1 // SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause)
2 /* Copyright (C) 2017-2018 Netronome Systems, Inc. */
3
4 #include <linux/skbuff.h>
5 #include <net/devlink.h>
6 #include <net/pkt_cls.h>
7
8 #include "cmsg.h"
9 #include "main.h"
10 #include "conntrack.h"
11 #include "../nfpcore/nfp_cpp.h"
12 #include "../nfpcore/nfp_nsp.h"
13 #include "../nfp_app.h"
14 #include "../nfp_main.h"
15 #include "../nfp_net.h"
16 #include "../nfp_port.h"
17
18 #define NFP_FLOWER_SUPPORTED_TCPFLAGS \
19 (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST | \
20 TCPHDR_PSH | TCPHDR_URG)
21
22 #define NFP_FLOWER_SUPPORTED_CTLFLAGS \
23 (FLOW_DIS_IS_FRAGMENT | \
24 FLOW_DIS_FIRST_FRAG)
25
26 #define NFP_FLOWER_WHITELIST_DISSECTOR \
27 (BIT(FLOW_DISSECTOR_KEY_CONTROL) | \
28 BIT(FLOW_DISSECTOR_KEY_BASIC) | \
29 BIT(FLOW_DISSECTOR_KEY_IPV4_ADDRS) | \
30 BIT(FLOW_DISSECTOR_KEY_IPV6_ADDRS) | \
31 BIT(FLOW_DISSECTOR_KEY_TCP) | \
32 BIT(FLOW_DISSECTOR_KEY_PORTS) | \
33 BIT(FLOW_DISSECTOR_KEY_ETH_ADDRS) | \
34 BIT(FLOW_DISSECTOR_KEY_VLAN) | \
35 BIT(FLOW_DISSECTOR_KEY_CVLAN) | \
36 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID) | \
37 BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \
38 BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) | \
39 BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
40 BIT(FLOW_DISSECTOR_KEY_ENC_PORTS) | \
41 BIT(FLOW_DISSECTOR_KEY_ENC_OPTS) | \
42 BIT(FLOW_DISSECTOR_KEY_ENC_IP) | \
43 BIT(FLOW_DISSECTOR_KEY_MPLS) | \
44 BIT(FLOW_DISSECTOR_KEY_CT) | \
45 BIT(FLOW_DISSECTOR_KEY_META) | \
46 BIT(FLOW_DISSECTOR_KEY_IP))
47
48 #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR \
49 (BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
50 BIT(FLOW_DISSECTOR_KEY_ENC_KEYID) | \
51 BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS) | \
52 BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS) | \
53 BIT(FLOW_DISSECTOR_KEY_ENC_OPTS) | \
54 BIT(FLOW_DISSECTOR_KEY_ENC_PORTS) | \
55 BIT(FLOW_DISSECTOR_KEY_ENC_IP))
56
57 #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R \
58 (BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
59 BIT(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS))
60
61 #define NFP_FLOWER_WHITELIST_TUN_DISSECTOR_V6_R \
62 (BIT(FLOW_DISSECTOR_KEY_ENC_CONTROL) | \
63 BIT(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS))
64
65 #define NFP_FLOWER_MERGE_FIELDS \
66 (NFP_FLOWER_LAYER_PORT | \
67 NFP_FLOWER_LAYER_MAC | \
68 NFP_FLOWER_LAYER_TP | \
69 NFP_FLOWER_LAYER_IPV4 | \
70 NFP_FLOWER_LAYER_IPV6)
71
72 #define NFP_FLOWER_PRE_TUN_RULE_FIELDS \
73 (NFP_FLOWER_LAYER_EXT_META | \
74 NFP_FLOWER_LAYER_PORT | \
75 NFP_FLOWER_LAYER_MAC | \
76 NFP_FLOWER_LAYER_IPV4 | \
77 NFP_FLOWER_LAYER_IPV6)
78
79 struct nfp_flower_merge_check {
80 union {
81 struct {
82 __be16 tci;
83 struct nfp_flower_mac_mpls l2;
84 struct nfp_flower_tp_ports l4;
85 union {
86 struct nfp_flower_ipv4 ipv4;
87 struct nfp_flower_ipv6 ipv6;
88 };
89 };
90 unsigned long vals[8];
91 };
92 };
93
94 int
nfp_flower_xmit_flow(struct nfp_app * app,struct nfp_fl_payload * nfp_flow,u8 mtype)95 nfp_flower_xmit_flow(struct nfp_app *app, struct nfp_fl_payload *nfp_flow,
96 u8 mtype)
97 {
98 u32 meta_len, key_len, mask_len, act_len, tot_len;
99 struct sk_buff *skb;
100 unsigned char *msg;
101
102 meta_len = sizeof(struct nfp_fl_rule_metadata);
103 key_len = nfp_flow->meta.key_len;
104 mask_len = nfp_flow->meta.mask_len;
105 act_len = nfp_flow->meta.act_len;
106
107 tot_len = meta_len + key_len + mask_len + act_len;
108
109 /* Convert to long words as firmware expects
110 * lengths in units of NFP_FL_LW_SIZ.
111 */
112 nfp_flow->meta.key_len >>= NFP_FL_LW_SIZ;
113 nfp_flow->meta.mask_len >>= NFP_FL_LW_SIZ;
114 nfp_flow->meta.act_len >>= NFP_FL_LW_SIZ;
115
116 skb = nfp_flower_cmsg_alloc(app, tot_len, mtype, GFP_KERNEL);
117 if (!skb)
118 return -ENOMEM;
119
120 msg = nfp_flower_cmsg_get_data(skb);
121 memcpy(msg, &nfp_flow->meta, meta_len);
122 memcpy(&msg[meta_len], nfp_flow->unmasked_data, key_len);
123 memcpy(&msg[meta_len + key_len], nfp_flow->mask_data, mask_len);
124 memcpy(&msg[meta_len + key_len + mask_len],
125 nfp_flow->action_data, act_len);
126
127 /* Convert back to bytes as software expects
128 * lengths in units of bytes.
129 */
130 nfp_flow->meta.key_len <<= NFP_FL_LW_SIZ;
131 nfp_flow->meta.mask_len <<= NFP_FL_LW_SIZ;
132 nfp_flow->meta.act_len <<= NFP_FL_LW_SIZ;
133
134 nfp_ctrl_tx(app->ctrl, skb);
135
136 return 0;
137 }
138
nfp_flower_check_higher_than_mac(struct flow_rule * rule)139 static bool nfp_flower_check_higher_than_mac(struct flow_rule *rule)
140 {
141 return flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV4_ADDRS) ||
142 flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_IPV6_ADDRS) ||
143 flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS) ||
144 flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ICMP);
145 }
146
nfp_flower_check_higher_than_l3(struct flow_rule * rule)147 static bool nfp_flower_check_higher_than_l3(struct flow_rule *rule)
148 {
149 return flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_PORTS) ||
150 flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ICMP);
151 }
152
153 static int
nfp_flower_calc_opt_layer(struct flow_dissector_key_enc_opts * enc_opts,u32 * key_layer_two,int * key_size,bool ipv6,struct netlink_ext_ack * extack)154 nfp_flower_calc_opt_layer(struct flow_dissector_key_enc_opts *enc_opts,
155 u32 *key_layer_two, int *key_size, bool ipv6,
156 struct netlink_ext_ack *extack)
157 {
158 if (enc_opts->len > NFP_FL_MAX_GENEVE_OPT_KEY ||
159 (ipv6 && enc_opts->len > NFP_FL_MAX_GENEVE_OPT_KEY_V6)) {
160 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: geneve options exceed maximum length");
161 return -EOPNOTSUPP;
162 }
163
164 if (enc_opts->len > 0) {
165 *key_layer_two |= NFP_FLOWER_LAYER2_GENEVE_OP;
166 *key_size += sizeof(struct nfp_flower_geneve_options);
167 }
168
169 return 0;
170 }
171
172 static int
nfp_flower_calc_udp_tun_layer(struct flow_dissector_key_ports * enc_ports,struct flow_dissector_key_enc_opts * enc_op,u32 * key_layer_two,u8 * key_layer,int * key_size,struct nfp_flower_priv * priv,enum nfp_flower_tun_type * tun_type,bool ipv6,struct netlink_ext_ack * extack)173 nfp_flower_calc_udp_tun_layer(struct flow_dissector_key_ports *enc_ports,
174 struct flow_dissector_key_enc_opts *enc_op,
175 u32 *key_layer_two, u8 *key_layer, int *key_size,
176 struct nfp_flower_priv *priv,
177 enum nfp_flower_tun_type *tun_type, bool ipv6,
178 struct netlink_ext_ack *extack)
179 {
180 int err;
181
182 switch (enc_ports->dst) {
183 case htons(IANA_VXLAN_UDP_PORT):
184 *tun_type = NFP_FL_TUNNEL_VXLAN;
185 *key_layer |= NFP_FLOWER_LAYER_VXLAN;
186
187 if (ipv6) {
188 *key_layer |= NFP_FLOWER_LAYER_EXT_META;
189 *key_size += sizeof(struct nfp_flower_ext_meta);
190 *key_layer_two |= NFP_FLOWER_LAYER2_TUN_IPV6;
191 *key_size += sizeof(struct nfp_flower_ipv6_udp_tun);
192 } else {
193 *key_size += sizeof(struct nfp_flower_ipv4_udp_tun);
194 }
195
196 if (enc_op) {
197 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: encap options not supported on vxlan tunnels");
198 return -EOPNOTSUPP;
199 }
200 break;
201 case htons(GENEVE_UDP_PORT):
202 if (!(priv->flower_ext_feats & NFP_FL_FEATS_GENEVE)) {
203 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support geneve offload");
204 return -EOPNOTSUPP;
205 }
206 *tun_type = NFP_FL_TUNNEL_GENEVE;
207 *key_layer |= NFP_FLOWER_LAYER_EXT_META;
208 *key_size += sizeof(struct nfp_flower_ext_meta);
209 *key_layer_two |= NFP_FLOWER_LAYER2_GENEVE;
210
211 if (ipv6) {
212 *key_layer_two |= NFP_FLOWER_LAYER2_TUN_IPV6;
213 *key_size += sizeof(struct nfp_flower_ipv6_udp_tun);
214 } else {
215 *key_size += sizeof(struct nfp_flower_ipv4_udp_tun);
216 }
217
218 if (!enc_op)
219 break;
220 if (!(priv->flower_ext_feats & NFP_FL_FEATS_GENEVE_OPT)) {
221 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support geneve option offload");
222 return -EOPNOTSUPP;
223 }
224 err = nfp_flower_calc_opt_layer(enc_op, key_layer_two, key_size,
225 ipv6, extack);
226 if (err)
227 return err;
228 break;
229 default:
230 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel type unknown");
231 return -EOPNOTSUPP;
232 }
233
234 return 0;
235 }
236
237 int
nfp_flower_calculate_key_layers(struct nfp_app * app,struct net_device * netdev,struct nfp_fl_key_ls * ret_key_ls,struct flow_rule * rule,enum nfp_flower_tun_type * tun_type,struct netlink_ext_ack * extack)238 nfp_flower_calculate_key_layers(struct nfp_app *app,
239 struct net_device *netdev,
240 struct nfp_fl_key_ls *ret_key_ls,
241 struct flow_rule *rule,
242 enum nfp_flower_tun_type *tun_type,
243 struct netlink_ext_ack *extack)
244 {
245 struct flow_dissector *dissector = rule->match.dissector;
246 struct flow_match_basic basic = { NULL, NULL};
247 struct nfp_flower_priv *priv = app->priv;
248 u32 key_layer_two;
249 u8 key_layer;
250 int key_size;
251 int err;
252
253 if (dissector->used_keys & ~NFP_FLOWER_WHITELIST_DISSECTOR) {
254 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match not supported");
255 return -EOPNOTSUPP;
256 }
257
258 /* If any tun dissector is used then the required set must be used. */
259 if (dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR &&
260 (dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR_V6_R)
261 != NFP_FLOWER_WHITELIST_TUN_DISSECTOR_V6_R &&
262 (dissector->used_keys & NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R)
263 != NFP_FLOWER_WHITELIST_TUN_DISSECTOR_R) {
264 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel match not supported");
265 return -EOPNOTSUPP;
266 }
267
268 key_layer_two = 0;
269 key_layer = NFP_FLOWER_LAYER_PORT;
270 key_size = sizeof(struct nfp_flower_meta_tci) +
271 sizeof(struct nfp_flower_in_port);
272
273 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ETH_ADDRS) ||
274 flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_MPLS)) {
275 key_layer |= NFP_FLOWER_LAYER_MAC;
276 key_size += sizeof(struct nfp_flower_mac_mpls);
277 }
278
279 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN)) {
280 struct flow_match_vlan vlan;
281
282 flow_rule_match_vlan(rule, &vlan);
283 if (!(priv->flower_ext_feats & NFP_FL_FEATS_VLAN_PCP) &&
284 vlan.key->vlan_priority) {
285 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support VLAN PCP offload");
286 return -EOPNOTSUPP;
287 }
288 if (priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ &&
289 !(key_layer_two & NFP_FLOWER_LAYER2_QINQ)) {
290 key_layer |= NFP_FLOWER_LAYER_EXT_META;
291 key_size += sizeof(struct nfp_flower_ext_meta);
292 key_size += sizeof(struct nfp_flower_vlan);
293 key_layer_two |= NFP_FLOWER_LAYER2_QINQ;
294 }
295 }
296
297 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CVLAN)) {
298 struct flow_match_vlan cvlan;
299
300 if (!(priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ)) {
301 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: loaded firmware does not support VLAN QinQ offload");
302 return -EOPNOTSUPP;
303 }
304
305 flow_rule_match_vlan(rule, &cvlan);
306 if (!(key_layer_two & NFP_FLOWER_LAYER2_QINQ)) {
307 key_layer |= NFP_FLOWER_LAYER_EXT_META;
308 key_size += sizeof(struct nfp_flower_ext_meta);
309 key_size += sizeof(struct nfp_flower_vlan);
310 key_layer_two |= NFP_FLOWER_LAYER2_QINQ;
311 }
312 }
313
314 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_CONTROL)) {
315 struct flow_match_enc_opts enc_op = { NULL, NULL };
316 struct flow_match_ipv4_addrs ipv4_addrs;
317 struct flow_match_ipv6_addrs ipv6_addrs;
318 struct flow_match_control enc_ctl;
319 struct flow_match_ports enc_ports;
320 bool ipv6_tun = false;
321
322 flow_rule_match_enc_control(rule, &enc_ctl);
323
324 if (enc_ctl.mask->addr_type != 0xffff) {
325 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: wildcarded protocols on tunnels are not supported");
326 return -EOPNOTSUPP;
327 }
328
329 ipv6_tun = enc_ctl.key->addr_type ==
330 FLOW_DISSECTOR_KEY_IPV6_ADDRS;
331 if (ipv6_tun &&
332 !(priv->flower_ext_feats & NFP_FL_FEATS_IPV6_TUN)) {
333 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: firmware does not support IPv6 tunnels");
334 return -EOPNOTSUPP;
335 }
336
337 if (!ipv6_tun &&
338 enc_ctl.key->addr_type != FLOW_DISSECTOR_KEY_IPV4_ADDRS) {
339 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: tunnel address type not IPv4 or IPv6");
340 return -EOPNOTSUPP;
341 }
342
343 if (ipv6_tun) {
344 flow_rule_match_enc_ipv6_addrs(rule, &ipv6_addrs);
345 if (memchr_inv(&ipv6_addrs.mask->dst, 0xff,
346 sizeof(ipv6_addrs.mask->dst))) {
347 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match IPv6 destination address is supported");
348 return -EOPNOTSUPP;
349 }
350 } else {
351 flow_rule_match_enc_ipv4_addrs(rule, &ipv4_addrs);
352 if (ipv4_addrs.mask->dst != cpu_to_be32(~0)) {
353 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match IPv4 destination address is supported");
354 return -EOPNOTSUPP;
355 }
356 }
357
358 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_OPTS))
359 flow_rule_match_enc_opts(rule, &enc_op);
360
361 if (!flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_ENC_PORTS)) {
362 /* check if GRE, which has no enc_ports */
363 if (!netif_is_gretap(netdev) && !netif_is_ip6gretap(netdev)) {
364 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: an exact match on L4 destination port is required for non-GRE tunnels");
365 return -EOPNOTSUPP;
366 }
367
368 *tun_type = NFP_FL_TUNNEL_GRE;
369 key_layer |= NFP_FLOWER_LAYER_EXT_META;
370 key_size += sizeof(struct nfp_flower_ext_meta);
371 key_layer_two |= NFP_FLOWER_LAYER2_GRE;
372
373 if (ipv6_tun) {
374 key_layer_two |= NFP_FLOWER_LAYER2_TUN_IPV6;
375 key_size +=
376 sizeof(struct nfp_flower_ipv6_udp_tun);
377 } else {
378 key_size +=
379 sizeof(struct nfp_flower_ipv4_udp_tun);
380 }
381
382 if (enc_op.key) {
383 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: encap options not supported on GRE tunnels");
384 return -EOPNOTSUPP;
385 }
386 } else {
387 flow_rule_match_enc_ports(rule, &enc_ports);
388 if (enc_ports.mask->dst != cpu_to_be16(~0)) {
389 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: only an exact match L4 destination port is supported");
390 return -EOPNOTSUPP;
391 }
392
393 err = nfp_flower_calc_udp_tun_layer(enc_ports.key,
394 enc_op.key,
395 &key_layer_two,
396 &key_layer,
397 &key_size, priv,
398 tun_type, ipv6_tun,
399 extack);
400 if (err)
401 return err;
402
403 /* Ensure the ingress netdev matches the expected
404 * tun type.
405 */
406 if (!nfp_fl_netdev_is_tunnel_type(netdev, *tun_type)) {
407 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: ingress netdev does not match the expected tunnel type");
408 return -EOPNOTSUPP;
409 }
410 }
411 }
412
413 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_BASIC))
414 flow_rule_match_basic(rule, &basic);
415
416 if (basic.mask && basic.mask->n_proto) {
417 /* Ethernet type is present in the key. */
418 switch (basic.key->n_proto) {
419 case cpu_to_be16(ETH_P_IP):
420 key_layer |= NFP_FLOWER_LAYER_IPV4;
421 key_size += sizeof(struct nfp_flower_ipv4);
422 break;
423
424 case cpu_to_be16(ETH_P_IPV6):
425 key_layer |= NFP_FLOWER_LAYER_IPV6;
426 key_size += sizeof(struct nfp_flower_ipv6);
427 break;
428
429 /* Currently we do not offload ARP
430 * because we rely on it to get to the host.
431 */
432 case cpu_to_be16(ETH_P_ARP):
433 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: ARP not supported");
434 return -EOPNOTSUPP;
435
436 case cpu_to_be16(ETH_P_MPLS_UC):
437 case cpu_to_be16(ETH_P_MPLS_MC):
438 if (!(key_layer & NFP_FLOWER_LAYER_MAC)) {
439 key_layer |= NFP_FLOWER_LAYER_MAC;
440 key_size += sizeof(struct nfp_flower_mac_mpls);
441 }
442 break;
443
444 /* Will be included in layer 2. */
445 case cpu_to_be16(ETH_P_8021Q):
446 break;
447
448 default:
449 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on given EtherType is not supported");
450 return -EOPNOTSUPP;
451 }
452 } else if (nfp_flower_check_higher_than_mac(rule)) {
453 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: cannot match above L2 without specified EtherType");
454 return -EOPNOTSUPP;
455 }
456
457 if (basic.mask && basic.mask->ip_proto) {
458 switch (basic.key->ip_proto) {
459 case IPPROTO_TCP:
460 case IPPROTO_UDP:
461 case IPPROTO_SCTP:
462 case IPPROTO_ICMP:
463 case IPPROTO_ICMPV6:
464 key_layer |= NFP_FLOWER_LAYER_TP;
465 key_size += sizeof(struct nfp_flower_tp_ports);
466 break;
467 }
468 }
469
470 if (!(key_layer & NFP_FLOWER_LAYER_TP) &&
471 nfp_flower_check_higher_than_l3(rule)) {
472 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: cannot match on L4 information without specified IP protocol type");
473 return -EOPNOTSUPP;
474 }
475
476 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_TCP)) {
477 struct flow_match_tcp tcp;
478 u32 tcp_flags;
479
480 flow_rule_match_tcp(rule, &tcp);
481 tcp_flags = be16_to_cpu(tcp.key->flags);
482
483 if (tcp_flags & ~NFP_FLOWER_SUPPORTED_TCPFLAGS) {
484 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: no match support for selected TCP flags");
485 return -EOPNOTSUPP;
486 }
487
488 /* We only support PSH and URG flags when either
489 * FIN, SYN or RST is present as well.
490 */
491 if ((tcp_flags & (TCPHDR_PSH | TCPHDR_URG)) &&
492 !(tcp_flags & (TCPHDR_FIN | TCPHDR_SYN | TCPHDR_RST))) {
493 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: PSH and URG is only supported when used with FIN, SYN or RST");
494 return -EOPNOTSUPP;
495 }
496
497 /* We need to store TCP flags in the either the IPv4 or IPv6 key
498 * space, thus we need to ensure we include a IPv4/IPv6 key
499 * layer if we have not done so already.
500 */
501 if (!basic.key) {
502 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on TCP flags requires a match on L3 protocol");
503 return -EOPNOTSUPP;
504 }
505
506 if (!(key_layer & NFP_FLOWER_LAYER_IPV4) &&
507 !(key_layer & NFP_FLOWER_LAYER_IPV6)) {
508 switch (basic.key->n_proto) {
509 case cpu_to_be16(ETH_P_IP):
510 key_layer |= NFP_FLOWER_LAYER_IPV4;
511 key_size += sizeof(struct nfp_flower_ipv4);
512 break;
513
514 case cpu_to_be16(ETH_P_IPV6):
515 key_layer |= NFP_FLOWER_LAYER_IPV6;
516 key_size += sizeof(struct nfp_flower_ipv6);
517 break;
518
519 default:
520 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on TCP flags requires a match on IPv4/IPv6");
521 return -EOPNOTSUPP;
522 }
523 }
524 }
525
526 if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CONTROL)) {
527 struct flow_match_control ctl;
528
529 flow_rule_match_control(rule, &ctl);
530 if (ctl.key->flags & ~NFP_FLOWER_SUPPORTED_CTLFLAGS) {
531 NL_SET_ERR_MSG_MOD(extack, "unsupported offload: match on unknown control flag");
532 return -EOPNOTSUPP;
533 }
534 }
535
536 ret_key_ls->key_layer = key_layer;
537 ret_key_ls->key_layer_two = key_layer_two;
538 ret_key_ls->key_size = key_size;
539
540 return 0;
541 }
542
543 struct nfp_fl_payload *
nfp_flower_allocate_new(struct nfp_fl_key_ls * key_layer)544 nfp_flower_allocate_new(struct nfp_fl_key_ls *key_layer)
545 {
546 struct nfp_fl_payload *flow_pay;
547
548 flow_pay = kmalloc(sizeof(*flow_pay), GFP_KERNEL);
549 if (!flow_pay)
550 return NULL;
551
552 flow_pay->meta.key_len = key_layer->key_size;
553 flow_pay->unmasked_data = kmalloc(key_layer->key_size, GFP_KERNEL);
554 if (!flow_pay->unmasked_data)
555 goto err_free_flow;
556
557 flow_pay->meta.mask_len = key_layer->key_size;
558 flow_pay->mask_data = kmalloc(key_layer->key_size, GFP_KERNEL);
559 if (!flow_pay->mask_data)
560 goto err_free_unmasked;
561
562 flow_pay->action_data = kmalloc(NFP_FL_MAX_A_SIZ, GFP_KERNEL);
563 if (!flow_pay->action_data)
564 goto err_free_mask;
565
566 flow_pay->nfp_tun_ipv4_addr = 0;
567 flow_pay->nfp_tun_ipv6 = NULL;
568 flow_pay->meta.flags = 0;
569 INIT_LIST_HEAD(&flow_pay->linked_flows);
570 flow_pay->in_hw = false;
571 flow_pay->pre_tun_rule.dev = NULL;
572
573 return flow_pay;
574
575 err_free_mask:
576 kfree(flow_pay->mask_data);
577 err_free_unmasked:
578 kfree(flow_pay->unmasked_data);
579 err_free_flow:
580 kfree(flow_pay);
581 return NULL;
582 }
583
584 static int
nfp_flower_update_merge_with_actions(struct nfp_fl_payload * flow,struct nfp_flower_merge_check * merge,u8 * last_act_id,int * act_out)585 nfp_flower_update_merge_with_actions(struct nfp_fl_payload *flow,
586 struct nfp_flower_merge_check *merge,
587 u8 *last_act_id, int *act_out)
588 {
589 struct nfp_fl_set_ipv6_tc_hl_fl *ipv6_tc_hl_fl;
590 struct nfp_fl_set_ip4_ttl_tos *ipv4_ttl_tos;
591 struct nfp_fl_set_ip4_addrs *ipv4_add;
592 struct nfp_fl_set_ipv6_addr *ipv6_add;
593 struct nfp_fl_push_vlan *push_vlan;
594 struct nfp_fl_pre_tunnel *pre_tun;
595 struct nfp_fl_set_tport *tport;
596 struct nfp_fl_set_eth *eth;
597 struct nfp_fl_act_head *a;
598 unsigned int act_off = 0;
599 bool ipv6_tun = false;
600 u8 act_id = 0;
601 u8 *ports;
602 int i;
603
604 while (act_off < flow->meta.act_len) {
605 a = (struct nfp_fl_act_head *)&flow->action_data[act_off];
606 act_id = a->jump_id;
607
608 switch (act_id) {
609 case NFP_FL_ACTION_OPCODE_OUTPUT:
610 if (act_out)
611 (*act_out)++;
612 break;
613 case NFP_FL_ACTION_OPCODE_PUSH_VLAN:
614 push_vlan = (struct nfp_fl_push_vlan *)a;
615 if (push_vlan->vlan_tci)
616 merge->tci = cpu_to_be16(0xffff);
617 break;
618 case NFP_FL_ACTION_OPCODE_POP_VLAN:
619 merge->tci = cpu_to_be16(0);
620 break;
621 case NFP_FL_ACTION_OPCODE_SET_TUNNEL:
622 /* New tunnel header means l2 to l4 can be matched. */
623 eth_broadcast_addr(&merge->l2.mac_dst[0]);
624 eth_broadcast_addr(&merge->l2.mac_src[0]);
625 memset(&merge->l4, 0xff,
626 sizeof(struct nfp_flower_tp_ports));
627 if (ipv6_tun)
628 memset(&merge->ipv6, 0xff,
629 sizeof(struct nfp_flower_ipv6));
630 else
631 memset(&merge->ipv4, 0xff,
632 sizeof(struct nfp_flower_ipv4));
633 break;
634 case NFP_FL_ACTION_OPCODE_SET_ETHERNET:
635 eth = (struct nfp_fl_set_eth *)a;
636 for (i = 0; i < ETH_ALEN; i++)
637 merge->l2.mac_dst[i] |= eth->eth_addr_mask[i];
638 for (i = 0; i < ETH_ALEN; i++)
639 merge->l2.mac_src[i] |=
640 eth->eth_addr_mask[ETH_ALEN + i];
641 break;
642 case NFP_FL_ACTION_OPCODE_SET_IPV4_ADDRS:
643 ipv4_add = (struct nfp_fl_set_ip4_addrs *)a;
644 merge->ipv4.ipv4_src |= ipv4_add->ipv4_src_mask;
645 merge->ipv4.ipv4_dst |= ipv4_add->ipv4_dst_mask;
646 break;
647 case NFP_FL_ACTION_OPCODE_SET_IPV4_TTL_TOS:
648 ipv4_ttl_tos = (struct nfp_fl_set_ip4_ttl_tos *)a;
649 merge->ipv4.ip_ext.ttl |= ipv4_ttl_tos->ipv4_ttl_mask;
650 merge->ipv4.ip_ext.tos |= ipv4_ttl_tos->ipv4_tos_mask;
651 break;
652 case NFP_FL_ACTION_OPCODE_SET_IPV6_SRC:
653 ipv6_add = (struct nfp_fl_set_ipv6_addr *)a;
654 for (i = 0; i < 4; i++)
655 merge->ipv6.ipv6_src.in6_u.u6_addr32[i] |=
656 ipv6_add->ipv6[i].mask;
657 break;
658 case NFP_FL_ACTION_OPCODE_SET_IPV6_DST:
659 ipv6_add = (struct nfp_fl_set_ipv6_addr *)a;
660 for (i = 0; i < 4; i++)
661 merge->ipv6.ipv6_dst.in6_u.u6_addr32[i] |=
662 ipv6_add->ipv6[i].mask;
663 break;
664 case NFP_FL_ACTION_OPCODE_SET_IPV6_TC_HL_FL:
665 ipv6_tc_hl_fl = (struct nfp_fl_set_ipv6_tc_hl_fl *)a;
666 merge->ipv6.ip_ext.ttl |=
667 ipv6_tc_hl_fl->ipv6_hop_limit_mask;
668 merge->ipv6.ip_ext.tos |= ipv6_tc_hl_fl->ipv6_tc_mask;
669 merge->ipv6.ipv6_flow_label_exthdr |=
670 ipv6_tc_hl_fl->ipv6_label_mask;
671 break;
672 case NFP_FL_ACTION_OPCODE_SET_UDP:
673 case NFP_FL_ACTION_OPCODE_SET_TCP:
674 tport = (struct nfp_fl_set_tport *)a;
675 ports = (u8 *)&merge->l4.port_src;
676 for (i = 0; i < 4; i++)
677 ports[i] |= tport->tp_port_mask[i];
678 break;
679 case NFP_FL_ACTION_OPCODE_PRE_TUNNEL:
680 pre_tun = (struct nfp_fl_pre_tunnel *)a;
681 ipv6_tun = be16_to_cpu(pre_tun->flags) &
682 NFP_FL_PRE_TUN_IPV6;
683 break;
684 case NFP_FL_ACTION_OPCODE_PRE_LAG:
685 case NFP_FL_ACTION_OPCODE_PUSH_GENEVE:
686 break;
687 default:
688 return -EOPNOTSUPP;
689 }
690
691 act_off += a->len_lw << NFP_FL_LW_SIZ;
692 }
693
694 if (last_act_id)
695 *last_act_id = act_id;
696
697 return 0;
698 }
699
700 static int
nfp_flower_populate_merge_match(struct nfp_fl_payload * flow,struct nfp_flower_merge_check * merge,bool extra_fields)701 nfp_flower_populate_merge_match(struct nfp_fl_payload *flow,
702 struct nfp_flower_merge_check *merge,
703 bool extra_fields)
704 {
705 struct nfp_flower_meta_tci *meta_tci;
706 u8 *mask = flow->mask_data;
707 u8 key_layer, match_size;
708
709 memset(merge, 0, sizeof(struct nfp_flower_merge_check));
710
711 meta_tci = (struct nfp_flower_meta_tci *)mask;
712 key_layer = meta_tci->nfp_flow_key_layer;
713
714 if (key_layer & ~NFP_FLOWER_MERGE_FIELDS && !extra_fields)
715 return -EOPNOTSUPP;
716
717 merge->tci = meta_tci->tci;
718 mask += sizeof(struct nfp_flower_meta_tci);
719
720 if (key_layer & NFP_FLOWER_LAYER_EXT_META)
721 mask += sizeof(struct nfp_flower_ext_meta);
722
723 mask += sizeof(struct nfp_flower_in_port);
724
725 if (key_layer & NFP_FLOWER_LAYER_MAC) {
726 match_size = sizeof(struct nfp_flower_mac_mpls);
727 memcpy(&merge->l2, mask, match_size);
728 mask += match_size;
729 }
730
731 if (key_layer & NFP_FLOWER_LAYER_TP) {
732 match_size = sizeof(struct nfp_flower_tp_ports);
733 memcpy(&merge->l4, mask, match_size);
734 mask += match_size;
735 }
736
737 if (key_layer & NFP_FLOWER_LAYER_IPV4) {
738 match_size = sizeof(struct nfp_flower_ipv4);
739 memcpy(&merge->ipv4, mask, match_size);
740 }
741
742 if (key_layer & NFP_FLOWER_LAYER_IPV6) {
743 match_size = sizeof(struct nfp_flower_ipv6);
744 memcpy(&merge->ipv6, mask, match_size);
745 }
746
747 return 0;
748 }
749
750 static int
nfp_flower_can_merge(struct nfp_fl_payload * sub_flow1,struct nfp_fl_payload * sub_flow2)751 nfp_flower_can_merge(struct nfp_fl_payload *sub_flow1,
752 struct nfp_fl_payload *sub_flow2)
753 {
754 /* Two flows can be merged if sub_flow2 only matches on bits that are
755 * either matched by sub_flow1 or set by a sub_flow1 action. This
756 * ensures that every packet that hits sub_flow1 and recirculates is
757 * guaranteed to hit sub_flow2.
758 */
759 struct nfp_flower_merge_check sub_flow1_merge, sub_flow2_merge;
760 int err, act_out = 0;
761 u8 last_act_id = 0;
762
763 err = nfp_flower_populate_merge_match(sub_flow1, &sub_flow1_merge,
764 true);
765 if (err)
766 return err;
767
768 err = nfp_flower_populate_merge_match(sub_flow2, &sub_flow2_merge,
769 false);
770 if (err)
771 return err;
772
773 err = nfp_flower_update_merge_with_actions(sub_flow1, &sub_flow1_merge,
774 &last_act_id, &act_out);
775 if (err)
776 return err;
777
778 /* Must only be 1 output action and it must be the last in sequence. */
779 if (act_out != 1 || last_act_id != NFP_FL_ACTION_OPCODE_OUTPUT)
780 return -EOPNOTSUPP;
781
782 /* Reject merge if sub_flow2 matches on something that is not matched
783 * on or set in an action by sub_flow1.
784 */
785 err = bitmap_andnot(sub_flow2_merge.vals, sub_flow2_merge.vals,
786 sub_flow1_merge.vals,
787 sizeof(struct nfp_flower_merge_check) * 8);
788 if (err)
789 return -EINVAL;
790
791 return 0;
792 }
793
794 static unsigned int
nfp_flower_copy_pre_actions(char * act_dst,char * act_src,int len,bool * tunnel_act)795 nfp_flower_copy_pre_actions(char *act_dst, char *act_src, int len,
796 bool *tunnel_act)
797 {
798 unsigned int act_off = 0, act_len;
799 struct nfp_fl_act_head *a;
800 u8 act_id = 0;
801
802 while (act_off < len) {
803 a = (struct nfp_fl_act_head *)&act_src[act_off];
804 act_len = a->len_lw << NFP_FL_LW_SIZ;
805 act_id = a->jump_id;
806
807 switch (act_id) {
808 case NFP_FL_ACTION_OPCODE_PRE_TUNNEL:
809 if (tunnel_act)
810 *tunnel_act = true;
811 fallthrough;
812 case NFP_FL_ACTION_OPCODE_PRE_LAG:
813 memcpy(act_dst + act_off, act_src + act_off, act_len);
814 break;
815 default:
816 return act_off;
817 }
818
819 act_off += act_len;
820 }
821
822 return act_off;
823 }
824
825 static int
nfp_fl_verify_post_tun_acts(char * acts,int len,struct nfp_fl_push_vlan ** vlan)826 nfp_fl_verify_post_tun_acts(char *acts, int len, struct nfp_fl_push_vlan **vlan)
827 {
828 struct nfp_fl_act_head *a;
829 unsigned int act_off = 0;
830
831 while (act_off < len) {
832 a = (struct nfp_fl_act_head *)&acts[act_off];
833
834 if (a->jump_id == NFP_FL_ACTION_OPCODE_PUSH_VLAN && !act_off)
835 *vlan = (struct nfp_fl_push_vlan *)a;
836 else if (a->jump_id != NFP_FL_ACTION_OPCODE_OUTPUT)
837 return -EOPNOTSUPP;
838
839 act_off += a->len_lw << NFP_FL_LW_SIZ;
840 }
841
842 /* Ensure any VLAN push also has an egress action. */
843 if (*vlan && act_off <= sizeof(struct nfp_fl_push_vlan))
844 return -EOPNOTSUPP;
845
846 return 0;
847 }
848
849 static int
nfp_fl_push_vlan_after_tun(char * acts,int len,struct nfp_fl_push_vlan * vlan)850 nfp_fl_push_vlan_after_tun(char *acts, int len, struct nfp_fl_push_vlan *vlan)
851 {
852 struct nfp_fl_set_tun *tun;
853 struct nfp_fl_act_head *a;
854 unsigned int act_off = 0;
855
856 while (act_off < len) {
857 a = (struct nfp_fl_act_head *)&acts[act_off];
858
859 if (a->jump_id == NFP_FL_ACTION_OPCODE_SET_TUNNEL) {
860 tun = (struct nfp_fl_set_tun *)a;
861 tun->outer_vlan_tpid = vlan->vlan_tpid;
862 tun->outer_vlan_tci = vlan->vlan_tci;
863
864 return 0;
865 }
866
867 act_off += a->len_lw << NFP_FL_LW_SIZ;
868 }
869
870 /* Return error if no tunnel action is found. */
871 return -EOPNOTSUPP;
872 }
873
874 static int
nfp_flower_merge_action(struct nfp_fl_payload * sub_flow1,struct nfp_fl_payload * sub_flow2,struct nfp_fl_payload * merge_flow)875 nfp_flower_merge_action(struct nfp_fl_payload *sub_flow1,
876 struct nfp_fl_payload *sub_flow2,
877 struct nfp_fl_payload *merge_flow)
878 {
879 unsigned int sub1_act_len, sub2_act_len, pre_off1, pre_off2;
880 struct nfp_fl_push_vlan *post_tun_push_vlan = NULL;
881 bool tunnel_act = false;
882 char *merge_act;
883 int err;
884
885 /* The last action of sub_flow1 must be output - do not merge this. */
886 sub1_act_len = sub_flow1->meta.act_len - sizeof(struct nfp_fl_output);
887 sub2_act_len = sub_flow2->meta.act_len;
888
889 if (!sub2_act_len)
890 return -EINVAL;
891
892 if (sub1_act_len + sub2_act_len > NFP_FL_MAX_A_SIZ)
893 return -EINVAL;
894
895 /* A shortcut can only be applied if there is a single action. */
896 if (sub1_act_len)
897 merge_flow->meta.shortcut = cpu_to_be32(NFP_FL_SC_ACT_NULL);
898 else
899 merge_flow->meta.shortcut = sub_flow2->meta.shortcut;
900
901 merge_flow->meta.act_len = sub1_act_len + sub2_act_len;
902 merge_act = merge_flow->action_data;
903
904 /* Copy any pre-actions to the start of merge flow action list. */
905 pre_off1 = nfp_flower_copy_pre_actions(merge_act,
906 sub_flow1->action_data,
907 sub1_act_len, &tunnel_act);
908 merge_act += pre_off1;
909 sub1_act_len -= pre_off1;
910 pre_off2 = nfp_flower_copy_pre_actions(merge_act,
911 sub_flow2->action_data,
912 sub2_act_len, NULL);
913 merge_act += pre_off2;
914 sub2_act_len -= pre_off2;
915
916 /* FW does a tunnel push when egressing, therefore, if sub_flow 1 pushes
917 * a tunnel, there are restrictions on what sub_flow 2 actions lead to a
918 * valid merge.
919 */
920 if (tunnel_act) {
921 char *post_tun_acts = &sub_flow2->action_data[pre_off2];
922
923 err = nfp_fl_verify_post_tun_acts(post_tun_acts, sub2_act_len,
924 &post_tun_push_vlan);
925 if (err)
926 return err;
927
928 if (post_tun_push_vlan) {
929 pre_off2 += sizeof(*post_tun_push_vlan);
930 sub2_act_len -= sizeof(*post_tun_push_vlan);
931 }
932 }
933
934 /* Copy remaining actions from sub_flows 1 and 2. */
935 memcpy(merge_act, sub_flow1->action_data + pre_off1, sub1_act_len);
936
937 if (post_tun_push_vlan) {
938 /* Update tunnel action in merge to include VLAN push. */
939 err = nfp_fl_push_vlan_after_tun(merge_act, sub1_act_len,
940 post_tun_push_vlan);
941 if (err)
942 return err;
943
944 merge_flow->meta.act_len -= sizeof(*post_tun_push_vlan);
945 }
946
947 merge_act += sub1_act_len;
948 memcpy(merge_act, sub_flow2->action_data + pre_off2, sub2_act_len);
949
950 return 0;
951 }
952
953 /* Flow link code should only be accessed under RTNL. */
nfp_flower_unlink_flow(struct nfp_fl_payload_link * link)954 static void nfp_flower_unlink_flow(struct nfp_fl_payload_link *link)
955 {
956 list_del(&link->merge_flow.list);
957 list_del(&link->sub_flow.list);
958 kfree(link);
959 }
960
nfp_flower_unlink_flows(struct nfp_fl_payload * merge_flow,struct nfp_fl_payload * sub_flow)961 static void nfp_flower_unlink_flows(struct nfp_fl_payload *merge_flow,
962 struct nfp_fl_payload *sub_flow)
963 {
964 struct nfp_fl_payload_link *link;
965
966 list_for_each_entry(link, &merge_flow->linked_flows, merge_flow.list)
967 if (link->sub_flow.flow == sub_flow) {
968 nfp_flower_unlink_flow(link);
969 return;
970 }
971 }
972
nfp_flower_link_flows(struct nfp_fl_payload * merge_flow,struct nfp_fl_payload * sub_flow)973 static int nfp_flower_link_flows(struct nfp_fl_payload *merge_flow,
974 struct nfp_fl_payload *sub_flow)
975 {
976 struct nfp_fl_payload_link *link;
977
978 link = kmalloc(sizeof(*link), GFP_KERNEL);
979 if (!link)
980 return -ENOMEM;
981
982 link->merge_flow.flow = merge_flow;
983 list_add_tail(&link->merge_flow.list, &merge_flow->linked_flows);
984 link->sub_flow.flow = sub_flow;
985 list_add_tail(&link->sub_flow.list, &sub_flow->linked_flows);
986
987 return 0;
988 }
989
990 /**
991 * nfp_flower_merge_offloaded_flows() - Merge 2 existing flows to single flow.
992 * @app: Pointer to the APP handle
993 * @sub_flow1: Initial flow matched to produce merge hint
994 * @sub_flow2: Post recirculation flow matched in merge hint
995 *
996 * Combines 2 flows (if valid) to a single flow, removing the initial from hw
997 * and offloading the new, merged flow.
998 *
999 * Return: negative value on error, 0 in success.
1000 */
nfp_flower_merge_offloaded_flows(struct nfp_app * app,struct nfp_fl_payload * sub_flow1,struct nfp_fl_payload * sub_flow2)1001 int nfp_flower_merge_offloaded_flows(struct nfp_app *app,
1002 struct nfp_fl_payload *sub_flow1,
1003 struct nfp_fl_payload *sub_flow2)
1004 {
1005 struct nfp_flower_priv *priv = app->priv;
1006 struct nfp_fl_payload *merge_flow;
1007 struct nfp_fl_key_ls merge_key_ls;
1008 struct nfp_merge_info *merge_info;
1009 u64 parent_ctx = 0;
1010 int err;
1011
1012 ASSERT_RTNL();
1013
1014 if (sub_flow1 == sub_flow2 ||
1015 nfp_flower_is_merge_flow(sub_flow1) ||
1016 nfp_flower_is_merge_flow(sub_flow2))
1017 return -EINVAL;
1018
1019 /* check if the two flows are already merged */
1020 parent_ctx = (u64)(be32_to_cpu(sub_flow1->meta.host_ctx_id)) << 32;
1021 parent_ctx |= (u64)(be32_to_cpu(sub_flow2->meta.host_ctx_id));
1022 if (rhashtable_lookup_fast(&priv->merge_table,
1023 &parent_ctx, merge_table_params)) {
1024 nfp_flower_cmsg_warn(app, "The two flows are already merged.\n");
1025 return 0;
1026 }
1027
1028 err = nfp_flower_can_merge(sub_flow1, sub_flow2);
1029 if (err)
1030 return err;
1031
1032 merge_key_ls.key_size = sub_flow1->meta.key_len;
1033
1034 merge_flow = nfp_flower_allocate_new(&merge_key_ls);
1035 if (!merge_flow)
1036 return -ENOMEM;
1037
1038 merge_flow->tc_flower_cookie = (unsigned long)merge_flow;
1039 merge_flow->ingress_dev = sub_flow1->ingress_dev;
1040
1041 memcpy(merge_flow->unmasked_data, sub_flow1->unmasked_data,
1042 sub_flow1->meta.key_len);
1043 memcpy(merge_flow->mask_data, sub_flow1->mask_data,
1044 sub_flow1->meta.mask_len);
1045
1046 err = nfp_flower_merge_action(sub_flow1, sub_flow2, merge_flow);
1047 if (err)
1048 goto err_destroy_merge_flow;
1049
1050 err = nfp_flower_link_flows(merge_flow, sub_flow1);
1051 if (err)
1052 goto err_destroy_merge_flow;
1053
1054 err = nfp_flower_link_flows(merge_flow, sub_flow2);
1055 if (err)
1056 goto err_unlink_sub_flow1;
1057
1058 err = nfp_compile_flow_metadata(app, merge_flow->tc_flower_cookie, merge_flow,
1059 merge_flow->ingress_dev, NULL);
1060 if (err)
1061 goto err_unlink_sub_flow2;
1062
1063 err = rhashtable_insert_fast(&priv->flow_table, &merge_flow->fl_node,
1064 nfp_flower_table_params);
1065 if (err)
1066 goto err_release_metadata;
1067
1068 merge_info = kmalloc(sizeof(*merge_info), GFP_KERNEL);
1069 if (!merge_info) {
1070 err = -ENOMEM;
1071 goto err_remove_rhash;
1072 }
1073 merge_info->parent_ctx = parent_ctx;
1074 err = rhashtable_insert_fast(&priv->merge_table, &merge_info->ht_node,
1075 merge_table_params);
1076 if (err)
1077 goto err_destroy_merge_info;
1078
1079 err = nfp_flower_xmit_flow(app, merge_flow,
1080 NFP_FLOWER_CMSG_TYPE_FLOW_MOD);
1081 if (err)
1082 goto err_remove_merge_info;
1083
1084 merge_flow->in_hw = true;
1085 sub_flow1->in_hw = false;
1086
1087 return 0;
1088
1089 err_remove_merge_info:
1090 WARN_ON_ONCE(rhashtable_remove_fast(&priv->merge_table,
1091 &merge_info->ht_node,
1092 merge_table_params));
1093 err_destroy_merge_info:
1094 kfree(merge_info);
1095 err_remove_rhash:
1096 WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
1097 &merge_flow->fl_node,
1098 nfp_flower_table_params));
1099 err_release_metadata:
1100 nfp_modify_flow_metadata(app, merge_flow);
1101 err_unlink_sub_flow2:
1102 nfp_flower_unlink_flows(merge_flow, sub_flow2);
1103 err_unlink_sub_flow1:
1104 nfp_flower_unlink_flows(merge_flow, sub_flow1);
1105 err_destroy_merge_flow:
1106 kfree(merge_flow->action_data);
1107 kfree(merge_flow->mask_data);
1108 kfree(merge_flow->unmasked_data);
1109 kfree(merge_flow);
1110 return err;
1111 }
1112
1113 /**
1114 * nfp_flower_validate_pre_tun_rule()
1115 * @app: Pointer to the APP handle
1116 * @flow: Pointer to NFP flow representation of rule
1117 * @key_ls: Pointer to NFP key layers structure
1118 * @extack: Netlink extended ACK report
1119 *
1120 * Verifies the flow as a pre-tunnel rule.
1121 *
1122 * Return: negative value on error, 0 if verified.
1123 */
1124 static int
nfp_flower_validate_pre_tun_rule(struct nfp_app * app,struct nfp_fl_payload * flow,struct nfp_fl_key_ls * key_ls,struct netlink_ext_ack * extack)1125 nfp_flower_validate_pre_tun_rule(struct nfp_app *app,
1126 struct nfp_fl_payload *flow,
1127 struct nfp_fl_key_ls *key_ls,
1128 struct netlink_ext_ack *extack)
1129 {
1130 struct nfp_flower_priv *priv = app->priv;
1131 struct nfp_flower_meta_tci *meta_tci;
1132 struct nfp_flower_mac_mpls *mac;
1133 u8 *ext = flow->unmasked_data;
1134 struct nfp_fl_act_head *act;
1135 u8 *mask = flow->mask_data;
1136 bool vlan = false;
1137 int act_offset;
1138 u8 key_layer;
1139
1140 meta_tci = (struct nfp_flower_meta_tci *)flow->unmasked_data;
1141 key_layer = key_ls->key_layer;
1142 if (!(priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ)) {
1143 if (meta_tci->tci & cpu_to_be16(NFP_FLOWER_MASK_VLAN_PRESENT)) {
1144 u16 vlan_tci = be16_to_cpu(meta_tci->tci);
1145
1146 vlan_tci &= ~NFP_FLOWER_MASK_VLAN_PRESENT;
1147 flow->pre_tun_rule.vlan_tci = cpu_to_be16(vlan_tci);
1148 vlan = true;
1149 } else {
1150 flow->pre_tun_rule.vlan_tci = cpu_to_be16(0xffff);
1151 }
1152 }
1153
1154 if (key_layer & ~NFP_FLOWER_PRE_TUN_RULE_FIELDS) {
1155 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: too many match fields");
1156 return -EOPNOTSUPP;
1157 } else if (key_ls->key_layer_two & ~NFP_FLOWER_LAYER2_QINQ) {
1158 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: non-vlan in extended match fields");
1159 return -EOPNOTSUPP;
1160 }
1161
1162 if (!(key_layer & NFP_FLOWER_LAYER_MAC)) {
1163 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: MAC fields match required");
1164 return -EOPNOTSUPP;
1165 }
1166
1167 if (!(key_layer & NFP_FLOWER_LAYER_IPV4) &&
1168 !(key_layer & NFP_FLOWER_LAYER_IPV6)) {
1169 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: match on ipv4/ipv6 eth_type must be present");
1170 return -EOPNOTSUPP;
1171 }
1172
1173 if (key_layer & NFP_FLOWER_LAYER_IPV6)
1174 flow->pre_tun_rule.is_ipv6 = true;
1175 else
1176 flow->pre_tun_rule.is_ipv6 = false;
1177
1178 /* Skip fields known to exist. */
1179 mask += sizeof(struct nfp_flower_meta_tci);
1180 ext += sizeof(struct nfp_flower_meta_tci);
1181 if (key_ls->key_layer_two) {
1182 mask += sizeof(struct nfp_flower_ext_meta);
1183 ext += sizeof(struct nfp_flower_ext_meta);
1184 }
1185 mask += sizeof(struct nfp_flower_in_port);
1186 ext += sizeof(struct nfp_flower_in_port);
1187
1188 /* Ensure destination MAC address is fully matched. */
1189 mac = (struct nfp_flower_mac_mpls *)mask;
1190 if (!is_broadcast_ether_addr(&mac->mac_dst[0])) {
1191 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: dest MAC field must not be masked");
1192 return -EOPNOTSUPP;
1193 }
1194
1195 /* Ensure source MAC address is fully matched. This is only needed
1196 * for firmware with the DECAP_V2 feature enabled. Don't do this
1197 * for firmware without this feature to keep old behaviour.
1198 */
1199 if (priv->flower_ext_feats & NFP_FL_FEATS_DECAP_V2) {
1200 mac = (struct nfp_flower_mac_mpls *)mask;
1201 if (!is_broadcast_ether_addr(&mac->mac_src[0])) {
1202 NL_SET_ERR_MSG_MOD(extack,
1203 "unsupported pre-tunnel rule: source MAC field must not be masked");
1204 return -EOPNOTSUPP;
1205 }
1206 }
1207
1208 if (mac->mpls_lse) {
1209 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: MPLS not supported");
1210 return -EOPNOTSUPP;
1211 }
1212
1213 /* Ensure destination MAC address matches pre_tun_dev. */
1214 mac = (struct nfp_flower_mac_mpls *)ext;
1215 if (memcmp(&mac->mac_dst[0], flow->pre_tun_rule.dev->dev_addr, 6)) {
1216 NL_SET_ERR_MSG_MOD(extack,
1217 "unsupported pre-tunnel rule: dest MAC must match output dev MAC");
1218 return -EOPNOTSUPP;
1219 }
1220
1221 /* Save mac addresses in pre_tun_rule entry for later use */
1222 memcpy(&flow->pre_tun_rule.loc_mac, &mac->mac_dst[0], ETH_ALEN);
1223 memcpy(&flow->pre_tun_rule.rem_mac, &mac->mac_src[0], ETH_ALEN);
1224
1225 mask += sizeof(struct nfp_flower_mac_mpls);
1226 ext += sizeof(struct nfp_flower_mac_mpls);
1227 if (key_layer & NFP_FLOWER_LAYER_IPV4 ||
1228 key_layer & NFP_FLOWER_LAYER_IPV6) {
1229 /* Flags and proto fields have same offset in IPv4 and IPv6. */
1230 int ip_flags = offsetof(struct nfp_flower_ipv4, ip_ext.flags);
1231 int ip_proto = offsetof(struct nfp_flower_ipv4, ip_ext.proto);
1232 int size;
1233 int i;
1234
1235 size = key_layer & NFP_FLOWER_LAYER_IPV4 ?
1236 sizeof(struct nfp_flower_ipv4) :
1237 sizeof(struct nfp_flower_ipv6);
1238
1239
1240 /* Ensure proto and flags are the only IP layer fields. */
1241 for (i = 0; i < size; i++)
1242 if (mask[i] && i != ip_flags && i != ip_proto) {
1243 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: only flags and proto can be matched in ip header");
1244 return -EOPNOTSUPP;
1245 }
1246 ext += size;
1247 mask += size;
1248 }
1249
1250 if ((priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ)) {
1251 if (key_ls->key_layer_two & NFP_FLOWER_LAYER2_QINQ) {
1252 struct nfp_flower_vlan *vlan_tags;
1253 u16 vlan_tpid;
1254 u16 vlan_tci;
1255
1256 vlan_tags = (struct nfp_flower_vlan *)ext;
1257
1258 vlan_tci = be16_to_cpu(vlan_tags->outer_tci);
1259 vlan_tpid = be16_to_cpu(vlan_tags->outer_tpid);
1260
1261 vlan_tci &= ~NFP_FLOWER_MASK_VLAN_PRESENT;
1262 flow->pre_tun_rule.vlan_tci = cpu_to_be16(vlan_tci);
1263 flow->pre_tun_rule.vlan_tpid = cpu_to_be16(vlan_tpid);
1264 vlan = true;
1265 } else {
1266 flow->pre_tun_rule.vlan_tci = cpu_to_be16(0xffff);
1267 flow->pre_tun_rule.vlan_tpid = cpu_to_be16(0xffff);
1268 }
1269 }
1270
1271 /* Action must be a single egress or pop_vlan and egress. */
1272 act_offset = 0;
1273 act = (struct nfp_fl_act_head *)&flow->action_data[act_offset];
1274 if (vlan) {
1275 if (act->jump_id != NFP_FL_ACTION_OPCODE_POP_VLAN) {
1276 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: match on VLAN must have VLAN pop as first action");
1277 return -EOPNOTSUPP;
1278 }
1279
1280 act_offset += act->len_lw << NFP_FL_LW_SIZ;
1281 act = (struct nfp_fl_act_head *)&flow->action_data[act_offset];
1282 }
1283
1284 if (act->jump_id != NFP_FL_ACTION_OPCODE_OUTPUT) {
1285 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: non egress action detected where egress was expected");
1286 return -EOPNOTSUPP;
1287 }
1288
1289 act_offset += act->len_lw << NFP_FL_LW_SIZ;
1290
1291 /* Ensure there are no more actions after egress. */
1292 if (act_offset != flow->meta.act_len) {
1293 NL_SET_ERR_MSG_MOD(extack, "unsupported pre-tunnel rule: egress is not the last action");
1294 return -EOPNOTSUPP;
1295 }
1296
1297 return 0;
1298 }
1299
offload_pre_check(struct flow_cls_offload * flow)1300 static bool offload_pre_check(struct flow_cls_offload *flow)
1301 {
1302 struct flow_rule *rule = flow_cls_offload_flow_rule(flow);
1303 struct flow_dissector *dissector = rule->match.dissector;
1304
1305 if (dissector->used_keys & BIT(FLOW_DISSECTOR_KEY_CT))
1306 return false;
1307
1308 if (flow->common.chain_index)
1309 return false;
1310
1311 return true;
1312 }
1313
1314 /**
1315 * nfp_flower_add_offload() - Adds a new flow to hardware.
1316 * @app: Pointer to the APP handle
1317 * @netdev: netdev structure.
1318 * @flow: TC flower classifier offload structure.
1319 *
1320 * Adds a new flow to the repeated hash structure and action payload.
1321 *
1322 * Return: negative value on error, 0 if configured successfully.
1323 */
1324 static int
nfp_flower_add_offload(struct nfp_app * app,struct net_device * netdev,struct flow_cls_offload * flow)1325 nfp_flower_add_offload(struct nfp_app *app, struct net_device *netdev,
1326 struct flow_cls_offload *flow)
1327 {
1328 struct flow_rule *rule = flow_cls_offload_flow_rule(flow);
1329 enum nfp_flower_tun_type tun_type = NFP_FL_TUNNEL_NONE;
1330 struct nfp_flower_priv *priv = app->priv;
1331 struct netlink_ext_ack *extack = NULL;
1332 struct nfp_fl_payload *flow_pay;
1333 struct nfp_fl_key_ls *key_layer;
1334 struct nfp_port *port = NULL;
1335 int err;
1336
1337 extack = flow->common.extack;
1338 if (nfp_netdev_is_nfp_repr(netdev))
1339 port = nfp_port_from_netdev(netdev);
1340
1341 if (is_pre_ct_flow(flow))
1342 return nfp_fl_ct_handle_pre_ct(priv, netdev, flow, extack);
1343
1344 if (is_post_ct_flow(flow))
1345 return nfp_fl_ct_handle_post_ct(priv, netdev, flow, extack);
1346
1347 if (!offload_pre_check(flow))
1348 return -EOPNOTSUPP;
1349
1350 key_layer = kmalloc(sizeof(*key_layer), GFP_KERNEL);
1351 if (!key_layer)
1352 return -ENOMEM;
1353
1354 err = nfp_flower_calculate_key_layers(app, netdev, key_layer, rule,
1355 &tun_type, extack);
1356 if (err)
1357 goto err_free_key_ls;
1358
1359 flow_pay = nfp_flower_allocate_new(key_layer);
1360 if (!flow_pay) {
1361 err = -ENOMEM;
1362 goto err_free_key_ls;
1363 }
1364
1365 err = nfp_flower_compile_flow_match(app, rule, key_layer, netdev,
1366 flow_pay, tun_type, extack);
1367 if (err)
1368 goto err_destroy_flow;
1369
1370 err = nfp_flower_compile_action(app, rule, netdev, flow_pay, extack);
1371 if (err)
1372 goto err_destroy_flow;
1373
1374 if (flow_pay->pre_tun_rule.dev) {
1375 err = nfp_flower_validate_pre_tun_rule(app, flow_pay, key_layer, extack);
1376 if (err)
1377 goto err_destroy_flow;
1378 }
1379
1380 err = nfp_compile_flow_metadata(app, flow->cookie, flow_pay, netdev, extack);
1381 if (err)
1382 goto err_destroy_flow;
1383
1384 flow_pay->tc_flower_cookie = flow->cookie;
1385 err = rhashtable_insert_fast(&priv->flow_table, &flow_pay->fl_node,
1386 nfp_flower_table_params);
1387 if (err) {
1388 NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot insert flow into tables for offloads");
1389 goto err_release_metadata;
1390 }
1391
1392 if (flow_pay->pre_tun_rule.dev) {
1393 if (priv->flower_ext_feats & NFP_FL_FEATS_DECAP_V2) {
1394 struct nfp_predt_entry *predt;
1395
1396 predt = kzalloc(sizeof(*predt), GFP_KERNEL);
1397 if (!predt) {
1398 err = -ENOMEM;
1399 goto err_remove_rhash;
1400 }
1401 predt->flow_pay = flow_pay;
1402 INIT_LIST_HEAD(&predt->nn_list);
1403 spin_lock_bh(&priv->predt_lock);
1404 list_add(&predt->list_head, &priv->predt_list);
1405 flow_pay->pre_tun_rule.predt = predt;
1406 nfp_tun_link_and_update_nn_entries(app, predt);
1407 spin_unlock_bh(&priv->predt_lock);
1408 } else {
1409 err = nfp_flower_xmit_pre_tun_flow(app, flow_pay);
1410 }
1411 } else {
1412 err = nfp_flower_xmit_flow(app, flow_pay,
1413 NFP_FLOWER_CMSG_TYPE_FLOW_ADD);
1414 }
1415
1416 if (err)
1417 goto err_remove_rhash;
1418
1419 if (port)
1420 port->tc_offload_cnt++;
1421
1422 flow_pay->in_hw = true;
1423
1424 /* Deallocate flow payload when flower rule has been destroyed. */
1425 kfree(key_layer);
1426
1427 return 0;
1428
1429 err_remove_rhash:
1430 WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
1431 &flow_pay->fl_node,
1432 nfp_flower_table_params));
1433 err_release_metadata:
1434 nfp_modify_flow_metadata(app, flow_pay);
1435 err_destroy_flow:
1436 if (flow_pay->nfp_tun_ipv6)
1437 nfp_tunnel_put_ipv6_off(app, flow_pay->nfp_tun_ipv6);
1438 kfree(flow_pay->action_data);
1439 kfree(flow_pay->mask_data);
1440 kfree(flow_pay->unmasked_data);
1441 kfree(flow_pay);
1442 err_free_key_ls:
1443 kfree(key_layer);
1444 return err;
1445 }
1446
1447 static void
nfp_flower_remove_merge_flow(struct nfp_app * app,struct nfp_fl_payload * del_sub_flow,struct nfp_fl_payload * merge_flow)1448 nfp_flower_remove_merge_flow(struct nfp_app *app,
1449 struct nfp_fl_payload *del_sub_flow,
1450 struct nfp_fl_payload *merge_flow)
1451 {
1452 struct nfp_flower_priv *priv = app->priv;
1453 struct nfp_fl_payload_link *link, *temp;
1454 struct nfp_merge_info *merge_info;
1455 struct nfp_fl_payload *origin;
1456 u64 parent_ctx = 0;
1457 bool mod = false;
1458 int err;
1459
1460 link = list_first_entry(&merge_flow->linked_flows,
1461 struct nfp_fl_payload_link, merge_flow.list);
1462 origin = link->sub_flow.flow;
1463
1464 /* Re-add rule the merge had overwritten if it has not been deleted. */
1465 if (origin != del_sub_flow)
1466 mod = true;
1467
1468 err = nfp_modify_flow_metadata(app, merge_flow);
1469 if (err) {
1470 nfp_flower_cmsg_warn(app, "Metadata fail for merge flow delete.\n");
1471 goto err_free_links;
1472 }
1473
1474 if (!mod) {
1475 err = nfp_flower_xmit_flow(app, merge_flow,
1476 NFP_FLOWER_CMSG_TYPE_FLOW_DEL);
1477 if (err) {
1478 nfp_flower_cmsg_warn(app, "Failed to delete merged flow.\n");
1479 goto err_free_links;
1480 }
1481 } else {
1482 __nfp_modify_flow_metadata(priv, origin);
1483 err = nfp_flower_xmit_flow(app, origin,
1484 NFP_FLOWER_CMSG_TYPE_FLOW_MOD);
1485 if (err)
1486 nfp_flower_cmsg_warn(app, "Failed to revert merge flow.\n");
1487 origin->in_hw = true;
1488 }
1489
1490 err_free_links:
1491 /* Clean any links connected with the merged flow. */
1492 list_for_each_entry_safe(link, temp, &merge_flow->linked_flows,
1493 merge_flow.list) {
1494 u32 ctx_id = be32_to_cpu(link->sub_flow.flow->meta.host_ctx_id);
1495
1496 parent_ctx = (parent_ctx << 32) | (u64)(ctx_id);
1497 nfp_flower_unlink_flow(link);
1498 }
1499
1500 merge_info = rhashtable_lookup_fast(&priv->merge_table,
1501 &parent_ctx,
1502 merge_table_params);
1503 if (merge_info) {
1504 WARN_ON_ONCE(rhashtable_remove_fast(&priv->merge_table,
1505 &merge_info->ht_node,
1506 merge_table_params));
1507 kfree(merge_info);
1508 }
1509
1510 kfree(merge_flow->action_data);
1511 kfree(merge_flow->mask_data);
1512 kfree(merge_flow->unmasked_data);
1513 WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
1514 &merge_flow->fl_node,
1515 nfp_flower_table_params));
1516 kfree_rcu(merge_flow, rcu);
1517 }
1518
1519 void
nfp_flower_del_linked_merge_flows(struct nfp_app * app,struct nfp_fl_payload * sub_flow)1520 nfp_flower_del_linked_merge_flows(struct nfp_app *app,
1521 struct nfp_fl_payload *sub_flow)
1522 {
1523 struct nfp_fl_payload_link *link, *temp;
1524
1525 /* Remove any merge flow formed from the deleted sub_flow. */
1526 list_for_each_entry_safe(link, temp, &sub_flow->linked_flows,
1527 sub_flow.list)
1528 nfp_flower_remove_merge_flow(app, sub_flow,
1529 link->merge_flow.flow);
1530 }
1531
1532 /**
1533 * nfp_flower_del_offload() - Removes a flow from hardware.
1534 * @app: Pointer to the APP handle
1535 * @netdev: netdev structure.
1536 * @flow: TC flower classifier offload structure
1537 *
1538 * Removes a flow from the repeated hash structure and clears the
1539 * action payload. Any flows merged from this are also deleted.
1540 *
1541 * Return: negative value on error, 0 if removed successfully.
1542 */
1543 static int
nfp_flower_del_offload(struct nfp_app * app,struct net_device * netdev,struct flow_cls_offload * flow)1544 nfp_flower_del_offload(struct nfp_app *app, struct net_device *netdev,
1545 struct flow_cls_offload *flow)
1546 {
1547 struct nfp_flower_priv *priv = app->priv;
1548 struct nfp_fl_ct_map_entry *ct_map_ent;
1549 struct netlink_ext_ack *extack = NULL;
1550 struct nfp_fl_payload *nfp_flow;
1551 struct nfp_port *port = NULL;
1552 int err;
1553
1554 extack = flow->common.extack;
1555 if (nfp_netdev_is_nfp_repr(netdev))
1556 port = nfp_port_from_netdev(netdev);
1557
1558 /* Check ct_map_table */
1559 ct_map_ent = rhashtable_lookup_fast(&priv->ct_map_table, &flow->cookie,
1560 nfp_ct_map_params);
1561 if (ct_map_ent) {
1562 err = nfp_fl_ct_del_flow(ct_map_ent);
1563 return err;
1564 }
1565
1566 nfp_flow = nfp_flower_search_fl_table(app, flow->cookie, netdev);
1567 if (!nfp_flow) {
1568 NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot remove flow that does not exist");
1569 return -ENOENT;
1570 }
1571
1572 err = nfp_modify_flow_metadata(app, nfp_flow);
1573 if (err)
1574 goto err_free_merge_flow;
1575
1576 if (nfp_flow->nfp_tun_ipv4_addr)
1577 nfp_tunnel_del_ipv4_off(app, nfp_flow->nfp_tun_ipv4_addr);
1578
1579 if (nfp_flow->nfp_tun_ipv6)
1580 nfp_tunnel_put_ipv6_off(app, nfp_flow->nfp_tun_ipv6);
1581
1582 if (!nfp_flow->in_hw) {
1583 err = 0;
1584 goto err_free_merge_flow;
1585 }
1586
1587 if (nfp_flow->pre_tun_rule.dev) {
1588 if (priv->flower_ext_feats & NFP_FL_FEATS_DECAP_V2) {
1589 struct nfp_predt_entry *predt;
1590
1591 predt = nfp_flow->pre_tun_rule.predt;
1592 if (predt) {
1593 spin_lock_bh(&priv->predt_lock);
1594 nfp_tun_unlink_and_update_nn_entries(app, predt);
1595 list_del(&predt->list_head);
1596 spin_unlock_bh(&priv->predt_lock);
1597 kfree(predt);
1598 }
1599 } else {
1600 err = nfp_flower_xmit_pre_tun_del_flow(app, nfp_flow);
1601 }
1602 } else {
1603 err = nfp_flower_xmit_flow(app, nfp_flow,
1604 NFP_FLOWER_CMSG_TYPE_FLOW_DEL);
1605 }
1606 /* Fall through on error. */
1607
1608 err_free_merge_flow:
1609 nfp_flower_del_linked_merge_flows(app, nfp_flow);
1610 if (port)
1611 port->tc_offload_cnt--;
1612 kfree(nfp_flow->action_data);
1613 kfree(nfp_flow->mask_data);
1614 kfree(nfp_flow->unmasked_data);
1615 WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table,
1616 &nfp_flow->fl_node,
1617 nfp_flower_table_params));
1618 kfree_rcu(nfp_flow, rcu);
1619 return err;
1620 }
1621
1622 static void
__nfp_flower_update_merge_stats(struct nfp_app * app,struct nfp_fl_payload * merge_flow)1623 __nfp_flower_update_merge_stats(struct nfp_app *app,
1624 struct nfp_fl_payload *merge_flow)
1625 {
1626 struct nfp_flower_priv *priv = app->priv;
1627 struct nfp_fl_payload_link *link;
1628 struct nfp_fl_payload *sub_flow;
1629 u64 pkts, bytes, used;
1630 u32 ctx_id;
1631
1632 ctx_id = be32_to_cpu(merge_flow->meta.host_ctx_id);
1633 pkts = priv->stats[ctx_id].pkts;
1634 /* Do not cycle subflows if no stats to distribute. */
1635 if (!pkts)
1636 return;
1637 bytes = priv->stats[ctx_id].bytes;
1638 used = priv->stats[ctx_id].used;
1639
1640 /* Reset stats for the merge flow. */
1641 priv->stats[ctx_id].pkts = 0;
1642 priv->stats[ctx_id].bytes = 0;
1643
1644 /* The merge flow has received stats updates from firmware.
1645 * Distribute these stats to all subflows that form the merge.
1646 * The stats will collected from TC via the subflows.
1647 */
1648 list_for_each_entry(link, &merge_flow->linked_flows, merge_flow.list) {
1649 sub_flow = link->sub_flow.flow;
1650 ctx_id = be32_to_cpu(sub_flow->meta.host_ctx_id);
1651 priv->stats[ctx_id].pkts += pkts;
1652 priv->stats[ctx_id].bytes += bytes;
1653 priv->stats[ctx_id].used = max_t(u64, used,
1654 priv->stats[ctx_id].used);
1655 }
1656 }
1657
1658 void
nfp_flower_update_merge_stats(struct nfp_app * app,struct nfp_fl_payload * sub_flow)1659 nfp_flower_update_merge_stats(struct nfp_app *app,
1660 struct nfp_fl_payload *sub_flow)
1661 {
1662 struct nfp_fl_payload_link *link;
1663
1664 /* Get merge flows that the subflow forms to distribute their stats. */
1665 list_for_each_entry(link, &sub_flow->linked_flows, sub_flow.list)
1666 __nfp_flower_update_merge_stats(app, link->merge_flow.flow);
1667 }
1668
1669 /**
1670 * nfp_flower_get_stats() - Populates flow stats obtained from hardware.
1671 * @app: Pointer to the APP handle
1672 * @netdev: Netdev structure.
1673 * @flow: TC flower classifier offload structure
1674 *
1675 * Populates a flow statistics structure which which corresponds to a
1676 * specific flow.
1677 *
1678 * Return: negative value on error, 0 if stats populated successfully.
1679 */
1680 static int
nfp_flower_get_stats(struct nfp_app * app,struct net_device * netdev,struct flow_cls_offload * flow)1681 nfp_flower_get_stats(struct nfp_app *app, struct net_device *netdev,
1682 struct flow_cls_offload *flow)
1683 {
1684 struct nfp_flower_priv *priv = app->priv;
1685 struct nfp_fl_ct_map_entry *ct_map_ent;
1686 struct netlink_ext_ack *extack = NULL;
1687 struct nfp_fl_payload *nfp_flow;
1688 u32 ctx_id;
1689
1690 /* Check ct_map table first */
1691 ct_map_ent = rhashtable_lookup_fast(&priv->ct_map_table, &flow->cookie,
1692 nfp_ct_map_params);
1693 if (ct_map_ent)
1694 return nfp_fl_ct_stats(flow, ct_map_ent);
1695
1696 extack = flow->common.extack;
1697 nfp_flow = nfp_flower_search_fl_table(app, flow->cookie, netdev);
1698 if (!nfp_flow) {
1699 NL_SET_ERR_MSG_MOD(extack, "invalid entry: cannot dump stats for flow that does not exist");
1700 return -EINVAL;
1701 }
1702
1703 ctx_id = be32_to_cpu(nfp_flow->meta.host_ctx_id);
1704
1705 spin_lock_bh(&priv->stats_lock);
1706 /* If request is for a sub_flow, update stats from merged flows. */
1707 if (!list_empty(&nfp_flow->linked_flows))
1708 nfp_flower_update_merge_stats(app, nfp_flow);
1709
1710 flow_stats_update(&flow->stats, priv->stats[ctx_id].bytes,
1711 priv->stats[ctx_id].pkts, 0, priv->stats[ctx_id].used,
1712 FLOW_ACTION_HW_STATS_DELAYED);
1713
1714 priv->stats[ctx_id].pkts = 0;
1715 priv->stats[ctx_id].bytes = 0;
1716 spin_unlock_bh(&priv->stats_lock);
1717
1718 return 0;
1719 }
1720
1721 static int
nfp_flower_repr_offload(struct nfp_app * app,struct net_device * netdev,struct flow_cls_offload * flower)1722 nfp_flower_repr_offload(struct nfp_app *app, struct net_device *netdev,
1723 struct flow_cls_offload *flower)
1724 {
1725 if (!eth_proto_is_802_3(flower->common.protocol))
1726 return -EOPNOTSUPP;
1727
1728 switch (flower->command) {
1729 case FLOW_CLS_REPLACE:
1730 return nfp_flower_add_offload(app, netdev, flower);
1731 case FLOW_CLS_DESTROY:
1732 return nfp_flower_del_offload(app, netdev, flower);
1733 case FLOW_CLS_STATS:
1734 return nfp_flower_get_stats(app, netdev, flower);
1735 default:
1736 return -EOPNOTSUPP;
1737 }
1738 }
1739
nfp_flower_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)1740 static int nfp_flower_setup_tc_block_cb(enum tc_setup_type type,
1741 void *type_data, void *cb_priv)
1742 {
1743 struct flow_cls_common_offload *common = type_data;
1744 struct nfp_repr *repr = cb_priv;
1745
1746 if (!tc_can_offload_extack(repr->netdev, common->extack))
1747 return -EOPNOTSUPP;
1748
1749 switch (type) {
1750 case TC_SETUP_CLSFLOWER:
1751 return nfp_flower_repr_offload(repr->app, repr->netdev,
1752 type_data);
1753 case TC_SETUP_CLSMATCHALL:
1754 return nfp_flower_setup_qos_offload(repr->app, repr->netdev,
1755 type_data);
1756 default:
1757 return -EOPNOTSUPP;
1758 }
1759 }
1760
1761 static LIST_HEAD(nfp_block_cb_list);
1762
nfp_flower_setup_tc_block(struct net_device * netdev,struct flow_block_offload * f)1763 static int nfp_flower_setup_tc_block(struct net_device *netdev,
1764 struct flow_block_offload *f)
1765 {
1766 struct nfp_repr *repr = netdev_priv(netdev);
1767 struct nfp_flower_repr_priv *repr_priv;
1768 struct flow_block_cb *block_cb;
1769
1770 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
1771 return -EOPNOTSUPP;
1772
1773 repr_priv = repr->app_priv;
1774 repr_priv->block_shared = f->block_shared;
1775 f->driver_block_list = &nfp_block_cb_list;
1776
1777 switch (f->command) {
1778 case FLOW_BLOCK_BIND:
1779 if (flow_block_cb_is_busy(nfp_flower_setup_tc_block_cb, repr,
1780 &nfp_block_cb_list))
1781 return -EBUSY;
1782
1783 block_cb = flow_block_cb_alloc(nfp_flower_setup_tc_block_cb,
1784 repr, repr, NULL);
1785 if (IS_ERR(block_cb))
1786 return PTR_ERR(block_cb);
1787
1788 flow_block_cb_add(block_cb, f);
1789 list_add_tail(&block_cb->driver_list, &nfp_block_cb_list);
1790 return 0;
1791 case FLOW_BLOCK_UNBIND:
1792 block_cb = flow_block_cb_lookup(f->block,
1793 nfp_flower_setup_tc_block_cb,
1794 repr);
1795 if (!block_cb)
1796 return -ENOENT;
1797
1798 flow_block_cb_remove(block_cb, f);
1799 list_del(&block_cb->driver_list);
1800 return 0;
1801 default:
1802 return -EOPNOTSUPP;
1803 }
1804 }
1805
nfp_flower_setup_tc(struct nfp_app * app,struct net_device * netdev,enum tc_setup_type type,void * type_data)1806 int nfp_flower_setup_tc(struct nfp_app *app, struct net_device *netdev,
1807 enum tc_setup_type type, void *type_data)
1808 {
1809 switch (type) {
1810 case TC_SETUP_BLOCK:
1811 return nfp_flower_setup_tc_block(netdev, type_data);
1812 default:
1813 return -EOPNOTSUPP;
1814 }
1815 }
1816
1817 struct nfp_flower_indr_block_cb_priv {
1818 struct net_device *netdev;
1819 struct nfp_app *app;
1820 struct list_head list;
1821 };
1822
1823 static struct nfp_flower_indr_block_cb_priv *
nfp_flower_indr_block_cb_priv_lookup(struct nfp_app * app,struct net_device * netdev)1824 nfp_flower_indr_block_cb_priv_lookup(struct nfp_app *app,
1825 struct net_device *netdev)
1826 {
1827 struct nfp_flower_indr_block_cb_priv *cb_priv;
1828 struct nfp_flower_priv *priv = app->priv;
1829
1830 list_for_each_entry(cb_priv, &priv->indr_block_cb_priv, list)
1831 if (cb_priv->netdev == netdev)
1832 return cb_priv;
1833
1834 return NULL;
1835 }
1836
nfp_flower_setup_indr_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)1837 static int nfp_flower_setup_indr_block_cb(enum tc_setup_type type,
1838 void *type_data, void *cb_priv)
1839 {
1840 struct nfp_flower_indr_block_cb_priv *priv = cb_priv;
1841
1842 switch (type) {
1843 case TC_SETUP_CLSFLOWER:
1844 return nfp_flower_repr_offload(priv->app, priv->netdev,
1845 type_data);
1846 default:
1847 return -EOPNOTSUPP;
1848 }
1849 }
1850
nfp_flower_setup_indr_tc_release(void * cb_priv)1851 void nfp_flower_setup_indr_tc_release(void *cb_priv)
1852 {
1853 struct nfp_flower_indr_block_cb_priv *priv = cb_priv;
1854
1855 list_del(&priv->list);
1856 kfree(priv);
1857 }
1858
1859 static int
nfp_flower_setup_indr_tc_block(struct net_device * netdev,struct Qdisc * sch,struct nfp_app * app,struct flow_block_offload * f,void * data,void (* cleanup)(struct flow_block_cb * block_cb))1860 nfp_flower_setup_indr_tc_block(struct net_device *netdev, struct Qdisc *sch, struct nfp_app *app,
1861 struct flow_block_offload *f, void *data,
1862 void (*cleanup)(struct flow_block_cb *block_cb))
1863 {
1864 struct nfp_flower_indr_block_cb_priv *cb_priv;
1865 struct nfp_flower_priv *priv = app->priv;
1866 struct flow_block_cb *block_cb;
1867
1868 if ((f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS &&
1869 !nfp_flower_internal_port_can_offload(app, netdev)) ||
1870 (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_EGRESS &&
1871 nfp_flower_internal_port_can_offload(app, netdev)))
1872 return -EOPNOTSUPP;
1873
1874 switch (f->command) {
1875 case FLOW_BLOCK_BIND:
1876 cb_priv = nfp_flower_indr_block_cb_priv_lookup(app, netdev);
1877 if (cb_priv &&
1878 flow_block_cb_is_busy(nfp_flower_setup_indr_block_cb,
1879 cb_priv,
1880 &nfp_block_cb_list))
1881 return -EBUSY;
1882
1883 cb_priv = kmalloc(sizeof(*cb_priv), GFP_KERNEL);
1884 if (!cb_priv)
1885 return -ENOMEM;
1886
1887 cb_priv->netdev = netdev;
1888 cb_priv->app = app;
1889 list_add(&cb_priv->list, &priv->indr_block_cb_priv);
1890
1891 block_cb = flow_indr_block_cb_alloc(nfp_flower_setup_indr_block_cb,
1892 cb_priv, cb_priv,
1893 nfp_flower_setup_indr_tc_release,
1894 f, netdev, sch, data, app, cleanup);
1895 if (IS_ERR(block_cb)) {
1896 list_del(&cb_priv->list);
1897 kfree(cb_priv);
1898 return PTR_ERR(block_cb);
1899 }
1900
1901 flow_block_cb_add(block_cb, f);
1902 list_add_tail(&block_cb->driver_list, &nfp_block_cb_list);
1903 return 0;
1904 case FLOW_BLOCK_UNBIND:
1905 cb_priv = nfp_flower_indr_block_cb_priv_lookup(app, netdev);
1906 if (!cb_priv)
1907 return -ENOENT;
1908
1909 block_cb = flow_block_cb_lookup(f->block,
1910 nfp_flower_setup_indr_block_cb,
1911 cb_priv);
1912 if (!block_cb)
1913 return -ENOENT;
1914
1915 flow_indr_block_cb_remove(block_cb, f);
1916 list_del(&block_cb->driver_list);
1917 return 0;
1918 default:
1919 return -EOPNOTSUPP;
1920 }
1921 return 0;
1922 }
1923
1924 static int
nfp_setup_tc_no_dev(struct nfp_app * app,enum tc_setup_type type,void * data)1925 nfp_setup_tc_no_dev(struct nfp_app *app, enum tc_setup_type type, void *data)
1926 {
1927 if (!data)
1928 return -EOPNOTSUPP;
1929
1930 switch (type) {
1931 case TC_SETUP_ACT:
1932 return nfp_setup_tc_act_offload(app, data);
1933 default:
1934 return -EOPNOTSUPP;
1935 }
1936 }
1937
1938 int
nfp_flower_indr_setup_tc_cb(struct net_device * netdev,struct Qdisc * sch,void * cb_priv,enum tc_setup_type type,void * type_data,void * data,void (* cleanup)(struct flow_block_cb * block_cb))1939 nfp_flower_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch, void *cb_priv,
1940 enum tc_setup_type type, void *type_data,
1941 void *data,
1942 void (*cleanup)(struct flow_block_cb *block_cb))
1943 {
1944 if (!netdev)
1945 return nfp_setup_tc_no_dev(cb_priv, type, data);
1946
1947 if (!nfp_fl_is_netdev_to_offload(netdev))
1948 return -EOPNOTSUPP;
1949
1950 switch (type) {
1951 case TC_SETUP_BLOCK:
1952 return nfp_flower_setup_indr_tc_block(netdev, sch, cb_priv,
1953 type_data, data, cleanup);
1954 default:
1955 return -EOPNOTSUPP;
1956 }
1957 }
1958