 return error;
460 entry->fattr->time_start = desc->timestamp;
461 entry->fattr->gencount = desc->gencount;
462 return 0;
463 }
464
465 static
nfs_same_file(struct dentry * dentry,struct nfs_entry * entry)466 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
467 {
468 if (dentry->d_inode == NULL)
469 goto different;
470 if (nfs_compare_fh(entry->fh, NFS_FH(dentry->d_inode)) != 0)
471 goto different;
472 return 1;
473 different:
474 return 0;
475 }
476
477 static
nfs_prime_dcache(struct dentry * parent,struct nfs_entry * entry)478 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry)
479 {
480 struct qstr filename = {
481 .len = entry->len,
482 .name = entry->name,
483 };
484 struct dentry *dentry;
485 struct dentry *alias;
486 struct inode *dir = parent->d_inode;
487 struct inode *inode;
488
489 if (filename.name[0] == '.') {
490 if (filename.len == 1)
491 return;
492 if (filename.len == 2 && filename.name[1] == '.')
493 return;
494 }
495 filename.hash = full_name_hash(filename.name, filename.len);
496
497 dentry = d_lookup(parent, &filename);
498 if (dentry != NULL) {
499 if (nfs_same_file(dentry, entry)) {
500 nfs_refresh_inode(dentry->d_inode, entry->fattr);
501 goto out;
502 } else {
503 d_drop(dentry);
504 dput(dentry);
505 }
506 }
507
508 dentry = d_alloc(parent, &filename);
509 if (dentry == NULL)
510 return;
511
512 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
513 if (IS_ERR(inode))
514 goto out;
515
516 alias = d_materialise_unique(dentry, inode);
517 if (IS_ERR(alias))
518 goto out;
519 else if (alias) {
520 nfs_set_verifier(alias, nfs_save_change_attribute(dir));
521 dput(alias);
522 } else
523 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
524
525 out:
526 dput(dentry);
527 }
528
529 /* Perform conversion from xdr to cache array */
530 static
nfs_readdir_page_filler(nfs_readdir_descriptor_t * desc,struct nfs_entry * entry,struct page ** xdr_pages,struct page * page,unsigned int buflen)531 int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
532 struct page **xdr_pages, struct page *page, unsigned int buflen)
533 {
534 struct xdr_stream stream;
535 struct xdr_buf buf;
536 struct page *scratch;
537 struct nfs_cache_array *array;
538 unsigned int count = 0;
539 int status;
540
541 scratch = alloc_page(GFP_KERNEL);
542 if (scratch == NULL)
543 return -ENOMEM;
544
545 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
546 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
547
548 do {
549 status = xdr_decode(desc, entry, &stream);
550 if (status != 0) {
551 if (status == -EAGAIN)
552 status = 0;
553 break;
554 }
555
556 count++;
557
558 if (desc->plus != 0)
559 nfs_prime_dcache(desc->file->f_path.dentry, entry);
560
561 status = nfs_readdir_add_to_array(entry, page);
562 if (status != 0)
563 break;
564 } while (!entry->eof);
565
566 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
567 array = nfs_readdir_get_array(page);
568 if (!IS_ERR(array)) {
569 array->eof_index = array->size;
570 status = 0;
571 nfs_readdir_release_array(page);
572 } else
573 status = PTR_ERR(array);
574 }
575
576 put_page(scratch);
577 return status;
578 }
579
580 static
nfs_readdir_free_pagearray(struct page ** pages,unsigned int npages)581 void nfs_readdir_free_pagearray(struct page **pages, unsigned int npages)
582 {
583 unsigned int i;
584 for (i = 0; i < npages; i++)
585 put_page(pages[i]);
586 }
587
588 static
nfs_readdir_free_large_page(void * ptr,struct page ** pages,unsigned int npages)589 void nfs_readdir_free_large_page(void *ptr, struct page **pages,
590 unsigned int npages)
591 {
592 nfs_readdir_free_pagearray(pages, npages);
593 }
594
595 /*
596 * nfs_readdir_large_page will allocate pages that must be freed with a call
597 * to nfs_readdir_free_large_page
598 */
599 static
nfs_readdir_large_page(struct page ** pages,unsigned int npages)600 int nfs_readdir_large_page(struct page **pages, unsigned int npages)
601 {
602 unsigned int i;
603
604 for (i = 0; i < npages; i++) {
605 struct page *page = alloc_page(GFP_KERNEL);
606 if (page == NULL)
607 goto out_freepages;
608 pages[i] = page;
609 }
610 return 0;
611
612 out_freepages:
613 nfs_readdir_free_pagearray(pages, i);
614 return -ENOMEM;
615 }
616
617 static
nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t * desc,struct page * page,struct inode * inode)618 int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
619 {
620 struct page *pages[NFS_MAX_READDIR_PAGES];
621 void *pages_ptr = NULL;
622 struct nfs_entry entry;
623 struct file *file = desc->file;
624 struct nfs_cache_array *array;
625 int status = -ENOMEM;
626 unsigned int array_size = ARRAY_SIZE(pages);
627
628 entry.prev_cookie = 0;
629 entry.cookie = desc->last_cookie;
630 entry.eof = 0;
631 entry.fh = nfs_alloc_fhandle();
632 entry.fattr = nfs_alloc_fattr();
633 entry.server = NFS_SERVER(inode);
634 if (entry.fh == NULL || entry.fattr == NULL)
635 goto out;
636
637 array = nfs_readdir_get_array(page);
638 if (IS_ERR(array)) {
639 status = PTR_ERR(array);
640 goto out;
641 }
642 memset(array, 0, sizeof(struct nfs_cache_array));
643 array->eof_index = -1;
644
645 status = nfs_readdir_large_page(pages, array_size);
646 if (status < 0)
647 goto out_release_array;
648 do {
649 unsigned int pglen;
650 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
651
652 if (status < 0)
653 break;
654 pglen = status;
655 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
656 if (status < 0) {
657 if (status == -ENOSPC)
658 status = 0;
659 break;
660 }
661 } while (array->eof_index < 0);
662
663 nfs_readdir_free_large_page(pages_ptr, pages, array_size);
664 out_release_array:
665 nfs_readdir_release_array(page);
666 out:
667 nfs_free_fattr(entry.fattr);
668 nfs_free_fhandle(entry.fh);
669 return status;
670 }
671
672 /*
673 * Now we cache directories properly, by converting xdr information
674 * to an array that can be used for lookups later. This results in
675 * fewer cache pages, since we can store more information on each page.
676 * We only need to convert from xdr once so future lookups are much simpler
677 */
678 static
nfs_readdir_filler(nfs_readdir_descriptor_t * desc,struct page * page)679 int nfs_readdir_filler(nfs_readdir_descriptor_t *desc, struct page* page)
680 {
681 struct inode *inode = desc->file->f_path.dentry->d_inode;
682 int ret;
683
684 ret = nfs_readdir_xdr_to_array(desc, page, inode);
685 if (ret < 0)
686 goto error;
687 SetPageUptodate(page);
688
689 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
690 /* Should never happen */
691 nfs_zap_mapping(inode, inode->i_mapping);
692 }
693 unlock_page(page);
694 return 0;
695 error:
696 unlock_page(page);
697 return ret;
698 }
699
700 static
cache_page_release(nfs_readdir_descriptor_t * desc)701 void cache_page_release(nfs_readdir_descriptor_t *desc)
702 {
703 if (!desc->page->mapping)
704 nfs_readdir_clear_array(desc->page);
705 page_cache_release(desc->page);
706 desc->page = NULL;
707 }
708
709 static
get_cache_page(nfs_readdir_descriptor_t * desc)710 struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
711 {
712 return read_cache_page(desc->file->f_path.dentry->d_inode->i_mapping,
713 desc->page_index, (filler_t *)nfs_readdir_filler, desc);
714 }
715
716 /*
717 * Returns 0 if desc->dir_cookie was found on page desc->page_index
718 */
719 static
find_cache_page(nfs_readdir_descriptor_t * desc)720 int find_cache_page(nfs_readdir_descriptor_t *desc)
721 {
722 int res;
723
724 desc->page = get_cache_page(desc);
725 if (IS_ERR(desc->page))
726 return PTR_ERR(desc->page);
727
728 res = nfs_readdir_search_array(desc);
729 if (res != 0)
730 cache_page_release(desc);
731 return res;
732 }
733
734 /* Search for desc->dir_cookie from the beginning of the page cache */
735 static inline
readdir_search_pagecache(nfs_readdir_descriptor_t * desc)736 int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
737 {
738 int res;
739
740 if (desc->page_index == 0) {
741 desc->current_index = 0;
742 desc->last_cookie = 0;
743 }
744 do {
745 res = find_cache_page(desc);
746 } while (res == -EAGAIN);
747 return res;
748 }
749
750 /*
751 * Once we've found the start of the dirent within a page: fill 'er up...
752 */
753 static
nfs_do_filldir(nfs_readdir_descriptor_t * desc,void * dirent,filldir_t filldir)754 int nfs_do_filldir(nfs_readdir_descriptor_t *desc, void *dirent,
755 filldir_t filldir)
756 {
757 struct file *file = desc->file;
758 int i = 0;
759 int res = 0;
760 struct nfs_cache_array *array = NULL;
761 struct nfs_open_dir_context *ctx = file->private_data;
762
763 array = nfs_readdir_get_array(desc->page);
764 if (IS_ERR(array)) {
765 res = PTR_ERR(array);
766 goto out;
767 }
768
769 for (i = desc->cache_entry_index; i < array->size; i++) {
770 struct nfs_cache_array_entry *ent;
771
772 ent = &array->array[i];
773 if (filldir(dirent, ent->string.name, ent->string.len,
774 file->f_pos, nfs_compat_user_ino64(ent->ino),
775 ent->d_type) < 0) {
776 desc->eof = 1;
777 break;
778 }
779 file->f_pos++;
780 if (i < (array->size-1))
781 *desc->dir_cookie = array->array[i+1].cookie;
782 else
783 *desc->dir_cookie = array->last_cookie;
784 if (ctx->duped != 0)
785 ctx->duped = 1;
786 }
787 if (array->eof_index >= 0)
788 desc->eof = 1;
789
790 nfs_readdir_release_array(desc->page);
791 out:
792 cache_page_release(desc);
793 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
794 (unsigned long long)*desc->dir_cookie, res);
795 return res;
796 }
797
798 /*
799 * If we cannot find a cookie in our cache, we suspect that this is
800 * because it points to a deleted file, so we ask the server to return
801 * whatever it thinks is the next entry. We then feed this to filldir.
802 * If all goes well, we should then be able to find our way round the
803 * cache on the next call to readdir_search_pagecache();
804 *
805 * NOTE: we cannot add the anonymous page to the pagecache because
806 * the data it contains might not be page aligned. Besides,
807 * we should already have a complete representation of the
808 * directory in the page cache by the time we get here.
809 */
810 static inline
uncached_readdir(nfs_readdir_descriptor_t * desc,void * dirent,filldir_t filldir)811 int uncached_readdir(nfs_readdir_descriptor_t *desc, void *dirent,
812 filldir_t filldir)
813 {
814 struct page *page = NULL;
815 int status;
816 struct inode *inode = desc->file->f_path.dentry->d_inode;
817 struct nfs_open_dir_context *ctx = desc->file->private_data;
818
819 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
820 (unsigned long long)*desc->dir_cookie);
821
822 page = alloc_page(GFP_HIGHUSER);
823 if (!page) {
824 status = -ENOMEM;
825 goto out;
826 }
827
828 desc->page_index = 0;
829 desc->last_cookie = *desc->dir_cookie;
830 desc->page = page;
831 ctx->duped = 0;
832
833 status = nfs_readdir_xdr_to_array(desc, page, inode);
834 if (status < 0)
835 goto out_release;
836
837 status = nfs_do_filldir(desc, dirent, filldir);
838
839 out:
840 dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
841 __func__, status);
842 return status;
843 out_release:
844 cache_page_release(desc);
845 goto out;
846 }
847
848 /* The file offset position represents the dirent entry number. A
849 last cookie cache takes care of the common case of reading the
850 whole directory.
851 */
nfs_readdir(struct file * filp,void * dirent,filldir_t filldir)852 static int nfs_readdir(struct file *filp, void *dirent, filldir_t filldir)
853 {
854 struct dentry *dentry = filp->f_path.dentry;
855 struct inode *inode = dentry->d_inode;
856 nfs_readdir_descriptor_t my_desc,
857 *desc = &my_desc;
858 struct nfs_open_dir_context *dir_ctx = filp->private_data;
859 int res;
860
861 dfprintk(FILE, "NFS: readdir(%s/%s) starting at cookie %llu\n",
862 dentry->d_parent->d_name.name, dentry->d_name.name,
863 (long long)filp->f_pos);
864 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
865
866 /*
867 * filp->f_pos points to the dirent entry number.
868 * *desc->dir_cookie has the cookie for the next entry. We have
869 * to either find the entry with the appropriate number or
870 * revalidate the cookie.
871 */
872 memset(desc, 0, sizeof(*desc));
873
874 desc->file = filp;
875 desc->dir_cookie = &dir_ctx->dir_cookie;
876 desc->decode = NFS_PROTO(inode)->decode_dirent;
877 desc->plus = NFS_USE_READDIRPLUS(inode);
878
879 nfs_block_sillyrename(dentry);
880 res = nfs_revalidate_mapping(inode, filp->f_mapping);
881 if (res < 0)
882 goto out;
883
884 do {
885 res = readdir_search_pagecache(desc);
886
887 if (res == -EBADCOOKIE) {
888 res = 0;
889 /* This means either end of directory */
890 if (*desc->dir_cookie && desc->eof == 0) {
891 /* Or that the server has 'lost' a cookie */
892 res = uncached_readdir(desc, dirent, filldir);
893 if (res == 0)
894 continue;
895 }
896 break;
897 }
898 if (res == -ETOOSMALL && desc->plus) {
899 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
900 nfs_zap_caches(inode);
901 desc->page_index = 0;
902 desc->plus = 0;
903 desc->eof = 0;
904 continue;
905 }
906 if (res < 0)
907 break;
908
909 res = nfs_do_filldir(desc, dirent, filldir);
910 if (res < 0)
911 break;
912 } while (!desc->eof);
913 out:
914 nfs_unblock_sillyrename(dentry);
915 if (res > 0)
916 res = 0;
917 dfprintk(FILE, "NFS: readdir(%s/%s) returns %d\n",
918 dentry->d_parent->d_name.name, dentry->d_name.name,
919 res);
920 return res;
921 }
922
nfs_llseek_dir(struct file * filp,loff_t offset,int origin)923 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int origin)
924 {
925 struct dentry *dentry = filp->f_path.dentry;
926 struct inode *inode = dentry->d_inode;
927 struct nfs_open_dir_context *dir_ctx = filp->private_data;
928
929 dfprintk(FILE, "NFS: llseek dir(%s/%s, %lld, %d)\n",
930 dentry->d_parent->d_name.name,
931 dentry->d_name.name,
932 offset, origin);
933
934 mutex_lock(&inode->i_mutex);
935 switch (origin) {
936 case 1:
937 offset += filp->f_pos;
938 case 0:
939 if (offset >= 0)
940 break;
941 default:
942 offset = -EINVAL;
943 goto out;
944 }
945 if (offset != filp->f_pos) {
946 filp->f_pos = offset;
947 dir_ctx->dir_cookie = 0;
948 dir_ctx->duped = 0;
949 }
950 out:
951 mutex_unlock(&inode->i_mutex);
952 return offset;
953 }
954
955 /*
956 * All directory operations under NFS are synchronous, so fsync()
957 * is a dummy operation.
958 */
nfs_fsync_dir(struct file * filp,loff_t start,loff_t end,int datasync)959 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
960 int datasync)
961 {
962 struct dentry *dentry = filp->f_path.dentry;
963 struct inode *inode = dentry->d_inode;
964
965 dfprintk(FILE, "NFS: fsync dir(%s/%s) datasync %d\n",
966 dentry->d_parent->d_name.name, dentry->d_name.name,
967 datasync);
968
969 mutex_lock(&inode->i_mutex);
970 nfs_inc_stats(dentry->d_inode, NFSIOS_VFSFSYNC);
971 mutex_unlock(&inode->i_mutex);
972 return 0;
973 }
974
975 /**
976 * nfs_force_lookup_revalidate - Mark the directory as having changed
977 * @dir - pointer to directory inode
978 *
979 * This forces the revalidation code in nfs_lookup_revalidate() to do a
980 * full lookup on all child dentries of 'dir' whenever a change occurs
981 * on the server that might have invalidated our dcache.
982 *
983 * The caller should be holding dir->i_lock
984 */
nfs_force_lookup_revalidate(struct inode * dir)985 void nfs_force_lookup_revalidate(struct inode *dir)
986 {
987 NFS_I(dir)->cache_change_attribute++;
988 }
989
990 /*
991 * A check for whether or not the parent directory has changed.
992 * In the case it has, we assume that the dentries are untrustworthy
993 * and may need to be looked up again.
994 */
nfs_check_verifier(struct inode * dir,struct dentry * dentry)995 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry)
996 {
997 if (IS_ROOT(dentry))
998 return 1;
999 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1000 return 0;
1001 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1002 return 0;
1003 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1004 if (nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1005 return 0;
1006 if (!nfs_verify_change_attribute(dir, dentry->d_time))
1007 return 0;
1008 return 1;
1009 }
1010
1011 /*
1012 * Return the intent data that applies to this particular path component
1013 *
1014 * Note that the current set of intents only apply to the very last
1015 * component of the path and none of them is set before that last
1016 * component.
1017 */
nfs_lookup_check_intent(struct nameidata * nd,unsigned int mask)1018 static inline unsigned int nfs_lookup_check_intent(struct nameidata *nd,
1019 unsigned int mask)
1020 {
1021 return nd->flags & mask;
1022 }
1023
1024 /*
1025 * Use intent information to check whether or not we're going to do
1026 * an O_EXCL create using this path component.
1027 */
nfs_is_exclusive_create(struct inode * dir,struct nameidata * nd)1028 static int nfs_is_exclusive_create(struct inode *dir, struct nameidata *nd)
1029 {
1030 if (NFS_PROTO(dir)->version == 2)
1031 return 0;
1032 return nd && nfs_lookup_check_intent(nd, LOOKUP_EXCL);
1033 }
1034
1035 /*
1036 * Inode and filehandle revalidation for lookups.
1037 *
1038 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1039 * or if the intent information indicates that we're about to open this
1040 * particular file and the "nocto" mount flag is not set.
1041 *
1042 */
1043 static inline
nfs_lookup_verify_inode(struct inode * inode,struct nameidata * nd)1044 int nfs_lookup_verify_inode(struct inode *inode, struct nameidata *nd)
1045 {
1046 struct nfs_server *server = NFS_SERVER(inode);
1047
1048 if (IS_AUTOMOUNT(inode))
1049 return 0;
1050 if (nd != NULL) {
1051 /* VFS wants an on-the-wire revalidation */
1052 if (nd->flags & LOOKUP_REVAL)
1053 goto out_force;
1054 /* This is an open(2) */
1055 if (nfs_lookup_check_intent(nd, LOOKUP_OPEN) != 0 &&
1056 !(server->flags & NFS_MOUNT_NOCTO) &&
1057 (S_ISREG(inode->i_mode) ||
1058 S_ISDIR(inode->i_mode)))
1059 goto out_force;
1060 return 0;
1061 }
1062 return nfs_revalidate_inode(server, inode);
1063 out_force:
1064 return __nfs_revalidate_inode(server, inode);
1065 }
1066
1067 /*
1068 * We judge how long we want to trust negative
1069 * dentries by looking at the parent inode mtime.
1070 *
1071 * If parent mtime has changed, we revalidate, else we wait for a
1072 * period corresponding to the parent's attribute cache timeout value.
1073 */
1074 static inline
nfs_neg_need_reval(struct inode * dir,struct dentry * dentry,struct nameidata * nd)1075 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1076 struct nameidata *nd)
1077 {
1078 /* Don't revalidate a negative dentry if we're creating a new file */
1079 if (nd != NULL && nfs_lookup_check_intent(nd, LOOKUP_CREATE) != 0)
1080 return 0;
1081 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1082 return 1;
1083 return !nfs_check_verifier(dir, dentry);
1084 }
1085
1086 /*
1087 * This is called every time the dcache has a lookup hit,
1088 * and we should check whether we can really trust that
1089 * lookup.
1090 *
1091 * NOTE! The hit can be a negative hit too, don't assume
1092 * we have an inode!
1093 *
1094 * If the parent directory is seen to have changed, we throw out the
1095 * cached dentry and do a new lookup.
1096 */
nfs_lookup_revalidate(struct dentry * dentry,struct nameidata * nd)1097 static int nfs_lookup_revalidate(struct dentry *dentry, struct nameidata *nd)
1098 {
1099 struct inode *dir;
1100 struct inode *inode;
1101 struct dentry *parent;
1102 struct nfs_fh *fhandle = NULL;
1103 struct nfs_fattr *fattr = NULL;
1104 int error;
1105
1106 if (nd && (nd->flags & LOOKUP_RCU))
1107 return -ECHILD;
1108
1109 parent = dget_parent(dentry);
1110 dir = parent->d_inode;
1111 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1112 inode = dentry->d_inode;
1113
1114 if (!inode) {
1115 if (nfs_neg_need_reval(dir, dentry, nd))
1116 goto out_bad;
1117 goto out_valid;
1118 }
1119
1120 if (is_bad_inode(inode)) {
1121 dfprintk(LOOKUPCACHE, "%s: %s/%s has dud inode\n",
1122 __func__, dentry->d_parent->d_name.name,
1123 dentry->d_name.name);
1124 goto out_bad;
1125 }
1126
1127 if (nfs_have_delegation(inode, FMODE_READ))
1128 goto out_set_verifier;
1129
1130 /* Force a full look up iff the parent directory has changed */
1131 if (!nfs_is_exclusive_create(dir, nd) && nfs_check_verifier(dir, dentry)) {
1132 if (nfs_lookup_verify_inode(inode, nd))
1133 goto out_zap_parent;
1134 goto out_valid;
1135 }
1136
1137 if (NFS_STALE(inode))
1138 goto out_bad;
1139
1140 error = -ENOMEM;
1141 fhandle = nfs_alloc_fhandle();
1142 fattr = nfs_alloc_fattr();
1143 if (fhandle == NULL || fattr == NULL)
1144 goto out_error;
1145
1146 error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr);
1147 if (error)
1148 goto out_bad;
1149 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1150 goto out_bad;
1151 if ((error = nfs_refresh_inode(inode, fattr)) != 0)
1152 goto out_bad;
1153
1154 nfs_free_fattr(fattr);
1155 nfs_free_fhandle(fhandle);
1156 out_set_verifier:
1157 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1158 out_valid:
1159 dput(parent);
1160 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is valid\n",
1161 __func__, dentry->d_parent->d_name.name,
1162 dentry->d_name.name);
1163 return 1;
1164 out_zap_parent:
1165 nfs_zap_caches(dir);
1166 out_bad:
1167 nfs_mark_for_revalidate(dir);
1168 if (inode && S_ISDIR(inode->i_mode)) {
1169 /* Purge readdir caches. */
1170 nfs_zap_caches(inode);
1171 /* If we have submounts, don't unhash ! */
1172 if (have_submounts(dentry))
1173 goto out_valid;
1174 if (dentry->d_flags & DCACHE_DISCONNECTED)
1175 goto out_valid;
1176 shrink_dcache_parent(dentry);
1177 }
1178 d_drop(dentry);
1179 nfs_free_fattr(fattr);
1180 nfs_free_fhandle(fhandle);
1181 dput(parent);
1182 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) is invalid\n",
1183 __func__, dentry->d_parent->d_name.name,
1184 dentry->d_name.name);
1185 return 0;
1186 out_error:
1187 nfs_free_fattr(fattr);
1188 nfs_free_fhandle(fhandle);
1189 dput(parent);
1190 dfprintk(LOOKUPCACHE, "NFS: %s(%s/%s) lookup returned error %d\n",
1191 __func__, dentry->d_parent->d_name.name,
1192 dentry->d_name.name, error);
1193 return error;
1194 }
1195
1196 /*
1197 * This is called from dput() when d_count is going to 0.
1198 */
nfs_dentry_delete(const struct dentry * dentry)1199 static int nfs_dentry_delete(const struct dentry *dentry)
1200 {
1201 dfprintk(VFS, "NFS: dentry_delete(%s/%s, %x)\n",
1202 dentry->d_parent->d_name.name, dentry->d_name.name,
1203 dentry->d_flags);
1204
1205 /* Unhash any dentry with a stale inode */
1206 if (dentry->d_inode != NULL && NFS_STALE(dentry->d_inode))
1207 return 1;
1208
1209 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1210 /* Unhash it, so that ->d_iput() would be called */
1211 return 1;
1212 }
1213 if (!(dentry->d_sb->s_flags & MS_ACTIVE)) {
1214 /* Unhash it, so that ancestors of killed async unlink
1215 * files will be cleaned up during umount */
1216 return 1;
1217 }
1218 return 0;
1219
1220 }
1221
1222 /* Ensure that we revalidate inode->i_nlink */
nfs_drop_nlink(struct inode * inode)1223 static void nfs_drop_nlink(struct inode *inode)
1224 {
1225 spin_lock(&inode->i_lock);
1226 /* drop the inode if we're reasonably sure this is the last link */
1227 if (inode->i_nlink == 1)
1228 clear_nlink(inode);
1229 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_ATTR;
1230 spin_unlock(&inode->i_lock);
1231 }
1232
1233 /*
1234 * Called when the dentry loses inode.
1235 * We use it to clean up silly-renamed files.
1236 */
nfs_dentry_iput(struct dentry * dentry,struct inode * inode)1237 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1238 {
1239 if (S_ISDIR(inode->i_mode))
1240 /* drop any readdir cache as it could easily be old */
1241 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1242
1243 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1244 nfs_complete_unlink(dentry, inode);
1245 nfs_drop_nlink(inode);
1246 }
1247 iput(inode);
1248 }
1249
nfs_d_release(struct dentry * dentry)1250 static void nfs_d_release(struct dentry *dentry)
1251 {
1252 /* free cached devname value, if it survived that far */
1253 if (unlikely(dentry->d_fsdata)) {
1254 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1255 WARN_ON(1);
1256 else
1257 kfree(dentry->d_fsdata);
1258 }
1259 }
1260
1261 const struct dentry_operations nfs_dentry_operations = {
1262 .d_revalidate = nfs_lookup_revalidate,
1263 .d_delete = nfs_dentry_delete,
1264 .d_iput = nfs_dentry_iput,
1265 .d_automount = nfs_d_automount,
1266 .d_release = nfs_d_release,
1267 };
1268
nfs_lookup(struct inode * dir,struct dentry * dentry,struct nameidata * nd)1269 static struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, struct nameidata *nd)
1270 {
1271 struct dentry *res;
1272 struct dentry *parent;
1273 struct inode *inode = NULL;
1274 struct nfs_fh *fhandle = NULL;
1275 struct nfs_fattr *fattr = NULL;
1276 int error;
1277
1278 dfprintk(VFS, "NFS: lookup(%s/%s)\n",
1279 dentry->d_parent->d_name.name, dentry->d_name.name);
1280 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1281
1282 res = ERR_PTR(-ENAMETOOLONG);
1283 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1284 goto out;
1285
1286 /*
1287 * If we're doing an exclusive create, optimize away the lookup
1288 * but don't hash the dentry.
1289 */
1290 if (nfs_is_exclusive_create(dir, nd)) {
1291 d_instantiate(dentry, NULL);
1292 res = NULL;
1293 goto out;
1294 }
1295
1296 res = ERR_PTR(-ENOMEM);
1297 fhandle = nfs_alloc_fhandle();
1298 fattr = nfs_alloc_fattr();
1299 if (fhandle == NULL || fattr == NULL)
1300 goto out;
1301
1302 parent = dentry->d_parent;
1303 /* Protect against concurrent sillydeletes */
1304 nfs_block_sillyrename(parent);
1305 error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr);
1306 if (error == -ENOENT)
1307 goto no_entry;
1308 if (error < 0) {
1309 res = ERR_PTR(error);
1310 goto out_unblock_sillyrename;
1311 }
1312 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1313 res = ERR_CAST(inode);
1314 if (IS_ERR(res))
1315 goto out_unblock_sillyrename;
1316
1317 no_entry:
1318 res = d_materialise_unique(dentry, inode);
1319 if (res != NULL) {
1320 if (IS_ERR(res))
1321 goto out_unblock_sillyrename;
1322 dentry = res;
1323 }
1324 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1325 out_unblock_sillyrename:
1326 nfs_unblock_sillyrename(parent);
1327 out:
1328 nfs_free_fattr(fattr);
1329 nfs_free_fhandle(fhandle);
1330 return res;
1331 }
1332
1333 #ifdef CONFIG_NFS_V4
1334 static int nfs_open_revalidate(struct dentry *, struct nameidata *);
1335
1336 const struct dentry_operations nfs4_dentry_operations = {
1337 .d_revalidate = nfs_open_revalidate,
1338 .d_delete = nfs_dentry_delete,
1339 .d_iput = nfs_dentry_iput,
1340 .d_automount = nfs_d_automount,
1341 .d_release = nfs_d_release,
1342 };
1343
1344 /*
1345 * Use intent information to determine whether we need to substitute
1346 * the NFSv4-style stateful OPEN for the LOOKUP call
1347 */
is_atomic_open(struct nameidata * nd)1348 static int is_atomic_open(struct nameidata *nd)
1349 {
1350 if (nd == NULL || nfs_lookup_check_intent(nd, LOOKUP_OPEN) == 0)
1351 return 0;
1352 /* NFS does not (yet) have a stateful open for directories */
1353 if (nd->flags & LOOKUP_DIRECTORY)
1354 return 0;
1355 /* Are we trying to write to a read only partition? */
1356 if (__mnt_is_readonly(nd->path.mnt) &&
1357 (nd->intent.open.flags & (O_CREAT|O_TRUNC|O_ACCMODE)))
1358 return 0;
1359 return 1;
1360 }
1361
flags_to_mode(int flags)1362 static fmode_t flags_to_mode(int flags)
1363 {
1364 fmode_t res = (__force fmode_t)flags & FMODE_EXEC;
1365 if ((flags & O_ACCMODE) != O_WRONLY)
1366 res |= FMODE_READ;
1367 if ((flags & O_ACCMODE) != O_RDONLY)
1368 res |= FMODE_WRITE;
1369 return res;
1370 }
1371
create_nfs_open_context(struct dentry * dentry,int open_flags)1372 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags)
1373 {
1374 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags));
1375 }
1376
do_open(struct inode * inode,struct file * filp)1377 static int do_open(struct inode *inode, struct file *filp)
1378 {
1379 nfs_fscache_set_inode_cookie(inode, filp);
1380 return 0;
1381 }
1382
nfs_intent_set_file(struct nameidata * nd,struct nfs_open_context * ctx)1383 static int nfs_intent_set_file(struct nameidata *nd, struct nfs_open_context *ctx)
1384 {
1385 struct file *filp;
1386 int ret = 0;
1387
1388 /* If the open_intent is for execute, we have an extra check to make */
1389 if (ctx->mode & FMODE_EXEC) {
1390 ret = nfs_may_open(ctx->dentry->d_inode,
1391 ctx->cred,
1392 nd->intent.open.flags);
1393 if (ret < 0)
1394 goto out;
1395 }
1396 filp = lookup_instantiate_filp(nd, ctx->dentry, do_open);
1397 if (IS_ERR(filp))
1398 ret = PTR_ERR(filp);
1399 else
1400 nfs_file_set_open_context(filp, ctx);
1401 out:
1402 put_nfs_open_context(ctx);
1403 return ret;
1404 }
1405
nfs_atomic_lookup(struct inode * dir,struct dentry * dentry,struct nameidata * nd)1406 static struct dentry *nfs_atomic_lookup(struct inode *dir, struct dentry *dentry, struct nameidata *nd)
1407 {
1408 struct nfs_open_context *ctx;
1409 struct iattr attr;
1410 struct dentry *res = NULL;
1411 struct inode *inode;
1412 int open_flags;
1413 int err;
1414
1415 dfprintk(VFS, "NFS: atomic_lookup(%s/%ld), %s\n",
1416 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1417
1418 /* Check that we are indeed trying to open this file */
1419 if (!is_atomic_open(nd))
1420 goto no_open;
1421
1422 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) {
1423 res = ERR_PTR(-ENAMETOOLONG);
1424 goto out;
1425 }
1426
1427 /* Let vfs_create() deal with O_EXCL. Instantiate, but don't hash
1428 * the dentry. */
1429 if (nd->flags & LOOKUP_EXCL) {
1430 d_instantiate(dentry, NULL);
1431 goto out;
1432 }
1433
1434 open_flags = nd->intent.open.flags;
1435 attr.ia_valid = ATTR_OPEN;
1436
1437 ctx = create_nfs_open_context(dentry, open_flags);
1438 res = ERR_CAST(ctx);
1439 if (IS_ERR(ctx))
1440 goto out;
1441
1442 if (nd->flags & LOOKUP_CREATE) {
1443 attr.ia_mode = nd->intent.open.create_mode;
1444 attr.ia_valid |= ATTR_MODE;
1445 attr.ia_mode &= ~current_umask();
1446 } else
1447 open_flags &= ~(O_EXCL | O_CREAT);
1448
1449 if (open_flags & O_TRUNC) {
1450 attr.ia_valid |= ATTR_SIZE;
1451 attr.ia_size = 0;
1452 }
1453
1454 /* Open the file on the server */
1455 nfs_block_sillyrename(dentry->d_parent);
1456 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr);
1457 if (IS_ERR(inode)) {
1458 nfs_unblock_sillyrename(dentry->d_parent);
1459 put_nfs_open_context(ctx);
1460 switch (PTR_ERR(inode)) {
1461 /* Make a negative dentry */
1462 case -ENOENT:
1463 d_add(dentry, NULL);
1464 res = NULL;
1465 goto out;
1466 /* This turned out not to be a regular file */
1467 case -EISDIR:
1468 case -ENOTDIR:
1469 goto no_open;
1470 case -ELOOP:
1471 if (!(nd->intent.open.flags & O_NOFOLLOW))
1472 goto no_open;
1473 /* case -EINVAL: */
1474 default:
1475 res = ERR_CAST(inode);
1476 goto out;
1477 }
1478 }
1479 res = d_add_unique(dentry, inode);
1480 nfs_unblock_sillyrename(dentry->d_parent);
1481 if (res != NULL) {
1482 dput(ctx->dentry);
1483 ctx->dentry = dget(res);
1484 dentry = res;
1485 }
1486 err = nfs_intent_set_file(nd, ctx);
1487 if (err < 0) {
1488 if (res != NULL)
1489 dput(res);
1490 return ERR_PTR(err);
1491 }
1492 out:
1493 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1494 return res;
1495 no_open:
1496 return nfs_lookup(dir, dentry, nd);
1497 }
1498
nfs_open_revalidate(struct dentry * dentry,struct nameidata * nd)1499 static int nfs_open_revalidate(struct dentry *dentry, struct nameidata *nd)
1500 {
1501 struct dentry *parent = NULL;
1502 struct inode *inode;
1503 struct inode *dir;
1504 struct nfs_open_context *ctx;
1505 struct iattr attr;
1506 int openflags, ret = 0;
1507
1508 if (nd && (nd->flags & LOOKUP_RCU))
1509 return -ECHILD;
1510
1511 inode = dentry->d_inode;
1512 if (!is_atomic_open(nd) || d_mountpoint(dentry))
1513 goto no_open;
1514
1515 parent = dget_parent(dentry);
1516 dir = parent->d_inode;
1517
1518 /* We can't create new files in nfs_open_revalidate(), so we
1519 * optimize away revalidation of negative dentries.
1520 */
1521 if (inode == NULL) {
1522 if (!nfs_neg_need_reval(dir, dentry, nd))
1523 ret = 1;
1524 goto out;
1525 }
1526
1527 /* NFS only supports OPEN on regular files */
1528 if (!S_ISREG(inode->i_mode))
1529 goto no_open_dput;
1530 openflags = nd->intent.open.flags;
1531 /* We cannot do exclusive creation on a positive dentry */
1532 if ((openflags & (O_CREAT|O_EXCL)) == (O_CREAT|O_EXCL))
1533 goto no_open_dput;
1534 /* We can't create new files here */
1535 openflags &= ~(O_CREAT|O_EXCL);
1536
1537 ctx = create_nfs_open_context(dentry, openflags);
1538 ret = PTR_ERR(ctx);
1539 if (IS_ERR(ctx))
1540 goto out;
1541
1542 attr.ia_valid = ATTR_OPEN;
1543 if (openflags & O_TRUNC) {
1544 attr.ia_valid |= ATTR_SIZE;
1545 attr.ia_size = 0;
1546 nfs_wb_all(inode);
1547 }
1548
1549 /*
1550 * Note: we're not holding inode->i_mutex and so may be racing with
1551 * operations that change the directory. We therefore save the
1552 * change attribute *before* we do the RPC call.
1553 */
1554 inode = NFS_PROTO(dir)->open_context(dir, ctx, openflags, &attr);
1555 if (IS_ERR(inode)) {
1556 ret = PTR_ERR(inode);
1557 switch (ret) {
1558 case -EPERM:
1559 case -EACCES:
1560 case -EDQUOT:
1561 case -ENOSPC:
1562 case -EROFS:
1563 goto out_put_ctx;
1564 default:
1565 goto out_drop;
1566 }
1567 }
1568 iput(inode);
1569 if (inode != dentry->d_inode)
1570 goto out_drop;
1571
1572 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1573 ret = nfs_intent_set_file(nd, ctx);
1574 if (ret >= 0)
1575 ret = 1;
1576 out:
1577 dput(parent);
1578 return ret;
1579 out_drop:
1580 d_drop(dentry);
1581 ret = 0;
1582 out_put_ctx:
1583 put_nfs_open_context(ctx);
1584 goto out;
1585
1586 no_open_dput:
1587 dput(parent);
1588 no_open:
1589 return nfs_lookup_revalidate(dentry, nd);
1590 }
1591
nfs_open_create(struct inode * dir,struct dentry * dentry,umode_t mode,struct nameidata * nd)1592 static int nfs_open_create(struct inode *dir, struct dentry *dentry,
1593 umode_t mode, struct nameidata *nd)
1594 {
1595 struct nfs_open_context *ctx = NULL;
1596 struct iattr attr;
1597 int error;
1598 int open_flags = O_CREAT|O_EXCL;
1599
1600 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1601 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1602
1603 attr.ia_mode = mode;
1604 attr.ia_valid = ATTR_MODE;
1605
1606 if (nd)
1607 open_flags = nd->intent.open.flags;
1608
1609 ctx = create_nfs_open_context(dentry, open_flags);
1610 error = PTR_ERR(ctx);
1611 if (IS_ERR(ctx))
1612 goto out_err_drop;
1613
1614 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, ctx);
1615 if (error != 0)
1616 goto out_put_ctx;
1617 if (nd) {
1618 error = nfs_intent_set_file(nd, ctx);
1619 if (error < 0)
1620 goto out_err;
1621 } else {
1622 put_nfs_open_context(ctx);
1623 }
1624 return 0;
1625 out_put_ctx:
1626 put_nfs_open_context(ctx);
1627 out_err_drop:
1628 d_drop(dentry);
1629 out_err:
1630 return error;
1631 }
1632
1633 #endif /* CONFIG_NFSV4 */
1634
1635 /*
1636 * Code common to create, mkdir, and mknod.
1637 */
nfs_instantiate(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr)1638 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1639 struct nfs_fattr *fattr)
1640 {
1641 struct dentry *parent = dget_parent(dentry);
1642 struct inode *dir = parent->d_inode;
1643 struct inode *inode;
1644 int error = -EACCES;
1645
1646 d_drop(dentry);
1647
1648 /* We may have been initialized further down */
1649 if (dentry->d_inode)
1650 goto out;
1651 if (fhandle->size == 0) {
1652 error = NFS_PROTO(dir)->lookup(NFS_SERVER(dir)->client, dir, &dentry->d_name, fhandle, fattr);
1653 if (error)
1654 goto out_error;
1655 }
1656 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1657 if (!(fattr->valid & NFS_ATTR_FATTR)) {
1658 struct nfs_server *server = NFS_SB(dentry->d_sb);
1659 error = server->nfs_client->rpc_ops->getattr(server, fhandle, fattr);
1660 if (error < 0)
1661 goto out_error;
1662 }
1663 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1664 error = PTR_ERR(inode);
1665 if (IS_ERR(inode))
1666 goto out_error;
1667 d_add(dentry, inode);
1668 out:
1669 dput(parent);
1670 return 0;
1671 out_error:
1672 nfs_mark_for_revalidate(dir);
1673 dput(parent);
1674 return error;
1675 }
1676
1677 /*
1678 * Following a failed create operation, we drop the dentry rather
1679 * than retain a negative dentry. This avoids a problem in the event
1680 * that the operation succeeded on the server, but an error in the
1681 * reply path made it appear to have failed.
1682 */
nfs_create(struct inode * dir,struct dentry * dentry,umode_t mode,struct nameidata * nd)1683 static int nfs_create(struct inode *dir, struct dentry *dentry,
1684 umode_t mode, struct nameidata *nd)
1685 {
1686 struct iattr attr;
1687 int error;
1688 int open_flags = O_CREAT|O_EXCL;
1689
1690 dfprintk(VFS, "NFS: create(%s/%ld), %s\n",
1691 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1692
1693 attr.ia_mode = mode;
1694 attr.ia_valid = ATTR_MODE;
1695
1696 if (nd)
1697 open_flags = nd->intent.open.flags;
1698
1699 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags, NULL);
1700 if (error != 0)
1701 goto out_err;
1702 return 0;
1703 out_err:
1704 d_drop(dentry);
1705 return error;
1706 }
1707
1708 /*
1709 * See comments for nfs_proc_create regarding failed operations.
1710 */
1711 static int
nfs_mknod(struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)1712 nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1713 {
1714 struct iattr attr;
1715 int status;
1716
1717 dfprintk(VFS, "NFS: mknod(%s/%ld), %s\n",
1718 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1719
1720 if (!new_valid_dev(rdev))
1721 return -EINVAL;
1722
1723 attr.ia_mode = mode;
1724 attr.ia_valid = ATTR_MODE;
1725
1726 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1727 if (status != 0)
1728 goto out_err;
1729 return 0;
1730 out_err:
1731 d_drop(dentry);
1732 return status;
1733 }
1734
1735 /*
1736 * See comments for nfs_proc_create regarding failed operations.
1737 */
nfs_mkdir(struct inode * dir,struct dentry * dentry,umode_t mode)1738 static int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1739 {
1740 struct iattr attr;
1741 int error;
1742
1743 dfprintk(VFS, "NFS: mkdir(%s/%ld), %s\n",
1744 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1745
1746 attr.ia_valid = ATTR_MODE;
1747 attr.ia_mode = mode | S_IFDIR;
1748
1749 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1750 if (error != 0)
1751 goto out_err;
1752 return 0;
1753 out_err:
1754 d_drop(dentry);
1755 return error;
1756 }
1757
nfs_dentry_handle_enoent(struct dentry * dentry)1758 static void nfs_dentry_handle_enoent(struct dentry *dentry)
1759 {
1760 if (dentry->d_inode != NULL && !d_unhashed(dentry))
1761 d_delete(dentry);
1762 }
1763
nfs_rmdir(struct inode * dir,struct dentry * dentry)1764 static int nfs_rmdir(struct inode *dir, struct dentry *dentry)
1765 {
1766 int error;
1767
1768 dfprintk(VFS, "NFS: rmdir(%s/%ld), %s\n",
1769 dir->i_sb->s_id, dir->i_ino, dentry->d_name.name);
1770
1771 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
1772 /* Ensure the VFS deletes this inode */
1773 if (error == 0 && dentry->d_inode != NULL)
1774 clear_nlink(dentry->d_inode);
1775 else if (error == -ENOENT)
1776 nfs_dentry_handle_enoent(dentry);
1777
1778 return error;
1779 }
1780
1781 /*
1782 * Remove a file after making sure there are no pending writes,
1783 * and after checking that the file has only one user.
1784 *
1785 * We invalidate the attribute cache and free the inode prior to the operation
1786 * to avoid possible races if the server reuses the inode.
1787 */
nfs_safe_remove(struct dentry * dentry)1788 static int nfs_safe_remove(struct dentry *dentry)
1789 {
1790 struct inode *dir = dentry->d_parent->d_inode;
1791 struct inode *inode = dentry->d_inode;
1792 int error = -EBUSY;
1793
1794 dfprintk(VFS, "NFS: safe_remove(%s/%s)\n",
1795 dentry->d_parent->d_name.name, dentry->d_name.name);
1796
1797 /* If the dentry was sillyrenamed, we simply call d_delete() */
1798 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1799 error = 0;
1800 goto out;
1801 }
1802
1803 if (inode != NULL) {
1804 nfs_inode_return_delegation(inode);
1805 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1806 if (error == 0)
1807 nfs_drop_nlink(inode);
1808 } else
1809 error = NFS_PROTO(dir)->remove(dir, &dentry->d_name);
1810 if (error == -ENOENT)
1811 nfs_dentry_handle_enoent(dentry);
1812 out:
1813 return error;
1814 }
1815
1816 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
1817 * belongs to an active ".nfs..." file and we return -EBUSY.
1818 *
1819 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
1820 */
nfs_unlink(struct inode * dir,struct dentry * dentry)1821 static int nfs_unlink(struct inode *dir, struct dentry *dentry)
1822 {
1823 int error;
1824 int need_rehash = 0;
1825
1826 dfprintk(VFS, "NFS: unlink(%s/%ld, %s)\n", dir->i_sb->s_id,
1827 dir->i_ino, dentry->d_name.name);
1828
1829 spin_lock(&dentry->d_lock);
1830 if (dentry->d_count > 1) {
1831 spin_unlock(&dentry->d_lock);
1832 /* Start asynchronous writeout of the inode */
1833 write_inode_now(dentry->d_inode, 0);
1834 error = nfs_sillyrename(dir, dentry);
1835 return error;
1836 }
1837 if (!d_unhashed(dentry)) {
1838 __d_drop(dentry);
1839 need_rehash = 1;
1840 }
1841 spin_unlock(&dentry->d_lock);
1842 error = nfs_safe_remove(dentry);
1843 if (!error || error == -ENOENT) {
1844 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1845 } else if (need_rehash)
1846 d_rehash(dentry);
1847 return error;
1848 }
1849
1850 /*
1851 * To create a symbolic link, most file systems instantiate a new inode,
1852 * add a page to it containing the path, then write it out to the disk
1853 * using prepare_write/commit_write.
1854 *
1855 * Unfortunately the NFS client can't create the in-core inode first
1856 * because it needs a file handle to create an in-core inode (see
1857 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
1858 * symlink request has completed on the server.
1859 *
1860 * So instead we allocate a raw page, copy the symname into it, then do
1861 * the SYMLINK request with the page as the buffer. If it succeeds, we
1862 * now have a new file handle and can instantiate an in-core NFS inode
1863 * and move the raw page into its mapping.
1864 */
nfs_symlink(struct inode * dir,struct dentry * dentry,const char * symname)1865 static int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
1866 {
1867 struct pagevec lru_pvec;
1868 struct page *page;
1869 char *kaddr;
1870 struct iattr attr;
1871 unsigned int pathlen = strlen(symname);
1872 int error;
1873
1874 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s)\n", dir->i_sb->s_id,
1875 dir->i_ino, dentry->d_name.name, symname);
1876
1877 if (pathlen > PAGE_SIZE)
1878 return -ENAMETOOLONG;
1879
1880 attr.ia_mode = S_IFLNK | S_IRWXUGO;
1881 attr.ia_valid = ATTR_MODE;
1882
1883 page = alloc_page(GFP_HIGHUSER);
1884 if (!page)
1885 return -ENOMEM;
1886
1887 kaddr = kmap_atomic(page);
1888 memcpy(kaddr, symname, pathlen);
1889 if (pathlen < PAGE_SIZE)
1890 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
1891 kunmap_atomic(kaddr);
1892
1893 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
1894 if (error != 0) {
1895 dfprintk(VFS, "NFS: symlink(%s/%ld, %s, %s) error %d\n",
1896 dir->i_sb->s_id, dir->i_ino,
1897 dentry->d_name.name, symname, error);
1898 d_drop(dentry);
1899 __free_page(page);
1900 return error;
1901 }
1902
1903 /*
1904 * No big deal if we can't add this page to the page cache here.
1905 * READLINK will get the missing page from the server if needed.
1906 */
1907 pagevec_init(&lru_pvec, 0);
1908 if (!add_to_page_cache(page, dentry->d_inode->i_mapping, 0,
1909 GFP_KERNEL)) {
1910 pagevec_add(&lru_pvec, page);
1911 pagevec_lru_add_file(&lru_pvec);
1912 SetPageUptodate(page);
1913 unlock_page(page);
1914 } else
1915 __free_page(page);
1916
1917 return 0;
1918 }
1919
1920 static int
nfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)1921 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
1922 {
1923 struct inode *inode = old_dentry->d_inode;
1924 int error;
1925
1926 dfprintk(VFS, "NFS: link(%s/%s -> %s/%s)\n",
1927 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1928 dentry->d_parent->d_name.name, dentry->d_name.name);
1929
1930 nfs_inode_return_delegation(inode);
1931
1932 d_drop(dentry);
1933 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
1934 if (error == 0) {
1935 ihold(inode);
1936 d_add(dentry, inode);
1937 }
1938 return error;
1939 }
1940
1941 /*
1942 * RENAME
1943 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
1944 * different file handle for the same inode after a rename (e.g. when
1945 * moving to a different directory). A fail-safe method to do so would
1946 * be to look up old_dir/old_name, create a link to new_dir/new_name and
1947 * rename the old file using the sillyrename stuff. This way, the original
1948 * file in old_dir will go away when the last process iput()s the inode.
1949 *
1950 * FIXED.
1951 *
1952 * It actually works quite well. One needs to have the possibility for
1953 * at least one ".nfs..." file in each directory the file ever gets
1954 * moved or linked to which happens automagically with the new
1955 * implementation that only depends on the dcache stuff instead of
1956 * using the inode layer
1957 *
1958 * Unfortunately, things are a little more complicated than indicated
1959 * above. For a cross-directory move, we want to make sure we can get
1960 * rid of the old inode after the operation. This means there must be
1961 * no pending writes (if it's a file), and the use count must be 1.
1962 * If these conditions are met, we can drop the dentries before doing
1963 * the rename.
1964 */
nfs_rename(struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry)1965 static int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
1966 struct inode *new_dir, struct dentry *new_dentry)
1967 {
1968 struct inode *old_inode = old_dentry->d_inode;
1969 struct inode *new_inode = new_dentry->d_inode;
1970 struct dentry *dentry = NULL, *rehash = NULL;
1971 int error = -EBUSY;
1972
1973 dfprintk(VFS, "NFS: rename(%s/%s -> %s/%s, ct=%d)\n",
1974 old_dentry->d_parent->d_name.name, old_dentry->d_name.name,
1975 new_dentry->d_parent->d_name.name, new_dentry->d_name.name,
1976 new_dentry->d_count);
1977
1978 /*
1979 * For non-directories, check whether the target is busy and if so,
1980 * make a copy of the dentry and then do a silly-rename. If the
1981 * silly-rename succeeds, the copied dentry is hashed and becomes
1982 * the new target.
1983 */
1984 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
1985 /*
1986 * To prevent any new references to the target during the
1987 * rename, we unhash the dentry in advance.
1988 */
1989 if (!d_unhashed(new_dentry)) {
1990 d_drop(new_dentry);
1991 rehash = new_dentry;
1992 }
1993
1994 if (new_dentry->d_count > 2) {
1995 int err;
1996
1997 /* copy the target dentry's name */
1998 dentry = d_alloc(new_dentry->d_parent,
1999 &new_dentry->d_name);
2000 if (!dentry)
2001 goto out;
2002
2003 /* silly-rename the existing target ... */
2004 err = nfs_sillyrename(new_dir, new_dentry);
2005 if (err)
2006 goto out;
2007
2008 new_dentry = dentry;
2009 rehash = NULL;
2010 new_inode = NULL;
2011 }
2012 }
2013
2014 nfs_inode_return_delegation(old_inode);
2015 if (new_inode != NULL)
2016 nfs_inode_return_delegation(new_inode);
2017
2018 error = NFS_PROTO(old_dir)->rename(old_dir, &old_dentry->d_name,
2019 new_dir, &new_dentry->d_name);
2020 nfs_mark_for_revalidate(old_inode);
2021 out:
2022 if (rehash)
2023 d_rehash(rehash);
2024 if (!error) {
2025 if (new_inode != NULL)
2026 nfs_drop_nlink(new_inode);
2027 d_move(old_dentry, new_dentry);
2028 nfs_set_verifier(new_dentry,
2029 nfs_save_change_attribute(new_dir));
2030 } else if (error == -ENOENT)
2031 nfs_dentry_handle_enoent(old_dentry);
2032
2033 /* new dentry created? */
2034 if (dentry)
2035 dput(dentry);
2036 return error;
2037 }
2038
2039 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2040 static LIST_HEAD(nfs_access_lru_list);
2041 static atomic_long_t nfs_access_nr_entries;
2042
nfs_access_free_entry(struct nfs_access_entry * entry)2043 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2044 {
2045 put_rpccred(entry->cred);
2046 kfree(entry);
2047 smp_mb__before_atomic_dec();
2048 atomic_long_dec(&nfs_access_nr_entries);
2049 smp_mb__after_atomic_dec();
2050 }
2051
nfs_access_free_list(struct list_head * head)2052 static void nfs_access_free_list(struct list_head *head)
2053 {
2054 struct nfs_access_entry *cache;
2055
2056 while (!list_empty(head)) {
2057 cache = list_entry(head->next, struct nfs_access_entry, lru);
2058 list_del(&cache->lru);
2059 nfs_access_free_entry(cache);
2060 }
2061 }
2062
nfs_access_cache_shrinker(struct shrinker * shrink,struct shrink_control * sc)2063 int nfs_access_cache_shrinker(struct shrinker *shrink,
2064 struct shrink_control *sc)
2065 {
2066 LIST_HEAD(head);
2067 struct nfs_inode *nfsi, *next;
2068 struct nfs_access_entry *cache;
2069 int nr_to_scan = sc->nr_to_scan;
2070 gfp_t gfp_mask = sc->gfp_mask;
2071
2072 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2073 return (nr_to_scan == 0) ? 0 : -1;
2074
2075 spin_lock(&nfs_access_lru_lock);
2076 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2077 struct inode *inode;
2078
2079 if (nr_to_scan-- == 0)
2080 break;
2081 inode = &nfsi->vfs_inode;
2082 spin_lock(&inode->i_lock);
2083 if (list_empty(&nfsi->access_cache_entry_lru))
2084 goto remove_lru_entry;
2085 cache = list_entry(nfsi->access_cache_entry_lru.next,
2086 struct nfs_access_entry, lru);
2087 list_move(&cache->lru, &head);
2088 rb_erase(&cache->rb_node, &nfsi->access_cache);
2089 if (!list_empty(&nfsi->access_cache_entry_lru))
2090 list_move_tail(&nfsi->access_cache_inode_lru,
2091 &nfs_access_lru_list);
2092 else {
2093 remove_lru_entry:
2094 list_del_init(&nfsi->access_cache_inode_lru);
2095 smp_mb__before_clear_bit();
2096 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2097 smp_mb__after_clear_bit();
2098 }
2099 spin_unlock(&inode->i_lock);
2100 }
2101 spin_unlock(&nfs_access_lru_lock);
2102 nfs_access_free_list(&head);
2103 return (atomic_long_read(&nfs_access_nr_entries) / 100) * sysctl_vfs_cache_pressure;
2104 }
2105
__nfs_access_zap_cache(struct nfs_inode * nfsi,struct list_head * head)2106 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2107 {
2108 struct rb_root *root_node = &nfsi->access_cache;
2109 struct rb_node *n;
2110 struct nfs_access_entry *entry;
2111
2112 /* Unhook entries from the cache */
2113 while ((n = rb_first(root_node)) != NULL) {
2114 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2115 rb_erase(n, root_node);
2116 list_move(&entry->lru, head);
2117 }
2118 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2119 }
2120
nfs_access_zap_cache(struct inode * inode)2121 void nfs_access_zap_cache(struct inode *inode)
2122 {
2123 LIST_HEAD(head);
2124
2125 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2126 return;
2127 /* Remove from global LRU init */
2128 spin_lock(&nfs_access_lru_lock);
2129 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2130 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2131
2132 spin_lock(&inode->i_lock);
2133 __nfs_access_zap_cache(NFS_I(inode), &head);
2134 spin_unlock(&inode->i_lock);
2135 spin_unlock(&nfs_access_lru_lock);
2136 nfs_access_free_list(&head);
2137 }
2138
nfs_access_search_rbtree(struct inode * inode,struct rpc_cred * cred)2139 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, struct rpc_cred *cred)
2140 {
2141 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2142 struct nfs_access_entry *entry;
2143
2144 while (n != NULL) {
2145 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2146
2147 if (cred < entry->cred)
2148 n = n->rb_left;
2149 else if (cred > entry->cred)
2150 n = n->rb_right;
2151 else
2152 return entry;
2153 }
2154 return NULL;
2155 }
2156
nfs_access_get_cached(struct inode * inode,struct rpc_cred * cred,struct nfs_access_entry * res)2157 static int nfs_access_get_cached(struct inode *inode, struct rpc_cred *cred, struct nfs_access_entry *res)
2158 {
2159 struct nfs_inode *nfsi = NFS_I(inode);
2160 struct nfs_access_entry *cache;
2161 int err = -ENOENT;
2162
2163 spin_lock(&inode->i_lock);
2164 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2165 goto out_zap;
2166 cache = nfs_access_search_rbtree(inode, cred);
2167 if (cache == NULL)
2168 goto out;
2169 if (!nfs_have_delegated_attributes(inode) &&
2170 !time_in_range_open(jiffies, cache->jiffies, cache->jiffies + nfsi->attrtimeo))
2171 goto out_stale;
2172 res->jiffies = cache->jiffies;
2173 res->cred = cache->cred;
2174 res->mask = cache->mask;
2175 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2176 err = 0;
2177 out:
2178 spin_unlock(&inode->i_lock);
2179 return err;
2180 out_stale:
2181 rb_erase(&cache->rb_node, &nfsi->access_cache);
2182 list_del(&cache->lru);
2183 spin_unlock(&inode->i_lock);
2184 nfs_access_free_entry(cache);
2185 return -ENOENT;
2186 out_zap:
2187 spin_unlock(&inode->i_lock);
2188 nfs_access_zap_cache(inode);
2189 return -ENOENT;
2190 }
2191
nfs_access_add_rbtree(struct inode * inode,struct nfs_access_entry * set)2192 static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2193 {
2194 struct nfs_inode *nfsi = NFS_I(inode);
2195 struct rb_root *root_node = &nfsi->access_cache;
2196 struct rb_node **p = &root_node->rb_node;
2197 struct rb_node *parent = NULL;
2198 struct nfs_access_entry *entry;
2199
2200 spin_lock(&inode->i_lock);
2201 while (*p != NULL) {
2202 parent = *p;
2203 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2204
2205 if (set->cred < entry->cred)
2206 p = &parent->rb_left;
2207 else if (set->cred > entry->cred)
2208 p = &parent->rb_right;
2209 else
2210 goto found;
2211 }
2212 rb_link_node(&set->rb_node, parent, p);
2213 rb_insert_color(&set->rb_node, root_node);
2214 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2215 spin_unlock(&inode->i_lock);
2216 return;
2217 found:
2218 rb_replace_node(parent, &set->rb_node, root_node);
2219 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2220 list_del(&entry->lru);
2221 spin_unlock(&inode->i_lock);
2222 nfs_access_free_entry(entry);
2223 }
2224
nfs_access_add_cache(struct inode * inode,struct nfs_access_entry * set)2225 static void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2226 {
2227 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2228 if (cache == NULL)
2229 return;
2230 RB_CLEAR_NODE(&cache->rb_node);
2231 cache->jiffies = set->jiffies;
2232 cache->cred = get_rpccred(set->cred);
2233 cache->mask = set->mask;
2234
2235 nfs_access_add_rbtree(inode, cache);
2236
2237 /* Update accounting */
2238 smp_mb__before_atomic_inc();
2239 atomic_long_inc(&nfs_access_nr_entries);
2240 smp_mb__after_atomic_inc();
2241
2242 /* Add inode to global LRU list */
2243 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2244 spin_lock(&nfs_access_lru_lock);
2245 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2246 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2247 &nfs_access_lru_list);
2248 spin_unlock(&nfs_access_lru_lock);
2249 }
2250 }
2251
nfs_do_access(struct inode * inode,struct rpc_cred * cred,int mask)2252 static int nfs_do_access(struct inode *inode, struct rpc_cred *cred, int mask)
2253 {
2254 struct nfs_access_entry cache;
2255 int status;
2256
2257 status = nfs_access_get_cached(inode, cred, &cache);
2258 if (status == 0)
2259 goto out;
2260
2261 /* Be clever: ask server to check for all possible rights */
2262 cache.mask = MAY_EXEC | MAY_WRITE | MAY_READ;
2263 cache.cred = cred;
2264 cache.jiffies = jiffies;
2265 status = NFS_PROTO(inode)->access(inode, &cache);
2266 if (status != 0) {
2267 if (status == -ESTALE) {
2268 nfs_zap_caches(inode);
2269 if (!S_ISDIR(inode->i_mode))
2270 set_bit(NFS_INO_STALE, &NFS_I(inode)->flags);
2271 }
2272 return status;
2273 }
2274 nfs_access_add_cache(inode, &cache);
2275 out:
2276 if ((mask & ~cache.mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2277 return 0;
2278 return -EACCES;
2279 }
2280
nfs_open_permission_mask(int openflags)2281 static int nfs_open_permission_mask(int openflags)
2282 {
2283 int mask = 0;
2284
2285 if ((openflags & O_ACCMODE) != O_WRONLY)
2286 mask |= MAY_READ;
2287 if ((openflags & O_ACCMODE) != O_RDONLY)
2288 mask |= MAY_WRITE;
2289 if (openflags & __FMODE_EXEC)
2290 mask |= MAY_EXEC;
2291 return mask;
2292 }
2293
nfs_may_open(struct inode * inode,struct rpc_cred * cred,int openflags)2294 int nfs_may_open(struct inode *inode, struct rpc_cred *cred, int openflags)
2295 {
2296 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2297 }
2298
nfs_permission(struct inode * inode,int mask)2299 int nfs_permission(struct inode *inode, int mask)
2300 {
2301 struct rpc_cred *cred;
2302 int res = 0;
2303
2304 if (mask & MAY_NOT_BLOCK)
2305 return -ECHILD;
2306
2307 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2308
2309 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2310 goto out;
2311 /* Is this sys_access() ? */
2312 if (mask & (MAY_ACCESS | MAY_CHDIR))
2313 goto force_lookup;
2314
2315 switch (inode->i_mode & S_IFMT) {
2316 case S_IFLNK:
2317 goto out;
2318 case S_IFREG:
2319 /* NFSv4 has atomic_open... */
2320 if (nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)
2321 && (mask & MAY_OPEN)
2322 && !(mask & MAY_EXEC))
2323 goto out;
2324 break;
2325 case S_IFDIR:
2326 /*
2327 * Optimize away all write operations, since the server
2328 * will check permissions when we perform the op.
2329 */
2330 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2331 goto out;
2332 }
2333
2334 force_lookup:
2335 if (!NFS_PROTO(inode)->access)
2336 goto out_notsup;
2337
2338 cred = rpc_lookup_cred();
2339 if (!IS_ERR(cred)) {
2340 res = nfs_do_access(inode, cred, mask);
2341 put_rpccred(cred);
2342 } else
2343 res = PTR_ERR(cred);
2344 out:
2345 if (!res && (mask & MAY_EXEC) && !execute_ok(inode))
2346 res = -EACCES;
2347
2348 dfprintk(VFS, "NFS: permission(%s/%ld), mask=0x%x, res=%d\n",
2349 inode->i_sb->s_id, inode->i_ino, mask, res);
2350 return res;
2351 out_notsup:
2352 res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2353 if (res == 0)
2354 res = generic_permission(inode, mask);
2355 goto out;
2356 }
2357
2358 /*
2359 * Local variables:
2360 * version-control: t
2361 * kept-new-versions: 5
2362 * End:
2363 */
2364