1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter. This is separated from,
3 but required by, the NAT layer; it can also be used by an iptables
4 extension. */
5
6 /* (C) 1999-2001 Paul `Rusty' Russell
7 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/siphash.h>
25 #include <linux/err.h>
26 #include <linux/percpu.h>
27 #include <linux/moduleparam.h>
28 #include <linux/notifier.h>
29 #include <linux/kernel.h>
30 #include <linux/netdevice.h>
31 #include <linux/socket.h>
32 #include <linux/mm.h>
33 #include <linux/nsproxy.h>
34 #include <linux/rculist_nulls.h>
35
36 #include <net/netfilter/nf_conntrack.h>
37 #include <net/netfilter/nf_conntrack_bpf.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_core.h>
42 #include <net/netfilter/nf_conntrack_extend.h>
43 #include <net/netfilter/nf_conntrack_acct.h>
44 #include <net/netfilter/nf_conntrack_ecache.h>
45 #include <net/netfilter/nf_conntrack_zones.h>
46 #include <net/netfilter/nf_conntrack_timestamp.h>
47 #include <net/netfilter/nf_conntrack_timeout.h>
48 #include <net/netfilter/nf_conntrack_labels.h>
49 #include <net/netfilter/nf_conntrack_synproxy.h>
50 #include <net/netfilter/nf_nat.h>
51 #include <net/netfilter/nf_nat_helper.h>
52 #include <net/netns/hash.h>
53 #include <net/ip.h>
54
55 #include "nf_internals.h"
56
57 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
58 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
59
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
61 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
62
63 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
64 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
65
66 struct conntrack_gc_work {
67 struct delayed_work dwork;
68 u32 next_bucket;
69 u32 avg_timeout;
70 u32 start_time;
71 bool exiting;
72 bool early_drop;
73 };
74
75 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
76 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
77 static __read_mostly bool nf_conntrack_locks_all;
78
79 /* serialize hash resizes and nf_ct_iterate_cleanup */
80 static DEFINE_MUTEX(nf_conntrack_mutex);
81
82 #define GC_SCAN_INTERVAL_MAX (60ul * HZ)
83 #define GC_SCAN_INTERVAL_MIN (1ul * HZ)
84
85 /* clamp timeouts to this value (TCP unacked) */
86 #define GC_SCAN_INTERVAL_CLAMP (300ul * HZ)
87
88 /* large initial bias so that we don't scan often just because we have
89 * three entries with a 1s timeout.
90 */
91 #define GC_SCAN_INTERVAL_INIT INT_MAX
92
93 #define GC_SCAN_MAX_DURATION msecs_to_jiffies(10)
94 #define GC_SCAN_EXPIRED_MAX (64000u / HZ)
95
96 #define MIN_CHAINLEN 8u
97 #define MAX_CHAINLEN (32u - MIN_CHAINLEN)
98
99 static struct conntrack_gc_work conntrack_gc_work;
100
nf_conntrack_lock(spinlock_t * lock)101 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
102 {
103 /* 1) Acquire the lock */
104 spin_lock(lock);
105
106 /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
107 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
108 */
109 if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
110 return;
111
112 /* fast path failed, unlock */
113 spin_unlock(lock);
114
115 /* Slow path 1) get global lock */
116 spin_lock(&nf_conntrack_locks_all_lock);
117
118 /* Slow path 2) get the lock we want */
119 spin_lock(lock);
120
121 /* Slow path 3) release the global lock */
122 spin_unlock(&nf_conntrack_locks_all_lock);
123 }
124 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
125
nf_conntrack_double_unlock(unsigned int h1,unsigned int h2)126 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
127 {
128 h1 %= CONNTRACK_LOCKS;
129 h2 %= CONNTRACK_LOCKS;
130 spin_unlock(&nf_conntrack_locks[h1]);
131 if (h1 != h2)
132 spin_unlock(&nf_conntrack_locks[h2]);
133 }
134
135 /* return true if we need to recompute hashes (in case hash table was resized) */
nf_conntrack_double_lock(struct net * net,unsigned int h1,unsigned int h2,unsigned int sequence)136 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
137 unsigned int h2, unsigned int sequence)
138 {
139 h1 %= CONNTRACK_LOCKS;
140 h2 %= CONNTRACK_LOCKS;
141 if (h1 <= h2) {
142 nf_conntrack_lock(&nf_conntrack_locks[h1]);
143 if (h1 != h2)
144 spin_lock_nested(&nf_conntrack_locks[h2],
145 SINGLE_DEPTH_NESTING);
146 } else {
147 nf_conntrack_lock(&nf_conntrack_locks[h2]);
148 spin_lock_nested(&nf_conntrack_locks[h1],
149 SINGLE_DEPTH_NESTING);
150 }
151 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
152 nf_conntrack_double_unlock(h1, h2);
153 return true;
154 }
155 return false;
156 }
157
nf_conntrack_all_lock(void)158 static void nf_conntrack_all_lock(void)
159 __acquires(&nf_conntrack_locks_all_lock)
160 {
161 int i;
162
163 spin_lock(&nf_conntrack_locks_all_lock);
164
165 /* For nf_contrack_locks_all, only the latest time when another
166 * CPU will see an update is controlled, by the "release" of the
167 * spin_lock below.
168 * The earliest time is not controlled, an thus KCSAN could detect
169 * a race when nf_conntract_lock() reads the variable.
170 * WRITE_ONCE() is used to ensure the compiler will not
171 * optimize the write.
172 */
173 WRITE_ONCE(nf_conntrack_locks_all, true);
174
175 for (i = 0; i < CONNTRACK_LOCKS; i++) {
176 spin_lock(&nf_conntrack_locks[i]);
177
178 /* This spin_unlock provides the "release" to ensure that
179 * nf_conntrack_locks_all==true is visible to everyone that
180 * acquired spin_lock(&nf_conntrack_locks[]).
181 */
182 spin_unlock(&nf_conntrack_locks[i]);
183 }
184 }
185
nf_conntrack_all_unlock(void)186 static void nf_conntrack_all_unlock(void)
187 __releases(&nf_conntrack_locks_all_lock)
188 {
189 /* All prior stores must be complete before we clear
190 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
191 * might observe the false value but not the entire
192 * critical section.
193 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
194 */
195 smp_store_release(&nf_conntrack_locks_all, false);
196 spin_unlock(&nf_conntrack_locks_all_lock);
197 }
198
199 unsigned int nf_conntrack_htable_size __read_mostly;
200 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
201
202 unsigned int nf_conntrack_max __read_mostly;
203 EXPORT_SYMBOL_GPL(nf_conntrack_max);
204 seqcount_spinlock_t nf_conntrack_generation __read_mostly;
205 static siphash_aligned_key_t nf_conntrack_hash_rnd;
206
hash_conntrack_raw(const struct nf_conntrack_tuple * tuple,unsigned int zoneid,const struct net * net)207 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
208 unsigned int zoneid,
209 const struct net *net)
210 {
211 struct {
212 struct nf_conntrack_man src;
213 union nf_inet_addr dst_addr;
214 unsigned int zone;
215 u32 net_mix;
216 u16 dport;
217 u16 proto;
218 } __aligned(SIPHASH_ALIGNMENT) combined;
219
220 get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
221
222 memset(&combined, 0, sizeof(combined));
223
224 /* The direction must be ignored, so handle usable members manually. */
225 combined.src = tuple->src;
226 combined.dst_addr = tuple->dst.u3;
227 combined.zone = zoneid;
228 combined.net_mix = net_hash_mix(net);
229 combined.dport = (__force __u16)tuple->dst.u.all;
230 combined.proto = tuple->dst.protonum;
231
232 return (u32)siphash(&combined, sizeof(combined), &nf_conntrack_hash_rnd);
233 }
234
scale_hash(u32 hash)235 static u32 scale_hash(u32 hash)
236 {
237 return reciprocal_scale(hash, nf_conntrack_htable_size);
238 }
239
__hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple,unsigned int zoneid,unsigned int size)240 static u32 __hash_conntrack(const struct net *net,
241 const struct nf_conntrack_tuple *tuple,
242 unsigned int zoneid,
243 unsigned int size)
244 {
245 return reciprocal_scale(hash_conntrack_raw(tuple, zoneid, net), size);
246 }
247
hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple,unsigned int zoneid)248 static u32 hash_conntrack(const struct net *net,
249 const struct nf_conntrack_tuple *tuple,
250 unsigned int zoneid)
251 {
252 return scale_hash(hash_conntrack_raw(tuple, zoneid, net));
253 }
254
nf_ct_get_tuple_ports(const struct sk_buff * skb,unsigned int dataoff,struct nf_conntrack_tuple * tuple)255 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
256 unsigned int dataoff,
257 struct nf_conntrack_tuple *tuple)
258 { struct {
259 __be16 sport;
260 __be16 dport;
261 } _inet_hdr, *inet_hdr;
262
263 /* Actually only need first 4 bytes to get ports. */
264 inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
265 if (!inet_hdr)
266 return false;
267
268 tuple->src.u.udp.port = inet_hdr->sport;
269 tuple->dst.u.udp.port = inet_hdr->dport;
270 return true;
271 }
272
273 static bool
nf_ct_get_tuple(const struct sk_buff * skb,unsigned int nhoff,unsigned int dataoff,u_int16_t l3num,u_int8_t protonum,struct net * net,struct nf_conntrack_tuple * tuple)274 nf_ct_get_tuple(const struct sk_buff *skb,
275 unsigned int nhoff,
276 unsigned int dataoff,
277 u_int16_t l3num,
278 u_int8_t protonum,
279 struct net *net,
280 struct nf_conntrack_tuple *tuple)
281 {
282 unsigned int size;
283 const __be32 *ap;
284 __be32 _addrs[8];
285
286 memset(tuple, 0, sizeof(*tuple));
287
288 tuple->src.l3num = l3num;
289 switch (l3num) {
290 case NFPROTO_IPV4:
291 nhoff += offsetof(struct iphdr, saddr);
292 size = 2 * sizeof(__be32);
293 break;
294 case NFPROTO_IPV6:
295 nhoff += offsetof(struct ipv6hdr, saddr);
296 size = sizeof(_addrs);
297 break;
298 default:
299 return true;
300 }
301
302 ap = skb_header_pointer(skb, nhoff, size, _addrs);
303 if (!ap)
304 return false;
305
306 switch (l3num) {
307 case NFPROTO_IPV4:
308 tuple->src.u3.ip = ap[0];
309 tuple->dst.u3.ip = ap[1];
310 break;
311 case NFPROTO_IPV6:
312 memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
313 memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
314 break;
315 }
316
317 tuple->dst.protonum = protonum;
318 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
319
320 switch (protonum) {
321 #if IS_ENABLED(CONFIG_IPV6)
322 case IPPROTO_ICMPV6:
323 return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
324 #endif
325 case IPPROTO_ICMP:
326 return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
327 #ifdef CONFIG_NF_CT_PROTO_GRE
328 case IPPROTO_GRE:
329 return gre_pkt_to_tuple(skb, dataoff, net, tuple);
330 #endif
331 case IPPROTO_TCP:
332 case IPPROTO_UDP: /* fallthrough */
333 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
334 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
335 case IPPROTO_UDPLITE:
336 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
337 #endif
338 #ifdef CONFIG_NF_CT_PROTO_SCTP
339 case IPPROTO_SCTP:
340 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
341 #endif
342 #ifdef CONFIG_NF_CT_PROTO_DCCP
343 case IPPROTO_DCCP:
344 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
345 #endif
346 default:
347 break;
348 }
349
350 return true;
351 }
352
ipv4_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u_int8_t * protonum)353 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
354 u_int8_t *protonum)
355 {
356 int dataoff = -1;
357 const struct iphdr *iph;
358 struct iphdr _iph;
359
360 iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
361 if (!iph)
362 return -1;
363
364 /* Conntrack defragments packets, we might still see fragments
365 * inside ICMP packets though.
366 */
367 if (iph->frag_off & htons(IP_OFFSET))
368 return -1;
369
370 dataoff = nhoff + (iph->ihl << 2);
371 *protonum = iph->protocol;
372
373 /* Check bogus IP headers */
374 if (dataoff > skb->len) {
375 pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
376 nhoff, iph->ihl << 2, skb->len);
377 return -1;
378 }
379 return dataoff;
380 }
381
382 #if IS_ENABLED(CONFIG_IPV6)
ipv6_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 * protonum)383 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
384 u8 *protonum)
385 {
386 int protoff = -1;
387 unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
388 __be16 frag_off;
389 u8 nexthdr;
390
391 if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
392 &nexthdr, sizeof(nexthdr)) != 0) {
393 pr_debug("can't get nexthdr\n");
394 return -1;
395 }
396 protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
397 /*
398 * (protoff == skb->len) means the packet has not data, just
399 * IPv6 and possibly extensions headers, but it is tracked anyway
400 */
401 if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
402 pr_debug("can't find proto in pkt\n");
403 return -1;
404 }
405
406 *protonum = nexthdr;
407 return protoff;
408 }
409 #endif
410
get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 pf,u8 * l4num)411 static int get_l4proto(const struct sk_buff *skb,
412 unsigned int nhoff, u8 pf, u8 *l4num)
413 {
414 switch (pf) {
415 case NFPROTO_IPV4:
416 return ipv4_get_l4proto(skb, nhoff, l4num);
417 #if IS_ENABLED(CONFIG_IPV6)
418 case NFPROTO_IPV6:
419 return ipv6_get_l4proto(skb, nhoff, l4num);
420 #endif
421 default:
422 *l4num = 0;
423 break;
424 }
425 return -1;
426 }
427
nf_ct_get_tuplepr(const struct sk_buff * skb,unsigned int nhoff,u_int16_t l3num,struct net * net,struct nf_conntrack_tuple * tuple)428 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
429 u_int16_t l3num,
430 struct net *net, struct nf_conntrack_tuple *tuple)
431 {
432 u8 protonum;
433 int protoff;
434
435 protoff = get_l4proto(skb, nhoff, l3num, &protonum);
436 if (protoff <= 0)
437 return false;
438
439 return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
440 }
441 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
442
443 bool
nf_ct_invert_tuple(struct nf_conntrack_tuple * inverse,const struct nf_conntrack_tuple * orig)444 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
445 const struct nf_conntrack_tuple *orig)
446 {
447 memset(inverse, 0, sizeof(*inverse));
448
449 inverse->src.l3num = orig->src.l3num;
450
451 switch (orig->src.l3num) {
452 case NFPROTO_IPV4:
453 inverse->src.u3.ip = orig->dst.u3.ip;
454 inverse->dst.u3.ip = orig->src.u3.ip;
455 break;
456 case NFPROTO_IPV6:
457 inverse->src.u3.in6 = orig->dst.u3.in6;
458 inverse->dst.u3.in6 = orig->src.u3.in6;
459 break;
460 default:
461 break;
462 }
463
464 inverse->dst.dir = !orig->dst.dir;
465
466 inverse->dst.protonum = orig->dst.protonum;
467
468 switch (orig->dst.protonum) {
469 case IPPROTO_ICMP:
470 return nf_conntrack_invert_icmp_tuple(inverse, orig);
471 #if IS_ENABLED(CONFIG_IPV6)
472 case IPPROTO_ICMPV6:
473 return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
474 #endif
475 }
476
477 inverse->src.u.all = orig->dst.u.all;
478 inverse->dst.u.all = orig->src.u.all;
479 return true;
480 }
481 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
482
483 /* Generate a almost-unique pseudo-id for a given conntrack.
484 *
485 * intentionally doesn't re-use any of the seeds used for hash
486 * table location, we assume id gets exposed to userspace.
487 *
488 * Following nf_conn items do not change throughout lifetime
489 * of the nf_conn:
490 *
491 * 1. nf_conn address
492 * 2. nf_conn->master address (normally NULL)
493 * 3. the associated net namespace
494 * 4. the original direction tuple
495 */
nf_ct_get_id(const struct nf_conn * ct)496 u32 nf_ct_get_id(const struct nf_conn *ct)
497 {
498 static siphash_aligned_key_t ct_id_seed;
499 unsigned long a, b, c, d;
500
501 net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
502
503 a = (unsigned long)ct;
504 b = (unsigned long)ct->master;
505 c = (unsigned long)nf_ct_net(ct);
506 d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
507 sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
508 &ct_id_seed);
509 #ifdef CONFIG_64BIT
510 return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
511 #else
512 return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
513 #endif
514 }
515 EXPORT_SYMBOL_GPL(nf_ct_get_id);
516
517 static void
clean_from_lists(struct nf_conn * ct)518 clean_from_lists(struct nf_conn *ct)
519 {
520 pr_debug("clean_from_lists(%p)\n", ct);
521 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
522 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
523
524 /* Destroy all pending expectations */
525 nf_ct_remove_expectations(ct);
526 }
527
528 #define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
529
530 /* Released via nf_ct_destroy() */
nf_ct_tmpl_alloc(struct net * net,const struct nf_conntrack_zone * zone,gfp_t flags)531 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
532 const struct nf_conntrack_zone *zone,
533 gfp_t flags)
534 {
535 struct nf_conn *tmpl, *p;
536
537 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
538 tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
539 if (!tmpl)
540 return NULL;
541
542 p = tmpl;
543 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
544 if (tmpl != p) {
545 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
546 tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
547 }
548 } else {
549 tmpl = kzalloc(sizeof(*tmpl), flags);
550 if (!tmpl)
551 return NULL;
552 }
553
554 tmpl->status = IPS_TEMPLATE;
555 write_pnet(&tmpl->ct_net, net);
556 nf_ct_zone_add(tmpl, zone);
557 refcount_set(&tmpl->ct_general.use, 1);
558
559 return tmpl;
560 }
561 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
562
nf_ct_tmpl_free(struct nf_conn * tmpl)563 void nf_ct_tmpl_free(struct nf_conn *tmpl)
564 {
565 kfree(tmpl->ext);
566
567 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
568 kfree((char *)tmpl - tmpl->proto.tmpl_padto);
569 else
570 kfree(tmpl);
571 }
572 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
573
destroy_gre_conntrack(struct nf_conn * ct)574 static void destroy_gre_conntrack(struct nf_conn *ct)
575 {
576 #ifdef CONFIG_NF_CT_PROTO_GRE
577 struct nf_conn *master = ct->master;
578
579 if (master)
580 nf_ct_gre_keymap_destroy(master);
581 #endif
582 }
583
nf_ct_destroy(struct nf_conntrack * nfct)584 void nf_ct_destroy(struct nf_conntrack *nfct)
585 {
586 struct nf_conn *ct = (struct nf_conn *)nfct;
587
588 pr_debug("%s(%p)\n", __func__, ct);
589 WARN_ON(refcount_read(&nfct->use) != 0);
590
591 if (unlikely(nf_ct_is_template(ct))) {
592 nf_ct_tmpl_free(ct);
593 return;
594 }
595
596 if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
597 destroy_gre_conntrack(ct);
598
599 /* Expectations will have been removed in clean_from_lists,
600 * except TFTP can create an expectation on the first packet,
601 * before connection is in the list, so we need to clean here,
602 * too.
603 */
604 nf_ct_remove_expectations(ct);
605
606 if (ct->master)
607 nf_ct_put(ct->master);
608
609 pr_debug("%s: returning ct=%p to slab\n", __func__, ct);
610 nf_conntrack_free(ct);
611 }
612 EXPORT_SYMBOL(nf_ct_destroy);
613
__nf_ct_delete_from_lists(struct nf_conn * ct)614 static void __nf_ct_delete_from_lists(struct nf_conn *ct)
615 {
616 struct net *net = nf_ct_net(ct);
617 unsigned int hash, reply_hash;
618 unsigned int sequence;
619
620 do {
621 sequence = read_seqcount_begin(&nf_conntrack_generation);
622 hash = hash_conntrack(net,
623 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
624 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
625 reply_hash = hash_conntrack(net,
626 &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
627 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
628 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
629
630 clean_from_lists(ct);
631 nf_conntrack_double_unlock(hash, reply_hash);
632 }
633
nf_ct_delete_from_lists(struct nf_conn * ct)634 static void nf_ct_delete_from_lists(struct nf_conn *ct)
635 {
636 nf_ct_helper_destroy(ct);
637 local_bh_disable();
638
639 __nf_ct_delete_from_lists(ct);
640
641 local_bh_enable();
642 }
643
nf_ct_add_to_ecache_list(struct nf_conn * ct)644 static void nf_ct_add_to_ecache_list(struct nf_conn *ct)
645 {
646 #ifdef CONFIG_NF_CONNTRACK_EVENTS
647 struct nf_conntrack_net *cnet = nf_ct_pernet(nf_ct_net(ct));
648
649 spin_lock(&cnet->ecache.dying_lock);
650 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
651 &cnet->ecache.dying_list);
652 spin_unlock(&cnet->ecache.dying_lock);
653 #endif
654 }
655
nf_ct_delete(struct nf_conn * ct,u32 portid,int report)656 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
657 {
658 struct nf_conn_tstamp *tstamp;
659 struct net *net;
660
661 if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
662 return false;
663
664 tstamp = nf_conn_tstamp_find(ct);
665 if (tstamp) {
666 s32 timeout = READ_ONCE(ct->timeout) - nfct_time_stamp;
667
668 tstamp->stop = ktime_get_real_ns();
669 if (timeout < 0)
670 tstamp->stop -= jiffies_to_nsecs(-timeout);
671 }
672
673 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
674 portid, report) < 0) {
675 /* destroy event was not delivered. nf_ct_put will
676 * be done by event cache worker on redelivery.
677 */
678 nf_ct_helper_destroy(ct);
679 local_bh_disable();
680 __nf_ct_delete_from_lists(ct);
681 nf_ct_add_to_ecache_list(ct);
682 local_bh_enable();
683
684 nf_conntrack_ecache_work(nf_ct_net(ct), NFCT_ECACHE_DESTROY_FAIL);
685 return false;
686 }
687
688 net = nf_ct_net(ct);
689 if (nf_conntrack_ecache_dwork_pending(net))
690 nf_conntrack_ecache_work(net, NFCT_ECACHE_DESTROY_SENT);
691 nf_ct_delete_from_lists(ct);
692 nf_ct_put(ct);
693 return true;
694 }
695 EXPORT_SYMBOL_GPL(nf_ct_delete);
696
697 static inline bool
nf_ct_key_equal(struct nf_conntrack_tuple_hash * h,const struct nf_conntrack_tuple * tuple,const struct nf_conntrack_zone * zone,const struct net * net)698 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
699 const struct nf_conntrack_tuple *tuple,
700 const struct nf_conntrack_zone *zone,
701 const struct net *net)
702 {
703 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
704
705 /* A conntrack can be recreated with the equal tuple,
706 * so we need to check that the conntrack is confirmed
707 */
708 return nf_ct_tuple_equal(tuple, &h->tuple) &&
709 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
710 nf_ct_is_confirmed(ct) &&
711 net_eq(net, nf_ct_net(ct));
712 }
713
714 static inline bool
nf_ct_match(const struct nf_conn * ct1,const struct nf_conn * ct2)715 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
716 {
717 return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
718 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
719 nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
720 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
721 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
722 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
723 net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
724 }
725
726 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
nf_ct_gc_expired(struct nf_conn * ct)727 static void nf_ct_gc_expired(struct nf_conn *ct)
728 {
729 if (!refcount_inc_not_zero(&ct->ct_general.use))
730 return;
731
732 /* load ->status after refcount increase */
733 smp_acquire__after_ctrl_dep();
734
735 if (nf_ct_should_gc(ct))
736 nf_ct_kill(ct);
737
738 nf_ct_put(ct);
739 }
740
741 /*
742 * Warning :
743 * - Caller must take a reference on returned object
744 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
745 */
746 static struct nf_conntrack_tuple_hash *
____nf_conntrack_find(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)747 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
748 const struct nf_conntrack_tuple *tuple, u32 hash)
749 {
750 struct nf_conntrack_tuple_hash *h;
751 struct hlist_nulls_head *ct_hash;
752 struct hlist_nulls_node *n;
753 unsigned int bucket, hsize;
754
755 begin:
756 nf_conntrack_get_ht(&ct_hash, &hsize);
757 bucket = reciprocal_scale(hash, hsize);
758
759 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
760 struct nf_conn *ct;
761
762 ct = nf_ct_tuplehash_to_ctrack(h);
763 if (nf_ct_is_expired(ct)) {
764 nf_ct_gc_expired(ct);
765 continue;
766 }
767
768 if (nf_ct_key_equal(h, tuple, zone, net))
769 return h;
770 }
771 /*
772 * if the nulls value we got at the end of this lookup is
773 * not the expected one, we must restart lookup.
774 * We probably met an item that was moved to another chain.
775 */
776 if (get_nulls_value(n) != bucket) {
777 NF_CT_STAT_INC_ATOMIC(net, search_restart);
778 goto begin;
779 }
780
781 return NULL;
782 }
783
784 /* Find a connection corresponding to a tuple. */
785 static struct nf_conntrack_tuple_hash *
__nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)786 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
787 const struct nf_conntrack_tuple *tuple, u32 hash)
788 {
789 struct nf_conntrack_tuple_hash *h;
790 struct nf_conn *ct;
791
792 rcu_read_lock();
793
794 h = ____nf_conntrack_find(net, zone, tuple, hash);
795 if (h) {
796 /* We have a candidate that matches the tuple we're interested
797 * in, try to obtain a reference and re-check tuple
798 */
799 ct = nf_ct_tuplehash_to_ctrack(h);
800 if (likely(refcount_inc_not_zero(&ct->ct_general.use))) {
801 /* re-check key after refcount */
802 smp_acquire__after_ctrl_dep();
803
804 if (likely(nf_ct_key_equal(h, tuple, zone, net)))
805 goto found;
806
807 /* TYPESAFE_BY_RCU recycled the candidate */
808 nf_ct_put(ct);
809 }
810
811 h = NULL;
812 }
813 found:
814 rcu_read_unlock();
815
816 return h;
817 }
818
819 struct nf_conntrack_tuple_hash *
nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple)820 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
821 const struct nf_conntrack_tuple *tuple)
822 {
823 unsigned int rid, zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
824 struct nf_conntrack_tuple_hash *thash;
825
826 thash = __nf_conntrack_find_get(net, zone, tuple,
827 hash_conntrack_raw(tuple, zone_id, net));
828
829 if (thash)
830 return thash;
831
832 rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
833 if (rid != zone_id)
834 return __nf_conntrack_find_get(net, zone, tuple,
835 hash_conntrack_raw(tuple, rid, net));
836 return thash;
837 }
838 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
839
__nf_conntrack_hash_insert(struct nf_conn * ct,unsigned int hash,unsigned int reply_hash)840 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
841 unsigned int hash,
842 unsigned int reply_hash)
843 {
844 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
845 &nf_conntrack_hash[hash]);
846 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
847 &nf_conntrack_hash[reply_hash]);
848 }
849
nf_ct_ext_valid_pre(const struct nf_ct_ext * ext)850 static bool nf_ct_ext_valid_pre(const struct nf_ct_ext *ext)
851 {
852 /* if ext->gen_id is not equal to nf_conntrack_ext_genid, some extensions
853 * may contain stale pointers to e.g. helper that has been removed.
854 *
855 * The helper can't clear this because the nf_conn object isn't in
856 * any hash and synchronize_rcu() isn't enough because associated skb
857 * might sit in a queue.
858 */
859 return !ext || ext->gen_id == atomic_read(&nf_conntrack_ext_genid);
860 }
861
nf_ct_ext_valid_post(struct nf_ct_ext * ext)862 static bool nf_ct_ext_valid_post(struct nf_ct_ext *ext)
863 {
864 if (!ext)
865 return true;
866
867 if (ext->gen_id != atomic_read(&nf_conntrack_ext_genid))
868 return false;
869
870 /* inserted into conntrack table, nf_ct_iterate_cleanup()
871 * will find it. Disable nf_ct_ext_find() id check.
872 */
873 WRITE_ONCE(ext->gen_id, 0);
874 return true;
875 }
876
877 int
nf_conntrack_hash_check_insert(struct nf_conn * ct)878 nf_conntrack_hash_check_insert(struct nf_conn *ct)
879 {
880 const struct nf_conntrack_zone *zone;
881 struct net *net = nf_ct_net(ct);
882 unsigned int hash, reply_hash;
883 struct nf_conntrack_tuple_hash *h;
884 struct hlist_nulls_node *n;
885 unsigned int max_chainlen;
886 unsigned int chainlen = 0;
887 unsigned int sequence;
888 int err = -EEXIST;
889
890 zone = nf_ct_zone(ct);
891
892 if (!nf_ct_ext_valid_pre(ct->ext)) {
893 NF_CT_STAT_INC(net, insert_failed);
894 return -ETIMEDOUT;
895 }
896
897 local_bh_disable();
898 do {
899 sequence = read_seqcount_begin(&nf_conntrack_generation);
900 hash = hash_conntrack(net,
901 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
902 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
903 reply_hash = hash_conntrack(net,
904 &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
905 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
906 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
907
908 max_chainlen = MIN_CHAINLEN + prandom_u32_max(MAX_CHAINLEN);
909
910 /* See if there's one in the list already, including reverse */
911 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
912 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
913 zone, net))
914 goto out;
915
916 if (chainlen++ > max_chainlen)
917 goto chaintoolong;
918 }
919
920 chainlen = 0;
921
922 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
923 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
924 zone, net))
925 goto out;
926 if (chainlen++ > max_chainlen)
927 goto chaintoolong;
928 }
929
930 smp_wmb();
931 /* The caller holds a reference to this object */
932 refcount_set(&ct->ct_general.use, 2);
933 __nf_conntrack_hash_insert(ct, hash, reply_hash);
934 nf_conntrack_double_unlock(hash, reply_hash);
935 NF_CT_STAT_INC(net, insert);
936 local_bh_enable();
937
938 if (!nf_ct_ext_valid_post(ct->ext)) {
939 nf_ct_kill(ct);
940 NF_CT_STAT_INC(net, drop);
941 return -ETIMEDOUT;
942 }
943
944 return 0;
945 chaintoolong:
946 NF_CT_STAT_INC(net, chaintoolong);
947 err = -ENOSPC;
948 out:
949 nf_conntrack_double_unlock(hash, reply_hash);
950 local_bh_enable();
951 return err;
952 }
953 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
954
nf_ct_acct_add(struct nf_conn * ct,u32 dir,unsigned int packets,unsigned int bytes)955 void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
956 unsigned int bytes)
957 {
958 struct nf_conn_acct *acct;
959
960 acct = nf_conn_acct_find(ct);
961 if (acct) {
962 struct nf_conn_counter *counter = acct->counter;
963
964 atomic64_add(packets, &counter[dir].packets);
965 atomic64_add(bytes, &counter[dir].bytes);
966 }
967 }
968 EXPORT_SYMBOL_GPL(nf_ct_acct_add);
969
nf_ct_acct_merge(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct nf_conn * loser_ct)970 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
971 const struct nf_conn *loser_ct)
972 {
973 struct nf_conn_acct *acct;
974
975 acct = nf_conn_acct_find(loser_ct);
976 if (acct) {
977 struct nf_conn_counter *counter = acct->counter;
978 unsigned int bytes;
979
980 /* u32 should be fine since we must have seen one packet. */
981 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
982 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
983 }
984 }
985
__nf_conntrack_insert_prepare(struct nf_conn * ct)986 static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
987 {
988 struct nf_conn_tstamp *tstamp;
989
990 refcount_inc(&ct->ct_general.use);
991
992 /* set conntrack timestamp, if enabled. */
993 tstamp = nf_conn_tstamp_find(ct);
994 if (tstamp)
995 tstamp->start = ktime_get_real_ns();
996 }
997
998 /* caller must hold locks to prevent concurrent changes */
__nf_ct_resolve_clash(struct sk_buff * skb,struct nf_conntrack_tuple_hash * h)999 static int __nf_ct_resolve_clash(struct sk_buff *skb,
1000 struct nf_conntrack_tuple_hash *h)
1001 {
1002 /* This is the conntrack entry already in hashes that won race. */
1003 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1004 enum ip_conntrack_info ctinfo;
1005 struct nf_conn *loser_ct;
1006
1007 loser_ct = nf_ct_get(skb, &ctinfo);
1008
1009 if (nf_ct_is_dying(ct))
1010 return NF_DROP;
1011
1012 if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
1013 nf_ct_match(ct, loser_ct)) {
1014 struct net *net = nf_ct_net(ct);
1015
1016 nf_conntrack_get(&ct->ct_general);
1017
1018 nf_ct_acct_merge(ct, ctinfo, loser_ct);
1019 nf_ct_put(loser_ct);
1020 nf_ct_set(skb, ct, ctinfo);
1021
1022 NF_CT_STAT_INC(net, clash_resolve);
1023 return NF_ACCEPT;
1024 }
1025
1026 return NF_DROP;
1027 }
1028
1029 /**
1030 * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
1031 *
1032 * @skb: skb that causes the collision
1033 * @repl_idx: hash slot for reply direction
1034 *
1035 * Called when origin or reply direction had a clash.
1036 * The skb can be handled without packet drop provided the reply direction
1037 * is unique or there the existing entry has the identical tuple in both
1038 * directions.
1039 *
1040 * Caller must hold conntrack table locks to prevent concurrent updates.
1041 *
1042 * Returns NF_DROP if the clash could not be handled.
1043 */
nf_ct_resolve_clash_harder(struct sk_buff * skb,u32 repl_idx)1044 static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
1045 {
1046 struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
1047 const struct nf_conntrack_zone *zone;
1048 struct nf_conntrack_tuple_hash *h;
1049 struct hlist_nulls_node *n;
1050 struct net *net;
1051
1052 zone = nf_ct_zone(loser_ct);
1053 net = nf_ct_net(loser_ct);
1054
1055 /* Reply direction must never result in a clash, unless both origin
1056 * and reply tuples are identical.
1057 */
1058 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
1059 if (nf_ct_key_equal(h,
1060 &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1061 zone, net))
1062 return __nf_ct_resolve_clash(skb, h);
1063 }
1064
1065 /* We want the clashing entry to go away real soon: 1 second timeout. */
1066 WRITE_ONCE(loser_ct->timeout, nfct_time_stamp + HZ);
1067
1068 /* IPS_NAT_CLASH removes the entry automatically on the first
1069 * reply. Also prevents UDP tracker from moving the entry to
1070 * ASSURED state, i.e. the entry can always be evicted under
1071 * pressure.
1072 */
1073 loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
1074
1075 __nf_conntrack_insert_prepare(loser_ct);
1076
1077 /* fake add for ORIGINAL dir: we want lookups to only find the entry
1078 * already in the table. This also hides the clashing entry from
1079 * ctnetlink iteration, i.e. conntrack -L won't show them.
1080 */
1081 hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
1082
1083 hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
1084 &nf_conntrack_hash[repl_idx]);
1085
1086 NF_CT_STAT_INC(net, clash_resolve);
1087 return NF_ACCEPT;
1088 }
1089
1090 /**
1091 * nf_ct_resolve_clash - attempt to handle clash without packet drop
1092 *
1093 * @skb: skb that causes the clash
1094 * @h: tuplehash of the clashing entry already in table
1095 * @reply_hash: hash slot for reply direction
1096 *
1097 * A conntrack entry can be inserted to the connection tracking table
1098 * if there is no existing entry with an identical tuple.
1099 *
1100 * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1101 * to be dropped. In case @skb is retransmitted, next conntrack lookup
1102 * will find the already-existing entry.
1103 *
1104 * The major problem with such packet drop is the extra delay added by
1105 * the packet loss -- it will take some time for a retransmit to occur
1106 * (or the sender to time out when waiting for a reply).
1107 *
1108 * This function attempts to handle the situation without packet drop.
1109 *
1110 * If @skb has no NAT transformation or if the colliding entries are
1111 * exactly the same, only the to-be-confirmed conntrack entry is discarded
1112 * and @skb is associated with the conntrack entry already in the table.
1113 *
1114 * Failing that, the new, unconfirmed conntrack is still added to the table
1115 * provided that the collision only occurs in the ORIGINAL direction.
1116 * The new entry will be added only in the non-clashing REPLY direction,
1117 * so packets in the ORIGINAL direction will continue to match the existing
1118 * entry. The new entry will also have a fixed timeout so it expires --
1119 * due to the collision, it will only see reply traffic.
1120 *
1121 * Returns NF_DROP if the clash could not be resolved.
1122 */
1123 static __cold noinline int
nf_ct_resolve_clash(struct sk_buff * skb,struct nf_conntrack_tuple_hash * h,u32 reply_hash)1124 nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1125 u32 reply_hash)
1126 {
1127 /* This is the conntrack entry already in hashes that won race. */
1128 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1129 const struct nf_conntrack_l4proto *l4proto;
1130 enum ip_conntrack_info ctinfo;
1131 struct nf_conn *loser_ct;
1132 struct net *net;
1133 int ret;
1134
1135 loser_ct = nf_ct_get(skb, &ctinfo);
1136 net = nf_ct_net(loser_ct);
1137
1138 l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1139 if (!l4proto->allow_clash)
1140 goto drop;
1141
1142 ret = __nf_ct_resolve_clash(skb, h);
1143 if (ret == NF_ACCEPT)
1144 return ret;
1145
1146 ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1147 if (ret == NF_ACCEPT)
1148 return ret;
1149
1150 drop:
1151 NF_CT_STAT_INC(net, drop);
1152 NF_CT_STAT_INC(net, insert_failed);
1153 return NF_DROP;
1154 }
1155
1156 /* Confirm a connection given skb; places it in hash table */
1157 int
__nf_conntrack_confirm(struct sk_buff * skb)1158 __nf_conntrack_confirm(struct sk_buff *skb)
1159 {
1160 unsigned int chainlen = 0, sequence, max_chainlen;
1161 const struct nf_conntrack_zone *zone;
1162 unsigned int hash, reply_hash;
1163 struct nf_conntrack_tuple_hash *h;
1164 struct nf_conn *ct;
1165 struct nf_conn_help *help;
1166 struct hlist_nulls_node *n;
1167 enum ip_conntrack_info ctinfo;
1168 struct net *net;
1169 int ret = NF_DROP;
1170
1171 ct = nf_ct_get(skb, &ctinfo);
1172 net = nf_ct_net(ct);
1173
1174 /* ipt_REJECT uses nf_conntrack_attach to attach related
1175 ICMP/TCP RST packets in other direction. Actual packet
1176 which created connection will be IP_CT_NEW or for an
1177 expected connection, IP_CT_RELATED. */
1178 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1179 return NF_ACCEPT;
1180
1181 zone = nf_ct_zone(ct);
1182 local_bh_disable();
1183
1184 do {
1185 sequence = read_seqcount_begin(&nf_conntrack_generation);
1186 /* reuse the hash saved before */
1187 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1188 hash = scale_hash(hash);
1189 reply_hash = hash_conntrack(net,
1190 &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1191 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
1192 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1193
1194 /* We're not in hash table, and we refuse to set up related
1195 * connections for unconfirmed conns. But packet copies and
1196 * REJECT will give spurious warnings here.
1197 */
1198
1199 /* Another skb with the same unconfirmed conntrack may
1200 * win the race. This may happen for bridge(br_flood)
1201 * or broadcast/multicast packets do skb_clone with
1202 * unconfirmed conntrack.
1203 */
1204 if (unlikely(nf_ct_is_confirmed(ct))) {
1205 WARN_ON_ONCE(1);
1206 nf_conntrack_double_unlock(hash, reply_hash);
1207 local_bh_enable();
1208 return NF_DROP;
1209 }
1210
1211 if (!nf_ct_ext_valid_pre(ct->ext)) {
1212 NF_CT_STAT_INC(net, insert_failed);
1213 goto dying;
1214 }
1215
1216 pr_debug("Confirming conntrack %p\n", ct);
1217 /* We have to check the DYING flag after unlink to prevent
1218 * a race against nf_ct_get_next_corpse() possibly called from
1219 * user context, else we insert an already 'dead' hash, blocking
1220 * further use of that particular connection -JM.
1221 */
1222 ct->status |= IPS_CONFIRMED;
1223
1224 if (unlikely(nf_ct_is_dying(ct))) {
1225 NF_CT_STAT_INC(net, insert_failed);
1226 goto dying;
1227 }
1228
1229 max_chainlen = MIN_CHAINLEN + prandom_u32_max(MAX_CHAINLEN);
1230 /* See if there's one in the list already, including reverse:
1231 NAT could have grabbed it without realizing, since we're
1232 not in the hash. If there is, we lost race. */
1233 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
1234 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1235 zone, net))
1236 goto out;
1237 if (chainlen++ > max_chainlen)
1238 goto chaintoolong;
1239 }
1240
1241 chainlen = 0;
1242 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
1243 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1244 zone, net))
1245 goto out;
1246 if (chainlen++ > max_chainlen) {
1247 chaintoolong:
1248 NF_CT_STAT_INC(net, chaintoolong);
1249 NF_CT_STAT_INC(net, insert_failed);
1250 ret = NF_DROP;
1251 goto dying;
1252 }
1253 }
1254
1255 /* Timer relative to confirmation time, not original
1256 setting time, otherwise we'd get timer wrap in
1257 weird delay cases. */
1258 ct->timeout += nfct_time_stamp;
1259
1260 __nf_conntrack_insert_prepare(ct);
1261
1262 /* Since the lookup is lockless, hash insertion must be done after
1263 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1264 * guarantee that no other CPU can find the conntrack before the above
1265 * stores are visible.
1266 */
1267 __nf_conntrack_hash_insert(ct, hash, reply_hash);
1268 nf_conntrack_double_unlock(hash, reply_hash);
1269 local_bh_enable();
1270
1271 /* ext area is still valid (rcu read lock is held,
1272 * but will go out of scope soon, we need to remove
1273 * this conntrack again.
1274 */
1275 if (!nf_ct_ext_valid_post(ct->ext)) {
1276 nf_ct_kill(ct);
1277 NF_CT_STAT_INC(net, drop);
1278 return NF_DROP;
1279 }
1280
1281 help = nfct_help(ct);
1282 if (help && help->helper)
1283 nf_conntrack_event_cache(IPCT_HELPER, ct);
1284
1285 nf_conntrack_event_cache(master_ct(ct) ?
1286 IPCT_RELATED : IPCT_NEW, ct);
1287 return NF_ACCEPT;
1288
1289 out:
1290 ret = nf_ct_resolve_clash(skb, h, reply_hash);
1291 dying:
1292 nf_conntrack_double_unlock(hash, reply_hash);
1293 local_bh_enable();
1294 return ret;
1295 }
1296 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1297
1298 /* Returns true if a connection correspondings to the tuple (required
1299 for NAT). */
1300 int
nf_conntrack_tuple_taken(const struct nf_conntrack_tuple * tuple,const struct nf_conn * ignored_conntrack)1301 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1302 const struct nf_conn *ignored_conntrack)
1303 {
1304 struct net *net = nf_ct_net(ignored_conntrack);
1305 const struct nf_conntrack_zone *zone;
1306 struct nf_conntrack_tuple_hash *h;
1307 struct hlist_nulls_head *ct_hash;
1308 unsigned int hash, hsize;
1309 struct hlist_nulls_node *n;
1310 struct nf_conn *ct;
1311
1312 zone = nf_ct_zone(ignored_conntrack);
1313
1314 rcu_read_lock();
1315 begin:
1316 nf_conntrack_get_ht(&ct_hash, &hsize);
1317 hash = __hash_conntrack(net, tuple, nf_ct_zone_id(zone, IP_CT_DIR_REPLY), hsize);
1318
1319 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1320 ct = nf_ct_tuplehash_to_ctrack(h);
1321
1322 if (ct == ignored_conntrack)
1323 continue;
1324
1325 if (nf_ct_is_expired(ct)) {
1326 nf_ct_gc_expired(ct);
1327 continue;
1328 }
1329
1330 if (nf_ct_key_equal(h, tuple, zone, net)) {
1331 /* Tuple is taken already, so caller will need to find
1332 * a new source port to use.
1333 *
1334 * Only exception:
1335 * If the *original tuples* are identical, then both
1336 * conntracks refer to the same flow.
1337 * This is a rare situation, it can occur e.g. when
1338 * more than one UDP packet is sent from same socket
1339 * in different threads.
1340 *
1341 * Let nf_ct_resolve_clash() deal with this later.
1342 */
1343 if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1344 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
1345 nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL))
1346 continue;
1347
1348 NF_CT_STAT_INC_ATOMIC(net, found);
1349 rcu_read_unlock();
1350 return 1;
1351 }
1352 }
1353
1354 if (get_nulls_value(n) != hash) {
1355 NF_CT_STAT_INC_ATOMIC(net, search_restart);
1356 goto begin;
1357 }
1358
1359 rcu_read_unlock();
1360
1361 return 0;
1362 }
1363 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1364
1365 #define NF_CT_EVICTION_RANGE 8
1366
1367 /* There's a small race here where we may free a just-assured
1368 connection. Too bad: we're in trouble anyway. */
early_drop_list(struct net * net,struct hlist_nulls_head * head)1369 static unsigned int early_drop_list(struct net *net,
1370 struct hlist_nulls_head *head)
1371 {
1372 struct nf_conntrack_tuple_hash *h;
1373 struct hlist_nulls_node *n;
1374 unsigned int drops = 0;
1375 struct nf_conn *tmp;
1376
1377 hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1378 tmp = nf_ct_tuplehash_to_ctrack(h);
1379
1380 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1381 continue;
1382
1383 if (nf_ct_is_expired(tmp)) {
1384 nf_ct_gc_expired(tmp);
1385 continue;
1386 }
1387
1388 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1389 !net_eq(nf_ct_net(tmp), net) ||
1390 nf_ct_is_dying(tmp))
1391 continue;
1392
1393 if (!refcount_inc_not_zero(&tmp->ct_general.use))
1394 continue;
1395
1396 /* load ->ct_net and ->status after refcount increase */
1397 smp_acquire__after_ctrl_dep();
1398
1399 /* kill only if still in same netns -- might have moved due to
1400 * SLAB_TYPESAFE_BY_RCU rules.
1401 *
1402 * We steal the timer reference. If that fails timer has
1403 * already fired or someone else deleted it. Just drop ref
1404 * and move to next entry.
1405 */
1406 if (net_eq(nf_ct_net(tmp), net) &&
1407 nf_ct_is_confirmed(tmp) &&
1408 nf_ct_delete(tmp, 0, 0))
1409 drops++;
1410
1411 nf_ct_put(tmp);
1412 }
1413
1414 return drops;
1415 }
1416
early_drop(struct net * net,unsigned int hash)1417 static noinline int early_drop(struct net *net, unsigned int hash)
1418 {
1419 unsigned int i, bucket;
1420
1421 for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1422 struct hlist_nulls_head *ct_hash;
1423 unsigned int hsize, drops;
1424
1425 rcu_read_lock();
1426 nf_conntrack_get_ht(&ct_hash, &hsize);
1427 if (!i)
1428 bucket = reciprocal_scale(hash, hsize);
1429 else
1430 bucket = (bucket + 1) % hsize;
1431
1432 drops = early_drop_list(net, &ct_hash[bucket]);
1433 rcu_read_unlock();
1434
1435 if (drops) {
1436 NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1437 return true;
1438 }
1439 }
1440
1441 return false;
1442 }
1443
gc_worker_skip_ct(const struct nf_conn * ct)1444 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1445 {
1446 return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1447 }
1448
gc_worker_can_early_drop(const struct nf_conn * ct)1449 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1450 {
1451 const struct nf_conntrack_l4proto *l4proto;
1452
1453 if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1454 return true;
1455
1456 l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1457 if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1458 return true;
1459
1460 return false;
1461 }
1462
gc_worker(struct work_struct * work)1463 static void gc_worker(struct work_struct *work)
1464 {
1465 unsigned int i, hashsz, nf_conntrack_max95 = 0;
1466 u32 end_time, start_time = nfct_time_stamp;
1467 struct conntrack_gc_work *gc_work;
1468 unsigned int expired_count = 0;
1469 unsigned long next_run;
1470 s32 delta_time;
1471
1472 gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1473
1474 i = gc_work->next_bucket;
1475 if (gc_work->early_drop)
1476 nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1477
1478 if (i == 0) {
1479 gc_work->avg_timeout = GC_SCAN_INTERVAL_INIT;
1480 gc_work->start_time = start_time;
1481 }
1482
1483 next_run = gc_work->avg_timeout;
1484
1485 end_time = start_time + GC_SCAN_MAX_DURATION;
1486
1487 do {
1488 struct nf_conntrack_tuple_hash *h;
1489 struct hlist_nulls_head *ct_hash;
1490 struct hlist_nulls_node *n;
1491 struct nf_conn *tmp;
1492
1493 rcu_read_lock();
1494
1495 nf_conntrack_get_ht(&ct_hash, &hashsz);
1496 if (i >= hashsz) {
1497 rcu_read_unlock();
1498 break;
1499 }
1500
1501 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1502 struct nf_conntrack_net *cnet;
1503 unsigned long expires;
1504 struct net *net;
1505
1506 tmp = nf_ct_tuplehash_to_ctrack(h);
1507
1508 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1509 nf_ct_offload_timeout(tmp);
1510 continue;
1511 }
1512
1513 if (expired_count > GC_SCAN_EXPIRED_MAX) {
1514 rcu_read_unlock();
1515
1516 gc_work->next_bucket = i;
1517 gc_work->avg_timeout = next_run;
1518
1519 delta_time = nfct_time_stamp - gc_work->start_time;
1520
1521 /* re-sched immediately if total cycle time is exceeded */
1522 next_run = delta_time < (s32)GC_SCAN_INTERVAL_MAX;
1523 goto early_exit;
1524 }
1525
1526 if (nf_ct_is_expired(tmp)) {
1527 nf_ct_gc_expired(tmp);
1528 expired_count++;
1529 continue;
1530 }
1531
1532 expires = clamp(nf_ct_expires(tmp), GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_CLAMP);
1533 next_run += expires;
1534 next_run /= 2u;
1535
1536 if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1537 continue;
1538
1539 net = nf_ct_net(tmp);
1540 cnet = nf_ct_pernet(net);
1541 if (atomic_read(&cnet->count) < nf_conntrack_max95)
1542 continue;
1543
1544 /* need to take reference to avoid possible races */
1545 if (!refcount_inc_not_zero(&tmp->ct_general.use))
1546 continue;
1547
1548 /* load ->status after refcount increase */
1549 smp_acquire__after_ctrl_dep();
1550
1551 if (gc_worker_skip_ct(tmp)) {
1552 nf_ct_put(tmp);
1553 continue;
1554 }
1555
1556 if (gc_worker_can_early_drop(tmp)) {
1557 nf_ct_kill(tmp);
1558 expired_count++;
1559 }
1560
1561 nf_ct_put(tmp);
1562 }
1563
1564 /* could check get_nulls_value() here and restart if ct
1565 * was moved to another chain. But given gc is best-effort
1566 * we will just continue with next hash slot.
1567 */
1568 rcu_read_unlock();
1569 cond_resched();
1570 i++;
1571
1572 delta_time = nfct_time_stamp - end_time;
1573 if (delta_time > 0 && i < hashsz) {
1574 gc_work->avg_timeout = next_run;
1575 gc_work->next_bucket = i;
1576 next_run = 0;
1577 goto early_exit;
1578 }
1579 } while (i < hashsz);
1580
1581 gc_work->next_bucket = 0;
1582
1583 next_run = clamp(next_run, GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_MAX);
1584
1585 delta_time = max_t(s32, nfct_time_stamp - gc_work->start_time, 1);
1586 if (next_run > (unsigned long)delta_time)
1587 next_run -= delta_time;
1588 else
1589 next_run = 1;
1590
1591 early_exit:
1592 if (gc_work->exiting)
1593 return;
1594
1595 if (next_run)
1596 gc_work->early_drop = false;
1597
1598 queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1599 }
1600
conntrack_gc_work_init(struct conntrack_gc_work * gc_work)1601 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1602 {
1603 INIT_DELAYED_WORK(&gc_work->dwork, gc_worker);
1604 gc_work->exiting = false;
1605 }
1606
1607 static struct nf_conn *
__nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp,u32 hash)1608 __nf_conntrack_alloc(struct net *net,
1609 const struct nf_conntrack_zone *zone,
1610 const struct nf_conntrack_tuple *orig,
1611 const struct nf_conntrack_tuple *repl,
1612 gfp_t gfp, u32 hash)
1613 {
1614 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
1615 unsigned int ct_count;
1616 struct nf_conn *ct;
1617
1618 /* We don't want any race condition at early drop stage */
1619 ct_count = atomic_inc_return(&cnet->count);
1620
1621 if (nf_conntrack_max && unlikely(ct_count > nf_conntrack_max)) {
1622 if (!early_drop(net, hash)) {
1623 if (!conntrack_gc_work.early_drop)
1624 conntrack_gc_work.early_drop = true;
1625 atomic_dec(&cnet->count);
1626 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1627 return ERR_PTR(-ENOMEM);
1628 }
1629 }
1630
1631 /*
1632 * Do not use kmem_cache_zalloc(), as this cache uses
1633 * SLAB_TYPESAFE_BY_RCU.
1634 */
1635 ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1636 if (ct == NULL)
1637 goto out;
1638
1639 spin_lock_init(&ct->lock);
1640 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1641 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1642 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1643 /* save hash for reusing when confirming */
1644 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1645 ct->status = 0;
1646 WRITE_ONCE(ct->timeout, 0);
1647 write_pnet(&ct->ct_net, net);
1648 memset_after(ct, 0, __nfct_init_offset);
1649
1650 nf_ct_zone_add(ct, zone);
1651
1652 /* Because we use RCU lookups, we set ct_general.use to zero before
1653 * this is inserted in any list.
1654 */
1655 refcount_set(&ct->ct_general.use, 0);
1656 return ct;
1657 out:
1658 atomic_dec(&cnet->count);
1659 return ERR_PTR(-ENOMEM);
1660 }
1661
nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp)1662 struct nf_conn *nf_conntrack_alloc(struct net *net,
1663 const struct nf_conntrack_zone *zone,
1664 const struct nf_conntrack_tuple *orig,
1665 const struct nf_conntrack_tuple *repl,
1666 gfp_t gfp)
1667 {
1668 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1669 }
1670 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1671
nf_conntrack_free(struct nf_conn * ct)1672 void nf_conntrack_free(struct nf_conn *ct)
1673 {
1674 struct net *net = nf_ct_net(ct);
1675 struct nf_conntrack_net *cnet;
1676
1677 /* A freed object has refcnt == 0, that's
1678 * the golden rule for SLAB_TYPESAFE_BY_RCU
1679 */
1680 WARN_ON(refcount_read(&ct->ct_general.use) != 0);
1681
1682 if (ct->status & IPS_SRC_NAT_DONE) {
1683 const struct nf_nat_hook *nat_hook;
1684
1685 rcu_read_lock();
1686 nat_hook = rcu_dereference(nf_nat_hook);
1687 if (nat_hook)
1688 nat_hook->remove_nat_bysrc(ct);
1689 rcu_read_unlock();
1690 }
1691
1692 kfree(ct->ext);
1693 kmem_cache_free(nf_conntrack_cachep, ct);
1694 cnet = nf_ct_pernet(net);
1695
1696 smp_mb__before_atomic();
1697 atomic_dec(&cnet->count);
1698 }
1699 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1700
1701
1702 /* Allocate a new conntrack: we return -ENOMEM if classification
1703 failed due to stress. Otherwise it really is unclassifiable. */
1704 static noinline struct nf_conntrack_tuple_hash *
init_conntrack(struct net * net,struct nf_conn * tmpl,const struct nf_conntrack_tuple * tuple,struct sk_buff * skb,unsigned int dataoff,u32 hash)1705 init_conntrack(struct net *net, struct nf_conn *tmpl,
1706 const struct nf_conntrack_tuple *tuple,
1707 struct sk_buff *skb,
1708 unsigned int dataoff, u32 hash)
1709 {
1710 struct nf_conn *ct;
1711 struct nf_conn_help *help;
1712 struct nf_conntrack_tuple repl_tuple;
1713 #ifdef CONFIG_NF_CONNTRACK_EVENTS
1714 struct nf_conntrack_ecache *ecache;
1715 #endif
1716 struct nf_conntrack_expect *exp = NULL;
1717 const struct nf_conntrack_zone *zone;
1718 struct nf_conn_timeout *timeout_ext;
1719 struct nf_conntrack_zone tmp;
1720 struct nf_conntrack_net *cnet;
1721
1722 if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1723 pr_debug("Can't invert tuple.\n");
1724 return NULL;
1725 }
1726
1727 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1728 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1729 hash);
1730 if (IS_ERR(ct))
1731 return (struct nf_conntrack_tuple_hash *)ct;
1732
1733 if (!nf_ct_add_synproxy(ct, tmpl)) {
1734 nf_conntrack_free(ct);
1735 return ERR_PTR(-ENOMEM);
1736 }
1737
1738 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1739
1740 if (timeout_ext)
1741 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1742 GFP_ATOMIC);
1743
1744 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1745 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1746 nf_ct_labels_ext_add(ct);
1747
1748 #ifdef CONFIG_NF_CONNTRACK_EVENTS
1749 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1750
1751 if ((ecache || net->ct.sysctl_events) &&
1752 !nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1753 ecache ? ecache->expmask : 0,
1754 GFP_ATOMIC)) {
1755 nf_conntrack_free(ct);
1756 return ERR_PTR(-ENOMEM);
1757 }
1758 #endif
1759
1760 cnet = nf_ct_pernet(net);
1761 if (cnet->expect_count) {
1762 spin_lock_bh(&nf_conntrack_expect_lock);
1763 exp = nf_ct_find_expectation(net, zone, tuple);
1764 if (exp) {
1765 pr_debug("expectation arrives ct=%p exp=%p\n",
1766 ct, exp);
1767 /* Welcome, Mr. Bond. We've been expecting you... */
1768 __set_bit(IPS_EXPECTED_BIT, &ct->status);
1769 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1770 ct->master = exp->master;
1771 if (exp->helper) {
1772 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1773 if (help)
1774 rcu_assign_pointer(help->helper, exp->helper);
1775 }
1776
1777 #ifdef CONFIG_NF_CONNTRACK_MARK
1778 ct->mark = exp->master->mark;
1779 #endif
1780 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1781 ct->secmark = exp->master->secmark;
1782 #endif
1783 NF_CT_STAT_INC(net, expect_new);
1784 }
1785 spin_unlock_bh(&nf_conntrack_expect_lock);
1786 }
1787 if (!exp)
1788 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1789
1790 /* Other CPU might have obtained a pointer to this object before it was
1791 * released. Because refcount is 0, refcount_inc_not_zero() will fail.
1792 *
1793 * After refcount_set(1) it will succeed; ensure that zeroing of
1794 * ct->status and the correct ct->net pointer are visible; else other
1795 * core might observe CONFIRMED bit which means the entry is valid and
1796 * in the hash table, but its not (anymore).
1797 */
1798 smp_wmb();
1799
1800 /* Now it is going to be associated with an sk_buff, set refcount to 1. */
1801 refcount_set(&ct->ct_general.use, 1);
1802
1803 if (exp) {
1804 if (exp->expectfn)
1805 exp->expectfn(ct, exp);
1806 nf_ct_expect_put(exp);
1807 }
1808
1809 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1810 }
1811
1812 /* On success, returns 0, sets skb->_nfct | ctinfo */
1813 static int
resolve_normal_ct(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u_int8_t protonum,const struct nf_hook_state * state)1814 resolve_normal_ct(struct nf_conn *tmpl,
1815 struct sk_buff *skb,
1816 unsigned int dataoff,
1817 u_int8_t protonum,
1818 const struct nf_hook_state *state)
1819 {
1820 const struct nf_conntrack_zone *zone;
1821 struct nf_conntrack_tuple tuple;
1822 struct nf_conntrack_tuple_hash *h;
1823 enum ip_conntrack_info ctinfo;
1824 struct nf_conntrack_zone tmp;
1825 u32 hash, zone_id, rid;
1826 struct nf_conn *ct;
1827
1828 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1829 dataoff, state->pf, protonum, state->net,
1830 &tuple)) {
1831 pr_debug("Can't get tuple\n");
1832 return 0;
1833 }
1834
1835 /* look for tuple match */
1836 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1837
1838 zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
1839 hash = hash_conntrack_raw(&tuple, zone_id, state->net);
1840 h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1841
1842 if (!h) {
1843 rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
1844 if (zone_id != rid) {
1845 u32 tmp = hash_conntrack_raw(&tuple, rid, state->net);
1846
1847 h = __nf_conntrack_find_get(state->net, zone, &tuple, tmp);
1848 }
1849 }
1850
1851 if (!h) {
1852 h = init_conntrack(state->net, tmpl, &tuple,
1853 skb, dataoff, hash);
1854 if (!h)
1855 return 0;
1856 if (IS_ERR(h))
1857 return PTR_ERR(h);
1858 }
1859 ct = nf_ct_tuplehash_to_ctrack(h);
1860
1861 /* It exists; we have (non-exclusive) reference. */
1862 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1863 ctinfo = IP_CT_ESTABLISHED_REPLY;
1864 } else {
1865 /* Once we've had two way comms, always ESTABLISHED. */
1866 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1867 pr_debug("normal packet for %p\n", ct);
1868 ctinfo = IP_CT_ESTABLISHED;
1869 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1870 pr_debug("related packet for %p\n", ct);
1871 ctinfo = IP_CT_RELATED;
1872 } else {
1873 pr_debug("new packet for %p\n", ct);
1874 ctinfo = IP_CT_NEW;
1875 }
1876 }
1877 nf_ct_set(skb, ct, ctinfo);
1878 return 0;
1879 }
1880
1881 /*
1882 * icmp packets need special treatment to handle error messages that are
1883 * related to a connection.
1884 *
1885 * Callers need to check if skb has a conntrack assigned when this
1886 * helper returns; in such case skb belongs to an already known connection.
1887 */
1888 static unsigned int __cold
nf_conntrack_handle_icmp(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u8 protonum,const struct nf_hook_state * state)1889 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1890 struct sk_buff *skb,
1891 unsigned int dataoff,
1892 u8 protonum,
1893 const struct nf_hook_state *state)
1894 {
1895 int ret;
1896
1897 if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1898 ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1899 #if IS_ENABLED(CONFIG_IPV6)
1900 else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1901 ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1902 #endif
1903 else
1904 return NF_ACCEPT;
1905
1906 if (ret <= 0)
1907 NF_CT_STAT_INC_ATOMIC(state->net, error);
1908
1909 return ret;
1910 }
1911
generic_packet(struct nf_conn * ct,struct sk_buff * skb,enum ip_conntrack_info ctinfo)1912 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1913 enum ip_conntrack_info ctinfo)
1914 {
1915 const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1916
1917 if (!timeout)
1918 timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1919
1920 nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1921 return NF_ACCEPT;
1922 }
1923
1924 /* Returns verdict for packet, or -1 for invalid. */
nf_conntrack_handle_packet(struct nf_conn * ct,struct sk_buff * skb,unsigned int dataoff,enum ip_conntrack_info ctinfo,const struct nf_hook_state * state)1925 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1926 struct sk_buff *skb,
1927 unsigned int dataoff,
1928 enum ip_conntrack_info ctinfo,
1929 const struct nf_hook_state *state)
1930 {
1931 switch (nf_ct_protonum(ct)) {
1932 case IPPROTO_TCP:
1933 return nf_conntrack_tcp_packet(ct, skb, dataoff,
1934 ctinfo, state);
1935 case IPPROTO_UDP:
1936 return nf_conntrack_udp_packet(ct, skb, dataoff,
1937 ctinfo, state);
1938 case IPPROTO_ICMP:
1939 return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1940 #if IS_ENABLED(CONFIG_IPV6)
1941 case IPPROTO_ICMPV6:
1942 return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1943 #endif
1944 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1945 case IPPROTO_UDPLITE:
1946 return nf_conntrack_udplite_packet(ct, skb, dataoff,
1947 ctinfo, state);
1948 #endif
1949 #ifdef CONFIG_NF_CT_PROTO_SCTP
1950 case IPPROTO_SCTP:
1951 return nf_conntrack_sctp_packet(ct, skb, dataoff,
1952 ctinfo, state);
1953 #endif
1954 #ifdef CONFIG_NF_CT_PROTO_DCCP
1955 case IPPROTO_DCCP:
1956 return nf_conntrack_dccp_packet(ct, skb, dataoff,
1957 ctinfo, state);
1958 #endif
1959 #ifdef CONFIG_NF_CT_PROTO_GRE
1960 case IPPROTO_GRE:
1961 return nf_conntrack_gre_packet(ct, skb, dataoff,
1962 ctinfo, state);
1963 #endif
1964 }
1965
1966 return generic_packet(ct, skb, ctinfo);
1967 }
1968
1969 unsigned int
nf_conntrack_in(struct sk_buff * skb,const struct nf_hook_state * state)1970 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1971 {
1972 enum ip_conntrack_info ctinfo;
1973 struct nf_conn *ct, *tmpl;
1974 u_int8_t protonum;
1975 int dataoff, ret;
1976
1977 tmpl = nf_ct_get(skb, &ctinfo);
1978 if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1979 /* Previously seen (loopback or untracked)? Ignore. */
1980 if ((tmpl && !nf_ct_is_template(tmpl)) ||
1981 ctinfo == IP_CT_UNTRACKED)
1982 return NF_ACCEPT;
1983 skb->_nfct = 0;
1984 }
1985
1986 /* rcu_read_lock()ed by nf_hook_thresh */
1987 dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1988 if (dataoff <= 0) {
1989 pr_debug("not prepared to track yet or error occurred\n");
1990 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1991 ret = NF_ACCEPT;
1992 goto out;
1993 }
1994
1995 if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
1996 ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
1997 protonum, state);
1998 if (ret <= 0) {
1999 ret = -ret;
2000 goto out;
2001 }
2002 /* ICMP[v6] protocol trackers may assign one conntrack. */
2003 if (skb->_nfct)
2004 goto out;
2005 }
2006 repeat:
2007 ret = resolve_normal_ct(tmpl, skb, dataoff,
2008 protonum, state);
2009 if (ret < 0) {
2010 /* Too stressed to deal. */
2011 NF_CT_STAT_INC_ATOMIC(state->net, drop);
2012 ret = NF_DROP;
2013 goto out;
2014 }
2015
2016 ct = nf_ct_get(skb, &ctinfo);
2017 if (!ct) {
2018 /* Not valid part of a connection */
2019 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2020 ret = NF_ACCEPT;
2021 goto out;
2022 }
2023
2024 ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
2025 if (ret <= 0) {
2026 /* Invalid: inverse of the return code tells
2027 * the netfilter core what to do */
2028 pr_debug("nf_conntrack_in: Can't track with proto module\n");
2029 nf_ct_put(ct);
2030 skb->_nfct = 0;
2031 /* Special case: TCP tracker reports an attempt to reopen a
2032 * closed/aborted connection. We have to go back and create a
2033 * fresh conntrack.
2034 */
2035 if (ret == -NF_REPEAT)
2036 goto repeat;
2037
2038 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2039 if (ret == -NF_DROP)
2040 NF_CT_STAT_INC_ATOMIC(state->net, drop);
2041
2042 ret = -ret;
2043 goto out;
2044 }
2045
2046 if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
2047 !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
2048 nf_conntrack_event_cache(IPCT_REPLY, ct);
2049 out:
2050 if (tmpl)
2051 nf_ct_put(tmpl);
2052
2053 return ret;
2054 }
2055 EXPORT_SYMBOL_GPL(nf_conntrack_in);
2056
2057 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
2058 implicitly racy: see __nf_conntrack_confirm */
nf_conntrack_alter_reply(struct nf_conn * ct,const struct nf_conntrack_tuple * newreply)2059 void nf_conntrack_alter_reply(struct nf_conn *ct,
2060 const struct nf_conntrack_tuple *newreply)
2061 {
2062 struct nf_conn_help *help = nfct_help(ct);
2063
2064 /* Should be unconfirmed, so not in hash table yet */
2065 WARN_ON(nf_ct_is_confirmed(ct));
2066
2067 pr_debug("Altering reply tuple of %p to ", ct);
2068 nf_ct_dump_tuple(newreply);
2069
2070 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
2071 if (ct->master || (help && !hlist_empty(&help->expectations)))
2072 return;
2073
2074 rcu_read_lock();
2075 __nf_ct_try_assign_helper(ct, NULL, GFP_ATOMIC);
2076 rcu_read_unlock();
2077 }
2078 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
2079
2080 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
__nf_ct_refresh_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb,u32 extra_jiffies,bool do_acct)2081 void __nf_ct_refresh_acct(struct nf_conn *ct,
2082 enum ip_conntrack_info ctinfo,
2083 const struct sk_buff *skb,
2084 u32 extra_jiffies,
2085 bool do_acct)
2086 {
2087 /* Only update if this is not a fixed timeout */
2088 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
2089 goto acct;
2090
2091 /* If not in hash table, timer will not be active yet */
2092 if (nf_ct_is_confirmed(ct))
2093 extra_jiffies += nfct_time_stamp;
2094
2095 if (READ_ONCE(ct->timeout) != extra_jiffies)
2096 WRITE_ONCE(ct->timeout, extra_jiffies);
2097 acct:
2098 if (do_acct)
2099 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2100 }
2101 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
2102
nf_ct_kill_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb)2103 bool nf_ct_kill_acct(struct nf_conn *ct,
2104 enum ip_conntrack_info ctinfo,
2105 const struct sk_buff *skb)
2106 {
2107 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2108
2109 return nf_ct_delete(ct, 0, 0);
2110 }
2111 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
2112
2113 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
2114
2115 #include <linux/netfilter/nfnetlink.h>
2116 #include <linux/netfilter/nfnetlink_conntrack.h>
2117 #include <linux/mutex.h>
2118
2119 /* Generic function for tcp/udp/sctp/dccp and alike. */
nf_ct_port_tuple_to_nlattr(struct sk_buff * skb,const struct nf_conntrack_tuple * tuple)2120 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
2121 const struct nf_conntrack_tuple *tuple)
2122 {
2123 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
2124 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
2125 goto nla_put_failure;
2126 return 0;
2127
2128 nla_put_failure:
2129 return -1;
2130 }
2131 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
2132
2133 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
2134 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
2135 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
2136 };
2137 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
2138
nf_ct_port_nlattr_to_tuple(struct nlattr * tb[],struct nf_conntrack_tuple * t,u_int32_t flags)2139 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
2140 struct nf_conntrack_tuple *t,
2141 u_int32_t flags)
2142 {
2143 if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
2144 if (!tb[CTA_PROTO_SRC_PORT])
2145 return -EINVAL;
2146
2147 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
2148 }
2149
2150 if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
2151 if (!tb[CTA_PROTO_DST_PORT])
2152 return -EINVAL;
2153
2154 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
2155 }
2156
2157 return 0;
2158 }
2159 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
2160
nf_ct_port_nlattr_tuple_size(void)2161 unsigned int nf_ct_port_nlattr_tuple_size(void)
2162 {
2163 static unsigned int size __read_mostly;
2164
2165 if (!size)
2166 size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
2167
2168 return size;
2169 }
2170 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
2171 #endif
2172
2173 /* Used by ipt_REJECT and ip6t_REJECT. */
nf_conntrack_attach(struct sk_buff * nskb,const struct sk_buff * skb)2174 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
2175 {
2176 struct nf_conn *ct;
2177 enum ip_conntrack_info ctinfo;
2178
2179 /* This ICMP is in reverse direction to the packet which caused it */
2180 ct = nf_ct_get(skb, &ctinfo);
2181 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2182 ctinfo = IP_CT_RELATED_REPLY;
2183 else
2184 ctinfo = IP_CT_RELATED;
2185
2186 /* Attach to new skbuff, and increment count */
2187 nf_ct_set(nskb, ct, ctinfo);
2188 nf_conntrack_get(skb_nfct(nskb));
2189 }
2190
__nf_conntrack_update(struct net * net,struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)2191 static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
2192 struct nf_conn *ct,
2193 enum ip_conntrack_info ctinfo)
2194 {
2195 const struct nf_nat_hook *nat_hook;
2196 struct nf_conntrack_tuple_hash *h;
2197 struct nf_conntrack_tuple tuple;
2198 unsigned int status;
2199 int dataoff;
2200 u16 l3num;
2201 u8 l4num;
2202
2203 l3num = nf_ct_l3num(ct);
2204
2205 dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2206 if (dataoff <= 0)
2207 return -1;
2208
2209 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2210 l4num, net, &tuple))
2211 return -1;
2212
2213 if (ct->status & IPS_SRC_NAT) {
2214 memcpy(tuple.src.u3.all,
2215 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2216 sizeof(tuple.src.u3.all));
2217 tuple.src.u.all =
2218 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2219 }
2220
2221 if (ct->status & IPS_DST_NAT) {
2222 memcpy(tuple.dst.u3.all,
2223 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2224 sizeof(tuple.dst.u3.all));
2225 tuple.dst.u.all =
2226 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2227 }
2228
2229 h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2230 if (!h)
2231 return 0;
2232
2233 /* Store status bits of the conntrack that is clashing to re-do NAT
2234 * mangling according to what it has been done already to this packet.
2235 */
2236 status = ct->status;
2237
2238 nf_ct_put(ct);
2239 ct = nf_ct_tuplehash_to_ctrack(h);
2240 nf_ct_set(skb, ct, ctinfo);
2241
2242 nat_hook = rcu_dereference(nf_nat_hook);
2243 if (!nat_hook)
2244 return 0;
2245
2246 if (status & IPS_SRC_NAT &&
2247 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
2248 IP_CT_DIR_ORIGINAL) == NF_DROP)
2249 return -1;
2250
2251 if (status & IPS_DST_NAT &&
2252 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
2253 IP_CT_DIR_ORIGINAL) == NF_DROP)
2254 return -1;
2255
2256 return 0;
2257 }
2258
2259 /* This packet is coming from userspace via nf_queue, complete the packet
2260 * processing after the helper invocation in nf_confirm().
2261 */
nf_confirm_cthelper(struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)2262 static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2263 enum ip_conntrack_info ctinfo)
2264 {
2265 const struct nf_conntrack_helper *helper;
2266 const struct nf_conn_help *help;
2267 int protoff;
2268
2269 help = nfct_help(ct);
2270 if (!help)
2271 return 0;
2272
2273 helper = rcu_dereference(help->helper);
2274 if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2275 return 0;
2276
2277 switch (nf_ct_l3num(ct)) {
2278 case NFPROTO_IPV4:
2279 protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2280 break;
2281 #if IS_ENABLED(CONFIG_IPV6)
2282 case NFPROTO_IPV6: {
2283 __be16 frag_off;
2284 u8 pnum;
2285
2286 pnum = ipv6_hdr(skb)->nexthdr;
2287 protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2288 &frag_off);
2289 if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2290 return 0;
2291 break;
2292 }
2293 #endif
2294 default:
2295 return 0;
2296 }
2297
2298 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2299 !nf_is_loopback_packet(skb)) {
2300 if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2301 NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2302 return -1;
2303 }
2304 }
2305
2306 /* We've seen it coming out the other side: confirm it */
2307 return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0;
2308 }
2309
nf_conntrack_update(struct net * net,struct sk_buff * skb)2310 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2311 {
2312 enum ip_conntrack_info ctinfo;
2313 struct nf_conn *ct;
2314 int err;
2315
2316 ct = nf_ct_get(skb, &ctinfo);
2317 if (!ct)
2318 return 0;
2319
2320 if (!nf_ct_is_confirmed(ct)) {
2321 err = __nf_conntrack_update(net, skb, ct, ctinfo);
2322 if (err < 0)
2323 return err;
2324
2325 ct = nf_ct_get(skb, &ctinfo);
2326 }
2327
2328 return nf_confirm_cthelper(skb, ct, ctinfo);
2329 }
2330
nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple * dst_tuple,const struct sk_buff * skb)2331 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2332 const struct sk_buff *skb)
2333 {
2334 const struct nf_conntrack_tuple *src_tuple;
2335 const struct nf_conntrack_tuple_hash *hash;
2336 struct nf_conntrack_tuple srctuple;
2337 enum ip_conntrack_info ctinfo;
2338 struct nf_conn *ct;
2339
2340 ct = nf_ct_get(skb, &ctinfo);
2341 if (ct) {
2342 src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2343 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2344 return true;
2345 }
2346
2347 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2348 NFPROTO_IPV4, dev_net(skb->dev),
2349 &srctuple))
2350 return false;
2351
2352 hash = nf_conntrack_find_get(dev_net(skb->dev),
2353 &nf_ct_zone_dflt,
2354 &srctuple);
2355 if (!hash)
2356 return false;
2357
2358 ct = nf_ct_tuplehash_to_ctrack(hash);
2359 src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2360 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2361 nf_ct_put(ct);
2362
2363 return true;
2364 }
2365
2366 /* Bring out ya dead! */
2367 static struct nf_conn *
get_next_corpse(int (* iter)(struct nf_conn * i,void * data),const struct nf_ct_iter_data * iter_data,unsigned int * bucket)2368 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2369 const struct nf_ct_iter_data *iter_data, unsigned int *bucket)
2370 {
2371 struct nf_conntrack_tuple_hash *h;
2372 struct nf_conn *ct;
2373 struct hlist_nulls_node *n;
2374 spinlock_t *lockp;
2375
2376 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2377 struct hlist_nulls_head *hslot = &nf_conntrack_hash[*bucket];
2378
2379 if (hlist_nulls_empty(hslot))
2380 continue;
2381
2382 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2383 local_bh_disable();
2384 nf_conntrack_lock(lockp);
2385 hlist_nulls_for_each_entry(h, n, hslot, hnnode) {
2386 if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2387 continue;
2388 /* All nf_conn objects are added to hash table twice, one
2389 * for original direction tuple, once for the reply tuple.
2390 *
2391 * Exception: In the IPS_NAT_CLASH case, only the reply
2392 * tuple is added (the original tuple already existed for
2393 * a different object).
2394 *
2395 * We only need to call the iterator once for each
2396 * conntrack, so we just use the 'reply' direction
2397 * tuple while iterating.
2398 */
2399 ct = nf_ct_tuplehash_to_ctrack(h);
2400
2401 if (iter_data->net &&
2402 !net_eq(iter_data->net, nf_ct_net(ct)))
2403 continue;
2404
2405 if (iter(ct, iter_data->data))
2406 goto found;
2407 }
2408 spin_unlock(lockp);
2409 local_bh_enable();
2410 cond_resched();
2411 }
2412
2413 return NULL;
2414 found:
2415 refcount_inc(&ct->ct_general.use);
2416 spin_unlock(lockp);
2417 local_bh_enable();
2418 return ct;
2419 }
2420
nf_ct_iterate_cleanup(int (* iter)(struct nf_conn * i,void * data),const struct nf_ct_iter_data * iter_data)2421 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2422 const struct nf_ct_iter_data *iter_data)
2423 {
2424 unsigned int bucket = 0;
2425 struct nf_conn *ct;
2426
2427 might_sleep();
2428
2429 mutex_lock(&nf_conntrack_mutex);
2430 while ((ct = get_next_corpse(iter, iter_data, &bucket)) != NULL) {
2431 /* Time to push up daises... */
2432
2433 nf_ct_delete(ct, iter_data->portid, iter_data->report);
2434 nf_ct_put(ct);
2435 cond_resched();
2436 }
2437 mutex_unlock(&nf_conntrack_mutex);
2438 }
2439
nf_ct_iterate_cleanup_net(int (* iter)(struct nf_conn * i,void * data),const struct nf_ct_iter_data * iter_data)2440 void nf_ct_iterate_cleanup_net(int (*iter)(struct nf_conn *i, void *data),
2441 const struct nf_ct_iter_data *iter_data)
2442 {
2443 struct net *net = iter_data->net;
2444 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2445
2446 might_sleep();
2447
2448 if (atomic_read(&cnet->count) == 0)
2449 return;
2450
2451 nf_ct_iterate_cleanup(iter, iter_data);
2452 }
2453 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2454
2455 /**
2456 * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2457 * @iter: callback to invoke for each conntrack
2458 * @data: data to pass to @iter
2459 *
2460 * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2461 * unconfirmed list as dying (so they will not be inserted into
2462 * main table).
2463 *
2464 * Can only be called in module exit path.
2465 */
2466 void
nf_ct_iterate_destroy(int (* iter)(struct nf_conn * i,void * data),void * data)2467 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2468 {
2469 struct nf_ct_iter_data iter_data = {};
2470 struct net *net;
2471
2472 down_read(&net_rwsem);
2473 for_each_net(net) {
2474 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2475
2476 if (atomic_read(&cnet->count) == 0)
2477 continue;
2478 nf_queue_nf_hook_drop(net);
2479 }
2480 up_read(&net_rwsem);
2481
2482 /* Need to wait for netns cleanup worker to finish, if its
2483 * running -- it might have deleted a net namespace from
2484 * the global list, so hook drop above might not have
2485 * affected all namespaces.
2486 */
2487 net_ns_barrier();
2488
2489 /* a skb w. unconfirmed conntrack could have been reinjected just
2490 * before we called nf_queue_nf_hook_drop().
2491 *
2492 * This makes sure its inserted into conntrack table.
2493 */
2494 synchronize_net();
2495
2496 nf_ct_ext_bump_genid();
2497 iter_data.data = data;
2498 nf_ct_iterate_cleanup(iter, &iter_data);
2499
2500 /* Another cpu might be in a rcu read section with
2501 * rcu protected pointer cleared in iter callback
2502 * or hidden via nf_ct_ext_bump_genid() above.
2503 *
2504 * Wait until those are done.
2505 */
2506 synchronize_rcu();
2507 }
2508 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2509
kill_all(struct nf_conn * i,void * data)2510 static int kill_all(struct nf_conn *i, void *data)
2511 {
2512 return 1;
2513 }
2514
nf_conntrack_cleanup_start(void)2515 void nf_conntrack_cleanup_start(void)
2516 {
2517 conntrack_gc_work.exiting = true;
2518 }
2519
nf_conntrack_cleanup_end(void)2520 void nf_conntrack_cleanup_end(void)
2521 {
2522 RCU_INIT_POINTER(nf_ct_hook, NULL);
2523 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2524 kvfree(nf_conntrack_hash);
2525
2526 nf_conntrack_proto_fini();
2527 nf_conntrack_helper_fini();
2528 nf_conntrack_expect_fini();
2529
2530 kmem_cache_destroy(nf_conntrack_cachep);
2531 }
2532
2533 /*
2534 * Mishearing the voices in his head, our hero wonders how he's
2535 * supposed to kill the mall.
2536 */
nf_conntrack_cleanup_net(struct net * net)2537 void nf_conntrack_cleanup_net(struct net *net)
2538 {
2539 LIST_HEAD(single);
2540
2541 list_add(&net->exit_list, &single);
2542 nf_conntrack_cleanup_net_list(&single);
2543 }
2544
nf_conntrack_cleanup_net_list(struct list_head * net_exit_list)2545 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2546 {
2547 struct nf_ct_iter_data iter_data = {};
2548 struct net *net;
2549 int busy;
2550
2551 /*
2552 * This makes sure all current packets have passed through
2553 * netfilter framework. Roll on, two-stage module
2554 * delete...
2555 */
2556 synchronize_net();
2557 i_see_dead_people:
2558 busy = 0;
2559 list_for_each_entry(net, net_exit_list, exit_list) {
2560 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2561
2562 iter_data.net = net;
2563 nf_ct_iterate_cleanup_net(kill_all, &iter_data);
2564 if (atomic_read(&cnet->count) != 0)
2565 busy = 1;
2566 }
2567 if (busy) {
2568 schedule();
2569 goto i_see_dead_people;
2570 }
2571
2572 list_for_each_entry(net, net_exit_list, exit_list) {
2573 nf_conntrack_ecache_pernet_fini(net);
2574 nf_conntrack_expect_pernet_fini(net);
2575 free_percpu(net->ct.stat);
2576 }
2577 }
2578
nf_ct_alloc_hashtable(unsigned int * sizep,int nulls)2579 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2580 {
2581 struct hlist_nulls_head *hash;
2582 unsigned int nr_slots, i;
2583
2584 if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2585 return NULL;
2586
2587 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2588 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2589
2590 hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2591
2592 if (hash && nulls)
2593 for (i = 0; i < nr_slots; i++)
2594 INIT_HLIST_NULLS_HEAD(&hash[i], i);
2595
2596 return hash;
2597 }
2598 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2599
nf_conntrack_hash_resize(unsigned int hashsize)2600 int nf_conntrack_hash_resize(unsigned int hashsize)
2601 {
2602 int i, bucket;
2603 unsigned int old_size;
2604 struct hlist_nulls_head *hash, *old_hash;
2605 struct nf_conntrack_tuple_hash *h;
2606 struct nf_conn *ct;
2607
2608 if (!hashsize)
2609 return -EINVAL;
2610
2611 hash = nf_ct_alloc_hashtable(&hashsize, 1);
2612 if (!hash)
2613 return -ENOMEM;
2614
2615 mutex_lock(&nf_conntrack_mutex);
2616 old_size = nf_conntrack_htable_size;
2617 if (old_size == hashsize) {
2618 mutex_unlock(&nf_conntrack_mutex);
2619 kvfree(hash);
2620 return 0;
2621 }
2622
2623 local_bh_disable();
2624 nf_conntrack_all_lock();
2625 write_seqcount_begin(&nf_conntrack_generation);
2626
2627 /* Lookups in the old hash might happen in parallel, which means we
2628 * might get false negatives during connection lookup. New connections
2629 * created because of a false negative won't make it into the hash
2630 * though since that required taking the locks.
2631 */
2632
2633 for (i = 0; i < nf_conntrack_htable_size; i++) {
2634 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2635 unsigned int zone_id;
2636
2637 h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2638 struct nf_conntrack_tuple_hash, hnnode);
2639 ct = nf_ct_tuplehash_to_ctrack(h);
2640 hlist_nulls_del_rcu(&h->hnnode);
2641
2642 zone_id = nf_ct_zone_id(nf_ct_zone(ct), NF_CT_DIRECTION(h));
2643 bucket = __hash_conntrack(nf_ct_net(ct),
2644 &h->tuple, zone_id, hashsize);
2645 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2646 }
2647 }
2648 old_hash = nf_conntrack_hash;
2649
2650 nf_conntrack_hash = hash;
2651 nf_conntrack_htable_size = hashsize;
2652
2653 write_seqcount_end(&nf_conntrack_generation);
2654 nf_conntrack_all_unlock();
2655 local_bh_enable();
2656
2657 mutex_unlock(&nf_conntrack_mutex);
2658
2659 synchronize_net();
2660 kvfree(old_hash);
2661 return 0;
2662 }
2663
nf_conntrack_set_hashsize(const char * val,const struct kernel_param * kp)2664 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2665 {
2666 unsigned int hashsize;
2667 int rc;
2668
2669 if (current->nsproxy->net_ns != &init_net)
2670 return -EOPNOTSUPP;
2671
2672 /* On boot, we can set this without any fancy locking. */
2673 if (!nf_conntrack_hash)
2674 return param_set_uint(val, kp);
2675
2676 rc = kstrtouint(val, 0, &hashsize);
2677 if (rc)
2678 return rc;
2679
2680 return nf_conntrack_hash_resize(hashsize);
2681 }
2682
nf_conntrack_init_start(void)2683 int nf_conntrack_init_start(void)
2684 {
2685 unsigned long nr_pages = totalram_pages();
2686 int max_factor = 8;
2687 int ret = -ENOMEM;
2688 int i;
2689
2690 seqcount_spinlock_init(&nf_conntrack_generation,
2691 &nf_conntrack_locks_all_lock);
2692
2693 for (i = 0; i < CONNTRACK_LOCKS; i++)
2694 spin_lock_init(&nf_conntrack_locks[i]);
2695
2696 if (!nf_conntrack_htable_size) {
2697 nf_conntrack_htable_size
2698 = (((nr_pages << PAGE_SHIFT) / 16384)
2699 / sizeof(struct hlist_head));
2700 if (BITS_PER_LONG >= 64 &&
2701 nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2702 nf_conntrack_htable_size = 262144;
2703 else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2704 nf_conntrack_htable_size = 65536;
2705
2706 if (nf_conntrack_htable_size < 1024)
2707 nf_conntrack_htable_size = 1024;
2708 /* Use a max. factor of one by default to keep the average
2709 * hash chain length at 2 entries. Each entry has to be added
2710 * twice (once for original direction, once for reply).
2711 * When a table size is given we use the old value of 8 to
2712 * avoid implicit reduction of the max entries setting.
2713 */
2714 max_factor = 1;
2715 }
2716
2717 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2718 if (!nf_conntrack_hash)
2719 return -ENOMEM;
2720
2721 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2722
2723 nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2724 sizeof(struct nf_conn),
2725 NFCT_INFOMASK + 1,
2726 SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2727 if (!nf_conntrack_cachep)
2728 goto err_cachep;
2729
2730 ret = nf_conntrack_expect_init();
2731 if (ret < 0)
2732 goto err_expect;
2733
2734 ret = nf_conntrack_helper_init();
2735 if (ret < 0)
2736 goto err_helper;
2737
2738 ret = nf_conntrack_proto_init();
2739 if (ret < 0)
2740 goto err_proto;
2741
2742 conntrack_gc_work_init(&conntrack_gc_work);
2743 queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2744
2745 ret = register_nf_conntrack_bpf();
2746 if (ret < 0)
2747 goto err_kfunc;
2748
2749 return 0;
2750
2751 err_kfunc:
2752 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2753 nf_conntrack_proto_fini();
2754 err_proto:
2755 nf_conntrack_helper_fini();
2756 err_helper:
2757 nf_conntrack_expect_fini();
2758 err_expect:
2759 kmem_cache_destroy(nf_conntrack_cachep);
2760 err_cachep:
2761 kvfree(nf_conntrack_hash);
2762 return ret;
2763 }
2764
2765 static const struct nf_ct_hook nf_conntrack_hook = {
2766 .update = nf_conntrack_update,
2767 .destroy = nf_ct_destroy,
2768 .get_tuple_skb = nf_conntrack_get_tuple_skb,
2769 .attach = nf_conntrack_attach,
2770 };
2771
nf_conntrack_init_end(void)2772 void nf_conntrack_init_end(void)
2773 {
2774 RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2775 }
2776
2777 /*
2778 * We need to use special "null" values, not used in hash table
2779 */
2780 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
2781
nf_conntrack_init_net(struct net * net)2782 int nf_conntrack_init_net(struct net *net)
2783 {
2784 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2785 int ret = -ENOMEM;
2786
2787 BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2788 BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2789 atomic_set(&cnet->count, 0);
2790
2791 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2792 if (!net->ct.stat)
2793 return ret;
2794
2795 ret = nf_conntrack_expect_pernet_init(net);
2796 if (ret < 0)
2797 goto err_expect;
2798
2799 nf_conntrack_acct_pernet_init(net);
2800 nf_conntrack_tstamp_pernet_init(net);
2801 nf_conntrack_ecache_pernet_init(net);
2802 nf_conntrack_helper_pernet_init(net);
2803 nf_conntrack_proto_pernet_init(net);
2804
2805 return 0;
2806
2807 err_expect:
2808 free_percpu(net->ct.stat);
2809 return ret;
2810 }
2811