1 /*
2  * linux/fs/nfs/write.c
3  *
4  * Write file data over NFS.
5  *
6  * Copyright (C) 1996, 1997, Olaf Kirch <okir@monad.swb.de>
7  */
8 
9 #include <linux/types.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/file.h>
14 #include <linux/writeback.h>
15 #include <linux/swap.h>
16 #include <linux/migrate.h>
17 
18 #include <linux/sunrpc/clnt.h>
19 #include <linux/nfs_fs.h>
20 #include <linux/nfs_mount.h>
21 #include <linux/nfs_page.h>
22 #include <linux/backing-dev.h>
23 
24 #include <asm/uaccess.h>
25 
26 #include "delegation.h"
27 #include "internal.h"
28 #include "iostat.h"
29 #include "nfs4_fs.h"
30 #include "fscache.h"
31 #include "pnfs.h"
32 
33 #define NFSDBG_FACILITY		NFSDBG_PAGECACHE
34 
35 #define MIN_POOL_WRITE		(32)
36 #define MIN_POOL_COMMIT		(4)
37 
38 /*
39  * Local function declarations
40  */
41 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *desc,
42 				  struct inode *inode, int ioflags);
43 static void nfs_redirty_request(struct nfs_page *req);
44 static const struct rpc_call_ops nfs_write_partial_ops;
45 static const struct rpc_call_ops nfs_write_full_ops;
46 static const struct rpc_call_ops nfs_commit_ops;
47 
48 static struct kmem_cache *nfs_wdata_cachep;
49 static mempool_t *nfs_wdata_mempool;
50 static mempool_t *nfs_commit_mempool;
51 
nfs_commitdata_alloc(void)52 struct nfs_write_data *nfs_commitdata_alloc(void)
53 {
54 	struct nfs_write_data *p = mempool_alloc(nfs_commit_mempool, GFP_NOFS);
55 
56 	if (p) {
57 		memset(p, 0, sizeof(*p));
58 		INIT_LIST_HEAD(&p->pages);
59 	}
60 	return p;
61 }
62 EXPORT_SYMBOL_GPL(nfs_commitdata_alloc);
63 
nfs_commit_free(struct nfs_write_data * p)64 void nfs_commit_free(struct nfs_write_data *p)
65 {
66 	if (p && (p->pagevec != &p->page_array[0]))
67 		kfree(p->pagevec);
68 	mempool_free(p, nfs_commit_mempool);
69 }
70 EXPORT_SYMBOL_GPL(nfs_commit_free);
71 
nfs_writedata_alloc(unsigned int pagecount)72 struct nfs_write_data *nfs_writedata_alloc(unsigned int pagecount)
73 {
74 	struct nfs_write_data *p = mempool_alloc(nfs_wdata_mempool, GFP_NOFS);
75 
76 	if (p) {
77 		memset(p, 0, sizeof(*p));
78 		INIT_LIST_HEAD(&p->pages);
79 		p->npages = pagecount;
80 		if (pagecount <= ARRAY_SIZE(p->page_array))
81 			p->pagevec = p->page_array;
82 		else {
83 			p->pagevec = kcalloc(pagecount, sizeof(struct page *), GFP_NOFS);
84 			if (!p->pagevec) {
85 				mempool_free(p, nfs_wdata_mempool);
86 				p = NULL;
87 			}
88 		}
89 	}
90 	return p;
91 }
92 
nfs_writedata_free(struct nfs_write_data * p)93 void nfs_writedata_free(struct nfs_write_data *p)
94 {
95 	if (p && (p->pagevec != &p->page_array[0]))
96 		kfree(p->pagevec);
97 	mempool_free(p, nfs_wdata_mempool);
98 }
99 
nfs_writedata_release(struct nfs_write_data * wdata)100 static void nfs_writedata_release(struct nfs_write_data *wdata)
101 {
102 	put_lseg(wdata->lseg);
103 	put_nfs_open_context(wdata->args.context);
104 	nfs_writedata_free(wdata);
105 }
106 
nfs_context_set_write_error(struct nfs_open_context * ctx,int error)107 static void nfs_context_set_write_error(struct nfs_open_context *ctx, int error)
108 {
109 	ctx->error = error;
110 	smp_wmb();
111 	set_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
112 }
113 
nfs_page_find_request_locked(struct page * page)114 static struct nfs_page *nfs_page_find_request_locked(struct page *page)
115 {
116 	struct nfs_page *req = NULL;
117 
118 	if (PagePrivate(page)) {
119 		req = (struct nfs_page *)page_private(page);
120 		if (req != NULL)
121 			kref_get(&req->wb_kref);
122 	}
123 	return req;
124 }
125 
nfs_page_find_request(struct page * page)126 static struct nfs_page *nfs_page_find_request(struct page *page)
127 {
128 	struct inode *inode = page->mapping->host;
129 	struct nfs_page *req = NULL;
130 
131 	spin_lock(&inode->i_lock);
132 	req = nfs_page_find_request_locked(page);
133 	spin_unlock(&inode->i_lock);
134 	return req;
135 }
136 
137 /* Adjust the file length if we're writing beyond the end */
nfs_grow_file(struct page * page,unsigned int offset,unsigned int count)138 static void nfs_grow_file(struct page *page, unsigned int offset, unsigned int count)
139 {
140 	struct inode *inode = page->mapping->host;
141 	loff_t end, i_size;
142 	pgoff_t end_index;
143 
144 	spin_lock(&inode->i_lock);
145 	i_size = i_size_read(inode);
146 	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
147 	if (i_size > 0 && page->index < end_index)
148 		goto out;
149 	end = ((loff_t)page->index << PAGE_CACHE_SHIFT) + ((loff_t)offset+count);
150 	if (i_size >= end)
151 		goto out;
152 	i_size_write(inode, end);
153 	nfs_inc_stats(inode, NFSIOS_EXTENDWRITE);
154 out:
155 	spin_unlock(&inode->i_lock);
156 }
157 
158 /* A writeback failed: mark the page as bad, and invalidate the page cache */
nfs_set_pageerror(struct page * page)159 static void nfs_set_pageerror(struct page *page)
160 {
161 	SetPageError(page);
162 	nfs_zap_mapping(page->mapping->host, page->mapping);
163 }
164 
165 /* We can set the PG_uptodate flag if we see that a write request
166  * covers the full page.
167  */
nfs_mark_uptodate(struct page * page,unsigned int base,unsigned int count)168 static void nfs_mark_uptodate(struct page *page, unsigned int base, unsigned int count)
169 {
170 	if (PageUptodate(page))
171 		return;
172 	if (base != 0)
173 		return;
174 	if (count != nfs_page_length(page))
175 		return;
176 	SetPageUptodate(page);
177 }
178 
wb_priority(struct writeback_control * wbc)179 static int wb_priority(struct writeback_control *wbc)
180 {
181 	if (wbc->for_reclaim)
182 		return FLUSH_HIGHPRI | FLUSH_STABLE;
183 	if (wbc->for_kupdate || wbc->for_background)
184 		return FLUSH_LOWPRI | FLUSH_COND_STABLE;
185 	return FLUSH_COND_STABLE;
186 }
187 
188 /*
189  * NFS congestion control
190  */
191 
192 int nfs_congestion_kb;
193 
194 #define NFS_CONGESTION_ON_THRESH 	(nfs_congestion_kb >> (PAGE_SHIFT-10))
195 #define NFS_CONGESTION_OFF_THRESH	\
196 	(NFS_CONGESTION_ON_THRESH - (NFS_CONGESTION_ON_THRESH >> 2))
197 
nfs_set_page_writeback(struct page * page)198 static int nfs_set_page_writeback(struct page *page)
199 {
200 	int ret = test_set_page_writeback(page);
201 
202 	if (!ret) {
203 		struct inode *inode = page->mapping->host;
204 		struct nfs_server *nfss = NFS_SERVER(inode);
205 
206 		page_cache_get(page);
207 		if (atomic_long_inc_return(&nfss->writeback) >
208 				NFS_CONGESTION_ON_THRESH) {
209 			set_bdi_congested(&nfss->backing_dev_info,
210 						BLK_RW_ASYNC);
211 		}
212 	}
213 	return ret;
214 }
215 
nfs_end_page_writeback(struct page * page)216 static void nfs_end_page_writeback(struct page *page)
217 {
218 	struct inode *inode = page->mapping->host;
219 	struct nfs_server *nfss = NFS_SERVER(inode);
220 
221 	end_page_writeback(page);
222 	page_cache_release(page);
223 	if (atomic_long_dec_return(&nfss->writeback) < NFS_CONGESTION_OFF_THRESH)
224 		clear_bdi_congested(&nfss->backing_dev_info, BLK_RW_ASYNC);
225 }
226 
nfs_find_and_lock_request(struct page * page,bool nonblock)227 static struct nfs_page *nfs_find_and_lock_request(struct page *page, bool nonblock)
228 {
229 	struct inode *inode = page->mapping->host;
230 	struct nfs_page *req;
231 	int ret;
232 
233 	spin_lock(&inode->i_lock);
234 	for (;;) {
235 		req = nfs_page_find_request_locked(page);
236 		if (req == NULL)
237 			break;
238 		if (nfs_set_page_tag_locked(req))
239 			break;
240 		/* Note: If we hold the page lock, as is the case in nfs_writepage,
241 		 *	 then the call to nfs_set_page_tag_locked() will always
242 		 *	 succeed provided that someone hasn't already marked the
243 		 *	 request as dirty (in which case we don't care).
244 		 */
245 		spin_unlock(&inode->i_lock);
246 		if (!nonblock)
247 			ret = nfs_wait_on_request(req);
248 		else
249 			ret = -EAGAIN;
250 		nfs_release_request(req);
251 		if (ret != 0)
252 			return ERR_PTR(ret);
253 		spin_lock(&inode->i_lock);
254 	}
255 	spin_unlock(&inode->i_lock);
256 	return req;
257 }
258 
259 /*
260  * Find an associated nfs write request, and prepare to flush it out
261  * May return an error if the user signalled nfs_wait_on_request().
262  */
nfs_page_async_flush(struct nfs_pageio_descriptor * pgio,struct page * page,bool nonblock)263 static int nfs_page_async_flush(struct nfs_pageio_descriptor *pgio,
264 				struct page *page, bool nonblock)
265 {
266 	struct nfs_page *req;
267 	int ret = 0;
268 
269 	req = nfs_find_and_lock_request(page, nonblock);
270 	if (!req)
271 		goto out;
272 	ret = PTR_ERR(req);
273 	if (IS_ERR(req))
274 		goto out;
275 
276 	ret = nfs_set_page_writeback(page);
277 	BUG_ON(ret != 0);
278 	BUG_ON(test_bit(PG_CLEAN, &req->wb_flags));
279 
280 	if (!nfs_pageio_add_request(pgio, req)) {
281 		nfs_redirty_request(req);
282 		ret = pgio->pg_error;
283 	}
284 out:
285 	return ret;
286 }
287 
nfs_do_writepage(struct page * page,struct writeback_control * wbc,struct nfs_pageio_descriptor * pgio)288 static int nfs_do_writepage(struct page *page, struct writeback_control *wbc, struct nfs_pageio_descriptor *pgio)
289 {
290 	struct inode *inode = page->mapping->host;
291 	int ret;
292 
293 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGE);
294 	nfs_add_stats(inode, NFSIOS_WRITEPAGES, 1);
295 
296 	nfs_pageio_cond_complete(pgio, page->index);
297 	ret = nfs_page_async_flush(pgio, page, wbc->sync_mode == WB_SYNC_NONE);
298 	if (ret == -EAGAIN) {
299 		redirty_page_for_writepage(wbc, page);
300 		ret = 0;
301 	}
302 	return ret;
303 }
304 
305 /*
306  * Write an mmapped page to the server.
307  */
nfs_writepage_locked(struct page * page,struct writeback_control * wbc)308 static int nfs_writepage_locked(struct page *page, struct writeback_control *wbc)
309 {
310 	struct nfs_pageio_descriptor pgio;
311 	int err;
312 
313 	nfs_pageio_init_write(&pgio, page->mapping->host, wb_priority(wbc));
314 	err = nfs_do_writepage(page, wbc, &pgio);
315 	nfs_pageio_complete(&pgio);
316 	if (err < 0)
317 		return err;
318 	if (pgio.pg_error < 0)
319 		return pgio.pg_error;
320 	return 0;
321 }
322 
nfs_writepage(struct page * page,struct writeback_control * wbc)323 int nfs_writepage(struct page *page, struct writeback_control *wbc)
324 {
325 	int ret;
326 
327 	ret = nfs_writepage_locked(page, wbc);
328 	unlock_page(page);
329 	return ret;
330 }
331 
nfs_writepages_callback(struct page * page,struct writeback_control * wbc,void * data)332 static int nfs_writepages_callback(struct page *page, struct writeback_control *wbc, void *data)
333 {
334 	int ret;
335 
336 	ret = nfs_do_writepage(page, wbc, data);
337 	unlock_page(page);
338 	return ret;
339 }
340 
nfs_writepages(struct address_space * mapping,struct writeback_control * wbc)341 int nfs_writepages(struct address_space *mapping, struct writeback_control *wbc)
342 {
343 	struct inode *inode = mapping->host;
344 	unsigned long *bitlock = &NFS_I(inode)->flags;
345 	struct nfs_pageio_descriptor pgio;
346 	int err;
347 
348 	/* Stop dirtying of new pages while we sync */
349 	err = wait_on_bit_lock(bitlock, NFS_INO_FLUSHING,
350 			nfs_wait_bit_killable, TASK_KILLABLE);
351 	if (err)
352 		goto out_err;
353 
354 	nfs_inc_stats(inode, NFSIOS_VFSWRITEPAGES);
355 
356 	nfs_pageio_init_write(&pgio, inode, wb_priority(wbc));
357 	err = write_cache_pages(mapping, wbc, nfs_writepages_callback, &pgio);
358 	nfs_pageio_complete(&pgio);
359 
360 	clear_bit_unlock(NFS_INO_FLUSHING, bitlock);
361 	smp_mb__after_clear_bit();
362 	wake_up_bit(bitlock, NFS_INO_FLUSHING);
363 
364 	if (err < 0)
365 		goto out_err;
366 	err = pgio.pg_error;
367 	if (err < 0)
368 		goto out_err;
369 	return 0;
370 out_err:
371 	return err;
372 }
373 
374 /*
375  * Insert a write request into an inode
376  */
nfs_inode_add_request(struct inode * inode,struct nfs_page * req)377 static int nfs_inode_add_request(struct inode *inode, struct nfs_page *req)
378 {
379 	struct nfs_inode *nfsi = NFS_I(inode);
380 	int error;
381 
382 	error = radix_tree_preload(GFP_NOFS);
383 	if (error != 0)
384 		goto out;
385 
386 	/* Lock the request! */
387 	nfs_lock_request_dontget(req);
388 
389 	spin_lock(&inode->i_lock);
390 	error = radix_tree_insert(&nfsi->nfs_page_tree, req->wb_index, req);
391 	BUG_ON(error);
392 	if (!nfsi->npages && nfs_have_delegation(inode, FMODE_WRITE))
393 		nfsi->change_attr++;
394 	set_bit(PG_MAPPED, &req->wb_flags);
395 	SetPagePrivate(req->wb_page);
396 	set_page_private(req->wb_page, (unsigned long)req);
397 	nfsi->npages++;
398 	kref_get(&req->wb_kref);
399 	radix_tree_tag_set(&nfsi->nfs_page_tree, req->wb_index,
400 				NFS_PAGE_TAG_LOCKED);
401 	spin_unlock(&inode->i_lock);
402 	radix_tree_preload_end();
403 out:
404 	return error;
405 }
406 
407 /*
408  * Remove a write request from an inode
409  */
nfs_inode_remove_request(struct nfs_page * req)410 static void nfs_inode_remove_request(struct nfs_page *req)
411 {
412 	struct inode *inode = req->wb_context->path.dentry->d_inode;
413 	struct nfs_inode *nfsi = NFS_I(inode);
414 
415 	BUG_ON (!NFS_WBACK_BUSY(req));
416 
417 	spin_lock(&inode->i_lock);
418 	set_page_private(req->wb_page, 0);
419 	ClearPagePrivate(req->wb_page);
420 	clear_bit(PG_MAPPED, &req->wb_flags);
421 	radix_tree_delete(&nfsi->nfs_page_tree, req->wb_index);
422 	nfsi->npages--;
423 	spin_unlock(&inode->i_lock);
424 	nfs_release_request(req);
425 }
426 
427 static void
nfs_mark_request_dirty(struct nfs_page * req)428 nfs_mark_request_dirty(struct nfs_page *req)
429 {
430 	__set_page_dirty_nobuffers(req->wb_page);
431 	__mark_inode_dirty(req->wb_page->mapping->host, I_DIRTY_DATASYNC);
432 }
433 
434 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
435 /*
436  * Add a request to the inode's commit list.
437  */
438 static void
nfs_mark_request_commit(struct nfs_page * req,struct pnfs_layout_segment * lseg)439 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
440 {
441 	struct inode *inode = req->wb_context->path.dentry->d_inode;
442 	struct nfs_inode *nfsi = NFS_I(inode);
443 
444 	spin_lock(&inode->i_lock);
445 	set_bit(PG_CLEAN, &(req)->wb_flags);
446 	radix_tree_tag_set(&nfsi->nfs_page_tree,
447 			req->wb_index,
448 			NFS_PAGE_TAG_COMMIT);
449 	nfsi->ncommit++;
450 	spin_unlock(&inode->i_lock);
451 	pnfs_mark_request_commit(req, lseg);
452 	inc_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
453 	inc_bdi_stat(req->wb_page->mapping->backing_dev_info, BDI_RECLAIMABLE);
454 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
455 }
456 
457 static int
nfs_clear_request_commit(struct nfs_page * req)458 nfs_clear_request_commit(struct nfs_page *req)
459 {
460 	struct page *page = req->wb_page;
461 
462 	if (test_and_clear_bit(PG_CLEAN, &(req)->wb_flags)) {
463 		dec_zone_page_state(page, NR_UNSTABLE_NFS);
464 		dec_bdi_stat(page->mapping->backing_dev_info, BDI_RECLAIMABLE);
465 		return 1;
466 	}
467 	return 0;
468 }
469 
470 static inline
nfs_write_need_commit(struct nfs_write_data * data)471 int nfs_write_need_commit(struct nfs_write_data *data)
472 {
473 	if (data->verf.committed == NFS_DATA_SYNC)
474 		return data->lseg == NULL;
475 	else
476 		return data->verf.committed != NFS_FILE_SYNC;
477 }
478 
479 static inline
nfs_reschedule_unstable_write(struct nfs_page * req,struct nfs_write_data * data)480 int nfs_reschedule_unstable_write(struct nfs_page *req,
481 				  struct nfs_write_data *data)
482 {
483 	if (test_and_clear_bit(PG_NEED_COMMIT, &req->wb_flags)) {
484 		nfs_mark_request_commit(req, data->lseg);
485 		return 1;
486 	}
487 	if (test_and_clear_bit(PG_NEED_RESCHED, &req->wb_flags)) {
488 		nfs_mark_request_dirty(req);
489 		return 1;
490 	}
491 	return 0;
492 }
493 #else
494 static inline void
nfs_mark_request_commit(struct nfs_page * req,struct pnfs_layout_segment * lseg)495 nfs_mark_request_commit(struct nfs_page *req, struct pnfs_layout_segment *lseg)
496 {
497 }
498 
499 static inline int
nfs_clear_request_commit(struct nfs_page * req)500 nfs_clear_request_commit(struct nfs_page *req)
501 {
502 	return 0;
503 }
504 
505 static inline
nfs_write_need_commit(struct nfs_write_data * data)506 int nfs_write_need_commit(struct nfs_write_data *data)
507 {
508 	return 0;
509 }
510 
511 static inline
nfs_reschedule_unstable_write(struct nfs_page * req,struct nfs_write_data * data)512 int nfs_reschedule_unstable_write(struct nfs_page *req,
513 				  struct nfs_write_data *data)
514 {
515 	return 0;
516 }
517 #endif
518 
519 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
520 static int
nfs_need_commit(struct nfs_inode * nfsi)521 nfs_need_commit(struct nfs_inode *nfsi)
522 {
523 	return radix_tree_tagged(&nfsi->nfs_page_tree, NFS_PAGE_TAG_COMMIT);
524 }
525 
526 /*
527  * nfs_scan_commit - Scan an inode for commit requests
528  * @inode: NFS inode to scan
529  * @dst: destination list
530  * @idx_start: lower bound of page->index to scan.
531  * @npages: idx_start + npages sets the upper bound to scan.
532  *
533  * Moves requests from the inode's 'commit' request list.
534  * The requests are *not* checked to ensure that they form a contiguous set.
535  */
536 static int
nfs_scan_commit(struct inode * inode,struct list_head * dst,pgoff_t idx_start,unsigned int npages)537 nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
538 {
539 	struct nfs_inode *nfsi = NFS_I(inode);
540 	int ret;
541 
542 	if (!nfs_need_commit(nfsi))
543 		return 0;
544 
545 	spin_lock(&inode->i_lock);
546 	ret = nfs_scan_list(nfsi, dst, idx_start, npages, NFS_PAGE_TAG_COMMIT);
547 	if (ret > 0)
548 		nfsi->ncommit -= ret;
549 	spin_unlock(&inode->i_lock);
550 
551 	if (nfs_need_commit(NFS_I(inode)))
552 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
553 
554 	return ret;
555 }
556 #else
nfs_need_commit(struct nfs_inode * nfsi)557 static inline int nfs_need_commit(struct nfs_inode *nfsi)
558 {
559 	return 0;
560 }
561 
nfs_scan_commit(struct inode * inode,struct list_head * dst,pgoff_t idx_start,unsigned int npages)562 static inline int nfs_scan_commit(struct inode *inode, struct list_head *dst, pgoff_t idx_start, unsigned int npages)
563 {
564 	return 0;
565 }
566 #endif
567 
568 /*
569  * Search for an existing write request, and attempt to update
570  * it to reflect a new dirty region on a given page.
571  *
572  * If the attempt fails, then the existing request is flushed out
573  * to disk.
574  */
nfs_try_to_update_request(struct inode * inode,struct page * page,unsigned int offset,unsigned int bytes)575 static struct nfs_page *nfs_try_to_update_request(struct inode *inode,
576 		struct page *page,
577 		unsigned int offset,
578 		unsigned int bytes)
579 {
580 	struct nfs_page *req;
581 	unsigned int rqend;
582 	unsigned int end;
583 	int error;
584 
585 	if (!PagePrivate(page))
586 		return NULL;
587 
588 	end = offset + bytes;
589 	spin_lock(&inode->i_lock);
590 
591 	for (;;) {
592 		req = nfs_page_find_request_locked(page);
593 		if (req == NULL)
594 			goto out_unlock;
595 
596 		rqend = req->wb_offset + req->wb_bytes;
597 		/*
598 		 * Tell the caller to flush out the request if
599 		 * the offsets are non-contiguous.
600 		 * Note: nfs_flush_incompatible() will already
601 		 * have flushed out requests having wrong owners.
602 		 */
603 		if (offset > rqend
604 		    || end < req->wb_offset)
605 			goto out_flushme;
606 
607 		if (nfs_set_page_tag_locked(req))
608 			break;
609 
610 		/* The request is locked, so wait and then retry */
611 		spin_unlock(&inode->i_lock);
612 		error = nfs_wait_on_request(req);
613 		nfs_release_request(req);
614 		if (error != 0)
615 			goto out_err;
616 		spin_lock(&inode->i_lock);
617 	}
618 
619 	if (nfs_clear_request_commit(req) &&
620 	    radix_tree_tag_clear(&NFS_I(inode)->nfs_page_tree,
621 				 req->wb_index, NFS_PAGE_TAG_COMMIT) != NULL) {
622 		NFS_I(inode)->ncommit--;
623 		pnfs_clear_request_commit(req);
624 	}
625 
626 	/* Okay, the request matches. Update the region */
627 	if (offset < req->wb_offset) {
628 		req->wb_offset = offset;
629 		req->wb_pgbase = offset;
630 	}
631 	if (end > rqend)
632 		req->wb_bytes = end - req->wb_offset;
633 	else
634 		req->wb_bytes = rqend - req->wb_offset;
635 out_unlock:
636 	spin_unlock(&inode->i_lock);
637 	return req;
638 out_flushme:
639 	spin_unlock(&inode->i_lock);
640 	nfs_release_request(req);
641 	error = nfs_wb_page(inode, page);
642 out_err:
643 	return ERR_PTR(error);
644 }
645 
646 /*
647  * Try to update an existing write request, or create one if there is none.
648  *
649  * Note: Should always be called with the Page Lock held to prevent races
650  * if we have to add a new request. Also assumes that the caller has
651  * already called nfs_flush_incompatible() if necessary.
652  */
nfs_setup_write_request(struct nfs_open_context * ctx,struct page * page,unsigned int offset,unsigned int bytes)653 static struct nfs_page * nfs_setup_write_request(struct nfs_open_context* ctx,
654 		struct page *page, unsigned int offset, unsigned int bytes)
655 {
656 	struct inode *inode = page->mapping->host;
657 	struct nfs_page	*req;
658 	int error;
659 
660 	req = nfs_try_to_update_request(inode, page, offset, bytes);
661 	if (req != NULL)
662 		goto out;
663 	req = nfs_create_request(ctx, inode, page, offset, bytes);
664 	if (IS_ERR(req))
665 		goto out;
666 	error = nfs_inode_add_request(inode, req);
667 	if (error != 0) {
668 		nfs_release_request(req);
669 		req = ERR_PTR(error);
670 	}
671 out:
672 	return req;
673 }
674 
nfs_writepage_setup(struct nfs_open_context * ctx,struct page * page,unsigned int offset,unsigned int count)675 static int nfs_writepage_setup(struct nfs_open_context *ctx, struct page *page,
676 		unsigned int offset, unsigned int count)
677 {
678 	struct nfs_page	*req;
679 
680 	req = nfs_setup_write_request(ctx, page, offset, count);
681 	if (IS_ERR(req))
682 		return PTR_ERR(req);
683 	/* Update file length */
684 	nfs_grow_file(page, offset, count);
685 	nfs_mark_uptodate(page, req->wb_pgbase, req->wb_bytes);
686 	nfs_mark_request_dirty(req);
687 	nfs_clear_page_tag_locked(req);
688 	return 0;
689 }
690 
nfs_flush_incompatible(struct file * file,struct page * page)691 int nfs_flush_incompatible(struct file *file, struct page *page)
692 {
693 	struct nfs_open_context *ctx = nfs_file_open_context(file);
694 	struct nfs_page	*req;
695 	int do_flush, status;
696 	/*
697 	 * Look for a request corresponding to this page. If there
698 	 * is one, and it belongs to another file, we flush it out
699 	 * before we try to copy anything into the page. Do this
700 	 * due to the lack of an ACCESS-type call in NFSv2.
701 	 * Also do the same if we find a request from an existing
702 	 * dropped page.
703 	 */
704 	do {
705 		req = nfs_page_find_request(page);
706 		if (req == NULL)
707 			return 0;
708 		do_flush = req->wb_page != page || req->wb_context != ctx ||
709 			req->wb_lock_context->lockowner != current->files ||
710 			req->wb_lock_context->pid != current->tgid;
711 		nfs_release_request(req);
712 		if (!do_flush)
713 			return 0;
714 		status = nfs_wb_page(page->mapping->host, page);
715 	} while (status == 0);
716 	return status;
717 }
718 
719 /*
720  * If the page cache is marked as unsafe or invalid, then we can't rely on
721  * the PageUptodate() flag. In this case, we will need to turn off
722  * write optimisations that depend on the page contents being correct.
723  */
nfs_write_pageuptodate(struct page * page,struct inode * inode)724 static int nfs_write_pageuptodate(struct page *page, struct inode *inode)
725 {
726 	return PageUptodate(page) &&
727 		!(NFS_I(inode)->cache_validity & (NFS_INO_REVAL_PAGECACHE|NFS_INO_INVALID_DATA));
728 }
729 
730 /*
731  * Update and possibly write a cached page of an NFS file.
732  *
733  * XXX: Keep an eye on generic_file_read to make sure it doesn't do bad
734  * things with a page scheduled for an RPC call (e.g. invalidate it).
735  */
nfs_updatepage(struct file * file,struct page * page,unsigned int offset,unsigned int count)736 int nfs_updatepage(struct file *file, struct page *page,
737 		unsigned int offset, unsigned int count)
738 {
739 	struct nfs_open_context *ctx = nfs_file_open_context(file);
740 	struct inode	*inode = page->mapping->host;
741 	int		status = 0;
742 
743 	nfs_inc_stats(inode, NFSIOS_VFSUPDATEPAGE);
744 
745 	dprintk("NFS:       nfs_updatepage(%s/%s %d@%lld)\n",
746 		file->f_path.dentry->d_parent->d_name.name,
747 		file->f_path.dentry->d_name.name, count,
748 		(long long)(page_offset(page) + offset));
749 
750 	/* If we're not using byte range locks, and we know the page
751 	 * is up to date, it may be more efficient to extend the write
752 	 * to cover the entire page in order to avoid fragmentation
753 	 * inefficiencies.
754 	 */
755 	if (nfs_write_pageuptodate(page, inode) &&
756 			inode->i_flock == NULL &&
757 			!(file->f_flags & O_DSYNC)) {
758 		count = max(count + offset, nfs_page_length(page));
759 		offset = 0;
760 	}
761 
762 	status = nfs_writepage_setup(ctx, page, offset, count);
763 	if (status < 0)
764 		nfs_set_pageerror(page);
765 
766 	dprintk("NFS:       nfs_updatepage returns %d (isize %lld)\n",
767 			status, (long long)i_size_read(inode));
768 	return status;
769 }
770 
nfs_writepage_release(struct nfs_page * req,struct nfs_write_data * data)771 static void nfs_writepage_release(struct nfs_page *req,
772 				  struct nfs_write_data *data)
773 {
774 	struct page *page = req->wb_page;
775 
776 	if (PageError(req->wb_page) || !nfs_reschedule_unstable_write(req, data))
777 		nfs_inode_remove_request(req);
778 	nfs_clear_page_tag_locked(req);
779 	nfs_end_page_writeback(page);
780 }
781 
flush_task_priority(int how)782 static int flush_task_priority(int how)
783 {
784 	switch (how & (FLUSH_HIGHPRI|FLUSH_LOWPRI)) {
785 		case FLUSH_HIGHPRI:
786 			return RPC_PRIORITY_HIGH;
787 		case FLUSH_LOWPRI:
788 			return RPC_PRIORITY_LOW;
789 	}
790 	return RPC_PRIORITY_NORMAL;
791 }
792 
nfs_initiate_write(struct nfs_write_data * data,struct rpc_clnt * clnt,const struct rpc_call_ops * call_ops,int how)793 int nfs_initiate_write(struct nfs_write_data *data,
794 		       struct rpc_clnt *clnt,
795 		       const struct rpc_call_ops *call_ops,
796 		       int how)
797 {
798 	struct inode *inode = data->inode;
799 	int priority = flush_task_priority(how);
800 	struct rpc_task *task;
801 	struct rpc_message msg = {
802 		.rpc_argp = &data->args,
803 		.rpc_resp = &data->res,
804 		.rpc_cred = data->cred,
805 	};
806 	struct rpc_task_setup task_setup_data = {
807 		.rpc_client = clnt,
808 		.task = &data->task,
809 		.rpc_message = &msg,
810 		.callback_ops = call_ops,
811 		.callback_data = data,
812 		.workqueue = nfsiod_workqueue,
813 		.flags = RPC_TASK_ASYNC,
814 		.priority = priority,
815 	};
816 	int ret = 0;
817 
818 	/* Set up the initial task struct.  */
819 	NFS_PROTO(inode)->write_setup(data, &msg);
820 
821 	dprintk("NFS: %5u initiated write call "
822 		"(req %s/%lld, %u bytes @ offset %llu)\n",
823 		data->task.tk_pid,
824 		inode->i_sb->s_id,
825 		(long long)NFS_FILEID(inode),
826 		data->args.count,
827 		(unsigned long long)data->args.offset);
828 
829 	task = rpc_run_task(&task_setup_data);
830 	if (IS_ERR(task)) {
831 		ret = PTR_ERR(task);
832 		goto out;
833 	}
834 	if (how & FLUSH_SYNC) {
835 		ret = rpc_wait_for_completion_task(task);
836 		if (ret == 0)
837 			ret = task->tk_status;
838 	}
839 	rpc_put_task(task);
840 out:
841 	return ret;
842 }
843 EXPORT_SYMBOL_GPL(nfs_initiate_write);
844 
845 /*
846  * Set up the argument/result storage required for the RPC call.
847  */
nfs_write_rpcsetup(struct nfs_page * req,struct nfs_write_data * data,const struct rpc_call_ops * call_ops,unsigned int count,unsigned int offset,struct pnfs_layout_segment * lseg,int how)848 static int nfs_write_rpcsetup(struct nfs_page *req,
849 		struct nfs_write_data *data,
850 		const struct rpc_call_ops *call_ops,
851 		unsigned int count, unsigned int offset,
852 		struct pnfs_layout_segment *lseg,
853 		int how)
854 {
855 	struct inode *inode = req->wb_context->path.dentry->d_inode;
856 
857 	/* Set up the RPC argument and reply structs
858 	 * NB: take care not to mess about with data->commit et al. */
859 
860 	data->req = req;
861 	data->inode = inode = req->wb_context->path.dentry->d_inode;
862 	data->cred = req->wb_context->cred;
863 	data->lseg = get_lseg(lseg);
864 
865 	data->args.fh     = NFS_FH(inode);
866 	data->args.offset = req_offset(req) + offset;
867 	data->args.pgbase = req->wb_pgbase + offset;
868 	data->args.pages  = data->pagevec;
869 	data->args.count  = count;
870 	data->args.context = get_nfs_open_context(req->wb_context);
871 	data->args.lock_context = req->wb_lock_context;
872 	data->args.stable  = NFS_UNSTABLE;
873 	if (how & (FLUSH_STABLE | FLUSH_COND_STABLE)) {
874 		data->args.stable = NFS_DATA_SYNC;
875 		if (!nfs_need_commit(NFS_I(inode)))
876 			data->args.stable = NFS_FILE_SYNC;
877 	}
878 
879 	data->res.fattr   = &data->fattr;
880 	data->res.count   = count;
881 	data->res.verf    = &data->verf;
882 	nfs_fattr_init(&data->fattr);
883 
884 	if (data->lseg &&
885 	    (pnfs_try_to_write_data(data, call_ops, how) == PNFS_ATTEMPTED))
886 		return 0;
887 
888 	return nfs_initiate_write(data, NFS_CLIENT(inode), call_ops, how);
889 }
890 
891 /* If a nfs_flush_* function fails, it should remove reqs from @head and
892  * call this on each, which will prepare them to be retried on next
893  * writeback using standard nfs.
894  */
nfs_redirty_request(struct nfs_page * req)895 static void nfs_redirty_request(struct nfs_page *req)
896 {
897 	struct page *page = req->wb_page;
898 
899 	nfs_mark_request_dirty(req);
900 	nfs_clear_page_tag_locked(req);
901 	nfs_end_page_writeback(page);
902 }
903 
904 /*
905  * Generate multiple small requests to write out a single
906  * contiguous dirty area on one page.
907  */
nfs_flush_multi(struct nfs_pageio_descriptor * desc)908 static int nfs_flush_multi(struct nfs_pageio_descriptor *desc)
909 {
910 	struct nfs_page *req = nfs_list_entry(desc->pg_list.next);
911 	struct page *page = req->wb_page;
912 	struct nfs_write_data *data;
913 	size_t wsize = NFS_SERVER(desc->pg_inode)->wsize, nbytes;
914 	unsigned int offset;
915 	int requests = 0;
916 	int ret = 0;
917 	struct pnfs_layout_segment *lseg;
918 	LIST_HEAD(list);
919 
920 	nfs_list_remove_request(req);
921 
922 	if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
923 	    (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit ||
924 	     desc->pg_count > wsize))
925 		desc->pg_ioflags &= ~FLUSH_COND_STABLE;
926 
927 
928 	nbytes = desc->pg_count;
929 	do {
930 		size_t len = min(nbytes, wsize);
931 
932 		data = nfs_writedata_alloc(1);
933 		if (!data)
934 			goto out_bad;
935 		list_add(&data->pages, &list);
936 		requests++;
937 		nbytes -= len;
938 	} while (nbytes != 0);
939 	atomic_set(&req->wb_complete, requests);
940 
941 	BUG_ON(desc->pg_lseg);
942 	lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, IOMODE_RW, GFP_NOFS);
943 	ClearPageError(page);
944 	offset = 0;
945 	nbytes = desc->pg_count;
946 	do {
947 		int ret2;
948 
949 		data = list_entry(list.next, struct nfs_write_data, pages);
950 		list_del_init(&data->pages);
951 
952 		data->pagevec[0] = page;
953 
954 		if (nbytes < wsize)
955 			wsize = nbytes;
956 		ret2 = nfs_write_rpcsetup(req, data, &nfs_write_partial_ops,
957 					  wsize, offset, lseg, desc->pg_ioflags);
958 		if (ret == 0)
959 			ret = ret2;
960 		offset += wsize;
961 		nbytes -= wsize;
962 	} while (nbytes != 0);
963 
964 	put_lseg(lseg);
965 	desc->pg_lseg = NULL;
966 	return ret;
967 
968 out_bad:
969 	while (!list_empty(&list)) {
970 		data = list_entry(list.next, struct nfs_write_data, pages);
971 		list_del(&data->pages);
972 		nfs_writedata_free(data);
973 	}
974 	nfs_redirty_request(req);
975 	return -ENOMEM;
976 }
977 
978 /*
979  * Create an RPC task for the given write request and kick it.
980  * The page must have been locked by the caller.
981  *
982  * It may happen that the page we're passed is not marked dirty.
983  * This is the case if nfs_updatepage detects a conflicting request
984  * that has been written but not committed.
985  */
nfs_flush_one(struct nfs_pageio_descriptor * desc)986 static int nfs_flush_one(struct nfs_pageio_descriptor *desc)
987 {
988 	struct nfs_page		*req;
989 	struct page		**pages;
990 	struct nfs_write_data	*data;
991 	struct list_head *head = &desc->pg_list;
992 	struct pnfs_layout_segment *lseg = desc->pg_lseg;
993 	int ret;
994 
995 	data = nfs_writedata_alloc(nfs_page_array_len(desc->pg_base,
996 						      desc->pg_count));
997 	if (!data) {
998 		while (!list_empty(head)) {
999 			req = nfs_list_entry(head->next);
1000 			nfs_list_remove_request(req);
1001 			nfs_redirty_request(req);
1002 		}
1003 		ret = -ENOMEM;
1004 		goto out;
1005 	}
1006 	pages = data->pagevec;
1007 	while (!list_empty(head)) {
1008 		req = nfs_list_entry(head->next);
1009 		nfs_list_remove_request(req);
1010 		nfs_list_add_request(req, &data->pages);
1011 		ClearPageError(req->wb_page);
1012 		*pages++ = req->wb_page;
1013 	}
1014 	req = nfs_list_entry(data->pages.next);
1015 	if ((!lseg) && list_is_singular(&data->pages))
1016 		lseg = pnfs_update_layout(desc->pg_inode, req->wb_context, IOMODE_RW, GFP_NOFS);
1017 
1018 	if ((desc->pg_ioflags & FLUSH_COND_STABLE) &&
1019 	    (desc->pg_moreio || NFS_I(desc->pg_inode)->ncommit))
1020 		desc->pg_ioflags &= ~FLUSH_COND_STABLE;
1021 
1022 	/* Set up the argument struct */
1023 	ret = nfs_write_rpcsetup(req, data, &nfs_write_full_ops, desc->pg_count, 0, lseg, desc->pg_ioflags);
1024 out:
1025 	put_lseg(lseg); /* Cleans any gotten in ->pg_test */
1026 	desc->pg_lseg = NULL;
1027 	return ret;
1028 }
1029 
nfs_pageio_init_write(struct nfs_pageio_descriptor * pgio,struct inode * inode,int ioflags)1030 static void nfs_pageio_init_write(struct nfs_pageio_descriptor *pgio,
1031 				  struct inode *inode, int ioflags)
1032 {
1033 	size_t wsize = NFS_SERVER(inode)->wsize;
1034 
1035 	pnfs_pageio_init_write(pgio, inode);
1036 
1037 	if (wsize < PAGE_CACHE_SIZE)
1038 		nfs_pageio_init(pgio, inode, nfs_flush_multi, wsize, ioflags);
1039 	else
1040 		nfs_pageio_init(pgio, inode, nfs_flush_one, wsize, ioflags);
1041 }
1042 
1043 /*
1044  * Handle a write reply that flushed part of a page.
1045  */
nfs_writeback_done_partial(struct rpc_task * task,void * calldata)1046 static void nfs_writeback_done_partial(struct rpc_task *task, void *calldata)
1047 {
1048 	struct nfs_write_data	*data = calldata;
1049 
1050 	dprintk("NFS: %5u write(%s/%lld %d@%lld)",
1051 		task->tk_pid,
1052 		data->req->wb_context->path.dentry->d_inode->i_sb->s_id,
1053 		(long long)
1054 		  NFS_FILEID(data->req->wb_context->path.dentry->d_inode),
1055 		data->req->wb_bytes, (long long)req_offset(data->req));
1056 
1057 	nfs_writeback_done(task, data);
1058 }
1059 
nfs_writeback_release_partial(void * calldata)1060 static void nfs_writeback_release_partial(void *calldata)
1061 {
1062 	struct nfs_write_data	*data = calldata;
1063 	struct nfs_page		*req = data->req;
1064 	struct page		*page = req->wb_page;
1065 	int status = data->task.tk_status;
1066 
1067 	if (status < 0) {
1068 		nfs_set_pageerror(page);
1069 		nfs_context_set_write_error(req->wb_context, status);
1070 		dprintk(", error = %d\n", status);
1071 		goto out;
1072 	}
1073 
1074 	if (nfs_write_need_commit(data)) {
1075 		struct inode *inode = page->mapping->host;
1076 
1077 		spin_lock(&inode->i_lock);
1078 		if (test_bit(PG_NEED_RESCHED, &req->wb_flags)) {
1079 			/* Do nothing we need to resend the writes */
1080 		} else if (!test_and_set_bit(PG_NEED_COMMIT, &req->wb_flags)) {
1081 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1082 			dprintk(" defer commit\n");
1083 		} else if (memcmp(&req->wb_verf, &data->verf, sizeof(req->wb_verf))) {
1084 			set_bit(PG_NEED_RESCHED, &req->wb_flags);
1085 			clear_bit(PG_NEED_COMMIT, &req->wb_flags);
1086 			dprintk(" server reboot detected\n");
1087 		}
1088 		spin_unlock(&inode->i_lock);
1089 	} else
1090 		dprintk(" OK\n");
1091 
1092 out:
1093 	if (atomic_dec_and_test(&req->wb_complete))
1094 		nfs_writepage_release(req, data);
1095 	nfs_writedata_release(calldata);
1096 }
1097 
1098 #if defined(CONFIG_NFS_V4_1)
nfs_write_prepare(struct rpc_task * task,void * calldata)1099 void nfs_write_prepare(struct rpc_task *task, void *calldata)
1100 {
1101 	struct nfs_write_data *data = calldata;
1102 
1103 	if (nfs4_setup_sequence(NFS_SERVER(data->inode),
1104 				&data->args.seq_args,
1105 				&data->res.seq_res, 1, task))
1106 		return;
1107 	rpc_call_start(task);
1108 }
1109 #endif /* CONFIG_NFS_V4_1 */
1110 
1111 static const struct rpc_call_ops nfs_write_partial_ops = {
1112 #if defined(CONFIG_NFS_V4_1)
1113 	.rpc_call_prepare = nfs_write_prepare,
1114 #endif /* CONFIG_NFS_V4_1 */
1115 	.rpc_call_done = nfs_writeback_done_partial,
1116 	.rpc_release = nfs_writeback_release_partial,
1117 };
1118 
1119 /*
1120  * Handle a write reply that flushes a whole page.
1121  *
1122  * FIXME: There is an inherent race with invalidate_inode_pages and
1123  *	  writebacks since the page->count is kept > 1 for as long
1124  *	  as the page has a write request pending.
1125  */
nfs_writeback_done_full(struct rpc_task * task,void * calldata)1126 static void nfs_writeback_done_full(struct rpc_task *task, void *calldata)
1127 {
1128 	struct nfs_write_data	*data = calldata;
1129 
1130 	nfs_writeback_done(task, data);
1131 }
1132 
nfs_writeback_release_full(void * calldata)1133 static void nfs_writeback_release_full(void *calldata)
1134 {
1135 	struct nfs_write_data	*data = calldata;
1136 	int status = data->task.tk_status;
1137 
1138 	/* Update attributes as result of writeback. */
1139 	while (!list_empty(&data->pages)) {
1140 		struct nfs_page *req = nfs_list_entry(data->pages.next);
1141 		struct page *page = req->wb_page;
1142 
1143 		nfs_list_remove_request(req);
1144 
1145 		dprintk("NFS: %5u write (%s/%lld %d@%lld)",
1146 			data->task.tk_pid,
1147 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1148 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1149 			req->wb_bytes,
1150 			(long long)req_offset(req));
1151 
1152 		if (status < 0) {
1153 			nfs_set_pageerror(page);
1154 			nfs_context_set_write_error(req->wb_context, status);
1155 			dprintk(", error = %d\n", status);
1156 			goto remove_request;
1157 		}
1158 
1159 		if (nfs_write_need_commit(data)) {
1160 			memcpy(&req->wb_verf, &data->verf, sizeof(req->wb_verf));
1161 			nfs_mark_request_commit(req, data->lseg);
1162 			dprintk(" marked for commit\n");
1163 			goto next;
1164 		}
1165 		dprintk(" OK\n");
1166 remove_request:
1167 		nfs_inode_remove_request(req);
1168 	next:
1169 		nfs_clear_page_tag_locked(req);
1170 		nfs_end_page_writeback(page);
1171 	}
1172 	nfs_writedata_release(calldata);
1173 }
1174 
1175 static const struct rpc_call_ops nfs_write_full_ops = {
1176 #if defined(CONFIG_NFS_V4_1)
1177 	.rpc_call_prepare = nfs_write_prepare,
1178 #endif /* CONFIG_NFS_V4_1 */
1179 	.rpc_call_done = nfs_writeback_done_full,
1180 	.rpc_release = nfs_writeback_release_full,
1181 };
1182 
1183 
1184 /*
1185  * This function is called when the WRITE call is complete.
1186  */
nfs_writeback_done(struct rpc_task * task,struct nfs_write_data * data)1187 void nfs_writeback_done(struct rpc_task *task, struct nfs_write_data *data)
1188 {
1189 	struct nfs_writeargs	*argp = &data->args;
1190 	struct nfs_writeres	*resp = &data->res;
1191 	struct nfs_server	*server = NFS_SERVER(data->inode);
1192 	int status;
1193 
1194 	dprintk("NFS: %5u nfs_writeback_done (status %d)\n",
1195 		task->tk_pid, task->tk_status);
1196 
1197 	/*
1198 	 * ->write_done will attempt to use post-op attributes to detect
1199 	 * conflicting writes by other clients.  A strict interpretation
1200 	 * of close-to-open would allow us to continue caching even if
1201 	 * another writer had changed the file, but some applications
1202 	 * depend on tighter cache coherency when writing.
1203 	 */
1204 	status = NFS_PROTO(data->inode)->write_done(task, data);
1205 	if (status != 0)
1206 		return;
1207 	nfs_add_stats(data->inode, NFSIOS_SERVERWRITTENBYTES, resp->count);
1208 
1209 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
1210 	if (resp->verf->committed < argp->stable && task->tk_status >= 0) {
1211 		/* We tried a write call, but the server did not
1212 		 * commit data to stable storage even though we
1213 		 * requested it.
1214 		 * Note: There is a known bug in Tru64 < 5.0 in which
1215 		 *	 the server reports NFS_DATA_SYNC, but performs
1216 		 *	 NFS_FILE_SYNC. We therefore implement this checking
1217 		 *	 as a dprintk() in order to avoid filling syslog.
1218 		 */
1219 		static unsigned long    complain;
1220 
1221 		/* Note this will print the MDS for a DS write */
1222 		if (time_before(complain, jiffies)) {
1223 			dprintk("NFS:       faulty NFS server %s:"
1224 				" (committed = %d) != (stable = %d)\n",
1225 				server->nfs_client->cl_hostname,
1226 				resp->verf->committed, argp->stable);
1227 			complain = jiffies + 300 * HZ;
1228 		}
1229 	}
1230 #endif
1231 	/* Is this a short write? */
1232 	if (task->tk_status >= 0 && resp->count < argp->count) {
1233 		static unsigned long    complain;
1234 
1235 		nfs_inc_stats(data->inode, NFSIOS_SHORTWRITE);
1236 
1237 		/* Has the server at least made some progress? */
1238 		if (resp->count != 0) {
1239 			/* Was this an NFSv2 write or an NFSv3 stable write? */
1240 			if (resp->verf->committed != NFS_UNSTABLE) {
1241 				/* Resend from where the server left off */
1242 				data->mds_offset += resp->count;
1243 				argp->offset += resp->count;
1244 				argp->pgbase += resp->count;
1245 				argp->count -= resp->count;
1246 			} else {
1247 				/* Resend as a stable write in order to avoid
1248 				 * headaches in the case of a server crash.
1249 				 */
1250 				argp->stable = NFS_FILE_SYNC;
1251 			}
1252 			nfs_restart_rpc(task, server->nfs_client);
1253 			return;
1254 		}
1255 		if (time_before(complain, jiffies)) {
1256 			printk(KERN_WARNING
1257 			       "NFS: Server wrote zero bytes, expected %u.\n",
1258 					argp->count);
1259 			complain = jiffies + 300 * HZ;
1260 		}
1261 		/* Can't do anything about it except throw an error. */
1262 		task->tk_status = -EIO;
1263 	}
1264 	return;
1265 }
1266 
1267 
1268 #if defined(CONFIG_NFS_V3) || defined(CONFIG_NFS_V4)
nfs_commit_set_lock(struct nfs_inode * nfsi,int may_wait)1269 static int nfs_commit_set_lock(struct nfs_inode *nfsi, int may_wait)
1270 {
1271 	int ret;
1272 
1273 	if (!test_and_set_bit(NFS_INO_COMMIT, &nfsi->flags))
1274 		return 1;
1275 	if (!may_wait)
1276 		return 0;
1277 	ret = out_of_line_wait_on_bit_lock(&nfsi->flags,
1278 				NFS_INO_COMMIT,
1279 				nfs_wait_bit_killable,
1280 				TASK_KILLABLE);
1281 	return (ret < 0) ? ret : 1;
1282 }
1283 
nfs_commit_clear_lock(struct nfs_inode * nfsi)1284 void nfs_commit_clear_lock(struct nfs_inode *nfsi)
1285 {
1286 	clear_bit(NFS_INO_COMMIT, &nfsi->flags);
1287 	smp_mb__after_clear_bit();
1288 	wake_up_bit(&nfsi->flags, NFS_INO_COMMIT);
1289 }
1290 EXPORT_SYMBOL_GPL(nfs_commit_clear_lock);
1291 
nfs_commitdata_release(void * data)1292 void nfs_commitdata_release(void *data)
1293 {
1294 	struct nfs_write_data *wdata = data;
1295 
1296 	put_lseg(wdata->lseg);
1297 	put_nfs_open_context(wdata->args.context);
1298 	nfs_commit_free(wdata);
1299 }
1300 EXPORT_SYMBOL_GPL(nfs_commitdata_release);
1301 
nfs_initiate_commit(struct nfs_write_data * data,struct rpc_clnt * clnt,const struct rpc_call_ops * call_ops,int how)1302 int nfs_initiate_commit(struct nfs_write_data *data, struct rpc_clnt *clnt,
1303 			const struct rpc_call_ops *call_ops,
1304 			int how)
1305 {
1306 	struct rpc_task *task;
1307 	int priority = flush_task_priority(how);
1308 	struct rpc_message msg = {
1309 		.rpc_argp = &data->args,
1310 		.rpc_resp = &data->res,
1311 		.rpc_cred = data->cred,
1312 	};
1313 	struct rpc_task_setup task_setup_data = {
1314 		.task = &data->task,
1315 		.rpc_client = clnt,
1316 		.rpc_message = &msg,
1317 		.callback_ops = call_ops,
1318 		.callback_data = data,
1319 		.workqueue = nfsiod_workqueue,
1320 		.flags = RPC_TASK_ASYNC,
1321 		.priority = priority,
1322 	};
1323 	/* Set up the initial task struct.  */
1324 	NFS_PROTO(data->inode)->commit_setup(data, &msg);
1325 
1326 	dprintk("NFS: %5u initiated commit call\n", data->task.tk_pid);
1327 
1328 	task = rpc_run_task(&task_setup_data);
1329 	if (IS_ERR(task))
1330 		return PTR_ERR(task);
1331 	if (how & FLUSH_SYNC)
1332 		rpc_wait_for_completion_task(task);
1333 	rpc_put_task(task);
1334 	return 0;
1335 }
1336 EXPORT_SYMBOL_GPL(nfs_initiate_commit);
1337 
1338 /*
1339  * Set up the argument/result storage required for the RPC call.
1340  */
nfs_init_commit(struct nfs_write_data * data,struct list_head * head,struct pnfs_layout_segment * lseg)1341 void nfs_init_commit(struct nfs_write_data *data,
1342 			    struct list_head *head,
1343 			    struct pnfs_layout_segment *lseg)
1344 {
1345 	struct nfs_page *first = nfs_list_entry(head->next);
1346 	struct inode *inode = first->wb_context->path.dentry->d_inode;
1347 
1348 	/* Set up the RPC argument and reply structs
1349 	 * NB: take care not to mess about with data->commit et al. */
1350 
1351 	list_splice_init(head, &data->pages);
1352 
1353 	data->inode	  = inode;
1354 	data->cred	  = first->wb_context->cred;
1355 	data->lseg	  = lseg; /* reference transferred */
1356 	data->mds_ops     = &nfs_commit_ops;
1357 
1358 	data->args.fh     = NFS_FH(data->inode);
1359 	/* Note: we always request a commit of the entire inode */
1360 	data->args.offset = 0;
1361 	data->args.count  = 0;
1362 	data->args.context = get_nfs_open_context(first->wb_context);
1363 	data->res.count   = 0;
1364 	data->res.fattr   = &data->fattr;
1365 	data->res.verf    = &data->verf;
1366 	nfs_fattr_init(&data->fattr);
1367 }
1368 EXPORT_SYMBOL_GPL(nfs_init_commit);
1369 
nfs_retry_commit(struct list_head * page_list,struct pnfs_layout_segment * lseg)1370 void nfs_retry_commit(struct list_head *page_list,
1371 		      struct pnfs_layout_segment *lseg)
1372 {
1373 	struct nfs_page *req;
1374 
1375 	while (!list_empty(page_list)) {
1376 		req = nfs_list_entry(page_list->next);
1377 		nfs_list_remove_request(req);
1378 		nfs_mark_request_commit(req, lseg);
1379 		dec_zone_page_state(req->wb_page, NR_UNSTABLE_NFS);
1380 		dec_bdi_stat(req->wb_page->mapping->backing_dev_info,
1381 			     BDI_RECLAIMABLE);
1382 		nfs_clear_page_tag_locked(req);
1383 	}
1384 }
1385 EXPORT_SYMBOL_GPL(nfs_retry_commit);
1386 
1387 /*
1388  * Commit dirty pages
1389  */
1390 static int
nfs_commit_list(struct inode * inode,struct list_head * head,int how)1391 nfs_commit_list(struct inode *inode, struct list_head *head, int how)
1392 {
1393 	struct nfs_write_data	*data;
1394 
1395 	data = nfs_commitdata_alloc();
1396 
1397 	if (!data)
1398 		goto out_bad;
1399 
1400 	/* Set up the argument struct */
1401 	nfs_init_commit(data, head, NULL);
1402 	return nfs_initiate_commit(data, NFS_CLIENT(inode), data->mds_ops, how);
1403  out_bad:
1404 	nfs_retry_commit(head, NULL);
1405 	nfs_commit_clear_lock(NFS_I(inode));
1406 	return -ENOMEM;
1407 }
1408 
1409 /*
1410  * COMMIT call returned
1411  */
nfs_commit_done(struct rpc_task * task,void * calldata)1412 static void nfs_commit_done(struct rpc_task *task, void *calldata)
1413 {
1414 	struct nfs_write_data	*data = calldata;
1415 
1416         dprintk("NFS: %5u nfs_commit_done (status %d)\n",
1417                                 task->tk_pid, task->tk_status);
1418 
1419 	/* Call the NFS version-specific code */
1420 	NFS_PROTO(data->inode)->commit_done(task, data);
1421 }
1422 
nfs_commit_release_pages(struct nfs_write_data * data)1423 void nfs_commit_release_pages(struct nfs_write_data *data)
1424 {
1425 	struct nfs_page	*req;
1426 	int status = data->task.tk_status;
1427 
1428 	while (!list_empty(&data->pages)) {
1429 		req = nfs_list_entry(data->pages.next);
1430 		nfs_list_remove_request(req);
1431 		nfs_clear_request_commit(req);
1432 
1433 		dprintk("NFS:       commit (%s/%lld %d@%lld)",
1434 			req->wb_context->path.dentry->d_inode->i_sb->s_id,
1435 			(long long)NFS_FILEID(req->wb_context->path.dentry->d_inode),
1436 			req->wb_bytes,
1437 			(long long)req_offset(req));
1438 		if (status < 0) {
1439 			nfs_context_set_write_error(req->wb_context, status);
1440 			nfs_inode_remove_request(req);
1441 			dprintk(", error = %d\n", status);
1442 			goto next;
1443 		}
1444 
1445 		/* Okay, COMMIT succeeded, apparently. Check the verifier
1446 		 * returned by the server against all stored verfs. */
1447 		if (!memcmp(req->wb_verf.verifier, data->verf.verifier, sizeof(data->verf.verifier))) {
1448 			/* We have a match */
1449 			nfs_inode_remove_request(req);
1450 			dprintk(" OK\n");
1451 			goto next;
1452 		}
1453 		/* We have a mismatch. Write the page again */
1454 		dprintk(" mismatch\n");
1455 		nfs_mark_request_dirty(req);
1456 	next:
1457 		nfs_clear_page_tag_locked(req);
1458 	}
1459 }
1460 EXPORT_SYMBOL_GPL(nfs_commit_release_pages);
1461 
nfs_commit_release(void * calldata)1462 static void nfs_commit_release(void *calldata)
1463 {
1464 	struct nfs_write_data *data = calldata;
1465 
1466 	nfs_commit_release_pages(data);
1467 	nfs_commit_clear_lock(NFS_I(data->inode));
1468 	nfs_commitdata_release(calldata);
1469 }
1470 
1471 static const struct rpc_call_ops nfs_commit_ops = {
1472 #if defined(CONFIG_NFS_V4_1)
1473 	.rpc_call_prepare = nfs_write_prepare,
1474 #endif /* CONFIG_NFS_V4_1 */
1475 	.rpc_call_done = nfs_commit_done,
1476 	.rpc_release = nfs_commit_release,
1477 };
1478 
nfs_commit_inode(struct inode * inode,int how)1479 int nfs_commit_inode(struct inode *inode, int how)
1480 {
1481 	LIST_HEAD(head);
1482 	int may_wait = how & FLUSH_SYNC;
1483 	int res;
1484 
1485 	res = nfs_commit_set_lock(NFS_I(inode), may_wait);
1486 	if (res <= 0)
1487 		goto out_mark_dirty;
1488 	res = nfs_scan_commit(inode, &head, 0, 0);
1489 	if (res) {
1490 		int error;
1491 
1492 		error = pnfs_commit_list(inode, &head, how);
1493 		if (error == PNFS_NOT_ATTEMPTED)
1494 			error = nfs_commit_list(inode, &head, how);
1495 		if (error < 0)
1496 			return error;
1497 		if (!may_wait)
1498 			goto out_mark_dirty;
1499 		error = wait_on_bit(&NFS_I(inode)->flags,
1500 				NFS_INO_COMMIT,
1501 				nfs_wait_bit_killable,
1502 				TASK_KILLABLE);
1503 		if (error < 0)
1504 			return error;
1505 	} else
1506 		nfs_commit_clear_lock(NFS_I(inode));
1507 	return res;
1508 	/* Note: If we exit without ensuring that the commit is complete,
1509 	 * we must mark the inode as dirty. Otherwise, future calls to
1510 	 * sync_inode() with the WB_SYNC_ALL flag set will fail to ensure
1511 	 * that the data is on the disk.
1512 	 */
1513 out_mark_dirty:
1514 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1515 	return res;
1516 }
1517 
nfs_commit_unstable_pages(struct inode * inode,struct writeback_control * wbc)1518 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1519 {
1520 	struct nfs_inode *nfsi = NFS_I(inode);
1521 	int flags = FLUSH_SYNC;
1522 	int ret = 0;
1523 
1524 	if (wbc->sync_mode == WB_SYNC_NONE) {
1525 		/* Don't commit yet if this is a non-blocking flush and there
1526 		 * are a lot of outstanding writes for this mapping.
1527 		 */
1528 		if (nfsi->ncommit <= (nfsi->npages >> 1))
1529 			goto out_mark_dirty;
1530 
1531 		/* don't wait for the COMMIT response */
1532 		flags = 0;
1533 	}
1534 
1535 	ret = nfs_commit_inode(inode, flags);
1536 	if (ret >= 0) {
1537 		if (wbc->sync_mode == WB_SYNC_NONE) {
1538 			if (ret < wbc->nr_to_write)
1539 				wbc->nr_to_write -= ret;
1540 			else
1541 				wbc->nr_to_write = 0;
1542 		}
1543 		return 0;
1544 	}
1545 out_mark_dirty:
1546 	__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1547 	return ret;
1548 }
1549 #else
nfs_commit_unstable_pages(struct inode * inode,struct writeback_control * wbc)1550 static int nfs_commit_unstable_pages(struct inode *inode, struct writeback_control *wbc)
1551 {
1552 	return 0;
1553 }
1554 #endif
1555 
nfs_write_inode(struct inode * inode,struct writeback_control * wbc)1556 int nfs_write_inode(struct inode *inode, struct writeback_control *wbc)
1557 {
1558 	int ret;
1559 
1560 	ret = nfs_commit_unstable_pages(inode, wbc);
1561 	if (ret >= 0 && test_bit(NFS_INO_LAYOUTCOMMIT, &NFS_I(inode)->flags)) {
1562 		int status;
1563 		bool sync = true;
1564 
1565 		if (wbc->sync_mode == WB_SYNC_NONE || wbc->nonblocking ||
1566 		    wbc->for_background)
1567 			sync = false;
1568 
1569 		status = pnfs_layoutcommit_inode(inode, sync);
1570 		if (status < 0)
1571 			return status;
1572 	}
1573 	return ret;
1574 }
1575 
1576 /*
1577  * flush the inode to disk.
1578  */
nfs_wb_all(struct inode * inode)1579 int nfs_wb_all(struct inode *inode)
1580 {
1581 	struct writeback_control wbc = {
1582 		.sync_mode = WB_SYNC_ALL,
1583 		.nr_to_write = LONG_MAX,
1584 		.range_start = 0,
1585 		.range_end = LLONG_MAX,
1586 	};
1587 
1588 	return sync_inode(inode, &wbc);
1589 }
1590 
nfs_wb_page_cancel(struct inode * inode,struct page * page)1591 int nfs_wb_page_cancel(struct inode *inode, struct page *page)
1592 {
1593 	struct nfs_page *req;
1594 	int ret = 0;
1595 
1596 	BUG_ON(!PageLocked(page));
1597 	for (;;) {
1598 		wait_on_page_writeback(page);
1599 		req = nfs_page_find_request(page);
1600 		if (req == NULL)
1601 			break;
1602 		if (nfs_lock_request_dontget(req)) {
1603 			nfs_inode_remove_request(req);
1604 			/*
1605 			 * In case nfs_inode_remove_request has marked the
1606 			 * page as being dirty
1607 			 */
1608 			cancel_dirty_page(page, PAGE_CACHE_SIZE);
1609 			nfs_unlock_request(req);
1610 			break;
1611 		}
1612 		ret = nfs_wait_on_request(req);
1613 		nfs_release_request(req);
1614 		if (ret < 0)
1615 			break;
1616 	}
1617 	return ret;
1618 }
1619 
1620 /*
1621  * Write back all requests on one page - we do this before reading it.
1622  */
nfs_wb_page(struct inode * inode,struct page * page)1623 int nfs_wb_page(struct inode *inode, struct page *page)
1624 {
1625 	loff_t range_start = page_offset(page);
1626 	loff_t range_end = range_start + (loff_t)(PAGE_CACHE_SIZE - 1);
1627 	struct writeback_control wbc = {
1628 		.sync_mode = WB_SYNC_ALL,
1629 		.nr_to_write = 0,
1630 		.range_start = range_start,
1631 		.range_end = range_end,
1632 	};
1633 	int ret;
1634 
1635 	for (;;) {
1636 		wait_on_page_writeback(page);
1637 		if (clear_page_dirty_for_io(page)) {
1638 			ret = nfs_writepage_locked(page, &wbc);
1639 			if (ret < 0)
1640 				goto out_error;
1641 			continue;
1642 		}
1643 		if (!PagePrivate(page))
1644 			break;
1645 		ret = nfs_commit_inode(inode, FLUSH_SYNC);
1646 		if (ret < 0)
1647 			goto out_error;
1648 	}
1649 	return 0;
1650 out_error:
1651 	return ret;
1652 }
1653 
1654 #ifdef CONFIG_MIGRATION
nfs_migrate_page(struct address_space * mapping,struct page * newpage,struct page * page)1655 int nfs_migrate_page(struct address_space *mapping, struct page *newpage,
1656 		struct page *page)
1657 {
1658 	struct nfs_page *req;
1659 	int ret;
1660 
1661 	nfs_fscache_release_page(page, GFP_KERNEL);
1662 
1663 	req = nfs_find_and_lock_request(page, false);
1664 	ret = PTR_ERR(req);
1665 	if (IS_ERR(req))
1666 		goto out;
1667 
1668 	ret = migrate_page(mapping, newpage, page);
1669 	if (!req)
1670 		goto out;
1671 	if (ret)
1672 		goto out_unlock;
1673 	page_cache_get(newpage);
1674 	spin_lock(&mapping->host->i_lock);
1675 	req->wb_page = newpage;
1676 	SetPagePrivate(newpage);
1677 	set_page_private(newpage, (unsigned long)req);
1678 	ClearPagePrivate(page);
1679 	set_page_private(page, 0);
1680 	spin_unlock(&mapping->host->i_lock);
1681 	page_cache_release(page);
1682 out_unlock:
1683 	nfs_clear_page_tag_locked(req);
1684 out:
1685 	return ret;
1686 }
1687 #endif
1688 
nfs_init_writepagecache(void)1689 int __init nfs_init_writepagecache(void)
1690 {
1691 	nfs_wdata_cachep = kmem_cache_create("nfs_write_data",
1692 					     sizeof(struct nfs_write_data),
1693 					     0, SLAB_HWCACHE_ALIGN,
1694 					     NULL);
1695 	if (nfs_wdata_cachep == NULL)
1696 		return -ENOMEM;
1697 
1698 	nfs_wdata_mempool = mempool_create_slab_pool(MIN_POOL_WRITE,
1699 						     nfs_wdata_cachep);
1700 	if (nfs_wdata_mempool == NULL)
1701 		return -ENOMEM;
1702 
1703 	nfs_commit_mempool = mempool_create_slab_pool(MIN_POOL_COMMIT,
1704 						      nfs_wdata_cachep);
1705 	if (nfs_commit_mempool == NULL)
1706 		return -ENOMEM;
1707 
1708 	/*
1709 	 * NFS congestion size, scale with available memory.
1710 	 *
1711 	 *  64MB:    8192k
1712 	 * 128MB:   11585k
1713 	 * 256MB:   16384k
1714 	 * 512MB:   23170k
1715 	 *   1GB:   32768k
1716 	 *   2GB:   46340k
1717 	 *   4GB:   65536k
1718 	 *   8GB:   92681k
1719 	 *  16GB:  131072k
1720 	 *
1721 	 * This allows larger machines to have larger/more transfers.
1722 	 * Limit the default to 256M
1723 	 */
1724 	nfs_congestion_kb = (16*int_sqrt(totalram_pages)) << (PAGE_SHIFT-10);
1725 	if (nfs_congestion_kb > 256*1024)
1726 		nfs_congestion_kb = 256*1024;
1727 
1728 	return 0;
1729 }
1730 
nfs_destroy_writepagecache(void)1731 void nfs_destroy_writepagecache(void)
1732 {
1733 	mempool_destroy(nfs_commit_mempool);
1734 	mempool_destroy(nfs_wdata_mempool);
1735 	kmem_cache_destroy(nfs_wdata_cachep);
1736 }
1737 
1738