1 /* Connection state tracking for netfilter. This is separated from,
2 but required by, the NAT layer; it can also be used by an iptables
3 extension. */
4
5 /* (C) 1999-2001 Paul `Rusty' Russell
6 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
7 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/jhash.h>
25 #include <linux/err.h>
26 #include <linux/percpu.h>
27 #include <linux/moduleparam.h>
28 #include <linux/notifier.h>
29 #include <linux/kernel.h>
30 #include <linux/netdevice.h>
31 #include <linux/socket.h>
32 #include <linux/mm.h>
33 #include <linux/nsproxy.h>
34 #include <linux/rculist_nulls.h>
35
36 #include <net/netfilter/nf_conntrack.h>
37 #include <net/netfilter/nf_conntrack_l3proto.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_core.h>
42 #include <net/netfilter/nf_conntrack_extend.h>
43 #include <net/netfilter/nf_conntrack_acct.h>
44 #include <net/netfilter/nf_conntrack_ecache.h>
45 #include <net/netfilter/nf_conntrack_zones.h>
46 #include <net/netfilter/nf_conntrack_timestamp.h>
47 #include <net/netfilter/nf_conntrack_timeout.h>
48 #include <net/netfilter/nf_nat.h>
49 #include <net/netfilter/nf_nat_core.h>
50
51 #define NF_CONNTRACK_VERSION "0.5.0"
52
53 int (*nfnetlink_parse_nat_setup_hook)(struct nf_conn *ct,
54 enum nf_nat_manip_type manip,
55 const struct nlattr *attr) __read_mostly;
56 EXPORT_SYMBOL_GPL(nfnetlink_parse_nat_setup_hook);
57
58 DEFINE_SPINLOCK(nf_conntrack_lock);
59 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
60
61 unsigned int nf_conntrack_htable_size __read_mostly;
62 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
63
64 unsigned int nf_conntrack_max __read_mostly;
65 EXPORT_SYMBOL_GPL(nf_conntrack_max);
66
67 DEFINE_PER_CPU(struct nf_conn, nf_conntrack_untracked);
68 EXPORT_PER_CPU_SYMBOL(nf_conntrack_untracked);
69
70 unsigned int nf_conntrack_hash_rnd __read_mostly;
71 EXPORT_SYMBOL_GPL(nf_conntrack_hash_rnd);
72
hash_conntrack_raw(const struct nf_conntrack_tuple * tuple,u16 zone)73 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple, u16 zone)
74 {
75 unsigned int n;
76
77 /* The direction must be ignored, so we hash everything up to the
78 * destination ports (which is a multiple of 4) and treat the last
79 * three bytes manually.
80 */
81 n = (sizeof(tuple->src) + sizeof(tuple->dst.u3)) / sizeof(u32);
82 return jhash2((u32 *)tuple, n, zone ^ nf_conntrack_hash_rnd ^
83 (((__force __u16)tuple->dst.u.all << 16) |
84 tuple->dst.protonum));
85 }
86
__hash_bucket(u32 hash,unsigned int size)87 static u32 __hash_bucket(u32 hash, unsigned int size)
88 {
89 return ((u64)hash * size) >> 32;
90 }
91
hash_bucket(u32 hash,const struct net * net)92 static u32 hash_bucket(u32 hash, const struct net *net)
93 {
94 return __hash_bucket(hash, net->ct.htable_size);
95 }
96
__hash_conntrack(const struct nf_conntrack_tuple * tuple,u16 zone,unsigned int size)97 static u_int32_t __hash_conntrack(const struct nf_conntrack_tuple *tuple,
98 u16 zone, unsigned int size)
99 {
100 return __hash_bucket(hash_conntrack_raw(tuple, zone), size);
101 }
102
hash_conntrack(const struct net * net,u16 zone,const struct nf_conntrack_tuple * tuple)103 static inline u_int32_t hash_conntrack(const struct net *net, u16 zone,
104 const struct nf_conntrack_tuple *tuple)
105 {
106 return __hash_conntrack(tuple, zone, net->ct.htable_size);
107 }
108
109 bool
nf_ct_get_tuple(const struct sk_buff * skb,unsigned int nhoff,unsigned int dataoff,u_int16_t l3num,u_int8_t protonum,struct nf_conntrack_tuple * tuple,const struct nf_conntrack_l3proto * l3proto,const struct nf_conntrack_l4proto * l4proto)110 nf_ct_get_tuple(const struct sk_buff *skb,
111 unsigned int nhoff,
112 unsigned int dataoff,
113 u_int16_t l3num,
114 u_int8_t protonum,
115 struct nf_conntrack_tuple *tuple,
116 const struct nf_conntrack_l3proto *l3proto,
117 const struct nf_conntrack_l4proto *l4proto)
118 {
119 memset(tuple, 0, sizeof(*tuple));
120
121 tuple->src.l3num = l3num;
122 if (l3proto->pkt_to_tuple(skb, nhoff, tuple) == 0)
123 return false;
124
125 tuple->dst.protonum = protonum;
126 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
127
128 return l4proto->pkt_to_tuple(skb, dataoff, tuple);
129 }
130 EXPORT_SYMBOL_GPL(nf_ct_get_tuple);
131
nf_ct_get_tuplepr(const struct sk_buff * skb,unsigned int nhoff,u_int16_t l3num,struct nf_conntrack_tuple * tuple)132 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
133 u_int16_t l3num, struct nf_conntrack_tuple *tuple)
134 {
135 struct nf_conntrack_l3proto *l3proto;
136 struct nf_conntrack_l4proto *l4proto;
137 unsigned int protoff;
138 u_int8_t protonum;
139 int ret;
140
141 rcu_read_lock();
142
143 l3proto = __nf_ct_l3proto_find(l3num);
144 ret = l3proto->get_l4proto(skb, nhoff, &protoff, &protonum);
145 if (ret != NF_ACCEPT) {
146 rcu_read_unlock();
147 return false;
148 }
149
150 l4proto = __nf_ct_l4proto_find(l3num, protonum);
151
152 ret = nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, tuple,
153 l3proto, l4proto);
154
155 rcu_read_unlock();
156 return ret;
157 }
158 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
159
160 bool
nf_ct_invert_tuple(struct nf_conntrack_tuple * inverse,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_l3proto * l3proto,const struct nf_conntrack_l4proto * l4proto)161 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
162 const struct nf_conntrack_tuple *orig,
163 const struct nf_conntrack_l3proto *l3proto,
164 const struct nf_conntrack_l4proto *l4proto)
165 {
166 memset(inverse, 0, sizeof(*inverse));
167
168 inverse->src.l3num = orig->src.l3num;
169 if (l3proto->invert_tuple(inverse, orig) == 0)
170 return false;
171
172 inverse->dst.dir = !orig->dst.dir;
173
174 inverse->dst.protonum = orig->dst.protonum;
175 return l4proto->invert_tuple(inverse, orig);
176 }
177 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
178
179 static void
clean_from_lists(struct nf_conn * ct)180 clean_from_lists(struct nf_conn *ct)
181 {
182 pr_debug("clean_from_lists(%p)\n", ct);
183 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
184 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
185
186 /* Destroy all pending expectations */
187 nf_ct_remove_expectations(ct);
188 }
189
190 static void
destroy_conntrack(struct nf_conntrack * nfct)191 destroy_conntrack(struct nf_conntrack *nfct)
192 {
193 struct nf_conn *ct = (struct nf_conn *)nfct;
194 struct net *net = nf_ct_net(ct);
195 struct nf_conntrack_l4proto *l4proto;
196
197 pr_debug("destroy_conntrack(%p)\n", ct);
198 NF_CT_ASSERT(atomic_read(&nfct->use) == 0);
199 NF_CT_ASSERT(!timer_pending(&ct->timeout));
200
201 /* To make sure we don't get any weird locking issues here:
202 * destroy_conntrack() MUST NOT be called with a write lock
203 * to nf_conntrack_lock!!! -HW */
204 rcu_read_lock();
205 l4proto = __nf_ct_l4proto_find(nf_ct_l3num(ct), nf_ct_protonum(ct));
206 if (l4proto && l4proto->destroy)
207 l4proto->destroy(ct);
208
209 rcu_read_unlock();
210
211 spin_lock_bh(&nf_conntrack_lock);
212 /* Expectations will have been removed in clean_from_lists,
213 * except TFTP can create an expectation on the first packet,
214 * before connection is in the list, so we need to clean here,
215 * too. */
216 nf_ct_remove_expectations(ct);
217
218 /* We overload first tuple to link into unconfirmed list. */
219 if (!nf_ct_is_confirmed(ct)) {
220 BUG_ON(hlist_nulls_unhashed(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode));
221 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
222 }
223
224 NF_CT_STAT_INC(net, delete);
225 spin_unlock_bh(&nf_conntrack_lock);
226
227 if (ct->master)
228 nf_ct_put(ct->master);
229
230 pr_debug("destroy_conntrack: returning ct=%p to slab\n", ct);
231 nf_conntrack_free(ct);
232 }
233
nf_ct_delete_from_lists(struct nf_conn * ct)234 void nf_ct_delete_from_lists(struct nf_conn *ct)
235 {
236 struct net *net = nf_ct_net(ct);
237
238 nf_ct_helper_destroy(ct);
239 spin_lock_bh(&nf_conntrack_lock);
240 /* Inside lock so preempt is disabled on module removal path.
241 * Otherwise we can get spurious warnings. */
242 NF_CT_STAT_INC(net, delete_list);
243 clean_from_lists(ct);
244 spin_unlock_bh(&nf_conntrack_lock);
245 }
246 EXPORT_SYMBOL_GPL(nf_ct_delete_from_lists);
247
death_by_event(unsigned long ul_conntrack)248 static void death_by_event(unsigned long ul_conntrack)
249 {
250 struct nf_conn *ct = (void *)ul_conntrack;
251 struct net *net = nf_ct_net(ct);
252 struct nf_conntrack_ecache *ecache = nf_ct_ecache_find(ct);
253
254 BUG_ON(ecache == NULL);
255
256 if (nf_conntrack_event(IPCT_DESTROY, ct) < 0) {
257 /* bad luck, let's retry again */
258 ecache->timeout.expires = jiffies +
259 (random32() % net->ct.sysctl_events_retry_timeout);
260 add_timer(&ecache->timeout);
261 return;
262 }
263 /* we've got the event delivered, now it's dying */
264 set_bit(IPS_DYING_BIT, &ct->status);
265 spin_lock(&nf_conntrack_lock);
266 hlist_nulls_del(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
267 spin_unlock(&nf_conntrack_lock);
268 nf_ct_put(ct);
269 }
270
nf_ct_insert_dying_list(struct nf_conn * ct)271 void nf_ct_insert_dying_list(struct nf_conn *ct)
272 {
273 struct net *net = nf_ct_net(ct);
274 struct nf_conntrack_ecache *ecache = nf_ct_ecache_find(ct);
275
276 BUG_ON(ecache == NULL);
277
278 /* add this conntrack to the dying list */
279 spin_lock_bh(&nf_conntrack_lock);
280 hlist_nulls_add_head(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
281 &net->ct.dying);
282 spin_unlock_bh(&nf_conntrack_lock);
283 /* set a new timer to retry event delivery */
284 setup_timer(&ecache->timeout, death_by_event, (unsigned long)ct);
285 ecache->timeout.expires = jiffies +
286 (random32() % net->ct.sysctl_events_retry_timeout);
287 add_timer(&ecache->timeout);
288 }
289 EXPORT_SYMBOL_GPL(nf_ct_insert_dying_list);
290
death_by_timeout(unsigned long ul_conntrack)291 static void death_by_timeout(unsigned long ul_conntrack)
292 {
293 struct nf_conn *ct = (void *)ul_conntrack;
294 struct nf_conn_tstamp *tstamp;
295
296 tstamp = nf_conn_tstamp_find(ct);
297 if (tstamp && tstamp->stop == 0)
298 tstamp->stop = ktime_to_ns(ktime_get_real());
299
300 if (!test_bit(IPS_DYING_BIT, &ct->status) &&
301 unlikely(nf_conntrack_event(IPCT_DESTROY, ct) < 0)) {
302 /* destroy event was not delivered */
303 nf_ct_delete_from_lists(ct);
304 nf_ct_insert_dying_list(ct);
305 return;
306 }
307 set_bit(IPS_DYING_BIT, &ct->status);
308 nf_ct_delete_from_lists(ct);
309 nf_ct_put(ct);
310 }
311
312 /*
313 * Warning :
314 * - Caller must take a reference on returned object
315 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
316 * OR
317 * - Caller must lock nf_conntrack_lock before calling this function
318 */
319 static struct nf_conntrack_tuple_hash *
____nf_conntrack_find(struct net * net,u16 zone,const struct nf_conntrack_tuple * tuple,u32 hash)320 ____nf_conntrack_find(struct net *net, u16 zone,
321 const struct nf_conntrack_tuple *tuple, u32 hash)
322 {
323 struct nf_conntrack_tuple_hash *h;
324 struct hlist_nulls_node *n;
325 unsigned int bucket = hash_bucket(hash, net);
326
327 /* Disable BHs the entire time since we normally need to disable them
328 * at least once for the stats anyway.
329 */
330 local_bh_disable();
331 begin:
332 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[bucket], hnnode) {
333 if (nf_ct_tuple_equal(tuple, &h->tuple) &&
334 nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)) == zone) {
335 NF_CT_STAT_INC(net, found);
336 local_bh_enable();
337 return h;
338 }
339 NF_CT_STAT_INC(net, searched);
340 }
341 /*
342 * if the nulls value we got at the end of this lookup is
343 * not the expected one, we must restart lookup.
344 * We probably met an item that was moved to another chain.
345 */
346 if (get_nulls_value(n) != bucket) {
347 NF_CT_STAT_INC(net, search_restart);
348 goto begin;
349 }
350 local_bh_enable();
351
352 return NULL;
353 }
354
355 struct nf_conntrack_tuple_hash *
__nf_conntrack_find(struct net * net,u16 zone,const struct nf_conntrack_tuple * tuple)356 __nf_conntrack_find(struct net *net, u16 zone,
357 const struct nf_conntrack_tuple *tuple)
358 {
359 return ____nf_conntrack_find(net, zone, tuple,
360 hash_conntrack_raw(tuple, zone));
361 }
362 EXPORT_SYMBOL_GPL(__nf_conntrack_find);
363
364 /* Find a connection corresponding to a tuple. */
365 static struct nf_conntrack_tuple_hash *
__nf_conntrack_find_get(struct net * net,u16 zone,const struct nf_conntrack_tuple * tuple,u32 hash)366 __nf_conntrack_find_get(struct net *net, u16 zone,
367 const struct nf_conntrack_tuple *tuple, u32 hash)
368 {
369 struct nf_conntrack_tuple_hash *h;
370 struct nf_conn *ct;
371
372 rcu_read_lock();
373 begin:
374 h = ____nf_conntrack_find(net, zone, tuple, hash);
375 if (h) {
376 ct = nf_ct_tuplehash_to_ctrack(h);
377 if (unlikely(nf_ct_is_dying(ct) ||
378 !atomic_inc_not_zero(&ct->ct_general.use)))
379 h = NULL;
380 else {
381 if (unlikely(!nf_ct_tuple_equal(tuple, &h->tuple) ||
382 nf_ct_zone(ct) != zone)) {
383 nf_ct_put(ct);
384 goto begin;
385 }
386 }
387 }
388 rcu_read_unlock();
389
390 return h;
391 }
392
393 struct nf_conntrack_tuple_hash *
nf_conntrack_find_get(struct net * net,u16 zone,const struct nf_conntrack_tuple * tuple)394 nf_conntrack_find_get(struct net *net, u16 zone,
395 const struct nf_conntrack_tuple *tuple)
396 {
397 return __nf_conntrack_find_get(net, zone, tuple,
398 hash_conntrack_raw(tuple, zone));
399 }
400 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
401
__nf_conntrack_hash_insert(struct nf_conn * ct,unsigned int hash,unsigned int repl_hash)402 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
403 unsigned int hash,
404 unsigned int repl_hash)
405 {
406 struct net *net = nf_ct_net(ct);
407
408 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
409 &net->ct.hash[hash]);
410 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
411 &net->ct.hash[repl_hash]);
412 }
413
414 int
nf_conntrack_hash_check_insert(struct nf_conn * ct)415 nf_conntrack_hash_check_insert(struct nf_conn *ct)
416 {
417 struct net *net = nf_ct_net(ct);
418 unsigned int hash, repl_hash;
419 struct nf_conntrack_tuple_hash *h;
420 struct hlist_nulls_node *n;
421 u16 zone;
422
423 zone = nf_ct_zone(ct);
424 hash = hash_conntrack(net, zone,
425 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple);
426 repl_hash = hash_conntrack(net, zone,
427 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
428
429 spin_lock_bh(&nf_conntrack_lock);
430
431 /* See if there's one in the list already, including reverse */
432 hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
433 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
434 &h->tuple) &&
435 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
436 goto out;
437 hlist_nulls_for_each_entry(h, n, &net->ct.hash[repl_hash], hnnode)
438 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
439 &h->tuple) &&
440 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
441 goto out;
442
443 add_timer(&ct->timeout);
444 nf_conntrack_get(&ct->ct_general);
445 __nf_conntrack_hash_insert(ct, hash, repl_hash);
446 NF_CT_STAT_INC(net, insert);
447 spin_unlock_bh(&nf_conntrack_lock);
448
449 return 0;
450
451 out:
452 NF_CT_STAT_INC(net, insert_failed);
453 spin_unlock_bh(&nf_conntrack_lock);
454 return -EEXIST;
455 }
456 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
457
458 /* Confirm a connection given skb; places it in hash table */
459 int
__nf_conntrack_confirm(struct sk_buff * skb)460 __nf_conntrack_confirm(struct sk_buff *skb)
461 {
462 unsigned int hash, repl_hash;
463 struct nf_conntrack_tuple_hash *h;
464 struct nf_conn *ct;
465 struct nf_conn_help *help;
466 struct nf_conn_tstamp *tstamp;
467 struct hlist_nulls_node *n;
468 enum ip_conntrack_info ctinfo;
469 struct net *net;
470 u16 zone;
471
472 ct = nf_ct_get(skb, &ctinfo);
473 net = nf_ct_net(ct);
474
475 /* ipt_REJECT uses nf_conntrack_attach to attach related
476 ICMP/TCP RST packets in other direction. Actual packet
477 which created connection will be IP_CT_NEW or for an
478 expected connection, IP_CT_RELATED. */
479 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
480 return NF_ACCEPT;
481
482 zone = nf_ct_zone(ct);
483 /* reuse the hash saved before */
484 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
485 hash = hash_bucket(hash, net);
486 repl_hash = hash_conntrack(net, zone,
487 &ct->tuplehash[IP_CT_DIR_REPLY].tuple);
488
489 /* We're not in hash table, and we refuse to set up related
490 connections for unconfirmed conns. But packet copies and
491 REJECT will give spurious warnings here. */
492 /* NF_CT_ASSERT(atomic_read(&ct->ct_general.use) == 1); */
493
494 /* No external references means no one else could have
495 confirmed us. */
496 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
497 pr_debug("Confirming conntrack %p\n", ct);
498
499 spin_lock_bh(&nf_conntrack_lock);
500
501 /* We have to check the DYING flag inside the lock to prevent
502 a race against nf_ct_get_next_corpse() possibly called from
503 user context, else we insert an already 'dead' hash, blocking
504 further use of that particular connection -JM */
505
506 if (unlikely(nf_ct_is_dying(ct))) {
507 spin_unlock_bh(&nf_conntrack_lock);
508 return NF_ACCEPT;
509 }
510
511 /* See if there's one in the list already, including reverse:
512 NAT could have grabbed it without realizing, since we're
513 not in the hash. If there is, we lost race. */
514 hlist_nulls_for_each_entry(h, n, &net->ct.hash[hash], hnnode)
515 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
516 &h->tuple) &&
517 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
518 goto out;
519 hlist_nulls_for_each_entry(h, n, &net->ct.hash[repl_hash], hnnode)
520 if (nf_ct_tuple_equal(&ct->tuplehash[IP_CT_DIR_REPLY].tuple,
521 &h->tuple) &&
522 zone == nf_ct_zone(nf_ct_tuplehash_to_ctrack(h)))
523 goto out;
524
525 /* Remove from unconfirmed list */
526 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
527
528 /* Timer relative to confirmation time, not original
529 setting time, otherwise we'd get timer wrap in
530 weird delay cases. */
531 ct->timeout.expires += jiffies;
532 add_timer(&ct->timeout);
533 atomic_inc(&ct->ct_general.use);
534 ct->status |= IPS_CONFIRMED;
535
536 /* set conntrack timestamp, if enabled. */
537 tstamp = nf_conn_tstamp_find(ct);
538 if (tstamp) {
539 if (skb->tstamp.tv64 == 0)
540 __net_timestamp((struct sk_buff *)skb);
541
542 tstamp->start = ktime_to_ns(skb->tstamp);
543 }
544 /* Since the lookup is lockless, hash insertion must be done after
545 * starting the timer and setting the CONFIRMED bit. The RCU barriers
546 * guarantee that no other CPU can find the conntrack before the above
547 * stores are visible.
548 */
549 __nf_conntrack_hash_insert(ct, hash, repl_hash);
550 NF_CT_STAT_INC(net, insert);
551 spin_unlock_bh(&nf_conntrack_lock);
552
553 help = nfct_help(ct);
554 if (help && help->helper)
555 nf_conntrack_event_cache(IPCT_HELPER, ct);
556
557 nf_conntrack_event_cache(master_ct(ct) ?
558 IPCT_RELATED : IPCT_NEW, ct);
559 return NF_ACCEPT;
560
561 out:
562 NF_CT_STAT_INC(net, insert_failed);
563 spin_unlock_bh(&nf_conntrack_lock);
564 return NF_DROP;
565 }
566 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
567
568 /* Returns true if a connection correspondings to the tuple (required
569 for NAT). */
570 int
nf_conntrack_tuple_taken(const struct nf_conntrack_tuple * tuple,const struct nf_conn * ignored_conntrack)571 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
572 const struct nf_conn *ignored_conntrack)
573 {
574 struct net *net = nf_ct_net(ignored_conntrack);
575 struct nf_conntrack_tuple_hash *h;
576 struct hlist_nulls_node *n;
577 struct nf_conn *ct;
578 u16 zone = nf_ct_zone(ignored_conntrack);
579 unsigned int hash = hash_conntrack(net, zone, tuple);
580
581 /* Disable BHs the entire time since we need to disable them at
582 * least once for the stats anyway.
583 */
584 rcu_read_lock_bh();
585 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash], hnnode) {
586 ct = nf_ct_tuplehash_to_ctrack(h);
587 if (ct != ignored_conntrack &&
588 nf_ct_tuple_equal(tuple, &h->tuple) &&
589 nf_ct_zone(ct) == zone) {
590 NF_CT_STAT_INC(net, found);
591 rcu_read_unlock_bh();
592 return 1;
593 }
594 NF_CT_STAT_INC(net, searched);
595 }
596 rcu_read_unlock_bh();
597
598 return 0;
599 }
600 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
601
602 #define NF_CT_EVICTION_RANGE 8
603
604 /* There's a small race here where we may free a just-assured
605 connection. Too bad: we're in trouble anyway. */
early_drop(struct net * net,unsigned int hash)606 static noinline int early_drop(struct net *net, unsigned int hash)
607 {
608 /* Use oldest entry, which is roughly LRU */
609 struct nf_conntrack_tuple_hash *h;
610 struct nf_conn *ct = NULL, *tmp;
611 struct hlist_nulls_node *n;
612 unsigned int i, cnt = 0;
613 int dropped = 0;
614
615 rcu_read_lock();
616 for (i = 0; i < net->ct.htable_size; i++) {
617 hlist_nulls_for_each_entry_rcu(h, n, &net->ct.hash[hash],
618 hnnode) {
619 tmp = nf_ct_tuplehash_to_ctrack(h);
620 if (!test_bit(IPS_ASSURED_BIT, &tmp->status))
621 ct = tmp;
622 cnt++;
623 }
624
625 if (ct != NULL) {
626 if (likely(!nf_ct_is_dying(ct) &&
627 atomic_inc_not_zero(&ct->ct_general.use)))
628 break;
629 else
630 ct = NULL;
631 }
632
633 if (cnt >= NF_CT_EVICTION_RANGE)
634 break;
635
636 hash = (hash + 1) % net->ct.htable_size;
637 }
638 rcu_read_unlock();
639
640 if (!ct)
641 return dropped;
642
643 if (del_timer(&ct->timeout)) {
644 death_by_timeout((unsigned long)ct);
645 /* Check if we indeed killed this entry. Reliable event
646 delivery may have inserted it into the dying list. */
647 if (test_bit(IPS_DYING_BIT, &ct->status)) {
648 dropped = 1;
649 NF_CT_STAT_INC_ATOMIC(net, early_drop);
650 }
651 }
652 nf_ct_put(ct);
653 return dropped;
654 }
655
init_nf_conntrack_hash_rnd(void)656 void init_nf_conntrack_hash_rnd(void)
657 {
658 unsigned int rand;
659
660 /*
661 * Why not initialize nf_conntrack_rnd in a "init()" function ?
662 * Because there isn't enough entropy when system initializing,
663 * and we initialize it as late as possible.
664 */
665 do {
666 get_random_bytes(&rand, sizeof(rand));
667 } while (!rand);
668 cmpxchg(&nf_conntrack_hash_rnd, 0, rand);
669 }
670
671 static struct nf_conn *
__nf_conntrack_alloc(struct net * net,u16 zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp,u32 hash)672 __nf_conntrack_alloc(struct net *net, u16 zone,
673 const struct nf_conntrack_tuple *orig,
674 const struct nf_conntrack_tuple *repl,
675 gfp_t gfp, u32 hash)
676 {
677 struct nf_conn *ct;
678
679 if (unlikely(!nf_conntrack_hash_rnd)) {
680 init_nf_conntrack_hash_rnd();
681 /* recompute the hash as nf_conntrack_hash_rnd is initialized */
682 hash = hash_conntrack_raw(orig, zone);
683 }
684
685 /* We don't want any race condition at early drop stage */
686 atomic_inc(&net->ct.count);
687
688 if (nf_conntrack_max &&
689 unlikely(atomic_read(&net->ct.count) > nf_conntrack_max)) {
690 if (!early_drop(net, hash_bucket(hash, net))) {
691 atomic_dec(&net->ct.count);
692 if (net_ratelimit())
693 printk(KERN_WARNING
694 "nf_conntrack: table full, dropping"
695 " packet.\n");
696 return ERR_PTR(-ENOMEM);
697 }
698 }
699
700 /*
701 * Do not use kmem_cache_zalloc(), as this cache uses
702 * SLAB_DESTROY_BY_RCU.
703 */
704 ct = kmem_cache_alloc(net->ct.nf_conntrack_cachep, gfp);
705 if (ct == NULL) {
706 atomic_dec(&net->ct.count);
707 return ERR_PTR(-ENOMEM);
708 }
709 /*
710 * Let ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.next
711 * and ct->tuplehash[IP_CT_DIR_REPLY].hnnode.next unchanged.
712 */
713 memset(&ct->tuplehash[IP_CT_DIR_MAX], 0,
714 offsetof(struct nf_conn, proto) -
715 offsetof(struct nf_conn, tuplehash[IP_CT_DIR_MAX]));
716 spin_lock_init(&ct->lock);
717 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
718 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
719 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
720 /* save hash for reusing when confirming */
721 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
722 /* Don't set timer yet: wait for confirmation */
723 setup_timer(&ct->timeout, death_by_timeout, (unsigned long)ct);
724 write_pnet(&ct->ct_net, net);
725 #ifdef CONFIG_NF_CONNTRACK_ZONES
726 if (zone) {
727 struct nf_conntrack_zone *nf_ct_zone;
728
729 nf_ct_zone = nf_ct_ext_add(ct, NF_CT_EXT_ZONE, GFP_ATOMIC);
730 if (!nf_ct_zone)
731 goto out_free;
732 nf_ct_zone->id = zone;
733 }
734 #endif
735 /*
736 * changes to lookup keys must be done before setting refcnt to 1
737 */
738 smp_wmb();
739 atomic_set(&ct->ct_general.use, 1);
740 return ct;
741
742 #ifdef CONFIG_NF_CONNTRACK_ZONES
743 out_free:
744 atomic_dec(&net->ct.count);
745 kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
746 return ERR_PTR(-ENOMEM);
747 #endif
748 }
749
nf_conntrack_alloc(struct net * net,u16 zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp)750 struct nf_conn *nf_conntrack_alloc(struct net *net, u16 zone,
751 const struct nf_conntrack_tuple *orig,
752 const struct nf_conntrack_tuple *repl,
753 gfp_t gfp)
754 {
755 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
756 }
757 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
758
nf_conntrack_free(struct nf_conn * ct)759 void nf_conntrack_free(struct nf_conn *ct)
760 {
761 struct net *net = nf_ct_net(ct);
762
763 nf_ct_ext_destroy(ct);
764 atomic_dec(&net->ct.count);
765 nf_ct_ext_free(ct);
766 kmem_cache_free(net->ct.nf_conntrack_cachep, ct);
767 }
768 EXPORT_SYMBOL_GPL(nf_conntrack_free);
769
770 /* Allocate a new conntrack: we return -ENOMEM if classification
771 failed due to stress. Otherwise it really is unclassifiable. */
772 static struct nf_conntrack_tuple_hash *
init_conntrack(struct net * net,struct nf_conn * tmpl,const struct nf_conntrack_tuple * tuple,struct nf_conntrack_l3proto * l3proto,struct nf_conntrack_l4proto * l4proto,struct sk_buff * skb,unsigned int dataoff,u32 hash)773 init_conntrack(struct net *net, struct nf_conn *tmpl,
774 const struct nf_conntrack_tuple *tuple,
775 struct nf_conntrack_l3proto *l3proto,
776 struct nf_conntrack_l4proto *l4proto,
777 struct sk_buff *skb,
778 unsigned int dataoff, u32 hash)
779 {
780 struct nf_conn *ct;
781 struct nf_conn_help *help;
782 struct nf_conntrack_tuple repl_tuple;
783 struct nf_conntrack_ecache *ecache;
784 struct nf_conntrack_expect *exp;
785 u16 zone = tmpl ? nf_ct_zone(tmpl) : NF_CT_DEFAULT_ZONE;
786 struct nf_conn_timeout *timeout_ext;
787 unsigned int *timeouts;
788
789 if (!nf_ct_invert_tuple(&repl_tuple, tuple, l3proto, l4proto)) {
790 pr_debug("Can't invert tuple.\n");
791 return NULL;
792 }
793
794 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
795 hash);
796 if (IS_ERR(ct))
797 return (struct nf_conntrack_tuple_hash *)ct;
798
799 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
800 if (timeout_ext)
801 timeouts = NF_CT_TIMEOUT_EXT_DATA(timeout_ext);
802 else
803 timeouts = l4proto->get_timeouts(net);
804
805 if (!l4proto->new(ct, skb, dataoff, timeouts)) {
806 nf_conntrack_free(ct);
807 pr_debug("init conntrack: can't track with proto module\n");
808 return NULL;
809 }
810
811 if (timeout_ext)
812 nf_ct_timeout_ext_add(ct, timeout_ext->timeout, GFP_ATOMIC);
813
814 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
815 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
816
817 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
818 nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
819 ecache ? ecache->expmask : 0,
820 GFP_ATOMIC);
821
822 spin_lock_bh(&nf_conntrack_lock);
823 exp = nf_ct_find_expectation(net, zone, tuple);
824 if (exp) {
825 pr_debug("conntrack: expectation arrives ct=%p exp=%p\n",
826 ct, exp);
827 /* Welcome, Mr. Bond. We've been expecting you... */
828 __set_bit(IPS_EXPECTED_BIT, &ct->status);
829 ct->master = exp->master;
830 if (exp->helper) {
831 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
832 if (help)
833 rcu_assign_pointer(help->helper, exp->helper);
834 }
835
836 #ifdef CONFIG_NF_CONNTRACK_MARK
837 ct->mark = exp->master->mark;
838 #endif
839 #ifdef CONFIG_NF_CONNTRACK_SECMARK
840 ct->secmark = exp->master->secmark;
841 #endif
842 nf_conntrack_get(&ct->master->ct_general);
843 NF_CT_STAT_INC(net, expect_new);
844 } else {
845 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
846 NF_CT_STAT_INC(net, new);
847 }
848
849 /* Overload tuple linked list to put us in unconfirmed list. */
850 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
851 &net->ct.unconfirmed);
852
853 spin_unlock_bh(&nf_conntrack_lock);
854
855 if (exp) {
856 if (exp->expectfn)
857 exp->expectfn(ct, exp);
858 nf_ct_expect_put(exp);
859 }
860
861 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
862 }
863
864 /* On success, returns conntrack ptr, sets skb->nfct and ctinfo */
865 static inline struct nf_conn *
resolve_normal_ct(struct net * net,struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u_int16_t l3num,u_int8_t protonum,struct nf_conntrack_l3proto * l3proto,struct nf_conntrack_l4proto * l4proto,int * set_reply,enum ip_conntrack_info * ctinfo)866 resolve_normal_ct(struct net *net, struct nf_conn *tmpl,
867 struct sk_buff *skb,
868 unsigned int dataoff,
869 u_int16_t l3num,
870 u_int8_t protonum,
871 struct nf_conntrack_l3proto *l3proto,
872 struct nf_conntrack_l4proto *l4proto,
873 int *set_reply,
874 enum ip_conntrack_info *ctinfo)
875 {
876 struct nf_conntrack_tuple tuple;
877 struct nf_conntrack_tuple_hash *h;
878 struct nf_conn *ct;
879 u16 zone = tmpl ? nf_ct_zone(tmpl) : NF_CT_DEFAULT_ZONE;
880 u32 hash;
881
882 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
883 dataoff, l3num, protonum, &tuple, l3proto,
884 l4proto)) {
885 pr_debug("resolve_normal_ct: Can't get tuple\n");
886 return NULL;
887 }
888
889 /* look for tuple match */
890 hash = hash_conntrack_raw(&tuple, zone);
891 h = __nf_conntrack_find_get(net, zone, &tuple, hash);
892 if (!h) {
893 h = init_conntrack(net, tmpl, &tuple, l3proto, l4proto,
894 skb, dataoff, hash);
895 if (!h)
896 return NULL;
897 if (IS_ERR(h))
898 return (void *)h;
899 }
900 ct = nf_ct_tuplehash_to_ctrack(h);
901
902 /* It exists; we have (non-exclusive) reference. */
903 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
904 *ctinfo = IP_CT_ESTABLISHED_REPLY;
905 /* Please set reply bit if this packet OK */
906 *set_reply = 1;
907 } else {
908 /* Once we've had two way comms, always ESTABLISHED. */
909 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
910 pr_debug("nf_conntrack_in: normal packet for %p\n", ct);
911 *ctinfo = IP_CT_ESTABLISHED;
912 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
913 pr_debug("nf_conntrack_in: related packet for %p\n",
914 ct);
915 *ctinfo = IP_CT_RELATED;
916 } else {
917 pr_debug("nf_conntrack_in: new packet for %p\n", ct);
918 *ctinfo = IP_CT_NEW;
919 }
920 *set_reply = 0;
921 }
922 skb->nfct = &ct->ct_general;
923 skb->nfctinfo = *ctinfo;
924 return ct;
925 }
926
927 unsigned int
nf_conntrack_in(struct net * net,u_int8_t pf,unsigned int hooknum,struct sk_buff * skb)928 nf_conntrack_in(struct net *net, u_int8_t pf, unsigned int hooknum,
929 struct sk_buff *skb)
930 {
931 struct nf_conn *ct, *tmpl = NULL;
932 enum ip_conntrack_info ctinfo;
933 struct nf_conntrack_l3proto *l3proto;
934 struct nf_conntrack_l4proto *l4proto;
935 struct nf_conn_timeout *timeout_ext;
936 unsigned int *timeouts;
937 unsigned int dataoff;
938 u_int8_t protonum;
939 int set_reply = 0;
940 int ret;
941
942 if (skb->nfct) {
943 /* Previously seen (loopback or untracked)? Ignore. */
944 tmpl = (struct nf_conn *)skb->nfct;
945 if (!nf_ct_is_template(tmpl)) {
946 NF_CT_STAT_INC_ATOMIC(net, ignore);
947 return NF_ACCEPT;
948 }
949 skb->nfct = NULL;
950 }
951
952 /* rcu_read_lock()ed by nf_hook_slow */
953 l3proto = __nf_ct_l3proto_find(pf);
954 ret = l3proto->get_l4proto(skb, skb_network_offset(skb),
955 &dataoff, &protonum);
956 if (ret <= 0) {
957 pr_debug("not prepared to track yet or error occurred\n");
958 NF_CT_STAT_INC_ATOMIC(net, error);
959 NF_CT_STAT_INC_ATOMIC(net, invalid);
960 ret = -ret;
961 goto out;
962 }
963
964 l4proto = __nf_ct_l4proto_find(pf, protonum);
965
966 /* It may be an special packet, error, unclean...
967 * inverse of the return code tells to the netfilter
968 * core what to do with the packet. */
969 if (l4proto->error != NULL) {
970 ret = l4proto->error(net, tmpl, skb, dataoff, &ctinfo,
971 pf, hooknum);
972 if (ret <= 0) {
973 NF_CT_STAT_INC_ATOMIC(net, error);
974 NF_CT_STAT_INC_ATOMIC(net, invalid);
975 ret = -ret;
976 goto out;
977 }
978 /* ICMP[v6] protocol trackers may assign one conntrack. */
979 if (skb->nfct)
980 goto out;
981 }
982
983 ct = resolve_normal_ct(net, tmpl, skb, dataoff, pf, protonum,
984 l3proto, l4proto, &set_reply, &ctinfo);
985 if (!ct) {
986 /* Not valid part of a connection */
987 NF_CT_STAT_INC_ATOMIC(net, invalid);
988 ret = NF_ACCEPT;
989 goto out;
990 }
991
992 if (IS_ERR(ct)) {
993 /* Too stressed to deal. */
994 NF_CT_STAT_INC_ATOMIC(net, drop);
995 ret = NF_DROP;
996 goto out;
997 }
998
999 NF_CT_ASSERT(skb->nfct);
1000
1001 /* Decide what timeout policy we want to apply to this flow. */
1002 timeout_ext = nf_ct_timeout_find(ct);
1003 if (timeout_ext)
1004 timeouts = NF_CT_TIMEOUT_EXT_DATA(timeout_ext);
1005 else
1006 timeouts = l4proto->get_timeouts(net);
1007
1008 ret = l4proto->packet(ct, skb, dataoff, ctinfo, pf, hooknum, timeouts);
1009 if (ret <= 0) {
1010 /* Invalid: inverse of the return code tells
1011 * the netfilter core what to do */
1012 pr_debug("nf_conntrack_in: Can't track with proto module\n");
1013 nf_conntrack_put(skb->nfct);
1014 skb->nfct = NULL;
1015 NF_CT_STAT_INC_ATOMIC(net, invalid);
1016 if (ret == -NF_DROP)
1017 NF_CT_STAT_INC_ATOMIC(net, drop);
1018 ret = -ret;
1019 goto out;
1020 }
1021
1022 if (set_reply && !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
1023 nf_conntrack_event_cache(IPCT_REPLY, ct);
1024 out:
1025 if (tmpl) {
1026 /* Special case: we have to repeat this hook, assign the
1027 * template again to this packet. We assume that this packet
1028 * has no conntrack assigned. This is used by nf_ct_tcp. */
1029 if (ret == NF_REPEAT)
1030 skb->nfct = (struct nf_conntrack *)tmpl;
1031 else
1032 nf_ct_put(tmpl);
1033 }
1034
1035 return ret;
1036 }
1037 EXPORT_SYMBOL_GPL(nf_conntrack_in);
1038
nf_ct_invert_tuplepr(struct nf_conntrack_tuple * inverse,const struct nf_conntrack_tuple * orig)1039 bool nf_ct_invert_tuplepr(struct nf_conntrack_tuple *inverse,
1040 const struct nf_conntrack_tuple *orig)
1041 {
1042 bool ret;
1043
1044 rcu_read_lock();
1045 ret = nf_ct_invert_tuple(inverse, orig,
1046 __nf_ct_l3proto_find(orig->src.l3num),
1047 __nf_ct_l4proto_find(orig->src.l3num,
1048 orig->dst.protonum));
1049 rcu_read_unlock();
1050 return ret;
1051 }
1052 EXPORT_SYMBOL_GPL(nf_ct_invert_tuplepr);
1053
1054 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
1055 implicitly racy: see __nf_conntrack_confirm */
nf_conntrack_alter_reply(struct nf_conn * ct,const struct nf_conntrack_tuple * newreply)1056 void nf_conntrack_alter_reply(struct nf_conn *ct,
1057 const struct nf_conntrack_tuple *newreply)
1058 {
1059 struct nf_conn_help *help = nfct_help(ct);
1060
1061 /* Should be unconfirmed, so not in hash table yet */
1062 NF_CT_ASSERT(!nf_ct_is_confirmed(ct));
1063
1064 pr_debug("Altering reply tuple of %p to ", ct);
1065 nf_ct_dump_tuple(newreply);
1066
1067 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
1068 if (ct->master || (help && !hlist_empty(&help->expectations)))
1069 return;
1070
1071 rcu_read_lock();
1072 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
1073 rcu_read_unlock();
1074 }
1075 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
1076
1077 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
__nf_ct_refresh_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb,unsigned long extra_jiffies,int do_acct)1078 void __nf_ct_refresh_acct(struct nf_conn *ct,
1079 enum ip_conntrack_info ctinfo,
1080 const struct sk_buff *skb,
1081 unsigned long extra_jiffies,
1082 int do_acct)
1083 {
1084 NF_CT_ASSERT(ct->timeout.data == (unsigned long)ct);
1085 NF_CT_ASSERT(skb);
1086
1087 /* Only update if this is not a fixed timeout */
1088 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
1089 goto acct;
1090
1091 /* If not in hash table, timer will not be active yet */
1092 if (!nf_ct_is_confirmed(ct)) {
1093 ct->timeout.expires = extra_jiffies;
1094 } else {
1095 unsigned long newtime = jiffies + extra_jiffies;
1096
1097 /* Only update the timeout if the new timeout is at least
1098 HZ jiffies from the old timeout. Need del_timer for race
1099 avoidance (may already be dying). */
1100 if (newtime - ct->timeout.expires >= HZ)
1101 mod_timer_pending(&ct->timeout, newtime);
1102 }
1103
1104 acct:
1105 if (do_acct) {
1106 struct nf_conn_counter *acct;
1107
1108 acct = nf_conn_acct_find(ct);
1109 if (acct) {
1110 atomic64_inc(&acct[CTINFO2DIR(ctinfo)].packets);
1111 atomic64_add(skb->len, &acct[CTINFO2DIR(ctinfo)].bytes);
1112 }
1113 }
1114 }
1115 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
1116
__nf_ct_kill_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb,int do_acct)1117 bool __nf_ct_kill_acct(struct nf_conn *ct,
1118 enum ip_conntrack_info ctinfo,
1119 const struct sk_buff *skb,
1120 int do_acct)
1121 {
1122 if (do_acct) {
1123 struct nf_conn_counter *acct;
1124
1125 acct = nf_conn_acct_find(ct);
1126 if (acct) {
1127 atomic64_inc(&acct[CTINFO2DIR(ctinfo)].packets);
1128 atomic64_add(skb->len - skb_network_offset(skb),
1129 &acct[CTINFO2DIR(ctinfo)].bytes);
1130 }
1131 }
1132
1133 if (del_timer(&ct->timeout)) {
1134 ct->timeout.function((unsigned long)ct);
1135 return true;
1136 }
1137 return false;
1138 }
1139 EXPORT_SYMBOL_GPL(__nf_ct_kill_acct);
1140
1141 #ifdef CONFIG_NF_CONNTRACK_ZONES
1142 static struct nf_ct_ext_type nf_ct_zone_extend __read_mostly = {
1143 .len = sizeof(struct nf_conntrack_zone),
1144 .align = __alignof__(struct nf_conntrack_zone),
1145 .id = NF_CT_EXT_ZONE,
1146 };
1147 #endif
1148
1149 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1150
1151 #include <linux/netfilter/nfnetlink.h>
1152 #include <linux/netfilter/nfnetlink_conntrack.h>
1153 #include <linux/mutex.h>
1154
1155 /* Generic function for tcp/udp/sctp/dccp and alike. This needs to be
1156 * in ip_conntrack_core, since we don't want the protocols to autoload
1157 * or depend on ctnetlink */
nf_ct_port_tuple_to_nlattr(struct sk_buff * skb,const struct nf_conntrack_tuple * tuple)1158 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
1159 const struct nf_conntrack_tuple *tuple)
1160 {
1161 NLA_PUT_BE16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port);
1162 NLA_PUT_BE16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port);
1163 return 0;
1164
1165 nla_put_failure:
1166 return -1;
1167 }
1168 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
1169
1170 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
1171 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
1172 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
1173 };
1174 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
1175
nf_ct_port_nlattr_to_tuple(struct nlattr * tb[],struct nf_conntrack_tuple * t)1176 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
1177 struct nf_conntrack_tuple *t)
1178 {
1179 if (!tb[CTA_PROTO_SRC_PORT] || !tb[CTA_PROTO_DST_PORT])
1180 return -EINVAL;
1181
1182 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
1183 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
1184
1185 return 0;
1186 }
1187 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
1188
nf_ct_port_nlattr_tuple_size(void)1189 int nf_ct_port_nlattr_tuple_size(void)
1190 {
1191 return nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1192 }
1193 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
1194 #endif
1195
1196 /* Used by ipt_REJECT and ip6t_REJECT. */
nf_conntrack_attach(struct sk_buff * nskb,struct sk_buff * skb)1197 static void nf_conntrack_attach(struct sk_buff *nskb, struct sk_buff *skb)
1198 {
1199 struct nf_conn *ct;
1200 enum ip_conntrack_info ctinfo;
1201
1202 /* This ICMP is in reverse direction to the packet which caused it */
1203 ct = nf_ct_get(skb, &ctinfo);
1204 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
1205 ctinfo = IP_CT_RELATED_REPLY;
1206 else
1207 ctinfo = IP_CT_RELATED;
1208
1209 /* Attach to new skbuff, and increment count */
1210 nskb->nfct = &ct->ct_general;
1211 nskb->nfctinfo = ctinfo;
1212 nf_conntrack_get(nskb->nfct);
1213 }
1214
1215 /* Bring out ya dead! */
1216 static struct nf_conn *
get_next_corpse(struct net * net,int (* iter)(struct nf_conn * i,void * data),void * data,unsigned int * bucket)1217 get_next_corpse(struct net *net, int (*iter)(struct nf_conn *i, void *data),
1218 void *data, unsigned int *bucket)
1219 {
1220 struct nf_conntrack_tuple_hash *h;
1221 struct nf_conn *ct;
1222 struct hlist_nulls_node *n;
1223
1224 spin_lock_bh(&nf_conntrack_lock);
1225 for (; *bucket < net->ct.htable_size; (*bucket)++) {
1226 hlist_nulls_for_each_entry(h, n, &net->ct.hash[*bucket], hnnode) {
1227 ct = nf_ct_tuplehash_to_ctrack(h);
1228 if (iter(ct, data))
1229 goto found;
1230 }
1231 }
1232 hlist_nulls_for_each_entry(h, n, &net->ct.unconfirmed, hnnode) {
1233 ct = nf_ct_tuplehash_to_ctrack(h);
1234 if (iter(ct, data))
1235 set_bit(IPS_DYING_BIT, &ct->status);
1236 }
1237 spin_unlock_bh(&nf_conntrack_lock);
1238 return NULL;
1239 found:
1240 atomic_inc(&ct->ct_general.use);
1241 spin_unlock_bh(&nf_conntrack_lock);
1242 return ct;
1243 }
1244
nf_ct_iterate_cleanup(struct net * net,int (* iter)(struct nf_conn * i,void * data),void * data)1245 void nf_ct_iterate_cleanup(struct net *net,
1246 int (*iter)(struct nf_conn *i, void *data),
1247 void *data)
1248 {
1249 struct nf_conn *ct;
1250 unsigned int bucket = 0;
1251
1252 while ((ct = get_next_corpse(net, iter, data, &bucket)) != NULL) {
1253 /* Time to push up daises... */
1254 if (del_timer(&ct->timeout))
1255 death_by_timeout((unsigned long)ct);
1256 /* ... else the timer will get him soon. */
1257
1258 nf_ct_put(ct);
1259 }
1260 }
1261 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup);
1262
1263 struct __nf_ct_flush_report {
1264 u32 pid;
1265 int report;
1266 };
1267
kill_report(struct nf_conn * i,void * data)1268 static int kill_report(struct nf_conn *i, void *data)
1269 {
1270 struct __nf_ct_flush_report *fr = (struct __nf_ct_flush_report *)data;
1271 struct nf_conn_tstamp *tstamp;
1272
1273 tstamp = nf_conn_tstamp_find(i);
1274 if (tstamp && tstamp->stop == 0)
1275 tstamp->stop = ktime_to_ns(ktime_get_real());
1276
1277 /* If we fail to deliver the event, death_by_timeout() will retry */
1278 if (nf_conntrack_event_report(IPCT_DESTROY, i,
1279 fr->pid, fr->report) < 0)
1280 return 1;
1281
1282 /* Avoid the delivery of the destroy event in death_by_timeout(). */
1283 set_bit(IPS_DYING_BIT, &i->status);
1284 return 1;
1285 }
1286
kill_all(struct nf_conn * i,void * data)1287 static int kill_all(struct nf_conn *i, void *data)
1288 {
1289 return 1;
1290 }
1291
nf_ct_free_hashtable(void * hash,unsigned int size)1292 void nf_ct_free_hashtable(void *hash, unsigned int size)
1293 {
1294 if (is_vmalloc_addr(hash))
1295 vfree(hash);
1296 else
1297 free_pages((unsigned long)hash,
1298 get_order(sizeof(struct hlist_head) * size));
1299 }
1300 EXPORT_SYMBOL_GPL(nf_ct_free_hashtable);
1301
nf_conntrack_flush_report(struct net * net,u32 pid,int report)1302 void nf_conntrack_flush_report(struct net *net, u32 pid, int report)
1303 {
1304 struct __nf_ct_flush_report fr = {
1305 .pid = pid,
1306 .report = report,
1307 };
1308 nf_ct_iterate_cleanup(net, kill_report, &fr);
1309 }
1310 EXPORT_SYMBOL_GPL(nf_conntrack_flush_report);
1311
nf_ct_release_dying_list(struct net * net)1312 static void nf_ct_release_dying_list(struct net *net)
1313 {
1314 struct nf_conntrack_tuple_hash *h;
1315 struct nf_conn *ct;
1316 struct hlist_nulls_node *n;
1317
1318 spin_lock_bh(&nf_conntrack_lock);
1319 hlist_nulls_for_each_entry(h, n, &net->ct.dying, hnnode) {
1320 ct = nf_ct_tuplehash_to_ctrack(h);
1321 /* never fails to remove them, no listeners at this point */
1322 nf_ct_kill(ct);
1323 }
1324 spin_unlock_bh(&nf_conntrack_lock);
1325 }
1326
untrack_refs(void)1327 static int untrack_refs(void)
1328 {
1329 int cnt = 0, cpu;
1330
1331 for_each_possible_cpu(cpu) {
1332 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1333
1334 cnt += atomic_read(&ct->ct_general.use) - 1;
1335 }
1336 return cnt;
1337 }
1338
nf_conntrack_cleanup_init_net(void)1339 static void nf_conntrack_cleanup_init_net(void)
1340 {
1341 while (untrack_refs() > 0)
1342 schedule();
1343
1344 nf_conntrack_helper_fini();
1345 nf_conntrack_proto_fini();
1346 #ifdef CONFIG_NF_CONNTRACK_ZONES
1347 nf_ct_extend_unregister(&nf_ct_zone_extend);
1348 #endif
1349 }
1350
nf_conntrack_cleanup_net(struct net * net)1351 static void nf_conntrack_cleanup_net(struct net *net)
1352 {
1353 i_see_dead_people:
1354 nf_ct_iterate_cleanup(net, kill_all, NULL);
1355 nf_ct_release_dying_list(net);
1356 if (atomic_read(&net->ct.count) != 0) {
1357 schedule();
1358 goto i_see_dead_people;
1359 }
1360
1361 nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1362 nf_conntrack_timeout_fini(net);
1363 nf_conntrack_ecache_fini(net);
1364 nf_conntrack_tstamp_fini(net);
1365 nf_conntrack_acct_fini(net);
1366 nf_conntrack_expect_fini(net);
1367 kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1368 kfree(net->ct.slabname);
1369 free_percpu(net->ct.stat);
1370 }
1371
1372 /* Mishearing the voices in his head, our hero wonders how he's
1373 supposed to kill the mall. */
nf_conntrack_cleanup(struct net * net)1374 void nf_conntrack_cleanup(struct net *net)
1375 {
1376 if (net_eq(net, &init_net))
1377 RCU_INIT_POINTER(ip_ct_attach, NULL);
1378
1379 /* This makes sure all current packets have passed through
1380 netfilter framework. Roll on, two-stage module
1381 delete... */
1382 synchronize_net();
1383
1384 nf_conntrack_cleanup_net(net);
1385
1386 if (net_eq(net, &init_net)) {
1387 RCU_INIT_POINTER(nf_ct_destroy, NULL);
1388 nf_conntrack_cleanup_init_net();
1389 }
1390 }
1391
nf_ct_alloc_hashtable(unsigned int * sizep,int nulls)1392 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
1393 {
1394 struct hlist_nulls_head *hash;
1395 unsigned int nr_slots, i;
1396 size_t sz;
1397
1398 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
1399 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
1400 sz = nr_slots * sizeof(struct hlist_nulls_head);
1401 hash = (void *)__get_free_pages(GFP_KERNEL | __GFP_NOWARN | __GFP_ZERO,
1402 get_order(sz));
1403 if (!hash) {
1404 printk(KERN_WARNING "nf_conntrack: falling back to vmalloc.\n");
1405 hash = vzalloc(sz);
1406 }
1407
1408 if (hash && nulls)
1409 for (i = 0; i < nr_slots; i++)
1410 INIT_HLIST_NULLS_HEAD(&hash[i], i);
1411
1412 return hash;
1413 }
1414 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
1415
nf_conntrack_set_hashsize(const char * val,struct kernel_param * kp)1416 int nf_conntrack_set_hashsize(const char *val, struct kernel_param *kp)
1417 {
1418 int i, bucket;
1419 unsigned int hashsize, old_size;
1420 struct hlist_nulls_head *hash, *old_hash;
1421 struct nf_conntrack_tuple_hash *h;
1422 struct nf_conn *ct;
1423
1424 if (current->nsproxy->net_ns != &init_net)
1425 return -EOPNOTSUPP;
1426
1427 /* On boot, we can set this without any fancy locking. */
1428 if (!nf_conntrack_htable_size)
1429 return param_set_uint(val, kp);
1430
1431 hashsize = simple_strtoul(val, NULL, 0);
1432 if (!hashsize)
1433 return -EINVAL;
1434
1435 hash = nf_ct_alloc_hashtable(&hashsize, 1);
1436 if (!hash)
1437 return -ENOMEM;
1438
1439 /* Lookups in the old hash might happen in parallel, which means we
1440 * might get false negatives during connection lookup. New connections
1441 * created because of a false negative won't make it into the hash
1442 * though since that required taking the lock.
1443 */
1444 spin_lock_bh(&nf_conntrack_lock);
1445 for (i = 0; i < init_net.ct.htable_size; i++) {
1446 while (!hlist_nulls_empty(&init_net.ct.hash[i])) {
1447 h = hlist_nulls_entry(init_net.ct.hash[i].first,
1448 struct nf_conntrack_tuple_hash, hnnode);
1449 ct = nf_ct_tuplehash_to_ctrack(h);
1450 hlist_nulls_del_rcu(&h->hnnode);
1451 bucket = __hash_conntrack(&h->tuple, nf_ct_zone(ct),
1452 hashsize);
1453 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
1454 }
1455 }
1456 old_size = init_net.ct.htable_size;
1457 old_hash = init_net.ct.hash;
1458
1459 init_net.ct.htable_size = nf_conntrack_htable_size = hashsize;
1460 init_net.ct.hash = hash;
1461 spin_unlock_bh(&nf_conntrack_lock);
1462
1463 nf_ct_free_hashtable(old_hash, old_size);
1464 return 0;
1465 }
1466 EXPORT_SYMBOL_GPL(nf_conntrack_set_hashsize);
1467
1468 module_param_call(hashsize, nf_conntrack_set_hashsize, param_get_uint,
1469 &nf_conntrack_htable_size, 0600);
1470
nf_ct_untracked_status_or(unsigned long bits)1471 void nf_ct_untracked_status_or(unsigned long bits)
1472 {
1473 int cpu;
1474
1475 for_each_possible_cpu(cpu)
1476 per_cpu(nf_conntrack_untracked, cpu).status |= bits;
1477 }
1478 EXPORT_SYMBOL_GPL(nf_ct_untracked_status_or);
1479
nf_conntrack_init_init_net(void)1480 static int nf_conntrack_init_init_net(void)
1481 {
1482 int max_factor = 8;
1483 int ret, cpu;
1484
1485 /* Idea from tcp.c: use 1/16384 of memory. On i386: 32MB
1486 * machine has 512 buckets. >= 1GB machines have 16384 buckets. */
1487 if (!nf_conntrack_htable_size) {
1488 nf_conntrack_htable_size
1489 = (((totalram_pages << PAGE_SHIFT) / 16384)
1490 / sizeof(struct hlist_head));
1491 if (totalram_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
1492 nf_conntrack_htable_size = 16384;
1493 if (nf_conntrack_htable_size < 32)
1494 nf_conntrack_htable_size = 32;
1495
1496 /* Use a max. factor of four by default to get the same max as
1497 * with the old struct list_heads. When a table size is given
1498 * we use the old value of 8 to avoid reducing the max.
1499 * entries. */
1500 max_factor = 4;
1501 }
1502 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
1503
1504 printk(KERN_INFO "nf_conntrack version %s (%u buckets, %d max)\n",
1505 NF_CONNTRACK_VERSION, nf_conntrack_htable_size,
1506 nf_conntrack_max);
1507
1508 ret = nf_conntrack_proto_init();
1509 if (ret < 0)
1510 goto err_proto;
1511
1512 ret = nf_conntrack_helper_init();
1513 if (ret < 0)
1514 goto err_helper;
1515
1516 #ifdef CONFIG_NF_CONNTRACK_ZONES
1517 ret = nf_ct_extend_register(&nf_ct_zone_extend);
1518 if (ret < 0)
1519 goto err_extend;
1520 #endif
1521 /* Set up fake conntrack: to never be deleted, not in any hashes */
1522 for_each_possible_cpu(cpu) {
1523 struct nf_conn *ct = &per_cpu(nf_conntrack_untracked, cpu);
1524 write_pnet(&ct->ct_net, &init_net);
1525 atomic_set(&ct->ct_general.use, 1);
1526 }
1527 /* - and look it like as a confirmed connection */
1528 nf_ct_untracked_status_or(IPS_CONFIRMED | IPS_UNTRACKED);
1529 return 0;
1530
1531 #ifdef CONFIG_NF_CONNTRACK_ZONES
1532 err_extend:
1533 nf_conntrack_helper_fini();
1534 #endif
1535 err_helper:
1536 nf_conntrack_proto_fini();
1537 err_proto:
1538 return ret;
1539 }
1540
1541 /*
1542 * We need to use special "null" values, not used in hash table
1543 */
1544 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
1545 #define DYING_NULLS_VAL ((1<<30)+1)
1546
nf_conntrack_init_net(struct net * net)1547 static int nf_conntrack_init_net(struct net *net)
1548 {
1549 int ret;
1550
1551 atomic_set(&net->ct.count, 0);
1552 INIT_HLIST_NULLS_HEAD(&net->ct.unconfirmed, UNCONFIRMED_NULLS_VAL);
1553 INIT_HLIST_NULLS_HEAD(&net->ct.dying, DYING_NULLS_VAL);
1554 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
1555 if (!net->ct.stat) {
1556 ret = -ENOMEM;
1557 goto err_stat;
1558 }
1559
1560 net->ct.slabname = kasprintf(GFP_KERNEL, "nf_conntrack_%p", net);
1561 if (!net->ct.slabname) {
1562 ret = -ENOMEM;
1563 goto err_slabname;
1564 }
1565
1566 net->ct.nf_conntrack_cachep = kmem_cache_create(net->ct.slabname,
1567 sizeof(struct nf_conn), 0,
1568 SLAB_DESTROY_BY_RCU, NULL);
1569 if (!net->ct.nf_conntrack_cachep) {
1570 printk(KERN_ERR "Unable to create nf_conn slab cache\n");
1571 ret = -ENOMEM;
1572 goto err_cache;
1573 }
1574
1575 net->ct.htable_size = nf_conntrack_htable_size;
1576 net->ct.hash = nf_ct_alloc_hashtable(&net->ct.htable_size, 1);
1577 if (!net->ct.hash) {
1578 ret = -ENOMEM;
1579 printk(KERN_ERR "Unable to create nf_conntrack_hash\n");
1580 goto err_hash;
1581 }
1582 ret = nf_conntrack_expect_init(net);
1583 if (ret < 0)
1584 goto err_expect;
1585 ret = nf_conntrack_acct_init(net);
1586 if (ret < 0)
1587 goto err_acct;
1588 ret = nf_conntrack_tstamp_init(net);
1589 if (ret < 0)
1590 goto err_tstamp;
1591 ret = nf_conntrack_ecache_init(net);
1592 if (ret < 0)
1593 goto err_ecache;
1594 ret = nf_conntrack_timeout_init(net);
1595 if (ret < 0)
1596 goto err_timeout;
1597
1598 return 0;
1599
1600 err_timeout:
1601 nf_conntrack_ecache_fini(net);
1602 err_ecache:
1603 nf_conntrack_tstamp_fini(net);
1604 err_tstamp:
1605 nf_conntrack_acct_fini(net);
1606 err_acct:
1607 nf_conntrack_expect_fini(net);
1608 err_expect:
1609 nf_ct_free_hashtable(net->ct.hash, net->ct.htable_size);
1610 err_hash:
1611 kmem_cache_destroy(net->ct.nf_conntrack_cachep);
1612 err_cache:
1613 kfree(net->ct.slabname);
1614 err_slabname:
1615 free_percpu(net->ct.stat);
1616 err_stat:
1617 return ret;
1618 }
1619
1620 s16 (*nf_ct_nat_offset)(const struct nf_conn *ct,
1621 enum ip_conntrack_dir dir,
1622 u32 seq);
1623 EXPORT_SYMBOL_GPL(nf_ct_nat_offset);
1624
nf_conntrack_init(struct net * net)1625 int nf_conntrack_init(struct net *net)
1626 {
1627 int ret;
1628
1629 if (net_eq(net, &init_net)) {
1630 ret = nf_conntrack_init_init_net();
1631 if (ret < 0)
1632 goto out_init_net;
1633 }
1634 ret = nf_conntrack_init_net(net);
1635 if (ret < 0)
1636 goto out_net;
1637
1638 if (net_eq(net, &init_net)) {
1639 /* For use by REJECT target */
1640 RCU_INIT_POINTER(ip_ct_attach, nf_conntrack_attach);
1641 RCU_INIT_POINTER(nf_ct_destroy, destroy_conntrack);
1642
1643 /* Howto get NAT offsets */
1644 RCU_INIT_POINTER(nf_ct_nat_offset, NULL);
1645 }
1646 return 0;
1647
1648 out_net:
1649 if (net_eq(net, &init_net))
1650 nf_conntrack_cleanup_init_net();
1651 out_init_net:
1652 return ret;
1653 }
1654