1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter.  This is separated from,
3    but required by, the NAT layer; it can also be used by an iptables
4    extension. */
5 
6 /* (C) 1999-2001 Paul `Rusty' Russell
7  * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8  * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9  * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10  */
11 
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13 
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/siphash.h>
25 #include <linux/err.h>
26 #include <linux/percpu.h>
27 #include <linux/moduleparam.h>
28 #include <linux/notifier.h>
29 #include <linux/kernel.h>
30 #include <linux/netdevice.h>
31 #include <linux/socket.h>
32 #include <linux/mm.h>
33 #include <linux/nsproxy.h>
34 #include <linux/rculist_nulls.h>
35 
36 #include <net/netfilter/nf_conntrack.h>
37 #include <net/netfilter/nf_conntrack_bpf.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_core.h>
42 #include <net/netfilter/nf_conntrack_extend.h>
43 #include <net/netfilter/nf_conntrack_acct.h>
44 #include <net/netfilter/nf_conntrack_ecache.h>
45 #include <net/netfilter/nf_conntrack_zones.h>
46 #include <net/netfilter/nf_conntrack_timestamp.h>
47 #include <net/netfilter/nf_conntrack_timeout.h>
48 #include <net/netfilter/nf_conntrack_labels.h>
49 #include <net/netfilter/nf_conntrack_synproxy.h>
50 #include <net/netfilter/nf_nat.h>
51 #include <net/netfilter/nf_nat_helper.h>
52 #include <net/netns/hash.h>
53 #include <net/ip.h>
54 
55 #include "nf_internals.h"
56 
57 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
58 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
59 
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
61 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
62 
63 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
64 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
65 
66 struct conntrack_gc_work {
67 	struct delayed_work	dwork;
68 	u32			next_bucket;
69 	u32			avg_timeout;
70 	u32			start_time;
71 	bool			exiting;
72 	bool			early_drop;
73 };
74 
75 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
76 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
77 static __read_mostly bool nf_conntrack_locks_all;
78 
79 /* serialize hash resizes and nf_ct_iterate_cleanup */
80 static DEFINE_MUTEX(nf_conntrack_mutex);
81 
82 #define GC_SCAN_INTERVAL_MAX	(60ul * HZ)
83 #define GC_SCAN_INTERVAL_MIN	(1ul * HZ)
84 
85 /* clamp timeouts to this value (TCP unacked) */
86 #define GC_SCAN_INTERVAL_CLAMP	(300ul * HZ)
87 
88 /* large initial bias so that we don't scan often just because we have
89  * three entries with a 1s timeout.
90  */
91 #define GC_SCAN_INTERVAL_INIT	INT_MAX
92 
93 #define GC_SCAN_MAX_DURATION	msecs_to_jiffies(10)
94 #define GC_SCAN_EXPIRED_MAX	(64000u / HZ)
95 
96 #define MIN_CHAINLEN	8u
97 #define MAX_CHAINLEN	(32u - MIN_CHAINLEN)
98 
99 static struct conntrack_gc_work conntrack_gc_work;
100 
nf_conntrack_lock(spinlock_t * lock)101 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
102 {
103 	/* 1) Acquire the lock */
104 	spin_lock(lock);
105 
106 	/* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
107 	 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
108 	 */
109 	if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
110 		return;
111 
112 	/* fast path failed, unlock */
113 	spin_unlock(lock);
114 
115 	/* Slow path 1) get global lock */
116 	spin_lock(&nf_conntrack_locks_all_lock);
117 
118 	/* Slow path 2) get the lock we want */
119 	spin_lock(lock);
120 
121 	/* Slow path 3) release the global lock */
122 	spin_unlock(&nf_conntrack_locks_all_lock);
123 }
124 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
125 
nf_conntrack_double_unlock(unsigned int h1,unsigned int h2)126 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
127 {
128 	h1 %= CONNTRACK_LOCKS;
129 	h2 %= CONNTRACK_LOCKS;
130 	spin_unlock(&nf_conntrack_locks[h1]);
131 	if (h1 != h2)
132 		spin_unlock(&nf_conntrack_locks[h2]);
133 }
134 
135 /* return true if we need to recompute hashes (in case hash table was resized) */
nf_conntrack_double_lock(struct net * net,unsigned int h1,unsigned int h2,unsigned int sequence)136 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
137 				     unsigned int h2, unsigned int sequence)
138 {
139 	h1 %= CONNTRACK_LOCKS;
140 	h2 %= CONNTRACK_LOCKS;
141 	if (h1 <= h2) {
142 		nf_conntrack_lock(&nf_conntrack_locks[h1]);
143 		if (h1 != h2)
144 			spin_lock_nested(&nf_conntrack_locks[h2],
145 					 SINGLE_DEPTH_NESTING);
146 	} else {
147 		nf_conntrack_lock(&nf_conntrack_locks[h2]);
148 		spin_lock_nested(&nf_conntrack_locks[h1],
149 				 SINGLE_DEPTH_NESTING);
150 	}
151 	if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
152 		nf_conntrack_double_unlock(h1, h2);
153 		return true;
154 	}
155 	return false;
156 }
157 
nf_conntrack_all_lock(void)158 static void nf_conntrack_all_lock(void)
159 	__acquires(&nf_conntrack_locks_all_lock)
160 {
161 	int i;
162 
163 	spin_lock(&nf_conntrack_locks_all_lock);
164 
165 	/* For nf_contrack_locks_all, only the latest time when another
166 	 * CPU will see an update is controlled, by the "release" of the
167 	 * spin_lock below.
168 	 * The earliest time is not controlled, an thus KCSAN could detect
169 	 * a race when nf_conntract_lock() reads the variable.
170 	 * WRITE_ONCE() is used to ensure the compiler will not
171 	 * optimize the write.
172 	 */
173 	WRITE_ONCE(nf_conntrack_locks_all, true);
174 
175 	for (i = 0; i < CONNTRACK_LOCKS; i++) {
176 		spin_lock(&nf_conntrack_locks[i]);
177 
178 		/* This spin_unlock provides the "release" to ensure that
179 		 * nf_conntrack_locks_all==true is visible to everyone that
180 		 * acquired spin_lock(&nf_conntrack_locks[]).
181 		 */
182 		spin_unlock(&nf_conntrack_locks[i]);
183 	}
184 }
185 
nf_conntrack_all_unlock(void)186 static void nf_conntrack_all_unlock(void)
187 	__releases(&nf_conntrack_locks_all_lock)
188 {
189 	/* All prior stores must be complete before we clear
190 	 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
191 	 * might observe the false value but not the entire
192 	 * critical section.
193 	 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
194 	 */
195 	smp_store_release(&nf_conntrack_locks_all, false);
196 	spin_unlock(&nf_conntrack_locks_all_lock);
197 }
198 
199 unsigned int nf_conntrack_htable_size __read_mostly;
200 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
201 
202 unsigned int nf_conntrack_max __read_mostly;
203 EXPORT_SYMBOL_GPL(nf_conntrack_max);
204 seqcount_spinlock_t nf_conntrack_generation __read_mostly;
205 static siphash_aligned_key_t nf_conntrack_hash_rnd;
206 
hash_conntrack_raw(const struct nf_conntrack_tuple * tuple,unsigned int zoneid,const struct net * net)207 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
208 			      unsigned int zoneid,
209 			      const struct net *net)
210 {
211 	struct {
212 		struct nf_conntrack_man src;
213 		union nf_inet_addr dst_addr;
214 		unsigned int zone;
215 		u32 net_mix;
216 		u16 dport;
217 		u16 proto;
218 	} __aligned(SIPHASH_ALIGNMENT) combined;
219 
220 	get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
221 
222 	memset(&combined, 0, sizeof(combined));
223 
224 	/* The direction must be ignored, so handle usable members manually. */
225 	combined.src = tuple->src;
226 	combined.dst_addr = tuple->dst.u3;
227 	combined.zone = zoneid;
228 	combined.net_mix = net_hash_mix(net);
229 	combined.dport = (__force __u16)tuple->dst.u.all;
230 	combined.proto = tuple->dst.protonum;
231 
232 	return (u32)siphash(&combined, sizeof(combined), &nf_conntrack_hash_rnd);
233 }
234 
scale_hash(u32 hash)235 static u32 scale_hash(u32 hash)
236 {
237 	return reciprocal_scale(hash, nf_conntrack_htable_size);
238 }
239 
__hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple,unsigned int zoneid,unsigned int size)240 static u32 __hash_conntrack(const struct net *net,
241 			    const struct nf_conntrack_tuple *tuple,
242 			    unsigned int zoneid,
243 			    unsigned int size)
244 {
245 	return reciprocal_scale(hash_conntrack_raw(tuple, zoneid, net), size);
246 }
247 
hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple,unsigned int zoneid)248 static u32 hash_conntrack(const struct net *net,
249 			  const struct nf_conntrack_tuple *tuple,
250 			  unsigned int zoneid)
251 {
252 	return scale_hash(hash_conntrack_raw(tuple, zoneid, net));
253 }
254 
nf_ct_get_tuple_ports(const struct sk_buff * skb,unsigned int dataoff,struct nf_conntrack_tuple * tuple)255 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
256 				  unsigned int dataoff,
257 				  struct nf_conntrack_tuple *tuple)
258 {	struct {
259 		__be16 sport;
260 		__be16 dport;
261 	} _inet_hdr, *inet_hdr;
262 
263 	/* Actually only need first 4 bytes to get ports. */
264 	inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
265 	if (!inet_hdr)
266 		return false;
267 
268 	tuple->src.u.udp.port = inet_hdr->sport;
269 	tuple->dst.u.udp.port = inet_hdr->dport;
270 	return true;
271 }
272 
273 static bool
nf_ct_get_tuple(const struct sk_buff * skb,unsigned int nhoff,unsigned int dataoff,u_int16_t l3num,u_int8_t protonum,struct net * net,struct nf_conntrack_tuple * tuple)274 nf_ct_get_tuple(const struct sk_buff *skb,
275 		unsigned int nhoff,
276 		unsigned int dataoff,
277 		u_int16_t l3num,
278 		u_int8_t protonum,
279 		struct net *net,
280 		struct nf_conntrack_tuple *tuple)
281 {
282 	unsigned int size;
283 	const __be32 *ap;
284 	__be32 _addrs[8];
285 
286 	memset(tuple, 0, sizeof(*tuple));
287 
288 	tuple->src.l3num = l3num;
289 	switch (l3num) {
290 	case NFPROTO_IPV4:
291 		nhoff += offsetof(struct iphdr, saddr);
292 		size = 2 * sizeof(__be32);
293 		break;
294 	case NFPROTO_IPV6:
295 		nhoff += offsetof(struct ipv6hdr, saddr);
296 		size = sizeof(_addrs);
297 		break;
298 	default:
299 		return true;
300 	}
301 
302 	ap = skb_header_pointer(skb, nhoff, size, _addrs);
303 	if (!ap)
304 		return false;
305 
306 	switch (l3num) {
307 	case NFPROTO_IPV4:
308 		tuple->src.u3.ip = ap[0];
309 		tuple->dst.u3.ip = ap[1];
310 		break;
311 	case NFPROTO_IPV6:
312 		memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
313 		memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
314 		break;
315 	}
316 
317 	tuple->dst.protonum = protonum;
318 	tuple->dst.dir = IP_CT_DIR_ORIGINAL;
319 
320 	switch (protonum) {
321 #if IS_ENABLED(CONFIG_IPV6)
322 	case IPPROTO_ICMPV6:
323 		return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
324 #endif
325 	case IPPROTO_ICMP:
326 		return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
327 #ifdef CONFIG_NF_CT_PROTO_GRE
328 	case IPPROTO_GRE:
329 		return gre_pkt_to_tuple(skb, dataoff, net, tuple);
330 #endif
331 	case IPPROTO_TCP:
332 	case IPPROTO_UDP: /* fallthrough */
333 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
334 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
335 	case IPPROTO_UDPLITE:
336 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
337 #endif
338 #ifdef CONFIG_NF_CT_PROTO_SCTP
339 	case IPPROTO_SCTP:
340 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
341 #endif
342 #ifdef CONFIG_NF_CT_PROTO_DCCP
343 	case IPPROTO_DCCP:
344 		return nf_ct_get_tuple_ports(skb, dataoff, tuple);
345 #endif
346 	default:
347 		break;
348 	}
349 
350 	return true;
351 }
352 
ipv4_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u_int8_t * protonum)353 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
354 			    u_int8_t *protonum)
355 {
356 	int dataoff = -1;
357 	const struct iphdr *iph;
358 	struct iphdr _iph;
359 
360 	iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
361 	if (!iph)
362 		return -1;
363 
364 	/* Conntrack defragments packets, we might still see fragments
365 	 * inside ICMP packets though.
366 	 */
367 	if (iph->frag_off & htons(IP_OFFSET))
368 		return -1;
369 
370 	dataoff = nhoff + (iph->ihl << 2);
371 	*protonum = iph->protocol;
372 
373 	/* Check bogus IP headers */
374 	if (dataoff > skb->len) {
375 		pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
376 			 nhoff, iph->ihl << 2, skb->len);
377 		return -1;
378 	}
379 	return dataoff;
380 }
381 
382 #if IS_ENABLED(CONFIG_IPV6)
ipv6_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 * protonum)383 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
384 			    u8 *protonum)
385 {
386 	int protoff = -1;
387 	unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
388 	__be16 frag_off;
389 	u8 nexthdr;
390 
391 	if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
392 			  &nexthdr, sizeof(nexthdr)) != 0) {
393 		pr_debug("can't get nexthdr\n");
394 		return -1;
395 	}
396 	protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
397 	/*
398 	 * (protoff == skb->len) means the packet has not data, just
399 	 * IPv6 and possibly extensions headers, but it is tracked anyway
400 	 */
401 	if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
402 		pr_debug("can't find proto in pkt\n");
403 		return -1;
404 	}
405 
406 	*protonum = nexthdr;
407 	return protoff;
408 }
409 #endif
410 
get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 pf,u8 * l4num)411 static int get_l4proto(const struct sk_buff *skb,
412 		       unsigned int nhoff, u8 pf, u8 *l4num)
413 {
414 	switch (pf) {
415 	case NFPROTO_IPV4:
416 		return ipv4_get_l4proto(skb, nhoff, l4num);
417 #if IS_ENABLED(CONFIG_IPV6)
418 	case NFPROTO_IPV6:
419 		return ipv6_get_l4proto(skb, nhoff, l4num);
420 #endif
421 	default:
422 		*l4num = 0;
423 		break;
424 	}
425 	return -1;
426 }
427 
nf_ct_get_tuplepr(const struct sk_buff * skb,unsigned int nhoff,u_int16_t l3num,struct net * net,struct nf_conntrack_tuple * tuple)428 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
429 		       u_int16_t l3num,
430 		       struct net *net, struct nf_conntrack_tuple *tuple)
431 {
432 	u8 protonum;
433 	int protoff;
434 
435 	protoff = get_l4proto(skb, nhoff, l3num, &protonum);
436 	if (protoff <= 0)
437 		return false;
438 
439 	return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
440 }
441 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
442 
443 bool
nf_ct_invert_tuple(struct nf_conntrack_tuple * inverse,const struct nf_conntrack_tuple * orig)444 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
445 		   const struct nf_conntrack_tuple *orig)
446 {
447 	memset(inverse, 0, sizeof(*inverse));
448 
449 	inverse->src.l3num = orig->src.l3num;
450 
451 	switch (orig->src.l3num) {
452 	case NFPROTO_IPV4:
453 		inverse->src.u3.ip = orig->dst.u3.ip;
454 		inverse->dst.u3.ip = orig->src.u3.ip;
455 		break;
456 	case NFPROTO_IPV6:
457 		inverse->src.u3.in6 = orig->dst.u3.in6;
458 		inverse->dst.u3.in6 = orig->src.u3.in6;
459 		break;
460 	default:
461 		break;
462 	}
463 
464 	inverse->dst.dir = !orig->dst.dir;
465 
466 	inverse->dst.protonum = orig->dst.protonum;
467 
468 	switch (orig->dst.protonum) {
469 	case IPPROTO_ICMP:
470 		return nf_conntrack_invert_icmp_tuple(inverse, orig);
471 #if IS_ENABLED(CONFIG_IPV6)
472 	case IPPROTO_ICMPV6:
473 		return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
474 #endif
475 	}
476 
477 	inverse->src.u.all = orig->dst.u.all;
478 	inverse->dst.u.all = orig->src.u.all;
479 	return true;
480 }
481 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
482 
483 /* Generate a almost-unique pseudo-id for a given conntrack.
484  *
485  * intentionally doesn't re-use any of the seeds used for hash
486  * table location, we assume id gets exposed to userspace.
487  *
488  * Following nf_conn items do not change throughout lifetime
489  * of the nf_conn:
490  *
491  * 1. nf_conn address
492  * 2. nf_conn->master address (normally NULL)
493  * 3. the associated net namespace
494  * 4. the original direction tuple
495  */
nf_ct_get_id(const struct nf_conn * ct)496 u32 nf_ct_get_id(const struct nf_conn *ct)
497 {
498 	static siphash_aligned_key_t ct_id_seed;
499 	unsigned long a, b, c, d;
500 
501 	net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
502 
503 	a = (unsigned long)ct;
504 	b = (unsigned long)ct->master;
505 	c = (unsigned long)nf_ct_net(ct);
506 	d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
507 				   sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
508 				   &ct_id_seed);
509 #ifdef CONFIG_64BIT
510 	return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
511 #else
512 	return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
513 #endif
514 }
515 EXPORT_SYMBOL_GPL(nf_ct_get_id);
516 
517 static void
clean_from_lists(struct nf_conn * ct)518 clean_from_lists(struct nf_conn *ct)
519 {
520 	pr_debug("clean_from_lists(%p)\n", ct);
521 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
522 	hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
523 
524 	/* Destroy all pending expectations */
525 	nf_ct_remove_expectations(ct);
526 }
527 
528 #define NFCT_ALIGN(len)	(((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
529 
530 /* Released via nf_ct_destroy() */
nf_ct_tmpl_alloc(struct net * net,const struct nf_conntrack_zone * zone,gfp_t flags)531 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
532 				 const struct nf_conntrack_zone *zone,
533 				 gfp_t flags)
534 {
535 	struct nf_conn *tmpl, *p;
536 
537 	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
538 		tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
539 		if (!tmpl)
540 			return NULL;
541 
542 		p = tmpl;
543 		tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
544 		if (tmpl != p) {
545 			tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
546 			tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
547 		}
548 	} else {
549 		tmpl = kzalloc(sizeof(*tmpl), flags);
550 		if (!tmpl)
551 			return NULL;
552 	}
553 
554 	tmpl->status = IPS_TEMPLATE;
555 	write_pnet(&tmpl->ct_net, net);
556 	nf_ct_zone_add(tmpl, zone);
557 	refcount_set(&tmpl->ct_general.use, 1);
558 
559 	return tmpl;
560 }
561 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
562 
nf_ct_tmpl_free(struct nf_conn * tmpl)563 void nf_ct_tmpl_free(struct nf_conn *tmpl)
564 {
565 	kfree(tmpl->ext);
566 
567 	if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
568 		kfree((char *)tmpl - tmpl->proto.tmpl_padto);
569 	else
570 		kfree(tmpl);
571 }
572 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
573 
destroy_gre_conntrack(struct nf_conn * ct)574 static void destroy_gre_conntrack(struct nf_conn *ct)
575 {
576 #ifdef CONFIG_NF_CT_PROTO_GRE
577 	struct nf_conn *master = ct->master;
578 
579 	if (master)
580 		nf_ct_gre_keymap_destroy(master);
581 #endif
582 }
583 
nf_ct_destroy(struct nf_conntrack * nfct)584 void nf_ct_destroy(struct nf_conntrack *nfct)
585 {
586 	struct nf_conn *ct = (struct nf_conn *)nfct;
587 
588 	pr_debug("%s(%p)\n", __func__, ct);
589 	WARN_ON(refcount_read(&nfct->use) != 0);
590 
591 	if (unlikely(nf_ct_is_template(ct))) {
592 		nf_ct_tmpl_free(ct);
593 		return;
594 	}
595 
596 	if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
597 		destroy_gre_conntrack(ct);
598 
599 	/* Expectations will have been removed in clean_from_lists,
600 	 * except TFTP can create an expectation on the first packet,
601 	 * before connection is in the list, so we need to clean here,
602 	 * too.
603 	 */
604 	nf_ct_remove_expectations(ct);
605 
606 	if (ct->master)
607 		nf_ct_put(ct->master);
608 
609 	pr_debug("%s: returning ct=%p to slab\n", __func__, ct);
610 	nf_conntrack_free(ct);
611 }
612 EXPORT_SYMBOL(nf_ct_destroy);
613 
__nf_ct_delete_from_lists(struct nf_conn * ct)614 static void __nf_ct_delete_from_lists(struct nf_conn *ct)
615 {
616 	struct net *net = nf_ct_net(ct);
617 	unsigned int hash, reply_hash;
618 	unsigned int sequence;
619 
620 	do {
621 		sequence = read_seqcount_begin(&nf_conntrack_generation);
622 		hash = hash_conntrack(net,
623 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
624 				      nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
625 		reply_hash = hash_conntrack(net,
626 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
627 					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
628 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
629 
630 	clean_from_lists(ct);
631 	nf_conntrack_double_unlock(hash, reply_hash);
632 }
633 
nf_ct_delete_from_lists(struct nf_conn * ct)634 static void nf_ct_delete_from_lists(struct nf_conn *ct)
635 {
636 	nf_ct_helper_destroy(ct);
637 	local_bh_disable();
638 
639 	__nf_ct_delete_from_lists(ct);
640 
641 	local_bh_enable();
642 }
643 
nf_ct_add_to_ecache_list(struct nf_conn * ct)644 static void nf_ct_add_to_ecache_list(struct nf_conn *ct)
645 {
646 #ifdef CONFIG_NF_CONNTRACK_EVENTS
647 	struct nf_conntrack_net *cnet = nf_ct_pernet(nf_ct_net(ct));
648 
649 	spin_lock(&cnet->ecache.dying_lock);
650 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
651 				 &cnet->ecache.dying_list);
652 	spin_unlock(&cnet->ecache.dying_lock);
653 #endif
654 }
655 
nf_ct_delete(struct nf_conn * ct,u32 portid,int report)656 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
657 {
658 	struct nf_conn_tstamp *tstamp;
659 	struct net *net;
660 
661 	if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
662 		return false;
663 
664 	tstamp = nf_conn_tstamp_find(ct);
665 	if (tstamp) {
666 		s32 timeout = READ_ONCE(ct->timeout) - nfct_time_stamp;
667 
668 		tstamp->stop = ktime_get_real_ns();
669 		if (timeout < 0)
670 			tstamp->stop -= jiffies_to_nsecs(-timeout);
671 	}
672 
673 	if (nf_conntrack_event_report(IPCT_DESTROY, ct,
674 				    portid, report) < 0) {
675 		/* destroy event was not delivered. nf_ct_put will
676 		 * be done by event cache worker on redelivery.
677 		 */
678 		nf_ct_helper_destroy(ct);
679 		local_bh_disable();
680 		__nf_ct_delete_from_lists(ct);
681 		nf_ct_add_to_ecache_list(ct);
682 		local_bh_enable();
683 
684 		nf_conntrack_ecache_work(nf_ct_net(ct), NFCT_ECACHE_DESTROY_FAIL);
685 		return false;
686 	}
687 
688 	net = nf_ct_net(ct);
689 	if (nf_conntrack_ecache_dwork_pending(net))
690 		nf_conntrack_ecache_work(net, NFCT_ECACHE_DESTROY_SENT);
691 	nf_ct_delete_from_lists(ct);
692 	nf_ct_put(ct);
693 	return true;
694 }
695 EXPORT_SYMBOL_GPL(nf_ct_delete);
696 
697 static inline bool
nf_ct_key_equal(struct nf_conntrack_tuple_hash * h,const struct nf_conntrack_tuple * tuple,const struct nf_conntrack_zone * zone,const struct net * net)698 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
699 		const struct nf_conntrack_tuple *tuple,
700 		const struct nf_conntrack_zone *zone,
701 		const struct net *net)
702 {
703 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
704 
705 	/* A conntrack can be recreated with the equal tuple,
706 	 * so we need to check that the conntrack is confirmed
707 	 */
708 	return nf_ct_tuple_equal(tuple, &h->tuple) &&
709 	       nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
710 	       nf_ct_is_confirmed(ct) &&
711 	       net_eq(net, nf_ct_net(ct));
712 }
713 
714 static inline bool
nf_ct_match(const struct nf_conn * ct1,const struct nf_conn * ct2)715 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
716 {
717 	return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
718 				 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
719 	       nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
720 				 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
721 	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
722 	       nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
723 	       net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
724 }
725 
726 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
nf_ct_gc_expired(struct nf_conn * ct)727 static void nf_ct_gc_expired(struct nf_conn *ct)
728 {
729 	if (!refcount_inc_not_zero(&ct->ct_general.use))
730 		return;
731 
732 	/* load ->status after refcount increase */
733 	smp_acquire__after_ctrl_dep();
734 
735 	if (nf_ct_should_gc(ct))
736 		nf_ct_kill(ct);
737 
738 	nf_ct_put(ct);
739 }
740 
741 /*
742  * Warning :
743  * - Caller must take a reference on returned object
744  *   and recheck nf_ct_tuple_equal(tuple, &h->tuple)
745  */
746 static struct nf_conntrack_tuple_hash *
____nf_conntrack_find(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)747 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
748 		      const struct nf_conntrack_tuple *tuple, u32 hash)
749 {
750 	struct nf_conntrack_tuple_hash *h;
751 	struct hlist_nulls_head *ct_hash;
752 	struct hlist_nulls_node *n;
753 	unsigned int bucket, hsize;
754 
755 begin:
756 	nf_conntrack_get_ht(&ct_hash, &hsize);
757 	bucket = reciprocal_scale(hash, hsize);
758 
759 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
760 		struct nf_conn *ct;
761 
762 		ct = nf_ct_tuplehash_to_ctrack(h);
763 		if (nf_ct_is_expired(ct)) {
764 			nf_ct_gc_expired(ct);
765 			continue;
766 		}
767 
768 		if (nf_ct_key_equal(h, tuple, zone, net))
769 			return h;
770 	}
771 	/*
772 	 * if the nulls value we got at the end of this lookup is
773 	 * not the expected one, we must restart lookup.
774 	 * We probably met an item that was moved to another chain.
775 	 */
776 	if (get_nulls_value(n) != bucket) {
777 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
778 		goto begin;
779 	}
780 
781 	return NULL;
782 }
783 
784 /* Find a connection corresponding to a tuple. */
785 static struct nf_conntrack_tuple_hash *
__nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)786 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
787 			const struct nf_conntrack_tuple *tuple, u32 hash)
788 {
789 	struct nf_conntrack_tuple_hash *h;
790 	struct nf_conn *ct;
791 
792 	rcu_read_lock();
793 
794 	h = ____nf_conntrack_find(net, zone, tuple, hash);
795 	if (h) {
796 		/* We have a candidate that matches the tuple we're interested
797 		 * in, try to obtain a reference and re-check tuple
798 		 */
799 		ct = nf_ct_tuplehash_to_ctrack(h);
800 		if (likely(refcount_inc_not_zero(&ct->ct_general.use))) {
801 			/* re-check key after refcount */
802 			smp_acquire__after_ctrl_dep();
803 
804 			if (likely(nf_ct_key_equal(h, tuple, zone, net)))
805 				goto found;
806 
807 			/* TYPESAFE_BY_RCU recycled the candidate */
808 			nf_ct_put(ct);
809 		}
810 
811 		h = NULL;
812 	}
813 found:
814 	rcu_read_unlock();
815 
816 	return h;
817 }
818 
819 struct nf_conntrack_tuple_hash *
nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple)820 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
821 		      const struct nf_conntrack_tuple *tuple)
822 {
823 	unsigned int rid, zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
824 	struct nf_conntrack_tuple_hash *thash;
825 
826 	thash = __nf_conntrack_find_get(net, zone, tuple,
827 					hash_conntrack_raw(tuple, zone_id, net));
828 
829 	if (thash)
830 		return thash;
831 
832 	rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
833 	if (rid != zone_id)
834 		return __nf_conntrack_find_get(net, zone, tuple,
835 					       hash_conntrack_raw(tuple, rid, net));
836 	return thash;
837 }
838 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
839 
__nf_conntrack_hash_insert(struct nf_conn * ct,unsigned int hash,unsigned int reply_hash)840 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
841 				       unsigned int hash,
842 				       unsigned int reply_hash)
843 {
844 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
845 			   &nf_conntrack_hash[hash]);
846 	hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
847 			   &nf_conntrack_hash[reply_hash]);
848 }
849 
nf_ct_ext_valid_pre(const struct nf_ct_ext * ext)850 static bool nf_ct_ext_valid_pre(const struct nf_ct_ext *ext)
851 {
852 	/* if ext->gen_id is not equal to nf_conntrack_ext_genid, some extensions
853 	 * may contain stale pointers to e.g. helper that has been removed.
854 	 *
855 	 * The helper can't clear this because the nf_conn object isn't in
856 	 * any hash and synchronize_rcu() isn't enough because associated skb
857 	 * might sit in a queue.
858 	 */
859 	return !ext || ext->gen_id == atomic_read(&nf_conntrack_ext_genid);
860 }
861 
nf_ct_ext_valid_post(struct nf_ct_ext * ext)862 static bool nf_ct_ext_valid_post(struct nf_ct_ext *ext)
863 {
864 	if (!ext)
865 		return true;
866 
867 	if (ext->gen_id != atomic_read(&nf_conntrack_ext_genid))
868 		return false;
869 
870 	/* inserted into conntrack table, nf_ct_iterate_cleanup()
871 	 * will find it.  Disable nf_ct_ext_find() id check.
872 	 */
873 	WRITE_ONCE(ext->gen_id, 0);
874 	return true;
875 }
876 
877 int
nf_conntrack_hash_check_insert(struct nf_conn * ct)878 nf_conntrack_hash_check_insert(struct nf_conn *ct)
879 {
880 	const struct nf_conntrack_zone *zone;
881 	struct net *net = nf_ct_net(ct);
882 	unsigned int hash, reply_hash;
883 	struct nf_conntrack_tuple_hash *h;
884 	struct hlist_nulls_node *n;
885 	unsigned int max_chainlen;
886 	unsigned int chainlen = 0;
887 	unsigned int sequence;
888 	int err = -EEXIST;
889 
890 	zone = nf_ct_zone(ct);
891 
892 	if (!nf_ct_ext_valid_pre(ct->ext)) {
893 		NF_CT_STAT_INC(net, insert_failed);
894 		return -ETIMEDOUT;
895 	}
896 
897 	local_bh_disable();
898 	do {
899 		sequence = read_seqcount_begin(&nf_conntrack_generation);
900 		hash = hash_conntrack(net,
901 				      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
902 				      nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
903 		reply_hash = hash_conntrack(net,
904 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
905 					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
906 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
907 
908 	max_chainlen = MIN_CHAINLEN + prandom_u32_max(MAX_CHAINLEN);
909 
910 	/* See if there's one in the list already, including reverse */
911 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
912 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
913 				    zone, net))
914 			goto out;
915 
916 		if (chainlen++ > max_chainlen)
917 			goto chaintoolong;
918 	}
919 
920 	chainlen = 0;
921 
922 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
923 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
924 				    zone, net))
925 			goto out;
926 		if (chainlen++ > max_chainlen)
927 			goto chaintoolong;
928 	}
929 
930 	smp_wmb();
931 	/* The caller holds a reference to this object */
932 	refcount_set(&ct->ct_general.use, 2);
933 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
934 	nf_conntrack_double_unlock(hash, reply_hash);
935 	NF_CT_STAT_INC(net, insert);
936 	local_bh_enable();
937 
938 	if (!nf_ct_ext_valid_post(ct->ext)) {
939 		nf_ct_kill(ct);
940 		NF_CT_STAT_INC(net, drop);
941 		return -ETIMEDOUT;
942 	}
943 
944 	return 0;
945 chaintoolong:
946 	NF_CT_STAT_INC(net, chaintoolong);
947 	err = -ENOSPC;
948 out:
949 	nf_conntrack_double_unlock(hash, reply_hash);
950 	local_bh_enable();
951 	return err;
952 }
953 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
954 
nf_ct_acct_add(struct nf_conn * ct,u32 dir,unsigned int packets,unsigned int bytes)955 void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
956 		    unsigned int bytes)
957 {
958 	struct nf_conn_acct *acct;
959 
960 	acct = nf_conn_acct_find(ct);
961 	if (acct) {
962 		struct nf_conn_counter *counter = acct->counter;
963 
964 		atomic64_add(packets, &counter[dir].packets);
965 		atomic64_add(bytes, &counter[dir].bytes);
966 	}
967 }
968 EXPORT_SYMBOL_GPL(nf_ct_acct_add);
969 
nf_ct_acct_merge(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct nf_conn * loser_ct)970 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
971 			     const struct nf_conn *loser_ct)
972 {
973 	struct nf_conn_acct *acct;
974 
975 	acct = nf_conn_acct_find(loser_ct);
976 	if (acct) {
977 		struct nf_conn_counter *counter = acct->counter;
978 		unsigned int bytes;
979 
980 		/* u32 should be fine since we must have seen one packet. */
981 		bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
982 		nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
983 	}
984 }
985 
__nf_conntrack_insert_prepare(struct nf_conn * ct)986 static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
987 {
988 	struct nf_conn_tstamp *tstamp;
989 
990 	refcount_inc(&ct->ct_general.use);
991 
992 	/* set conntrack timestamp, if enabled. */
993 	tstamp = nf_conn_tstamp_find(ct);
994 	if (tstamp)
995 		tstamp->start = ktime_get_real_ns();
996 }
997 
998 /* caller must hold locks to prevent concurrent changes */
__nf_ct_resolve_clash(struct sk_buff * skb,struct nf_conntrack_tuple_hash * h)999 static int __nf_ct_resolve_clash(struct sk_buff *skb,
1000 				 struct nf_conntrack_tuple_hash *h)
1001 {
1002 	/* This is the conntrack entry already in hashes that won race. */
1003 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1004 	enum ip_conntrack_info ctinfo;
1005 	struct nf_conn *loser_ct;
1006 
1007 	loser_ct = nf_ct_get(skb, &ctinfo);
1008 
1009 	if (nf_ct_is_dying(ct))
1010 		return NF_DROP;
1011 
1012 	if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
1013 	    nf_ct_match(ct, loser_ct)) {
1014 		struct net *net = nf_ct_net(ct);
1015 
1016 		nf_conntrack_get(&ct->ct_general);
1017 
1018 		nf_ct_acct_merge(ct, ctinfo, loser_ct);
1019 		nf_ct_put(loser_ct);
1020 		nf_ct_set(skb, ct, ctinfo);
1021 
1022 		NF_CT_STAT_INC(net, clash_resolve);
1023 		return NF_ACCEPT;
1024 	}
1025 
1026 	return NF_DROP;
1027 }
1028 
1029 /**
1030  * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
1031  *
1032  * @skb: skb that causes the collision
1033  * @repl_idx: hash slot for reply direction
1034  *
1035  * Called when origin or reply direction had a clash.
1036  * The skb can be handled without packet drop provided the reply direction
1037  * is unique or there the existing entry has the identical tuple in both
1038  * directions.
1039  *
1040  * Caller must hold conntrack table locks to prevent concurrent updates.
1041  *
1042  * Returns NF_DROP if the clash could not be handled.
1043  */
nf_ct_resolve_clash_harder(struct sk_buff * skb,u32 repl_idx)1044 static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
1045 {
1046 	struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
1047 	const struct nf_conntrack_zone *zone;
1048 	struct nf_conntrack_tuple_hash *h;
1049 	struct hlist_nulls_node *n;
1050 	struct net *net;
1051 
1052 	zone = nf_ct_zone(loser_ct);
1053 	net = nf_ct_net(loser_ct);
1054 
1055 	/* Reply direction must never result in a clash, unless both origin
1056 	 * and reply tuples are identical.
1057 	 */
1058 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
1059 		if (nf_ct_key_equal(h,
1060 				    &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1061 				    zone, net))
1062 			return __nf_ct_resolve_clash(skb, h);
1063 	}
1064 
1065 	/* We want the clashing entry to go away real soon: 1 second timeout. */
1066 	WRITE_ONCE(loser_ct->timeout, nfct_time_stamp + HZ);
1067 
1068 	/* IPS_NAT_CLASH removes the entry automatically on the first
1069 	 * reply.  Also prevents UDP tracker from moving the entry to
1070 	 * ASSURED state, i.e. the entry can always be evicted under
1071 	 * pressure.
1072 	 */
1073 	loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
1074 
1075 	__nf_conntrack_insert_prepare(loser_ct);
1076 
1077 	/* fake add for ORIGINAL dir: we want lookups to only find the entry
1078 	 * already in the table.  This also hides the clashing entry from
1079 	 * ctnetlink iteration, i.e. conntrack -L won't show them.
1080 	 */
1081 	hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
1082 
1083 	hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
1084 				 &nf_conntrack_hash[repl_idx]);
1085 
1086 	NF_CT_STAT_INC(net, clash_resolve);
1087 	return NF_ACCEPT;
1088 }
1089 
1090 /**
1091  * nf_ct_resolve_clash - attempt to handle clash without packet drop
1092  *
1093  * @skb: skb that causes the clash
1094  * @h: tuplehash of the clashing entry already in table
1095  * @reply_hash: hash slot for reply direction
1096  *
1097  * A conntrack entry can be inserted to the connection tracking table
1098  * if there is no existing entry with an identical tuple.
1099  *
1100  * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1101  * to be dropped.  In case @skb is retransmitted, next conntrack lookup
1102  * will find the already-existing entry.
1103  *
1104  * The major problem with such packet drop is the extra delay added by
1105  * the packet loss -- it will take some time for a retransmit to occur
1106  * (or the sender to time out when waiting for a reply).
1107  *
1108  * This function attempts to handle the situation without packet drop.
1109  *
1110  * If @skb has no NAT transformation or if the colliding entries are
1111  * exactly the same, only the to-be-confirmed conntrack entry is discarded
1112  * and @skb is associated with the conntrack entry already in the table.
1113  *
1114  * Failing that, the new, unconfirmed conntrack is still added to the table
1115  * provided that the collision only occurs in the ORIGINAL direction.
1116  * The new entry will be added only in the non-clashing REPLY direction,
1117  * so packets in the ORIGINAL direction will continue to match the existing
1118  * entry.  The new entry will also have a fixed timeout so it expires --
1119  * due to the collision, it will only see reply traffic.
1120  *
1121  * Returns NF_DROP if the clash could not be resolved.
1122  */
1123 static __cold noinline int
nf_ct_resolve_clash(struct sk_buff * skb,struct nf_conntrack_tuple_hash * h,u32 reply_hash)1124 nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1125 		    u32 reply_hash)
1126 {
1127 	/* This is the conntrack entry already in hashes that won race. */
1128 	struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1129 	const struct nf_conntrack_l4proto *l4proto;
1130 	enum ip_conntrack_info ctinfo;
1131 	struct nf_conn *loser_ct;
1132 	struct net *net;
1133 	int ret;
1134 
1135 	loser_ct = nf_ct_get(skb, &ctinfo);
1136 	net = nf_ct_net(loser_ct);
1137 
1138 	l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1139 	if (!l4proto->allow_clash)
1140 		goto drop;
1141 
1142 	ret = __nf_ct_resolve_clash(skb, h);
1143 	if (ret == NF_ACCEPT)
1144 		return ret;
1145 
1146 	ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1147 	if (ret == NF_ACCEPT)
1148 		return ret;
1149 
1150 drop:
1151 	NF_CT_STAT_INC(net, drop);
1152 	NF_CT_STAT_INC(net, insert_failed);
1153 	return NF_DROP;
1154 }
1155 
1156 /* Confirm a connection given skb; places it in hash table */
1157 int
__nf_conntrack_confirm(struct sk_buff * skb)1158 __nf_conntrack_confirm(struct sk_buff *skb)
1159 {
1160 	unsigned int chainlen = 0, sequence, max_chainlen;
1161 	const struct nf_conntrack_zone *zone;
1162 	unsigned int hash, reply_hash;
1163 	struct nf_conntrack_tuple_hash *h;
1164 	struct nf_conn *ct;
1165 	struct nf_conn_help *help;
1166 	struct hlist_nulls_node *n;
1167 	enum ip_conntrack_info ctinfo;
1168 	struct net *net;
1169 	int ret = NF_DROP;
1170 
1171 	ct = nf_ct_get(skb, &ctinfo);
1172 	net = nf_ct_net(ct);
1173 
1174 	/* ipt_REJECT uses nf_conntrack_attach to attach related
1175 	   ICMP/TCP RST packets in other direction.  Actual packet
1176 	   which created connection will be IP_CT_NEW or for an
1177 	   expected connection, IP_CT_RELATED. */
1178 	if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1179 		return NF_ACCEPT;
1180 
1181 	zone = nf_ct_zone(ct);
1182 	local_bh_disable();
1183 
1184 	do {
1185 		sequence = read_seqcount_begin(&nf_conntrack_generation);
1186 		/* reuse the hash saved before */
1187 		hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1188 		hash = scale_hash(hash);
1189 		reply_hash = hash_conntrack(net,
1190 					   &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1191 					   nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
1192 	} while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1193 
1194 	/* We're not in hash table, and we refuse to set up related
1195 	 * connections for unconfirmed conns.  But packet copies and
1196 	 * REJECT will give spurious warnings here.
1197 	 */
1198 
1199 	/* Another skb with the same unconfirmed conntrack may
1200 	 * win the race. This may happen for bridge(br_flood)
1201 	 * or broadcast/multicast packets do skb_clone with
1202 	 * unconfirmed conntrack.
1203 	 */
1204 	if (unlikely(nf_ct_is_confirmed(ct))) {
1205 		WARN_ON_ONCE(1);
1206 		nf_conntrack_double_unlock(hash, reply_hash);
1207 		local_bh_enable();
1208 		return NF_DROP;
1209 	}
1210 
1211 	if (!nf_ct_ext_valid_pre(ct->ext)) {
1212 		NF_CT_STAT_INC(net, insert_failed);
1213 		goto dying;
1214 	}
1215 
1216 	pr_debug("Confirming conntrack %p\n", ct);
1217 	/* We have to check the DYING flag after unlink to prevent
1218 	 * a race against nf_ct_get_next_corpse() possibly called from
1219 	 * user context, else we insert an already 'dead' hash, blocking
1220 	 * further use of that particular connection -JM.
1221 	 */
1222 	ct->status |= IPS_CONFIRMED;
1223 
1224 	if (unlikely(nf_ct_is_dying(ct))) {
1225 		NF_CT_STAT_INC(net, insert_failed);
1226 		goto dying;
1227 	}
1228 
1229 	max_chainlen = MIN_CHAINLEN + prandom_u32_max(MAX_CHAINLEN);
1230 	/* See if there's one in the list already, including reverse:
1231 	   NAT could have grabbed it without realizing, since we're
1232 	   not in the hash.  If there is, we lost race. */
1233 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
1234 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1235 				    zone, net))
1236 			goto out;
1237 		if (chainlen++ > max_chainlen)
1238 			goto chaintoolong;
1239 	}
1240 
1241 	chainlen = 0;
1242 	hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
1243 		if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1244 				    zone, net))
1245 			goto out;
1246 		if (chainlen++ > max_chainlen) {
1247 chaintoolong:
1248 			NF_CT_STAT_INC(net, chaintoolong);
1249 			NF_CT_STAT_INC(net, insert_failed);
1250 			ret = NF_DROP;
1251 			goto dying;
1252 		}
1253 	}
1254 
1255 	/* Timer relative to confirmation time, not original
1256 	   setting time, otherwise we'd get timer wrap in
1257 	   weird delay cases. */
1258 	ct->timeout += nfct_time_stamp;
1259 
1260 	__nf_conntrack_insert_prepare(ct);
1261 
1262 	/* Since the lookup is lockless, hash insertion must be done after
1263 	 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1264 	 * guarantee that no other CPU can find the conntrack before the above
1265 	 * stores are visible.
1266 	 */
1267 	__nf_conntrack_hash_insert(ct, hash, reply_hash);
1268 	nf_conntrack_double_unlock(hash, reply_hash);
1269 	local_bh_enable();
1270 
1271 	/* ext area is still valid (rcu read lock is held,
1272 	 * but will go out of scope soon, we need to remove
1273 	 * this conntrack again.
1274 	 */
1275 	if (!nf_ct_ext_valid_post(ct->ext)) {
1276 		nf_ct_kill(ct);
1277 		NF_CT_STAT_INC(net, drop);
1278 		return NF_DROP;
1279 	}
1280 
1281 	help = nfct_help(ct);
1282 	if (help && help->helper)
1283 		nf_conntrack_event_cache(IPCT_HELPER, ct);
1284 
1285 	nf_conntrack_event_cache(master_ct(ct) ?
1286 				 IPCT_RELATED : IPCT_NEW, ct);
1287 	return NF_ACCEPT;
1288 
1289 out:
1290 	ret = nf_ct_resolve_clash(skb, h, reply_hash);
1291 dying:
1292 	nf_conntrack_double_unlock(hash, reply_hash);
1293 	local_bh_enable();
1294 	return ret;
1295 }
1296 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1297 
1298 /* Returns true if a connection correspondings to the tuple (required
1299    for NAT). */
1300 int
nf_conntrack_tuple_taken(const struct nf_conntrack_tuple * tuple,const struct nf_conn * ignored_conntrack)1301 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1302 			 const struct nf_conn *ignored_conntrack)
1303 {
1304 	struct net *net = nf_ct_net(ignored_conntrack);
1305 	const struct nf_conntrack_zone *zone;
1306 	struct nf_conntrack_tuple_hash *h;
1307 	struct hlist_nulls_head *ct_hash;
1308 	unsigned int hash, hsize;
1309 	struct hlist_nulls_node *n;
1310 	struct nf_conn *ct;
1311 
1312 	zone = nf_ct_zone(ignored_conntrack);
1313 
1314 	rcu_read_lock();
1315  begin:
1316 	nf_conntrack_get_ht(&ct_hash, &hsize);
1317 	hash = __hash_conntrack(net, tuple, nf_ct_zone_id(zone, IP_CT_DIR_REPLY), hsize);
1318 
1319 	hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1320 		ct = nf_ct_tuplehash_to_ctrack(h);
1321 
1322 		if (ct == ignored_conntrack)
1323 			continue;
1324 
1325 		if (nf_ct_is_expired(ct)) {
1326 			nf_ct_gc_expired(ct);
1327 			continue;
1328 		}
1329 
1330 		if (nf_ct_key_equal(h, tuple, zone, net)) {
1331 			/* Tuple is taken already, so caller will need to find
1332 			 * a new source port to use.
1333 			 *
1334 			 * Only exception:
1335 			 * If the *original tuples* are identical, then both
1336 			 * conntracks refer to the same flow.
1337 			 * This is a rare situation, it can occur e.g. when
1338 			 * more than one UDP packet is sent from same socket
1339 			 * in different threads.
1340 			 *
1341 			 * Let nf_ct_resolve_clash() deal with this later.
1342 			 */
1343 			if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1344 					      &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
1345 					      nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL))
1346 				continue;
1347 
1348 			NF_CT_STAT_INC_ATOMIC(net, found);
1349 			rcu_read_unlock();
1350 			return 1;
1351 		}
1352 	}
1353 
1354 	if (get_nulls_value(n) != hash) {
1355 		NF_CT_STAT_INC_ATOMIC(net, search_restart);
1356 		goto begin;
1357 	}
1358 
1359 	rcu_read_unlock();
1360 
1361 	return 0;
1362 }
1363 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1364 
1365 #define NF_CT_EVICTION_RANGE	8
1366 
1367 /* There's a small race here where we may free a just-assured
1368    connection.  Too bad: we're in trouble anyway. */
early_drop_list(struct net * net,struct hlist_nulls_head * head)1369 static unsigned int early_drop_list(struct net *net,
1370 				    struct hlist_nulls_head *head)
1371 {
1372 	struct nf_conntrack_tuple_hash *h;
1373 	struct hlist_nulls_node *n;
1374 	unsigned int drops = 0;
1375 	struct nf_conn *tmp;
1376 
1377 	hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1378 		tmp = nf_ct_tuplehash_to_ctrack(h);
1379 
1380 		if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1381 			continue;
1382 
1383 		if (nf_ct_is_expired(tmp)) {
1384 			nf_ct_gc_expired(tmp);
1385 			continue;
1386 		}
1387 
1388 		if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1389 		    !net_eq(nf_ct_net(tmp), net) ||
1390 		    nf_ct_is_dying(tmp))
1391 			continue;
1392 
1393 		if (!refcount_inc_not_zero(&tmp->ct_general.use))
1394 			continue;
1395 
1396 		/* load ->ct_net and ->status after refcount increase */
1397 		smp_acquire__after_ctrl_dep();
1398 
1399 		/* kill only if still in same netns -- might have moved due to
1400 		 * SLAB_TYPESAFE_BY_RCU rules.
1401 		 *
1402 		 * We steal the timer reference.  If that fails timer has
1403 		 * already fired or someone else deleted it. Just drop ref
1404 		 * and move to next entry.
1405 		 */
1406 		if (net_eq(nf_ct_net(tmp), net) &&
1407 		    nf_ct_is_confirmed(tmp) &&
1408 		    nf_ct_delete(tmp, 0, 0))
1409 			drops++;
1410 
1411 		nf_ct_put(tmp);
1412 	}
1413 
1414 	return drops;
1415 }
1416 
early_drop(struct net * net,unsigned int hash)1417 static noinline int early_drop(struct net *net, unsigned int hash)
1418 {
1419 	unsigned int i, bucket;
1420 
1421 	for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1422 		struct hlist_nulls_head *ct_hash;
1423 		unsigned int hsize, drops;
1424 
1425 		rcu_read_lock();
1426 		nf_conntrack_get_ht(&ct_hash, &hsize);
1427 		if (!i)
1428 			bucket = reciprocal_scale(hash, hsize);
1429 		else
1430 			bucket = (bucket + 1) % hsize;
1431 
1432 		drops = early_drop_list(net, &ct_hash[bucket]);
1433 		rcu_read_unlock();
1434 
1435 		if (drops) {
1436 			NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1437 			return true;
1438 		}
1439 	}
1440 
1441 	return false;
1442 }
1443 
gc_worker_skip_ct(const struct nf_conn * ct)1444 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1445 {
1446 	return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1447 }
1448 
gc_worker_can_early_drop(const struct nf_conn * ct)1449 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1450 {
1451 	const struct nf_conntrack_l4proto *l4proto;
1452 
1453 	if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1454 		return true;
1455 
1456 	l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1457 	if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1458 		return true;
1459 
1460 	return false;
1461 }
1462 
gc_worker(struct work_struct * work)1463 static void gc_worker(struct work_struct *work)
1464 {
1465 	unsigned int i, hashsz, nf_conntrack_max95 = 0;
1466 	u32 end_time, start_time = nfct_time_stamp;
1467 	struct conntrack_gc_work *gc_work;
1468 	unsigned int expired_count = 0;
1469 	unsigned long next_run;
1470 	s32 delta_time;
1471 
1472 	gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1473 
1474 	i = gc_work->next_bucket;
1475 	if (gc_work->early_drop)
1476 		nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1477 
1478 	if (i == 0) {
1479 		gc_work->avg_timeout = GC_SCAN_INTERVAL_INIT;
1480 		gc_work->start_time = start_time;
1481 	}
1482 
1483 	next_run = gc_work->avg_timeout;
1484 
1485 	end_time = start_time + GC_SCAN_MAX_DURATION;
1486 
1487 	do {
1488 		struct nf_conntrack_tuple_hash *h;
1489 		struct hlist_nulls_head *ct_hash;
1490 		struct hlist_nulls_node *n;
1491 		struct nf_conn *tmp;
1492 
1493 		rcu_read_lock();
1494 
1495 		nf_conntrack_get_ht(&ct_hash, &hashsz);
1496 		if (i >= hashsz) {
1497 			rcu_read_unlock();
1498 			break;
1499 		}
1500 
1501 		hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1502 			struct nf_conntrack_net *cnet;
1503 			unsigned long expires;
1504 			struct net *net;
1505 
1506 			tmp = nf_ct_tuplehash_to_ctrack(h);
1507 
1508 			if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1509 				nf_ct_offload_timeout(tmp);
1510 				continue;
1511 			}
1512 
1513 			if (expired_count > GC_SCAN_EXPIRED_MAX) {
1514 				rcu_read_unlock();
1515 
1516 				gc_work->next_bucket = i;
1517 				gc_work->avg_timeout = next_run;
1518 
1519 				delta_time = nfct_time_stamp - gc_work->start_time;
1520 
1521 				/* re-sched immediately if total cycle time is exceeded */
1522 				next_run = delta_time < (s32)GC_SCAN_INTERVAL_MAX;
1523 				goto early_exit;
1524 			}
1525 
1526 			if (nf_ct_is_expired(tmp)) {
1527 				nf_ct_gc_expired(tmp);
1528 				expired_count++;
1529 				continue;
1530 			}
1531 
1532 			expires = clamp(nf_ct_expires(tmp), GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_CLAMP);
1533 			next_run += expires;
1534 			next_run /= 2u;
1535 
1536 			if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1537 				continue;
1538 
1539 			net = nf_ct_net(tmp);
1540 			cnet = nf_ct_pernet(net);
1541 			if (atomic_read(&cnet->count) < nf_conntrack_max95)
1542 				continue;
1543 
1544 			/* need to take reference to avoid possible races */
1545 			if (!refcount_inc_not_zero(&tmp->ct_general.use))
1546 				continue;
1547 
1548 			/* load ->status after refcount increase */
1549 			smp_acquire__after_ctrl_dep();
1550 
1551 			if (gc_worker_skip_ct(tmp)) {
1552 				nf_ct_put(tmp);
1553 				continue;
1554 			}
1555 
1556 			if (gc_worker_can_early_drop(tmp)) {
1557 				nf_ct_kill(tmp);
1558 				expired_count++;
1559 			}
1560 
1561 			nf_ct_put(tmp);
1562 		}
1563 
1564 		/* could check get_nulls_value() here and restart if ct
1565 		 * was moved to another chain.  But given gc is best-effort
1566 		 * we will just continue with next hash slot.
1567 		 */
1568 		rcu_read_unlock();
1569 		cond_resched();
1570 		i++;
1571 
1572 		delta_time = nfct_time_stamp - end_time;
1573 		if (delta_time > 0 && i < hashsz) {
1574 			gc_work->avg_timeout = next_run;
1575 			gc_work->next_bucket = i;
1576 			next_run = 0;
1577 			goto early_exit;
1578 		}
1579 	} while (i < hashsz);
1580 
1581 	gc_work->next_bucket = 0;
1582 
1583 	next_run = clamp(next_run, GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_MAX);
1584 
1585 	delta_time = max_t(s32, nfct_time_stamp - gc_work->start_time, 1);
1586 	if (next_run > (unsigned long)delta_time)
1587 		next_run -= delta_time;
1588 	else
1589 		next_run = 1;
1590 
1591 early_exit:
1592 	if (gc_work->exiting)
1593 		return;
1594 
1595 	if (next_run)
1596 		gc_work->early_drop = false;
1597 
1598 	queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1599 }
1600 
conntrack_gc_work_init(struct conntrack_gc_work * gc_work)1601 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1602 {
1603 	INIT_DELAYED_WORK(&gc_work->dwork, gc_worker);
1604 	gc_work->exiting = false;
1605 }
1606 
1607 static struct nf_conn *
__nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp,u32 hash)1608 __nf_conntrack_alloc(struct net *net,
1609 		     const struct nf_conntrack_zone *zone,
1610 		     const struct nf_conntrack_tuple *orig,
1611 		     const struct nf_conntrack_tuple *repl,
1612 		     gfp_t gfp, u32 hash)
1613 {
1614 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
1615 	unsigned int ct_count;
1616 	struct nf_conn *ct;
1617 
1618 	/* We don't want any race condition at early drop stage */
1619 	ct_count = atomic_inc_return(&cnet->count);
1620 
1621 	if (nf_conntrack_max && unlikely(ct_count > nf_conntrack_max)) {
1622 		if (!early_drop(net, hash)) {
1623 			if (!conntrack_gc_work.early_drop)
1624 				conntrack_gc_work.early_drop = true;
1625 			atomic_dec(&cnet->count);
1626 			net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1627 			return ERR_PTR(-ENOMEM);
1628 		}
1629 	}
1630 
1631 	/*
1632 	 * Do not use kmem_cache_zalloc(), as this cache uses
1633 	 * SLAB_TYPESAFE_BY_RCU.
1634 	 */
1635 	ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1636 	if (ct == NULL)
1637 		goto out;
1638 
1639 	spin_lock_init(&ct->lock);
1640 	ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1641 	ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1642 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1643 	/* save hash for reusing when confirming */
1644 	*(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1645 	ct->status = 0;
1646 	WRITE_ONCE(ct->timeout, 0);
1647 	write_pnet(&ct->ct_net, net);
1648 	memset_after(ct, 0, __nfct_init_offset);
1649 
1650 	nf_ct_zone_add(ct, zone);
1651 
1652 	/* Because we use RCU lookups, we set ct_general.use to zero before
1653 	 * this is inserted in any list.
1654 	 */
1655 	refcount_set(&ct->ct_general.use, 0);
1656 	return ct;
1657 out:
1658 	atomic_dec(&cnet->count);
1659 	return ERR_PTR(-ENOMEM);
1660 }
1661 
nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp)1662 struct nf_conn *nf_conntrack_alloc(struct net *net,
1663 				   const struct nf_conntrack_zone *zone,
1664 				   const struct nf_conntrack_tuple *orig,
1665 				   const struct nf_conntrack_tuple *repl,
1666 				   gfp_t gfp)
1667 {
1668 	return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1669 }
1670 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1671 
nf_conntrack_free(struct nf_conn * ct)1672 void nf_conntrack_free(struct nf_conn *ct)
1673 {
1674 	struct net *net = nf_ct_net(ct);
1675 	struct nf_conntrack_net *cnet;
1676 
1677 	/* A freed object has refcnt == 0, that's
1678 	 * the golden rule for SLAB_TYPESAFE_BY_RCU
1679 	 */
1680 	WARN_ON(refcount_read(&ct->ct_general.use) != 0);
1681 
1682 	if (ct->status & IPS_SRC_NAT_DONE) {
1683 		const struct nf_nat_hook *nat_hook;
1684 
1685 		rcu_read_lock();
1686 		nat_hook = rcu_dereference(nf_nat_hook);
1687 		if (nat_hook)
1688 			nat_hook->remove_nat_bysrc(ct);
1689 		rcu_read_unlock();
1690 	}
1691 
1692 	kfree(ct->ext);
1693 	kmem_cache_free(nf_conntrack_cachep, ct);
1694 	cnet = nf_ct_pernet(net);
1695 
1696 	smp_mb__before_atomic();
1697 	atomic_dec(&cnet->count);
1698 }
1699 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1700 
1701 
1702 /* Allocate a new conntrack: we return -ENOMEM if classification
1703    failed due to stress.  Otherwise it really is unclassifiable. */
1704 static noinline struct nf_conntrack_tuple_hash *
init_conntrack(struct net * net,struct nf_conn * tmpl,const struct nf_conntrack_tuple * tuple,struct sk_buff * skb,unsigned int dataoff,u32 hash)1705 init_conntrack(struct net *net, struct nf_conn *tmpl,
1706 	       const struct nf_conntrack_tuple *tuple,
1707 	       struct sk_buff *skb,
1708 	       unsigned int dataoff, u32 hash)
1709 {
1710 	struct nf_conn *ct;
1711 	struct nf_conn_help *help;
1712 	struct nf_conntrack_tuple repl_tuple;
1713 #ifdef CONFIG_NF_CONNTRACK_EVENTS
1714 	struct nf_conntrack_ecache *ecache;
1715 #endif
1716 	struct nf_conntrack_expect *exp = NULL;
1717 	const struct nf_conntrack_zone *zone;
1718 	struct nf_conn_timeout *timeout_ext;
1719 	struct nf_conntrack_zone tmp;
1720 	struct nf_conntrack_net *cnet;
1721 
1722 	if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1723 		pr_debug("Can't invert tuple.\n");
1724 		return NULL;
1725 	}
1726 
1727 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1728 	ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1729 				  hash);
1730 	if (IS_ERR(ct))
1731 		return (struct nf_conntrack_tuple_hash *)ct;
1732 
1733 	if (!nf_ct_add_synproxy(ct, tmpl)) {
1734 		nf_conntrack_free(ct);
1735 		return ERR_PTR(-ENOMEM);
1736 	}
1737 
1738 	timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1739 
1740 	if (timeout_ext)
1741 		nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1742 				      GFP_ATOMIC);
1743 
1744 	nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1745 	nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1746 	nf_ct_labels_ext_add(ct);
1747 
1748 #ifdef CONFIG_NF_CONNTRACK_EVENTS
1749 	ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1750 
1751 	if ((ecache || net->ct.sysctl_events) &&
1752 	    !nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1753 				  ecache ? ecache->expmask : 0,
1754 				  GFP_ATOMIC)) {
1755 		nf_conntrack_free(ct);
1756 		return ERR_PTR(-ENOMEM);
1757 	}
1758 #endif
1759 
1760 	cnet = nf_ct_pernet(net);
1761 	if (cnet->expect_count) {
1762 		spin_lock_bh(&nf_conntrack_expect_lock);
1763 		exp = nf_ct_find_expectation(net, zone, tuple);
1764 		if (exp) {
1765 			pr_debug("expectation arrives ct=%p exp=%p\n",
1766 				 ct, exp);
1767 			/* Welcome, Mr. Bond.  We've been expecting you... */
1768 			__set_bit(IPS_EXPECTED_BIT, &ct->status);
1769 			/* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1770 			ct->master = exp->master;
1771 			if (exp->helper) {
1772 				help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1773 				if (help)
1774 					rcu_assign_pointer(help->helper, exp->helper);
1775 			}
1776 
1777 #ifdef CONFIG_NF_CONNTRACK_MARK
1778 			ct->mark = exp->master->mark;
1779 #endif
1780 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1781 			ct->secmark = exp->master->secmark;
1782 #endif
1783 			NF_CT_STAT_INC(net, expect_new);
1784 		}
1785 		spin_unlock_bh(&nf_conntrack_expect_lock);
1786 	}
1787 	if (!exp)
1788 		__nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1789 
1790 	/* Other CPU might have obtained a pointer to this object before it was
1791 	 * released.  Because refcount is 0, refcount_inc_not_zero() will fail.
1792 	 *
1793 	 * After refcount_set(1) it will succeed; ensure that zeroing of
1794 	 * ct->status and the correct ct->net pointer are visible; else other
1795 	 * core might observe CONFIRMED bit which means the entry is valid and
1796 	 * in the hash table, but its not (anymore).
1797 	 */
1798 	smp_wmb();
1799 
1800 	/* Now it is going to be associated with an sk_buff, set refcount to 1. */
1801 	refcount_set(&ct->ct_general.use, 1);
1802 
1803 	if (exp) {
1804 		if (exp->expectfn)
1805 			exp->expectfn(ct, exp);
1806 		nf_ct_expect_put(exp);
1807 	}
1808 
1809 	return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1810 }
1811 
1812 /* On success, returns 0, sets skb->_nfct | ctinfo */
1813 static int
resolve_normal_ct(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u_int8_t protonum,const struct nf_hook_state * state)1814 resolve_normal_ct(struct nf_conn *tmpl,
1815 		  struct sk_buff *skb,
1816 		  unsigned int dataoff,
1817 		  u_int8_t protonum,
1818 		  const struct nf_hook_state *state)
1819 {
1820 	const struct nf_conntrack_zone *zone;
1821 	struct nf_conntrack_tuple tuple;
1822 	struct nf_conntrack_tuple_hash *h;
1823 	enum ip_conntrack_info ctinfo;
1824 	struct nf_conntrack_zone tmp;
1825 	u32 hash, zone_id, rid;
1826 	struct nf_conn *ct;
1827 
1828 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1829 			     dataoff, state->pf, protonum, state->net,
1830 			     &tuple)) {
1831 		pr_debug("Can't get tuple\n");
1832 		return 0;
1833 	}
1834 
1835 	/* look for tuple match */
1836 	zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1837 
1838 	zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
1839 	hash = hash_conntrack_raw(&tuple, zone_id, state->net);
1840 	h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1841 
1842 	if (!h) {
1843 		rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
1844 		if (zone_id != rid) {
1845 			u32 tmp = hash_conntrack_raw(&tuple, rid, state->net);
1846 
1847 			h = __nf_conntrack_find_get(state->net, zone, &tuple, tmp);
1848 		}
1849 	}
1850 
1851 	if (!h) {
1852 		h = init_conntrack(state->net, tmpl, &tuple,
1853 				   skb, dataoff, hash);
1854 		if (!h)
1855 			return 0;
1856 		if (IS_ERR(h))
1857 			return PTR_ERR(h);
1858 	}
1859 	ct = nf_ct_tuplehash_to_ctrack(h);
1860 
1861 	/* It exists; we have (non-exclusive) reference. */
1862 	if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1863 		ctinfo = IP_CT_ESTABLISHED_REPLY;
1864 	} else {
1865 		/* Once we've had two way comms, always ESTABLISHED. */
1866 		if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1867 			pr_debug("normal packet for %p\n", ct);
1868 			ctinfo = IP_CT_ESTABLISHED;
1869 		} else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1870 			pr_debug("related packet for %p\n", ct);
1871 			ctinfo = IP_CT_RELATED;
1872 		} else {
1873 			pr_debug("new packet for %p\n", ct);
1874 			ctinfo = IP_CT_NEW;
1875 		}
1876 	}
1877 	nf_ct_set(skb, ct, ctinfo);
1878 	return 0;
1879 }
1880 
1881 /*
1882  * icmp packets need special treatment to handle error messages that are
1883  * related to a connection.
1884  *
1885  * Callers need to check if skb has a conntrack assigned when this
1886  * helper returns; in such case skb belongs to an already known connection.
1887  */
1888 static unsigned int __cold
nf_conntrack_handle_icmp(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u8 protonum,const struct nf_hook_state * state)1889 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1890 			 struct sk_buff *skb,
1891 			 unsigned int dataoff,
1892 			 u8 protonum,
1893 			 const struct nf_hook_state *state)
1894 {
1895 	int ret;
1896 
1897 	if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1898 		ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1899 #if IS_ENABLED(CONFIG_IPV6)
1900 	else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1901 		ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1902 #endif
1903 	else
1904 		return NF_ACCEPT;
1905 
1906 	if (ret <= 0)
1907 		NF_CT_STAT_INC_ATOMIC(state->net, error);
1908 
1909 	return ret;
1910 }
1911 
generic_packet(struct nf_conn * ct,struct sk_buff * skb,enum ip_conntrack_info ctinfo)1912 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1913 			  enum ip_conntrack_info ctinfo)
1914 {
1915 	const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1916 
1917 	if (!timeout)
1918 		timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1919 
1920 	nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1921 	return NF_ACCEPT;
1922 }
1923 
1924 /* Returns verdict for packet, or -1 for invalid. */
nf_conntrack_handle_packet(struct nf_conn * ct,struct sk_buff * skb,unsigned int dataoff,enum ip_conntrack_info ctinfo,const struct nf_hook_state * state)1925 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1926 				      struct sk_buff *skb,
1927 				      unsigned int dataoff,
1928 				      enum ip_conntrack_info ctinfo,
1929 				      const struct nf_hook_state *state)
1930 {
1931 	switch (nf_ct_protonum(ct)) {
1932 	case IPPROTO_TCP:
1933 		return nf_conntrack_tcp_packet(ct, skb, dataoff,
1934 					       ctinfo, state);
1935 	case IPPROTO_UDP:
1936 		return nf_conntrack_udp_packet(ct, skb, dataoff,
1937 					       ctinfo, state);
1938 	case IPPROTO_ICMP:
1939 		return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1940 #if IS_ENABLED(CONFIG_IPV6)
1941 	case IPPROTO_ICMPV6:
1942 		return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1943 #endif
1944 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1945 	case IPPROTO_UDPLITE:
1946 		return nf_conntrack_udplite_packet(ct, skb, dataoff,
1947 						   ctinfo, state);
1948 #endif
1949 #ifdef CONFIG_NF_CT_PROTO_SCTP
1950 	case IPPROTO_SCTP:
1951 		return nf_conntrack_sctp_packet(ct, skb, dataoff,
1952 						ctinfo, state);
1953 #endif
1954 #ifdef CONFIG_NF_CT_PROTO_DCCP
1955 	case IPPROTO_DCCP:
1956 		return nf_conntrack_dccp_packet(ct, skb, dataoff,
1957 						ctinfo, state);
1958 #endif
1959 #ifdef CONFIG_NF_CT_PROTO_GRE
1960 	case IPPROTO_GRE:
1961 		return nf_conntrack_gre_packet(ct, skb, dataoff,
1962 					       ctinfo, state);
1963 #endif
1964 	}
1965 
1966 	return generic_packet(ct, skb, ctinfo);
1967 }
1968 
1969 unsigned int
nf_conntrack_in(struct sk_buff * skb,const struct nf_hook_state * state)1970 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1971 {
1972 	enum ip_conntrack_info ctinfo;
1973 	struct nf_conn *ct, *tmpl;
1974 	u_int8_t protonum;
1975 	int dataoff, ret;
1976 
1977 	tmpl = nf_ct_get(skb, &ctinfo);
1978 	if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1979 		/* Previously seen (loopback or untracked)?  Ignore. */
1980 		if ((tmpl && !nf_ct_is_template(tmpl)) ||
1981 		     ctinfo == IP_CT_UNTRACKED)
1982 			return NF_ACCEPT;
1983 		skb->_nfct = 0;
1984 	}
1985 
1986 	/* rcu_read_lock()ed by nf_hook_thresh */
1987 	dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1988 	if (dataoff <= 0) {
1989 		pr_debug("not prepared to track yet or error occurred\n");
1990 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1991 		ret = NF_ACCEPT;
1992 		goto out;
1993 	}
1994 
1995 	if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1996 		ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1997 					       protonum, state);
1998 		if (ret <= 0) {
1999 			ret = -ret;
2000 			goto out;
2001 		}
2002 		/* ICMP[v6] protocol trackers may assign one conntrack. */
2003 		if (skb->_nfct)
2004 			goto out;
2005 	}
2006 repeat:
2007 	ret = resolve_normal_ct(tmpl, skb, dataoff,
2008 				protonum, state);
2009 	if (ret < 0) {
2010 		/* Too stressed to deal. */
2011 		NF_CT_STAT_INC_ATOMIC(state->net, drop);
2012 		ret = NF_DROP;
2013 		goto out;
2014 	}
2015 
2016 	ct = nf_ct_get(skb, &ctinfo);
2017 	if (!ct) {
2018 		/* Not valid part of a connection */
2019 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2020 		ret = NF_ACCEPT;
2021 		goto out;
2022 	}
2023 
2024 	ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
2025 	if (ret <= 0) {
2026 		/* Invalid: inverse of the return code tells
2027 		 * the netfilter core what to do */
2028 		pr_debug("nf_conntrack_in: Can't track with proto module\n");
2029 		nf_ct_put(ct);
2030 		skb->_nfct = 0;
2031 		/* Special case: TCP tracker reports an attempt to reopen a
2032 		 * closed/aborted connection. We have to go back and create a
2033 		 * fresh conntrack.
2034 		 */
2035 		if (ret == -NF_REPEAT)
2036 			goto repeat;
2037 
2038 		NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2039 		if (ret == -NF_DROP)
2040 			NF_CT_STAT_INC_ATOMIC(state->net, drop);
2041 
2042 		ret = -ret;
2043 		goto out;
2044 	}
2045 
2046 	if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
2047 	    !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
2048 		nf_conntrack_event_cache(IPCT_REPLY, ct);
2049 out:
2050 	if (tmpl)
2051 		nf_ct_put(tmpl);
2052 
2053 	return ret;
2054 }
2055 EXPORT_SYMBOL_GPL(nf_conntrack_in);
2056 
2057 /* Alter reply tuple (maybe alter helper).  This is for NAT, and is
2058    implicitly racy: see __nf_conntrack_confirm */
nf_conntrack_alter_reply(struct nf_conn * ct,const struct nf_conntrack_tuple * newreply)2059 void nf_conntrack_alter_reply(struct nf_conn *ct,
2060 			      const struct nf_conntrack_tuple *newreply)
2061 {
2062 	struct nf_conn_help *help = nfct_help(ct);
2063 
2064 	/* Should be unconfirmed, so not in hash table yet */
2065 	WARN_ON(nf_ct_is_confirmed(ct));
2066 
2067 	pr_debug("Altering reply tuple of %p to ", ct);
2068 	nf_ct_dump_tuple(newreply);
2069 
2070 	ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
2071 	if (ct->master || (help && !hlist_empty(&help->expectations)))
2072 		return;
2073 
2074 	rcu_read_lock();
2075 	__nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
2076 	rcu_read_unlock();
2077 }
2078 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
2079 
2080 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
__nf_ct_refresh_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb,u32 extra_jiffies,bool do_acct)2081 void __nf_ct_refresh_acct(struct nf_conn *ct,
2082 			  enum ip_conntrack_info ctinfo,
2083 			  const struct sk_buff *skb,
2084 			  u32 extra_jiffies,
2085 			  bool do_acct)
2086 {
2087 	/* Only update if this is not a fixed timeout */
2088 	if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
2089 		goto acct;
2090 
2091 	/* If not in hash table, timer will not be active yet */
2092 	if (nf_ct_is_confirmed(ct))
2093 		extra_jiffies += nfct_time_stamp;
2094 
2095 	if (READ_ONCE(ct->timeout) != extra_jiffies)
2096 		WRITE_ONCE(ct->timeout, extra_jiffies);
2097 acct:
2098 	if (do_acct)
2099 		nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2100 }
2101 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
2102 
nf_ct_kill_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb)2103 bool nf_ct_kill_acct(struct nf_conn *ct,
2104 		     enum ip_conntrack_info ctinfo,
2105 		     const struct sk_buff *skb)
2106 {
2107 	nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2108 
2109 	return nf_ct_delete(ct, 0, 0);
2110 }
2111 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
2112 
2113 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
2114 
2115 #include <linux/netfilter/nfnetlink.h>
2116 #include <linux/netfilter/nfnetlink_conntrack.h>
2117 #include <linux/mutex.h>
2118 
2119 /* Generic function for tcp/udp/sctp/dccp and alike. */
nf_ct_port_tuple_to_nlattr(struct sk_buff * skb,const struct nf_conntrack_tuple * tuple)2120 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
2121 			       const struct nf_conntrack_tuple *tuple)
2122 {
2123 	if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
2124 	    nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
2125 		goto nla_put_failure;
2126 	return 0;
2127 
2128 nla_put_failure:
2129 	return -1;
2130 }
2131 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
2132 
2133 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
2134 	[CTA_PROTO_SRC_PORT]  = { .type = NLA_U16 },
2135 	[CTA_PROTO_DST_PORT]  = { .type = NLA_U16 },
2136 };
2137 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
2138 
nf_ct_port_nlattr_to_tuple(struct nlattr * tb[],struct nf_conntrack_tuple * t,u_int32_t flags)2139 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
2140 			       struct nf_conntrack_tuple *t,
2141 			       u_int32_t flags)
2142 {
2143 	if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
2144 		if (!tb[CTA_PROTO_SRC_PORT])
2145 			return -EINVAL;
2146 
2147 		t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
2148 	}
2149 
2150 	if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
2151 		if (!tb[CTA_PROTO_DST_PORT])
2152 			return -EINVAL;
2153 
2154 		t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
2155 	}
2156 
2157 	return 0;
2158 }
2159 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
2160 
nf_ct_port_nlattr_tuple_size(void)2161 unsigned int nf_ct_port_nlattr_tuple_size(void)
2162 {
2163 	static unsigned int size __read_mostly;
2164 
2165 	if (!size)
2166 		size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
2167 
2168 	return size;
2169 }
2170 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
2171 #endif
2172 
2173 /* Used by ipt_REJECT and ip6t_REJECT. */
nf_conntrack_attach(struct sk_buff * nskb,const struct sk_buff * skb)2174 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
2175 {
2176 	struct nf_conn *ct;
2177 	enum ip_conntrack_info ctinfo;
2178 
2179 	/* This ICMP is in reverse direction to the packet which caused it */
2180 	ct = nf_ct_get(skb, &ctinfo);
2181 	if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2182 		ctinfo = IP_CT_RELATED_REPLY;
2183 	else
2184 		ctinfo = IP_CT_RELATED;
2185 
2186 	/* Attach to new skbuff, and increment count */
2187 	nf_ct_set(nskb, ct, ctinfo);
2188 	nf_conntrack_get(skb_nfct(nskb));
2189 }
2190 
__nf_conntrack_update(struct net * net,struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)2191 static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
2192 				 struct nf_conn *ct,
2193 				 enum ip_conntrack_info ctinfo)
2194 {
2195 	const struct nf_nat_hook *nat_hook;
2196 	struct nf_conntrack_tuple_hash *h;
2197 	struct nf_conntrack_tuple tuple;
2198 	unsigned int status;
2199 	int dataoff;
2200 	u16 l3num;
2201 	u8 l4num;
2202 
2203 	l3num = nf_ct_l3num(ct);
2204 
2205 	dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2206 	if (dataoff <= 0)
2207 		return -1;
2208 
2209 	if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2210 			     l4num, net, &tuple))
2211 		return -1;
2212 
2213 	if (ct->status & IPS_SRC_NAT) {
2214 		memcpy(tuple.src.u3.all,
2215 		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2216 		       sizeof(tuple.src.u3.all));
2217 		tuple.src.u.all =
2218 			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2219 	}
2220 
2221 	if (ct->status & IPS_DST_NAT) {
2222 		memcpy(tuple.dst.u3.all,
2223 		       ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2224 		       sizeof(tuple.dst.u3.all));
2225 		tuple.dst.u.all =
2226 			ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2227 	}
2228 
2229 	h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2230 	if (!h)
2231 		return 0;
2232 
2233 	/* Store status bits of the conntrack that is clashing to re-do NAT
2234 	 * mangling according to what it has been done already to this packet.
2235 	 */
2236 	status = ct->status;
2237 
2238 	nf_ct_put(ct);
2239 	ct = nf_ct_tuplehash_to_ctrack(h);
2240 	nf_ct_set(skb, ct, ctinfo);
2241 
2242 	nat_hook = rcu_dereference(nf_nat_hook);
2243 	if (!nat_hook)
2244 		return 0;
2245 
2246 	if (status & IPS_SRC_NAT &&
2247 	    nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
2248 				IP_CT_DIR_ORIGINAL) == NF_DROP)
2249 		return -1;
2250 
2251 	if (status & IPS_DST_NAT &&
2252 	    nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
2253 				IP_CT_DIR_ORIGINAL) == NF_DROP)
2254 		return -1;
2255 
2256 	return 0;
2257 }
2258 
2259 /* This packet is coming from userspace via nf_queue, complete the packet
2260  * processing after the helper invocation in nf_confirm().
2261  */
nf_confirm_cthelper(struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)2262 static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2263 			       enum ip_conntrack_info ctinfo)
2264 {
2265 	const struct nf_conntrack_helper *helper;
2266 	const struct nf_conn_help *help;
2267 	int protoff;
2268 
2269 	help = nfct_help(ct);
2270 	if (!help)
2271 		return 0;
2272 
2273 	helper = rcu_dereference(help->helper);
2274 	if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2275 		return 0;
2276 
2277 	switch (nf_ct_l3num(ct)) {
2278 	case NFPROTO_IPV4:
2279 		protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2280 		break;
2281 #if IS_ENABLED(CONFIG_IPV6)
2282 	case NFPROTO_IPV6: {
2283 		__be16 frag_off;
2284 		u8 pnum;
2285 
2286 		pnum = ipv6_hdr(skb)->nexthdr;
2287 		protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2288 					   &frag_off);
2289 		if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2290 			return 0;
2291 		break;
2292 	}
2293 #endif
2294 	default:
2295 		return 0;
2296 	}
2297 
2298 	if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2299 	    !nf_is_loopback_packet(skb)) {
2300 		if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2301 			NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2302 			return -1;
2303 		}
2304 	}
2305 
2306 	/* We've seen it coming out the other side: confirm it */
2307 	return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0;
2308 }
2309 
nf_conntrack_update(struct net * net,struct sk_buff * skb)2310 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2311 {
2312 	enum ip_conntrack_info ctinfo;
2313 	struct nf_conn *ct;
2314 	int err;
2315 
2316 	ct = nf_ct_get(skb, &ctinfo);
2317 	if (!ct)
2318 		return 0;
2319 
2320 	if (!nf_ct_is_confirmed(ct)) {
2321 		err = __nf_conntrack_update(net, skb, ct, ctinfo);
2322 		if (err < 0)
2323 			return err;
2324 
2325 		ct = nf_ct_get(skb, &ctinfo);
2326 	}
2327 
2328 	return nf_confirm_cthelper(skb, ct, ctinfo);
2329 }
2330 
nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple * dst_tuple,const struct sk_buff * skb)2331 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2332 				       const struct sk_buff *skb)
2333 {
2334 	const struct nf_conntrack_tuple *src_tuple;
2335 	const struct nf_conntrack_tuple_hash *hash;
2336 	struct nf_conntrack_tuple srctuple;
2337 	enum ip_conntrack_info ctinfo;
2338 	struct nf_conn *ct;
2339 
2340 	ct = nf_ct_get(skb, &ctinfo);
2341 	if (ct) {
2342 		src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2343 		memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2344 		return true;
2345 	}
2346 
2347 	if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2348 			       NFPROTO_IPV4, dev_net(skb->dev),
2349 			       &srctuple))
2350 		return false;
2351 
2352 	hash = nf_conntrack_find_get(dev_net(skb->dev),
2353 				     &nf_ct_zone_dflt,
2354 				     &srctuple);
2355 	if (!hash)
2356 		return false;
2357 
2358 	ct = nf_ct_tuplehash_to_ctrack(hash);
2359 	src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2360 	memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2361 	nf_ct_put(ct);
2362 
2363 	return true;
2364 }
2365 
2366 /* Bring out ya dead! */
2367 static struct nf_conn *
get_next_corpse(int (* iter)(struct nf_conn * i,void * data),const struct nf_ct_iter_data * iter_data,unsigned int * bucket)2368 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2369 		const struct nf_ct_iter_data *iter_data, unsigned int *bucket)
2370 {
2371 	struct nf_conntrack_tuple_hash *h;
2372 	struct nf_conn *ct;
2373 	struct hlist_nulls_node *n;
2374 	spinlock_t *lockp;
2375 
2376 	for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2377 		struct hlist_nulls_head *hslot = &nf_conntrack_hash[*bucket];
2378 
2379 		if (hlist_nulls_empty(hslot))
2380 			continue;
2381 
2382 		lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2383 		local_bh_disable();
2384 		nf_conntrack_lock(lockp);
2385 		hlist_nulls_for_each_entry(h, n, hslot, hnnode) {
2386 			if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2387 				continue;
2388 			/* All nf_conn objects are added to hash table twice, one
2389 			 * for original direction tuple, once for the reply tuple.
2390 			 *
2391 			 * Exception: In the IPS_NAT_CLASH case, only the reply
2392 			 * tuple is added (the original tuple already existed for
2393 			 * a different object).
2394 			 *
2395 			 * We only need to call the iterator once for each
2396 			 * conntrack, so we just use the 'reply' direction
2397 			 * tuple while iterating.
2398 			 */
2399 			ct = nf_ct_tuplehash_to_ctrack(h);
2400 
2401 			if (iter_data->net &&
2402 			    !net_eq(iter_data->net, nf_ct_net(ct)))
2403 				continue;
2404 
2405 			if (iter(ct, iter_data->data))
2406 				goto found;
2407 		}
2408 		spin_unlock(lockp);
2409 		local_bh_enable();
2410 		cond_resched();
2411 	}
2412 
2413 	return NULL;
2414 found:
2415 	refcount_inc(&ct->ct_general.use);
2416 	spin_unlock(lockp);
2417 	local_bh_enable();
2418 	return ct;
2419 }
2420 
nf_ct_iterate_cleanup(int (* iter)(struct nf_conn * i,void * data),const struct nf_ct_iter_data * iter_data)2421 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2422 				  const struct nf_ct_iter_data *iter_data)
2423 {
2424 	unsigned int bucket = 0;
2425 	struct nf_conn *ct;
2426 
2427 	might_sleep();
2428 
2429 	mutex_lock(&nf_conntrack_mutex);
2430 	while ((ct = get_next_corpse(iter, iter_data, &bucket)) != NULL) {
2431 		/* Time to push up daises... */
2432 
2433 		nf_ct_delete(ct, iter_data->portid, iter_data->report);
2434 		nf_ct_put(ct);
2435 		cond_resched();
2436 	}
2437 	mutex_unlock(&nf_conntrack_mutex);
2438 }
2439 
nf_ct_iterate_cleanup_net(int (* iter)(struct nf_conn * i,void * data),const struct nf_ct_iter_data * iter_data)2440 void nf_ct_iterate_cleanup_net(int (*iter)(struct nf_conn *i, void *data),
2441 			       const struct nf_ct_iter_data *iter_data)
2442 {
2443 	struct net *net = iter_data->net;
2444 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2445 
2446 	might_sleep();
2447 
2448 	if (atomic_read(&cnet->count) == 0)
2449 		return;
2450 
2451 	nf_ct_iterate_cleanup(iter, iter_data);
2452 }
2453 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2454 
2455 /**
2456  * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2457  * @iter: callback to invoke for each conntrack
2458  * @data: data to pass to @iter
2459  *
2460  * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2461  * unconfirmed list as dying (so they will not be inserted into
2462  * main table).
2463  *
2464  * Can only be called in module exit path.
2465  */
2466 void
nf_ct_iterate_destroy(int (* iter)(struct nf_conn * i,void * data),void * data)2467 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2468 {
2469 	struct nf_ct_iter_data iter_data = {};
2470 	struct net *net;
2471 
2472 	down_read(&net_rwsem);
2473 	for_each_net(net) {
2474 		struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2475 
2476 		if (atomic_read(&cnet->count) == 0)
2477 			continue;
2478 		nf_queue_nf_hook_drop(net);
2479 	}
2480 	up_read(&net_rwsem);
2481 
2482 	/* Need to wait for netns cleanup worker to finish, if its
2483 	 * running -- it might have deleted a net namespace from
2484 	 * the global list, so hook drop above might not have
2485 	 * affected all namespaces.
2486 	 */
2487 	net_ns_barrier();
2488 
2489 	/* a skb w. unconfirmed conntrack could have been reinjected just
2490 	 * before we called nf_queue_nf_hook_drop().
2491 	 *
2492 	 * This makes sure its inserted into conntrack table.
2493 	 */
2494 	synchronize_net();
2495 
2496 	nf_ct_ext_bump_genid();
2497 	iter_data.data = data;
2498 	nf_ct_iterate_cleanup(iter, &iter_data);
2499 
2500 	/* Another cpu might be in a rcu read section with
2501 	 * rcu protected pointer cleared in iter callback
2502 	 * or hidden via nf_ct_ext_bump_genid() above.
2503 	 *
2504 	 * Wait until those are done.
2505 	 */
2506 	synchronize_rcu();
2507 }
2508 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2509 
kill_all(struct nf_conn * i,void * data)2510 static int kill_all(struct nf_conn *i, void *data)
2511 {
2512 	return 1;
2513 }
2514 
nf_conntrack_cleanup_start(void)2515 void nf_conntrack_cleanup_start(void)
2516 {
2517 	conntrack_gc_work.exiting = true;
2518 }
2519 
nf_conntrack_cleanup_end(void)2520 void nf_conntrack_cleanup_end(void)
2521 {
2522 	RCU_INIT_POINTER(nf_ct_hook, NULL);
2523 	cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2524 	kvfree(nf_conntrack_hash);
2525 
2526 	nf_conntrack_proto_fini();
2527 	nf_conntrack_helper_fini();
2528 	nf_conntrack_expect_fini();
2529 
2530 	kmem_cache_destroy(nf_conntrack_cachep);
2531 }
2532 
2533 /*
2534  * Mishearing the voices in his head, our hero wonders how he's
2535  * supposed to kill the mall.
2536  */
nf_conntrack_cleanup_net(struct net * net)2537 void nf_conntrack_cleanup_net(struct net *net)
2538 {
2539 	LIST_HEAD(single);
2540 
2541 	list_add(&net->exit_list, &single);
2542 	nf_conntrack_cleanup_net_list(&single);
2543 }
2544 
nf_conntrack_cleanup_net_list(struct list_head * net_exit_list)2545 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2546 {
2547 	struct nf_ct_iter_data iter_data = {};
2548 	struct net *net;
2549 	int busy;
2550 
2551 	/*
2552 	 * This makes sure all current packets have passed through
2553 	 *  netfilter framework.  Roll on, two-stage module
2554 	 *  delete...
2555 	 */
2556 	synchronize_net();
2557 i_see_dead_people:
2558 	busy = 0;
2559 	list_for_each_entry(net, net_exit_list, exit_list) {
2560 		struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2561 
2562 		iter_data.net = net;
2563 		nf_ct_iterate_cleanup_net(kill_all, &iter_data);
2564 		if (atomic_read(&cnet->count) != 0)
2565 			busy = 1;
2566 	}
2567 	if (busy) {
2568 		schedule();
2569 		goto i_see_dead_people;
2570 	}
2571 
2572 	list_for_each_entry(net, net_exit_list, exit_list) {
2573 		nf_conntrack_ecache_pernet_fini(net);
2574 		nf_conntrack_expect_pernet_fini(net);
2575 		free_percpu(net->ct.stat);
2576 	}
2577 }
2578 
nf_ct_alloc_hashtable(unsigned int * sizep,int nulls)2579 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2580 {
2581 	struct hlist_nulls_head *hash;
2582 	unsigned int nr_slots, i;
2583 
2584 	if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2585 		return NULL;
2586 
2587 	BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2588 	nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2589 
2590 	hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2591 
2592 	if (hash && nulls)
2593 		for (i = 0; i < nr_slots; i++)
2594 			INIT_HLIST_NULLS_HEAD(&hash[i], i);
2595 
2596 	return hash;
2597 }
2598 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2599 
nf_conntrack_hash_resize(unsigned int hashsize)2600 int nf_conntrack_hash_resize(unsigned int hashsize)
2601 {
2602 	int i, bucket;
2603 	unsigned int old_size;
2604 	struct hlist_nulls_head *hash, *old_hash;
2605 	struct nf_conntrack_tuple_hash *h;
2606 	struct nf_conn *ct;
2607 
2608 	if (!hashsize)
2609 		return -EINVAL;
2610 
2611 	hash = nf_ct_alloc_hashtable(&hashsize, 1);
2612 	if (!hash)
2613 		return -ENOMEM;
2614 
2615 	mutex_lock(&nf_conntrack_mutex);
2616 	old_size = nf_conntrack_htable_size;
2617 	if (old_size == hashsize) {
2618 		mutex_unlock(&nf_conntrack_mutex);
2619 		kvfree(hash);
2620 		return 0;
2621 	}
2622 
2623 	local_bh_disable();
2624 	nf_conntrack_all_lock();
2625 	write_seqcount_begin(&nf_conntrack_generation);
2626 
2627 	/* Lookups in the old hash might happen in parallel, which means we
2628 	 * might get false negatives during connection lookup. New connections
2629 	 * created because of a false negative won't make it into the hash
2630 	 * though since that required taking the locks.
2631 	 */
2632 
2633 	for (i = 0; i < nf_conntrack_htable_size; i++) {
2634 		while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2635 			unsigned int zone_id;
2636 
2637 			h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2638 					      struct nf_conntrack_tuple_hash, hnnode);
2639 			ct = nf_ct_tuplehash_to_ctrack(h);
2640 			hlist_nulls_del_rcu(&h->hnnode);
2641 
2642 			zone_id = nf_ct_zone_id(nf_ct_zone(ct), NF_CT_DIRECTION(h));
2643 			bucket = __hash_conntrack(nf_ct_net(ct),
2644 						  &h->tuple, zone_id, hashsize);
2645 			hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2646 		}
2647 	}
2648 	old_hash = nf_conntrack_hash;
2649 
2650 	nf_conntrack_hash = hash;
2651 	nf_conntrack_htable_size = hashsize;
2652 
2653 	write_seqcount_end(&nf_conntrack_generation);
2654 	nf_conntrack_all_unlock();
2655 	local_bh_enable();
2656 
2657 	mutex_unlock(&nf_conntrack_mutex);
2658 
2659 	synchronize_net();
2660 	kvfree(old_hash);
2661 	return 0;
2662 }
2663 
nf_conntrack_set_hashsize(const char * val,const struct kernel_param * kp)2664 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2665 {
2666 	unsigned int hashsize;
2667 	int rc;
2668 
2669 	if (current->nsproxy->net_ns != &init_net)
2670 		return -EOPNOTSUPP;
2671 
2672 	/* On boot, we can set this without any fancy locking. */
2673 	if (!nf_conntrack_hash)
2674 		return param_set_uint(val, kp);
2675 
2676 	rc = kstrtouint(val, 0, &hashsize);
2677 	if (rc)
2678 		return rc;
2679 
2680 	return nf_conntrack_hash_resize(hashsize);
2681 }
2682 
nf_conntrack_init_start(void)2683 int nf_conntrack_init_start(void)
2684 {
2685 	unsigned long nr_pages = totalram_pages();
2686 	int max_factor = 8;
2687 	int ret = -ENOMEM;
2688 	int i;
2689 
2690 	seqcount_spinlock_init(&nf_conntrack_generation,
2691 			       &nf_conntrack_locks_all_lock);
2692 
2693 	for (i = 0; i < CONNTRACK_LOCKS; i++)
2694 		spin_lock_init(&nf_conntrack_locks[i]);
2695 
2696 	if (!nf_conntrack_htable_size) {
2697 		nf_conntrack_htable_size
2698 			= (((nr_pages << PAGE_SHIFT) / 16384)
2699 			   / sizeof(struct hlist_head));
2700 		if (BITS_PER_LONG >= 64 &&
2701 		    nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2702 			nf_conntrack_htable_size = 262144;
2703 		else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2704 			nf_conntrack_htable_size = 65536;
2705 
2706 		if (nf_conntrack_htable_size < 1024)
2707 			nf_conntrack_htable_size = 1024;
2708 		/* Use a max. factor of one by default to keep the average
2709 		 * hash chain length at 2 entries.  Each entry has to be added
2710 		 * twice (once for original direction, once for reply).
2711 		 * When a table size is given we use the old value of 8 to
2712 		 * avoid implicit reduction of the max entries setting.
2713 		 */
2714 		max_factor = 1;
2715 	}
2716 
2717 	nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2718 	if (!nf_conntrack_hash)
2719 		return -ENOMEM;
2720 
2721 	nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2722 
2723 	nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2724 						sizeof(struct nf_conn),
2725 						NFCT_INFOMASK + 1,
2726 						SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2727 	if (!nf_conntrack_cachep)
2728 		goto err_cachep;
2729 
2730 	ret = nf_conntrack_expect_init();
2731 	if (ret < 0)
2732 		goto err_expect;
2733 
2734 	ret = nf_conntrack_helper_init();
2735 	if (ret < 0)
2736 		goto err_helper;
2737 
2738 	ret = nf_conntrack_proto_init();
2739 	if (ret < 0)
2740 		goto err_proto;
2741 
2742 	conntrack_gc_work_init(&conntrack_gc_work);
2743 	queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2744 
2745 	ret = register_nf_conntrack_bpf();
2746 	if (ret < 0)
2747 		goto err_kfunc;
2748 
2749 	return 0;
2750 
2751 err_kfunc:
2752 	cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2753 	nf_conntrack_proto_fini();
2754 err_proto:
2755 	nf_conntrack_helper_fini();
2756 err_helper:
2757 	nf_conntrack_expect_fini();
2758 err_expect:
2759 	kmem_cache_destroy(nf_conntrack_cachep);
2760 err_cachep:
2761 	kvfree(nf_conntrack_hash);
2762 	return ret;
2763 }
2764 
2765 static const struct nf_ct_hook nf_conntrack_hook = {
2766 	.update		= nf_conntrack_update,
2767 	.destroy	= nf_ct_destroy,
2768 	.get_tuple_skb  = nf_conntrack_get_tuple_skb,
2769 	.attach		= nf_conntrack_attach,
2770 };
2771 
nf_conntrack_init_end(void)2772 void nf_conntrack_init_end(void)
2773 {
2774 	RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2775 }
2776 
2777 /*
2778  * We need to use special "null" values, not used in hash table
2779  */
2780 #define UNCONFIRMED_NULLS_VAL	((1<<30)+0)
2781 
nf_conntrack_init_net(struct net * net)2782 int nf_conntrack_init_net(struct net *net)
2783 {
2784 	struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2785 	int ret = -ENOMEM;
2786 
2787 	BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2788 	BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2789 	atomic_set(&cnet->count, 0);
2790 
2791 	net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2792 	if (!net->ct.stat)
2793 		return ret;
2794 
2795 	ret = nf_conntrack_expect_pernet_init(net);
2796 	if (ret < 0)
2797 		goto err_expect;
2798 
2799 	nf_conntrack_acct_pernet_init(net);
2800 	nf_conntrack_tstamp_pernet_init(net);
2801 	nf_conntrack_ecache_pernet_init(net);
2802 	nf_conntrack_helper_pernet_init(net);
2803 	nf_conntrack_proto_pernet_init(net);
2804 
2805 	return 0;
2806 
2807 err_expect:
2808 	free_percpu(net->ct.stat);
2809 	return ret;
2810 }
2811