1 /*
2 * linux/fs/nfs/file.c
3 *
4 * Copyright (C) 1992 Rick Sladkey
5 *
6 * Changes Copyright (C) 1994 by Florian La Roche
7 * - Do not copy data too often around in the kernel.
8 * - In nfs_file_read the return value of kmalloc wasn't checked.
9 * - Put in a better version of read look-ahead buffering. Original idea
10 * and implementation by Wai S Kok elekokws@ee.nus.sg.
11 *
12 * Expire cache on write to a file by Wai S Kok (Oct 1994).
13 *
14 * Total rewrite of read side for new NFS buffer cache.. Linus.
15 *
16 * nfs regular file handling functions
17 */
18
19 #include <linux/time.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/fcntl.h>
23 #include <linux/stat.h>
24 #include <linux/nfs_fs.h>
25 #include <linux/nfs_mount.h>
26 #include <linux/mm.h>
27 #include <linux/pagemap.h>
28 #include <linux/aio.h>
29 #include <linux/gfp.h>
30 #include <linux/swap.h>
31
32 #include <asm/uaccess.h>
33 #include <asm/system.h>
34
35 #include "delegation.h"
36 #include "internal.h"
37 #include "iostat.h"
38 #include "fscache.h"
39 #include "pnfs.h"
40
41 #define NFSDBG_FACILITY NFSDBG_FILE
42
43 static int nfs_file_open(struct inode *, struct file *);
44 static int nfs_file_release(struct inode *, struct file *);
45 static loff_t nfs_file_llseek(struct file *file, loff_t offset, int origin);
46 static int nfs_file_mmap(struct file *, struct vm_area_struct *);
47 static ssize_t nfs_file_splice_read(struct file *filp, loff_t *ppos,
48 struct pipe_inode_info *pipe,
49 size_t count, unsigned int flags);
50 static ssize_t nfs_file_read(struct kiocb *, const struct iovec *iov,
51 unsigned long nr_segs, loff_t pos);
52 static ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe,
53 struct file *filp, loff_t *ppos,
54 size_t count, unsigned int flags);
55 static ssize_t nfs_file_write(struct kiocb *, const struct iovec *iov,
56 unsigned long nr_segs, loff_t pos);
57 static int nfs_file_flush(struct file *, fl_owner_t id);
58 static int nfs_file_fsync(struct file *, int datasync);
59 static int nfs_check_flags(int flags);
60 static int nfs_lock(struct file *filp, int cmd, struct file_lock *fl);
61 static int nfs_flock(struct file *filp, int cmd, struct file_lock *fl);
62 static int nfs_setlease(struct file *file, long arg, struct file_lock **fl);
63
64 static const struct vm_operations_struct nfs_file_vm_ops;
65
66 const struct file_operations nfs_file_operations = {
67 .llseek = nfs_file_llseek,
68 .read = do_sync_read,
69 .write = do_sync_write,
70 .aio_read = nfs_file_read,
71 .aio_write = nfs_file_write,
72 .mmap = nfs_file_mmap,
73 .open = nfs_file_open,
74 .flush = nfs_file_flush,
75 .release = nfs_file_release,
76 .fsync = nfs_file_fsync,
77 .lock = nfs_lock,
78 .flock = nfs_flock,
79 .splice_read = nfs_file_splice_read,
80 .splice_write = nfs_file_splice_write,
81 .check_flags = nfs_check_flags,
82 .setlease = nfs_setlease,
83 };
84
85 const struct inode_operations nfs_file_inode_operations = {
86 .permission = nfs_permission,
87 .getattr = nfs_getattr,
88 .setattr = nfs_setattr,
89 };
90
91 #ifdef CONFIG_NFS_V3
92 const struct inode_operations nfs3_file_inode_operations = {
93 .permission = nfs_permission,
94 .getattr = nfs_getattr,
95 .setattr = nfs_setattr,
96 .listxattr = nfs3_listxattr,
97 .getxattr = nfs3_getxattr,
98 .setxattr = nfs3_setxattr,
99 .removexattr = nfs3_removexattr,
100 };
101 #endif /* CONFIG_NFS_v3 */
102
103 /* Hack for future NFS swap support */
104 #ifndef IS_SWAPFILE
105 # define IS_SWAPFILE(inode) (0)
106 #endif
107
nfs_check_flags(int flags)108 static int nfs_check_flags(int flags)
109 {
110 if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
111 return -EINVAL;
112
113 return 0;
114 }
115
116 /*
117 * Open file
118 */
119 static int
nfs_file_open(struct inode * inode,struct file * filp)120 nfs_file_open(struct inode *inode, struct file *filp)
121 {
122 int res;
123
124 dprintk("NFS: open file(%s/%s)\n",
125 filp->f_path.dentry->d_parent->d_name.name,
126 filp->f_path.dentry->d_name.name);
127
128 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
129 res = nfs_check_flags(filp->f_flags);
130 if (res)
131 return res;
132
133 res = nfs_open(inode, filp);
134 return res;
135 }
136
137 static int
nfs_file_release(struct inode * inode,struct file * filp)138 nfs_file_release(struct inode *inode, struct file *filp)
139 {
140 struct dentry *dentry = filp->f_path.dentry;
141
142 dprintk("NFS: release(%s/%s)\n",
143 dentry->d_parent->d_name.name,
144 dentry->d_name.name);
145
146 nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
147 return nfs_release(inode, filp);
148 }
149
150 /**
151 * nfs_revalidate_size - Revalidate the file size
152 * @inode - pointer to inode struct
153 * @file - pointer to struct file
154 *
155 * Revalidates the file length. This is basically a wrapper around
156 * nfs_revalidate_inode() that takes into account the fact that we may
157 * have cached writes (in which case we don't care about the server's
158 * idea of what the file length is), or O_DIRECT (in which case we
159 * shouldn't trust the cache).
160 */
nfs_revalidate_file_size(struct inode * inode,struct file * filp)161 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
162 {
163 struct nfs_server *server = NFS_SERVER(inode);
164 struct nfs_inode *nfsi = NFS_I(inode);
165
166 if (nfs_have_delegated_attributes(inode))
167 goto out_noreval;
168
169 if (filp->f_flags & O_DIRECT)
170 goto force_reval;
171 if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
172 goto force_reval;
173 if (nfs_attribute_timeout(inode))
174 goto force_reval;
175 out_noreval:
176 return 0;
177 force_reval:
178 return __nfs_revalidate_inode(server, inode);
179 }
180
nfs_file_llseek(struct file * filp,loff_t offset,int origin)181 static loff_t nfs_file_llseek(struct file *filp, loff_t offset, int origin)
182 {
183 loff_t loff;
184
185 dprintk("NFS: llseek file(%s/%s, %lld, %d)\n",
186 filp->f_path.dentry->d_parent->d_name.name,
187 filp->f_path.dentry->d_name.name,
188 offset, origin);
189
190 /* origin == SEEK_END => we must revalidate the cached file length */
191 if (origin == SEEK_END) {
192 struct inode *inode = filp->f_mapping->host;
193
194 int retval = nfs_revalidate_file_size(inode, filp);
195 if (retval < 0)
196 return (loff_t)retval;
197
198 spin_lock(&inode->i_lock);
199 loff = generic_file_llseek_unlocked(filp, offset, origin);
200 spin_unlock(&inode->i_lock);
201 } else
202 loff = generic_file_llseek_unlocked(filp, offset, origin);
203 return loff;
204 }
205
206 /*
207 * Flush all dirty pages, and check for write errors.
208 */
209 static int
nfs_file_flush(struct file * file,fl_owner_t id)210 nfs_file_flush(struct file *file, fl_owner_t id)
211 {
212 struct dentry *dentry = file->f_path.dentry;
213 struct inode *inode = dentry->d_inode;
214
215 dprintk("NFS: flush(%s/%s)\n",
216 dentry->d_parent->d_name.name,
217 dentry->d_name.name);
218
219 nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
220 if ((file->f_mode & FMODE_WRITE) == 0)
221 return 0;
222
223 /* Flush writes to the server and return any errors */
224 return vfs_fsync(file, 0);
225 }
226
227 static ssize_t
nfs_file_read(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)228 nfs_file_read(struct kiocb *iocb, const struct iovec *iov,
229 unsigned long nr_segs, loff_t pos)
230 {
231 struct dentry * dentry = iocb->ki_filp->f_path.dentry;
232 struct inode * inode = dentry->d_inode;
233 ssize_t result;
234 size_t count = iov_length(iov, nr_segs);
235
236 if (iocb->ki_filp->f_flags & O_DIRECT)
237 return nfs_file_direct_read(iocb, iov, nr_segs, pos);
238
239 dprintk("NFS: read(%s/%s, %lu@%lu)\n",
240 dentry->d_parent->d_name.name, dentry->d_name.name,
241 (unsigned long) count, (unsigned long) pos);
242
243 result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
244 if (!result) {
245 result = generic_file_aio_read(iocb, iov, nr_segs, pos);
246 if (result > 0)
247 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
248 }
249 return result;
250 }
251
252 static ssize_t
nfs_file_splice_read(struct file * filp,loff_t * ppos,struct pipe_inode_info * pipe,size_t count,unsigned int flags)253 nfs_file_splice_read(struct file *filp, loff_t *ppos,
254 struct pipe_inode_info *pipe, size_t count,
255 unsigned int flags)
256 {
257 struct dentry *dentry = filp->f_path.dentry;
258 struct inode *inode = dentry->d_inode;
259 ssize_t res;
260
261 dprintk("NFS: splice_read(%s/%s, %lu@%Lu)\n",
262 dentry->d_parent->d_name.name, dentry->d_name.name,
263 (unsigned long) count, (unsigned long long) *ppos);
264
265 res = nfs_revalidate_mapping(inode, filp->f_mapping);
266 if (!res) {
267 res = generic_file_splice_read(filp, ppos, pipe, count, flags);
268 if (res > 0)
269 nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
270 }
271 return res;
272 }
273
274 static int
nfs_file_mmap(struct file * file,struct vm_area_struct * vma)275 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
276 {
277 struct dentry *dentry = file->f_path.dentry;
278 struct inode *inode = dentry->d_inode;
279 int status;
280
281 dprintk("NFS: mmap(%s/%s)\n",
282 dentry->d_parent->d_name.name, dentry->d_name.name);
283
284 /* Note: generic_file_mmap() returns ENOSYS on nommu systems
285 * so we call that before revalidating the mapping
286 */
287 status = generic_file_mmap(file, vma);
288 if (!status) {
289 vma->vm_ops = &nfs_file_vm_ops;
290 status = nfs_revalidate_mapping(inode, file->f_mapping);
291 }
292 return status;
293 }
294
295 /*
296 * Flush any dirty pages for this process, and check for write errors.
297 * The return status from this call provides a reliable indication of
298 * whether any write errors occurred for this process.
299 *
300 * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
301 * disk, but it retrieves and clears ctx->error after synching, despite
302 * the two being set at the same time in nfs_context_set_write_error().
303 * This is because the former is used to notify the _next_ call to
304 * nfs_file_write() that a write error occurred, and hence cause it to
305 * fall back to doing a synchronous write.
306 */
307 static int
nfs_file_fsync(struct file * file,int datasync)308 nfs_file_fsync(struct file *file, int datasync)
309 {
310 struct dentry *dentry = file->f_path.dentry;
311 struct nfs_open_context *ctx = nfs_file_open_context(file);
312 struct inode *inode = dentry->d_inode;
313 int have_error, status;
314 int ret = 0;
315
316
317 dprintk("NFS: fsync file(%s/%s) datasync %d\n",
318 dentry->d_parent->d_name.name, dentry->d_name.name,
319 datasync);
320
321 nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
322 have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
323 status = nfs_commit_inode(inode, FLUSH_SYNC);
324 have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
325 if (have_error)
326 ret = xchg(&ctx->error, 0);
327 if (!ret && status < 0)
328 ret = status;
329 if (!ret && !datasync)
330 /* application has asked for meta-data sync */
331 ret = pnfs_layoutcommit_inode(inode, true);
332 return ret;
333 }
334
335 /*
336 * Decide whether a read/modify/write cycle may be more efficient
337 * then a modify/write/read cycle when writing to a page in the
338 * page cache.
339 *
340 * The modify/write/read cycle may occur if a page is read before
341 * being completely filled by the writer. In this situation, the
342 * page must be completely written to stable storage on the server
343 * before it can be refilled by reading in the page from the server.
344 * This can lead to expensive, small, FILE_SYNC mode writes being
345 * done.
346 *
347 * It may be more efficient to read the page first if the file is
348 * open for reading in addition to writing, the page is not marked
349 * as Uptodate, it is not dirty or waiting to be committed,
350 * indicating that it was previously allocated and then modified,
351 * that there were valid bytes of data in that range of the file,
352 * and that the new data won't completely replace the old data in
353 * that range of the file.
354 */
nfs_want_read_modify_write(struct file * file,struct page * page,loff_t pos,unsigned len)355 static int nfs_want_read_modify_write(struct file *file, struct page *page,
356 loff_t pos, unsigned len)
357 {
358 unsigned int pglen = nfs_page_length(page);
359 unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
360 unsigned int end = offset + len;
361
362 if ((file->f_mode & FMODE_READ) && /* open for read? */
363 !PageUptodate(page) && /* Uptodate? */
364 !PagePrivate(page) && /* i/o request already? */
365 pglen && /* valid bytes of file? */
366 (end < pglen || offset)) /* replace all valid bytes? */
367 return 1;
368 return 0;
369 }
370
371 /*
372 * This does the "real" work of the write. We must allocate and lock the
373 * page to be sent back to the generic routine, which then copies the
374 * data from user space.
375 *
376 * If the writer ends up delaying the write, the writer needs to
377 * increment the page use counts until he is done with the page.
378 */
nfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)379 static int nfs_write_begin(struct file *file, struct address_space *mapping,
380 loff_t pos, unsigned len, unsigned flags,
381 struct page **pagep, void **fsdata)
382 {
383 int ret;
384 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
385 struct page *page;
386 int once_thru = 0;
387
388 dfprintk(PAGECACHE, "NFS: write_begin(%s/%s(%ld), %u@%lld)\n",
389 file->f_path.dentry->d_parent->d_name.name,
390 file->f_path.dentry->d_name.name,
391 mapping->host->i_ino, len, (long long) pos);
392
393 start:
394 /*
395 * Prevent starvation issues if someone is doing a consistency
396 * sync-to-disk
397 */
398 ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
399 nfs_wait_bit_killable, TASK_KILLABLE);
400 if (ret)
401 return ret;
402
403 page = grab_cache_page_write_begin(mapping, index, flags);
404 if (!page)
405 return -ENOMEM;
406 *pagep = page;
407
408 ret = nfs_flush_incompatible(file, page);
409 if (ret) {
410 unlock_page(page);
411 page_cache_release(page);
412 } else if (!once_thru &&
413 nfs_want_read_modify_write(file, page, pos, len)) {
414 once_thru = 1;
415 ret = nfs_readpage(file, page);
416 page_cache_release(page);
417 if (!ret)
418 goto start;
419 }
420 return ret;
421 }
422
nfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)423 static int nfs_write_end(struct file *file, struct address_space *mapping,
424 loff_t pos, unsigned len, unsigned copied,
425 struct page *page, void *fsdata)
426 {
427 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
428 int status;
429
430 dfprintk(PAGECACHE, "NFS: write_end(%s/%s(%ld), %u@%lld)\n",
431 file->f_path.dentry->d_parent->d_name.name,
432 file->f_path.dentry->d_name.name,
433 mapping->host->i_ino, len, (long long) pos);
434
435 /*
436 * Zero any uninitialised parts of the page, and then mark the page
437 * as up to date if it turns out that we're extending the file.
438 */
439 if (!PageUptodate(page)) {
440 unsigned pglen = nfs_page_length(page);
441 unsigned end = offset + len;
442
443 if (pglen == 0) {
444 zero_user_segments(page, 0, offset,
445 end, PAGE_CACHE_SIZE);
446 SetPageUptodate(page);
447 } else if (end >= pglen) {
448 zero_user_segment(page, end, PAGE_CACHE_SIZE);
449 if (offset == 0)
450 SetPageUptodate(page);
451 } else
452 zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
453 }
454
455 status = nfs_updatepage(file, page, offset, copied);
456
457 unlock_page(page);
458 page_cache_release(page);
459
460 if (status < 0)
461 return status;
462 return copied;
463 }
464
465 /*
466 * Partially or wholly invalidate a page
467 * - Release the private state associated with a page if undergoing complete
468 * page invalidation
469 * - Called if either PG_private or PG_fscache is set on the page
470 * - Caller holds page lock
471 */
nfs_invalidate_page(struct page * page,unsigned long offset)472 static void nfs_invalidate_page(struct page *page, unsigned long offset)
473 {
474 dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %lu)\n", page, offset);
475
476 if (offset != 0)
477 return;
478 /* Cancel any unstarted writes on this page */
479 nfs_wb_page_cancel(page->mapping->host, page);
480
481 nfs_fscache_invalidate_page(page, page->mapping->host);
482 }
483
484 /*
485 * Attempt to release the private state associated with a page
486 * - Called if either PG_private or PG_fscache is set on the page
487 * - Caller holds page lock
488 * - Return true (may release page) or false (may not)
489 */
nfs_release_page(struct page * page,gfp_t gfp)490 static int nfs_release_page(struct page *page, gfp_t gfp)
491 {
492 struct address_space *mapping = page->mapping;
493
494 dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
495
496 /* Only do I/O if gfp is a superset of GFP_KERNEL */
497 if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL) {
498 int how = FLUSH_SYNC;
499
500 /* Don't let kswapd deadlock waiting for OOM RPC calls */
501 if (current_is_kswapd())
502 how = 0;
503 nfs_commit_inode(mapping->host, how);
504 }
505 /* If PagePrivate() is set, then the page is not freeable */
506 if (PagePrivate(page))
507 return 0;
508 return nfs_fscache_release_page(page, gfp);
509 }
510
511 /*
512 * Attempt to clear the private state associated with a page when an error
513 * occurs that requires the cached contents of an inode to be written back or
514 * destroyed
515 * - Called if either PG_private or fscache is set on the page
516 * - Caller holds page lock
517 * - Return 0 if successful, -error otherwise
518 */
nfs_launder_page(struct page * page)519 static int nfs_launder_page(struct page *page)
520 {
521 struct inode *inode = page->mapping->host;
522 struct nfs_inode *nfsi = NFS_I(inode);
523
524 dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
525 inode->i_ino, (long long)page_offset(page));
526
527 nfs_fscache_wait_on_page_write(nfsi, page);
528 return nfs_wb_page(inode, page);
529 }
530
531 const struct address_space_operations nfs_file_aops = {
532 .readpage = nfs_readpage,
533 .readpages = nfs_readpages,
534 .set_page_dirty = __set_page_dirty_nobuffers,
535 .writepage = nfs_writepage,
536 .writepages = nfs_writepages,
537 .write_begin = nfs_write_begin,
538 .write_end = nfs_write_end,
539 .invalidatepage = nfs_invalidate_page,
540 .releasepage = nfs_release_page,
541 .direct_IO = nfs_direct_IO,
542 .migratepage = nfs_migrate_page,
543 .launder_page = nfs_launder_page,
544 .error_remove_page = generic_error_remove_page,
545 };
546
547 /*
548 * Notification that a PTE pointing to an NFS page is about to be made
549 * writable, implying that someone is about to modify the page through a
550 * shared-writable mapping
551 */
nfs_vm_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)552 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
553 {
554 struct page *page = vmf->page;
555 struct file *filp = vma->vm_file;
556 struct dentry *dentry = filp->f_path.dentry;
557 unsigned pagelen;
558 int ret = VM_FAULT_NOPAGE;
559 struct address_space *mapping;
560
561 dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%s/%s(%ld), offset %lld)\n",
562 dentry->d_parent->d_name.name, dentry->d_name.name,
563 filp->f_mapping->host->i_ino,
564 (long long)page_offset(page));
565
566 /* make sure the cache has finished storing the page */
567 nfs_fscache_wait_on_page_write(NFS_I(dentry->d_inode), page);
568
569 lock_page(page);
570 mapping = page->mapping;
571 if (mapping != dentry->d_inode->i_mapping)
572 goto out_unlock;
573
574 pagelen = nfs_page_length(page);
575 if (pagelen == 0)
576 goto out_unlock;
577
578 ret = VM_FAULT_LOCKED;
579 if (nfs_flush_incompatible(filp, page) == 0 &&
580 nfs_updatepage(filp, page, 0, pagelen) == 0)
581 goto out;
582
583 ret = VM_FAULT_SIGBUS;
584 out_unlock:
585 unlock_page(page);
586 out:
587 return ret;
588 }
589
590 static const struct vm_operations_struct nfs_file_vm_ops = {
591 .fault = filemap_fault,
592 .page_mkwrite = nfs_vm_page_mkwrite,
593 };
594
nfs_need_sync_write(struct file * filp,struct inode * inode)595 static int nfs_need_sync_write(struct file *filp, struct inode *inode)
596 {
597 struct nfs_open_context *ctx;
598
599 if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
600 return 1;
601 ctx = nfs_file_open_context(filp);
602 if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags))
603 return 1;
604 return 0;
605 }
606
nfs_file_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)607 static ssize_t nfs_file_write(struct kiocb *iocb, const struct iovec *iov,
608 unsigned long nr_segs, loff_t pos)
609 {
610 struct dentry * dentry = iocb->ki_filp->f_path.dentry;
611 struct inode * inode = dentry->d_inode;
612 unsigned long written = 0;
613 ssize_t result;
614 size_t count = iov_length(iov, nr_segs);
615
616 if (iocb->ki_filp->f_flags & O_DIRECT)
617 return nfs_file_direct_write(iocb, iov, nr_segs, pos);
618
619 dprintk("NFS: write(%s/%s, %lu@%Ld)\n",
620 dentry->d_parent->d_name.name, dentry->d_name.name,
621 (unsigned long) count, (long long) pos);
622
623 result = -EBUSY;
624 if (IS_SWAPFILE(inode))
625 goto out_swapfile;
626 /*
627 * O_APPEND implies that we must revalidate the file length.
628 */
629 if (iocb->ki_filp->f_flags & O_APPEND) {
630 result = nfs_revalidate_file_size(inode, iocb->ki_filp);
631 if (result)
632 goto out;
633 }
634
635 result = count;
636 if (!count)
637 goto out;
638
639 result = generic_file_aio_write(iocb, iov, nr_segs, pos);
640 if (result > 0)
641 written = result;
642
643 /* Return error values for O_DSYNC and IS_SYNC() */
644 if (result >= 0 && nfs_need_sync_write(iocb->ki_filp, inode)) {
645 int err = vfs_fsync(iocb->ki_filp, 0);
646 if (err < 0)
647 result = err;
648 }
649 if (result > 0)
650 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
651 out:
652 return result;
653
654 out_swapfile:
655 printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
656 goto out;
657 }
658
nfs_file_splice_write(struct pipe_inode_info * pipe,struct file * filp,loff_t * ppos,size_t count,unsigned int flags)659 static ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe,
660 struct file *filp, loff_t *ppos,
661 size_t count, unsigned int flags)
662 {
663 struct dentry *dentry = filp->f_path.dentry;
664 struct inode *inode = dentry->d_inode;
665 unsigned long written = 0;
666 ssize_t ret;
667
668 dprintk("NFS splice_write(%s/%s, %lu@%llu)\n",
669 dentry->d_parent->d_name.name, dentry->d_name.name,
670 (unsigned long) count, (unsigned long long) *ppos);
671
672 /*
673 * The combination of splice and an O_APPEND destination is disallowed.
674 */
675
676 ret = generic_file_splice_write(pipe, filp, ppos, count, flags);
677 if (ret > 0)
678 written = ret;
679
680 if (ret >= 0 && nfs_need_sync_write(filp, inode)) {
681 int err = vfs_fsync(filp, 0);
682 if (err < 0)
683 ret = err;
684 }
685 if (ret > 0)
686 nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
687 return ret;
688 }
689
690 static int
do_getlk(struct file * filp,int cmd,struct file_lock * fl,int is_local)691 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
692 {
693 struct inode *inode = filp->f_mapping->host;
694 int status = 0;
695 unsigned int saved_type = fl->fl_type;
696
697 /* Try local locking first */
698 posix_test_lock(filp, fl);
699 if (fl->fl_type != F_UNLCK) {
700 /* found a conflict */
701 goto out;
702 }
703 fl->fl_type = saved_type;
704
705 if (nfs_have_delegation(inode, FMODE_READ))
706 goto out_noconflict;
707
708 if (is_local)
709 goto out_noconflict;
710
711 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
712 out:
713 return status;
714 out_noconflict:
715 fl->fl_type = F_UNLCK;
716 goto out;
717 }
718
do_vfs_lock(struct file * file,struct file_lock * fl)719 static int do_vfs_lock(struct file *file, struct file_lock *fl)
720 {
721 int res = 0;
722 switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
723 case FL_POSIX:
724 res = posix_lock_file_wait(file, fl);
725 break;
726 case FL_FLOCK:
727 res = flock_lock_file_wait(file, fl);
728 break;
729 default:
730 BUG();
731 }
732 return res;
733 }
734
735 static int
do_unlk(struct file * filp,int cmd,struct file_lock * fl,int is_local)736 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
737 {
738 struct inode *inode = filp->f_mapping->host;
739 int status;
740
741 /*
742 * Flush all pending writes before doing anything
743 * with locks..
744 */
745 nfs_sync_mapping(filp->f_mapping);
746
747 /* NOTE: special case
748 * If we're signalled while cleaning up locks on process exit, we
749 * still need to complete the unlock.
750 */
751 /*
752 * Use local locking if mounted with "-onolock" or with appropriate
753 * "-olocal_lock="
754 */
755 if (!is_local)
756 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
757 else
758 status = do_vfs_lock(filp, fl);
759 return status;
760 }
761
762 static int
is_time_granular(struct timespec * ts)763 is_time_granular(struct timespec *ts) {
764 return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
765 }
766
767 static int
do_setlk(struct file * filp,int cmd,struct file_lock * fl,int is_local)768 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
769 {
770 struct inode *inode = filp->f_mapping->host;
771 int status;
772
773 /*
774 * Flush all pending writes before doing anything
775 * with locks..
776 */
777 status = nfs_sync_mapping(filp->f_mapping);
778 if (status != 0)
779 goto out;
780
781 /*
782 * Use local locking if mounted with "-onolock" or with appropriate
783 * "-olocal_lock="
784 */
785 if (!is_local)
786 status = NFS_PROTO(inode)->lock(filp, cmd, fl);
787 else
788 status = do_vfs_lock(filp, fl);
789 if (status < 0)
790 goto out;
791
792 /*
793 * Revalidate the cache if the server has time stamps granular
794 * enough to detect subsecond changes. Otherwise, clear the
795 * cache to prevent missing any changes.
796 *
797 * This makes locking act as a cache coherency point.
798 */
799 nfs_sync_mapping(filp->f_mapping);
800 if (!nfs_have_delegation(inode, FMODE_READ)) {
801 if (is_time_granular(&NFS_SERVER(inode)->time_delta))
802 __nfs_revalidate_inode(NFS_SERVER(inode), inode);
803 else
804 nfs_zap_caches(inode);
805 }
806 out:
807 return status;
808 }
809
810 /*
811 * Lock a (portion of) a file
812 */
nfs_lock(struct file * filp,int cmd,struct file_lock * fl)813 static int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
814 {
815 struct inode *inode = filp->f_mapping->host;
816 int ret = -ENOLCK;
817 int is_local = 0;
818
819 dprintk("NFS: lock(%s/%s, t=%x, fl=%x, r=%lld:%lld)\n",
820 filp->f_path.dentry->d_parent->d_name.name,
821 filp->f_path.dentry->d_name.name,
822 fl->fl_type, fl->fl_flags,
823 (long long)fl->fl_start, (long long)fl->fl_end);
824
825 nfs_inc_stats(inode, NFSIOS_VFSLOCK);
826
827 /* No mandatory locks over NFS */
828 if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
829 goto out_err;
830
831 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
832 is_local = 1;
833
834 if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
835 ret = NFS_PROTO(inode)->lock_check_bounds(fl);
836 if (ret < 0)
837 goto out_err;
838 }
839
840 if (IS_GETLK(cmd))
841 ret = do_getlk(filp, cmd, fl, is_local);
842 else if (fl->fl_type == F_UNLCK)
843 ret = do_unlk(filp, cmd, fl, is_local);
844 else
845 ret = do_setlk(filp, cmd, fl, is_local);
846 out_err:
847 return ret;
848 }
849
850 /*
851 * Lock a (portion of) a file
852 */
nfs_flock(struct file * filp,int cmd,struct file_lock * fl)853 static int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
854 {
855 struct inode *inode = filp->f_mapping->host;
856 int is_local = 0;
857
858 dprintk("NFS: flock(%s/%s, t=%x, fl=%x)\n",
859 filp->f_path.dentry->d_parent->d_name.name,
860 filp->f_path.dentry->d_name.name,
861 fl->fl_type, fl->fl_flags);
862
863 if (!(fl->fl_flags & FL_FLOCK))
864 return -ENOLCK;
865
866 if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
867 is_local = 1;
868
869 /* We're simulating flock() locks using posix locks on the server */
870 fl->fl_owner = (fl_owner_t)filp;
871 fl->fl_start = 0;
872 fl->fl_end = OFFSET_MAX;
873
874 if (fl->fl_type == F_UNLCK)
875 return do_unlk(filp, cmd, fl, is_local);
876 return do_setlk(filp, cmd, fl, is_local);
877 }
878
879 /*
880 * There is no protocol support for leases, so we have no way to implement
881 * them correctly in the face of opens by other clients.
882 */
nfs_setlease(struct file * file,long arg,struct file_lock ** fl)883 static int nfs_setlease(struct file *file, long arg, struct file_lock **fl)
884 {
885 dprintk("NFS: setlease(%s/%s, arg=%ld)\n",
886 file->f_path.dentry->d_parent->d_name.name,
887 file->f_path.dentry->d_name.name, arg);
888 return -EINVAL;
889 }
890