1 /*
2  *  linux/fs/nfs/file.c
3  *
4  *  Copyright (C) 1992  Rick Sladkey
5  *
6  *  Changes Copyright (C) 1994 by Florian La Roche
7  *   - Do not copy data too often around in the kernel.
8  *   - In nfs_file_read the return value of kmalloc wasn't checked.
9  *   - Put in a better version of read look-ahead buffering. Original idea
10  *     and implementation by Wai S Kok elekokws@ee.nus.sg.
11  *
12  *  Expire cache on write to a file by Wai S Kok (Oct 1994).
13  *
14  *  Total rewrite of read side for new NFS buffer cache.. Linus.
15  *
16  *  nfs regular file handling functions
17  */
18 
19 #include <linux/time.h>
20 #include <linux/kernel.h>
21 #include <linux/errno.h>
22 #include <linux/fcntl.h>
23 #include <linux/stat.h>
24 #include <linux/nfs_fs.h>
25 #include <linux/nfs_mount.h>
26 #include <linux/mm.h>
27 #include <linux/pagemap.h>
28 #include <linux/aio.h>
29 #include <linux/gfp.h>
30 #include <linux/swap.h>
31 
32 #include <asm/uaccess.h>
33 #include <asm/system.h>
34 
35 #include "delegation.h"
36 #include "internal.h"
37 #include "iostat.h"
38 #include "fscache.h"
39 #include "pnfs.h"
40 
41 #define NFSDBG_FACILITY		NFSDBG_FILE
42 
43 static int nfs_file_open(struct inode *, struct file *);
44 static int nfs_file_release(struct inode *, struct file *);
45 static loff_t nfs_file_llseek(struct file *file, loff_t offset, int origin);
46 static int  nfs_file_mmap(struct file *, struct vm_area_struct *);
47 static ssize_t nfs_file_splice_read(struct file *filp, loff_t *ppos,
48 					struct pipe_inode_info *pipe,
49 					size_t count, unsigned int flags);
50 static ssize_t nfs_file_read(struct kiocb *, const struct iovec *iov,
51 				unsigned long nr_segs, loff_t pos);
52 static ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe,
53 					struct file *filp, loff_t *ppos,
54 					size_t count, unsigned int flags);
55 static ssize_t nfs_file_write(struct kiocb *, const struct iovec *iov,
56 				unsigned long nr_segs, loff_t pos);
57 static int  nfs_file_flush(struct file *, fl_owner_t id);
58 static int  nfs_file_fsync(struct file *, int datasync);
59 static int nfs_check_flags(int flags);
60 static int nfs_lock(struct file *filp, int cmd, struct file_lock *fl);
61 static int nfs_flock(struct file *filp, int cmd, struct file_lock *fl);
62 static int nfs_setlease(struct file *file, long arg, struct file_lock **fl);
63 
64 static const struct vm_operations_struct nfs_file_vm_ops;
65 
66 const struct file_operations nfs_file_operations = {
67 	.llseek		= nfs_file_llseek,
68 	.read		= do_sync_read,
69 	.write		= do_sync_write,
70 	.aio_read	= nfs_file_read,
71 	.aio_write	= nfs_file_write,
72 	.mmap		= nfs_file_mmap,
73 	.open		= nfs_file_open,
74 	.flush		= nfs_file_flush,
75 	.release	= nfs_file_release,
76 	.fsync		= nfs_file_fsync,
77 	.lock		= nfs_lock,
78 	.flock		= nfs_flock,
79 	.splice_read	= nfs_file_splice_read,
80 	.splice_write	= nfs_file_splice_write,
81 	.check_flags	= nfs_check_flags,
82 	.setlease	= nfs_setlease,
83 };
84 
85 const struct inode_operations nfs_file_inode_operations = {
86 	.permission	= nfs_permission,
87 	.getattr	= nfs_getattr,
88 	.setattr	= nfs_setattr,
89 };
90 
91 #ifdef CONFIG_NFS_V3
92 const struct inode_operations nfs3_file_inode_operations = {
93 	.permission	= nfs_permission,
94 	.getattr	= nfs_getattr,
95 	.setattr	= nfs_setattr,
96 	.listxattr	= nfs3_listxattr,
97 	.getxattr	= nfs3_getxattr,
98 	.setxattr	= nfs3_setxattr,
99 	.removexattr	= nfs3_removexattr,
100 };
101 #endif  /* CONFIG_NFS_v3 */
102 
103 /* Hack for future NFS swap support */
104 #ifndef IS_SWAPFILE
105 # define IS_SWAPFILE(inode)	(0)
106 #endif
107 
nfs_check_flags(int flags)108 static int nfs_check_flags(int flags)
109 {
110 	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
111 		return -EINVAL;
112 
113 	return 0;
114 }
115 
116 /*
117  * Open file
118  */
119 static int
nfs_file_open(struct inode * inode,struct file * filp)120 nfs_file_open(struct inode *inode, struct file *filp)
121 {
122 	int res;
123 
124 	dprintk("NFS: open file(%s/%s)\n",
125 			filp->f_path.dentry->d_parent->d_name.name,
126 			filp->f_path.dentry->d_name.name);
127 
128 	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
129 	res = nfs_check_flags(filp->f_flags);
130 	if (res)
131 		return res;
132 
133 	res = nfs_open(inode, filp);
134 	return res;
135 }
136 
137 static int
nfs_file_release(struct inode * inode,struct file * filp)138 nfs_file_release(struct inode *inode, struct file *filp)
139 {
140 	struct dentry *dentry = filp->f_path.dentry;
141 
142 	dprintk("NFS: release(%s/%s)\n",
143 			dentry->d_parent->d_name.name,
144 			dentry->d_name.name);
145 
146 	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
147 	return nfs_release(inode, filp);
148 }
149 
150 /**
151  * nfs_revalidate_size - Revalidate the file size
152  * @inode - pointer to inode struct
153  * @file - pointer to struct file
154  *
155  * Revalidates the file length. This is basically a wrapper around
156  * nfs_revalidate_inode() that takes into account the fact that we may
157  * have cached writes (in which case we don't care about the server's
158  * idea of what the file length is), or O_DIRECT (in which case we
159  * shouldn't trust the cache).
160  */
nfs_revalidate_file_size(struct inode * inode,struct file * filp)161 static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
162 {
163 	struct nfs_server *server = NFS_SERVER(inode);
164 	struct nfs_inode *nfsi = NFS_I(inode);
165 
166 	if (nfs_have_delegated_attributes(inode))
167 		goto out_noreval;
168 
169 	if (filp->f_flags & O_DIRECT)
170 		goto force_reval;
171 	if (nfsi->cache_validity & NFS_INO_REVAL_PAGECACHE)
172 		goto force_reval;
173 	if (nfs_attribute_timeout(inode))
174 		goto force_reval;
175 out_noreval:
176 	return 0;
177 force_reval:
178 	return __nfs_revalidate_inode(server, inode);
179 }
180 
nfs_file_llseek(struct file * filp,loff_t offset,int origin)181 static loff_t nfs_file_llseek(struct file *filp, loff_t offset, int origin)
182 {
183 	loff_t loff;
184 
185 	dprintk("NFS: llseek file(%s/%s, %lld, %d)\n",
186 			filp->f_path.dentry->d_parent->d_name.name,
187 			filp->f_path.dentry->d_name.name,
188 			offset, origin);
189 
190 	/* origin == SEEK_END => we must revalidate the cached file length */
191 	if (origin == SEEK_END) {
192 		struct inode *inode = filp->f_mapping->host;
193 
194 		int retval = nfs_revalidate_file_size(inode, filp);
195 		if (retval < 0)
196 			return (loff_t)retval;
197 
198 		spin_lock(&inode->i_lock);
199 		loff = generic_file_llseek_unlocked(filp, offset, origin);
200 		spin_unlock(&inode->i_lock);
201 	} else
202 		loff = generic_file_llseek_unlocked(filp, offset, origin);
203 	return loff;
204 }
205 
206 /*
207  * Flush all dirty pages, and check for write errors.
208  */
209 static int
nfs_file_flush(struct file * file,fl_owner_t id)210 nfs_file_flush(struct file *file, fl_owner_t id)
211 {
212 	struct dentry	*dentry = file->f_path.dentry;
213 	struct inode	*inode = dentry->d_inode;
214 
215 	dprintk("NFS: flush(%s/%s)\n",
216 			dentry->d_parent->d_name.name,
217 			dentry->d_name.name);
218 
219 	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
220 	if ((file->f_mode & FMODE_WRITE) == 0)
221 		return 0;
222 
223 	/* Flush writes to the server and return any errors */
224 	return vfs_fsync(file, 0);
225 }
226 
227 static ssize_t
nfs_file_read(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)228 nfs_file_read(struct kiocb *iocb, const struct iovec *iov,
229 		unsigned long nr_segs, loff_t pos)
230 {
231 	struct dentry * dentry = iocb->ki_filp->f_path.dentry;
232 	struct inode * inode = dentry->d_inode;
233 	ssize_t result;
234 	size_t count = iov_length(iov, nr_segs);
235 
236 	if (iocb->ki_filp->f_flags & O_DIRECT)
237 		return nfs_file_direct_read(iocb, iov, nr_segs, pos);
238 
239 	dprintk("NFS: read(%s/%s, %lu@%lu)\n",
240 		dentry->d_parent->d_name.name, dentry->d_name.name,
241 		(unsigned long) count, (unsigned long) pos);
242 
243 	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
244 	if (!result) {
245 		result = generic_file_aio_read(iocb, iov, nr_segs, pos);
246 		if (result > 0)
247 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
248 	}
249 	return result;
250 }
251 
252 static ssize_t
nfs_file_splice_read(struct file * filp,loff_t * ppos,struct pipe_inode_info * pipe,size_t count,unsigned int flags)253 nfs_file_splice_read(struct file *filp, loff_t *ppos,
254 		     struct pipe_inode_info *pipe, size_t count,
255 		     unsigned int flags)
256 {
257 	struct dentry *dentry = filp->f_path.dentry;
258 	struct inode *inode = dentry->d_inode;
259 	ssize_t res;
260 
261 	dprintk("NFS: splice_read(%s/%s, %lu@%Lu)\n",
262 		dentry->d_parent->d_name.name, dentry->d_name.name,
263 		(unsigned long) count, (unsigned long long) *ppos);
264 
265 	res = nfs_revalidate_mapping(inode, filp->f_mapping);
266 	if (!res) {
267 		res = generic_file_splice_read(filp, ppos, pipe, count, flags);
268 		if (res > 0)
269 			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, res);
270 	}
271 	return res;
272 }
273 
274 static int
nfs_file_mmap(struct file * file,struct vm_area_struct * vma)275 nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
276 {
277 	struct dentry *dentry = file->f_path.dentry;
278 	struct inode *inode = dentry->d_inode;
279 	int	status;
280 
281 	dprintk("NFS: mmap(%s/%s)\n",
282 		dentry->d_parent->d_name.name, dentry->d_name.name);
283 
284 	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
285 	 *       so we call that before revalidating the mapping
286 	 */
287 	status = generic_file_mmap(file, vma);
288 	if (!status) {
289 		vma->vm_ops = &nfs_file_vm_ops;
290 		status = nfs_revalidate_mapping(inode, file->f_mapping);
291 	}
292 	return status;
293 }
294 
295 /*
296  * Flush any dirty pages for this process, and check for write errors.
297  * The return status from this call provides a reliable indication of
298  * whether any write errors occurred for this process.
299  *
300  * Notice that it clears the NFS_CONTEXT_ERROR_WRITE before synching to
301  * disk, but it retrieves and clears ctx->error after synching, despite
302  * the two being set at the same time in nfs_context_set_write_error().
303  * This is because the former is used to notify the _next_ call to
304  * nfs_file_write() that a write error occurred, and hence cause it to
305  * fall back to doing a synchronous write.
306  */
307 static int
nfs_file_fsync(struct file * file,int datasync)308 nfs_file_fsync(struct file *file, int datasync)
309 {
310 	struct dentry *dentry = file->f_path.dentry;
311 	struct nfs_open_context *ctx = nfs_file_open_context(file);
312 	struct inode *inode = dentry->d_inode;
313 	int have_error, status;
314 	int ret = 0;
315 
316 
317 	dprintk("NFS: fsync file(%s/%s) datasync %d\n",
318 			dentry->d_parent->d_name.name, dentry->d_name.name,
319 			datasync);
320 
321 	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
322 	have_error = test_and_clear_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
323 	status = nfs_commit_inode(inode, FLUSH_SYNC);
324 	have_error |= test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags);
325 	if (have_error)
326 		ret = xchg(&ctx->error, 0);
327 	if (!ret && status < 0)
328 		ret = status;
329 	if (!ret && !datasync)
330 		/* application has asked for meta-data sync */
331 		ret = pnfs_layoutcommit_inode(inode, true);
332 	return ret;
333 }
334 
335 /*
336  * Decide whether a read/modify/write cycle may be more efficient
337  * then a modify/write/read cycle when writing to a page in the
338  * page cache.
339  *
340  * The modify/write/read cycle may occur if a page is read before
341  * being completely filled by the writer.  In this situation, the
342  * page must be completely written to stable storage on the server
343  * before it can be refilled by reading in the page from the server.
344  * This can lead to expensive, small, FILE_SYNC mode writes being
345  * done.
346  *
347  * It may be more efficient to read the page first if the file is
348  * open for reading in addition to writing, the page is not marked
349  * as Uptodate, it is not dirty or waiting to be committed,
350  * indicating that it was previously allocated and then modified,
351  * that there were valid bytes of data in that range of the file,
352  * and that the new data won't completely replace the old data in
353  * that range of the file.
354  */
nfs_want_read_modify_write(struct file * file,struct page * page,loff_t pos,unsigned len)355 static int nfs_want_read_modify_write(struct file *file, struct page *page,
356 			loff_t pos, unsigned len)
357 {
358 	unsigned int pglen = nfs_page_length(page);
359 	unsigned int offset = pos & (PAGE_CACHE_SIZE - 1);
360 	unsigned int end = offset + len;
361 
362 	if ((file->f_mode & FMODE_READ) &&	/* open for read? */
363 	    !PageUptodate(page) &&		/* Uptodate? */
364 	    !PagePrivate(page) &&		/* i/o request already? */
365 	    pglen &&				/* valid bytes of file? */
366 	    (end < pglen || offset))		/* replace all valid bytes? */
367 		return 1;
368 	return 0;
369 }
370 
371 /*
372  * This does the "real" work of the write. We must allocate and lock the
373  * page to be sent back to the generic routine, which then copies the
374  * data from user space.
375  *
376  * If the writer ends up delaying the write, the writer needs to
377  * increment the page use counts until he is done with the page.
378  */
nfs_write_begin(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned flags,struct page ** pagep,void ** fsdata)379 static int nfs_write_begin(struct file *file, struct address_space *mapping,
380 			loff_t pos, unsigned len, unsigned flags,
381 			struct page **pagep, void **fsdata)
382 {
383 	int ret;
384 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
385 	struct page *page;
386 	int once_thru = 0;
387 
388 	dfprintk(PAGECACHE, "NFS: write_begin(%s/%s(%ld), %u@%lld)\n",
389 		file->f_path.dentry->d_parent->d_name.name,
390 		file->f_path.dentry->d_name.name,
391 		mapping->host->i_ino, len, (long long) pos);
392 
393 start:
394 	/*
395 	 * Prevent starvation issues if someone is doing a consistency
396 	 * sync-to-disk
397 	 */
398 	ret = wait_on_bit(&NFS_I(mapping->host)->flags, NFS_INO_FLUSHING,
399 			nfs_wait_bit_killable, TASK_KILLABLE);
400 	if (ret)
401 		return ret;
402 
403 	page = grab_cache_page_write_begin(mapping, index, flags);
404 	if (!page)
405 		return -ENOMEM;
406 	*pagep = page;
407 
408 	ret = nfs_flush_incompatible(file, page);
409 	if (ret) {
410 		unlock_page(page);
411 		page_cache_release(page);
412 	} else if (!once_thru &&
413 		   nfs_want_read_modify_write(file, page, pos, len)) {
414 		once_thru = 1;
415 		ret = nfs_readpage(file, page);
416 		page_cache_release(page);
417 		if (!ret)
418 			goto start;
419 	}
420 	return ret;
421 }
422 
nfs_write_end(struct file * file,struct address_space * mapping,loff_t pos,unsigned len,unsigned copied,struct page * page,void * fsdata)423 static int nfs_write_end(struct file *file, struct address_space *mapping,
424 			loff_t pos, unsigned len, unsigned copied,
425 			struct page *page, void *fsdata)
426 {
427 	unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
428 	int status;
429 
430 	dfprintk(PAGECACHE, "NFS: write_end(%s/%s(%ld), %u@%lld)\n",
431 		file->f_path.dentry->d_parent->d_name.name,
432 		file->f_path.dentry->d_name.name,
433 		mapping->host->i_ino, len, (long long) pos);
434 
435 	/*
436 	 * Zero any uninitialised parts of the page, and then mark the page
437 	 * as up to date if it turns out that we're extending the file.
438 	 */
439 	if (!PageUptodate(page)) {
440 		unsigned pglen = nfs_page_length(page);
441 		unsigned end = offset + len;
442 
443 		if (pglen == 0) {
444 			zero_user_segments(page, 0, offset,
445 					end, PAGE_CACHE_SIZE);
446 			SetPageUptodate(page);
447 		} else if (end >= pglen) {
448 			zero_user_segment(page, end, PAGE_CACHE_SIZE);
449 			if (offset == 0)
450 				SetPageUptodate(page);
451 		} else
452 			zero_user_segment(page, pglen, PAGE_CACHE_SIZE);
453 	}
454 
455 	status = nfs_updatepage(file, page, offset, copied);
456 
457 	unlock_page(page);
458 	page_cache_release(page);
459 
460 	if (status < 0)
461 		return status;
462 	return copied;
463 }
464 
465 /*
466  * Partially or wholly invalidate a page
467  * - Release the private state associated with a page if undergoing complete
468  *   page invalidation
469  * - Called if either PG_private or PG_fscache is set on the page
470  * - Caller holds page lock
471  */
nfs_invalidate_page(struct page * page,unsigned long offset)472 static void nfs_invalidate_page(struct page *page, unsigned long offset)
473 {
474 	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %lu)\n", page, offset);
475 
476 	if (offset != 0)
477 		return;
478 	/* Cancel any unstarted writes on this page */
479 	nfs_wb_page_cancel(page->mapping->host, page);
480 
481 	nfs_fscache_invalidate_page(page, page->mapping->host);
482 }
483 
484 /*
485  * Attempt to release the private state associated with a page
486  * - Called if either PG_private or PG_fscache is set on the page
487  * - Caller holds page lock
488  * - Return true (may release page) or false (may not)
489  */
nfs_release_page(struct page * page,gfp_t gfp)490 static int nfs_release_page(struct page *page, gfp_t gfp)
491 {
492 	struct address_space *mapping = page->mapping;
493 
494 	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
495 
496 	/* Only do I/O if gfp is a superset of GFP_KERNEL */
497 	if (mapping && (gfp & GFP_KERNEL) == GFP_KERNEL) {
498 		int how = FLUSH_SYNC;
499 
500 		/* Don't let kswapd deadlock waiting for OOM RPC calls */
501 		if (current_is_kswapd())
502 			how = 0;
503 		nfs_commit_inode(mapping->host, how);
504 	}
505 	/* If PagePrivate() is set, then the page is not freeable */
506 	if (PagePrivate(page))
507 		return 0;
508 	return nfs_fscache_release_page(page, gfp);
509 }
510 
511 /*
512  * Attempt to clear the private state associated with a page when an error
513  * occurs that requires the cached contents of an inode to be written back or
514  * destroyed
515  * - Called if either PG_private or fscache is set on the page
516  * - Caller holds page lock
517  * - Return 0 if successful, -error otherwise
518  */
nfs_launder_page(struct page * page)519 static int nfs_launder_page(struct page *page)
520 {
521 	struct inode *inode = page->mapping->host;
522 	struct nfs_inode *nfsi = NFS_I(inode);
523 
524 	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
525 		inode->i_ino, (long long)page_offset(page));
526 
527 	nfs_fscache_wait_on_page_write(nfsi, page);
528 	return nfs_wb_page(inode, page);
529 }
530 
531 const struct address_space_operations nfs_file_aops = {
532 	.readpage = nfs_readpage,
533 	.readpages = nfs_readpages,
534 	.set_page_dirty = __set_page_dirty_nobuffers,
535 	.writepage = nfs_writepage,
536 	.writepages = nfs_writepages,
537 	.write_begin = nfs_write_begin,
538 	.write_end = nfs_write_end,
539 	.invalidatepage = nfs_invalidate_page,
540 	.releasepage = nfs_release_page,
541 	.direct_IO = nfs_direct_IO,
542 	.migratepage = nfs_migrate_page,
543 	.launder_page = nfs_launder_page,
544 	.error_remove_page = generic_error_remove_page,
545 };
546 
547 /*
548  * Notification that a PTE pointing to an NFS page is about to be made
549  * writable, implying that someone is about to modify the page through a
550  * shared-writable mapping
551  */
nfs_vm_page_mkwrite(struct vm_area_struct * vma,struct vm_fault * vmf)552 static int nfs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
553 {
554 	struct page *page = vmf->page;
555 	struct file *filp = vma->vm_file;
556 	struct dentry *dentry = filp->f_path.dentry;
557 	unsigned pagelen;
558 	int ret = VM_FAULT_NOPAGE;
559 	struct address_space *mapping;
560 
561 	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%s/%s(%ld), offset %lld)\n",
562 		dentry->d_parent->d_name.name, dentry->d_name.name,
563 		filp->f_mapping->host->i_ino,
564 		(long long)page_offset(page));
565 
566 	/* make sure the cache has finished storing the page */
567 	nfs_fscache_wait_on_page_write(NFS_I(dentry->d_inode), page);
568 
569 	lock_page(page);
570 	mapping = page->mapping;
571 	if (mapping != dentry->d_inode->i_mapping)
572 		goto out_unlock;
573 
574 	pagelen = nfs_page_length(page);
575 	if (pagelen == 0)
576 		goto out_unlock;
577 
578 	ret = VM_FAULT_LOCKED;
579 	if (nfs_flush_incompatible(filp, page) == 0 &&
580 	    nfs_updatepage(filp, page, 0, pagelen) == 0)
581 		goto out;
582 
583 	ret = VM_FAULT_SIGBUS;
584 out_unlock:
585 	unlock_page(page);
586 out:
587 	return ret;
588 }
589 
590 static const struct vm_operations_struct nfs_file_vm_ops = {
591 	.fault = filemap_fault,
592 	.page_mkwrite = nfs_vm_page_mkwrite,
593 };
594 
nfs_need_sync_write(struct file * filp,struct inode * inode)595 static int nfs_need_sync_write(struct file *filp, struct inode *inode)
596 {
597 	struct nfs_open_context *ctx;
598 
599 	if (IS_SYNC(inode) || (filp->f_flags & O_DSYNC))
600 		return 1;
601 	ctx = nfs_file_open_context(filp);
602 	if (test_bit(NFS_CONTEXT_ERROR_WRITE, &ctx->flags))
603 		return 1;
604 	return 0;
605 }
606 
nfs_file_write(struct kiocb * iocb,const struct iovec * iov,unsigned long nr_segs,loff_t pos)607 static ssize_t nfs_file_write(struct kiocb *iocb, const struct iovec *iov,
608 				unsigned long nr_segs, loff_t pos)
609 {
610 	struct dentry * dentry = iocb->ki_filp->f_path.dentry;
611 	struct inode * inode = dentry->d_inode;
612 	unsigned long written = 0;
613 	ssize_t result;
614 	size_t count = iov_length(iov, nr_segs);
615 
616 	if (iocb->ki_filp->f_flags & O_DIRECT)
617 		return nfs_file_direct_write(iocb, iov, nr_segs, pos);
618 
619 	dprintk("NFS: write(%s/%s, %lu@%Ld)\n",
620 		dentry->d_parent->d_name.name, dentry->d_name.name,
621 		(unsigned long) count, (long long) pos);
622 
623 	result = -EBUSY;
624 	if (IS_SWAPFILE(inode))
625 		goto out_swapfile;
626 	/*
627 	 * O_APPEND implies that we must revalidate the file length.
628 	 */
629 	if (iocb->ki_filp->f_flags & O_APPEND) {
630 		result = nfs_revalidate_file_size(inode, iocb->ki_filp);
631 		if (result)
632 			goto out;
633 	}
634 
635 	result = count;
636 	if (!count)
637 		goto out;
638 
639 	result = generic_file_aio_write(iocb, iov, nr_segs, pos);
640 	if (result > 0)
641 		written = result;
642 
643 	/* Return error values for O_DSYNC and IS_SYNC() */
644 	if (result >= 0 && nfs_need_sync_write(iocb->ki_filp, inode)) {
645 		int err = vfs_fsync(iocb->ki_filp, 0);
646 		if (err < 0)
647 			result = err;
648 	}
649 	if (result > 0)
650 		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
651 out:
652 	return result;
653 
654 out_swapfile:
655 	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
656 	goto out;
657 }
658 
nfs_file_splice_write(struct pipe_inode_info * pipe,struct file * filp,loff_t * ppos,size_t count,unsigned int flags)659 static ssize_t nfs_file_splice_write(struct pipe_inode_info *pipe,
660 				     struct file *filp, loff_t *ppos,
661 				     size_t count, unsigned int flags)
662 {
663 	struct dentry *dentry = filp->f_path.dentry;
664 	struct inode *inode = dentry->d_inode;
665 	unsigned long written = 0;
666 	ssize_t ret;
667 
668 	dprintk("NFS splice_write(%s/%s, %lu@%llu)\n",
669 		dentry->d_parent->d_name.name, dentry->d_name.name,
670 		(unsigned long) count, (unsigned long long) *ppos);
671 
672 	/*
673 	 * The combination of splice and an O_APPEND destination is disallowed.
674 	 */
675 
676 	ret = generic_file_splice_write(pipe, filp, ppos, count, flags);
677 	if (ret > 0)
678 		written = ret;
679 
680 	if (ret >= 0 && nfs_need_sync_write(filp, inode)) {
681 		int err = vfs_fsync(filp, 0);
682 		if (err < 0)
683 			ret = err;
684 	}
685 	if (ret > 0)
686 		nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
687 	return ret;
688 }
689 
690 static int
do_getlk(struct file * filp,int cmd,struct file_lock * fl,int is_local)691 do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
692 {
693 	struct inode *inode = filp->f_mapping->host;
694 	int status = 0;
695 	unsigned int saved_type = fl->fl_type;
696 
697 	/* Try local locking first */
698 	posix_test_lock(filp, fl);
699 	if (fl->fl_type != F_UNLCK) {
700 		/* found a conflict */
701 		goto out;
702 	}
703 	fl->fl_type = saved_type;
704 
705 	if (nfs_have_delegation(inode, FMODE_READ))
706 		goto out_noconflict;
707 
708 	if (is_local)
709 		goto out_noconflict;
710 
711 	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
712 out:
713 	return status;
714 out_noconflict:
715 	fl->fl_type = F_UNLCK;
716 	goto out;
717 }
718 
do_vfs_lock(struct file * file,struct file_lock * fl)719 static int do_vfs_lock(struct file *file, struct file_lock *fl)
720 {
721 	int res = 0;
722 	switch (fl->fl_flags & (FL_POSIX|FL_FLOCK)) {
723 		case FL_POSIX:
724 			res = posix_lock_file_wait(file, fl);
725 			break;
726 		case FL_FLOCK:
727 			res = flock_lock_file_wait(file, fl);
728 			break;
729 		default:
730 			BUG();
731 	}
732 	return res;
733 }
734 
735 static int
do_unlk(struct file * filp,int cmd,struct file_lock * fl,int is_local)736 do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
737 {
738 	struct inode *inode = filp->f_mapping->host;
739 	int status;
740 
741 	/*
742 	 * Flush all pending writes before doing anything
743 	 * with locks..
744 	 */
745 	nfs_sync_mapping(filp->f_mapping);
746 
747 	/* NOTE: special case
748 	 * 	If we're signalled while cleaning up locks on process exit, we
749 	 * 	still need to complete the unlock.
750 	 */
751 	/*
752 	 * Use local locking if mounted with "-onolock" or with appropriate
753 	 * "-olocal_lock="
754 	 */
755 	if (!is_local)
756 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
757 	else
758 		status = do_vfs_lock(filp, fl);
759 	return status;
760 }
761 
762 static int
is_time_granular(struct timespec * ts)763 is_time_granular(struct timespec *ts) {
764 	return ((ts->tv_sec == 0) && (ts->tv_nsec <= 1000));
765 }
766 
767 static int
do_setlk(struct file * filp,int cmd,struct file_lock * fl,int is_local)768 do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
769 {
770 	struct inode *inode = filp->f_mapping->host;
771 	int status;
772 
773 	/*
774 	 * Flush all pending writes before doing anything
775 	 * with locks..
776 	 */
777 	status = nfs_sync_mapping(filp->f_mapping);
778 	if (status != 0)
779 		goto out;
780 
781 	/*
782 	 * Use local locking if mounted with "-onolock" or with appropriate
783 	 * "-olocal_lock="
784 	 */
785 	if (!is_local)
786 		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
787 	else
788 		status = do_vfs_lock(filp, fl);
789 	if (status < 0)
790 		goto out;
791 
792 	/*
793 	 * Revalidate the cache if the server has time stamps granular
794 	 * enough to detect subsecond changes.  Otherwise, clear the
795 	 * cache to prevent missing any changes.
796 	 *
797 	 * This makes locking act as a cache coherency point.
798 	 */
799 	nfs_sync_mapping(filp->f_mapping);
800 	if (!nfs_have_delegation(inode, FMODE_READ)) {
801 		if (is_time_granular(&NFS_SERVER(inode)->time_delta))
802 			__nfs_revalidate_inode(NFS_SERVER(inode), inode);
803 		else
804 			nfs_zap_caches(inode);
805 	}
806 out:
807 	return status;
808 }
809 
810 /*
811  * Lock a (portion of) a file
812  */
nfs_lock(struct file * filp,int cmd,struct file_lock * fl)813 static int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
814 {
815 	struct inode *inode = filp->f_mapping->host;
816 	int ret = -ENOLCK;
817 	int is_local = 0;
818 
819 	dprintk("NFS: lock(%s/%s, t=%x, fl=%x, r=%lld:%lld)\n",
820 			filp->f_path.dentry->d_parent->d_name.name,
821 			filp->f_path.dentry->d_name.name,
822 			fl->fl_type, fl->fl_flags,
823 			(long long)fl->fl_start, (long long)fl->fl_end);
824 
825 	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
826 
827 	/* No mandatory locks over NFS */
828 	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
829 		goto out_err;
830 
831 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
832 		is_local = 1;
833 
834 	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
835 		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
836 		if (ret < 0)
837 			goto out_err;
838 	}
839 
840 	if (IS_GETLK(cmd))
841 		ret = do_getlk(filp, cmd, fl, is_local);
842 	else if (fl->fl_type == F_UNLCK)
843 		ret = do_unlk(filp, cmd, fl, is_local);
844 	else
845 		ret = do_setlk(filp, cmd, fl, is_local);
846 out_err:
847 	return ret;
848 }
849 
850 /*
851  * Lock a (portion of) a file
852  */
nfs_flock(struct file * filp,int cmd,struct file_lock * fl)853 static int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
854 {
855 	struct inode *inode = filp->f_mapping->host;
856 	int is_local = 0;
857 
858 	dprintk("NFS: flock(%s/%s, t=%x, fl=%x)\n",
859 			filp->f_path.dentry->d_parent->d_name.name,
860 			filp->f_path.dentry->d_name.name,
861 			fl->fl_type, fl->fl_flags);
862 
863 	if (!(fl->fl_flags & FL_FLOCK))
864 		return -ENOLCK;
865 
866 	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
867 		is_local = 1;
868 
869 	/* We're simulating flock() locks using posix locks on the server */
870 	fl->fl_owner = (fl_owner_t)filp;
871 	fl->fl_start = 0;
872 	fl->fl_end = OFFSET_MAX;
873 
874 	if (fl->fl_type == F_UNLCK)
875 		return do_unlk(filp, cmd, fl, is_local);
876 	return do_setlk(filp, cmd, fl, is_local);
877 }
878 
879 /*
880  * There is no protocol support for leases, so we have no way to implement
881  * them correctly in the face of opens by other clients.
882  */
nfs_setlease(struct file * file,long arg,struct file_lock ** fl)883 static int nfs_setlease(struct file *file, long arg, struct file_lock **fl)
884 {
885 	dprintk("NFS: setlease(%s/%s, arg=%ld)\n",
886 			file->f_path.dentry->d_parent->d_name.name,
887 			file->f_path.dentry->d_name.name, arg);
888 	return -EINVAL;
889 }
890