1 /*
2 * linux/fs/nfs/write.c
3 *
4 * Write file data over NFS.
5 *
6 * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7 */
8
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23
24 #include <asm/uaccess.h>
25
26 #include "delegation.h"
27 #include "internal.h"
28 #include "iostat.h"
29 #include "nfs4_fs.h"
30 #include "fscache.h"
31 #include "pnfs.h"
32
33 #define NFSDBG_FACILITY NFSDBG_PAGECACHE
34
35 #define MIN_POOL_WRITE (32)
36 #define MIN_POOL_COMMIT (4)
37
38 /*
39 * Local function declarations
40 */
41 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
42 struct inode *inode, int ioflags);
43 static void nfs_redirty_request(struct nfs_page *req);
44 static const struct rpc_call_ops nfs_write_partial_ops;
45 static const struct rpc_call_ops nfs_write_full_ops;
46 static const struct rpc_call_ops nfs_commit_ops;
47
48 static struct kmem_cache *nfs_wdata_cachep;
49 static mempool_t *nfs_wdata_mempool;
50 static mempool_t *nfs_commit_mempool;
51
nfs_commitdata_alloc(void)52 struct nfs_write_data *nfs_commitdata_alloc(void)
53 {
54 struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
55
56 if (p) {
57 memset(p, 0, sizeof(*p));
58 INIT_LIST_HEAD(&p->pages);
59 }
60 return p;
61 }
62 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
63
nfs_commit_free(struct nfs_write_data * p)64 void nfs_commit_free(struct nfs_write_data *p)
65 {
66 if (p && (p->pagevec != &p->page_array[0]))
67 kfree(p->pagevec);
68 mempool_free(p, nfs_commit_mempool);
69 }
70 EXPORT_SYMBOL_GPL(nfs_commit_free);
71
nfs_writedata_alloc(unsigned int pagecount)72 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
73 {
74 struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
75
76 if (p) {
77 memset(p, 0, sizeof(*p));
78 INIT_LIST_HEAD(&p->pages);
79 p->npages = pagecount;
80 if (pagecount <= ARRAY_SIZE(p->page_array))
81 p->pagevec = p->page_array;
82 else {
83 p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
84 if (!p->pagevec) {
85 mempool_free(p, nfs_wdata_mempool);
86 p = NULL;
87 }
88 }
89 }
90 return p;
91 }
92
nfs_writedata_free(struct nfs_write_data * p)93 void nfs_writedata_free(struct nfs_write_data *p)
94 {
95 if (p && (p->pagevec != &p->page_array[0]))
96 kfree(p->pagevec);
97 mempool_free(p, nfs_wdata_mempool);
98 }
99
nfs_writedata_release(struct nfs_write_data * wdata)100 static void nfs_writedata_release(struct nfs_write_data *wdata)
101 {
102 put_lseg(wdata->lseg);
103 put_nfs_open_context(wdata->args.context);
104 nfs_writedata_free(wdata);
105 }
106
nfs_context_set_write_error(struct nfs_open_context * ctx,int error)107 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
108 {
109 ctx->error = error;
110 smp_wmb();
111 set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
112 }
113
nfs_page_find_request_locked(struct page * page)114 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
115 {
116 struct nfs_page *req = NULL;
117
118 if (PagePrivate(page)) {
119 req = (struct nfs_page *)page_private(page);
120 if (req != NULL)
121 kref_get(&req->wb_kref);
122 }
123 return req;
124 }
125
nfs_page_find_request(struct page * page)126 static struct nfs_page *nfs_page_find_request(struct page *page)
127 {
128 struct inode *inode = page->mapping->host;
129 struct nfs_page *req = NULL;
130
131 spin_lock(&inode->i_lock);
132 req = nfs_page_find_request_locked(page);
133 spin_unlock(&inode->i_lock);
134 return req;
135 }
136
137 /* Adjust the file length if we're writing beyond the end */
nfs_grow_file(struct page * page,unsigned int offset,unsigned int count)138 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
139 {
140 struct inode *inode = page->mapping->host;
141 loff_t end, i_size;
142 pgoff_t end_index;
143
144 spin_lock(&inode->i_lock);
145 i_size = i_size_read(inode);
146 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
147 if (i_size > 0 && page->index < end_index)
148 goto out;
149 end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
150 if (i_size >= end)
151 goto out;
152 i_size_write(inode, end);
153 nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
154 out:
155 spin_unlock(&inode->i_lock);
156 }
157
158 /* A writeback failed: mark the page as bad, and invalidate the page cache */
nfs_set_pageerror(struct page * page)159 static void nfs_set_pageerror(struct page *page)
160 {
161 SetPageError(page);
162 nfs_zap_mapping(page->mapping->host, page->mapping);
163 }
164
165 /* We can set the PG_uptodate flag if we see that a write request
166 * covers the full page.
167 */
nfs_mark_uptodate(struct page * page,unsigned int base,unsigned int count)168 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
169 {
170 if (PageUptodate(page))
171 return;
172 if (base != 0)
173 return;
174 if (count != nfs_page_length(page))
175 return;
176 SetPageUptodate(page);
177 }
178
wb_priority(struct writeback_control * wbc)179 static int wb_priority(struct writeback_control *wbc)
180 {
181 if (wbc->for_reclaim)
182 return FLUSH_HIGHPRI | FLUSH_STABLE;
183 if (wbc->for_kupdate || wbc->for_background)
184 return FLUSH_LOWPRI | FLUSH_COND_STABLE;
185 return FLUSH_COND_STABLE;
186 }
187
188 /*
189 * NFS congestion control
190 */
191
192 int nfs_congestion_kb;
193
194 #define NFS_CONGESTION_ON_THRESH (nfs_congestion_kb >> (PAGE_SHIFT-10))
195 #define NFS_CONGESTION_OFF_THRESH \
196 (NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
197
nfs_set_page_writeback(struct page * page)198 static int nfs_set_page_writeback(struct page *page)
199 {
200 int ret = test_set_page_writeback(page);
201
202 if (!ret) {
203 struct inode *inode = page->mapping->host;
204 struct nfs_server *nfss = NFS_SERVER(inode);
205
206 page_cache_get(page);
207 if (atomic_long_inc_return(&nfss->writeback) >
208 NFS_CONGESTION_ON_THRESH) {
209 set_bdi_congested(&nfss->backing_dev_info,
210 BLK_RW_ASYNC);
211 }
212 }
213 return ret;
214 }
215
nfs_end_page_writeback(struct page * page)216 static void nfs_end_page_writeback(struct page *page)
217 {
218 struct inode *inode = page->mapping->host;
219 struct nfs_server *nfss = NFS_SERVER(inode);
220
221 end_page_writeback(page);
222 page_cache_release(page);
223 if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
224 clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
225 }
226
nfs_find_and_lock_request(struct page * page,bool nonblock)227 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
228 {
229 struct inode *inode = page->mapping->host;
230 struct nfs_page *req;
231 int ret;
232
233 spin_lock(&inode->i_lock);
234 for (;;) {
235 req = nfs_page_find_request_locked(page);
236 if (req == NULL)
237 break;
238 if (nfs_set_page_tag_locked(req))
239 break;
240 /* Note: If we hold the page lock, as is the case in nfs_writepage,
241 * then the call to nfs_set_page_tag_locked() will always
242 * succeed provided that someone hasn't already marked the
243 * request as dirty (in which case we don't care).
244 */
245 spin_unlock(&inode->i_lock);
246 if (!nonblock)
247 ret = nfs_wait_on_request(req);
248 else
249 ret = -EAGAIN;
250 nfs_release_request(req);
251 if (ret != 0)
252 return ERR_PTR(ret);
253 spin_lock(&inode->i_lock);
254 }
255 spin_unlock(&inode->i_lock);
256 return req;
257 }
258
259 /*
260 * Find an associated nfs write request, and prepare to flush it out
261 * May return an error if the user signalled nfs_wait_on_request().
262 */
nfs_page_async_flush(struct nfs_pageio_descriptor * pgio,struct page * page,bool nonblock)263 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
264 struct page *page, bool nonblock)
265 {
266 struct nfs_page *req;
267 int ret = 0;
268
269 req = nfs_find_and_lock_request(page, nonblock);
270 if (!req)
271 goto out;
272 ret = PTR_ERR(req);
273 if (IS_ERR(req))
274 goto out;
275
276 ret = nfs_set_page_writeback(page);
277 BUG_ON(ret != 0);
278 BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
279
280 if (!nfs_pageio_add_request(pgio, req)) {
281 nfs_redirty_request(req);
282 ret = pgio->pg_error;
283 }
284 out:
285 return ret;
286 }
287
nfs_do_writepage(struct page * page,struct writeback_control * wbc,struct nfs_pageio_descriptor * pgio)288 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
289 {
290 struct inode *inode = page->mapping->host;
291 int ret;
292
293 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
294 nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
295
296 nfs_pageio_cond_complete(pgio, page->index);
297 ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
298 if (ret == -EAGAIN) {
299 redirty_page_for_writepage(wbc, page);
300 ret = 0;
301 }
302 return ret;
303 }
304
305 /*
306 * Write an mmapped page to the server.
307 */
nfs_writepage_locked(struct page * page,struct writeback_control * wbc)308 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
309 {
310 struct nfs_pageio_descriptor pgio;
311 int err;
312
313 nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
314 err = nfs_do_writepage(page, wbc, &pgio);
315 nfs_pageio_complete(&pgio);
316 if (err < 0)
317 return err;
318 if (pgio.pg_error < 0)
319 return pgio.pg_error;
320 return 0;
321 }
322
nfs_writepage(struct page * page,struct writeback_control * wbc)323 int nfs_writepage(struct page *page, struct writeback_control *wbc)
324 {
325 int ret;
326
327 ret = nfs_writepage_locked(page, wbc);
328 unlock_page(page);
329 return ret;
330 }
331
nfs_writepages_callback(struct page * page,struct writeback_control * wbc,void * data)332 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
333 {
334 int ret;
335
336 ret = nfs_do_writepage(page, wbc, data);
337 unlock_page(page);
338 return ret;
339 }
340
nfs_writepages(struct address_space * mapping,struct writeback_control * wbc)341 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
342 {
343 struct inode *inode = mapping->host;
344 unsigned long *bitlock = &NFS_I(inode)->flags;
345 struct nfs_pageio_descriptor pgio;
346 int err;
347
348 /* Stop dirtying of new pages while we sync */
349 err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
350 nfs_wait_bit_killable, TASK_KILLABLE);
351 if (err)
352 goto out_err;
353
354 nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
355
356 nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
357 err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
358 nfs_pageio_complete(&pgio);
359
360 clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
361 smp_mb__after_clear_bit();
362 wake_up_bit(bitlock, NFS_INO_FLUSHING);
363
364 if (err < 0)
365 goto out_err;
366 err = pgio.pg_error;
367 if (err < 0)
368 goto out_err;
369 return 0;
370 out_err:
371 return err;
372 }
373
374 /*
375 * Insert a write request into an inode
376 */
nfs_inode_add_request(struct inode * inode,struct nfs_page * req)377 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
378 {
379 struct nfs_inode *nfsi = NFS_I(inode);
380 int error;
381
382 error = radix_tree_preload(GFP_NOFS);
383 if (error != 0)
384 goto out;
385
386 /* Lock the request! */
387 nfs_lock_request_dontget(req);
388
389 spin_lock(&inode->i_lock);
390 error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
391 BUG_ON(error);
392 if (!nfsi->npages && nfs_have_delegation(inode, FMODE_WRITE))
393 nfsi->change_attr++;
394 set_bit(PG_MAPPED, &req->wb_flags);
395 SetPagePrivate(req->wb_page);
396 set_page_private(req->wb_page, (unsigned long)req);
397 nfsi->npages++;
398 kref_get(&req->wb_kref);
399 radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
400 NFS_PAGE_TAG_LOCKED);
401 spin_unlock(&inode->i_lock);
402 radix_tree_preload_end();
403 out:
404 return error;
405 }
406
407 /*
408 * Remove a write request from an inode
409 */
nfs_inode_remove_request(struct nfs_page * req)410 static void nfs_inode_remove_request(struct nfs_page *req)
411 {
412 struct inode *inode = req->wb_context->path.dentry->d_inode;
413 struct nfs_inode *nfsi = NFS_I(inode);
414
415 BUG_ON (!NFS_WBACK_BUSY(req));
416
417 spin_lock(&inode->i_lock);
418 set_page_private(req->wb_page, 0);
419 ClearPagePrivate(req->wb_page);
420 clear_bit(PG_MAPPED, &req->wb_flags);
421 radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
422 nfsi->npages--;
423 spin_unlock(&inode->i_lock);
424 nfs_release_request(req);
425 }
426
427 static void
nfs_mark_request_dirty(struct nfs_page * req)428 nfs_mark_request_dirty(struct nfs_page *req)
429 {
430 __set_page_dirty_nobuffers(req->wb_page);
431 __mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC);
432 }
433
434 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
435 /*
436 * Add a request to the inode's commit list.
437 */
438 static void
nfs_mark_request_commit(struct nfs_page * req,struct pnfs_layout_segment * lseg)439 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
440 {
441 struct inode *inode = req->wb_context->path.dentry->d_inode;
442 struct nfs_inode *nfsi = NFS_I(inode);
443
444 spin_lock(&inode->i_lock);
445 set_bit(PG_CLEAN, &(req)->wb_flags);
446 radix_tree_tag_set(&nfsi->nfs_page_tree,
447 req->wb_index,
448 NFS_PAGE_TAG_COMMIT);
449 nfsi->ncommit++;
450 spin_unlock(&inode->i_lock);
451 pnfs_mark_request_commit(req, lseg);
452 inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
453 inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
454 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
455 }
456
457 static int
nfs_clear_request_commit(struct nfs_page * req)458 nfs_clear_request_commit(struct nfs_page *req)
459 {
460 struct page *page = req->wb_page;
461
462 if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
463 dec_zone_page_state(page, NR_UNSTABLE_NFS);
464 dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
465 return 1;
466 }
467 return 0;
468 }
469
470 static inline
nfs_write_need_commit(struct nfs_write_data * data)471 int nfs_write_need_commit(struct nfs_write_data *data)
472 {
473 if (data->verf.committed == NFS_DATA_SYNC)
474 return data->lseg == NULL;
475 else
476 return data->verf.committed != NFS_FILE_SYNC;
477 }
478
479 static inline
nfs_reschedule_unstable_write(struct nfs_page * req,struct nfs_write_data * data)480 int nfs_reschedule_unstable_write(struct nfs_page *req,
481 struct nfs_write_data *data)
482 {
483 if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
484 nfs_mark_request_commit(req, data->lseg);
485 return 1;
486 }
487 if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
488 nfs_mark_request_dirty(req);
489 return 1;
490 }
491 return 0;
492 }
493 #else
494 static inline void
nfs_mark_request_commit(struct nfs_page * req,struct pnfs_layout_segment * lseg)495 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
496 {
497 }
498
499 static inline int
nfs_clear_request_commit(struct nfs_page * req)500 nfs_clear_request_commit(struct nfs_page *req)
501 {
502 return 0;
503 }
504
505 static inline
nfs_write_need_commit(struct nfs_write_data * data)506 int nfs_write_need_commit(struct nfs_write_data *data)
507 {
508 return 0;
509 }
510
511 static inline
nfs_reschedule_unstable_write(struct nfs_page * req,struct nfs_write_data * data)512 int nfs_reschedule_unstable_write(struct nfs_page *req,
513 struct nfs_write_data *data)
514 {
515 return 0;
516 }
517 #endif
518
519 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
520 static int
nfs_need_commit(struct nfs_inode * nfsi)521 nfs_need_commit(struct nfs_inode *nfsi)
522 {
523 return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
524 }
525
526 /*
527 * nfs_scan_commit - Scan an inode for commit requests
528 * @inode: NFS inode to scan
529 * @dst: destination list
530 * @idx_start: lower bound of page->index to scan.
531 * @npages: idx_start + npages sets the upper bound to scan.
532 *
533 * Moves requests from the inode's 'commit' request list.
534 * The requests are *not* checked to ensure that they form a contiguous set.
535 */
536 static int
nfs_scan_commit(struct inode * inode,struct list_head * dst,pgoff_t idx_start,unsigned int npages)537 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
538 {
539 struct nfs_inode *nfsi = NFS_I(inode);
540 int ret;
541
542 if (!nfs_need_commit(nfsi))
543 return 0;
544
545 spin_lock(&inode->i_lock);
546 ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
547 if (ret > 0)
548 nfsi->ncommit -= ret;
549 spin_unlock(&inode->i_lock);
550
551 if (nfs_need_commit(NFS_I(inode)))
552 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
553
554 return ret;
555 }
556 #else
nfs_need_commit(struct nfs_inode * nfsi)557 static inline int nfs_need_commit(struct nfs_inode *nfsi)
558 {
559 return 0;
560 }
561
nfs_scan_commit(struct inode * inode,struct list_head * dst,pgoff_t idx_start,unsigned int npages)562 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
563 {
564 return 0;
565 }
566 #endif
567
568 /*
569 * Search for an existing write request, and attempt to update
570 * it to reflect a new dirty region on a given page.
571 *
572 * If the attempt fails, then the existing request is flushed out
573 * to disk.
574 */
nfs_try_to_update_request(struct inode * inode,struct page * page,unsigned int offset,unsigned int bytes)575 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
576 struct page *page,
577 unsigned int offset,
578 unsigned int bytes)
579 {
580 struct nfs_page *req;
581 unsigned int rqend;
582 unsigned int end;
583 int error;
584
585 if (!PagePrivate(page))
586 return NULL;
587
588 end = offset + bytes;
589 spin_lock(&inode->i_lock);
590
591 for (;;) {
592 req = nfs_page_find_request_locked(page);
593 if (req == NULL)
594 goto out_unlock;
595
596 rqend = req->wb_offset + req->wb_bytes;
597 /*
598 * Tell the caller to flush out the request if
599 * the offsets are non-contiguous.
600 * Note: nfs_flush_incompatible() will already
601 * have flushed out requests having wrong owners.
602 */
603 if (offset > rqend
604 || end < req->wb_offset)
605 goto out_flushme;
606
607 if (nfs_set_page_tag_locked(req))
608 break;
609
610 /* The request is locked, so wait and then retry */
611 spin_unlock(&inode->i_lock);
612 error = nfs_wait_on_request(req);
613 nfs_release_request(req);
614 if (error != 0)
615 goto out_err;
616 spin_lock(&inode->i_lock);
617 }
618
619 if (nfs_clear_request_commit(req) &&
620 radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
621 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) {
622 NFS_I(inode)->ncommit--;
623 pnfs_clear_request_commit(req);
624 }
625
626 /* Okay, the request matches. Update the region */
627 if (offset < req->wb_offset) {
628 req->wb_offset = offset;
629 req->wb_pgbase = offset;
630 }
631 if (end > rqend)
632 req->wb_bytes = end - req->wb_offset;
633 else
634 req->wb_bytes = rqend - req->wb_offset;
635 out_unlock:
636 spin_unlock(&inode->i_lock);
637 return req;
638 out_flushme:
639 spin_unlock(&inode->i_lock);
640 nfs_release_request(req);
641 error = nfs_wb_page(inode, page);
642 out_err:
643 return ERR_PTR(error);
644 }
645
646 /*
647 * Try to update an existing write request, or create one if there is none.
648 *
649 * Note: Should always be called with the Page Lock held to prevent races
650 * if we have to add a new request. Also assumes that the caller has
651 * already called nfs_flush_incompatible() if necessary.
652 */
nfs_setup_write_request(struct nfs_open_context * ctx,struct page * page,unsigned int offset,unsigned int bytes)653 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
654 struct page *page, unsigned int offset, unsigned int bytes)
655 {
656 struct inode *inode = page->mapping->host;
657 struct nfs_page *req;
658 int error;
659
660 req = nfs_try_to_update_request(inode, page, offset, bytes);
661 if (req != NULL)
662 goto out;
663 req = nfs_create_request(ctx, inode, page, offset, bytes);
664 if (IS_ERR(req))
665 goto out;
666 error = nfs_inode_add_request(inode, req);
667 if (error != 0) {
668 nfs_release_request(req);
669 req = ERR_PTR(error);
670 }
671 out:
672 return req;
673 }
674
nfs_writepage_setup(struct nfs_open_context * ctx,struct page * page,unsigned int offset,unsigned int count)675 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
676 unsigned int offset, unsigned int count)
677 {
678 struct nfs_page *req;
679
680 req = nfs_setup_write_request(ctx, page, offset, count);
681 if (IS_ERR(req))
682 return PTR_ERR(req);
683 /* Update file length */
684 nfs_grow_file(page, offset, count);
685 nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
686 nfs_mark_request_dirty(req);
687 nfs_clear_page_tag_locked(req);
688 return 0;
689 }
690
nfs_flush_incompatible(struct file * file,struct page * page)691 int nfs_flush_incompatible(struct file *file, struct page *page)
692 {
693 struct nfs_open_context *ctx = nfs_file_open_context(file);
694 struct nfs_page *req;
695 int do_flush, status;
696 /*
697 * Look for a request corresponding to this page. If there
698 * is one, and it belongs to another file, we flush it out
699 * before we try to copy anything into the page. Do this
700 * due to the lack of an ACCESS-type call in NFSv2.
701 * Also do the same if we find a request from an existing
702 * dropped page.
703 */
704 do {
705 req = nfs_page_find_request(page);
706 if (req == NULL)
707 return 0;
708 do_flush = req->wb_page != page || req->wb_context != ctx ||
709 req->wb_lock_context->lockowner != current->files ||
710 req->wb_lock_context->pid != current->tgid;
711 nfs_release_request(req);
712 if (!do_flush)
713 return 0;
714 status = nfs_wb_page(page->mapping->host, page);
715 } while (status == 0);
716 return status;
717 }
718
719 /*
720 * If the page cache is marked as unsafe or invalid, then we can't rely on
721 * the PageUptodate() flag. In this case, we will need to turn off
722 * write optimisations that depend on the page contents being correct.
723 */
nfs_write_pageuptodate(struct page * page,struct inode * inode)724 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
725 {
726 return PageUptodate(page) &&
727 !(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
728 }
729
730 /*
731 * Update and possibly write a cached page of an NFS file.
732 *
733 * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
734 * things with a page scheduled for an RPC call (e.g. invalidate it).
735 */
nfs_updatepage(struct file * file,struct page * page,unsigned int offset,unsigned int count)736 int nfs_updatepage(struct file *file, struct page *page,
737 unsigned int offset, unsigned int count)
738 {
739 struct nfs_open_context *ctx = nfs_file_open_context(file);
740 struct inode *inode = page->mapping->host;
741 int status = 0;
742
743 nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
744
745 dprintk("NFS: nfs_updatepage(%s/%s %d@%lld)\n",
746 file->f_path.dentry->d_parent->d_name.name,
747 file->f_path.dentry->d_name.name, count,
748 (long long)(page_offset(page) + offset));
749
750 /* If we're not using byte range locks, and we know the page
751 * is up to date, it may be more efficient to extend the write
752 * to cover the entire page in order to avoid fragmentation
753 * inefficiencies.
754 */
755 if (nfs_write_pageuptodate(page, inode) &&
756 inode->i_flock == NULL &&
757 !(file->f_flags & O_DSYNC)) {
758 count = max(count + offset, nfs_page_length(page));
759 offset = 0;
760 }
761
762 status = nfs_writepage_setup(ctx, page, offset, count);
763 if (status < 0)
764 nfs_set_pageerror(page);
765
766 dprintk("NFS: nfs_updatepage returns %d (isize %lld)\n",
767 status, (long long)i_size_read(inode));
768 return status;
769 }
770
nfs_writepage_release(struct nfs_page * req,struct nfs_write_data * data)771 static void nfs_writepage_release(struct nfs_page *req,
772 struct nfs_write_data *data)
773 {
774 struct page *page = req->wb_page;
775
776 if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req, data))
777 nfs_inode_remove_request(req);
778 nfs_clear_page_tag_locked(req);
779 nfs_end_page_writeback(page);
780 }
781
flush_task_priority(int how)782 static int flush_task_priority(int how)
783 {
784 switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
785 case FLUSH_HIGHPRI:
786 return RPC_PRIORITY_HIGH;
787 case FLUSH_LOWPRI:
788 return RPC_PRIORITY_LOW;
789 }
790 return RPC_PRIORITY_NORMAL;
791 }
792
nfs_initiate_write(struct nfs_write_data * data,struct rpc_clnt * clnt,const struct rpc_call_ops * call_ops,int how)793 int nfs_initiate_write(struct nfs_write_data *data,
794 struct rpc_clnt *clnt,
795 const struct rpc_call_ops *call_ops,
796 int how)
797 {
798 struct inode *inode = data->inode;
799 int priority = flush_task_priority(how);
800 struct rpc_task *task;
801 struct rpc_message msg = {
802 .rpc_argp = &data->args,
803 .rpc_resp = &data->res,
804 .rpc_cred = data->cred,
805 };
806 struct rpc_task_setup task_setup_data = {
807 .rpc_client = clnt,
808 .task = &data->task,
809 .rpc_message = &msg,
810 .callback_ops = call_ops,
811 .callback_data = data,
812 .workqueue = nfsiod_workqueue,
813 .flags = RPC_TASK_ASYNC,
814 .priority = priority,
815 };
816 int ret = 0;
817
818 /* Set up the initial task struct. */
819 NFS_PROTO(inode)->write_setup(data, &msg);
820
821 dprintk("NFS: %5u initiated write call "
822 "(req %s/%lld, %u bytes @ offset %llu)\n",
823 data->task.tk_pid,
824 inode->i_sb->s_id,
825 (long long)NFS_FILEID(inode),
826 data->args.count,
827 (unsigned long long)data->args.offset);
828
829 task = rpc_run_task(&task_setup_data);
830 if (IS_ERR(task)) {
831 ret = PTR_ERR(task);
832 goto out;
833 }
834 if (how & FLUSH_SYNC) {
835 ret = rpc_wait_for_completion_task(task);
836 if (ret == 0)
837 ret = task->tk_status;
838 }
839 rpc_put_task(task);
840 out:
841 return ret;
842 }
843 EXPORT_SYMBOL_GPL(nfs_initiate_write);
844
845 /*
846 * Set up the argument/result storage required for the RPC call.
847 */
nfs_write_rpcsetup(struct nfs_page * req,struct nfs_write_data * data,const struct rpc_call_ops * call_ops,unsigned int count,unsigned int offset,struct pnfs_layout_segment * lseg,int how)848 static int nfs_write_rpcsetup(struct nfs_page *req,
849 struct nfs_write_data *data,
850 const struct rpc_call_ops *call_ops,
851 unsigned int count, unsigned int offset,
852 struct pnfs_layout_segment *lseg,
853 int how)
854 {
855 struct inode *inode = req->wb_context->path.dentry->d_inode;
856
857 /* Set up the RPC argument and reply structs
858 * NB: take care not to mess about with data->commit et al. */
859
860 data->req = req;
861 data->inode = inode = req->wb_context->path.dentry->d_inode;
862 data->cred = req->wb_context->cred;
863 data->lseg = get_lseg(lseg);
864
865 data->args.fh = NFS_FH(inode);
866 data->args.offset = req_offset(req) + offset;
867 data->args.pgbase = req->wb_pgbase + offset;
868 data->args.pages = data->pagevec;
869 data->args.count = count;
870 data->args.context = get_nfs_open_context(req->wb_context);
871 data->args.lock_context = req->wb_lock_context;
872 data->args.stable = NFS_UNSTABLE;
873 if (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
874 data->args.stable = NFS_DATA_SYNC;
875 if (!nfs_need_commit(NFS_I(inode)))
876 data->args.stable = NFS_FILE_SYNC;
877 }
878
879 data->res.fattr = &data->fattr;
880 data->res.count = count;
881 data->res.verf = &data->verf;
882 nfs_fattr_init(&data->fattr);
883
884 if (data->lseg &&
885 (pnfs_try_to_write_data(data, call_ops, how) == PNFS_ATTEMPTED))
886 return 0;
887
888 return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how);
889 }
890
891 /* If a nfs_flush_* function fails, it should remove reqs from @head and
892 * call this on each, which will prepare them to be retried on next
893 * writeback using standard nfs.
894 */
nfs_redirty_request(struct nfs_page * req)895 static void nfs_redirty_request(struct nfs_page *req)
896 {
897 struct page *page = req->wb_page;
898
899 nfs_mark_request_dirty(req);
900 nfs_clear_page_tag_locked(req);
901 nfs_end_page_writeback(page);
902 }
903
904 /*
905 * Generate multiple small requests to write out a single
906 * contiguous dirty area on one page.
907 */
nfs_flush_multi(struct nfs_pageio_descriptor * desc)908 static int nfs_flush_multi(struct nfs_pageio_descriptor *desc)
909 {
910 struct nfs_page *req = nfs_list_entry(desc->pg_list.next);
911 struct page *page = req->wb_page;
912 struct nfs_write_data *data;
913 size_t wsize = NFS_SERVER(desc->pg_inode)->wsize, nbytes;
914 unsigned int offset;
915 int requests = 0;
916 int ret = 0;
917 struct pnfs_layout_segment *lseg;
918 LIST_HEAD(list);
919
920 nfs_list_remove_request(req);
921
922 if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
923 (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit ||
924 desc->pg_count > wsize))
925 desc->pg_ioflags &= ~FLUSH_COND_STABLE;
926
927
928 nbytes = desc->pg_count;
929 do {
930 size_t len = min(nbytes, wsize);
931
932 data = nfs_writedata_alloc(1);
933 if (!data)
934 goto out_bad;
935 list_add(&data->pages, &list);
936 requests++;
937 nbytes -= len;
938 } while (nbytes != 0);
939 atomic_set(&req->wb_complete, requests);
940
941 BUG_ON(desc->pg_lseg);
942 lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, IOMODE_RW, GFP_NOFS);
943 ClearPageError(page);
944 offset = 0;
945 nbytes = desc->pg_count;
946 do {
947 int ret2;
948
949 data = list_entry(list.next, struct nfs_write_data, pages);
950 list_del_init(&data->pages);
951
952 data->pagevec[0] = page;
953
954 if (nbytes < wsize)
955 wsize = nbytes;
956 ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
957 wsize, offset, lseg, desc->pg_ioflags);
958 if (ret == 0)
959 ret = ret2;
960 offset += wsize;
961 nbytes -= wsize;
962 } while (nbytes != 0);
963
964 put_lseg(lseg);
965 desc->pg_lseg = NULL;
966 return ret;
967
968 out_bad:
969 while (!list_empty(&list)) {
970 data = list_entry(list.next, struct nfs_write_data, pages);
971 list_del(&data->pages);
972 nfs_writedata_free(data);
973 }
974 nfs_redirty_request(req);
975 return -ENOMEM;
976 }
977
978 /*
979 * Create an RPC task for the given write request and kick it.
980 * The page must have been locked by the caller.
981 *
982 * It may happen that the page we're passed is not marked dirty.
983 * This is the case if nfs_updatepage detects a conflicting request
984 * that has been written but not committed.
985 */
nfs_flush_one(struct nfs_pageio_descriptor * desc)986 static int nfs_flush_one(struct nfs_pageio_descriptor *desc)
987 {
988 struct nfs_page *req;
989 struct page **pages;
990 struct nfs_write_data *data;
991 struct list_head *head = &desc->pg_list;
992 struct pnfs_layout_segment *lseg = desc->pg_lseg;
993 int ret;
994
995 data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base,
996 desc->pg_count));
997 if (!data) {
998 while (!list_empty(head)) {
999 req = nfs_list_entry(head->next);
1000 nfs_list_remove_request(req);
1001 nfs_redirty_request(req);
1002 }
1003 ret = -ENOMEM;
1004 goto out;
1005 }
1006 pages = data->pagevec;
1007 while (!list_empty(head)) {
1008 req = nfs_list_entry(head->next);
1009 nfs_list_remove_request(req);
1010 nfs_list_add_request(req, &data->pages);
1011 ClearPageError(req->wb_page);
1012 *pages++ = req->wb_page;
1013 }
1014 req = nfs_list_entry(data->pages.next);
1015 if ((!lseg) && list_is_singular(&data->pages))
1016 lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, IOMODE_RW, GFP_NOFS);
1017
1018 if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
1019 (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit))
1020 desc->pg_ioflags &= ~FLUSH_COND_STABLE;
1021
1022 /* Set up the argument struct */
1023 ret = nfs_write_rpcsetup(req, data, &nfs_write_full_ops, desc->pg_count, 0, lseg, desc->pg_ioflags);
1024 out:
1025 put_lseg(lseg); /* Cleans any gotten in ->pg_test */
1026 desc->pg_lseg = NULL;
1027 return ret;
1028 }
1029
nfs_pageio_init_write(struct nfs_pageio_descriptor * pgio,struct inode * inode,int ioflags)1030 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1031 struct inode *inode, int ioflags)
1032 {
1033 size_t wsize = NFS_SERVER(inode)->wsize;
1034
1035 pnfs_pageio_init_write(pgio, inode);
1036
1037 if (wsize < PAGE_CACHE_SIZE)
1038 nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
1039 else
1040 nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
1041 }
1042
1043 /*
1044 * Handle a write reply that flushed part of a page.
1045 */
nfs_writeback_done_partial(struct rpc_task * task,void * calldata)1046 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1047 {
1048 struct nfs_write_data *data = calldata;
1049
1050 dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1051 task->tk_pid,
1052 data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
1053 (long long)
1054 NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
1055 data->req->wb_bytes, (long long)req_offset(data->req));
1056
1057 nfs_writeback_done(task, data);
1058 }
1059
nfs_writeback_release_partial(void * calldata)1060 static void nfs_writeback_release_partial(void *calldata)
1061 {
1062 struct nfs_write_data *data = calldata;
1063 struct nfs_page *req = data->req;
1064 struct page *page = req->wb_page;
1065 int status = data->task.tk_status;
1066
1067 if (status < 0) {
1068 nfs_set_pageerror(page);
1069 nfs_context_set_write_error(req->wb_context, status);
1070 dprintk(", error = %d\n", status);
1071 goto out;
1072 }
1073
1074 if (nfs_write_need_commit(data)) {
1075 struct inode *inode = page->mapping->host;
1076
1077 spin_lock(&inode->i_lock);
1078 if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1079 /* Do nothing we need to resend the writes */
1080 } else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1081 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1082 dprintk(" defer commit\n");
1083 } else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1084 set_bit(PG_NEED_RESCHED, &req->wb_flags);
1085 clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1086 dprintk(" server reboot detected\n");
1087 }
1088 spin_unlock(&inode->i_lock);
1089 } else
1090 dprintk(" OK\n");
1091
1092 out:
1093 if (atomic_dec_and_test(&req->wb_complete))
1094 nfs_writepage_release(req, data);
1095 nfs_writedata_release(calldata);
1096 }
1097
1098 #if defined(CONFIG_NFS_V4_1)
nfs_write_prepare(struct rpc_task * task,void * calldata)1099 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1100 {
1101 struct nfs_write_data *data = calldata;
1102
1103 if (nfs4_setup_sequence(NFS_SERVER(data->inode),
1104 &data->args.seq_args,
1105 &data->res.seq_res, 1, task))
1106 return;
1107 rpc_call_start(task);
1108 }
1109 #endif /* CONFIG_NFS_V4_1 */
1110
1111 static const struct rpc_call_ops nfs_write_partial_ops = {
1112 #if defined(CONFIG_NFS_V4_1)
1113 .rpc_call_prepare = nfs_write_prepare,
1114 #endif /* CONFIG_NFS_V4_1 */
1115 .rpc_call_done = nfs_writeback_done_partial,
1116 .rpc_release = nfs_writeback_release_partial,
1117 };
1118
1119 /*
1120 * Handle a write reply that flushes a whole page.
1121 *
1122 * FIXME: There is an inherent race with invalidate_inode_pages and
1123 * writebacks since the page->count is kept > 1 for as long
1124 * as the page has a write request pending.
1125 */
nfs_writeback_done_full(struct rpc_task * task,void * calldata)1126 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1127 {
1128 struct nfs_write_data *data = calldata;
1129
1130 nfs_writeback_done(task, data);
1131 }
1132
nfs_writeback_release_full(void * calldata)1133 static void nfs_writeback_release_full(void *calldata)
1134 {
1135 struct nfs_write_data *data = calldata;
1136 int status = data->task.tk_status;
1137
1138 /* Update attributes as result of writeback. */
1139 while (!list_empty(&data->pages)) {
1140 struct nfs_page *req = nfs_list_entry(data->pages.next);
1141 struct page *page = req->wb_page;
1142
1143 nfs_list_remove_request(req);
1144
1145 dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1146 data->task.tk_pid,
1147 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1148 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1149 req->wb_bytes,
1150 (long long)req_offset(req));
1151
1152 if (status < 0) {
1153 nfs_set_pageerror(page);
1154 nfs_context_set_write_error(req->wb_context, status);
1155 dprintk(", error = %d\n", status);
1156 goto remove_request;
1157 }
1158
1159 if (nfs_write_need_commit(data)) {
1160 memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1161 nfs_mark_request_commit(req, data->lseg);
1162 dprintk(" marked for commit\n");
1163 goto next;
1164 }
1165 dprintk(" OK\n");
1166 remove_request:
1167 nfs_inode_remove_request(req);
1168 next:
1169 nfs_clear_page_tag_locked(req);
1170 nfs_end_page_writeback(page);
1171 }
1172 nfs_writedata_release(calldata);
1173 }
1174
1175 static const struct rpc_call_ops nfs_write_full_ops = {
1176 #if defined(CONFIG_NFS_V4_1)
1177 .rpc_call_prepare = nfs_write_prepare,
1178 #endif /* CONFIG_NFS_V4_1 */
1179 .rpc_call_done = nfs_writeback_done_full,
1180 .rpc_release = nfs_writeback_release_full,
1181 };
1182
1183
1184 /*
1185 * This function is called when the WRITE call is complete.
1186 */
nfs_writeback_done(struct rpc_task * task,struct nfs_write_data * data)1187 void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1188 {
1189 struct nfs_writeargs *argp = &data->args;
1190 struct nfs_writeres *resp = &data->res;
1191 struct nfs_server *server = NFS_SERVER(data->inode);
1192 int status;
1193
1194 dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1195 task->tk_pid, task->tk_status);
1196
1197 /*
1198 * ->write_done will attempt to use post-op attributes to detect
1199 * conflicting writes by other clients. A strict interpretation
1200 * of close-to-open would allow us to continue caching even if
1201 * another writer had changed the file, but some applications
1202 * depend on tighter cache coherency when writing.
1203 */
1204 status = NFS_PROTO(data->inode)->write_done(task, data);
1205 if (status != 0)
1206 return;
1207 nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1208
1209 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1210 if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1211 /* We tried a write call, but the server did not
1212 * commit data to stable storage even though we
1213 * requested it.
1214 * Note: There is a known bug in Tru64 < 5.0 in which
1215 * the server reports NFS_DATA_SYNC, but performs
1216 * NFS_FILE_SYNC. We therefore implement this checking
1217 * as a dprintk() in order to avoid filling syslog.
1218 */
1219 static unsigned long complain;
1220
1221 /* Note this will print the MDS for a DS write */
1222 if (time_before(complain, jiffies)) {
1223 dprintk("NFS: faulty NFS server %s:"
1224 " (committed = %d) != (stable = %d)\n",
1225 server->nfs_client->cl_hostname,
1226 resp->verf->committed, argp->stable);
1227 complain = jiffies + 300 * HZ;
1228 }
1229 }
1230 #endif
1231 /* Is this a short write? */
1232 if (task->tk_status >= 0 && resp->count < argp->count) {
1233 static unsigned long complain;
1234
1235 nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1236
1237 /* Has the server at least made some progress? */
1238 if (resp->count != 0) {
1239 /* Was this an NFSv2 write or an NFSv3 stable write? */
1240 if (resp->verf->committed != NFS_UNSTABLE) {
1241 /* Resend from where the server left off */
1242 data->mds_offset += resp->count;
1243 argp->offset += resp->count;
1244 argp->pgbase += resp->count;
1245 argp->count -= resp->count;
1246 } else {
1247 /* Resend as a stable write in order to avoid
1248 * headaches in the case of a server crash.
1249 */
1250 argp->stable = NFS_FILE_SYNC;
1251 }
1252 nfs_restart_rpc(task, server->nfs_client);
1253 return;
1254 }
1255 if (time_before(complain, jiffies)) {
1256 printk(KERN_WARNING
1257 "NFS: Server wrote zero bytes, expected %u.\n",
1258 argp->count);
1259 complain = jiffies + 300 * HZ;
1260 }
1261 /* Can't do anything about it except throw an error. */
1262 task->tk_status = -EIO;
1263 }
1264 return;
1265 }
1266
1267
1268 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
nfs_commit_set_lock(struct nfs_inode * nfsi,int may_wait)1269 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1270 {
1271 int ret;
1272
1273 if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1274 return 1;
1275 if (!may_wait)
1276 return 0;
1277 ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
1278 NFS_INO_COMMIT,
1279 nfs_wait_bit_killable,
1280 TASK_KILLABLE);
1281 return (ret < 0) ? ret : 1;
1282 }
1283
nfs_commit_clear_lock(struct nfs_inode * nfsi)1284 void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1285 {
1286 clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1287 smp_mb__after_clear_bit();
1288 wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1289 }
1290 EXPORT_SYMBOL_GPL(nfs_commit_clear_lock);
1291
nfs_commitdata_release(void * data)1292 void nfs_commitdata_release(void *data)
1293 {
1294 struct nfs_write_data *wdata = data;
1295
1296 put_lseg(wdata->lseg);
1297 put_nfs_open_context(wdata->args.context);
1298 nfs_commit_free(wdata);
1299 }
1300 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1301
nfs_initiate_commit(struct nfs_write_data * data,struct rpc_clnt * clnt,const struct rpc_call_ops * call_ops,int how)1302 int nfs_initiate_commit(struct nfs_write_data *data, struct rpc_clnt *clnt,
1303 const struct rpc_call_ops *call_ops,
1304 int how)
1305 {
1306 struct rpc_task *task;
1307 int priority = flush_task_priority(how);
1308 struct rpc_message msg = {
1309 .rpc_argp = &data->args,
1310 .rpc_resp = &data->res,
1311 .rpc_cred = data->cred,
1312 };
1313 struct rpc_task_setup task_setup_data = {
1314 .task = &data->task,
1315 .rpc_client = clnt,
1316 .rpc_message = &msg,
1317 .callback_ops = call_ops,
1318 .callback_data = data,
1319 .workqueue = nfsiod_workqueue,
1320 .flags = RPC_TASK_ASYNC,
1321 .priority = priority,
1322 };
1323 /* Set up the initial task struct. */
1324 NFS_PROTO(data->inode)->commit_setup(data, &msg);
1325
1326 dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1327
1328 task = rpc_run_task(&task_setup_data);
1329 if (IS_ERR(task))
1330 return PTR_ERR(task);
1331 if (how & FLUSH_SYNC)
1332 rpc_wait_for_completion_task(task);
1333 rpc_put_task(task);
1334 return 0;
1335 }
1336 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1337
1338 /*
1339 * Set up the argument/result storage required for the RPC call.
1340 */
nfs_init_commit(struct nfs_write_data * data,struct list_head * head,struct pnfs_layout_segment * lseg)1341 void nfs_init_commit(struct nfs_write_data *data,
1342 struct list_head *head,
1343 struct pnfs_layout_segment *lseg)
1344 {
1345 struct nfs_page *first = nfs_list_entry(head->next);
1346 struct inode *inode = first->wb_context->path.dentry->d_inode;
1347
1348 /* Set up the RPC argument and reply structs
1349 * NB: take care not to mess about with data->commit et al. */
1350
1351 list_splice_init(head, &data->pages);
1352
1353 data->inode = inode;
1354 data->cred = first->wb_context->cred;
1355 data->lseg = lseg; /* reference transferred */
1356 data->mds_ops = &nfs_commit_ops;
1357
1358 data->args.fh = NFS_FH(data->inode);
1359 /* Note: we always request a commit of the entire inode */
1360 data->args.offset = 0;
1361 data->args.count = 0;
1362 data->args.context = get_nfs_open_context(first->wb_context);
1363 data->res.count = 0;
1364 data->res.fattr = &data->fattr;
1365 data->res.verf = &data->verf;
1366 nfs_fattr_init(&data->fattr);
1367 }
1368 EXPORT_SYMBOL_GPL(nfs_init_commit);
1369
nfs_retry_commit(struct list_head * page_list,struct pnfs_layout_segment * lseg)1370 void nfs_retry_commit(struct list_head *page_list,
1371 struct pnfs_layout_segment *lseg)
1372 {
1373 struct nfs_page *req;
1374
1375 while (!list_empty(page_list)) {
1376 req = nfs_list_entry(page_list->next);
1377 nfs_list_remove_request(req);
1378 nfs_mark_request_commit(req, lseg);
1379 dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1380 dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1381 BDI_RECLAIMABLE);
1382 nfs_clear_page_tag_locked(req);
1383 }
1384 }
1385 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1386
1387 /*
1388 * Commit dirty pages
1389 */
1390 static int
nfs_commit_list(struct inode * inode,struct list_head * head,int how)1391 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1392 {
1393 struct nfs_write_data *data;
1394
1395 data = nfs_commitdata_alloc();
1396
1397 if (!data)
1398 goto out_bad;
1399
1400 /* Set up the argument struct */
1401 nfs_init_commit(data, head, NULL);
1402 return nfs_initiate_commit(data, NFS_CLIENT(inode), data->mds_ops, how);
1403 out_bad:
1404 nfs_retry_commit(head, NULL);
1405 nfs_commit_clear_lock(NFS_I(inode));
1406 return -ENOMEM;
1407 }
1408
1409 /*
1410 * COMMIT call returned
1411 */
nfs_commit_done(struct rpc_task * task,void * calldata)1412 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1413 {
1414 struct nfs_write_data *data = calldata;
1415
1416 dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1417 task->tk_pid, task->tk_status);
1418
1419 /* Call the NFS version-specific code */
1420 NFS_PROTO(data->inode)->commit_done(task, data);
1421 }
1422
nfs_commit_release_pages(struct nfs_write_data * data)1423 void nfs_commit_release_pages(struct nfs_write_data *data)
1424 {
1425 struct nfs_page *req;
1426 int status = data->task.tk_status;
1427
1428 while (!list_empty(&data->pages)) {
1429 req = nfs_list_entry(data->pages.next);
1430 nfs_list_remove_request(req);
1431 nfs_clear_request_commit(req);
1432
1433 dprintk("NFS: commit (%s/%lld %d@%lld)",
1434 req->wb_context->path.dentry->d_inode->i_sb->s_id,
1435 (long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1436 req->wb_bytes,
1437 (long long)req_offset(req));
1438 if (status < 0) {
1439 nfs_context_set_write_error(req->wb_context, status);
1440 nfs_inode_remove_request(req);
1441 dprintk(", error = %d\n", status);
1442 goto next;
1443 }
1444
1445 /* Okay, COMMIT succeeded, apparently. Check the verifier
1446 * returned by the server against all stored verfs. */
1447 if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1448 /* We have a match */
1449 nfs_inode_remove_request(req);
1450 dprintk(" OK\n");
1451 goto next;
1452 }
1453 /* We have a mismatch. Write the page again */
1454 dprintk(" mismatch\n");
1455 nfs_mark_request_dirty(req);
1456 next:
1457 nfs_clear_page_tag_locked(req);
1458 }
1459 }
1460 EXPORT_SYMBOL_GPL(nfs_commit_release_pages);
1461
nfs_commit_release(void * calldata)1462 static void nfs_commit_release(void *calldata)
1463 {
1464 struct nfs_write_data *data = calldata;
1465
1466 nfs_commit_release_pages(data);
1467 nfs_commit_clear_lock(NFS_I(data->inode));
1468 nfs_commitdata_release(calldata);
1469 }
1470
1471 static const struct rpc_call_ops nfs_commit_ops = {
1472 #if defined(CONFIG_NFS_V4_1)
1473 .rpc_call_prepare = nfs_write_prepare,
1474 #endif /* CONFIG_NFS_V4_1 */
1475 .rpc_call_done = nfs_commit_done,
1476 .rpc_release = nfs_commit_release,
1477 };
1478
nfs_commit_inode(struct inode * inode,int how)1479 int nfs_commit_inode(struct inode *inode, int how)
1480 {
1481 LIST_HEAD(head);
1482 int may_wait = how & FLUSH_SYNC;
1483 int res;
1484
1485 res = nfs_commit_set_lock(NFS_I(inode), may_wait);
1486 if (res <= 0)
1487 goto out_mark_dirty;
1488 res = nfs_scan_commit(inode, &head, 0, 0);
1489 if (res) {
1490 int error;
1491
1492 error = pnfs_commit_list(inode, &head, how);
1493 if (error == PNFS_NOT_ATTEMPTED)
1494 error = nfs_commit_list(inode, &head, how);
1495 if (error < 0)
1496 return error;
1497 if (!may_wait)
1498 goto out_mark_dirty;
1499 error = wait_on_bit(&NFS_I(inode)->flags,
1500 NFS_INO_COMMIT,
1501 nfs_wait_bit_killable,
1502 TASK_KILLABLE);
1503 if (error < 0)
1504 return error;
1505 } else
1506 nfs_commit_clear_lock(NFS_I(inode));
1507 return res;
1508 /* Note: If we exit without ensuring that the commit is complete,
1509 * we must mark the inode as dirty. Otherwise, future calls to
1510 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1511 * that the data is on the disk.
1512 */
1513 out_mark_dirty:
1514 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1515 return res;
1516 }
1517
nfs_commit_unstable_pages(struct inode * inode,struct writeback_control * wbc)1518 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1519 {
1520 struct nfs_inode *nfsi = NFS_I(inode);
1521 int flags = FLUSH_SYNC;
1522 int ret = 0;
1523
1524 if (wbc->sync_mode == WB_SYNC_NONE) {
1525 /* Don't commit yet if this is a non-blocking flush and there
1526 * are a lot of outstanding writes for this mapping.
1527 */
1528 if (nfsi->ncommit <= (nfsi->npages >> 1))
1529 goto out_mark_dirty;
1530
1531 /* don't wait for the COMMIT response */
1532 flags = 0;
1533 }
1534
1535 ret = nfs_commit_inode(inode, flags);
1536 if (ret >= 0) {
1537 if (wbc->sync_mode == WB_SYNC_NONE) {
1538 if (ret < wbc->nr_to_write)
1539 wbc->nr_to_write -= ret;
1540 else
1541 wbc->nr_to_write = 0;
1542 }
1543 return 0;
1544 }
1545 out_mark_dirty:
1546 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1547 return ret;
1548 }
1549 #else
nfs_commit_unstable_pages(struct inode * inode,struct writeback_control * wbc)1550 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1551 {
1552 return 0;
1553 }
1554 #endif
1555
nfs_write_inode(struct inode * inode,struct writeback_control * wbc)1556 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1557 {
1558 int ret;
1559
1560 ret = nfs_commit_unstable_pages(inode, wbc);
1561 if (ret >= 0 && test_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(inode)->flags)) {
1562 int status;
1563 bool sync = true;
1564
1565 if (wbc->sync_mode == WB_SYNC_NONE || wbc->nonblocking ||
1566 wbc->for_background)
1567 sync = false;
1568
1569 status = pnfs_layoutcommit_inode(inode, sync);
1570 if (status < 0)
1571 return status;
1572 }
1573 return ret;
1574 }
1575
1576 /*
1577 * flush the inode to disk.
1578 */
nfs_wb_all(struct inode * inode)1579 int nfs_wb_all(struct inode *inode)
1580 {
1581 struct writeback_control wbc = {
1582 .sync_mode = WB_SYNC_ALL,
1583 .nr_to_write = LONG_MAX,
1584 .range_start = 0,
1585 .range_end = LLONG_MAX,
1586 };
1587
1588 return sync_inode(inode, &wbc);
1589 }
1590
nfs_wb_page_cancel(struct inode * inode,struct page * page)1591 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1592 {
1593 struct nfs_page *req;
1594 int ret = 0;
1595
1596 BUG_ON(!PageLocked(page));
1597 for (;;) {
1598 wait_on_page_writeback(page);
1599 req = nfs_page_find_request(page);
1600 if (req == NULL)
1601 break;
1602 if (nfs_lock_request_dontget(req)) {
1603 nfs_inode_remove_request(req);
1604 /*
1605 * In case nfs_inode_remove_request has marked the
1606 * page as being dirty
1607 */
1608 cancel_dirty_page(page, PAGE_CACHE_SIZE);
1609 nfs_unlock_request(req);
1610 break;
1611 }
1612 ret = nfs_wait_on_request(req);
1613 nfs_release_request(req);
1614 if (ret < 0)
1615 break;
1616 }
1617 return ret;
1618 }
1619
1620 /*
1621 * Write back all requests on one page - we do this before reading it.
1622 */
nfs_wb_page(struct inode * inode,struct page * page)1623 int nfs_wb_page(struct inode *inode, struct page *page)
1624 {
1625 loff_t range_start = page_offset(page);
1626 loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1627 struct writeback_control wbc = {
1628 .sync_mode = WB_SYNC_ALL,
1629 .nr_to_write = 0,
1630 .range_start = range_start,
1631 .range_end = range_end,
1632 };
1633 int ret;
1634
1635 for (;;) {
1636 wait_on_page_writeback(page);
1637 if (clear_page_dirty_for_io(page)) {
1638 ret = nfs_writepage_locked(page, &wbc);
1639 if (ret < 0)
1640 goto out_error;
1641 continue;
1642 }
1643 if (!PagePrivate(page))
1644 break;
1645 ret = nfs_commit_inode(inode, FLUSH_SYNC);
1646 if (ret < 0)
1647 goto out_error;
1648 }
1649 return 0;
1650 out_error:
1651 return ret;
1652 }
1653
1654 #ifdef CONFIG_MIGRATION
nfs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page)1655 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1656 struct page *page)
1657 {
1658 struct nfs_page *req;
1659 int ret;
1660
1661 nfs_fscache_release_page(page, GFP_KERNEL);
1662
1663 req = nfs_find_and_lock_request(page, false);
1664 ret = PTR_ERR(req);
1665 if (IS_ERR(req))
1666 goto out;
1667
1668 ret = migrate_page(mapping, newpage, page);
1669 if (!req)
1670 goto out;
1671 if (ret)
1672 goto out_unlock;
1673 page_cache_get(newpage);
1674 spin_lock(&mapping->host->i_lock);
1675 req->wb_page = newpage;
1676 SetPagePrivate(newpage);
1677 set_page_private(newpage, (unsigned long)req);
1678 ClearPagePrivate(page);
1679 set_page_private(page, 0);
1680 spin_unlock(&mapping->host->i_lock);
1681 page_cache_release(page);
1682 out_unlock:
1683 nfs_clear_page_tag_locked(req);
1684 out:
1685 return ret;
1686 }
1687 #endif
1688
nfs_init_writepagecache(void)1689 int __init nfs_init_writepagecache(void)
1690 {
1691 nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1692 sizeof(struct nfs_write_data),
1693 0, SLAB_HWCACHE_ALIGN,
1694 NULL);
1695 if (nfs_wdata_cachep == NULL)
1696 return -ENOMEM;
1697
1698 nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1699 nfs_wdata_cachep);
1700 if (nfs_wdata_mempool == NULL)
1701 return -ENOMEM;
1702
1703 nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1704 nfs_wdata_cachep);
1705 if (nfs_commit_mempool == NULL)
1706 return -ENOMEM;
1707
1708 /*
1709 * NFS congestion size, scale with available memory.
1710 *
1711 * 64MB: 8192k
1712 * 128MB: 11585k
1713 * 256MB: 16384k
1714 * 512MB: 23170k
1715 * 1GB: 32768k
1716 * 2GB: 46340k
1717 * 4GB: 65536k
1718 * 8GB: 92681k
1719 * 16GB: 131072k
1720 *
1721 * This allows larger machines to have larger/more transfers.
1722 * Limit the default to 256M
1723 */
1724 nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1725 if (nfs_congestion_kb > 256*1024)
1726 nfs_congestion_kb = 256*1024;
1727
1728 return 0;
1729 }
1730
nfs_destroy_writepagecache(void)1731 void nfs_destroy_writepagecache(void)
1732 {
1733 mempool_destroy(nfs_commit_mempool);
1734 mempool_destroy(nfs_wdata_mempool);
1735 kmem_cache_destroy(nfs_wdata_cachep);
1736 }
1737
1738