1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/nfs/dir.c
4 *
5 * Copyright (C) 1992 Rick Sladkey
6 *
7 * nfs directory handling functions
8 *
9 * 10 Apr 1996 Added silly rename for unlink --okir
10 * 28 Sep 1996 Improved directory cache --okir
11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
12 * Re-implemented silly rename for unlink, newly implemented
13 * silly rename for nfs_rename() following the suggestions
14 * of Olaf Kirch (okir) found in this file.
15 * Following Linus comments on my original hack, this version
16 * depends only on the dcache stuff and doesn't touch the inode
17 * layer (iput() and friends).
18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
19 */
20
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 #include <linux/hash.h>
43
44 #include "delegation.h"
45 #include "iostat.h"
46 #include "internal.h"
47 #include "fscache.h"
48
49 #include "nfstrace.h"
50
51 /* #define NFS_DEBUG_VERBOSE 1 */
52
53 static int nfs_opendir(struct inode *, struct file *);
54 static int nfs_closedir(struct inode *, struct file *);
55 static int nfs_readdir(struct file *, struct dir_context *);
56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 static void nfs_readdir_free_folio(struct folio *);
59
60 const struct file_operations nfs_dir_operations = {
61 .llseek = nfs_llseek_dir,
62 .read = generic_read_dir,
63 .iterate_shared = nfs_readdir,
64 .open = nfs_opendir,
65 .release = nfs_closedir,
66 .fsync = nfs_fsync_dir,
67 };
68
69 const struct address_space_operations nfs_dir_aops = {
70 .free_folio = nfs_readdir_free_folio,
71 };
72
73 #define NFS_INIT_DTSIZE PAGE_SIZE
74
75 static struct nfs_open_dir_context *
alloc_nfs_open_dir_context(struct inode * dir)76 alloc_nfs_open_dir_context(struct inode *dir)
77 {
78 struct nfs_inode *nfsi = NFS_I(dir);
79 struct nfs_open_dir_context *ctx;
80
81 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
82 if (ctx != NULL) {
83 ctx->attr_gencount = nfsi->attr_gencount;
84 ctx->dtsize = NFS_INIT_DTSIZE;
85 spin_lock(&dir->i_lock);
86 if (list_empty(&nfsi->open_files) &&
87 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
88 nfs_set_cache_invalid(dir,
89 NFS_INO_INVALID_DATA |
90 NFS_INO_REVAL_FORCED);
91 list_add_tail_rcu(&ctx->list, &nfsi->open_files);
92 memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
93 spin_unlock(&dir->i_lock);
94 return ctx;
95 }
96 return ERR_PTR(-ENOMEM);
97 }
98
put_nfs_open_dir_context(struct inode * dir,struct nfs_open_dir_context * ctx)99 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
100 {
101 spin_lock(&dir->i_lock);
102 list_del_rcu(&ctx->list);
103 spin_unlock(&dir->i_lock);
104 kfree_rcu(ctx, rcu_head);
105 }
106
107 /*
108 * Open file
109 */
110 static int
nfs_opendir(struct inode * inode,struct file * filp)111 nfs_opendir(struct inode *inode, struct file *filp)
112 {
113 int res = 0;
114 struct nfs_open_dir_context *ctx;
115
116 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
117
118 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
119
120 ctx = alloc_nfs_open_dir_context(inode);
121 if (IS_ERR(ctx)) {
122 res = PTR_ERR(ctx);
123 goto out;
124 }
125 filp->private_data = ctx;
126 out:
127 return res;
128 }
129
130 static int
nfs_closedir(struct inode * inode,struct file * filp)131 nfs_closedir(struct inode *inode, struct file *filp)
132 {
133 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
134 return 0;
135 }
136
137 struct nfs_cache_array_entry {
138 u64 cookie;
139 u64 ino;
140 const char *name;
141 unsigned int name_len;
142 unsigned char d_type;
143 };
144
145 struct nfs_cache_array {
146 u64 change_attr;
147 u64 last_cookie;
148 unsigned int size;
149 unsigned char page_full : 1,
150 page_is_eof : 1,
151 cookies_are_ordered : 1;
152 struct nfs_cache_array_entry array[];
153 };
154
155 struct nfs_readdir_descriptor {
156 struct file *file;
157 struct page *page;
158 struct dir_context *ctx;
159 pgoff_t page_index;
160 pgoff_t page_index_max;
161 u64 dir_cookie;
162 u64 last_cookie;
163 loff_t current_index;
164
165 __be32 verf[NFS_DIR_VERIFIER_SIZE];
166 unsigned long dir_verifier;
167 unsigned long timestamp;
168 unsigned long gencount;
169 unsigned long attr_gencount;
170 unsigned int cache_entry_index;
171 unsigned int buffer_fills;
172 unsigned int dtsize;
173 bool clear_cache;
174 bool plus;
175 bool eob;
176 bool eof;
177 };
178
nfs_set_dtsize(struct nfs_readdir_descriptor * desc,unsigned int sz)179 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
180 {
181 struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
182 unsigned int maxsize = server->dtsize;
183
184 if (sz > maxsize)
185 sz = maxsize;
186 if (sz < NFS_MIN_FILE_IO_SIZE)
187 sz = NFS_MIN_FILE_IO_SIZE;
188 desc->dtsize = sz;
189 }
190
nfs_shrink_dtsize(struct nfs_readdir_descriptor * desc)191 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
192 {
193 nfs_set_dtsize(desc, desc->dtsize >> 1);
194 }
195
nfs_grow_dtsize(struct nfs_readdir_descriptor * desc)196 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
197 {
198 nfs_set_dtsize(desc, desc->dtsize << 1);
199 }
200
nfs_readdir_page_init_array(struct page * page,u64 last_cookie,u64 change_attr)201 static void nfs_readdir_page_init_array(struct page *page, u64 last_cookie,
202 u64 change_attr)
203 {
204 struct nfs_cache_array *array;
205
206 array = kmap_atomic(page);
207 array->change_attr = change_attr;
208 array->last_cookie = last_cookie;
209 array->size = 0;
210 array->page_full = 0;
211 array->page_is_eof = 0;
212 array->cookies_are_ordered = 1;
213 kunmap_atomic(array);
214 }
215
216 /*
217 * we are freeing strings created by nfs_add_to_readdir_array()
218 */
nfs_readdir_clear_array(struct page * page)219 static void nfs_readdir_clear_array(struct page *page)
220 {
221 struct nfs_cache_array *array;
222 unsigned int i;
223
224 array = kmap_atomic(page);
225 for (i = 0; i < array->size; i++)
226 kfree(array->array[i].name);
227 array->size = 0;
228 kunmap_atomic(array);
229 }
230
nfs_readdir_free_folio(struct folio * folio)231 static void nfs_readdir_free_folio(struct folio *folio)
232 {
233 nfs_readdir_clear_array(&folio->page);
234 }
235
nfs_readdir_page_reinit_array(struct page * page,u64 last_cookie,u64 change_attr)236 static void nfs_readdir_page_reinit_array(struct page *page, u64 last_cookie,
237 u64 change_attr)
238 {
239 nfs_readdir_clear_array(page);
240 nfs_readdir_page_init_array(page, last_cookie, change_attr);
241 }
242
243 static struct page *
nfs_readdir_page_array_alloc(u64 last_cookie,gfp_t gfp_flags)244 nfs_readdir_page_array_alloc(u64 last_cookie, gfp_t gfp_flags)
245 {
246 struct page *page = alloc_page(gfp_flags);
247 if (page)
248 nfs_readdir_page_init_array(page, last_cookie, 0);
249 return page;
250 }
251
nfs_readdir_page_array_free(struct page * page)252 static void nfs_readdir_page_array_free(struct page *page)
253 {
254 if (page) {
255 nfs_readdir_clear_array(page);
256 put_page(page);
257 }
258 }
259
nfs_readdir_array_index_cookie(struct nfs_cache_array * array)260 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
261 {
262 return array->size == 0 ? array->last_cookie : array->array[0].cookie;
263 }
264
nfs_readdir_array_set_eof(struct nfs_cache_array * array)265 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
266 {
267 array->page_is_eof = 1;
268 array->page_full = 1;
269 }
270
nfs_readdir_array_is_full(struct nfs_cache_array * array)271 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
272 {
273 return array->page_full;
274 }
275
276 /*
277 * the caller is responsible for freeing qstr.name
278 * when called by nfs_readdir_add_to_array, the strings will be freed in
279 * nfs_clear_readdir_array()
280 */
nfs_readdir_copy_name(const char * name,unsigned int len)281 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
282 {
283 const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
284
285 /*
286 * Avoid a kmemleak false positive. The pointer to the name is stored
287 * in a page cache page which kmemleak does not scan.
288 */
289 if (ret != NULL)
290 kmemleak_not_leak(ret);
291 return ret;
292 }
293
nfs_readdir_array_maxentries(void)294 static size_t nfs_readdir_array_maxentries(void)
295 {
296 return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
297 sizeof(struct nfs_cache_array_entry);
298 }
299
300 /*
301 * Check that the next array entry lies entirely within the page bounds
302 */
nfs_readdir_array_can_expand(struct nfs_cache_array * array)303 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
304 {
305 if (array->page_full)
306 return -ENOSPC;
307 if (array->size == nfs_readdir_array_maxentries()) {
308 array->page_full = 1;
309 return -ENOSPC;
310 }
311 return 0;
312 }
313
nfs_readdir_page_array_append(struct page * page,const struct nfs_entry * entry,u64 * cookie)314 static int nfs_readdir_page_array_append(struct page *page,
315 const struct nfs_entry *entry,
316 u64 *cookie)
317 {
318 struct nfs_cache_array *array;
319 struct nfs_cache_array_entry *cache_entry;
320 const char *name;
321 int ret = -ENOMEM;
322
323 name = nfs_readdir_copy_name(entry->name, entry->len);
324
325 array = kmap_atomic(page);
326 if (!name)
327 goto out;
328 ret = nfs_readdir_array_can_expand(array);
329 if (ret) {
330 kfree(name);
331 goto out;
332 }
333
334 cache_entry = &array->array[array->size];
335 cache_entry->cookie = array->last_cookie;
336 cache_entry->ino = entry->ino;
337 cache_entry->d_type = entry->d_type;
338 cache_entry->name_len = entry->len;
339 cache_entry->name = name;
340 array->last_cookie = entry->cookie;
341 if (array->last_cookie <= cache_entry->cookie)
342 array->cookies_are_ordered = 0;
343 array->size++;
344 if (entry->eof != 0)
345 nfs_readdir_array_set_eof(array);
346 out:
347 *cookie = array->last_cookie;
348 kunmap_atomic(array);
349 return ret;
350 }
351
352 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
353 /*
354 * Hash algorithm allowing content addressible access to sequences
355 * of directory cookies. Content is addressed by the value of the
356 * cookie index of the first readdir entry in a page.
357 *
358 * We select only the first 18 bits to avoid issues with excessive
359 * memory use for the page cache XArray. 18 bits should allow the caching
360 * of 262144 pages of sequences of readdir entries. Since each page holds
361 * 127 readdir entries for a typical 64-bit system, that works out to a
362 * cache of ~ 33 million entries per directory.
363 */
nfs_readdir_page_cookie_hash(u64 cookie)364 static pgoff_t nfs_readdir_page_cookie_hash(u64 cookie)
365 {
366 if (cookie == 0)
367 return 0;
368 return hash_64(cookie, 18);
369 }
370
nfs_readdir_page_validate(struct page * page,u64 last_cookie,u64 change_attr)371 static bool nfs_readdir_page_validate(struct page *page, u64 last_cookie,
372 u64 change_attr)
373 {
374 struct nfs_cache_array *array = kmap_atomic(page);
375 int ret = true;
376
377 if (array->change_attr != change_attr)
378 ret = false;
379 if (nfs_readdir_array_index_cookie(array) != last_cookie)
380 ret = false;
381 kunmap_atomic(array);
382 return ret;
383 }
384
nfs_readdir_page_unlock_and_put(struct page * page)385 static void nfs_readdir_page_unlock_and_put(struct page *page)
386 {
387 unlock_page(page);
388 put_page(page);
389 }
390
nfs_readdir_page_init_and_validate(struct page * page,u64 cookie,u64 change_attr)391 static void nfs_readdir_page_init_and_validate(struct page *page, u64 cookie,
392 u64 change_attr)
393 {
394 if (PageUptodate(page)) {
395 if (nfs_readdir_page_validate(page, cookie, change_attr))
396 return;
397 nfs_readdir_clear_array(page);
398 }
399 nfs_readdir_page_init_array(page, cookie, change_attr);
400 SetPageUptodate(page);
401 }
402
nfs_readdir_page_get_locked(struct address_space * mapping,u64 cookie,u64 change_attr)403 static struct page *nfs_readdir_page_get_locked(struct address_space *mapping,
404 u64 cookie, u64 change_attr)
405 {
406 pgoff_t index = nfs_readdir_page_cookie_hash(cookie);
407 struct page *page;
408
409 page = grab_cache_page(mapping, index);
410 if (!page)
411 return NULL;
412 nfs_readdir_page_init_and_validate(page, cookie, change_attr);
413 return page;
414 }
415
nfs_readdir_page_last_cookie(struct page * page)416 static u64 nfs_readdir_page_last_cookie(struct page *page)
417 {
418 struct nfs_cache_array *array;
419 u64 ret;
420
421 array = kmap_atomic(page);
422 ret = array->last_cookie;
423 kunmap_atomic(array);
424 return ret;
425 }
426
nfs_readdir_page_needs_filling(struct page * page)427 static bool nfs_readdir_page_needs_filling(struct page *page)
428 {
429 struct nfs_cache_array *array;
430 bool ret;
431
432 array = kmap_atomic(page);
433 ret = !nfs_readdir_array_is_full(array);
434 kunmap_atomic(array);
435 return ret;
436 }
437
nfs_readdir_page_set_eof(struct page * page)438 static void nfs_readdir_page_set_eof(struct page *page)
439 {
440 struct nfs_cache_array *array;
441
442 array = kmap_atomic(page);
443 nfs_readdir_array_set_eof(array);
444 kunmap_atomic(array);
445 }
446
nfs_readdir_page_get_next(struct address_space * mapping,u64 cookie,u64 change_attr)447 static struct page *nfs_readdir_page_get_next(struct address_space *mapping,
448 u64 cookie, u64 change_attr)
449 {
450 pgoff_t index = nfs_readdir_page_cookie_hash(cookie);
451 struct page *page;
452
453 page = grab_cache_page_nowait(mapping, index);
454 if (!page)
455 return NULL;
456 nfs_readdir_page_init_and_validate(page, cookie, change_attr);
457 if (nfs_readdir_page_last_cookie(page) != cookie)
458 nfs_readdir_page_reinit_array(page, cookie, change_attr);
459 return page;
460 }
461
462 static inline
is_32bit_api(void)463 int is_32bit_api(void)
464 {
465 #ifdef CONFIG_COMPAT
466 return in_compat_syscall();
467 #else
468 return (BITS_PER_LONG == 32);
469 #endif
470 }
471
472 static
nfs_readdir_use_cookie(const struct file * filp)473 bool nfs_readdir_use_cookie(const struct file *filp)
474 {
475 if ((filp->f_mode & FMODE_32BITHASH) ||
476 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
477 return false;
478 return true;
479 }
480
nfs_readdir_seek_next_array(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)481 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
482 struct nfs_readdir_descriptor *desc)
483 {
484 if (array->page_full) {
485 desc->last_cookie = array->last_cookie;
486 desc->current_index += array->size;
487 desc->cache_entry_index = 0;
488 desc->page_index++;
489 } else
490 desc->last_cookie = nfs_readdir_array_index_cookie(array);
491 }
492
nfs_readdir_rewind_search(struct nfs_readdir_descriptor * desc)493 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
494 {
495 desc->current_index = 0;
496 desc->last_cookie = 0;
497 desc->page_index = 0;
498 }
499
nfs_readdir_search_for_pos(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)500 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
501 struct nfs_readdir_descriptor *desc)
502 {
503 loff_t diff = desc->ctx->pos - desc->current_index;
504 unsigned int index;
505
506 if (diff < 0)
507 goto out_eof;
508 if (diff >= array->size) {
509 if (array->page_is_eof)
510 goto out_eof;
511 nfs_readdir_seek_next_array(array, desc);
512 return -EAGAIN;
513 }
514
515 index = (unsigned int)diff;
516 desc->dir_cookie = array->array[index].cookie;
517 desc->cache_entry_index = index;
518 return 0;
519 out_eof:
520 desc->eof = true;
521 return -EBADCOOKIE;
522 }
523
nfs_readdir_array_cookie_in_range(struct nfs_cache_array * array,u64 cookie)524 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
525 u64 cookie)
526 {
527 if (!array->cookies_are_ordered)
528 return true;
529 /* Optimisation for monotonically increasing cookies */
530 if (cookie >= array->last_cookie)
531 return false;
532 if (array->size && cookie < array->array[0].cookie)
533 return false;
534 return true;
535 }
536
nfs_readdir_search_for_cookie(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)537 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
538 struct nfs_readdir_descriptor *desc)
539 {
540 unsigned int i;
541 int status = -EAGAIN;
542
543 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
544 goto check_eof;
545
546 for (i = 0; i < array->size; i++) {
547 if (array->array[i].cookie == desc->dir_cookie) {
548 if (nfs_readdir_use_cookie(desc->file))
549 desc->ctx->pos = desc->dir_cookie;
550 else
551 desc->ctx->pos = desc->current_index + i;
552 desc->cache_entry_index = i;
553 return 0;
554 }
555 }
556 check_eof:
557 if (array->page_is_eof) {
558 status = -EBADCOOKIE;
559 if (desc->dir_cookie == array->last_cookie)
560 desc->eof = true;
561 } else
562 nfs_readdir_seek_next_array(array, desc);
563 return status;
564 }
565
nfs_readdir_search_array(struct nfs_readdir_descriptor * desc)566 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
567 {
568 struct nfs_cache_array *array;
569 int status;
570
571 array = kmap_atomic(desc->page);
572
573 if (desc->dir_cookie == 0)
574 status = nfs_readdir_search_for_pos(array, desc);
575 else
576 status = nfs_readdir_search_for_cookie(array, desc);
577
578 kunmap_atomic(array);
579 return status;
580 }
581
582 /* Fill a page with xdr information before transferring to the cache page */
nfs_readdir_xdr_filler(struct nfs_readdir_descriptor * desc,__be32 * verf,u64 cookie,struct page ** pages,size_t bufsize,__be32 * verf_res)583 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
584 __be32 *verf, u64 cookie,
585 struct page **pages, size_t bufsize,
586 __be32 *verf_res)
587 {
588 struct inode *inode = file_inode(desc->file);
589 struct nfs_readdir_arg arg = {
590 .dentry = file_dentry(desc->file),
591 .cred = desc->file->f_cred,
592 .verf = verf,
593 .cookie = cookie,
594 .pages = pages,
595 .page_len = bufsize,
596 .plus = desc->plus,
597 };
598 struct nfs_readdir_res res = {
599 .verf = verf_res,
600 };
601 unsigned long timestamp, gencount;
602 int error;
603
604 again:
605 timestamp = jiffies;
606 gencount = nfs_inc_attr_generation_counter();
607 desc->dir_verifier = nfs_save_change_attribute(inode);
608 error = NFS_PROTO(inode)->readdir(&arg, &res);
609 if (error < 0) {
610 /* We requested READDIRPLUS, but the server doesn't grok it */
611 if (error == -ENOTSUPP && desc->plus) {
612 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
613 desc->plus = arg.plus = false;
614 goto again;
615 }
616 goto error;
617 }
618 desc->timestamp = timestamp;
619 desc->gencount = gencount;
620 error:
621 return error;
622 }
623
xdr_decode(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct xdr_stream * xdr)624 static int xdr_decode(struct nfs_readdir_descriptor *desc,
625 struct nfs_entry *entry, struct xdr_stream *xdr)
626 {
627 struct inode *inode = file_inode(desc->file);
628 int error;
629
630 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
631 if (error)
632 return error;
633 entry->fattr->time_start = desc->timestamp;
634 entry->fattr->gencount = desc->gencount;
635 return 0;
636 }
637
638 /* Match file and dirent using either filehandle or fileid
639 * Note: caller is responsible for checking the fsid
640 */
641 static
nfs_same_file(struct dentry * dentry,struct nfs_entry * entry)642 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
643 {
644 struct inode *inode;
645 struct nfs_inode *nfsi;
646
647 if (d_really_is_negative(dentry))
648 return 0;
649
650 inode = d_inode(dentry);
651 if (is_bad_inode(inode) || NFS_STALE(inode))
652 return 0;
653
654 nfsi = NFS_I(inode);
655 if (entry->fattr->fileid != nfsi->fileid)
656 return 0;
657 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
658 return 0;
659 return 1;
660 }
661
662 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
663
nfs_use_readdirplus(struct inode * dir,struct dir_context * ctx,unsigned int cache_hits,unsigned int cache_misses)664 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
665 unsigned int cache_hits,
666 unsigned int cache_misses)
667 {
668 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
669 return false;
670 if (ctx->pos == 0 ||
671 cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
672 return true;
673 return false;
674 }
675
676 /*
677 * This function is called by the getattr code to request the
678 * use of readdirplus to accelerate any future lookups in the same
679 * directory.
680 */
nfs_readdir_record_entry_cache_hit(struct inode * dir)681 void nfs_readdir_record_entry_cache_hit(struct inode *dir)
682 {
683 struct nfs_inode *nfsi = NFS_I(dir);
684 struct nfs_open_dir_context *ctx;
685
686 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
687 S_ISDIR(dir->i_mode)) {
688 rcu_read_lock();
689 list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
690 atomic_inc(&ctx->cache_hits);
691 rcu_read_unlock();
692 }
693 }
694
695 /*
696 * This function is mainly for use by nfs_getattr().
697 *
698 * If this is an 'ls -l', we want to force use of readdirplus.
699 */
nfs_readdir_record_entry_cache_miss(struct inode * dir)700 void nfs_readdir_record_entry_cache_miss(struct inode *dir)
701 {
702 struct nfs_inode *nfsi = NFS_I(dir);
703 struct nfs_open_dir_context *ctx;
704
705 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
706 S_ISDIR(dir->i_mode)) {
707 rcu_read_lock();
708 list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
709 atomic_inc(&ctx->cache_misses);
710 rcu_read_unlock();
711 }
712 }
713
nfs_lookup_advise_force_readdirplus(struct inode * dir,unsigned int flags)714 static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
715 unsigned int flags)
716 {
717 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
718 return;
719 if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
720 return;
721 nfs_readdir_record_entry_cache_miss(dir);
722 }
723
724 static
nfs_prime_dcache(struct dentry * parent,struct nfs_entry * entry,unsigned long dir_verifier)725 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
726 unsigned long dir_verifier)
727 {
728 struct qstr filename = QSTR_INIT(entry->name, entry->len);
729 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
730 struct dentry *dentry;
731 struct dentry *alias;
732 struct inode *inode;
733 int status;
734
735 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
736 return;
737 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
738 return;
739 if (filename.len == 0)
740 return;
741 /* Validate that the name doesn't contain any illegal '\0' */
742 if (strnlen(filename.name, filename.len) != filename.len)
743 return;
744 /* ...or '/' */
745 if (strnchr(filename.name, filename.len, '/'))
746 return;
747 if (filename.name[0] == '.') {
748 if (filename.len == 1)
749 return;
750 if (filename.len == 2 && filename.name[1] == '.')
751 return;
752 }
753 filename.hash = full_name_hash(parent, filename.name, filename.len);
754
755 dentry = d_lookup(parent, &filename);
756 again:
757 if (!dentry) {
758 dentry = d_alloc_parallel(parent, &filename, &wq);
759 if (IS_ERR(dentry))
760 return;
761 }
762 if (!d_in_lookup(dentry)) {
763 /* Is there a mountpoint here? If so, just exit */
764 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
765 &entry->fattr->fsid))
766 goto out;
767 if (nfs_same_file(dentry, entry)) {
768 if (!entry->fh->size)
769 goto out;
770 nfs_set_verifier(dentry, dir_verifier);
771 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
772 if (!status)
773 nfs_setsecurity(d_inode(dentry), entry->fattr);
774 trace_nfs_readdir_lookup_revalidate(d_inode(parent),
775 dentry, 0, status);
776 goto out;
777 } else {
778 trace_nfs_readdir_lookup_revalidate_failed(
779 d_inode(parent), dentry, 0);
780 d_invalidate(dentry);
781 dput(dentry);
782 dentry = NULL;
783 goto again;
784 }
785 }
786 if (!entry->fh->size) {
787 d_lookup_done(dentry);
788 goto out;
789 }
790
791 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
792 alias = d_splice_alias(inode, dentry);
793 d_lookup_done(dentry);
794 if (alias) {
795 if (IS_ERR(alias))
796 goto out;
797 dput(dentry);
798 dentry = alias;
799 }
800 nfs_set_verifier(dentry, dir_verifier);
801 trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
802 out:
803 dput(dentry);
804 }
805
nfs_readdir_entry_decode(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct xdr_stream * stream)806 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
807 struct nfs_entry *entry,
808 struct xdr_stream *stream)
809 {
810 int ret;
811
812 if (entry->fattr->label)
813 entry->fattr->label->len = NFS4_MAXLABELLEN;
814 ret = xdr_decode(desc, entry, stream);
815 if (ret || !desc->plus)
816 return ret;
817 nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
818 return 0;
819 }
820
821 /* Perform conversion from xdr to cache array */
nfs_readdir_page_filler(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct page ** xdr_pages,unsigned int buflen,struct page ** arrays,size_t narrays,u64 change_attr)822 static int nfs_readdir_page_filler(struct nfs_readdir_descriptor *desc,
823 struct nfs_entry *entry,
824 struct page **xdr_pages, unsigned int buflen,
825 struct page **arrays, size_t narrays,
826 u64 change_attr)
827 {
828 struct address_space *mapping = desc->file->f_mapping;
829 struct xdr_stream stream;
830 struct xdr_buf buf;
831 struct page *scratch, *new, *page = *arrays;
832 u64 cookie;
833 int status;
834
835 scratch = alloc_page(GFP_KERNEL);
836 if (scratch == NULL)
837 return -ENOMEM;
838
839 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
840 xdr_set_scratch_page(&stream, scratch);
841
842 do {
843 status = nfs_readdir_entry_decode(desc, entry, &stream);
844 if (status != 0)
845 break;
846
847 status = nfs_readdir_page_array_append(page, entry, &cookie);
848 if (status != -ENOSPC)
849 continue;
850
851 if (page->mapping != mapping) {
852 if (!--narrays)
853 break;
854 new = nfs_readdir_page_array_alloc(cookie, GFP_KERNEL);
855 if (!new)
856 break;
857 arrays++;
858 *arrays = page = new;
859 } else {
860 new = nfs_readdir_page_get_next(mapping, cookie,
861 change_attr);
862 if (!new)
863 break;
864 if (page != *arrays)
865 nfs_readdir_page_unlock_and_put(page);
866 page = new;
867 }
868 desc->page_index_max++;
869 status = nfs_readdir_page_array_append(page, entry, &cookie);
870 } while (!status && !entry->eof);
871
872 switch (status) {
873 case -EBADCOOKIE:
874 if (!entry->eof)
875 break;
876 nfs_readdir_page_set_eof(page);
877 fallthrough;
878 case -EAGAIN:
879 status = 0;
880 break;
881 case -ENOSPC:
882 status = 0;
883 if (!desc->plus)
884 break;
885 while (!nfs_readdir_entry_decode(desc, entry, &stream))
886 ;
887 }
888
889 if (page != *arrays)
890 nfs_readdir_page_unlock_and_put(page);
891
892 put_page(scratch);
893 return status;
894 }
895
nfs_readdir_free_pages(struct page ** pages,size_t npages)896 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
897 {
898 while (npages--)
899 put_page(pages[npages]);
900 kfree(pages);
901 }
902
903 /*
904 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
905 * to nfs_readdir_free_pages()
906 */
nfs_readdir_alloc_pages(size_t npages)907 static struct page **nfs_readdir_alloc_pages(size_t npages)
908 {
909 struct page **pages;
910 size_t i;
911
912 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
913 if (!pages)
914 return NULL;
915 for (i = 0; i < npages; i++) {
916 struct page *page = alloc_page(GFP_KERNEL);
917 if (page == NULL)
918 goto out_freepages;
919 pages[i] = page;
920 }
921 return pages;
922
923 out_freepages:
924 nfs_readdir_free_pages(pages, i);
925 return NULL;
926 }
927
nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor * desc,__be32 * verf_arg,__be32 * verf_res,struct page ** arrays,size_t narrays)928 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
929 __be32 *verf_arg, __be32 *verf_res,
930 struct page **arrays, size_t narrays)
931 {
932 u64 change_attr;
933 struct page **pages;
934 struct page *page = *arrays;
935 struct nfs_entry *entry;
936 size_t array_size;
937 struct inode *inode = file_inode(desc->file);
938 unsigned int dtsize = desc->dtsize;
939 unsigned int pglen;
940 int status = -ENOMEM;
941
942 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
943 if (!entry)
944 return -ENOMEM;
945 entry->cookie = nfs_readdir_page_last_cookie(page);
946 entry->fh = nfs_alloc_fhandle();
947 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
948 entry->server = NFS_SERVER(inode);
949 if (entry->fh == NULL || entry->fattr == NULL)
950 goto out;
951
952 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
953 pages = nfs_readdir_alloc_pages(array_size);
954 if (!pages)
955 goto out;
956
957 change_attr = inode_peek_iversion_raw(inode);
958 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
959 dtsize, verf_res);
960 if (status < 0)
961 goto free_pages;
962
963 pglen = status;
964 if (pglen != 0)
965 status = nfs_readdir_page_filler(desc, entry, pages, pglen,
966 arrays, narrays, change_attr);
967 else
968 nfs_readdir_page_set_eof(page);
969 desc->buffer_fills++;
970
971 free_pages:
972 nfs_readdir_free_pages(pages, array_size);
973 out:
974 nfs_free_fattr(entry->fattr);
975 nfs_free_fhandle(entry->fh);
976 kfree(entry);
977 return status;
978 }
979
nfs_readdir_page_put(struct nfs_readdir_descriptor * desc)980 static void nfs_readdir_page_put(struct nfs_readdir_descriptor *desc)
981 {
982 put_page(desc->page);
983 desc->page = NULL;
984 }
985
986 static void
nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor * desc)987 nfs_readdir_page_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
988 {
989 unlock_page(desc->page);
990 nfs_readdir_page_put(desc);
991 }
992
993 static struct page *
nfs_readdir_page_get_cached(struct nfs_readdir_descriptor * desc)994 nfs_readdir_page_get_cached(struct nfs_readdir_descriptor *desc)
995 {
996 struct address_space *mapping = desc->file->f_mapping;
997 u64 change_attr = inode_peek_iversion_raw(mapping->host);
998 u64 cookie = desc->last_cookie;
999 struct page *page;
1000
1001 page = nfs_readdir_page_get_locked(mapping, cookie, change_attr);
1002 if (!page)
1003 return NULL;
1004 if (desc->clear_cache && !nfs_readdir_page_needs_filling(page))
1005 nfs_readdir_page_reinit_array(page, cookie, change_attr);
1006 return page;
1007 }
1008
1009 /*
1010 * Returns 0 if desc->dir_cookie was found on page desc->page_index
1011 * and locks the page to prevent removal from the page cache.
1012 */
find_and_lock_cache_page(struct nfs_readdir_descriptor * desc)1013 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1014 {
1015 struct inode *inode = file_inode(desc->file);
1016 struct nfs_inode *nfsi = NFS_I(inode);
1017 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1018 int res;
1019
1020 desc->page = nfs_readdir_page_get_cached(desc);
1021 if (!desc->page)
1022 return -ENOMEM;
1023 if (nfs_readdir_page_needs_filling(desc->page)) {
1024 /* Grow the dtsize if we had to go back for more pages */
1025 if (desc->page_index == desc->page_index_max)
1026 nfs_grow_dtsize(desc);
1027 desc->page_index_max = desc->page_index;
1028 trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1029 desc->last_cookie,
1030 desc->page->index, desc->dtsize);
1031 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1032 &desc->page, 1);
1033 if (res < 0) {
1034 nfs_readdir_page_unlock_and_put_cached(desc);
1035 trace_nfs_readdir_cache_fill_done(inode, res);
1036 if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1037 invalidate_inode_pages2(desc->file->f_mapping);
1038 nfs_readdir_rewind_search(desc);
1039 trace_nfs_readdir_invalidate_cache_range(
1040 inode, 0, MAX_LFS_FILESIZE);
1041 return -EAGAIN;
1042 }
1043 return res;
1044 }
1045 /*
1046 * Set the cookie verifier if the page cache was empty
1047 */
1048 if (desc->last_cookie == 0 &&
1049 memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1050 memcpy(nfsi->cookieverf, verf,
1051 sizeof(nfsi->cookieverf));
1052 invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1053 -1);
1054 trace_nfs_readdir_invalidate_cache_range(
1055 inode, 1, MAX_LFS_FILESIZE);
1056 }
1057 desc->clear_cache = false;
1058 }
1059 res = nfs_readdir_search_array(desc);
1060 if (res == 0)
1061 return 0;
1062 nfs_readdir_page_unlock_and_put_cached(desc);
1063 return res;
1064 }
1065
1066 /* Search for desc->dir_cookie from the beginning of the page cache */
readdir_search_pagecache(struct nfs_readdir_descriptor * desc)1067 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1068 {
1069 int res;
1070
1071 do {
1072 res = find_and_lock_cache_page(desc);
1073 } while (res == -EAGAIN);
1074 return res;
1075 }
1076
1077 /*
1078 * Once we've found the start of the dirent within a page: fill 'er up...
1079 */
nfs_do_filldir(struct nfs_readdir_descriptor * desc,const __be32 * verf)1080 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1081 const __be32 *verf)
1082 {
1083 struct file *file = desc->file;
1084 struct nfs_cache_array *array;
1085 unsigned int i;
1086
1087 array = kmap_local_page(desc->page);
1088 for (i = desc->cache_entry_index; i < array->size; i++) {
1089 struct nfs_cache_array_entry *ent;
1090
1091 ent = &array->array[i];
1092 if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1093 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1094 desc->eob = true;
1095 break;
1096 }
1097 memcpy(desc->verf, verf, sizeof(desc->verf));
1098 if (i == array->size - 1) {
1099 desc->dir_cookie = array->last_cookie;
1100 nfs_readdir_seek_next_array(array, desc);
1101 } else {
1102 desc->dir_cookie = array->array[i + 1].cookie;
1103 desc->last_cookie = array->array[0].cookie;
1104 }
1105 if (nfs_readdir_use_cookie(file))
1106 desc->ctx->pos = desc->dir_cookie;
1107 else
1108 desc->ctx->pos++;
1109 }
1110 if (array->page_is_eof)
1111 desc->eof = !desc->eob;
1112
1113 kunmap_local(array);
1114 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1115 (unsigned long long)desc->dir_cookie);
1116 }
1117
1118 /*
1119 * If we cannot find a cookie in our cache, we suspect that this is
1120 * because it points to a deleted file, so we ask the server to return
1121 * whatever it thinks is the next entry. We then feed this to filldir.
1122 * If all goes well, we should then be able to find our way round the
1123 * cache on the next call to readdir_search_pagecache();
1124 *
1125 * NOTE: we cannot add the anonymous page to the pagecache because
1126 * the data it contains might not be page aligned. Besides,
1127 * we should already have a complete representation of the
1128 * directory in the page cache by the time we get here.
1129 */
uncached_readdir(struct nfs_readdir_descriptor * desc)1130 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1131 {
1132 struct page **arrays;
1133 size_t i, sz = 512;
1134 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1135 int status = -ENOMEM;
1136
1137 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1138 (unsigned long long)desc->dir_cookie);
1139
1140 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1141 if (!arrays)
1142 goto out;
1143 arrays[0] = nfs_readdir_page_array_alloc(desc->dir_cookie, GFP_KERNEL);
1144 if (!arrays[0])
1145 goto out;
1146
1147 desc->page_index = 0;
1148 desc->cache_entry_index = 0;
1149 desc->last_cookie = desc->dir_cookie;
1150 desc->page_index_max = 0;
1151
1152 trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1153 -1, desc->dtsize);
1154
1155 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1156 if (status < 0) {
1157 trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1158 goto out_free;
1159 }
1160
1161 for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1162 desc->page = arrays[i];
1163 nfs_do_filldir(desc, verf);
1164 }
1165 desc->page = NULL;
1166
1167 /*
1168 * Grow the dtsize if we have to go back for more pages,
1169 * or shrink it if we're reading too many.
1170 */
1171 if (!desc->eof) {
1172 if (!desc->eob)
1173 nfs_grow_dtsize(desc);
1174 else if (desc->buffer_fills == 1 &&
1175 i < (desc->page_index_max >> 1))
1176 nfs_shrink_dtsize(desc);
1177 }
1178 out_free:
1179 for (i = 0; i < sz && arrays[i]; i++)
1180 nfs_readdir_page_array_free(arrays[i]);
1181 out:
1182 if (!nfs_readdir_use_cookie(desc->file))
1183 nfs_readdir_rewind_search(desc);
1184 desc->page_index_max = -1;
1185 kfree(arrays);
1186 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1187 return status;
1188 }
1189
1190 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1191
nfs_readdir_handle_cache_misses(struct inode * inode,struct nfs_readdir_descriptor * desc,unsigned int cache_misses,bool force_clear)1192 static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1193 struct nfs_readdir_descriptor *desc,
1194 unsigned int cache_misses,
1195 bool force_clear)
1196 {
1197 if (desc->ctx->pos == 0 || !desc->plus)
1198 return false;
1199 if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1200 return false;
1201 trace_nfs_readdir_force_readdirplus(inode);
1202 return true;
1203 }
1204
1205 /* The file offset position represents the dirent entry number. A
1206 last cookie cache takes care of the common case of reading the
1207 whole directory.
1208 */
nfs_readdir(struct file * file,struct dir_context * ctx)1209 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1210 {
1211 struct dentry *dentry = file_dentry(file);
1212 struct inode *inode = d_inode(dentry);
1213 struct nfs_inode *nfsi = NFS_I(inode);
1214 struct nfs_open_dir_context *dir_ctx = file->private_data;
1215 struct nfs_readdir_descriptor *desc;
1216 unsigned int cache_hits, cache_misses;
1217 bool force_clear;
1218 int res;
1219
1220 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1221 file, (long long)ctx->pos);
1222 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1223
1224 /*
1225 * ctx->pos points to the dirent entry number.
1226 * *desc->dir_cookie has the cookie for the next entry. We have
1227 * to either find the entry with the appropriate number or
1228 * revalidate the cookie.
1229 */
1230 nfs_revalidate_mapping(inode, file->f_mapping);
1231
1232 res = -ENOMEM;
1233 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1234 if (!desc)
1235 goto out;
1236 desc->file = file;
1237 desc->ctx = ctx;
1238 desc->page_index_max = -1;
1239
1240 spin_lock(&file->f_lock);
1241 desc->dir_cookie = dir_ctx->dir_cookie;
1242 desc->page_index = dir_ctx->page_index;
1243 desc->last_cookie = dir_ctx->last_cookie;
1244 desc->attr_gencount = dir_ctx->attr_gencount;
1245 desc->eof = dir_ctx->eof;
1246 nfs_set_dtsize(desc, dir_ctx->dtsize);
1247 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1248 cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1249 cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1250 force_clear = dir_ctx->force_clear;
1251 spin_unlock(&file->f_lock);
1252
1253 if (desc->eof) {
1254 res = 0;
1255 goto out_free;
1256 }
1257
1258 desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1259 force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1260 force_clear);
1261 desc->clear_cache = force_clear;
1262
1263 do {
1264 res = readdir_search_pagecache(desc);
1265
1266 if (res == -EBADCOOKIE) {
1267 res = 0;
1268 /* This means either end of directory */
1269 if (desc->dir_cookie && !desc->eof) {
1270 /* Or that the server has 'lost' a cookie */
1271 res = uncached_readdir(desc);
1272 if (res == 0)
1273 continue;
1274 if (res == -EBADCOOKIE || res == -ENOTSYNC)
1275 res = 0;
1276 }
1277 break;
1278 }
1279 if (res == -ETOOSMALL && desc->plus) {
1280 nfs_zap_caches(inode);
1281 desc->plus = false;
1282 desc->eof = false;
1283 continue;
1284 }
1285 if (res < 0)
1286 break;
1287
1288 nfs_do_filldir(desc, nfsi->cookieverf);
1289 nfs_readdir_page_unlock_and_put_cached(desc);
1290 if (desc->page_index == desc->page_index_max)
1291 desc->clear_cache = force_clear;
1292 } while (!desc->eob && !desc->eof);
1293
1294 spin_lock(&file->f_lock);
1295 dir_ctx->dir_cookie = desc->dir_cookie;
1296 dir_ctx->last_cookie = desc->last_cookie;
1297 dir_ctx->attr_gencount = desc->attr_gencount;
1298 dir_ctx->page_index = desc->page_index;
1299 dir_ctx->force_clear = force_clear;
1300 dir_ctx->eof = desc->eof;
1301 dir_ctx->dtsize = desc->dtsize;
1302 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1303 spin_unlock(&file->f_lock);
1304 out_free:
1305 kfree(desc);
1306
1307 out:
1308 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1309 return res;
1310 }
1311
nfs_llseek_dir(struct file * filp,loff_t offset,int whence)1312 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1313 {
1314 struct nfs_open_dir_context *dir_ctx = filp->private_data;
1315
1316 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1317 filp, offset, whence);
1318
1319 switch (whence) {
1320 default:
1321 return -EINVAL;
1322 case SEEK_SET:
1323 if (offset < 0)
1324 return -EINVAL;
1325 spin_lock(&filp->f_lock);
1326 break;
1327 case SEEK_CUR:
1328 if (offset == 0)
1329 return filp->f_pos;
1330 spin_lock(&filp->f_lock);
1331 offset += filp->f_pos;
1332 if (offset < 0) {
1333 spin_unlock(&filp->f_lock);
1334 return -EINVAL;
1335 }
1336 }
1337 if (offset != filp->f_pos) {
1338 filp->f_pos = offset;
1339 dir_ctx->page_index = 0;
1340 if (!nfs_readdir_use_cookie(filp)) {
1341 dir_ctx->dir_cookie = 0;
1342 dir_ctx->last_cookie = 0;
1343 } else {
1344 dir_ctx->dir_cookie = offset;
1345 dir_ctx->last_cookie = offset;
1346 }
1347 dir_ctx->eof = false;
1348 }
1349 spin_unlock(&filp->f_lock);
1350 return offset;
1351 }
1352
1353 /*
1354 * All directory operations under NFS are synchronous, so fsync()
1355 * is a dummy operation.
1356 */
nfs_fsync_dir(struct file * filp,loff_t start,loff_t end,int datasync)1357 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1358 int datasync)
1359 {
1360 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1361
1362 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1363 return 0;
1364 }
1365
1366 /**
1367 * nfs_force_lookup_revalidate - Mark the directory as having changed
1368 * @dir: pointer to directory inode
1369 *
1370 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1371 * full lookup on all child dentries of 'dir' whenever a change occurs
1372 * on the server that might have invalidated our dcache.
1373 *
1374 * Note that we reserve bit '0' as a tag to let us know when a dentry
1375 * was revalidated while holding a delegation on its inode.
1376 *
1377 * The caller should be holding dir->i_lock
1378 */
nfs_force_lookup_revalidate(struct inode * dir)1379 void nfs_force_lookup_revalidate(struct inode *dir)
1380 {
1381 NFS_I(dir)->cache_change_attribute += 2;
1382 }
1383 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1384
1385 /**
1386 * nfs_verify_change_attribute - Detects NFS remote directory changes
1387 * @dir: pointer to parent directory inode
1388 * @verf: previously saved change attribute
1389 *
1390 * Return "false" if the verifiers doesn't match the change attribute.
1391 * This would usually indicate that the directory contents have changed on
1392 * the server, and that any dentries need revalidating.
1393 */
nfs_verify_change_attribute(struct inode * dir,unsigned long verf)1394 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1395 {
1396 return (verf & ~1UL) == nfs_save_change_attribute(dir);
1397 }
1398
nfs_set_verifier_delegated(unsigned long * verf)1399 static void nfs_set_verifier_delegated(unsigned long *verf)
1400 {
1401 *verf |= 1UL;
1402 }
1403
1404 #if IS_ENABLED(CONFIG_NFS_V4)
nfs_unset_verifier_delegated(unsigned long * verf)1405 static void nfs_unset_verifier_delegated(unsigned long *verf)
1406 {
1407 *verf &= ~1UL;
1408 }
1409 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1410
nfs_test_verifier_delegated(unsigned long verf)1411 static bool nfs_test_verifier_delegated(unsigned long verf)
1412 {
1413 return verf & 1;
1414 }
1415
nfs_verifier_is_delegated(struct dentry * dentry)1416 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1417 {
1418 return nfs_test_verifier_delegated(dentry->d_time);
1419 }
1420
nfs_set_verifier_locked(struct dentry * dentry,unsigned long verf)1421 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1422 {
1423 struct inode *inode = d_inode(dentry);
1424 struct inode *dir = d_inode(dentry->d_parent);
1425
1426 if (!nfs_verify_change_attribute(dir, verf))
1427 return;
1428 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1429 nfs_set_verifier_delegated(&verf);
1430 dentry->d_time = verf;
1431 }
1432
1433 /**
1434 * nfs_set_verifier - save a parent directory verifier in the dentry
1435 * @dentry: pointer to dentry
1436 * @verf: verifier to save
1437 *
1438 * Saves the parent directory verifier in @dentry. If the inode has
1439 * a delegation, we also tag the dentry as having been revalidated
1440 * while holding a delegation so that we know we don't have to
1441 * look it up again after a directory change.
1442 */
nfs_set_verifier(struct dentry * dentry,unsigned long verf)1443 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1444 {
1445
1446 spin_lock(&dentry->d_lock);
1447 nfs_set_verifier_locked(dentry, verf);
1448 spin_unlock(&dentry->d_lock);
1449 }
1450 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1451
1452 #if IS_ENABLED(CONFIG_NFS_V4)
1453 /**
1454 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1455 * @inode: pointer to inode
1456 *
1457 * Iterates through the dentries in the inode alias list and clears
1458 * the tag used to indicate that the dentry has been revalidated
1459 * while holding a delegation.
1460 * This function is intended for use when the delegation is being
1461 * returned or revoked.
1462 */
nfs_clear_verifier_delegated(struct inode * inode)1463 void nfs_clear_verifier_delegated(struct inode *inode)
1464 {
1465 struct dentry *alias;
1466
1467 if (!inode)
1468 return;
1469 spin_lock(&inode->i_lock);
1470 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1471 spin_lock(&alias->d_lock);
1472 nfs_unset_verifier_delegated(&alias->d_time);
1473 spin_unlock(&alias->d_lock);
1474 }
1475 spin_unlock(&inode->i_lock);
1476 }
1477 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1478 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1479
nfs_dentry_verify_change(struct inode * dir,struct dentry * dentry)1480 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1481 {
1482 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1483 d_really_is_negative(dentry))
1484 return dentry->d_time == inode_peek_iversion_raw(dir);
1485 return nfs_verify_change_attribute(dir, dentry->d_time);
1486 }
1487
1488 /*
1489 * A check for whether or not the parent directory has changed.
1490 * In the case it has, we assume that the dentries are untrustworthy
1491 * and may need to be looked up again.
1492 * If rcu_walk prevents us from performing a full check, return 0.
1493 */
nfs_check_verifier(struct inode * dir,struct dentry * dentry,int rcu_walk)1494 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1495 int rcu_walk)
1496 {
1497 if (IS_ROOT(dentry))
1498 return 1;
1499 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1500 return 0;
1501 if (!nfs_dentry_verify_change(dir, dentry))
1502 return 0;
1503 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1504 if (nfs_mapping_need_revalidate_inode(dir)) {
1505 if (rcu_walk)
1506 return 0;
1507 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1508 return 0;
1509 }
1510 if (!nfs_dentry_verify_change(dir, dentry))
1511 return 0;
1512 return 1;
1513 }
1514
1515 /*
1516 * Use intent information to check whether or not we're going to do
1517 * an O_EXCL create using this path component.
1518 */
nfs_is_exclusive_create(struct inode * dir,unsigned int flags)1519 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1520 {
1521 if (NFS_PROTO(dir)->version == 2)
1522 return 0;
1523 return flags & LOOKUP_EXCL;
1524 }
1525
1526 /*
1527 * Inode and filehandle revalidation for lookups.
1528 *
1529 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1530 * or if the intent information indicates that we're about to open this
1531 * particular file and the "nocto" mount flag is not set.
1532 *
1533 */
1534 static
nfs_lookup_verify_inode(struct inode * inode,unsigned int flags)1535 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1536 {
1537 struct nfs_server *server = NFS_SERVER(inode);
1538 int ret;
1539
1540 if (IS_AUTOMOUNT(inode))
1541 return 0;
1542
1543 if (flags & LOOKUP_OPEN) {
1544 switch (inode->i_mode & S_IFMT) {
1545 case S_IFREG:
1546 /* A NFSv4 OPEN will revalidate later */
1547 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1548 goto out;
1549 fallthrough;
1550 case S_IFDIR:
1551 if (server->flags & NFS_MOUNT_NOCTO)
1552 break;
1553 /* NFS close-to-open cache consistency validation */
1554 goto out_force;
1555 }
1556 }
1557
1558 /* VFS wants an on-the-wire revalidation */
1559 if (flags & LOOKUP_REVAL)
1560 goto out_force;
1561 out:
1562 if (inode->i_nlink > 0 ||
1563 (inode->i_nlink == 0 &&
1564 test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1565 return 0;
1566 else
1567 return -ESTALE;
1568 out_force:
1569 if (flags & LOOKUP_RCU)
1570 return -ECHILD;
1571 ret = __nfs_revalidate_inode(server, inode);
1572 if (ret != 0)
1573 return ret;
1574 goto out;
1575 }
1576
nfs_mark_dir_for_revalidate(struct inode * inode)1577 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1578 {
1579 spin_lock(&inode->i_lock);
1580 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1581 spin_unlock(&inode->i_lock);
1582 }
1583
1584 /*
1585 * We judge how long we want to trust negative
1586 * dentries by looking at the parent inode mtime.
1587 *
1588 * If parent mtime has changed, we revalidate, else we wait for a
1589 * period corresponding to the parent's attribute cache timeout value.
1590 *
1591 * If LOOKUP_RCU prevents us from performing a full check, return 1
1592 * suggesting a reval is needed.
1593 *
1594 * Note that when creating a new file, or looking up a rename target,
1595 * then it shouldn't be necessary to revalidate a negative dentry.
1596 */
1597 static inline
nfs_neg_need_reval(struct inode * dir,struct dentry * dentry,unsigned int flags)1598 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1599 unsigned int flags)
1600 {
1601 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1602 return 0;
1603 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1604 return 1;
1605 /* Case insensitive server? Revalidate negative dentries */
1606 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1607 return 1;
1608 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1609 }
1610
1611 static int
nfs_lookup_revalidate_done(struct inode * dir,struct dentry * dentry,struct inode * inode,int error)1612 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1613 struct inode *inode, int error)
1614 {
1615 switch (error) {
1616 case 1:
1617 break;
1618 case 0:
1619 /*
1620 * We can't d_drop the root of a disconnected tree:
1621 * its d_hash is on the s_anon list and d_drop() would hide
1622 * it from shrink_dcache_for_unmount(), leading to busy
1623 * inodes on unmount and further oopses.
1624 */
1625 if (inode && IS_ROOT(dentry))
1626 error = 1;
1627 break;
1628 }
1629 trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1630 return error;
1631 }
1632
1633 static int
nfs_lookup_revalidate_negative(struct inode * dir,struct dentry * dentry,unsigned int flags)1634 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1635 unsigned int flags)
1636 {
1637 int ret = 1;
1638 if (nfs_neg_need_reval(dir, dentry, flags)) {
1639 if (flags & LOOKUP_RCU)
1640 return -ECHILD;
1641 ret = 0;
1642 }
1643 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1644 }
1645
1646 static int
nfs_lookup_revalidate_delegated(struct inode * dir,struct dentry * dentry,struct inode * inode)1647 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1648 struct inode *inode)
1649 {
1650 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1651 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1652 }
1653
nfs_lookup_revalidate_dentry(struct inode * dir,struct dentry * dentry,struct inode * inode,unsigned int flags)1654 static int nfs_lookup_revalidate_dentry(struct inode *dir,
1655 struct dentry *dentry,
1656 struct inode *inode, unsigned int flags)
1657 {
1658 struct nfs_fh *fhandle;
1659 struct nfs_fattr *fattr;
1660 unsigned long dir_verifier;
1661 int ret;
1662
1663 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1664
1665 ret = -ENOMEM;
1666 fhandle = nfs_alloc_fhandle();
1667 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1668 if (fhandle == NULL || fattr == NULL)
1669 goto out;
1670
1671 dir_verifier = nfs_save_change_attribute(dir);
1672 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1673 if (ret < 0) {
1674 switch (ret) {
1675 case -ESTALE:
1676 case -ENOENT:
1677 ret = 0;
1678 break;
1679 case -ETIMEDOUT:
1680 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1681 ret = 1;
1682 }
1683 goto out;
1684 }
1685
1686 /* Request help from readdirplus */
1687 nfs_lookup_advise_force_readdirplus(dir, flags);
1688
1689 ret = 0;
1690 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1691 goto out;
1692 if (nfs_refresh_inode(inode, fattr) < 0)
1693 goto out;
1694
1695 nfs_setsecurity(inode, fattr);
1696 nfs_set_verifier(dentry, dir_verifier);
1697
1698 ret = 1;
1699 out:
1700 nfs_free_fattr(fattr);
1701 nfs_free_fhandle(fhandle);
1702
1703 /*
1704 * If the lookup failed despite the dentry change attribute being
1705 * a match, then we should revalidate the directory cache.
1706 */
1707 if (!ret && nfs_dentry_verify_change(dir, dentry))
1708 nfs_mark_dir_for_revalidate(dir);
1709 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1710 }
1711
1712 /*
1713 * This is called every time the dcache has a lookup hit,
1714 * and we should check whether we can really trust that
1715 * lookup.
1716 *
1717 * NOTE! The hit can be a negative hit too, don't assume
1718 * we have an inode!
1719 *
1720 * If the parent directory is seen to have changed, we throw out the
1721 * cached dentry and do a new lookup.
1722 */
1723 static int
nfs_do_lookup_revalidate(struct inode * dir,struct dentry * dentry,unsigned int flags)1724 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1725 unsigned int flags)
1726 {
1727 struct inode *inode;
1728 int error;
1729
1730 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1731 inode = d_inode(dentry);
1732
1733 if (!inode)
1734 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1735
1736 if (is_bad_inode(inode)) {
1737 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1738 __func__, dentry);
1739 goto out_bad;
1740 }
1741
1742 if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1743 nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1744 goto out_bad;
1745
1746 if (nfs_verifier_is_delegated(dentry))
1747 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1748
1749 /* Force a full look up iff the parent directory has changed */
1750 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1751 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1752 error = nfs_lookup_verify_inode(inode, flags);
1753 if (error) {
1754 if (error == -ESTALE)
1755 nfs_mark_dir_for_revalidate(dir);
1756 goto out_bad;
1757 }
1758 goto out_valid;
1759 }
1760
1761 if (flags & LOOKUP_RCU)
1762 return -ECHILD;
1763
1764 if (NFS_STALE(inode))
1765 goto out_bad;
1766
1767 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
1768 out_valid:
1769 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1770 out_bad:
1771 if (flags & LOOKUP_RCU)
1772 return -ECHILD;
1773 return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1774 }
1775
1776 static int
__nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags,int (* reval)(struct inode *,struct dentry *,unsigned int))1777 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1778 int (*reval)(struct inode *, struct dentry *, unsigned int))
1779 {
1780 struct dentry *parent;
1781 struct inode *dir;
1782 int ret;
1783
1784 if (flags & LOOKUP_RCU) {
1785 if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1786 return -ECHILD;
1787 parent = READ_ONCE(dentry->d_parent);
1788 dir = d_inode_rcu(parent);
1789 if (!dir)
1790 return -ECHILD;
1791 ret = reval(dir, dentry, flags);
1792 if (parent != READ_ONCE(dentry->d_parent))
1793 return -ECHILD;
1794 } else {
1795 /* Wait for unlink to complete */
1796 wait_var_event(&dentry->d_fsdata,
1797 dentry->d_fsdata != NFS_FSDATA_BLOCKED);
1798 parent = dget_parent(dentry);
1799 ret = reval(d_inode(parent), dentry, flags);
1800 dput(parent);
1801 }
1802 return ret;
1803 }
1804
nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags)1805 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1806 {
1807 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1808 }
1809
1810 /*
1811 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1812 * when we don't really care about the dentry name. This is called when a
1813 * pathwalk ends on a dentry that was not found via a normal lookup in the
1814 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1815 *
1816 * In this situation, we just want to verify that the inode itself is OK
1817 * since the dentry might have changed on the server.
1818 */
nfs_weak_revalidate(struct dentry * dentry,unsigned int flags)1819 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1820 {
1821 struct inode *inode = d_inode(dentry);
1822 int error = 0;
1823
1824 /*
1825 * I believe we can only get a negative dentry here in the case of a
1826 * procfs-style symlink. Just assume it's correct for now, but we may
1827 * eventually need to do something more here.
1828 */
1829 if (!inode) {
1830 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1831 __func__, dentry);
1832 return 1;
1833 }
1834
1835 if (is_bad_inode(inode)) {
1836 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1837 __func__, dentry);
1838 return 0;
1839 }
1840
1841 error = nfs_lookup_verify_inode(inode, flags);
1842 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1843 __func__, inode->i_ino, error ? "invalid" : "valid");
1844 return !error;
1845 }
1846
1847 /*
1848 * This is called from dput() when d_count is going to 0.
1849 */
nfs_dentry_delete(const struct dentry * dentry)1850 static int nfs_dentry_delete(const struct dentry *dentry)
1851 {
1852 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1853 dentry, dentry->d_flags);
1854
1855 /* Unhash any dentry with a stale inode */
1856 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1857 return 1;
1858
1859 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1860 /* Unhash it, so that ->d_iput() would be called */
1861 return 1;
1862 }
1863 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1864 /* Unhash it, so that ancestors of killed async unlink
1865 * files will be cleaned up during umount */
1866 return 1;
1867 }
1868 return 0;
1869
1870 }
1871
1872 /* Ensure that we revalidate inode->i_nlink */
nfs_drop_nlink(struct inode * inode)1873 static void nfs_drop_nlink(struct inode *inode)
1874 {
1875 spin_lock(&inode->i_lock);
1876 /* drop the inode if we're reasonably sure this is the last link */
1877 if (inode->i_nlink > 0)
1878 drop_nlink(inode);
1879 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1880 nfs_set_cache_invalid(
1881 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1882 NFS_INO_INVALID_NLINK);
1883 spin_unlock(&inode->i_lock);
1884 }
1885
1886 /*
1887 * Called when the dentry loses inode.
1888 * We use it to clean up silly-renamed files.
1889 */
nfs_dentry_iput(struct dentry * dentry,struct inode * inode)1890 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1891 {
1892 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1893 nfs_complete_unlink(dentry, inode);
1894 nfs_drop_nlink(inode);
1895 }
1896 iput(inode);
1897 }
1898
nfs_d_release(struct dentry * dentry)1899 static void nfs_d_release(struct dentry *dentry)
1900 {
1901 /* free cached devname value, if it survived that far */
1902 if (unlikely(dentry->d_fsdata)) {
1903 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1904 WARN_ON(1);
1905 else
1906 kfree(dentry->d_fsdata);
1907 }
1908 }
1909
1910 const struct dentry_operations nfs_dentry_operations = {
1911 .d_revalidate = nfs_lookup_revalidate,
1912 .d_weak_revalidate = nfs_weak_revalidate,
1913 .d_delete = nfs_dentry_delete,
1914 .d_iput = nfs_dentry_iput,
1915 .d_automount = nfs_d_automount,
1916 .d_release = nfs_d_release,
1917 };
1918 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1919
nfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1920 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1921 {
1922 struct dentry *res;
1923 struct inode *inode = NULL;
1924 struct nfs_fh *fhandle = NULL;
1925 struct nfs_fattr *fattr = NULL;
1926 unsigned long dir_verifier;
1927 int error;
1928
1929 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1930 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1931
1932 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1933 return ERR_PTR(-ENAMETOOLONG);
1934
1935 /*
1936 * If we're doing an exclusive create, optimize away the lookup
1937 * but don't hash the dentry.
1938 */
1939 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1940 return NULL;
1941
1942 res = ERR_PTR(-ENOMEM);
1943 fhandle = nfs_alloc_fhandle();
1944 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1945 if (fhandle == NULL || fattr == NULL)
1946 goto out;
1947
1948 dir_verifier = nfs_save_change_attribute(dir);
1949 trace_nfs_lookup_enter(dir, dentry, flags);
1950 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1951 if (error == -ENOENT) {
1952 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1953 dir_verifier = inode_peek_iversion_raw(dir);
1954 goto no_entry;
1955 }
1956 if (error < 0) {
1957 res = ERR_PTR(error);
1958 goto out;
1959 }
1960 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1961 res = ERR_CAST(inode);
1962 if (IS_ERR(res))
1963 goto out;
1964
1965 /* Notify readdir to use READDIRPLUS */
1966 nfs_lookup_advise_force_readdirplus(dir, flags);
1967
1968 no_entry:
1969 res = d_splice_alias(inode, dentry);
1970 if (res != NULL) {
1971 if (IS_ERR(res))
1972 goto out;
1973 dentry = res;
1974 }
1975 nfs_set_verifier(dentry, dir_verifier);
1976 out:
1977 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1978 nfs_free_fattr(fattr);
1979 nfs_free_fhandle(fhandle);
1980 return res;
1981 }
1982 EXPORT_SYMBOL_GPL(nfs_lookup);
1983
nfs_d_prune_case_insensitive_aliases(struct inode * inode)1984 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1985 {
1986 /* Case insensitive server? Revalidate dentries */
1987 if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
1988 d_prune_aliases(inode);
1989 }
1990 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
1991
1992 #if IS_ENABLED(CONFIG_NFS_V4)
1993 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1994
1995 const struct dentry_operations nfs4_dentry_operations = {
1996 .d_revalidate = nfs4_lookup_revalidate,
1997 .d_weak_revalidate = nfs_weak_revalidate,
1998 .d_delete = nfs_dentry_delete,
1999 .d_iput = nfs_dentry_iput,
2000 .d_automount = nfs_d_automount,
2001 .d_release = nfs_d_release,
2002 };
2003 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2004
create_nfs_open_context(struct dentry * dentry,int open_flags,struct file * filp)2005 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2006 {
2007 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2008 }
2009
do_open(struct inode * inode,struct file * filp)2010 static int do_open(struct inode *inode, struct file *filp)
2011 {
2012 nfs_fscache_open_file(inode, filp);
2013 return 0;
2014 }
2015
nfs_finish_open(struct nfs_open_context * ctx,struct dentry * dentry,struct file * file,unsigned open_flags)2016 static int nfs_finish_open(struct nfs_open_context *ctx,
2017 struct dentry *dentry,
2018 struct file *file, unsigned open_flags)
2019 {
2020 int err;
2021
2022 err = finish_open(file, dentry, do_open);
2023 if (err)
2024 goto out;
2025 if (S_ISREG(file_inode(file)->i_mode))
2026 nfs_file_set_open_context(file, ctx);
2027 else
2028 err = -EOPENSTALE;
2029 out:
2030 return err;
2031 }
2032
nfs_atomic_open(struct inode * dir,struct dentry * dentry,struct file * file,unsigned open_flags,umode_t mode)2033 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2034 struct file *file, unsigned open_flags,
2035 umode_t mode)
2036 {
2037 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2038 struct nfs_open_context *ctx;
2039 struct dentry *res;
2040 struct iattr attr = { .ia_valid = ATTR_OPEN };
2041 struct inode *inode;
2042 unsigned int lookup_flags = 0;
2043 unsigned long dir_verifier;
2044 bool switched = false;
2045 int created = 0;
2046 int err;
2047
2048 /* Expect a negative dentry */
2049 BUG_ON(d_inode(dentry));
2050
2051 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2052 dir->i_sb->s_id, dir->i_ino, dentry);
2053
2054 err = nfs_check_flags(open_flags);
2055 if (err)
2056 return err;
2057
2058 /* NFS only supports OPEN on regular files */
2059 if ((open_flags & O_DIRECTORY)) {
2060 if (!d_in_lookup(dentry)) {
2061 /*
2062 * Hashed negative dentry with O_DIRECTORY: dentry was
2063 * revalidated and is fine, no need to perform lookup
2064 * again
2065 */
2066 return -ENOENT;
2067 }
2068 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2069 goto no_open;
2070 }
2071
2072 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2073 return -ENAMETOOLONG;
2074
2075 if (open_flags & O_CREAT) {
2076 struct nfs_server *server = NFS_SERVER(dir);
2077
2078 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2079 mode &= ~current_umask();
2080
2081 attr.ia_valid |= ATTR_MODE;
2082 attr.ia_mode = mode;
2083 }
2084 if (open_flags & O_TRUNC) {
2085 attr.ia_valid |= ATTR_SIZE;
2086 attr.ia_size = 0;
2087 }
2088
2089 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2090 d_drop(dentry);
2091 switched = true;
2092 dentry = d_alloc_parallel(dentry->d_parent,
2093 &dentry->d_name, &wq);
2094 if (IS_ERR(dentry))
2095 return PTR_ERR(dentry);
2096 if (unlikely(!d_in_lookup(dentry)))
2097 return finish_no_open(file, dentry);
2098 }
2099
2100 ctx = create_nfs_open_context(dentry, open_flags, file);
2101 err = PTR_ERR(ctx);
2102 if (IS_ERR(ctx))
2103 goto out;
2104
2105 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2106 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2107 if (created)
2108 file->f_mode |= FMODE_CREATED;
2109 if (IS_ERR(inode)) {
2110 err = PTR_ERR(inode);
2111 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2112 put_nfs_open_context(ctx);
2113 d_drop(dentry);
2114 switch (err) {
2115 case -ENOENT:
2116 d_splice_alias(NULL, dentry);
2117 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2118 dir_verifier = inode_peek_iversion_raw(dir);
2119 else
2120 dir_verifier = nfs_save_change_attribute(dir);
2121 nfs_set_verifier(dentry, dir_verifier);
2122 break;
2123 case -EISDIR:
2124 case -ENOTDIR:
2125 goto no_open;
2126 case -ELOOP:
2127 if (!(open_flags & O_NOFOLLOW))
2128 goto no_open;
2129 break;
2130 /* case -EINVAL: */
2131 default:
2132 break;
2133 }
2134 goto out;
2135 }
2136 file->f_mode |= FMODE_CAN_ODIRECT;
2137
2138 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2139 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2140 put_nfs_open_context(ctx);
2141 out:
2142 if (unlikely(switched)) {
2143 d_lookup_done(dentry);
2144 dput(dentry);
2145 }
2146 return err;
2147
2148 no_open:
2149 res = nfs_lookup(dir, dentry, lookup_flags);
2150 if (!res) {
2151 inode = d_inode(dentry);
2152 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2153 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2154 res = ERR_PTR(-ENOTDIR);
2155 else if (inode && S_ISREG(inode->i_mode))
2156 res = ERR_PTR(-EOPENSTALE);
2157 } else if (!IS_ERR(res)) {
2158 inode = d_inode(res);
2159 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2160 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2161 dput(res);
2162 res = ERR_PTR(-ENOTDIR);
2163 } else if (inode && S_ISREG(inode->i_mode)) {
2164 dput(res);
2165 res = ERR_PTR(-EOPENSTALE);
2166 }
2167 }
2168 if (switched) {
2169 d_lookup_done(dentry);
2170 if (!res)
2171 res = dentry;
2172 else
2173 dput(dentry);
2174 }
2175 if (IS_ERR(res))
2176 return PTR_ERR(res);
2177 return finish_no_open(file, res);
2178 }
2179 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2180
2181 static int
nfs4_do_lookup_revalidate(struct inode * dir,struct dentry * dentry,unsigned int flags)2182 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2183 unsigned int flags)
2184 {
2185 struct inode *inode;
2186
2187 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2188 goto full_reval;
2189 if (d_mountpoint(dentry))
2190 goto full_reval;
2191
2192 inode = d_inode(dentry);
2193
2194 /* We can't create new files in nfs_open_revalidate(), so we
2195 * optimize away revalidation of negative dentries.
2196 */
2197 if (inode == NULL)
2198 goto full_reval;
2199
2200 if (nfs_verifier_is_delegated(dentry))
2201 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2202
2203 /* NFS only supports OPEN on regular files */
2204 if (!S_ISREG(inode->i_mode))
2205 goto full_reval;
2206
2207 /* We cannot do exclusive creation on a positive dentry */
2208 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2209 goto reval_dentry;
2210
2211 /* Check if the directory changed */
2212 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2213 goto reval_dentry;
2214
2215 /* Let f_op->open() actually open (and revalidate) the file */
2216 return 1;
2217 reval_dentry:
2218 if (flags & LOOKUP_RCU)
2219 return -ECHILD;
2220 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2221
2222 full_reval:
2223 return nfs_do_lookup_revalidate(dir, dentry, flags);
2224 }
2225
nfs4_lookup_revalidate(struct dentry * dentry,unsigned int flags)2226 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2227 {
2228 return __nfs_lookup_revalidate(dentry, flags,
2229 nfs4_do_lookup_revalidate);
2230 }
2231
2232 #endif /* CONFIG_NFSV4 */
2233
2234 struct dentry *
nfs_add_or_obtain(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr)2235 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2236 struct nfs_fattr *fattr)
2237 {
2238 struct dentry *parent = dget_parent(dentry);
2239 struct inode *dir = d_inode(parent);
2240 struct inode *inode;
2241 struct dentry *d;
2242 int error;
2243
2244 d_drop(dentry);
2245
2246 if (fhandle->size == 0) {
2247 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2248 if (error)
2249 goto out_error;
2250 }
2251 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2252 if (!(fattr->valid & NFS_ATTR_FATTR)) {
2253 struct nfs_server *server = NFS_SB(dentry->d_sb);
2254 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2255 fattr, NULL);
2256 if (error < 0)
2257 goto out_error;
2258 }
2259 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2260 d = d_splice_alias(inode, dentry);
2261 out:
2262 dput(parent);
2263 return d;
2264 out_error:
2265 d = ERR_PTR(error);
2266 goto out;
2267 }
2268 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2269
2270 /*
2271 * Code common to create, mkdir, and mknod.
2272 */
nfs_instantiate(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr)2273 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2274 struct nfs_fattr *fattr)
2275 {
2276 struct dentry *d;
2277
2278 d = nfs_add_or_obtain(dentry, fhandle, fattr);
2279 if (IS_ERR(d))
2280 return PTR_ERR(d);
2281
2282 /* Callers don't care */
2283 dput(d);
2284 return 0;
2285 }
2286 EXPORT_SYMBOL_GPL(nfs_instantiate);
2287
2288 /*
2289 * Following a failed create operation, we drop the dentry rather
2290 * than retain a negative dentry. This avoids a problem in the event
2291 * that the operation succeeded on the server, but an error in the
2292 * reply path made it appear to have failed.
2293 */
nfs_create(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2294 int nfs_create(struct user_namespace *mnt_userns, struct inode *dir,
2295 struct dentry *dentry, umode_t mode, bool excl)
2296 {
2297 struct iattr attr;
2298 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2299 int error;
2300
2301 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2302 dir->i_sb->s_id, dir->i_ino, dentry);
2303
2304 attr.ia_mode = mode;
2305 attr.ia_valid = ATTR_MODE;
2306
2307 trace_nfs_create_enter(dir, dentry, open_flags);
2308 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2309 trace_nfs_create_exit(dir, dentry, open_flags, error);
2310 if (error != 0)
2311 goto out_err;
2312 return 0;
2313 out_err:
2314 d_drop(dentry);
2315 return error;
2316 }
2317 EXPORT_SYMBOL_GPL(nfs_create);
2318
2319 /*
2320 * See comments for nfs_proc_create regarding failed operations.
2321 */
2322 int
nfs_mknod(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)2323 nfs_mknod(struct user_namespace *mnt_userns, struct inode *dir,
2324 struct dentry *dentry, umode_t mode, dev_t rdev)
2325 {
2326 struct iattr attr;
2327 int status;
2328
2329 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2330 dir->i_sb->s_id, dir->i_ino, dentry);
2331
2332 attr.ia_mode = mode;
2333 attr.ia_valid = ATTR_MODE;
2334
2335 trace_nfs_mknod_enter(dir, dentry);
2336 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2337 trace_nfs_mknod_exit(dir, dentry, status);
2338 if (status != 0)
2339 goto out_err;
2340 return 0;
2341 out_err:
2342 d_drop(dentry);
2343 return status;
2344 }
2345 EXPORT_SYMBOL_GPL(nfs_mknod);
2346
2347 /*
2348 * See comments for nfs_proc_create regarding failed operations.
2349 */
nfs_mkdir(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,umode_t mode)2350 int nfs_mkdir(struct user_namespace *mnt_userns, struct inode *dir,
2351 struct dentry *dentry, umode_t mode)
2352 {
2353 struct iattr attr;
2354 int error;
2355
2356 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2357 dir->i_sb->s_id, dir->i_ino, dentry);
2358
2359 attr.ia_valid = ATTR_MODE;
2360 attr.ia_mode = mode | S_IFDIR;
2361
2362 trace_nfs_mkdir_enter(dir, dentry);
2363 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2364 trace_nfs_mkdir_exit(dir, dentry, error);
2365 if (error != 0)
2366 goto out_err;
2367 return 0;
2368 out_err:
2369 d_drop(dentry);
2370 return error;
2371 }
2372 EXPORT_SYMBOL_GPL(nfs_mkdir);
2373
nfs_dentry_handle_enoent(struct dentry * dentry)2374 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2375 {
2376 if (simple_positive(dentry))
2377 d_delete(dentry);
2378 }
2379
nfs_dentry_remove_handle_error(struct inode * dir,struct dentry * dentry,int error)2380 static void nfs_dentry_remove_handle_error(struct inode *dir,
2381 struct dentry *dentry, int error)
2382 {
2383 switch (error) {
2384 case -ENOENT:
2385 if (d_really_is_positive(dentry))
2386 d_delete(dentry);
2387 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2388 break;
2389 case 0:
2390 nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2391 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2392 }
2393 }
2394
nfs_rmdir(struct inode * dir,struct dentry * dentry)2395 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2396 {
2397 int error;
2398
2399 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2400 dir->i_sb->s_id, dir->i_ino, dentry);
2401
2402 trace_nfs_rmdir_enter(dir, dentry);
2403 if (d_really_is_positive(dentry)) {
2404 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2405 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2406 /* Ensure the VFS deletes this inode */
2407 switch (error) {
2408 case 0:
2409 clear_nlink(d_inode(dentry));
2410 break;
2411 case -ENOENT:
2412 nfs_dentry_handle_enoent(dentry);
2413 }
2414 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2415 } else
2416 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2417 nfs_dentry_remove_handle_error(dir, dentry, error);
2418 trace_nfs_rmdir_exit(dir, dentry, error);
2419
2420 return error;
2421 }
2422 EXPORT_SYMBOL_GPL(nfs_rmdir);
2423
2424 /*
2425 * Remove a file after making sure there are no pending writes,
2426 * and after checking that the file has only one user.
2427 *
2428 * We invalidate the attribute cache and free the inode prior to the operation
2429 * to avoid possible races if the server reuses the inode.
2430 */
nfs_safe_remove(struct dentry * dentry)2431 static int nfs_safe_remove(struct dentry *dentry)
2432 {
2433 struct inode *dir = d_inode(dentry->d_parent);
2434 struct inode *inode = d_inode(dentry);
2435 int error = -EBUSY;
2436
2437 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2438
2439 /* If the dentry was sillyrenamed, we simply call d_delete() */
2440 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2441 error = 0;
2442 goto out;
2443 }
2444
2445 trace_nfs_remove_enter(dir, dentry);
2446 if (inode != NULL) {
2447 error = NFS_PROTO(dir)->remove(dir, dentry);
2448 if (error == 0)
2449 nfs_drop_nlink(inode);
2450 } else
2451 error = NFS_PROTO(dir)->remove(dir, dentry);
2452 if (error == -ENOENT)
2453 nfs_dentry_handle_enoent(dentry);
2454 trace_nfs_remove_exit(dir, dentry, error);
2455 out:
2456 return error;
2457 }
2458
2459 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
2460 * belongs to an active ".nfs..." file and we return -EBUSY.
2461 *
2462 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
2463 */
nfs_unlink(struct inode * dir,struct dentry * dentry)2464 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2465 {
2466 int error;
2467
2468 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2469 dir->i_ino, dentry);
2470
2471 trace_nfs_unlink_enter(dir, dentry);
2472 spin_lock(&dentry->d_lock);
2473 if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2474 &NFS_I(d_inode(dentry))->flags)) {
2475 spin_unlock(&dentry->d_lock);
2476 /* Start asynchronous writeout of the inode */
2477 write_inode_now(d_inode(dentry), 0);
2478 error = nfs_sillyrename(dir, dentry);
2479 goto out;
2480 }
2481 /* We must prevent any concurrent open until the unlink
2482 * completes. ->d_revalidate will wait for ->d_fsdata
2483 * to clear. We set it here to ensure no lookup succeeds until
2484 * the unlink is complete on the server.
2485 */
2486 error = -ETXTBSY;
2487 if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2488 WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2489 spin_unlock(&dentry->d_lock);
2490 goto out;
2491 }
2492 /* old devname */
2493 kfree(dentry->d_fsdata);
2494 dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2495
2496 spin_unlock(&dentry->d_lock);
2497 error = nfs_safe_remove(dentry);
2498 nfs_dentry_remove_handle_error(dir, dentry, error);
2499 dentry->d_fsdata = NULL;
2500 wake_up_var(&dentry->d_fsdata);
2501 out:
2502 trace_nfs_unlink_exit(dir, dentry, error);
2503 return error;
2504 }
2505 EXPORT_SYMBOL_GPL(nfs_unlink);
2506
2507 /*
2508 * To create a symbolic link, most file systems instantiate a new inode,
2509 * add a page to it containing the path, then write it out to the disk
2510 * using prepare_write/commit_write.
2511 *
2512 * Unfortunately the NFS client can't create the in-core inode first
2513 * because it needs a file handle to create an in-core inode (see
2514 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
2515 * symlink request has completed on the server.
2516 *
2517 * So instead we allocate a raw page, copy the symname into it, then do
2518 * the SYMLINK request with the page as the buffer. If it succeeds, we
2519 * now have a new file handle and can instantiate an in-core NFS inode
2520 * and move the raw page into its mapping.
2521 */
nfs_symlink(struct user_namespace * mnt_userns,struct inode * dir,struct dentry * dentry,const char * symname)2522 int nfs_symlink(struct user_namespace *mnt_userns, struct inode *dir,
2523 struct dentry *dentry, const char *symname)
2524 {
2525 struct page *page;
2526 char *kaddr;
2527 struct iattr attr;
2528 unsigned int pathlen = strlen(symname);
2529 int error;
2530
2531 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2532 dir->i_ino, dentry, symname);
2533
2534 if (pathlen > PAGE_SIZE)
2535 return -ENAMETOOLONG;
2536
2537 attr.ia_mode = S_IFLNK | S_IRWXUGO;
2538 attr.ia_valid = ATTR_MODE;
2539
2540 page = alloc_page(GFP_USER);
2541 if (!page)
2542 return -ENOMEM;
2543
2544 kaddr = page_address(page);
2545 memcpy(kaddr, symname, pathlen);
2546 if (pathlen < PAGE_SIZE)
2547 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2548
2549 trace_nfs_symlink_enter(dir, dentry);
2550 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2551 trace_nfs_symlink_exit(dir, dentry, error);
2552 if (error != 0) {
2553 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2554 dir->i_sb->s_id, dir->i_ino,
2555 dentry, symname, error);
2556 d_drop(dentry);
2557 __free_page(page);
2558 return error;
2559 }
2560
2561 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2562
2563 /*
2564 * No big deal if we can't add this page to the page cache here.
2565 * READLINK will get the missing page from the server if needed.
2566 */
2567 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2568 GFP_KERNEL)) {
2569 SetPageUptodate(page);
2570 unlock_page(page);
2571 /*
2572 * add_to_page_cache_lru() grabs an extra page refcount.
2573 * Drop it here to avoid leaking this page later.
2574 */
2575 put_page(page);
2576 } else
2577 __free_page(page);
2578
2579 return 0;
2580 }
2581 EXPORT_SYMBOL_GPL(nfs_symlink);
2582
2583 int
nfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2584 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2585 {
2586 struct inode *inode = d_inode(old_dentry);
2587 int error;
2588
2589 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2590 old_dentry, dentry);
2591
2592 trace_nfs_link_enter(inode, dir, dentry);
2593 d_drop(dentry);
2594 if (S_ISREG(inode->i_mode))
2595 nfs_sync_inode(inode);
2596 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2597 if (error == 0) {
2598 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2599 ihold(inode);
2600 d_add(dentry, inode);
2601 }
2602 trace_nfs_link_exit(inode, dir, dentry, error);
2603 return error;
2604 }
2605 EXPORT_SYMBOL_GPL(nfs_link);
2606
2607 static void
nfs_unblock_rename(struct rpc_task * task,struct nfs_renamedata * data)2608 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2609 {
2610 struct dentry *new_dentry = data->new_dentry;
2611
2612 new_dentry->d_fsdata = NULL;
2613 wake_up_var(&new_dentry->d_fsdata);
2614 }
2615
2616 /*
2617 * RENAME
2618 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2619 * different file handle for the same inode after a rename (e.g. when
2620 * moving to a different directory). A fail-safe method to do so would
2621 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2622 * rename the old file using the sillyrename stuff. This way, the original
2623 * file in old_dir will go away when the last process iput()s the inode.
2624 *
2625 * FIXED.
2626 *
2627 * It actually works quite well. One needs to have the possibility for
2628 * at least one ".nfs..." file in each directory the file ever gets
2629 * moved or linked to which happens automagically with the new
2630 * implementation that only depends on the dcache stuff instead of
2631 * using the inode layer
2632 *
2633 * Unfortunately, things are a little more complicated than indicated
2634 * above. For a cross-directory move, we want to make sure we can get
2635 * rid of the old inode after the operation. This means there must be
2636 * no pending writes (if it's a file), and the use count must be 1.
2637 * If these conditions are met, we can drop the dentries before doing
2638 * the rename.
2639 */
nfs_rename(struct user_namespace * mnt_userns,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)2640 int nfs_rename(struct user_namespace *mnt_userns, struct inode *old_dir,
2641 struct dentry *old_dentry, struct inode *new_dir,
2642 struct dentry *new_dentry, unsigned int flags)
2643 {
2644 struct inode *old_inode = d_inode(old_dentry);
2645 struct inode *new_inode = d_inode(new_dentry);
2646 struct dentry *dentry = NULL;
2647 struct rpc_task *task;
2648 bool must_unblock = false;
2649 int error = -EBUSY;
2650
2651 if (flags)
2652 return -EINVAL;
2653
2654 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2655 old_dentry, new_dentry,
2656 d_count(new_dentry));
2657
2658 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2659 /*
2660 * For non-directories, check whether the target is busy and if so,
2661 * make a copy of the dentry and then do a silly-rename. If the
2662 * silly-rename succeeds, the copied dentry is hashed and becomes
2663 * the new target.
2664 */
2665 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2666 /* We must prevent any concurrent open until the unlink
2667 * completes. ->d_revalidate will wait for ->d_fsdata
2668 * to clear. We set it here to ensure no lookup succeeds until
2669 * the unlink is complete on the server.
2670 */
2671 error = -ETXTBSY;
2672 if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2673 WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2674 goto out;
2675 if (new_dentry->d_fsdata) {
2676 /* old devname */
2677 kfree(new_dentry->d_fsdata);
2678 new_dentry->d_fsdata = NULL;
2679 }
2680
2681 spin_lock(&new_dentry->d_lock);
2682 if (d_count(new_dentry) > 2) {
2683 int err;
2684
2685 spin_unlock(&new_dentry->d_lock);
2686
2687 /* copy the target dentry's name */
2688 dentry = d_alloc(new_dentry->d_parent,
2689 &new_dentry->d_name);
2690 if (!dentry)
2691 goto out;
2692
2693 /* silly-rename the existing target ... */
2694 err = nfs_sillyrename(new_dir, new_dentry);
2695 if (err)
2696 goto out;
2697
2698 new_dentry = dentry;
2699 new_inode = NULL;
2700 } else {
2701 new_dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2702 must_unblock = true;
2703 spin_unlock(&new_dentry->d_lock);
2704 }
2705
2706 }
2707
2708 if (S_ISREG(old_inode->i_mode))
2709 nfs_sync_inode(old_inode);
2710 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2711 must_unblock ? nfs_unblock_rename : NULL);
2712 if (IS_ERR(task)) {
2713 error = PTR_ERR(task);
2714 goto out;
2715 }
2716
2717 error = rpc_wait_for_completion_task(task);
2718 if (error != 0) {
2719 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2720 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2721 smp_wmb();
2722 } else
2723 error = task->tk_status;
2724 rpc_put_task(task);
2725 /* Ensure the inode attributes are revalidated */
2726 if (error == 0) {
2727 spin_lock(&old_inode->i_lock);
2728 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2729 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2730 NFS_INO_INVALID_CTIME |
2731 NFS_INO_REVAL_FORCED);
2732 spin_unlock(&old_inode->i_lock);
2733 }
2734 out:
2735 trace_nfs_rename_exit(old_dir, old_dentry,
2736 new_dir, new_dentry, error);
2737 if (!error) {
2738 if (new_inode != NULL)
2739 nfs_drop_nlink(new_inode);
2740 /*
2741 * The d_move() should be here instead of in an async RPC completion
2742 * handler because we need the proper locks to move the dentry. If
2743 * we're interrupted by a signal, the async RPC completion handler
2744 * should mark the directories for revalidation.
2745 */
2746 d_move(old_dentry, new_dentry);
2747 nfs_set_verifier(old_dentry,
2748 nfs_save_change_attribute(new_dir));
2749 } else if (error == -ENOENT)
2750 nfs_dentry_handle_enoent(old_dentry);
2751
2752 /* new dentry created? */
2753 if (dentry)
2754 dput(dentry);
2755 return error;
2756 }
2757 EXPORT_SYMBOL_GPL(nfs_rename);
2758
2759 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2760 static LIST_HEAD(nfs_access_lru_list);
2761 static atomic_long_t nfs_access_nr_entries;
2762
2763 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2764 module_param(nfs_access_max_cachesize, ulong, 0644);
2765 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2766
nfs_access_free_entry(struct nfs_access_entry * entry)2767 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2768 {
2769 put_group_info(entry->group_info);
2770 kfree_rcu(entry, rcu_head);
2771 smp_mb__before_atomic();
2772 atomic_long_dec(&nfs_access_nr_entries);
2773 smp_mb__after_atomic();
2774 }
2775
nfs_access_free_list(struct list_head * head)2776 static void nfs_access_free_list(struct list_head *head)
2777 {
2778 struct nfs_access_entry *cache;
2779
2780 while (!list_empty(head)) {
2781 cache = list_entry(head->next, struct nfs_access_entry, lru);
2782 list_del(&cache->lru);
2783 nfs_access_free_entry(cache);
2784 }
2785 }
2786
2787 static unsigned long
nfs_do_access_cache_scan(unsigned int nr_to_scan)2788 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2789 {
2790 LIST_HEAD(head);
2791 struct nfs_inode *nfsi, *next;
2792 struct nfs_access_entry *cache;
2793 long freed = 0;
2794
2795 spin_lock(&nfs_access_lru_lock);
2796 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2797 struct inode *inode;
2798
2799 if (nr_to_scan-- == 0)
2800 break;
2801 inode = &nfsi->vfs_inode;
2802 spin_lock(&inode->i_lock);
2803 if (list_empty(&nfsi->access_cache_entry_lru))
2804 goto remove_lru_entry;
2805 cache = list_entry(nfsi->access_cache_entry_lru.next,
2806 struct nfs_access_entry, lru);
2807 list_move(&cache->lru, &head);
2808 rb_erase(&cache->rb_node, &nfsi->access_cache);
2809 freed++;
2810 if (!list_empty(&nfsi->access_cache_entry_lru))
2811 list_move_tail(&nfsi->access_cache_inode_lru,
2812 &nfs_access_lru_list);
2813 else {
2814 remove_lru_entry:
2815 list_del_init(&nfsi->access_cache_inode_lru);
2816 smp_mb__before_atomic();
2817 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2818 smp_mb__after_atomic();
2819 }
2820 spin_unlock(&inode->i_lock);
2821 }
2822 spin_unlock(&nfs_access_lru_lock);
2823 nfs_access_free_list(&head);
2824 return freed;
2825 }
2826
2827 unsigned long
nfs_access_cache_scan(struct shrinker * shrink,struct shrink_control * sc)2828 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2829 {
2830 int nr_to_scan = sc->nr_to_scan;
2831 gfp_t gfp_mask = sc->gfp_mask;
2832
2833 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2834 return SHRINK_STOP;
2835 return nfs_do_access_cache_scan(nr_to_scan);
2836 }
2837
2838
2839 unsigned long
nfs_access_cache_count(struct shrinker * shrink,struct shrink_control * sc)2840 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2841 {
2842 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2843 }
2844
2845 static void
nfs_access_cache_enforce_limit(void)2846 nfs_access_cache_enforce_limit(void)
2847 {
2848 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2849 unsigned long diff;
2850 unsigned int nr_to_scan;
2851
2852 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2853 return;
2854 nr_to_scan = 100;
2855 diff = nr_entries - nfs_access_max_cachesize;
2856 if (diff < nr_to_scan)
2857 nr_to_scan = diff;
2858 nfs_do_access_cache_scan(nr_to_scan);
2859 }
2860
__nfs_access_zap_cache(struct nfs_inode * nfsi,struct list_head * head)2861 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2862 {
2863 struct rb_root *root_node = &nfsi->access_cache;
2864 struct rb_node *n;
2865 struct nfs_access_entry *entry;
2866
2867 /* Unhook entries from the cache */
2868 while ((n = rb_first(root_node)) != NULL) {
2869 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2870 rb_erase(n, root_node);
2871 list_move(&entry->lru, head);
2872 }
2873 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2874 }
2875
nfs_access_zap_cache(struct inode * inode)2876 void nfs_access_zap_cache(struct inode *inode)
2877 {
2878 LIST_HEAD(head);
2879
2880 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2881 return;
2882 /* Remove from global LRU init */
2883 spin_lock(&nfs_access_lru_lock);
2884 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2885 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2886
2887 spin_lock(&inode->i_lock);
2888 __nfs_access_zap_cache(NFS_I(inode), &head);
2889 spin_unlock(&inode->i_lock);
2890 spin_unlock(&nfs_access_lru_lock);
2891 nfs_access_free_list(&head);
2892 }
2893 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2894
access_cmp(const struct cred * a,const struct nfs_access_entry * b)2895 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2896 {
2897 struct group_info *ga, *gb;
2898 int g;
2899
2900 if (uid_lt(a->fsuid, b->fsuid))
2901 return -1;
2902 if (uid_gt(a->fsuid, b->fsuid))
2903 return 1;
2904
2905 if (gid_lt(a->fsgid, b->fsgid))
2906 return -1;
2907 if (gid_gt(a->fsgid, b->fsgid))
2908 return 1;
2909
2910 ga = a->group_info;
2911 gb = b->group_info;
2912 if (ga == gb)
2913 return 0;
2914 if (ga == NULL)
2915 return -1;
2916 if (gb == NULL)
2917 return 1;
2918 if (ga->ngroups < gb->ngroups)
2919 return -1;
2920 if (ga->ngroups > gb->ngroups)
2921 return 1;
2922
2923 for (g = 0; g < ga->ngroups; g++) {
2924 if (gid_lt(ga->gid[g], gb->gid[g]))
2925 return -1;
2926 if (gid_gt(ga->gid[g], gb->gid[g]))
2927 return 1;
2928 }
2929 return 0;
2930 }
2931
nfs_access_search_rbtree(struct inode * inode,const struct cred * cred)2932 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2933 {
2934 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2935
2936 while (n != NULL) {
2937 struct nfs_access_entry *entry =
2938 rb_entry(n, struct nfs_access_entry, rb_node);
2939 int cmp = access_cmp(cred, entry);
2940
2941 if (cmp < 0)
2942 n = n->rb_left;
2943 else if (cmp > 0)
2944 n = n->rb_right;
2945 else
2946 return entry;
2947 }
2948 return NULL;
2949 }
2950
nfs_access_get_cached_locked(struct inode * inode,const struct cred * cred,u32 * mask,bool may_block)2951 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2952 {
2953 struct nfs_inode *nfsi = NFS_I(inode);
2954 struct nfs_access_entry *cache;
2955 bool retry = true;
2956 int err;
2957
2958 spin_lock(&inode->i_lock);
2959 for(;;) {
2960 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2961 goto out_zap;
2962 cache = nfs_access_search_rbtree(inode, cred);
2963 err = -ENOENT;
2964 if (cache == NULL)
2965 goto out;
2966 /* Found an entry, is our attribute cache valid? */
2967 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2968 break;
2969 if (!retry)
2970 break;
2971 err = -ECHILD;
2972 if (!may_block)
2973 goto out;
2974 spin_unlock(&inode->i_lock);
2975 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2976 if (err)
2977 return err;
2978 spin_lock(&inode->i_lock);
2979 retry = false;
2980 }
2981 *mask = cache->mask;
2982 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2983 err = 0;
2984 out:
2985 spin_unlock(&inode->i_lock);
2986 return err;
2987 out_zap:
2988 spin_unlock(&inode->i_lock);
2989 nfs_access_zap_cache(inode);
2990 return -ENOENT;
2991 }
2992
nfs_access_get_cached_rcu(struct inode * inode,const struct cred * cred,u32 * mask)2993 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
2994 {
2995 /* Only check the most recently returned cache entry,
2996 * but do it without locking.
2997 */
2998 struct nfs_inode *nfsi = NFS_I(inode);
2999 struct nfs_access_entry *cache;
3000 int err = -ECHILD;
3001 struct list_head *lh;
3002
3003 rcu_read_lock();
3004 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3005 goto out;
3006 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3007 cache = list_entry(lh, struct nfs_access_entry, lru);
3008 if (lh == &nfsi->access_cache_entry_lru ||
3009 access_cmp(cred, cache) != 0)
3010 cache = NULL;
3011 if (cache == NULL)
3012 goto out;
3013 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3014 goto out;
3015 *mask = cache->mask;
3016 err = 0;
3017 out:
3018 rcu_read_unlock();
3019 return err;
3020 }
3021
nfs_access_get_cached(struct inode * inode,const struct cred * cred,u32 * mask,bool may_block)3022 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3023 u32 *mask, bool may_block)
3024 {
3025 int status;
3026
3027 status = nfs_access_get_cached_rcu(inode, cred, mask);
3028 if (status != 0)
3029 status = nfs_access_get_cached_locked(inode, cred, mask,
3030 may_block);
3031
3032 return status;
3033 }
3034 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3035
nfs_access_add_rbtree(struct inode * inode,struct nfs_access_entry * set,const struct cred * cred)3036 static void nfs_access_add_rbtree(struct inode *inode,
3037 struct nfs_access_entry *set,
3038 const struct cred *cred)
3039 {
3040 struct nfs_inode *nfsi = NFS_I(inode);
3041 struct rb_root *root_node = &nfsi->access_cache;
3042 struct rb_node **p = &root_node->rb_node;
3043 struct rb_node *parent = NULL;
3044 struct nfs_access_entry *entry;
3045 int cmp;
3046
3047 spin_lock(&inode->i_lock);
3048 while (*p != NULL) {
3049 parent = *p;
3050 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3051 cmp = access_cmp(cred, entry);
3052
3053 if (cmp < 0)
3054 p = &parent->rb_left;
3055 else if (cmp > 0)
3056 p = &parent->rb_right;
3057 else
3058 goto found;
3059 }
3060 rb_link_node(&set->rb_node, parent, p);
3061 rb_insert_color(&set->rb_node, root_node);
3062 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3063 spin_unlock(&inode->i_lock);
3064 return;
3065 found:
3066 rb_replace_node(parent, &set->rb_node, root_node);
3067 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3068 list_del(&entry->lru);
3069 spin_unlock(&inode->i_lock);
3070 nfs_access_free_entry(entry);
3071 }
3072
nfs_access_add_cache(struct inode * inode,struct nfs_access_entry * set,const struct cred * cred)3073 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3074 const struct cred *cred)
3075 {
3076 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3077 if (cache == NULL)
3078 return;
3079 RB_CLEAR_NODE(&cache->rb_node);
3080 cache->fsuid = cred->fsuid;
3081 cache->fsgid = cred->fsgid;
3082 cache->group_info = get_group_info(cred->group_info);
3083 cache->mask = set->mask;
3084
3085 /* The above field assignments must be visible
3086 * before this item appears on the lru. We cannot easily
3087 * use rcu_assign_pointer, so just force the memory barrier.
3088 */
3089 smp_wmb();
3090 nfs_access_add_rbtree(inode, cache, cred);
3091
3092 /* Update accounting */
3093 smp_mb__before_atomic();
3094 atomic_long_inc(&nfs_access_nr_entries);
3095 smp_mb__after_atomic();
3096
3097 /* Add inode to global LRU list */
3098 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3099 spin_lock(&nfs_access_lru_lock);
3100 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3101 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3102 &nfs_access_lru_list);
3103 spin_unlock(&nfs_access_lru_lock);
3104 }
3105 nfs_access_cache_enforce_limit();
3106 }
3107 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3108
3109 #define NFS_MAY_READ (NFS_ACCESS_READ)
3110 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3111 NFS_ACCESS_EXTEND | \
3112 NFS_ACCESS_DELETE)
3113 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3114 NFS_ACCESS_EXTEND)
3115 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3116 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3117 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3118 static int
nfs_access_calc_mask(u32 access_result,umode_t umode)3119 nfs_access_calc_mask(u32 access_result, umode_t umode)
3120 {
3121 int mask = 0;
3122
3123 if (access_result & NFS_MAY_READ)
3124 mask |= MAY_READ;
3125 if (S_ISDIR(umode)) {
3126 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3127 mask |= MAY_WRITE;
3128 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3129 mask |= MAY_EXEC;
3130 } else if (S_ISREG(umode)) {
3131 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3132 mask |= MAY_WRITE;
3133 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3134 mask |= MAY_EXEC;
3135 } else if (access_result & NFS_MAY_WRITE)
3136 mask |= MAY_WRITE;
3137 return mask;
3138 }
3139
nfs_access_set_mask(struct nfs_access_entry * entry,u32 access_result)3140 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3141 {
3142 entry->mask = access_result;
3143 }
3144 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3145
nfs_do_access(struct inode * inode,const struct cred * cred,int mask)3146 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3147 {
3148 struct nfs_access_entry cache;
3149 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3150 int cache_mask = -1;
3151 int status;
3152
3153 trace_nfs_access_enter(inode);
3154
3155 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3156 if (status == 0)
3157 goto out_cached;
3158
3159 status = -ECHILD;
3160 if (!may_block)
3161 goto out;
3162
3163 /*
3164 * Determine which access bits we want to ask for...
3165 */
3166 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3167 nfs_access_xattr_mask(NFS_SERVER(inode));
3168 if (S_ISDIR(inode->i_mode))
3169 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3170 else
3171 cache.mask |= NFS_ACCESS_EXECUTE;
3172 status = NFS_PROTO(inode)->access(inode, &cache, cred);
3173 if (status != 0) {
3174 if (status == -ESTALE) {
3175 if (!S_ISDIR(inode->i_mode))
3176 nfs_set_inode_stale(inode);
3177 else
3178 nfs_zap_caches(inode);
3179 }
3180 goto out;
3181 }
3182 nfs_access_add_cache(inode, &cache, cred);
3183 out_cached:
3184 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3185 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3186 status = -EACCES;
3187 out:
3188 trace_nfs_access_exit(inode, mask, cache_mask, status);
3189 return status;
3190 }
3191
nfs_open_permission_mask(int openflags)3192 static int nfs_open_permission_mask(int openflags)
3193 {
3194 int mask = 0;
3195
3196 if (openflags & __FMODE_EXEC) {
3197 /* ONLY check exec rights */
3198 mask = MAY_EXEC;
3199 } else {
3200 if ((openflags & O_ACCMODE) != O_WRONLY)
3201 mask |= MAY_READ;
3202 if ((openflags & O_ACCMODE) != O_RDONLY)
3203 mask |= MAY_WRITE;
3204 }
3205
3206 return mask;
3207 }
3208
nfs_may_open(struct inode * inode,const struct cred * cred,int openflags)3209 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3210 {
3211 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3212 }
3213 EXPORT_SYMBOL_GPL(nfs_may_open);
3214
nfs_execute_ok(struct inode * inode,int mask)3215 static int nfs_execute_ok(struct inode *inode, int mask)
3216 {
3217 struct nfs_server *server = NFS_SERVER(inode);
3218 int ret = 0;
3219
3220 if (S_ISDIR(inode->i_mode))
3221 return 0;
3222 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3223 if (mask & MAY_NOT_BLOCK)
3224 return -ECHILD;
3225 ret = __nfs_revalidate_inode(server, inode);
3226 }
3227 if (ret == 0 && !execute_ok(inode))
3228 ret = -EACCES;
3229 return ret;
3230 }
3231
nfs_permission(struct user_namespace * mnt_userns,struct inode * inode,int mask)3232 int nfs_permission(struct user_namespace *mnt_userns,
3233 struct inode *inode,
3234 int mask)
3235 {
3236 const struct cred *cred = current_cred();
3237 int res = 0;
3238
3239 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3240
3241 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3242 goto out;
3243 /* Is this sys_access() ? */
3244 if (mask & (MAY_ACCESS | MAY_CHDIR))
3245 goto force_lookup;
3246
3247 switch (inode->i_mode & S_IFMT) {
3248 case S_IFLNK:
3249 goto out;
3250 case S_IFREG:
3251 if ((mask & MAY_OPEN) &&
3252 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3253 return 0;
3254 break;
3255 case S_IFDIR:
3256 /*
3257 * Optimize away all write operations, since the server
3258 * will check permissions when we perform the op.
3259 */
3260 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3261 goto out;
3262 }
3263
3264 force_lookup:
3265 if (!NFS_PROTO(inode)->access)
3266 goto out_notsup;
3267
3268 res = nfs_do_access(inode, cred, mask);
3269 out:
3270 if (!res && (mask & MAY_EXEC))
3271 res = nfs_execute_ok(inode, mask);
3272
3273 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3274 inode->i_sb->s_id, inode->i_ino, mask, res);
3275 return res;
3276 out_notsup:
3277 if (mask & MAY_NOT_BLOCK)
3278 return -ECHILD;
3279
3280 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3281 NFS_INO_INVALID_OTHER);
3282 if (res == 0)
3283 res = generic_permission(&init_user_ns, inode, mask);
3284 goto out;
3285 }
3286 EXPORT_SYMBOL_GPL(nfs_permission);
3287