1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/nfs/dir.c
4 *
5 * Copyright (C) 1992 Rick Sladkey
6 *
7 * nfs directory handling functions
8 *
9 * 10 Apr 1996 Added silly rename for unlink --okir
10 * 28 Sep 1996 Improved directory cache --okir
11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de
12 * Re-implemented silly rename for unlink, newly implemented
13 * silly rename for nfs_rename() following the suggestions
14 * of Olaf Kirch (okir) found in this file.
15 * Following Linus comments on my original hack, this version
16 * depends only on the dcache stuff and doesn't touch the inode
17 * layer (iput() and friends).
18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM
19 */
20
21 #include <linux/compat.h>
22 #include <linux/module.h>
23 #include <linux/time.h>
24 #include <linux/errno.h>
25 #include <linux/stat.h>
26 #include <linux/fcntl.h>
27 #include <linux/string.h>
28 #include <linux/kernel.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/sunrpc/clnt.h>
32 #include <linux/nfs_fs.h>
33 #include <linux/nfs_mount.h>
34 #include <linux/pagemap.h>
35 #include <linux/pagevec.h>
36 #include <linux/namei.h>
37 #include <linux/mount.h>
38 #include <linux/swap.h>
39 #include <linux/sched.h>
40 #include <linux/kmemleak.h>
41 #include <linux/xattr.h>
42 #include <linux/hash.h>
43
44 #include "delegation.h"
45 #include "iostat.h"
46 #include "internal.h"
47 #include "fscache.h"
48
49 #include "nfstrace.h"
50
51 /* #define NFS_DEBUG_VERBOSE 1 */
52
53 static int nfs_opendir(struct inode *, struct file *);
54 static int nfs_closedir(struct inode *, struct file *);
55 static int nfs_readdir(struct file *, struct dir_context *);
56 static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
57 static loff_t nfs_llseek_dir(struct file *, loff_t, int);
58 static void nfs_readdir_clear_array(struct folio *);
59
60 const struct file_operations nfs_dir_operations = {
61 .llseek = nfs_llseek_dir,
62 .read = generic_read_dir,
63 .iterate_shared = nfs_readdir,
64 .open = nfs_opendir,
65 .release = nfs_closedir,
66 .fsync = nfs_fsync_dir,
67 };
68
69 const struct address_space_operations nfs_dir_aops = {
70 .free_folio = nfs_readdir_clear_array,
71 };
72
73 #define NFS_INIT_DTSIZE PAGE_SIZE
74
75 static struct nfs_open_dir_context *
alloc_nfs_open_dir_context(struct inode * dir)76 alloc_nfs_open_dir_context(struct inode *dir)
77 {
78 struct nfs_inode *nfsi = NFS_I(dir);
79 struct nfs_open_dir_context *ctx;
80
81 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL_ACCOUNT);
82 if (ctx != NULL) {
83 ctx->attr_gencount = nfsi->attr_gencount;
84 ctx->dtsize = NFS_INIT_DTSIZE;
85 spin_lock(&dir->i_lock);
86 if (list_empty(&nfsi->open_files) &&
87 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
88 nfs_set_cache_invalid(dir,
89 NFS_INO_INVALID_DATA |
90 NFS_INO_REVAL_FORCED);
91 list_add_tail_rcu(&ctx->list, &nfsi->open_files);
92 memcpy(ctx->verf, nfsi->cookieverf, sizeof(ctx->verf));
93 spin_unlock(&dir->i_lock);
94 return ctx;
95 }
96 return ERR_PTR(-ENOMEM);
97 }
98
put_nfs_open_dir_context(struct inode * dir,struct nfs_open_dir_context * ctx)99 static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
100 {
101 spin_lock(&dir->i_lock);
102 list_del_rcu(&ctx->list);
103 spin_unlock(&dir->i_lock);
104 kfree_rcu(ctx, rcu_head);
105 }
106
107 /*
108 * Open file
109 */
110 static int
nfs_opendir(struct inode * inode,struct file * filp)111 nfs_opendir(struct inode *inode, struct file *filp)
112 {
113 int res = 0;
114 struct nfs_open_dir_context *ctx;
115
116 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
117
118 nfs_inc_stats(inode, NFSIOS_VFSOPEN);
119
120 ctx = alloc_nfs_open_dir_context(inode);
121 if (IS_ERR(ctx)) {
122 res = PTR_ERR(ctx);
123 goto out;
124 }
125 filp->private_data = ctx;
126 out:
127 return res;
128 }
129
130 static int
nfs_closedir(struct inode * inode,struct file * filp)131 nfs_closedir(struct inode *inode, struct file *filp)
132 {
133 put_nfs_open_dir_context(file_inode(filp), filp->private_data);
134 return 0;
135 }
136
137 struct nfs_cache_array_entry {
138 u64 cookie;
139 u64 ino;
140 const char *name;
141 unsigned int name_len;
142 unsigned char d_type;
143 };
144
145 struct nfs_cache_array {
146 u64 change_attr;
147 u64 last_cookie;
148 unsigned int size;
149 unsigned char folio_full : 1,
150 folio_is_eof : 1,
151 cookies_are_ordered : 1;
152 struct nfs_cache_array_entry array[];
153 };
154
155 struct nfs_readdir_descriptor {
156 struct file *file;
157 struct folio *folio;
158 struct dir_context *ctx;
159 pgoff_t folio_index;
160 pgoff_t folio_index_max;
161 u64 dir_cookie;
162 u64 last_cookie;
163 loff_t current_index;
164
165 __be32 verf[NFS_DIR_VERIFIER_SIZE];
166 unsigned long dir_verifier;
167 unsigned long timestamp;
168 unsigned long gencount;
169 unsigned long attr_gencount;
170 unsigned int cache_entry_index;
171 unsigned int buffer_fills;
172 unsigned int dtsize;
173 bool clear_cache;
174 bool plus;
175 bool eob;
176 bool eof;
177 };
178
nfs_set_dtsize(struct nfs_readdir_descriptor * desc,unsigned int sz)179 static void nfs_set_dtsize(struct nfs_readdir_descriptor *desc, unsigned int sz)
180 {
181 struct nfs_server *server = NFS_SERVER(file_inode(desc->file));
182 unsigned int maxsize = server->dtsize;
183
184 if (sz > maxsize)
185 sz = maxsize;
186 if (sz < NFS_MIN_FILE_IO_SIZE)
187 sz = NFS_MIN_FILE_IO_SIZE;
188 desc->dtsize = sz;
189 }
190
nfs_shrink_dtsize(struct nfs_readdir_descriptor * desc)191 static void nfs_shrink_dtsize(struct nfs_readdir_descriptor *desc)
192 {
193 nfs_set_dtsize(desc, desc->dtsize >> 1);
194 }
195
nfs_grow_dtsize(struct nfs_readdir_descriptor * desc)196 static void nfs_grow_dtsize(struct nfs_readdir_descriptor *desc)
197 {
198 nfs_set_dtsize(desc, desc->dtsize << 1);
199 }
200
nfs_readdir_folio_init_array(struct folio * folio,u64 last_cookie,u64 change_attr)201 static void nfs_readdir_folio_init_array(struct folio *folio, u64 last_cookie,
202 u64 change_attr)
203 {
204 struct nfs_cache_array *array;
205
206 array = kmap_local_folio(folio, 0);
207 array->change_attr = change_attr;
208 array->last_cookie = last_cookie;
209 array->size = 0;
210 array->folio_full = 0;
211 array->folio_is_eof = 0;
212 array->cookies_are_ordered = 1;
213 kunmap_local(array);
214 }
215
216 /*
217 * we are freeing strings created by nfs_add_to_readdir_array()
218 */
nfs_readdir_clear_array(struct folio * folio)219 static void nfs_readdir_clear_array(struct folio *folio)
220 {
221 struct nfs_cache_array *array;
222 unsigned int i;
223
224 array = kmap_local_folio(folio, 0);
225 for (i = 0; i < array->size; i++)
226 kfree(array->array[i].name);
227 array->size = 0;
228 kunmap_local(array);
229 }
230
nfs_readdir_folio_reinit_array(struct folio * folio,u64 last_cookie,u64 change_attr)231 static void nfs_readdir_folio_reinit_array(struct folio *folio, u64 last_cookie,
232 u64 change_attr)
233 {
234 nfs_readdir_clear_array(folio);
235 nfs_readdir_folio_init_array(folio, last_cookie, change_attr);
236 }
237
238 static struct folio *
nfs_readdir_folio_array_alloc(u64 last_cookie,gfp_t gfp_flags)239 nfs_readdir_folio_array_alloc(u64 last_cookie, gfp_t gfp_flags)
240 {
241 struct folio *folio = folio_alloc(gfp_flags, 0);
242 if (folio)
243 nfs_readdir_folio_init_array(folio, last_cookie, 0);
244 return folio;
245 }
246
nfs_readdir_folio_array_free(struct folio * folio)247 static void nfs_readdir_folio_array_free(struct folio *folio)
248 {
249 if (folio) {
250 nfs_readdir_clear_array(folio);
251 folio_put(folio);
252 }
253 }
254
nfs_readdir_array_index_cookie(struct nfs_cache_array * array)255 static u64 nfs_readdir_array_index_cookie(struct nfs_cache_array *array)
256 {
257 return array->size == 0 ? array->last_cookie : array->array[0].cookie;
258 }
259
nfs_readdir_array_set_eof(struct nfs_cache_array * array)260 static void nfs_readdir_array_set_eof(struct nfs_cache_array *array)
261 {
262 array->folio_is_eof = 1;
263 array->folio_full = 1;
264 }
265
nfs_readdir_array_is_full(struct nfs_cache_array * array)266 static bool nfs_readdir_array_is_full(struct nfs_cache_array *array)
267 {
268 return array->folio_full;
269 }
270
271 /*
272 * the caller is responsible for freeing qstr.name
273 * when called by nfs_readdir_add_to_array, the strings will be freed in
274 * nfs_clear_readdir_array()
275 */
nfs_readdir_copy_name(const char * name,unsigned int len)276 static const char *nfs_readdir_copy_name(const char *name, unsigned int len)
277 {
278 const char *ret = kmemdup_nul(name, len, GFP_KERNEL);
279
280 /*
281 * Avoid a kmemleak false positive. The pointer to the name is stored
282 * in a page cache page which kmemleak does not scan.
283 */
284 if (ret != NULL)
285 kmemleak_not_leak(ret);
286 return ret;
287 }
288
nfs_readdir_array_maxentries(void)289 static size_t nfs_readdir_array_maxentries(void)
290 {
291 return (PAGE_SIZE - sizeof(struct nfs_cache_array)) /
292 sizeof(struct nfs_cache_array_entry);
293 }
294
295 /*
296 * Check that the next array entry lies entirely within the page bounds
297 */
nfs_readdir_array_can_expand(struct nfs_cache_array * array)298 static int nfs_readdir_array_can_expand(struct nfs_cache_array *array)
299 {
300 if (array->folio_full)
301 return -ENOSPC;
302 if (array->size == nfs_readdir_array_maxentries()) {
303 array->folio_full = 1;
304 return -ENOSPC;
305 }
306 return 0;
307 }
308
nfs_readdir_folio_array_append(struct folio * folio,const struct nfs_entry * entry,u64 * cookie)309 static int nfs_readdir_folio_array_append(struct folio *folio,
310 const struct nfs_entry *entry,
311 u64 *cookie)
312 {
313 struct nfs_cache_array *array;
314 struct nfs_cache_array_entry *cache_entry;
315 const char *name;
316 int ret = -ENOMEM;
317
318 name = nfs_readdir_copy_name(entry->name, entry->len);
319
320 array = kmap_local_folio(folio, 0);
321 if (!name)
322 goto out;
323 ret = nfs_readdir_array_can_expand(array);
324 if (ret) {
325 kfree(name);
326 goto out;
327 }
328
329 cache_entry = &array->array[array->size];
330 cache_entry->cookie = array->last_cookie;
331 cache_entry->ino = entry->ino;
332 cache_entry->d_type = entry->d_type;
333 cache_entry->name_len = entry->len;
334 cache_entry->name = name;
335 array->last_cookie = entry->cookie;
336 if (array->last_cookie <= cache_entry->cookie)
337 array->cookies_are_ordered = 0;
338 array->size++;
339 if (entry->eof != 0)
340 nfs_readdir_array_set_eof(array);
341 out:
342 *cookie = array->last_cookie;
343 kunmap_local(array);
344 return ret;
345 }
346
347 #define NFS_READDIR_COOKIE_MASK (U32_MAX >> 14)
348 /*
349 * Hash algorithm allowing content addressible access to sequences
350 * of directory cookies. Content is addressed by the value of the
351 * cookie index of the first readdir entry in a page.
352 *
353 * We select only the first 18 bits to avoid issues with excessive
354 * memory use for the page cache XArray. 18 bits should allow the caching
355 * of 262144 pages of sequences of readdir entries. Since each page holds
356 * 127 readdir entries for a typical 64-bit system, that works out to a
357 * cache of ~ 33 million entries per directory.
358 */
nfs_readdir_folio_cookie_hash(u64 cookie)359 static pgoff_t nfs_readdir_folio_cookie_hash(u64 cookie)
360 {
361 if (cookie == 0)
362 return 0;
363 return hash_64(cookie, 18);
364 }
365
nfs_readdir_folio_validate(struct folio * folio,u64 last_cookie,u64 change_attr)366 static bool nfs_readdir_folio_validate(struct folio *folio, u64 last_cookie,
367 u64 change_attr)
368 {
369 struct nfs_cache_array *array = kmap_local_folio(folio, 0);
370 int ret = true;
371
372 if (array->change_attr != change_attr)
373 ret = false;
374 if (nfs_readdir_array_index_cookie(array) != last_cookie)
375 ret = false;
376 kunmap_local(array);
377 return ret;
378 }
379
nfs_readdir_folio_unlock_and_put(struct folio * folio)380 static void nfs_readdir_folio_unlock_and_put(struct folio *folio)
381 {
382 folio_unlock(folio);
383 folio_put(folio);
384 }
385
nfs_readdir_folio_init_and_validate(struct folio * folio,u64 cookie,u64 change_attr)386 static void nfs_readdir_folio_init_and_validate(struct folio *folio, u64 cookie,
387 u64 change_attr)
388 {
389 if (folio_test_uptodate(folio)) {
390 if (nfs_readdir_folio_validate(folio, cookie, change_attr))
391 return;
392 nfs_readdir_clear_array(folio);
393 }
394 nfs_readdir_folio_init_array(folio, cookie, change_attr);
395 folio_mark_uptodate(folio);
396 }
397
nfs_readdir_folio_get_locked(struct address_space * mapping,u64 cookie,u64 change_attr)398 static struct folio *nfs_readdir_folio_get_locked(struct address_space *mapping,
399 u64 cookie, u64 change_attr)
400 {
401 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
402 struct folio *folio;
403
404 folio = filemap_grab_folio(mapping, index);
405 if (IS_ERR(folio))
406 return NULL;
407 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
408 return folio;
409 }
410
nfs_readdir_folio_last_cookie(struct folio * folio)411 static u64 nfs_readdir_folio_last_cookie(struct folio *folio)
412 {
413 struct nfs_cache_array *array;
414 u64 ret;
415
416 array = kmap_local_folio(folio, 0);
417 ret = array->last_cookie;
418 kunmap_local(array);
419 return ret;
420 }
421
nfs_readdir_folio_needs_filling(struct folio * folio)422 static bool nfs_readdir_folio_needs_filling(struct folio *folio)
423 {
424 struct nfs_cache_array *array;
425 bool ret;
426
427 array = kmap_local_folio(folio, 0);
428 ret = !nfs_readdir_array_is_full(array);
429 kunmap_local(array);
430 return ret;
431 }
432
nfs_readdir_folio_set_eof(struct folio * folio)433 static void nfs_readdir_folio_set_eof(struct folio *folio)
434 {
435 struct nfs_cache_array *array;
436
437 array = kmap_local_folio(folio, 0);
438 nfs_readdir_array_set_eof(array);
439 kunmap_local(array);
440 }
441
nfs_readdir_folio_get_next(struct address_space * mapping,u64 cookie,u64 change_attr)442 static struct folio *nfs_readdir_folio_get_next(struct address_space *mapping,
443 u64 cookie, u64 change_attr)
444 {
445 pgoff_t index = nfs_readdir_folio_cookie_hash(cookie);
446 struct folio *folio;
447
448 folio = __filemap_get_folio(mapping, index,
449 FGP_LOCK|FGP_CREAT|FGP_NOFS|FGP_NOWAIT,
450 mapping_gfp_mask(mapping));
451 if (IS_ERR(folio))
452 return NULL;
453 nfs_readdir_folio_init_and_validate(folio, cookie, change_attr);
454 if (nfs_readdir_folio_last_cookie(folio) != cookie)
455 nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
456 return folio;
457 }
458
459 static inline
is_32bit_api(void)460 int is_32bit_api(void)
461 {
462 #ifdef CONFIG_COMPAT
463 return in_compat_syscall();
464 #else
465 return (BITS_PER_LONG == 32);
466 #endif
467 }
468
469 static
nfs_readdir_use_cookie(const struct file * filp)470 bool nfs_readdir_use_cookie(const struct file *filp)
471 {
472 if ((filp->f_mode & FMODE_32BITHASH) ||
473 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
474 return false;
475 return true;
476 }
477
nfs_readdir_seek_next_array(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)478 static void nfs_readdir_seek_next_array(struct nfs_cache_array *array,
479 struct nfs_readdir_descriptor *desc)
480 {
481 if (array->folio_full) {
482 desc->last_cookie = array->last_cookie;
483 desc->current_index += array->size;
484 desc->cache_entry_index = 0;
485 desc->folio_index++;
486 } else
487 desc->last_cookie = nfs_readdir_array_index_cookie(array);
488 }
489
nfs_readdir_rewind_search(struct nfs_readdir_descriptor * desc)490 static void nfs_readdir_rewind_search(struct nfs_readdir_descriptor *desc)
491 {
492 desc->current_index = 0;
493 desc->last_cookie = 0;
494 desc->folio_index = 0;
495 }
496
nfs_readdir_search_for_pos(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)497 static int nfs_readdir_search_for_pos(struct nfs_cache_array *array,
498 struct nfs_readdir_descriptor *desc)
499 {
500 loff_t diff = desc->ctx->pos - desc->current_index;
501 unsigned int index;
502
503 if (diff < 0)
504 goto out_eof;
505 if (diff >= array->size) {
506 if (array->folio_is_eof)
507 goto out_eof;
508 nfs_readdir_seek_next_array(array, desc);
509 return -EAGAIN;
510 }
511
512 index = (unsigned int)diff;
513 desc->dir_cookie = array->array[index].cookie;
514 desc->cache_entry_index = index;
515 return 0;
516 out_eof:
517 desc->eof = true;
518 return -EBADCOOKIE;
519 }
520
nfs_readdir_array_cookie_in_range(struct nfs_cache_array * array,u64 cookie)521 static bool nfs_readdir_array_cookie_in_range(struct nfs_cache_array *array,
522 u64 cookie)
523 {
524 if (!array->cookies_are_ordered)
525 return true;
526 /* Optimisation for monotonically increasing cookies */
527 if (cookie >= array->last_cookie)
528 return false;
529 if (array->size && cookie < array->array[0].cookie)
530 return false;
531 return true;
532 }
533
nfs_readdir_search_for_cookie(struct nfs_cache_array * array,struct nfs_readdir_descriptor * desc)534 static int nfs_readdir_search_for_cookie(struct nfs_cache_array *array,
535 struct nfs_readdir_descriptor *desc)
536 {
537 unsigned int i;
538 int status = -EAGAIN;
539
540 if (!nfs_readdir_array_cookie_in_range(array, desc->dir_cookie))
541 goto check_eof;
542
543 for (i = 0; i < array->size; i++) {
544 if (array->array[i].cookie == desc->dir_cookie) {
545 if (nfs_readdir_use_cookie(desc->file))
546 desc->ctx->pos = desc->dir_cookie;
547 else
548 desc->ctx->pos = desc->current_index + i;
549 desc->cache_entry_index = i;
550 return 0;
551 }
552 }
553 check_eof:
554 if (array->folio_is_eof) {
555 status = -EBADCOOKIE;
556 if (desc->dir_cookie == array->last_cookie)
557 desc->eof = true;
558 } else
559 nfs_readdir_seek_next_array(array, desc);
560 return status;
561 }
562
nfs_readdir_search_array(struct nfs_readdir_descriptor * desc)563 static int nfs_readdir_search_array(struct nfs_readdir_descriptor *desc)
564 {
565 struct nfs_cache_array *array;
566 int status;
567
568 array = kmap_local_folio(desc->folio, 0);
569
570 if (desc->dir_cookie == 0)
571 status = nfs_readdir_search_for_pos(array, desc);
572 else
573 status = nfs_readdir_search_for_cookie(array, desc);
574
575 kunmap_local(array);
576 return status;
577 }
578
579 /* Fill a page with xdr information before transferring to the cache page */
nfs_readdir_xdr_filler(struct nfs_readdir_descriptor * desc,__be32 * verf,u64 cookie,struct page ** pages,size_t bufsize,__be32 * verf_res)580 static int nfs_readdir_xdr_filler(struct nfs_readdir_descriptor *desc,
581 __be32 *verf, u64 cookie,
582 struct page **pages, size_t bufsize,
583 __be32 *verf_res)
584 {
585 struct inode *inode = file_inode(desc->file);
586 struct nfs_readdir_arg arg = {
587 .dentry = file_dentry(desc->file),
588 .cred = desc->file->f_cred,
589 .verf = verf,
590 .cookie = cookie,
591 .pages = pages,
592 .page_len = bufsize,
593 .plus = desc->plus,
594 };
595 struct nfs_readdir_res res = {
596 .verf = verf_res,
597 };
598 unsigned long timestamp, gencount;
599 int error;
600
601 again:
602 timestamp = jiffies;
603 gencount = nfs_inc_attr_generation_counter();
604 desc->dir_verifier = nfs_save_change_attribute(inode);
605 error = NFS_PROTO(inode)->readdir(&arg, &res);
606 if (error < 0) {
607 /* We requested READDIRPLUS, but the server doesn't grok it */
608 if (error == -ENOTSUPP && desc->plus) {
609 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
610 desc->plus = arg.plus = false;
611 goto again;
612 }
613 goto error;
614 }
615 desc->timestamp = timestamp;
616 desc->gencount = gencount;
617 error:
618 return error;
619 }
620
xdr_decode(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct xdr_stream * xdr)621 static int xdr_decode(struct nfs_readdir_descriptor *desc,
622 struct nfs_entry *entry, struct xdr_stream *xdr)
623 {
624 struct inode *inode = file_inode(desc->file);
625 int error;
626
627 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
628 if (error)
629 return error;
630 entry->fattr->time_start = desc->timestamp;
631 entry->fattr->gencount = desc->gencount;
632 return 0;
633 }
634
635 /* Match file and dirent using either filehandle or fileid
636 * Note: caller is responsible for checking the fsid
637 */
638 static
nfs_same_file(struct dentry * dentry,struct nfs_entry * entry)639 int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
640 {
641 struct inode *inode;
642 struct nfs_inode *nfsi;
643
644 if (d_really_is_negative(dentry))
645 return 0;
646
647 inode = d_inode(dentry);
648 if (is_bad_inode(inode) || NFS_STALE(inode))
649 return 0;
650
651 nfsi = NFS_I(inode);
652 if (entry->fattr->fileid != nfsi->fileid)
653 return 0;
654 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
655 return 0;
656 return 1;
657 }
658
659 #define NFS_READDIR_CACHE_USAGE_THRESHOLD (8UL)
660
nfs_use_readdirplus(struct inode * dir,struct dir_context * ctx,unsigned int cache_hits,unsigned int cache_misses)661 static bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx,
662 unsigned int cache_hits,
663 unsigned int cache_misses)
664 {
665 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
666 return false;
667 if (ctx->pos == 0 ||
668 cache_hits + cache_misses > NFS_READDIR_CACHE_USAGE_THRESHOLD)
669 return true;
670 return false;
671 }
672
673 /*
674 * This function is called by the getattr code to request the
675 * use of readdirplus to accelerate any future lookups in the same
676 * directory.
677 */
nfs_readdir_record_entry_cache_hit(struct inode * dir)678 void nfs_readdir_record_entry_cache_hit(struct inode *dir)
679 {
680 struct nfs_inode *nfsi = NFS_I(dir);
681 struct nfs_open_dir_context *ctx;
682
683 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
684 S_ISDIR(dir->i_mode)) {
685 rcu_read_lock();
686 list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
687 atomic_inc(&ctx->cache_hits);
688 rcu_read_unlock();
689 }
690 }
691
692 /*
693 * This function is mainly for use by nfs_getattr().
694 *
695 * If this is an 'ls -l', we want to force use of readdirplus.
696 */
nfs_readdir_record_entry_cache_miss(struct inode * dir)697 void nfs_readdir_record_entry_cache_miss(struct inode *dir)
698 {
699 struct nfs_inode *nfsi = NFS_I(dir);
700 struct nfs_open_dir_context *ctx;
701
702 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
703 S_ISDIR(dir->i_mode)) {
704 rcu_read_lock();
705 list_for_each_entry_rcu (ctx, &nfsi->open_files, list)
706 atomic_inc(&ctx->cache_misses);
707 rcu_read_unlock();
708 }
709 }
710
nfs_lookup_advise_force_readdirplus(struct inode * dir,unsigned int flags)711 static void nfs_lookup_advise_force_readdirplus(struct inode *dir,
712 unsigned int flags)
713 {
714 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
715 return;
716 if (flags & (LOOKUP_EXCL | LOOKUP_PARENT | LOOKUP_REVAL))
717 return;
718 nfs_readdir_record_entry_cache_miss(dir);
719 }
720
721 static
nfs_prime_dcache(struct dentry * parent,struct nfs_entry * entry,unsigned long dir_verifier)722 void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
723 unsigned long dir_verifier)
724 {
725 struct qstr filename = QSTR_INIT(entry->name, entry->len);
726 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
727 struct dentry *dentry;
728 struct dentry *alias;
729 struct inode *inode;
730 int status;
731
732 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
733 return;
734 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
735 return;
736 if (filename.len == 0)
737 return;
738 /* Validate that the name doesn't contain any illegal '\0' */
739 if (strnlen(filename.name, filename.len) != filename.len)
740 return;
741 /* ...or '/' */
742 if (strnchr(filename.name, filename.len, '/'))
743 return;
744 if (filename.name[0] == '.') {
745 if (filename.len == 1)
746 return;
747 if (filename.len == 2 && filename.name[1] == '.')
748 return;
749 }
750 filename.hash = full_name_hash(parent, filename.name, filename.len);
751
752 dentry = d_lookup(parent, &filename);
753 again:
754 if (!dentry) {
755 dentry = d_alloc_parallel(parent, &filename, &wq);
756 if (IS_ERR(dentry))
757 return;
758 }
759 if (!d_in_lookup(dentry)) {
760 /* Is there a mountpoint here? If so, just exit */
761 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
762 &entry->fattr->fsid))
763 goto out;
764 if (nfs_same_file(dentry, entry)) {
765 if (!entry->fh->size)
766 goto out;
767 nfs_set_verifier(dentry, dir_verifier);
768 status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
769 if (!status)
770 nfs_setsecurity(d_inode(dentry), entry->fattr);
771 trace_nfs_readdir_lookup_revalidate(d_inode(parent),
772 dentry, 0, status);
773 goto out;
774 } else {
775 trace_nfs_readdir_lookup_revalidate_failed(
776 d_inode(parent), dentry, 0);
777 d_invalidate(dentry);
778 dput(dentry);
779 dentry = NULL;
780 goto again;
781 }
782 }
783 if (!entry->fh->size) {
784 d_lookup_done(dentry);
785 goto out;
786 }
787
788 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr);
789 alias = d_splice_alias(inode, dentry);
790 d_lookup_done(dentry);
791 if (alias) {
792 if (IS_ERR(alias))
793 goto out;
794 dput(dentry);
795 dentry = alias;
796 }
797 nfs_set_verifier(dentry, dir_verifier);
798 trace_nfs_readdir_lookup(d_inode(parent), dentry, 0);
799 out:
800 dput(dentry);
801 }
802
nfs_readdir_entry_decode(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct xdr_stream * stream)803 static int nfs_readdir_entry_decode(struct nfs_readdir_descriptor *desc,
804 struct nfs_entry *entry,
805 struct xdr_stream *stream)
806 {
807 int ret;
808
809 if (entry->fattr->label)
810 entry->fattr->label->len = NFS4_MAXLABELLEN;
811 ret = xdr_decode(desc, entry, stream);
812 if (ret || !desc->plus)
813 return ret;
814 nfs_prime_dcache(file_dentry(desc->file), entry, desc->dir_verifier);
815 return 0;
816 }
817
818 /* Perform conversion from xdr to cache array */
nfs_readdir_folio_filler(struct nfs_readdir_descriptor * desc,struct nfs_entry * entry,struct page ** xdr_pages,unsigned int buflen,struct folio ** arrays,size_t narrays,u64 change_attr)819 static int nfs_readdir_folio_filler(struct nfs_readdir_descriptor *desc,
820 struct nfs_entry *entry,
821 struct page **xdr_pages, unsigned int buflen,
822 struct folio **arrays, size_t narrays,
823 u64 change_attr)
824 {
825 struct address_space *mapping = desc->file->f_mapping;
826 struct folio *new, *folio = *arrays;
827 struct xdr_stream stream;
828 struct page *scratch;
829 struct xdr_buf buf;
830 u64 cookie;
831 int status;
832
833 scratch = alloc_page(GFP_KERNEL);
834 if (scratch == NULL)
835 return -ENOMEM;
836
837 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
838 xdr_set_scratch_page(&stream, scratch);
839
840 do {
841 status = nfs_readdir_entry_decode(desc, entry, &stream);
842 if (status != 0)
843 break;
844
845 status = nfs_readdir_folio_array_append(folio, entry, &cookie);
846 if (status != -ENOSPC)
847 continue;
848
849 if (folio->mapping != mapping) {
850 if (!--narrays)
851 break;
852 new = nfs_readdir_folio_array_alloc(cookie, GFP_KERNEL);
853 if (!new)
854 break;
855 arrays++;
856 *arrays = folio = new;
857 } else {
858 new = nfs_readdir_folio_get_next(mapping, cookie,
859 change_attr);
860 if (!new)
861 break;
862 if (folio != *arrays)
863 nfs_readdir_folio_unlock_and_put(folio);
864 folio = new;
865 }
866 desc->folio_index_max++;
867 status = nfs_readdir_folio_array_append(folio, entry, &cookie);
868 } while (!status && !entry->eof);
869
870 switch (status) {
871 case -EBADCOOKIE:
872 if (!entry->eof)
873 break;
874 nfs_readdir_folio_set_eof(folio);
875 fallthrough;
876 case -EAGAIN:
877 status = 0;
878 break;
879 case -ENOSPC:
880 status = 0;
881 if (!desc->plus)
882 break;
883 while (!nfs_readdir_entry_decode(desc, entry, &stream))
884 ;
885 }
886
887 if (folio != *arrays)
888 nfs_readdir_folio_unlock_and_put(folio);
889
890 put_page(scratch);
891 return status;
892 }
893
nfs_readdir_free_pages(struct page ** pages,size_t npages)894 static void nfs_readdir_free_pages(struct page **pages, size_t npages)
895 {
896 while (npages--)
897 put_page(pages[npages]);
898 kfree(pages);
899 }
900
901 /*
902 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
903 * to nfs_readdir_free_pages()
904 */
nfs_readdir_alloc_pages(size_t npages)905 static struct page **nfs_readdir_alloc_pages(size_t npages)
906 {
907 struct page **pages;
908 size_t i;
909
910 pages = kmalloc_array(npages, sizeof(*pages), GFP_KERNEL);
911 if (!pages)
912 return NULL;
913 for (i = 0; i < npages; i++) {
914 struct page *page = alloc_page(GFP_KERNEL);
915 if (page == NULL)
916 goto out_freepages;
917 pages[i] = page;
918 }
919 return pages;
920
921 out_freepages:
922 nfs_readdir_free_pages(pages, i);
923 return NULL;
924 }
925
nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor * desc,__be32 * verf_arg,__be32 * verf_res,struct folio ** arrays,size_t narrays)926 static int nfs_readdir_xdr_to_array(struct nfs_readdir_descriptor *desc,
927 __be32 *verf_arg, __be32 *verf_res,
928 struct folio **arrays, size_t narrays)
929 {
930 u64 change_attr;
931 struct page **pages;
932 struct folio *folio = *arrays;
933 struct nfs_entry *entry;
934 size_t array_size;
935 struct inode *inode = file_inode(desc->file);
936 unsigned int dtsize = desc->dtsize;
937 unsigned int pglen;
938 int status = -ENOMEM;
939
940 entry = kzalloc(sizeof(*entry), GFP_KERNEL);
941 if (!entry)
942 return -ENOMEM;
943 entry->cookie = nfs_readdir_folio_last_cookie(folio);
944 entry->fh = nfs_alloc_fhandle();
945 entry->fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
946 entry->server = NFS_SERVER(inode);
947 if (entry->fh == NULL || entry->fattr == NULL)
948 goto out;
949
950 array_size = (dtsize + PAGE_SIZE - 1) >> PAGE_SHIFT;
951 pages = nfs_readdir_alloc_pages(array_size);
952 if (!pages)
953 goto out;
954
955 change_attr = inode_peek_iversion_raw(inode);
956 status = nfs_readdir_xdr_filler(desc, verf_arg, entry->cookie, pages,
957 dtsize, verf_res);
958 if (status < 0)
959 goto free_pages;
960
961 pglen = status;
962 if (pglen != 0)
963 status = nfs_readdir_folio_filler(desc, entry, pages, pglen,
964 arrays, narrays, change_attr);
965 else
966 nfs_readdir_folio_set_eof(folio);
967 desc->buffer_fills++;
968
969 free_pages:
970 nfs_readdir_free_pages(pages, array_size);
971 out:
972 nfs_free_fattr(entry->fattr);
973 nfs_free_fhandle(entry->fh);
974 kfree(entry);
975 return status;
976 }
977
nfs_readdir_folio_put(struct nfs_readdir_descriptor * desc)978 static void nfs_readdir_folio_put(struct nfs_readdir_descriptor *desc)
979 {
980 folio_put(desc->folio);
981 desc->folio = NULL;
982 }
983
984 static void
nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor * desc)985 nfs_readdir_folio_unlock_and_put_cached(struct nfs_readdir_descriptor *desc)
986 {
987 folio_unlock(desc->folio);
988 nfs_readdir_folio_put(desc);
989 }
990
991 static struct folio *
nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor * desc)992 nfs_readdir_folio_get_cached(struct nfs_readdir_descriptor *desc)
993 {
994 struct address_space *mapping = desc->file->f_mapping;
995 u64 change_attr = inode_peek_iversion_raw(mapping->host);
996 u64 cookie = desc->last_cookie;
997 struct folio *folio;
998
999 folio = nfs_readdir_folio_get_locked(mapping, cookie, change_attr);
1000 if (!folio)
1001 return NULL;
1002 if (desc->clear_cache && !nfs_readdir_folio_needs_filling(folio))
1003 nfs_readdir_folio_reinit_array(folio, cookie, change_attr);
1004 return folio;
1005 }
1006
1007 /*
1008 * Returns 0 if desc->dir_cookie was found on page desc->page_index
1009 * and locks the page to prevent removal from the page cache.
1010 */
find_and_lock_cache_page(struct nfs_readdir_descriptor * desc)1011 static int find_and_lock_cache_page(struct nfs_readdir_descriptor *desc)
1012 {
1013 struct inode *inode = file_inode(desc->file);
1014 struct nfs_inode *nfsi = NFS_I(inode);
1015 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1016 int res;
1017
1018 desc->folio = nfs_readdir_folio_get_cached(desc);
1019 if (!desc->folio)
1020 return -ENOMEM;
1021 if (nfs_readdir_folio_needs_filling(desc->folio)) {
1022 /* Grow the dtsize if we had to go back for more pages */
1023 if (desc->folio_index == desc->folio_index_max)
1024 nfs_grow_dtsize(desc);
1025 desc->folio_index_max = desc->folio_index;
1026 trace_nfs_readdir_cache_fill(desc->file, nfsi->cookieverf,
1027 desc->last_cookie,
1028 desc->folio->index, desc->dtsize);
1029 res = nfs_readdir_xdr_to_array(desc, nfsi->cookieverf, verf,
1030 &desc->folio, 1);
1031 if (res < 0) {
1032 nfs_readdir_folio_unlock_and_put_cached(desc);
1033 trace_nfs_readdir_cache_fill_done(inode, res);
1034 if (res == -EBADCOOKIE || res == -ENOTSYNC) {
1035 invalidate_inode_pages2(desc->file->f_mapping);
1036 nfs_readdir_rewind_search(desc);
1037 trace_nfs_readdir_invalidate_cache_range(
1038 inode, 0, MAX_LFS_FILESIZE);
1039 return -EAGAIN;
1040 }
1041 return res;
1042 }
1043 /*
1044 * Set the cookie verifier if the page cache was empty
1045 */
1046 if (desc->last_cookie == 0 &&
1047 memcmp(nfsi->cookieverf, verf, sizeof(nfsi->cookieverf))) {
1048 memcpy(nfsi->cookieverf, verf,
1049 sizeof(nfsi->cookieverf));
1050 invalidate_inode_pages2_range(desc->file->f_mapping, 1,
1051 -1);
1052 trace_nfs_readdir_invalidate_cache_range(
1053 inode, 1, MAX_LFS_FILESIZE);
1054 }
1055 desc->clear_cache = false;
1056 }
1057 res = nfs_readdir_search_array(desc);
1058 if (res == 0)
1059 return 0;
1060 nfs_readdir_folio_unlock_and_put_cached(desc);
1061 return res;
1062 }
1063
1064 /* Search for desc->dir_cookie from the beginning of the page cache */
readdir_search_pagecache(struct nfs_readdir_descriptor * desc)1065 static int readdir_search_pagecache(struct nfs_readdir_descriptor *desc)
1066 {
1067 int res;
1068
1069 do {
1070 res = find_and_lock_cache_page(desc);
1071 } while (res == -EAGAIN);
1072 return res;
1073 }
1074
1075 #define NFS_READDIR_CACHE_MISS_THRESHOLD (16UL)
1076
1077 /*
1078 * Once we've found the start of the dirent within a page: fill 'er up...
1079 */
nfs_do_filldir(struct nfs_readdir_descriptor * desc,const __be32 * verf)1080 static void nfs_do_filldir(struct nfs_readdir_descriptor *desc,
1081 const __be32 *verf)
1082 {
1083 struct file *file = desc->file;
1084 struct nfs_cache_array *array;
1085 unsigned int i;
1086 bool first_emit = !desc->dir_cookie;
1087
1088 array = kmap_local_folio(desc->folio, 0);
1089 for (i = desc->cache_entry_index; i < array->size; i++) {
1090 struct nfs_cache_array_entry *ent;
1091
1092 /*
1093 * nfs_readdir_handle_cache_misses return force clear at
1094 * (cache_misses > NFS_READDIR_CACHE_MISS_THRESHOLD) for
1095 * readdir heuristic, NFS_READDIR_CACHE_MISS_THRESHOLD + 1
1096 * entries need be emitted here.
1097 */
1098 if (first_emit && i > NFS_READDIR_CACHE_MISS_THRESHOLD + 2) {
1099 desc->eob = true;
1100 break;
1101 }
1102
1103 ent = &array->array[i];
1104 if (!dir_emit(desc->ctx, ent->name, ent->name_len,
1105 nfs_compat_user_ino64(ent->ino), ent->d_type)) {
1106 desc->eob = true;
1107 break;
1108 }
1109 memcpy(desc->verf, verf, sizeof(desc->verf));
1110 if (i == array->size - 1) {
1111 desc->dir_cookie = array->last_cookie;
1112 nfs_readdir_seek_next_array(array, desc);
1113 } else {
1114 desc->dir_cookie = array->array[i + 1].cookie;
1115 desc->last_cookie = array->array[0].cookie;
1116 }
1117 if (nfs_readdir_use_cookie(file))
1118 desc->ctx->pos = desc->dir_cookie;
1119 else
1120 desc->ctx->pos++;
1121 }
1122 if (array->folio_is_eof)
1123 desc->eof = !desc->eob;
1124
1125 kunmap_local(array);
1126 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %llu\n",
1127 (unsigned long long)desc->dir_cookie);
1128 }
1129
1130 /*
1131 * If we cannot find a cookie in our cache, we suspect that this is
1132 * because it points to a deleted file, so we ask the server to return
1133 * whatever it thinks is the next entry. We then feed this to filldir.
1134 * If all goes well, we should then be able to find our way round the
1135 * cache on the next call to readdir_search_pagecache();
1136 *
1137 * NOTE: we cannot add the anonymous page to the pagecache because
1138 * the data it contains might not be page aligned. Besides,
1139 * we should already have a complete representation of the
1140 * directory in the page cache by the time we get here.
1141 */
uncached_readdir(struct nfs_readdir_descriptor * desc)1142 static int uncached_readdir(struct nfs_readdir_descriptor *desc)
1143 {
1144 struct folio **arrays;
1145 size_t i, sz = 512;
1146 __be32 verf[NFS_DIR_VERIFIER_SIZE];
1147 int status = -ENOMEM;
1148
1149 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %llu\n",
1150 (unsigned long long)desc->dir_cookie);
1151
1152 arrays = kcalloc(sz, sizeof(*arrays), GFP_KERNEL);
1153 if (!arrays)
1154 goto out;
1155 arrays[0] = nfs_readdir_folio_array_alloc(desc->dir_cookie, GFP_KERNEL);
1156 if (!arrays[0])
1157 goto out;
1158
1159 desc->folio_index = 0;
1160 desc->cache_entry_index = 0;
1161 desc->last_cookie = desc->dir_cookie;
1162 desc->folio_index_max = 0;
1163
1164 trace_nfs_readdir_uncached(desc->file, desc->verf, desc->last_cookie,
1165 -1, desc->dtsize);
1166
1167 status = nfs_readdir_xdr_to_array(desc, desc->verf, verf, arrays, sz);
1168 if (status < 0) {
1169 trace_nfs_readdir_uncached_done(file_inode(desc->file), status);
1170 goto out_free;
1171 }
1172
1173 for (i = 0; !desc->eob && i < sz && arrays[i]; i++) {
1174 desc->folio = arrays[i];
1175 nfs_do_filldir(desc, verf);
1176 }
1177 desc->folio = NULL;
1178
1179 /*
1180 * Grow the dtsize if we have to go back for more pages,
1181 * or shrink it if we're reading too many.
1182 */
1183 if (!desc->eof) {
1184 if (!desc->eob)
1185 nfs_grow_dtsize(desc);
1186 else if (desc->buffer_fills == 1 &&
1187 i < (desc->folio_index_max >> 1))
1188 nfs_shrink_dtsize(desc);
1189 }
1190 out_free:
1191 for (i = 0; i < sz && arrays[i]; i++)
1192 nfs_readdir_folio_array_free(arrays[i]);
1193 out:
1194 if (!nfs_readdir_use_cookie(desc->file))
1195 nfs_readdir_rewind_search(desc);
1196 desc->folio_index_max = -1;
1197 kfree(arrays);
1198 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", __func__, status);
1199 return status;
1200 }
1201
nfs_readdir_handle_cache_misses(struct inode * inode,struct nfs_readdir_descriptor * desc,unsigned int cache_misses,bool force_clear)1202 static bool nfs_readdir_handle_cache_misses(struct inode *inode,
1203 struct nfs_readdir_descriptor *desc,
1204 unsigned int cache_misses,
1205 bool force_clear)
1206 {
1207 if (desc->ctx->pos == 0 || !desc->plus)
1208 return false;
1209 if (cache_misses <= NFS_READDIR_CACHE_MISS_THRESHOLD && !force_clear)
1210 return false;
1211 trace_nfs_readdir_force_readdirplus(inode);
1212 return true;
1213 }
1214
1215 /* The file offset position represents the dirent entry number. A
1216 last cookie cache takes care of the common case of reading the
1217 whole directory.
1218 */
nfs_readdir(struct file * file,struct dir_context * ctx)1219 static int nfs_readdir(struct file *file, struct dir_context *ctx)
1220 {
1221 struct dentry *dentry = file_dentry(file);
1222 struct inode *inode = d_inode(dentry);
1223 struct nfs_inode *nfsi = NFS_I(inode);
1224 struct nfs_open_dir_context *dir_ctx = file->private_data;
1225 struct nfs_readdir_descriptor *desc;
1226 unsigned int cache_hits, cache_misses;
1227 bool force_clear;
1228 int res;
1229
1230 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
1231 file, (long long)ctx->pos);
1232 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
1233
1234 /*
1235 * ctx->pos points to the dirent entry number.
1236 * *desc->dir_cookie has the cookie for the next entry. We have
1237 * to either find the entry with the appropriate number or
1238 * revalidate the cookie.
1239 */
1240 nfs_revalidate_mapping(inode, file->f_mapping);
1241
1242 res = -ENOMEM;
1243 desc = kzalloc(sizeof(*desc), GFP_KERNEL);
1244 if (!desc)
1245 goto out;
1246 desc->file = file;
1247 desc->ctx = ctx;
1248 desc->folio_index_max = -1;
1249
1250 spin_lock(&file->f_lock);
1251 desc->dir_cookie = dir_ctx->dir_cookie;
1252 desc->folio_index = dir_ctx->page_index;
1253 desc->last_cookie = dir_ctx->last_cookie;
1254 desc->attr_gencount = dir_ctx->attr_gencount;
1255 desc->eof = dir_ctx->eof;
1256 nfs_set_dtsize(desc, dir_ctx->dtsize);
1257 memcpy(desc->verf, dir_ctx->verf, sizeof(desc->verf));
1258 cache_hits = atomic_xchg(&dir_ctx->cache_hits, 0);
1259 cache_misses = atomic_xchg(&dir_ctx->cache_misses, 0);
1260 force_clear = dir_ctx->force_clear;
1261 spin_unlock(&file->f_lock);
1262
1263 if (desc->eof) {
1264 res = 0;
1265 goto out_free;
1266 }
1267
1268 desc->plus = nfs_use_readdirplus(inode, ctx, cache_hits, cache_misses);
1269 force_clear = nfs_readdir_handle_cache_misses(inode, desc, cache_misses,
1270 force_clear);
1271 desc->clear_cache = force_clear;
1272
1273 do {
1274 res = readdir_search_pagecache(desc);
1275
1276 if (res == -EBADCOOKIE) {
1277 res = 0;
1278 /* This means either end of directory */
1279 if (desc->dir_cookie && !desc->eof) {
1280 /* Or that the server has 'lost' a cookie */
1281 res = uncached_readdir(desc);
1282 if (res == 0)
1283 continue;
1284 if (res == -EBADCOOKIE || res == -ENOTSYNC)
1285 res = 0;
1286 }
1287 break;
1288 }
1289 if (res == -ETOOSMALL && desc->plus) {
1290 nfs_zap_caches(inode);
1291 desc->plus = false;
1292 desc->eof = false;
1293 continue;
1294 }
1295 if (res < 0)
1296 break;
1297
1298 nfs_do_filldir(desc, nfsi->cookieverf);
1299 nfs_readdir_folio_unlock_and_put_cached(desc);
1300 if (desc->folio_index == desc->folio_index_max)
1301 desc->clear_cache = force_clear;
1302 } while (!desc->eob && !desc->eof);
1303
1304 spin_lock(&file->f_lock);
1305 dir_ctx->dir_cookie = desc->dir_cookie;
1306 dir_ctx->last_cookie = desc->last_cookie;
1307 dir_ctx->attr_gencount = desc->attr_gencount;
1308 dir_ctx->page_index = desc->folio_index;
1309 dir_ctx->force_clear = force_clear;
1310 dir_ctx->eof = desc->eof;
1311 dir_ctx->dtsize = desc->dtsize;
1312 memcpy(dir_ctx->verf, desc->verf, sizeof(dir_ctx->verf));
1313 spin_unlock(&file->f_lock);
1314 out_free:
1315 kfree(desc);
1316
1317 out:
1318 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
1319 return res;
1320 }
1321
nfs_llseek_dir(struct file * filp,loff_t offset,int whence)1322 static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
1323 {
1324 struct nfs_open_dir_context *dir_ctx = filp->private_data;
1325
1326 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
1327 filp, offset, whence);
1328
1329 switch (whence) {
1330 default:
1331 return -EINVAL;
1332 case SEEK_SET:
1333 if (offset < 0)
1334 return -EINVAL;
1335 spin_lock(&filp->f_lock);
1336 break;
1337 case SEEK_CUR:
1338 if (offset == 0)
1339 return filp->f_pos;
1340 spin_lock(&filp->f_lock);
1341 offset += filp->f_pos;
1342 if (offset < 0) {
1343 spin_unlock(&filp->f_lock);
1344 return -EINVAL;
1345 }
1346 }
1347 if (offset != filp->f_pos) {
1348 filp->f_pos = offset;
1349 dir_ctx->page_index = 0;
1350 if (!nfs_readdir_use_cookie(filp)) {
1351 dir_ctx->dir_cookie = 0;
1352 dir_ctx->last_cookie = 0;
1353 } else {
1354 dir_ctx->dir_cookie = offset;
1355 dir_ctx->last_cookie = offset;
1356 }
1357 dir_ctx->eof = false;
1358 }
1359 spin_unlock(&filp->f_lock);
1360 return offset;
1361 }
1362
1363 /*
1364 * All directory operations under NFS are synchronous, so fsync()
1365 * is a dummy operation.
1366 */
nfs_fsync_dir(struct file * filp,loff_t start,loff_t end,int datasync)1367 static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
1368 int datasync)
1369 {
1370 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1371
1372 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1373 return 0;
1374 }
1375
1376 /**
1377 * nfs_force_lookup_revalidate - Mark the directory as having changed
1378 * @dir: pointer to directory inode
1379 *
1380 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1381 * full lookup on all child dentries of 'dir' whenever a change occurs
1382 * on the server that might have invalidated our dcache.
1383 *
1384 * Note that we reserve bit '0' as a tag to let us know when a dentry
1385 * was revalidated while holding a delegation on its inode.
1386 *
1387 * The caller should be holding dir->i_lock
1388 */
nfs_force_lookup_revalidate(struct inode * dir)1389 void nfs_force_lookup_revalidate(struct inode *dir)
1390 {
1391 NFS_I(dir)->cache_change_attribute += 2;
1392 }
1393 EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1394
1395 /**
1396 * nfs_verify_change_attribute - Detects NFS remote directory changes
1397 * @dir: pointer to parent directory inode
1398 * @verf: previously saved change attribute
1399 *
1400 * Return "false" if the verifiers doesn't match the change attribute.
1401 * This would usually indicate that the directory contents have changed on
1402 * the server, and that any dentries need revalidating.
1403 */
nfs_verify_change_attribute(struct inode * dir,unsigned long verf)1404 static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1405 {
1406 return (verf & ~1UL) == nfs_save_change_attribute(dir);
1407 }
1408
nfs_set_verifier_delegated(unsigned long * verf)1409 static void nfs_set_verifier_delegated(unsigned long *verf)
1410 {
1411 *verf |= 1UL;
1412 }
1413
1414 #if IS_ENABLED(CONFIG_NFS_V4)
nfs_unset_verifier_delegated(unsigned long * verf)1415 static void nfs_unset_verifier_delegated(unsigned long *verf)
1416 {
1417 *verf &= ~1UL;
1418 }
1419 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1420
nfs_test_verifier_delegated(unsigned long verf)1421 static bool nfs_test_verifier_delegated(unsigned long verf)
1422 {
1423 return verf & 1;
1424 }
1425
nfs_verifier_is_delegated(struct dentry * dentry)1426 static bool nfs_verifier_is_delegated(struct dentry *dentry)
1427 {
1428 return nfs_test_verifier_delegated(dentry->d_time);
1429 }
1430
nfs_set_verifier_locked(struct dentry * dentry,unsigned long verf)1431 static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1432 {
1433 struct inode *inode = d_inode(dentry);
1434 struct inode *dir = d_inode(dentry->d_parent);
1435
1436 if (!nfs_verify_change_attribute(dir, verf))
1437 return;
1438 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1439 nfs_set_verifier_delegated(&verf);
1440 dentry->d_time = verf;
1441 }
1442
1443 /**
1444 * nfs_set_verifier - save a parent directory verifier in the dentry
1445 * @dentry: pointer to dentry
1446 * @verf: verifier to save
1447 *
1448 * Saves the parent directory verifier in @dentry. If the inode has
1449 * a delegation, we also tag the dentry as having been revalidated
1450 * while holding a delegation so that we know we don't have to
1451 * look it up again after a directory change.
1452 */
nfs_set_verifier(struct dentry * dentry,unsigned long verf)1453 void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1454 {
1455
1456 spin_lock(&dentry->d_lock);
1457 nfs_set_verifier_locked(dentry, verf);
1458 spin_unlock(&dentry->d_lock);
1459 }
1460 EXPORT_SYMBOL_GPL(nfs_set_verifier);
1461
1462 #if IS_ENABLED(CONFIG_NFS_V4)
1463 /**
1464 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1465 * @inode: pointer to inode
1466 *
1467 * Iterates through the dentries in the inode alias list and clears
1468 * the tag used to indicate that the dentry has been revalidated
1469 * while holding a delegation.
1470 * This function is intended for use when the delegation is being
1471 * returned or revoked.
1472 */
nfs_clear_verifier_delegated(struct inode * inode)1473 void nfs_clear_verifier_delegated(struct inode *inode)
1474 {
1475 struct dentry *alias;
1476
1477 if (!inode)
1478 return;
1479 spin_lock(&inode->i_lock);
1480 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1481 spin_lock(&alias->d_lock);
1482 nfs_unset_verifier_delegated(&alias->d_time);
1483 spin_unlock(&alias->d_lock);
1484 }
1485 spin_unlock(&inode->i_lock);
1486 }
1487 EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1488 #endif /* IS_ENABLED(CONFIG_NFS_V4) */
1489
nfs_dentry_verify_change(struct inode * dir,struct dentry * dentry)1490 static int nfs_dentry_verify_change(struct inode *dir, struct dentry *dentry)
1491 {
1492 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE) &&
1493 d_really_is_negative(dentry))
1494 return dentry->d_time == inode_peek_iversion_raw(dir);
1495 return nfs_verify_change_attribute(dir, dentry->d_time);
1496 }
1497
1498 /*
1499 * A check for whether or not the parent directory has changed.
1500 * In the case it has, we assume that the dentries are untrustworthy
1501 * and may need to be looked up again.
1502 * If rcu_walk prevents us from performing a full check, return 0.
1503 */
nfs_check_verifier(struct inode * dir,struct dentry * dentry,int rcu_walk)1504 static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1505 int rcu_walk)
1506 {
1507 if (IS_ROOT(dentry))
1508 return 1;
1509 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1510 return 0;
1511 if (!nfs_dentry_verify_change(dir, dentry))
1512 return 0;
1513 /* Revalidate nfsi->cache_change_attribute before we declare a match */
1514 if (nfs_mapping_need_revalidate_inode(dir)) {
1515 if (rcu_walk)
1516 return 0;
1517 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1518 return 0;
1519 }
1520 if (!nfs_dentry_verify_change(dir, dentry))
1521 return 0;
1522 return 1;
1523 }
1524
1525 /*
1526 * Use intent information to check whether or not we're going to do
1527 * an O_EXCL create using this path component.
1528 */
nfs_is_exclusive_create(struct inode * dir,unsigned int flags)1529 static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1530 {
1531 if (NFS_PROTO(dir)->version == 2)
1532 return 0;
1533 return flags & LOOKUP_EXCL;
1534 }
1535
1536 /*
1537 * Inode and filehandle revalidation for lookups.
1538 *
1539 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1540 * or if the intent information indicates that we're about to open this
1541 * particular file and the "nocto" mount flag is not set.
1542 *
1543 */
1544 static
nfs_lookup_verify_inode(struct inode * inode,unsigned int flags)1545 int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1546 {
1547 struct nfs_server *server = NFS_SERVER(inode);
1548 int ret;
1549
1550 if (IS_AUTOMOUNT(inode))
1551 return 0;
1552
1553 if (flags & LOOKUP_OPEN) {
1554 switch (inode->i_mode & S_IFMT) {
1555 case S_IFREG:
1556 /* A NFSv4 OPEN will revalidate later */
1557 if (server->caps & NFS_CAP_ATOMIC_OPEN)
1558 goto out;
1559 fallthrough;
1560 case S_IFDIR:
1561 if (server->flags & NFS_MOUNT_NOCTO)
1562 break;
1563 /* NFS close-to-open cache consistency validation */
1564 goto out_force;
1565 }
1566 }
1567
1568 /* VFS wants an on-the-wire revalidation */
1569 if (flags & LOOKUP_REVAL)
1570 goto out_force;
1571 out:
1572 if (inode->i_nlink > 0 ||
1573 (inode->i_nlink == 0 &&
1574 test_bit(NFS_INO_PRESERVE_UNLINKED, &NFS_I(inode)->flags)))
1575 return 0;
1576 else
1577 return -ESTALE;
1578 out_force:
1579 if (flags & LOOKUP_RCU)
1580 return -ECHILD;
1581 ret = __nfs_revalidate_inode(server, inode);
1582 if (ret != 0)
1583 return ret;
1584 goto out;
1585 }
1586
nfs_mark_dir_for_revalidate(struct inode * inode)1587 static void nfs_mark_dir_for_revalidate(struct inode *inode)
1588 {
1589 spin_lock(&inode->i_lock);
1590 nfs_set_cache_invalid(inode, NFS_INO_INVALID_CHANGE);
1591 spin_unlock(&inode->i_lock);
1592 }
1593
1594 /*
1595 * We judge how long we want to trust negative
1596 * dentries by looking at the parent inode mtime.
1597 *
1598 * If parent mtime has changed, we revalidate, else we wait for a
1599 * period corresponding to the parent's attribute cache timeout value.
1600 *
1601 * If LOOKUP_RCU prevents us from performing a full check, return 1
1602 * suggesting a reval is needed.
1603 *
1604 * Note that when creating a new file, or looking up a rename target,
1605 * then it shouldn't be necessary to revalidate a negative dentry.
1606 */
1607 static inline
nfs_neg_need_reval(struct inode * dir,struct dentry * dentry,unsigned int flags)1608 int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1609 unsigned int flags)
1610 {
1611 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1612 return 0;
1613 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1614 return 1;
1615 /* Case insensitive server? Revalidate negative dentries */
1616 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1617 return 1;
1618 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1619 }
1620
1621 static int
nfs_lookup_revalidate_done(struct inode * dir,struct dentry * dentry,struct inode * inode,int error)1622 nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1623 struct inode *inode, int error)
1624 {
1625 switch (error) {
1626 case 1:
1627 break;
1628 case 0:
1629 /*
1630 * We can't d_drop the root of a disconnected tree:
1631 * its d_hash is on the s_anon list and d_drop() would hide
1632 * it from shrink_dcache_for_unmount(), leading to busy
1633 * inodes on unmount and further oopses.
1634 */
1635 if (inode && IS_ROOT(dentry))
1636 error = 1;
1637 break;
1638 }
1639 trace_nfs_lookup_revalidate_exit(dir, dentry, 0, error);
1640 return error;
1641 }
1642
1643 static int
nfs_lookup_revalidate_negative(struct inode * dir,struct dentry * dentry,unsigned int flags)1644 nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1645 unsigned int flags)
1646 {
1647 int ret = 1;
1648 if (nfs_neg_need_reval(dir, dentry, flags)) {
1649 if (flags & LOOKUP_RCU)
1650 return -ECHILD;
1651 ret = 0;
1652 }
1653 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1654 }
1655
1656 static int
nfs_lookup_revalidate_delegated(struct inode * dir,struct dentry * dentry,struct inode * inode)1657 nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1658 struct inode *inode)
1659 {
1660 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1661 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1662 }
1663
nfs_lookup_revalidate_dentry(struct inode * dir,struct dentry * dentry,struct inode * inode,unsigned int flags)1664 static int nfs_lookup_revalidate_dentry(struct inode *dir,
1665 struct dentry *dentry,
1666 struct inode *inode, unsigned int flags)
1667 {
1668 struct nfs_fh *fhandle;
1669 struct nfs_fattr *fattr;
1670 unsigned long dir_verifier;
1671 int ret;
1672
1673 trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1674
1675 ret = -ENOMEM;
1676 fhandle = nfs_alloc_fhandle();
1677 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(inode));
1678 if (fhandle == NULL || fattr == NULL)
1679 goto out;
1680
1681 dir_verifier = nfs_save_change_attribute(dir);
1682 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1683 if (ret < 0) {
1684 switch (ret) {
1685 case -ESTALE:
1686 case -ENOENT:
1687 ret = 0;
1688 break;
1689 case -ETIMEDOUT:
1690 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1691 ret = 1;
1692 }
1693 goto out;
1694 }
1695
1696 /* Request help from readdirplus */
1697 nfs_lookup_advise_force_readdirplus(dir, flags);
1698
1699 ret = 0;
1700 if (nfs_compare_fh(NFS_FH(inode), fhandle))
1701 goto out;
1702 if (nfs_refresh_inode(inode, fattr) < 0)
1703 goto out;
1704
1705 nfs_setsecurity(inode, fattr);
1706 nfs_set_verifier(dentry, dir_verifier);
1707
1708 ret = 1;
1709 out:
1710 nfs_free_fattr(fattr);
1711 nfs_free_fhandle(fhandle);
1712
1713 /*
1714 * If the lookup failed despite the dentry change attribute being
1715 * a match, then we should revalidate the directory cache.
1716 */
1717 if (!ret && nfs_dentry_verify_change(dir, dentry))
1718 nfs_mark_dir_for_revalidate(dir);
1719 return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1720 }
1721
1722 /*
1723 * This is called every time the dcache has a lookup hit,
1724 * and we should check whether we can really trust that
1725 * lookup.
1726 *
1727 * NOTE! The hit can be a negative hit too, don't assume
1728 * we have an inode!
1729 *
1730 * If the parent directory is seen to have changed, we throw out the
1731 * cached dentry and do a new lookup.
1732 */
1733 static int
nfs_do_lookup_revalidate(struct inode * dir,struct dentry * dentry,unsigned int flags)1734 nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1735 unsigned int flags)
1736 {
1737 struct inode *inode;
1738 int error;
1739
1740 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1741 inode = d_inode(dentry);
1742
1743 if (!inode)
1744 return nfs_lookup_revalidate_negative(dir, dentry, flags);
1745
1746 if (is_bad_inode(inode)) {
1747 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1748 __func__, dentry);
1749 goto out_bad;
1750 }
1751
1752 if ((flags & LOOKUP_RENAME_TARGET) && d_count(dentry) < 2 &&
1753 nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1754 goto out_bad;
1755
1756 if (nfs_verifier_is_delegated(dentry))
1757 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1758
1759 /* Force a full look up iff the parent directory has changed */
1760 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1761 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1762 error = nfs_lookup_verify_inode(inode, flags);
1763 if (error) {
1764 if (error == -ESTALE)
1765 nfs_mark_dir_for_revalidate(dir);
1766 goto out_bad;
1767 }
1768 goto out_valid;
1769 }
1770
1771 if (flags & LOOKUP_RCU)
1772 return -ECHILD;
1773
1774 if (NFS_STALE(inode))
1775 goto out_bad;
1776
1777 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
1778 out_valid:
1779 return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1780 out_bad:
1781 if (flags & LOOKUP_RCU)
1782 return -ECHILD;
1783 return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1784 }
1785
1786 static int
__nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags,int (* reval)(struct inode *,struct dentry *,unsigned int))1787 __nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1788 int (*reval)(struct inode *, struct dentry *, unsigned int))
1789 {
1790 struct dentry *parent;
1791 struct inode *dir;
1792 int ret;
1793
1794 if (flags & LOOKUP_RCU) {
1795 if (dentry->d_fsdata == NFS_FSDATA_BLOCKED)
1796 return -ECHILD;
1797 parent = READ_ONCE(dentry->d_parent);
1798 dir = d_inode_rcu(parent);
1799 if (!dir)
1800 return -ECHILD;
1801 ret = reval(dir, dentry, flags);
1802 if (parent != READ_ONCE(dentry->d_parent))
1803 return -ECHILD;
1804 } else {
1805 /* Wait for unlink to complete */
1806 wait_var_event(&dentry->d_fsdata,
1807 dentry->d_fsdata != NFS_FSDATA_BLOCKED);
1808 parent = dget_parent(dentry);
1809 ret = reval(d_inode(parent), dentry, flags);
1810 dput(parent);
1811 }
1812 return ret;
1813 }
1814
nfs_lookup_revalidate(struct dentry * dentry,unsigned int flags)1815 static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1816 {
1817 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1818 }
1819
1820 /*
1821 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1822 * when we don't really care about the dentry name. This is called when a
1823 * pathwalk ends on a dentry that was not found via a normal lookup in the
1824 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1825 *
1826 * In this situation, we just want to verify that the inode itself is OK
1827 * since the dentry might have changed on the server.
1828 */
nfs_weak_revalidate(struct dentry * dentry,unsigned int flags)1829 static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1830 {
1831 struct inode *inode = d_inode(dentry);
1832 int error = 0;
1833
1834 /*
1835 * I believe we can only get a negative dentry here in the case of a
1836 * procfs-style symlink. Just assume it's correct for now, but we may
1837 * eventually need to do something more here.
1838 */
1839 if (!inode) {
1840 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1841 __func__, dentry);
1842 return 1;
1843 }
1844
1845 if (is_bad_inode(inode)) {
1846 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1847 __func__, dentry);
1848 return 0;
1849 }
1850
1851 error = nfs_lookup_verify_inode(inode, flags);
1852 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1853 __func__, inode->i_ino, error ? "invalid" : "valid");
1854 return !error;
1855 }
1856
1857 /*
1858 * This is called from dput() when d_count is going to 0.
1859 */
nfs_dentry_delete(const struct dentry * dentry)1860 static int nfs_dentry_delete(const struct dentry *dentry)
1861 {
1862 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1863 dentry, dentry->d_flags);
1864
1865 /* Unhash any dentry with a stale inode */
1866 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1867 return 1;
1868
1869 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1870 /* Unhash it, so that ->d_iput() would be called */
1871 return 1;
1872 }
1873 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1874 /* Unhash it, so that ancestors of killed async unlink
1875 * files will be cleaned up during umount */
1876 return 1;
1877 }
1878 return 0;
1879
1880 }
1881
1882 /* Ensure that we revalidate inode->i_nlink */
nfs_drop_nlink(struct inode * inode)1883 static void nfs_drop_nlink(struct inode *inode)
1884 {
1885 spin_lock(&inode->i_lock);
1886 /* drop the inode if we're reasonably sure this is the last link */
1887 if (inode->i_nlink > 0)
1888 drop_nlink(inode);
1889 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1890 nfs_set_cache_invalid(
1891 inode, NFS_INO_INVALID_CHANGE | NFS_INO_INVALID_CTIME |
1892 NFS_INO_INVALID_NLINK);
1893 spin_unlock(&inode->i_lock);
1894 }
1895
1896 /*
1897 * Called when the dentry loses inode.
1898 * We use it to clean up silly-renamed files.
1899 */
nfs_dentry_iput(struct dentry * dentry,struct inode * inode)1900 static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1901 {
1902 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1903 nfs_complete_unlink(dentry, inode);
1904 nfs_drop_nlink(inode);
1905 }
1906 iput(inode);
1907 }
1908
nfs_d_release(struct dentry * dentry)1909 static void nfs_d_release(struct dentry *dentry)
1910 {
1911 /* free cached devname value, if it survived that far */
1912 if (unlikely(dentry->d_fsdata)) {
1913 if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1914 WARN_ON(1);
1915 else
1916 kfree(dentry->d_fsdata);
1917 }
1918 }
1919
1920 const struct dentry_operations nfs_dentry_operations = {
1921 .d_revalidate = nfs_lookup_revalidate,
1922 .d_weak_revalidate = nfs_weak_revalidate,
1923 .d_delete = nfs_dentry_delete,
1924 .d_iput = nfs_dentry_iput,
1925 .d_automount = nfs_d_automount,
1926 .d_release = nfs_d_release,
1927 };
1928 EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1929
nfs_lookup(struct inode * dir,struct dentry * dentry,unsigned int flags)1930 struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1931 {
1932 struct dentry *res;
1933 struct inode *inode = NULL;
1934 struct nfs_fh *fhandle = NULL;
1935 struct nfs_fattr *fattr = NULL;
1936 unsigned long dir_verifier;
1937 int error;
1938
1939 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1940 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1941
1942 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1943 return ERR_PTR(-ENAMETOOLONG);
1944
1945 /*
1946 * If we're doing an exclusive create, optimize away the lookup
1947 * but don't hash the dentry.
1948 */
1949 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1950 return NULL;
1951
1952 res = ERR_PTR(-ENOMEM);
1953 fhandle = nfs_alloc_fhandle();
1954 fattr = nfs_alloc_fattr_with_label(NFS_SERVER(dir));
1955 if (fhandle == NULL || fattr == NULL)
1956 goto out;
1957
1958 dir_verifier = nfs_save_change_attribute(dir);
1959 trace_nfs_lookup_enter(dir, dentry, flags);
1960 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
1961 if (error == -ENOENT) {
1962 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
1963 dir_verifier = inode_peek_iversion_raw(dir);
1964 goto no_entry;
1965 }
1966 if (error < 0) {
1967 res = ERR_PTR(error);
1968 goto out;
1969 }
1970 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
1971 res = ERR_CAST(inode);
1972 if (IS_ERR(res))
1973 goto out;
1974
1975 /* Notify readdir to use READDIRPLUS */
1976 nfs_lookup_advise_force_readdirplus(dir, flags);
1977
1978 no_entry:
1979 res = d_splice_alias(inode, dentry);
1980 if (res != NULL) {
1981 if (IS_ERR(res))
1982 goto out;
1983 dentry = res;
1984 }
1985 nfs_set_verifier(dentry, dir_verifier);
1986 out:
1987 trace_nfs_lookup_exit(dir, dentry, flags, PTR_ERR_OR_ZERO(res));
1988 nfs_free_fattr(fattr);
1989 nfs_free_fhandle(fhandle);
1990 return res;
1991 }
1992 EXPORT_SYMBOL_GPL(nfs_lookup);
1993
nfs_d_prune_case_insensitive_aliases(struct inode * inode)1994 void nfs_d_prune_case_insensitive_aliases(struct inode *inode)
1995 {
1996 /* Case insensitive server? Revalidate dentries */
1997 if (inode && nfs_server_capable(inode, NFS_CAP_CASE_INSENSITIVE))
1998 d_prune_aliases(inode);
1999 }
2000 EXPORT_SYMBOL_GPL(nfs_d_prune_case_insensitive_aliases);
2001
2002 #if IS_ENABLED(CONFIG_NFS_V4)
2003 static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
2004
2005 const struct dentry_operations nfs4_dentry_operations = {
2006 .d_revalidate = nfs4_lookup_revalidate,
2007 .d_weak_revalidate = nfs_weak_revalidate,
2008 .d_delete = nfs_dentry_delete,
2009 .d_iput = nfs_dentry_iput,
2010 .d_automount = nfs_d_automount,
2011 .d_release = nfs_d_release,
2012 };
2013 EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
2014
create_nfs_open_context(struct dentry * dentry,int open_flags,struct file * filp)2015 static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
2016 {
2017 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
2018 }
2019
do_open(struct inode * inode,struct file * filp)2020 static int do_open(struct inode *inode, struct file *filp)
2021 {
2022 nfs_fscache_open_file(inode, filp);
2023 return 0;
2024 }
2025
nfs_finish_open(struct nfs_open_context * ctx,struct dentry * dentry,struct file * file,unsigned open_flags)2026 static int nfs_finish_open(struct nfs_open_context *ctx,
2027 struct dentry *dentry,
2028 struct file *file, unsigned open_flags)
2029 {
2030 int err;
2031
2032 err = finish_open(file, dentry, do_open);
2033 if (err)
2034 goto out;
2035 if (S_ISREG(file_inode(file)->i_mode))
2036 nfs_file_set_open_context(file, ctx);
2037 else
2038 err = -EOPENSTALE;
2039 out:
2040 return err;
2041 }
2042
nfs_atomic_open(struct inode * dir,struct dentry * dentry,struct file * file,unsigned open_flags,umode_t mode)2043 int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
2044 struct file *file, unsigned open_flags,
2045 umode_t mode)
2046 {
2047 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
2048 struct nfs_open_context *ctx;
2049 struct dentry *res;
2050 struct iattr attr = { .ia_valid = ATTR_OPEN };
2051 struct inode *inode;
2052 unsigned int lookup_flags = 0;
2053 unsigned long dir_verifier;
2054 bool switched = false;
2055 int created = 0;
2056 int err;
2057
2058 /* Expect a negative dentry */
2059 BUG_ON(d_inode(dentry));
2060
2061 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
2062 dir->i_sb->s_id, dir->i_ino, dentry);
2063
2064 err = nfs_check_flags(open_flags);
2065 if (err)
2066 return err;
2067
2068 /* NFS only supports OPEN on regular files */
2069 if ((open_flags & O_DIRECTORY)) {
2070 if (!d_in_lookup(dentry)) {
2071 /*
2072 * Hashed negative dentry with O_DIRECTORY: dentry was
2073 * revalidated and is fine, no need to perform lookup
2074 * again
2075 */
2076 return -ENOENT;
2077 }
2078 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
2079 goto no_open;
2080 }
2081
2082 if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
2083 return -ENAMETOOLONG;
2084
2085 if (open_flags & O_CREAT) {
2086 struct nfs_server *server = NFS_SERVER(dir);
2087
2088 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
2089 mode &= ~current_umask();
2090
2091 attr.ia_valid |= ATTR_MODE;
2092 attr.ia_mode = mode;
2093 }
2094 if (open_flags & O_TRUNC) {
2095 attr.ia_valid |= ATTR_SIZE;
2096 attr.ia_size = 0;
2097 }
2098
2099 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
2100 d_drop(dentry);
2101 switched = true;
2102 dentry = d_alloc_parallel(dentry->d_parent,
2103 &dentry->d_name, &wq);
2104 if (IS_ERR(dentry))
2105 return PTR_ERR(dentry);
2106 if (unlikely(!d_in_lookup(dentry)))
2107 return finish_no_open(file, dentry);
2108 }
2109
2110 ctx = create_nfs_open_context(dentry, open_flags, file);
2111 err = PTR_ERR(ctx);
2112 if (IS_ERR(ctx))
2113 goto out;
2114
2115 trace_nfs_atomic_open_enter(dir, ctx, open_flags);
2116 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
2117 if (created)
2118 file->f_mode |= FMODE_CREATED;
2119 if (IS_ERR(inode)) {
2120 err = PTR_ERR(inode);
2121 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2122 put_nfs_open_context(ctx);
2123 d_drop(dentry);
2124 switch (err) {
2125 case -ENOENT:
2126 d_splice_alias(NULL, dentry);
2127 if (nfs_server_capable(dir, NFS_CAP_CASE_INSENSITIVE))
2128 dir_verifier = inode_peek_iversion_raw(dir);
2129 else
2130 dir_verifier = nfs_save_change_attribute(dir);
2131 nfs_set_verifier(dentry, dir_verifier);
2132 break;
2133 case -EISDIR:
2134 case -ENOTDIR:
2135 goto no_open;
2136 case -ELOOP:
2137 if (!(open_flags & O_NOFOLLOW))
2138 goto no_open;
2139 break;
2140 /* case -EINVAL: */
2141 default:
2142 break;
2143 }
2144 goto out;
2145 }
2146 file->f_mode |= FMODE_CAN_ODIRECT;
2147
2148 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
2149 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
2150 put_nfs_open_context(ctx);
2151 out:
2152 if (unlikely(switched)) {
2153 d_lookup_done(dentry);
2154 dput(dentry);
2155 }
2156 return err;
2157
2158 no_open:
2159 res = nfs_lookup(dir, dentry, lookup_flags);
2160 if (!res) {
2161 inode = d_inode(dentry);
2162 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2163 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
2164 res = ERR_PTR(-ENOTDIR);
2165 else if (inode && S_ISREG(inode->i_mode))
2166 res = ERR_PTR(-EOPENSTALE);
2167 } else if (!IS_ERR(res)) {
2168 inode = d_inode(res);
2169 if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
2170 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
2171 dput(res);
2172 res = ERR_PTR(-ENOTDIR);
2173 } else if (inode && S_ISREG(inode->i_mode)) {
2174 dput(res);
2175 res = ERR_PTR(-EOPENSTALE);
2176 }
2177 }
2178 if (switched) {
2179 d_lookup_done(dentry);
2180 if (!res)
2181 res = dentry;
2182 else
2183 dput(dentry);
2184 }
2185 if (IS_ERR(res))
2186 return PTR_ERR(res);
2187 return finish_no_open(file, res);
2188 }
2189 EXPORT_SYMBOL_GPL(nfs_atomic_open);
2190
2191 static int
nfs4_do_lookup_revalidate(struct inode * dir,struct dentry * dentry,unsigned int flags)2192 nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
2193 unsigned int flags)
2194 {
2195 struct inode *inode;
2196
2197 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
2198 goto full_reval;
2199 if (d_mountpoint(dentry))
2200 goto full_reval;
2201
2202 inode = d_inode(dentry);
2203
2204 /* We can't create new files in nfs_open_revalidate(), so we
2205 * optimize away revalidation of negative dentries.
2206 */
2207 if (inode == NULL)
2208 goto full_reval;
2209
2210 if (nfs_verifier_is_delegated(dentry))
2211 return nfs_lookup_revalidate_delegated(dir, dentry, inode);
2212
2213 /* NFS only supports OPEN on regular files */
2214 if (!S_ISREG(inode->i_mode))
2215 goto full_reval;
2216
2217 /* We cannot do exclusive creation on a positive dentry */
2218 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
2219 goto reval_dentry;
2220
2221 /* Check if the directory changed */
2222 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
2223 goto reval_dentry;
2224
2225 /* Let f_op->open() actually open (and revalidate) the file */
2226 return 1;
2227 reval_dentry:
2228 if (flags & LOOKUP_RCU)
2229 return -ECHILD;
2230 return nfs_lookup_revalidate_dentry(dir, dentry, inode, flags);
2231
2232 full_reval:
2233 return nfs_do_lookup_revalidate(dir, dentry, flags);
2234 }
2235
nfs4_lookup_revalidate(struct dentry * dentry,unsigned int flags)2236 static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
2237 {
2238 return __nfs_lookup_revalidate(dentry, flags,
2239 nfs4_do_lookup_revalidate);
2240 }
2241
2242 #endif /* CONFIG_NFSV4 */
2243
2244 struct dentry *
nfs_add_or_obtain(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr)2245 nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
2246 struct nfs_fattr *fattr)
2247 {
2248 struct dentry *parent = dget_parent(dentry);
2249 struct inode *dir = d_inode(parent);
2250 struct inode *inode;
2251 struct dentry *d;
2252 int error;
2253
2254 d_drop(dentry);
2255
2256 if (fhandle->size == 0) {
2257 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr);
2258 if (error)
2259 goto out_error;
2260 }
2261 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2262 if (!(fattr->valid & NFS_ATTR_FATTR)) {
2263 struct nfs_server *server = NFS_SB(dentry->d_sb);
2264 error = server->nfs_client->rpc_ops->getattr(server, fhandle,
2265 fattr, NULL);
2266 if (error < 0)
2267 goto out_error;
2268 }
2269 inode = nfs_fhget(dentry->d_sb, fhandle, fattr);
2270 d = d_splice_alias(inode, dentry);
2271 out:
2272 dput(parent);
2273 return d;
2274 out_error:
2275 d = ERR_PTR(error);
2276 goto out;
2277 }
2278 EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
2279
2280 /*
2281 * Code common to create, mkdir, and mknod.
2282 */
nfs_instantiate(struct dentry * dentry,struct nfs_fh * fhandle,struct nfs_fattr * fattr)2283 int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
2284 struct nfs_fattr *fattr)
2285 {
2286 struct dentry *d;
2287
2288 d = nfs_add_or_obtain(dentry, fhandle, fattr);
2289 if (IS_ERR(d))
2290 return PTR_ERR(d);
2291
2292 /* Callers don't care */
2293 dput(d);
2294 return 0;
2295 }
2296 EXPORT_SYMBOL_GPL(nfs_instantiate);
2297
2298 /*
2299 * Following a failed create operation, we drop the dentry rather
2300 * than retain a negative dentry. This avoids a problem in the event
2301 * that the operation succeeded on the server, but an error in the
2302 * reply path made it appear to have failed.
2303 */
nfs_create(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,bool excl)2304 int nfs_create(struct mnt_idmap *idmap, struct inode *dir,
2305 struct dentry *dentry, umode_t mode, bool excl)
2306 {
2307 struct iattr attr;
2308 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
2309 int error;
2310
2311 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
2312 dir->i_sb->s_id, dir->i_ino, dentry);
2313
2314 attr.ia_mode = mode;
2315 attr.ia_valid = ATTR_MODE;
2316
2317 trace_nfs_create_enter(dir, dentry, open_flags);
2318 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
2319 trace_nfs_create_exit(dir, dentry, open_flags, error);
2320 if (error != 0)
2321 goto out_err;
2322 return 0;
2323 out_err:
2324 d_drop(dentry);
2325 return error;
2326 }
2327 EXPORT_SYMBOL_GPL(nfs_create);
2328
2329 /*
2330 * See comments for nfs_proc_create regarding failed operations.
2331 */
2332 int
nfs_mknod(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode,dev_t rdev)2333 nfs_mknod(struct mnt_idmap *idmap, struct inode *dir,
2334 struct dentry *dentry, umode_t mode, dev_t rdev)
2335 {
2336 struct iattr attr;
2337 int status;
2338
2339 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
2340 dir->i_sb->s_id, dir->i_ino, dentry);
2341
2342 attr.ia_mode = mode;
2343 attr.ia_valid = ATTR_MODE;
2344
2345 trace_nfs_mknod_enter(dir, dentry);
2346 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
2347 trace_nfs_mknod_exit(dir, dentry, status);
2348 if (status != 0)
2349 goto out_err;
2350 return 0;
2351 out_err:
2352 d_drop(dentry);
2353 return status;
2354 }
2355 EXPORT_SYMBOL_GPL(nfs_mknod);
2356
2357 /*
2358 * See comments for nfs_proc_create regarding failed operations.
2359 */
nfs_mkdir(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,umode_t mode)2360 int nfs_mkdir(struct mnt_idmap *idmap, struct inode *dir,
2361 struct dentry *dentry, umode_t mode)
2362 {
2363 struct iattr attr;
2364 int error;
2365
2366 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
2367 dir->i_sb->s_id, dir->i_ino, dentry);
2368
2369 attr.ia_valid = ATTR_MODE;
2370 attr.ia_mode = mode | S_IFDIR;
2371
2372 trace_nfs_mkdir_enter(dir, dentry);
2373 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
2374 trace_nfs_mkdir_exit(dir, dentry, error);
2375 if (error != 0)
2376 goto out_err;
2377 return 0;
2378 out_err:
2379 d_drop(dentry);
2380 return error;
2381 }
2382 EXPORT_SYMBOL_GPL(nfs_mkdir);
2383
nfs_dentry_handle_enoent(struct dentry * dentry)2384 static void nfs_dentry_handle_enoent(struct dentry *dentry)
2385 {
2386 if (simple_positive(dentry))
2387 d_delete(dentry);
2388 }
2389
nfs_dentry_remove_handle_error(struct inode * dir,struct dentry * dentry,int error)2390 static void nfs_dentry_remove_handle_error(struct inode *dir,
2391 struct dentry *dentry, int error)
2392 {
2393 switch (error) {
2394 case -ENOENT:
2395 if (d_really_is_positive(dentry))
2396 d_delete(dentry);
2397 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2398 break;
2399 case 0:
2400 nfs_d_prune_case_insensitive_aliases(d_inode(dentry));
2401 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2402 }
2403 }
2404
nfs_rmdir(struct inode * dir,struct dentry * dentry)2405 int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2406 {
2407 int error;
2408
2409 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2410 dir->i_sb->s_id, dir->i_ino, dentry);
2411
2412 trace_nfs_rmdir_enter(dir, dentry);
2413 if (d_really_is_positive(dentry)) {
2414 down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2415 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2416 /* Ensure the VFS deletes this inode */
2417 switch (error) {
2418 case 0:
2419 clear_nlink(d_inode(dentry));
2420 break;
2421 case -ENOENT:
2422 nfs_dentry_handle_enoent(dentry);
2423 }
2424 up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2425 } else
2426 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2427 nfs_dentry_remove_handle_error(dir, dentry, error);
2428 trace_nfs_rmdir_exit(dir, dentry, error);
2429
2430 return error;
2431 }
2432 EXPORT_SYMBOL_GPL(nfs_rmdir);
2433
2434 /*
2435 * Remove a file after making sure there are no pending writes,
2436 * and after checking that the file has only one user.
2437 *
2438 * We invalidate the attribute cache and free the inode prior to the operation
2439 * to avoid possible races if the server reuses the inode.
2440 */
nfs_safe_remove(struct dentry * dentry)2441 static int nfs_safe_remove(struct dentry *dentry)
2442 {
2443 struct inode *dir = d_inode(dentry->d_parent);
2444 struct inode *inode = d_inode(dentry);
2445 int error = -EBUSY;
2446
2447 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2448
2449 /* If the dentry was sillyrenamed, we simply call d_delete() */
2450 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2451 error = 0;
2452 goto out;
2453 }
2454
2455 trace_nfs_remove_enter(dir, dentry);
2456 if (inode != NULL) {
2457 error = NFS_PROTO(dir)->remove(dir, dentry);
2458 if (error == 0)
2459 nfs_drop_nlink(inode);
2460 } else
2461 error = NFS_PROTO(dir)->remove(dir, dentry);
2462 if (error == -ENOENT)
2463 nfs_dentry_handle_enoent(dentry);
2464 trace_nfs_remove_exit(dir, dentry, error);
2465 out:
2466 return error;
2467 }
2468
2469 /* We do silly rename. In case sillyrename() returns -EBUSY, the inode
2470 * belongs to an active ".nfs..." file and we return -EBUSY.
2471 *
2472 * If sillyrename() returns 0, we do nothing, otherwise we unlink.
2473 */
nfs_unlink(struct inode * dir,struct dentry * dentry)2474 int nfs_unlink(struct inode *dir, struct dentry *dentry)
2475 {
2476 int error;
2477
2478 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2479 dir->i_ino, dentry);
2480
2481 trace_nfs_unlink_enter(dir, dentry);
2482 spin_lock(&dentry->d_lock);
2483 if (d_count(dentry) > 1 && !test_bit(NFS_INO_PRESERVE_UNLINKED,
2484 &NFS_I(d_inode(dentry))->flags)) {
2485 spin_unlock(&dentry->d_lock);
2486 /* Start asynchronous writeout of the inode */
2487 write_inode_now(d_inode(dentry), 0);
2488 error = nfs_sillyrename(dir, dentry);
2489 goto out;
2490 }
2491 /* We must prevent any concurrent open until the unlink
2492 * completes. ->d_revalidate will wait for ->d_fsdata
2493 * to clear. We set it here to ensure no lookup succeeds until
2494 * the unlink is complete on the server.
2495 */
2496 error = -ETXTBSY;
2497 if (WARN_ON(dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2498 WARN_ON(dentry->d_fsdata == NFS_FSDATA_BLOCKED)) {
2499 spin_unlock(&dentry->d_lock);
2500 goto out;
2501 }
2502 /* old devname */
2503 kfree(dentry->d_fsdata);
2504 dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2505
2506 spin_unlock(&dentry->d_lock);
2507 error = nfs_safe_remove(dentry);
2508 nfs_dentry_remove_handle_error(dir, dentry, error);
2509 dentry->d_fsdata = NULL;
2510 wake_up_var(&dentry->d_fsdata);
2511 out:
2512 trace_nfs_unlink_exit(dir, dentry, error);
2513 return error;
2514 }
2515 EXPORT_SYMBOL_GPL(nfs_unlink);
2516
2517 /*
2518 * To create a symbolic link, most file systems instantiate a new inode,
2519 * add a page to it containing the path, then write it out to the disk
2520 * using prepare_write/commit_write.
2521 *
2522 * Unfortunately the NFS client can't create the in-core inode first
2523 * because it needs a file handle to create an in-core inode (see
2524 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the
2525 * symlink request has completed on the server.
2526 *
2527 * So instead we allocate a raw page, copy the symname into it, then do
2528 * the SYMLINK request with the page as the buffer. If it succeeds, we
2529 * now have a new file handle and can instantiate an in-core NFS inode
2530 * and move the raw page into its mapping.
2531 */
nfs_symlink(struct mnt_idmap * idmap,struct inode * dir,struct dentry * dentry,const char * symname)2532 int nfs_symlink(struct mnt_idmap *idmap, struct inode *dir,
2533 struct dentry *dentry, const char *symname)
2534 {
2535 struct page *page;
2536 char *kaddr;
2537 struct iattr attr;
2538 unsigned int pathlen = strlen(symname);
2539 int error;
2540
2541 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2542 dir->i_ino, dentry, symname);
2543
2544 if (pathlen > PAGE_SIZE)
2545 return -ENAMETOOLONG;
2546
2547 attr.ia_mode = S_IFLNK | S_IRWXUGO;
2548 attr.ia_valid = ATTR_MODE;
2549
2550 page = alloc_page(GFP_USER);
2551 if (!page)
2552 return -ENOMEM;
2553
2554 kaddr = page_address(page);
2555 memcpy(kaddr, symname, pathlen);
2556 if (pathlen < PAGE_SIZE)
2557 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2558
2559 trace_nfs_symlink_enter(dir, dentry);
2560 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2561 trace_nfs_symlink_exit(dir, dentry, error);
2562 if (error != 0) {
2563 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2564 dir->i_sb->s_id, dir->i_ino,
2565 dentry, symname, error);
2566 d_drop(dentry);
2567 __free_page(page);
2568 return error;
2569 }
2570
2571 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2572
2573 /*
2574 * No big deal if we can't add this page to the page cache here.
2575 * READLINK will get the missing page from the server if needed.
2576 */
2577 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2578 GFP_KERNEL)) {
2579 SetPageUptodate(page);
2580 unlock_page(page);
2581 /*
2582 * add_to_page_cache_lru() grabs an extra page refcount.
2583 * Drop it here to avoid leaking this page later.
2584 */
2585 put_page(page);
2586 } else
2587 __free_page(page);
2588
2589 return 0;
2590 }
2591 EXPORT_SYMBOL_GPL(nfs_symlink);
2592
2593 int
nfs_link(struct dentry * old_dentry,struct inode * dir,struct dentry * dentry)2594 nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2595 {
2596 struct inode *inode = d_inode(old_dentry);
2597 int error;
2598
2599 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2600 old_dentry, dentry);
2601
2602 trace_nfs_link_enter(inode, dir, dentry);
2603 d_drop(dentry);
2604 if (S_ISREG(inode->i_mode))
2605 nfs_sync_inode(inode);
2606 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2607 if (error == 0) {
2608 nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2609 ihold(inode);
2610 d_add(dentry, inode);
2611 }
2612 trace_nfs_link_exit(inode, dir, dentry, error);
2613 return error;
2614 }
2615 EXPORT_SYMBOL_GPL(nfs_link);
2616
2617 static void
nfs_unblock_rename(struct rpc_task * task,struct nfs_renamedata * data)2618 nfs_unblock_rename(struct rpc_task *task, struct nfs_renamedata *data)
2619 {
2620 struct dentry *new_dentry = data->new_dentry;
2621
2622 new_dentry->d_fsdata = NULL;
2623 wake_up_var(&new_dentry->d_fsdata);
2624 }
2625
2626 /*
2627 * RENAME
2628 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2629 * different file handle for the same inode after a rename (e.g. when
2630 * moving to a different directory). A fail-safe method to do so would
2631 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2632 * rename the old file using the sillyrename stuff. This way, the original
2633 * file in old_dir will go away when the last process iput()s the inode.
2634 *
2635 * FIXED.
2636 *
2637 * It actually works quite well. One needs to have the possibility for
2638 * at least one ".nfs..." file in each directory the file ever gets
2639 * moved or linked to which happens automagically with the new
2640 * implementation that only depends on the dcache stuff instead of
2641 * using the inode layer
2642 *
2643 * Unfortunately, things are a little more complicated than indicated
2644 * above. For a cross-directory move, we want to make sure we can get
2645 * rid of the old inode after the operation. This means there must be
2646 * no pending writes (if it's a file), and the use count must be 1.
2647 * If these conditions are met, we can drop the dentries before doing
2648 * the rename.
2649 */
nfs_rename(struct mnt_idmap * idmap,struct inode * old_dir,struct dentry * old_dentry,struct inode * new_dir,struct dentry * new_dentry,unsigned int flags)2650 int nfs_rename(struct mnt_idmap *idmap, struct inode *old_dir,
2651 struct dentry *old_dentry, struct inode *new_dir,
2652 struct dentry *new_dentry, unsigned int flags)
2653 {
2654 struct inode *old_inode = d_inode(old_dentry);
2655 struct inode *new_inode = d_inode(new_dentry);
2656 struct dentry *dentry = NULL;
2657 struct rpc_task *task;
2658 bool must_unblock = false;
2659 int error = -EBUSY;
2660
2661 if (flags)
2662 return -EINVAL;
2663
2664 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2665 old_dentry, new_dentry,
2666 d_count(new_dentry));
2667
2668 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2669 /*
2670 * For non-directories, check whether the target is busy and if so,
2671 * make a copy of the dentry and then do a silly-rename. If the
2672 * silly-rename succeeds, the copied dentry is hashed and becomes
2673 * the new target.
2674 */
2675 if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2676 /* We must prevent any concurrent open until the unlink
2677 * completes. ->d_revalidate will wait for ->d_fsdata
2678 * to clear. We set it here to ensure no lookup succeeds until
2679 * the unlink is complete on the server.
2680 */
2681 error = -ETXTBSY;
2682 if (WARN_ON(new_dentry->d_flags & DCACHE_NFSFS_RENAMED) ||
2683 WARN_ON(new_dentry->d_fsdata == NFS_FSDATA_BLOCKED))
2684 goto out;
2685 if (new_dentry->d_fsdata) {
2686 /* old devname */
2687 kfree(new_dentry->d_fsdata);
2688 new_dentry->d_fsdata = NULL;
2689 }
2690
2691 spin_lock(&new_dentry->d_lock);
2692 if (d_count(new_dentry) > 2) {
2693 int err;
2694
2695 spin_unlock(&new_dentry->d_lock);
2696
2697 /* copy the target dentry's name */
2698 dentry = d_alloc(new_dentry->d_parent,
2699 &new_dentry->d_name);
2700 if (!dentry)
2701 goto out;
2702
2703 /* silly-rename the existing target ... */
2704 err = nfs_sillyrename(new_dir, new_dentry);
2705 if (err)
2706 goto out;
2707
2708 new_dentry = dentry;
2709 new_inode = NULL;
2710 } else {
2711 new_dentry->d_fsdata = NFS_FSDATA_BLOCKED;
2712 must_unblock = true;
2713 spin_unlock(&new_dentry->d_lock);
2714 }
2715
2716 }
2717
2718 if (S_ISREG(old_inode->i_mode))
2719 nfs_sync_inode(old_inode);
2720 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry,
2721 must_unblock ? nfs_unblock_rename : NULL);
2722 if (IS_ERR(task)) {
2723 error = PTR_ERR(task);
2724 goto out;
2725 }
2726
2727 error = rpc_wait_for_completion_task(task);
2728 if (error != 0) {
2729 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2730 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2731 smp_wmb();
2732 } else
2733 error = task->tk_status;
2734 rpc_put_task(task);
2735 /* Ensure the inode attributes are revalidated */
2736 if (error == 0) {
2737 spin_lock(&old_inode->i_lock);
2738 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2739 nfs_set_cache_invalid(old_inode, NFS_INO_INVALID_CHANGE |
2740 NFS_INO_INVALID_CTIME |
2741 NFS_INO_REVAL_FORCED);
2742 spin_unlock(&old_inode->i_lock);
2743 }
2744 out:
2745 trace_nfs_rename_exit(old_dir, old_dentry,
2746 new_dir, new_dentry, error);
2747 if (!error) {
2748 if (new_inode != NULL)
2749 nfs_drop_nlink(new_inode);
2750 /*
2751 * The d_move() should be here instead of in an async RPC completion
2752 * handler because we need the proper locks to move the dentry. If
2753 * we're interrupted by a signal, the async RPC completion handler
2754 * should mark the directories for revalidation.
2755 */
2756 d_move(old_dentry, new_dentry);
2757 nfs_set_verifier(old_dentry,
2758 nfs_save_change_attribute(new_dir));
2759 } else if (error == -ENOENT)
2760 nfs_dentry_handle_enoent(old_dentry);
2761
2762 /* new dentry created? */
2763 if (dentry)
2764 dput(dentry);
2765 return error;
2766 }
2767 EXPORT_SYMBOL_GPL(nfs_rename);
2768
2769 static DEFINE_SPINLOCK(nfs_access_lru_lock);
2770 static LIST_HEAD(nfs_access_lru_list);
2771 static atomic_long_t nfs_access_nr_entries;
2772
2773 static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2774 module_param(nfs_access_max_cachesize, ulong, 0644);
2775 MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2776
nfs_access_free_entry(struct nfs_access_entry * entry)2777 static void nfs_access_free_entry(struct nfs_access_entry *entry)
2778 {
2779 put_group_info(entry->group_info);
2780 kfree_rcu(entry, rcu_head);
2781 smp_mb__before_atomic();
2782 atomic_long_dec(&nfs_access_nr_entries);
2783 smp_mb__after_atomic();
2784 }
2785
nfs_access_free_list(struct list_head * head)2786 static void nfs_access_free_list(struct list_head *head)
2787 {
2788 struct nfs_access_entry *cache;
2789
2790 while (!list_empty(head)) {
2791 cache = list_entry(head->next, struct nfs_access_entry, lru);
2792 list_del(&cache->lru);
2793 nfs_access_free_entry(cache);
2794 }
2795 }
2796
2797 static unsigned long
nfs_do_access_cache_scan(unsigned int nr_to_scan)2798 nfs_do_access_cache_scan(unsigned int nr_to_scan)
2799 {
2800 LIST_HEAD(head);
2801 struct nfs_inode *nfsi, *next;
2802 struct nfs_access_entry *cache;
2803 long freed = 0;
2804
2805 spin_lock(&nfs_access_lru_lock);
2806 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2807 struct inode *inode;
2808
2809 if (nr_to_scan-- == 0)
2810 break;
2811 inode = &nfsi->vfs_inode;
2812 spin_lock(&inode->i_lock);
2813 if (list_empty(&nfsi->access_cache_entry_lru))
2814 goto remove_lru_entry;
2815 cache = list_entry(nfsi->access_cache_entry_lru.next,
2816 struct nfs_access_entry, lru);
2817 list_move(&cache->lru, &head);
2818 rb_erase(&cache->rb_node, &nfsi->access_cache);
2819 freed++;
2820 if (!list_empty(&nfsi->access_cache_entry_lru))
2821 list_move_tail(&nfsi->access_cache_inode_lru,
2822 &nfs_access_lru_list);
2823 else {
2824 remove_lru_entry:
2825 list_del_init(&nfsi->access_cache_inode_lru);
2826 smp_mb__before_atomic();
2827 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2828 smp_mb__after_atomic();
2829 }
2830 spin_unlock(&inode->i_lock);
2831 }
2832 spin_unlock(&nfs_access_lru_lock);
2833 nfs_access_free_list(&head);
2834 return freed;
2835 }
2836
2837 unsigned long
nfs_access_cache_scan(struct shrinker * shrink,struct shrink_control * sc)2838 nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2839 {
2840 int nr_to_scan = sc->nr_to_scan;
2841 gfp_t gfp_mask = sc->gfp_mask;
2842
2843 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2844 return SHRINK_STOP;
2845 return nfs_do_access_cache_scan(nr_to_scan);
2846 }
2847
2848
2849 unsigned long
nfs_access_cache_count(struct shrinker * shrink,struct shrink_control * sc)2850 nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2851 {
2852 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2853 }
2854
2855 static void
nfs_access_cache_enforce_limit(void)2856 nfs_access_cache_enforce_limit(void)
2857 {
2858 long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2859 unsigned long diff;
2860 unsigned int nr_to_scan;
2861
2862 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2863 return;
2864 nr_to_scan = 100;
2865 diff = nr_entries - nfs_access_max_cachesize;
2866 if (diff < nr_to_scan)
2867 nr_to_scan = diff;
2868 nfs_do_access_cache_scan(nr_to_scan);
2869 }
2870
__nfs_access_zap_cache(struct nfs_inode * nfsi,struct list_head * head)2871 static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2872 {
2873 struct rb_root *root_node = &nfsi->access_cache;
2874 struct rb_node *n;
2875 struct nfs_access_entry *entry;
2876
2877 /* Unhook entries from the cache */
2878 while ((n = rb_first(root_node)) != NULL) {
2879 entry = rb_entry(n, struct nfs_access_entry, rb_node);
2880 rb_erase(n, root_node);
2881 list_move(&entry->lru, head);
2882 }
2883 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2884 }
2885
nfs_access_zap_cache(struct inode * inode)2886 void nfs_access_zap_cache(struct inode *inode)
2887 {
2888 LIST_HEAD(head);
2889
2890 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2891 return;
2892 /* Remove from global LRU init */
2893 spin_lock(&nfs_access_lru_lock);
2894 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2895 list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2896
2897 spin_lock(&inode->i_lock);
2898 __nfs_access_zap_cache(NFS_I(inode), &head);
2899 spin_unlock(&inode->i_lock);
2900 spin_unlock(&nfs_access_lru_lock);
2901 nfs_access_free_list(&head);
2902 }
2903 EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2904
access_cmp(const struct cred * a,const struct nfs_access_entry * b)2905 static int access_cmp(const struct cred *a, const struct nfs_access_entry *b)
2906 {
2907 struct group_info *ga, *gb;
2908 int g;
2909
2910 if (uid_lt(a->fsuid, b->fsuid))
2911 return -1;
2912 if (uid_gt(a->fsuid, b->fsuid))
2913 return 1;
2914
2915 if (gid_lt(a->fsgid, b->fsgid))
2916 return -1;
2917 if (gid_gt(a->fsgid, b->fsgid))
2918 return 1;
2919
2920 ga = a->group_info;
2921 gb = b->group_info;
2922 if (ga == gb)
2923 return 0;
2924 if (ga == NULL)
2925 return -1;
2926 if (gb == NULL)
2927 return 1;
2928 if (ga->ngroups < gb->ngroups)
2929 return -1;
2930 if (ga->ngroups > gb->ngroups)
2931 return 1;
2932
2933 for (g = 0; g < ga->ngroups; g++) {
2934 if (gid_lt(ga->gid[g], gb->gid[g]))
2935 return -1;
2936 if (gid_gt(ga->gid[g], gb->gid[g]))
2937 return 1;
2938 }
2939 return 0;
2940 }
2941
nfs_access_search_rbtree(struct inode * inode,const struct cred * cred)2942 static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2943 {
2944 struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2945
2946 while (n != NULL) {
2947 struct nfs_access_entry *entry =
2948 rb_entry(n, struct nfs_access_entry, rb_node);
2949 int cmp = access_cmp(cred, entry);
2950
2951 if (cmp < 0)
2952 n = n->rb_left;
2953 else if (cmp > 0)
2954 n = n->rb_right;
2955 else
2956 return entry;
2957 }
2958 return NULL;
2959 }
2960
nfs_access_login_time(const struct task_struct * task,const struct cred * cred)2961 static u64 nfs_access_login_time(const struct task_struct *task,
2962 const struct cred *cred)
2963 {
2964 const struct task_struct *parent;
2965 const struct cred *pcred;
2966 u64 ret;
2967
2968 rcu_read_lock();
2969 for (;;) {
2970 parent = rcu_dereference(task->real_parent);
2971 pcred = __task_cred(parent);
2972 if (parent == task || cred_fscmp(pcred, cred) != 0)
2973 break;
2974 task = parent;
2975 }
2976 ret = task->start_time;
2977 rcu_read_unlock();
2978 return ret;
2979 }
2980
nfs_access_get_cached_locked(struct inode * inode,const struct cred * cred,u32 * mask,bool may_block)2981 static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2982 {
2983 struct nfs_inode *nfsi = NFS_I(inode);
2984 u64 login_time = nfs_access_login_time(current, cred);
2985 struct nfs_access_entry *cache;
2986 bool retry = true;
2987 int err;
2988
2989 spin_lock(&inode->i_lock);
2990 for(;;) {
2991 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2992 goto out_zap;
2993 cache = nfs_access_search_rbtree(inode, cred);
2994 err = -ENOENT;
2995 if (cache == NULL)
2996 goto out;
2997 /* Found an entry, is our attribute cache valid? */
2998 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2999 break;
3000 if (!retry)
3001 break;
3002 err = -ECHILD;
3003 if (!may_block)
3004 goto out;
3005 spin_unlock(&inode->i_lock);
3006 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
3007 if (err)
3008 return err;
3009 spin_lock(&inode->i_lock);
3010 retry = false;
3011 }
3012 err = -ENOENT;
3013 if ((s64)(login_time - cache->timestamp) > 0)
3014 goto out;
3015 *mask = cache->mask;
3016 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
3017 err = 0;
3018 out:
3019 spin_unlock(&inode->i_lock);
3020 return err;
3021 out_zap:
3022 spin_unlock(&inode->i_lock);
3023 nfs_access_zap_cache(inode);
3024 return -ENOENT;
3025 }
3026
nfs_access_get_cached_rcu(struct inode * inode,const struct cred * cred,u32 * mask)3027 static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
3028 {
3029 /* Only check the most recently returned cache entry,
3030 * but do it without locking.
3031 */
3032 struct nfs_inode *nfsi = NFS_I(inode);
3033 u64 login_time = nfs_access_login_time(current, cred);
3034 struct nfs_access_entry *cache;
3035 int err = -ECHILD;
3036 struct list_head *lh;
3037
3038 rcu_read_lock();
3039 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
3040 goto out;
3041 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
3042 cache = list_entry(lh, struct nfs_access_entry, lru);
3043 if (lh == &nfsi->access_cache_entry_lru ||
3044 access_cmp(cred, cache) != 0)
3045 cache = NULL;
3046 if (cache == NULL)
3047 goto out;
3048 if ((s64)(login_time - cache->timestamp) > 0)
3049 goto out;
3050 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
3051 goto out;
3052 *mask = cache->mask;
3053 err = 0;
3054 out:
3055 rcu_read_unlock();
3056 return err;
3057 }
3058
nfs_access_get_cached(struct inode * inode,const struct cred * cred,u32 * mask,bool may_block)3059 int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
3060 u32 *mask, bool may_block)
3061 {
3062 int status;
3063
3064 status = nfs_access_get_cached_rcu(inode, cred, mask);
3065 if (status != 0)
3066 status = nfs_access_get_cached_locked(inode, cred, mask,
3067 may_block);
3068
3069 return status;
3070 }
3071 EXPORT_SYMBOL_GPL(nfs_access_get_cached);
3072
nfs_access_add_rbtree(struct inode * inode,struct nfs_access_entry * set,const struct cred * cred)3073 static void nfs_access_add_rbtree(struct inode *inode,
3074 struct nfs_access_entry *set,
3075 const struct cred *cred)
3076 {
3077 struct nfs_inode *nfsi = NFS_I(inode);
3078 struct rb_root *root_node = &nfsi->access_cache;
3079 struct rb_node **p = &root_node->rb_node;
3080 struct rb_node *parent = NULL;
3081 struct nfs_access_entry *entry;
3082 int cmp;
3083
3084 spin_lock(&inode->i_lock);
3085 while (*p != NULL) {
3086 parent = *p;
3087 entry = rb_entry(parent, struct nfs_access_entry, rb_node);
3088 cmp = access_cmp(cred, entry);
3089
3090 if (cmp < 0)
3091 p = &parent->rb_left;
3092 else if (cmp > 0)
3093 p = &parent->rb_right;
3094 else
3095 goto found;
3096 }
3097 rb_link_node(&set->rb_node, parent, p);
3098 rb_insert_color(&set->rb_node, root_node);
3099 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3100 spin_unlock(&inode->i_lock);
3101 return;
3102 found:
3103 rb_replace_node(parent, &set->rb_node, root_node);
3104 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
3105 list_del(&entry->lru);
3106 spin_unlock(&inode->i_lock);
3107 nfs_access_free_entry(entry);
3108 }
3109
nfs_access_add_cache(struct inode * inode,struct nfs_access_entry * set,const struct cred * cred)3110 void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set,
3111 const struct cred *cred)
3112 {
3113 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
3114 if (cache == NULL)
3115 return;
3116 RB_CLEAR_NODE(&cache->rb_node);
3117 cache->fsuid = cred->fsuid;
3118 cache->fsgid = cred->fsgid;
3119 cache->group_info = get_group_info(cred->group_info);
3120 cache->mask = set->mask;
3121 cache->timestamp = ktime_get_ns();
3122
3123 /* The above field assignments must be visible
3124 * before this item appears on the lru. We cannot easily
3125 * use rcu_assign_pointer, so just force the memory barrier.
3126 */
3127 smp_wmb();
3128 nfs_access_add_rbtree(inode, cache, cred);
3129
3130 /* Update accounting */
3131 smp_mb__before_atomic();
3132 atomic_long_inc(&nfs_access_nr_entries);
3133 smp_mb__after_atomic();
3134
3135 /* Add inode to global LRU list */
3136 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
3137 spin_lock(&nfs_access_lru_lock);
3138 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
3139 list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
3140 &nfs_access_lru_list);
3141 spin_unlock(&nfs_access_lru_lock);
3142 }
3143 nfs_access_cache_enforce_limit();
3144 }
3145 EXPORT_SYMBOL_GPL(nfs_access_add_cache);
3146
3147 #define NFS_MAY_READ (NFS_ACCESS_READ)
3148 #define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
3149 NFS_ACCESS_EXTEND | \
3150 NFS_ACCESS_DELETE)
3151 #define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
3152 NFS_ACCESS_EXTEND)
3153 #define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
3154 #define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
3155 #define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
3156 static int
nfs_access_calc_mask(u32 access_result,umode_t umode)3157 nfs_access_calc_mask(u32 access_result, umode_t umode)
3158 {
3159 int mask = 0;
3160
3161 if (access_result & NFS_MAY_READ)
3162 mask |= MAY_READ;
3163 if (S_ISDIR(umode)) {
3164 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
3165 mask |= MAY_WRITE;
3166 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
3167 mask |= MAY_EXEC;
3168 } else if (S_ISREG(umode)) {
3169 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
3170 mask |= MAY_WRITE;
3171 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
3172 mask |= MAY_EXEC;
3173 } else if (access_result & NFS_MAY_WRITE)
3174 mask |= MAY_WRITE;
3175 return mask;
3176 }
3177
nfs_access_set_mask(struct nfs_access_entry * entry,u32 access_result)3178 void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
3179 {
3180 entry->mask = access_result;
3181 }
3182 EXPORT_SYMBOL_GPL(nfs_access_set_mask);
3183
nfs_do_access(struct inode * inode,const struct cred * cred,int mask)3184 static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
3185 {
3186 struct nfs_access_entry cache;
3187 bool may_block = (mask & MAY_NOT_BLOCK) == 0;
3188 int cache_mask = -1;
3189 int status;
3190
3191 trace_nfs_access_enter(inode);
3192
3193 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
3194 if (status == 0)
3195 goto out_cached;
3196
3197 status = -ECHILD;
3198 if (!may_block)
3199 goto out;
3200
3201 /*
3202 * Determine which access bits we want to ask for...
3203 */
3204 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND |
3205 nfs_access_xattr_mask(NFS_SERVER(inode));
3206 if (S_ISDIR(inode->i_mode))
3207 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
3208 else
3209 cache.mask |= NFS_ACCESS_EXECUTE;
3210 status = NFS_PROTO(inode)->access(inode, &cache, cred);
3211 if (status != 0) {
3212 if (status == -ESTALE) {
3213 if (!S_ISDIR(inode->i_mode))
3214 nfs_set_inode_stale(inode);
3215 else
3216 nfs_zap_caches(inode);
3217 }
3218 goto out;
3219 }
3220 nfs_access_add_cache(inode, &cache, cred);
3221 out_cached:
3222 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
3223 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
3224 status = -EACCES;
3225 out:
3226 trace_nfs_access_exit(inode, mask, cache_mask, status);
3227 return status;
3228 }
3229
nfs_open_permission_mask(int openflags)3230 static int nfs_open_permission_mask(int openflags)
3231 {
3232 int mask = 0;
3233
3234 if (openflags & __FMODE_EXEC) {
3235 /* ONLY check exec rights */
3236 mask = MAY_EXEC;
3237 } else {
3238 if ((openflags & O_ACCMODE) != O_WRONLY)
3239 mask |= MAY_READ;
3240 if ((openflags & O_ACCMODE) != O_RDONLY)
3241 mask |= MAY_WRITE;
3242 }
3243
3244 return mask;
3245 }
3246
nfs_may_open(struct inode * inode,const struct cred * cred,int openflags)3247 int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
3248 {
3249 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
3250 }
3251 EXPORT_SYMBOL_GPL(nfs_may_open);
3252
nfs_execute_ok(struct inode * inode,int mask)3253 static int nfs_execute_ok(struct inode *inode, int mask)
3254 {
3255 struct nfs_server *server = NFS_SERVER(inode);
3256 int ret = 0;
3257
3258 if (S_ISDIR(inode->i_mode))
3259 return 0;
3260 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_MODE)) {
3261 if (mask & MAY_NOT_BLOCK)
3262 return -ECHILD;
3263 ret = __nfs_revalidate_inode(server, inode);
3264 }
3265 if (ret == 0 && !execute_ok(inode))
3266 ret = -EACCES;
3267 return ret;
3268 }
3269
nfs_permission(struct mnt_idmap * idmap,struct inode * inode,int mask)3270 int nfs_permission(struct mnt_idmap *idmap,
3271 struct inode *inode,
3272 int mask)
3273 {
3274 const struct cred *cred = current_cred();
3275 int res = 0;
3276
3277 nfs_inc_stats(inode, NFSIOS_VFSACCESS);
3278
3279 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
3280 goto out;
3281 /* Is this sys_access() ? */
3282 if (mask & (MAY_ACCESS | MAY_CHDIR))
3283 goto force_lookup;
3284
3285 switch (inode->i_mode & S_IFMT) {
3286 case S_IFLNK:
3287 goto out;
3288 case S_IFREG:
3289 if ((mask & MAY_OPEN) &&
3290 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
3291 return 0;
3292 break;
3293 case S_IFDIR:
3294 /*
3295 * Optimize away all write operations, since the server
3296 * will check permissions when we perform the op.
3297 */
3298 if ((mask & MAY_WRITE) && !(mask & MAY_READ))
3299 goto out;
3300 }
3301
3302 force_lookup:
3303 if (!NFS_PROTO(inode)->access)
3304 goto out_notsup;
3305
3306 res = nfs_do_access(inode, cred, mask);
3307 out:
3308 if (!res && (mask & MAY_EXEC))
3309 res = nfs_execute_ok(inode, mask);
3310
3311 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
3312 inode->i_sb->s_id, inode->i_ino, mask, res);
3313 return res;
3314 out_notsup:
3315 if (mask & MAY_NOT_BLOCK)
3316 return -ECHILD;
3317
3318 res = nfs_revalidate_inode(inode, NFS_INO_INVALID_MODE |
3319 NFS_INO_INVALID_OTHER);
3320 if (res == 0)
3321 res = generic_permission(&nop_mnt_idmap, inode, mask);
3322 goto out;
3323 }
3324 EXPORT_SYMBOL_GPL(nfs_permission);
3325