1 // SPDX-License-Identifier: GPL-2.0-only
2 /* (C) 1999-2001 Paul `Rusty' Russell
3  * (C) 2002-2004 Netfilter Core Team <coreteam@netfilter.org>
4  * (C) 2002-2013 Jozsef Kadlecsik <kadlec@netfilter.org>
5  * (C) 2006-2012 Patrick McHardy <kaber@trash.net>
6  */
7 
8 #include <linux/types.h>
9 #include <linux/timer.h>
10 #include <linux/module.h>
11 #include <linux/in.h>
12 #include <linux/tcp.h>
13 #include <linux/spinlock.h>
14 #include <linux/skbuff.h>
15 #include <linux/ipv6.h>
16 #include <net/ip6_checksum.h>
17 #include <asm/unaligned.h>
18 
19 #include <net/tcp.h>
20 
21 #include <linux/netfilter.h>
22 #include <linux/netfilter_ipv4.h>
23 #include <linux/netfilter_ipv6.h>
24 #include <net/netfilter/nf_conntrack.h>
25 #include <net/netfilter/nf_conntrack_l4proto.h>
26 #include <net/netfilter/nf_conntrack_ecache.h>
27 #include <net/netfilter/nf_conntrack_seqadj.h>
28 #include <net/netfilter/nf_conntrack_synproxy.h>
29 #include <net/netfilter/nf_conntrack_timeout.h>
30 #include <net/netfilter/nf_log.h>
31 #include <net/netfilter/ipv4/nf_conntrack_ipv4.h>
32 #include <net/netfilter/ipv6/nf_conntrack_ipv6.h>
33 
34   /* FIXME: Examine ipfilter's timeouts and conntrack transitions more
35      closely.  They're more complex. --RR */
36 
37 static const char *const tcp_conntrack_names[] = {
38 	"NONE",
39 	"SYN_SENT",
40 	"SYN_RECV",
41 	"ESTABLISHED",
42 	"FIN_WAIT",
43 	"CLOSE_WAIT",
44 	"LAST_ACK",
45 	"TIME_WAIT",
46 	"CLOSE",
47 	"SYN_SENT2",
48 };
49 
50 enum nf_ct_tcp_action {
51 	NFCT_TCP_IGNORE,
52 	NFCT_TCP_INVALID,
53 	NFCT_TCP_ACCEPT,
54 };
55 
56 #define SECS * HZ
57 #define MINS * 60 SECS
58 #define HOURS * 60 MINS
59 #define DAYS * 24 HOURS
60 
61 static const unsigned int tcp_timeouts[TCP_CONNTRACK_TIMEOUT_MAX] = {
62 	[TCP_CONNTRACK_SYN_SENT]	= 2 MINS,
63 	[TCP_CONNTRACK_SYN_RECV]	= 60 SECS,
64 	[TCP_CONNTRACK_ESTABLISHED]	= 5 DAYS,
65 	[TCP_CONNTRACK_FIN_WAIT]	= 2 MINS,
66 	[TCP_CONNTRACK_CLOSE_WAIT]	= 60 SECS,
67 	[TCP_CONNTRACK_LAST_ACK]	= 30 SECS,
68 	[TCP_CONNTRACK_TIME_WAIT]	= 2 MINS,
69 	[TCP_CONNTRACK_CLOSE]		= 10 SECS,
70 	[TCP_CONNTRACK_SYN_SENT2]	= 2 MINS,
71 /* RFC1122 says the R2 limit should be at least 100 seconds.
72    Linux uses 15 packets as limit, which corresponds
73    to ~13-30min depending on RTO. */
74 	[TCP_CONNTRACK_RETRANS]		= 5 MINS,
75 	[TCP_CONNTRACK_UNACK]		= 5 MINS,
76 };
77 
78 #define sNO TCP_CONNTRACK_NONE
79 #define sSS TCP_CONNTRACK_SYN_SENT
80 #define sSR TCP_CONNTRACK_SYN_RECV
81 #define sES TCP_CONNTRACK_ESTABLISHED
82 #define sFW TCP_CONNTRACK_FIN_WAIT
83 #define sCW TCP_CONNTRACK_CLOSE_WAIT
84 #define sLA TCP_CONNTRACK_LAST_ACK
85 #define sTW TCP_CONNTRACK_TIME_WAIT
86 #define sCL TCP_CONNTRACK_CLOSE
87 #define sS2 TCP_CONNTRACK_SYN_SENT2
88 #define sIV TCP_CONNTRACK_MAX
89 #define sIG TCP_CONNTRACK_IGNORE
90 
91 /* What TCP flags are set from RST/SYN/FIN/ACK. */
92 enum tcp_bit_set {
93 	TCP_SYN_SET,
94 	TCP_SYNACK_SET,
95 	TCP_FIN_SET,
96 	TCP_ACK_SET,
97 	TCP_RST_SET,
98 	TCP_NONE_SET,
99 };
100 
101 /*
102  * The TCP state transition table needs a few words...
103  *
104  * We are the man in the middle. All the packets go through us
105  * but might get lost in transit to the destination.
106  * It is assumed that the destinations can't receive segments
107  * we haven't seen.
108  *
109  * The checked segment is in window, but our windows are *not*
110  * equivalent with the ones of the sender/receiver. We always
111  * try to guess the state of the current sender.
112  *
113  * The meaning of the states are:
114  *
115  * NONE:	initial state
116  * SYN_SENT:	SYN-only packet seen
117  * SYN_SENT2:	SYN-only packet seen from reply dir, simultaneous open
118  * SYN_RECV:	SYN-ACK packet seen
119  * ESTABLISHED:	ACK packet seen
120  * FIN_WAIT:	FIN packet seen
121  * CLOSE_WAIT:	ACK seen (after FIN)
122  * LAST_ACK:	FIN seen (after FIN)
123  * TIME_WAIT:	last ACK seen
124  * CLOSE:	closed connection (RST)
125  *
126  * Packets marked as IGNORED (sIG):
127  *	if they may be either invalid or valid
128  *	and the receiver may send back a connection
129  *	closing RST or a SYN/ACK.
130  *
131  * Packets marked as INVALID (sIV):
132  *	if we regard them as truly invalid packets
133  */
134 static const u8 tcp_conntracks[2][6][TCP_CONNTRACK_MAX] = {
135 	{
136 /* ORIGINAL */
137 /* 	     sNO, sSS, sSR, sES, sFW, sCW, sLA, sTW, sCL, sS2	*/
138 /*syn*/	   { sSS, sSS, sIG, sIG, sIG, sIG, sIG, sSS, sSS, sS2 },
139 /*
140  *	sNO -> sSS	Initialize a new connection
141  *	sSS -> sSS	Retransmitted SYN
142  *	sS2 -> sS2	Late retransmitted SYN
143  *	sSR -> sIG
144  *	sES -> sIG	Error: SYNs in window outside the SYN_SENT state
145  *			are errors. Receiver will reply with RST
146  *			and close the connection.
147  *			Or we are not in sync and hold a dead connection.
148  *	sFW -> sIG
149  *	sCW -> sIG
150  *	sLA -> sIG
151  *	sTW -> sSS	Reopened connection (RFC 1122).
152  *	sCL -> sSS
153  */
154 /* 	     sNO, sSS, sSR, sES, sFW, sCW, sLA, sTW, sCL, sS2	*/
155 /*synack*/ { sIV, sIV, sSR, sIV, sIV, sIV, sIV, sIV, sIV, sSR },
156 /*
157  *	sNO -> sIV	Too late and no reason to do anything
158  *	sSS -> sIV	Client can't send SYN and then SYN/ACK
159  *	sS2 -> sSR	SYN/ACK sent to SYN2 in simultaneous open
160  *	sSR -> sSR	Late retransmitted SYN/ACK in simultaneous open
161  *	sES -> sIV	Invalid SYN/ACK packets sent by the client
162  *	sFW -> sIV
163  *	sCW -> sIV
164  *	sLA -> sIV
165  *	sTW -> sIV
166  *	sCL -> sIV
167  */
168 /* 	     sNO, sSS, sSR, sES, sFW, sCW, sLA, sTW, sCL, sS2	*/
169 /*fin*/    { sIV, sIV, sFW, sFW, sLA, sLA, sLA, sTW, sCL, sIV },
170 /*
171  *	sNO -> sIV	Too late and no reason to do anything...
172  *	sSS -> sIV	Client migth not send FIN in this state:
173  *			we enforce waiting for a SYN/ACK reply first.
174  *	sS2 -> sIV
175  *	sSR -> sFW	Close started.
176  *	sES -> sFW
177  *	sFW -> sLA	FIN seen in both directions, waiting for
178  *			the last ACK.
179  *			Migth be a retransmitted FIN as well...
180  *	sCW -> sLA
181  *	sLA -> sLA	Retransmitted FIN. Remain in the same state.
182  *	sTW -> sTW
183  *	sCL -> sCL
184  */
185 /* 	     sNO, sSS, sSR, sES, sFW, sCW, sLA, sTW, sCL, sS2	*/
186 /*ack*/	   { sES, sIV, sES, sES, sCW, sCW, sTW, sTW, sCL, sIV },
187 /*
188  *	sNO -> sES	Assumed.
189  *	sSS -> sIV	ACK is invalid: we haven't seen a SYN/ACK yet.
190  *	sS2 -> sIV
191  *	sSR -> sES	Established state is reached.
192  *	sES -> sES	:-)
193  *	sFW -> sCW	Normal close request answered by ACK.
194  *	sCW -> sCW
195  *	sLA -> sTW	Last ACK detected (RFC5961 challenged)
196  *	sTW -> sTW	Retransmitted last ACK. Remain in the same state.
197  *	sCL -> sCL
198  */
199 /* 	     sNO, sSS, sSR, sES, sFW, sCW, sLA, sTW, sCL, sS2	*/
200 /*rst*/    { sIV, sCL, sCL, sCL, sCL, sCL, sCL, sCL, sCL, sCL },
201 /*none*/   { sIV, sIV, sIV, sIV, sIV, sIV, sIV, sIV, sIV, sIV }
202 	},
203 	{
204 /* REPLY */
205 /* 	     sNO, sSS, sSR, sES, sFW, sCW, sLA, sTW, sCL, sS2	*/
206 /*syn*/	   { sIV, sS2, sIV, sIV, sIV, sIV, sIV, sSS, sIV, sS2 },
207 /*
208  *	sNO -> sIV	Never reached.
209  *	sSS -> sS2	Simultaneous open
210  *	sS2 -> sS2	Retransmitted simultaneous SYN
211  *	sSR -> sIV	Invalid SYN packets sent by the server
212  *	sES -> sIV
213  *	sFW -> sIV
214  *	sCW -> sIV
215  *	sLA -> sIV
216  *	sTW -> sSS	Reopened connection, but server may have switched role
217  *	sCL -> sIV
218  */
219 /* 	     sNO, sSS, sSR, sES, sFW, sCW, sLA, sTW, sCL, sS2	*/
220 /*synack*/ { sIV, sSR, sIG, sIG, sIG, sIG, sIG, sIG, sIG, sSR },
221 /*
222  *	sSS -> sSR	Standard open.
223  *	sS2 -> sSR	Simultaneous open
224  *	sSR -> sIG	Retransmitted SYN/ACK, ignore it.
225  *	sES -> sIG	Late retransmitted SYN/ACK?
226  *	sFW -> sIG	Might be SYN/ACK answering ignored SYN
227  *	sCW -> sIG
228  *	sLA -> sIG
229  *	sTW -> sIG
230  *	sCL -> sIG
231  */
232 /* 	     sNO, sSS, sSR, sES, sFW, sCW, sLA, sTW, sCL, sS2	*/
233 /*fin*/    { sIV, sIV, sFW, sFW, sLA, sLA, sLA, sTW, sCL, sIV },
234 /*
235  *	sSS -> sIV	Server might not send FIN in this state.
236  *	sS2 -> sIV
237  *	sSR -> sFW	Close started.
238  *	sES -> sFW
239  *	sFW -> sLA	FIN seen in both directions.
240  *	sCW -> sLA
241  *	sLA -> sLA	Retransmitted FIN.
242  *	sTW -> sTW
243  *	sCL -> sCL
244  */
245 /* 	     sNO, sSS, sSR, sES, sFW, sCW, sLA, sTW, sCL, sS2	*/
246 /*ack*/	   { sIV, sIG, sSR, sES, sCW, sCW, sTW, sTW, sCL, sIG },
247 /*
248  *	sSS -> sIG	Might be a half-open connection.
249  *	sS2 -> sIG
250  *	sSR -> sSR	Might answer late resent SYN.
251  *	sES -> sES	:-)
252  *	sFW -> sCW	Normal close request answered by ACK.
253  *	sCW -> sCW
254  *	sLA -> sTW	Last ACK detected (RFC5961 challenged)
255  *	sTW -> sTW	Retransmitted last ACK.
256  *	sCL -> sCL
257  */
258 /* 	     sNO, sSS, sSR, sES, sFW, sCW, sLA, sTW, sCL, sS2	*/
259 /*rst*/    { sIV, sCL, sCL, sCL, sCL, sCL, sCL, sCL, sCL, sCL },
260 /*none*/   { sIV, sIV, sIV, sIV, sIV, sIV, sIV, sIV, sIV, sIV }
261 	}
262 };
263 
264 #ifdef CONFIG_NF_CONNTRACK_PROCFS
265 /* Print out the private part of the conntrack. */
tcp_print_conntrack(struct seq_file * s,struct nf_conn * ct)266 static void tcp_print_conntrack(struct seq_file *s, struct nf_conn *ct)
267 {
268 	if (test_bit(IPS_OFFLOAD_BIT, &ct->status))
269 		return;
270 
271 	seq_printf(s, "%s ", tcp_conntrack_names[ct->proto.tcp.state]);
272 }
273 #endif
274 
get_conntrack_index(const struct tcphdr * tcph)275 static unsigned int get_conntrack_index(const struct tcphdr *tcph)
276 {
277 	if (tcph->rst) return TCP_RST_SET;
278 	else if (tcph->syn) return (tcph->ack ? TCP_SYNACK_SET : TCP_SYN_SET);
279 	else if (tcph->fin) return TCP_FIN_SET;
280 	else if (tcph->ack) return TCP_ACK_SET;
281 	else return TCP_NONE_SET;
282 }
283 
284 /* TCP connection tracking based on 'Real Stateful TCP Packet Filtering
285    in IP Filter' by Guido van Rooij.
286 
287    http://www.sane.nl/events/sane2000/papers.html
288    http://www.darkart.com/mirrors/www.obfuscation.org/ipf/
289 
290    The boundaries and the conditions are changed according to RFC793:
291    the packet must intersect the window (i.e. segments may be
292    after the right or before the left edge) and thus receivers may ACK
293    segments after the right edge of the window.
294 
295 	td_maxend = max(sack + max(win,1)) seen in reply packets
296 	td_maxwin = max(max(win, 1)) + (sack - ack) seen in sent packets
297 	td_maxwin += seq + len - sender.td_maxend
298 			if seq + len > sender.td_maxend
299 	td_end    = max(seq + len) seen in sent packets
300 
301    I.   Upper bound for valid data:	seq <= sender.td_maxend
302    II.  Lower bound for valid data:	seq + len >= sender.td_end - receiver.td_maxwin
303    III.	Upper bound for valid (s)ack:   sack <= receiver.td_end
304    IV.	Lower bound for valid (s)ack:	sack >= receiver.td_end - MAXACKWINDOW
305 
306    where sack is the highest right edge of sack block found in the packet
307    or ack in the case of packet without SACK option.
308 
309    The upper bound limit for a valid (s)ack is not ignored -
310    we doesn't have to deal with fragments.
311 */
312 
segment_seq_plus_len(__u32 seq,size_t len,unsigned int dataoff,const struct tcphdr * tcph)313 static inline __u32 segment_seq_plus_len(__u32 seq,
314 					 size_t len,
315 					 unsigned int dataoff,
316 					 const struct tcphdr *tcph)
317 {
318 	/* XXX Should I use payload length field in IP/IPv6 header ?
319 	 * - YK */
320 	return (seq + len - dataoff - tcph->doff*4
321 		+ (tcph->syn ? 1 : 0) + (tcph->fin ? 1 : 0));
322 }
323 
324 /* Fixme: what about big packets? */
325 #define MAXACKWINCONST			66000
326 #define MAXACKWINDOW(sender)						\
327 	((sender)->td_maxwin > MAXACKWINCONST ? (sender)->td_maxwin	\
328 					      : MAXACKWINCONST)
329 
330 /*
331  * Simplified tcp_parse_options routine from tcp_input.c
332  */
tcp_options(const struct sk_buff * skb,unsigned int dataoff,const struct tcphdr * tcph,struct ip_ct_tcp_state * state)333 static void tcp_options(const struct sk_buff *skb,
334 			unsigned int dataoff,
335 			const struct tcphdr *tcph,
336 			struct ip_ct_tcp_state *state)
337 {
338 	unsigned char buff[(15 * 4) - sizeof(struct tcphdr)];
339 	const unsigned char *ptr;
340 	int length = (tcph->doff*4) - sizeof(struct tcphdr);
341 
342 	if (!length)
343 		return;
344 
345 	ptr = skb_header_pointer(skb, dataoff + sizeof(struct tcphdr),
346 				 length, buff);
347 	if (!ptr)
348 		return;
349 
350 	state->td_scale = 0;
351 	state->flags &= IP_CT_TCP_FLAG_BE_LIBERAL;
352 
353 	while (length > 0) {
354 		int opcode=*ptr++;
355 		int opsize;
356 
357 		switch (opcode) {
358 		case TCPOPT_EOL:
359 			return;
360 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
361 			length--;
362 			continue;
363 		default:
364 			if (length < 2)
365 				return;
366 			opsize=*ptr++;
367 			if (opsize < 2) /* "silly options" */
368 				return;
369 			if (opsize > length)
370 				return;	/* don't parse partial options */
371 
372 			if (opcode == TCPOPT_SACK_PERM
373 			    && opsize == TCPOLEN_SACK_PERM)
374 				state->flags |= IP_CT_TCP_FLAG_SACK_PERM;
375 			else if (opcode == TCPOPT_WINDOW
376 				 && opsize == TCPOLEN_WINDOW) {
377 				state->td_scale = *(u_int8_t *)ptr;
378 
379 				if (state->td_scale > TCP_MAX_WSCALE)
380 					state->td_scale = TCP_MAX_WSCALE;
381 
382 				state->flags |=
383 					IP_CT_TCP_FLAG_WINDOW_SCALE;
384 			}
385 			ptr += opsize - 2;
386 			length -= opsize;
387 		}
388 	}
389 }
390 
tcp_sack(const struct sk_buff * skb,unsigned int dataoff,const struct tcphdr * tcph,__u32 * sack)391 static void tcp_sack(const struct sk_buff *skb, unsigned int dataoff,
392                      const struct tcphdr *tcph, __u32 *sack)
393 {
394 	unsigned char buff[(15 * 4) - sizeof(struct tcphdr)];
395 	const unsigned char *ptr;
396 	int length = (tcph->doff*4) - sizeof(struct tcphdr);
397 	__u32 tmp;
398 
399 	if (!length)
400 		return;
401 
402 	ptr = skb_header_pointer(skb, dataoff + sizeof(struct tcphdr),
403 				 length, buff);
404 	if (!ptr)
405 		return;
406 
407 	/* Fast path for timestamp-only option */
408 	if (length == TCPOLEN_TSTAMP_ALIGNED
409 	    && *(__be32 *)ptr == htonl((TCPOPT_NOP << 24)
410 				       | (TCPOPT_NOP << 16)
411 				       | (TCPOPT_TIMESTAMP << 8)
412 				       | TCPOLEN_TIMESTAMP))
413 		return;
414 
415 	while (length > 0) {
416 		int opcode = *ptr++;
417 		int opsize, i;
418 
419 		switch (opcode) {
420 		case TCPOPT_EOL:
421 			return;
422 		case TCPOPT_NOP:	/* Ref: RFC 793 section 3.1 */
423 			length--;
424 			continue;
425 		default:
426 			if (length < 2)
427 				return;
428 			opsize = *ptr++;
429 			if (opsize < 2) /* "silly options" */
430 				return;
431 			if (opsize > length)
432 				return;	/* don't parse partial options */
433 
434 			if (opcode == TCPOPT_SACK
435 			    && opsize >= (TCPOLEN_SACK_BASE
436 					  + TCPOLEN_SACK_PERBLOCK)
437 			    && !((opsize - TCPOLEN_SACK_BASE)
438 				 % TCPOLEN_SACK_PERBLOCK)) {
439 				for (i = 0;
440 				     i < (opsize - TCPOLEN_SACK_BASE);
441 				     i += TCPOLEN_SACK_PERBLOCK) {
442 					tmp = get_unaligned_be32((__be32 *)(ptr+i)+1);
443 
444 					if (after(tmp, *sack))
445 						*sack = tmp;
446 				}
447 				return;
448 			}
449 			ptr += opsize - 2;
450 			length -= opsize;
451 		}
452 	}
453 }
454 
tcp_init_sender(struct ip_ct_tcp_state * sender,struct ip_ct_tcp_state * receiver,const struct sk_buff * skb,unsigned int dataoff,const struct tcphdr * tcph,u32 end,u32 win)455 static void tcp_init_sender(struct ip_ct_tcp_state *sender,
456 			    struct ip_ct_tcp_state *receiver,
457 			    const struct sk_buff *skb,
458 			    unsigned int dataoff,
459 			    const struct tcphdr *tcph,
460 			    u32 end, u32 win)
461 {
462 	/* SYN-ACK in reply to a SYN
463 	 * or SYN from reply direction in simultaneous open.
464 	 */
465 	sender->td_end =
466 	sender->td_maxend = end;
467 	sender->td_maxwin = (win == 0 ? 1 : win);
468 
469 	tcp_options(skb, dataoff, tcph, sender);
470 	/* RFC 1323:
471 	 * Both sides must send the Window Scale option
472 	 * to enable window scaling in either direction.
473 	 */
474 	if (!(sender->flags & IP_CT_TCP_FLAG_WINDOW_SCALE &&
475 	      receiver->flags & IP_CT_TCP_FLAG_WINDOW_SCALE)) {
476 		sender->td_scale = 0;
477 		receiver->td_scale = 0;
478 	}
479 }
480 
481 __printf(6, 7)
nf_tcp_log_invalid(const struct sk_buff * skb,const struct nf_conn * ct,const struct nf_hook_state * state,const struct ip_ct_tcp_state * sender,enum nf_ct_tcp_action ret,const char * fmt,...)482 static enum nf_ct_tcp_action nf_tcp_log_invalid(const struct sk_buff *skb,
483 						const struct nf_conn *ct,
484 						const struct nf_hook_state *state,
485 						const struct ip_ct_tcp_state *sender,
486 						enum nf_ct_tcp_action ret,
487 						const char *fmt, ...)
488 {
489 	const struct nf_tcp_net *tn = nf_tcp_pernet(nf_ct_net(ct));
490 	struct va_format vaf;
491 	va_list args;
492 	bool be_liberal;
493 
494 	be_liberal = sender->flags & IP_CT_TCP_FLAG_BE_LIBERAL || tn->tcp_be_liberal;
495 	if (be_liberal)
496 		return NFCT_TCP_ACCEPT;
497 
498 	va_start(args, fmt);
499 	vaf.fmt = fmt;
500 	vaf.va = &args;
501 	nf_ct_l4proto_log_invalid(skb, ct, state, "%pV", &vaf);
502 	va_end(args);
503 
504 	return ret;
505 }
506 
507 static enum nf_ct_tcp_action
tcp_in_window(struct nf_conn * ct,enum ip_conntrack_dir dir,unsigned int index,const struct sk_buff * skb,unsigned int dataoff,const struct tcphdr * tcph,const struct nf_hook_state * hook_state)508 tcp_in_window(struct nf_conn *ct, enum ip_conntrack_dir dir,
509 	      unsigned int index, const struct sk_buff *skb,
510 	      unsigned int dataoff, const struct tcphdr *tcph,
511 	      const struct nf_hook_state *hook_state)
512 {
513 	struct ip_ct_tcp *state = &ct->proto.tcp;
514 	struct ip_ct_tcp_state *sender = &state->seen[dir];
515 	struct ip_ct_tcp_state *receiver = &state->seen[!dir];
516 	__u32 seq, ack, sack, end, win, swin;
517 	bool in_recv_win, seq_ok;
518 	s32 receiver_offset;
519 	u16 win_raw;
520 
521 	/*
522 	 * Get the required data from the packet.
523 	 */
524 	seq = ntohl(tcph->seq);
525 	ack = sack = ntohl(tcph->ack_seq);
526 	win_raw = ntohs(tcph->window);
527 	win = win_raw;
528 	end = segment_seq_plus_len(seq, skb->len, dataoff, tcph);
529 
530 	if (receiver->flags & IP_CT_TCP_FLAG_SACK_PERM)
531 		tcp_sack(skb, dataoff, tcph, &sack);
532 
533 	/* Take into account NAT sequence number mangling */
534 	receiver_offset = nf_ct_seq_offset(ct, !dir, ack - 1);
535 	ack -= receiver_offset;
536 	sack -= receiver_offset;
537 
538 	if (sender->td_maxwin == 0) {
539 		/*
540 		 * Initialize sender data.
541 		 */
542 		if (tcph->syn) {
543 			tcp_init_sender(sender, receiver,
544 					skb, dataoff, tcph,
545 					end, win);
546 			if (!tcph->ack)
547 				/* Simultaneous open */
548 				return NFCT_TCP_ACCEPT;
549 		} else {
550 			/*
551 			 * We are in the middle of a connection,
552 			 * its history is lost for us.
553 			 * Let's try to use the data from the packet.
554 			 */
555 			sender->td_end = end;
556 			swin = win << sender->td_scale;
557 			sender->td_maxwin = (swin == 0 ? 1 : swin);
558 			sender->td_maxend = end + sender->td_maxwin;
559 			if (receiver->td_maxwin == 0) {
560 				/* We haven't seen traffic in the other
561 				 * direction yet but we have to tweak window
562 				 * tracking to pass III and IV until that
563 				 * happens.
564 				 */
565 				receiver->td_end = receiver->td_maxend = sack;
566 			} else if (sack == receiver->td_end + 1) {
567 				/* Likely a reply to a keepalive.
568 				 * Needed for III.
569 				 */
570 				receiver->td_end++;
571 			}
572 
573 		}
574 	} else if (tcph->syn &&
575 		   after(end, sender->td_end) &&
576 		   (state->state == TCP_CONNTRACK_SYN_SENT ||
577 		    state->state == TCP_CONNTRACK_SYN_RECV)) {
578 		/*
579 		 * RFC 793: "if a TCP is reinitialized ... then it need
580 		 * not wait at all; it must only be sure to use sequence
581 		 * numbers larger than those recently used."
582 		 *
583 		 * Re-init state for this direction, just like for the first
584 		 * syn(-ack) reply, it might differ in seq, ack or tcp options.
585 		 */
586 		tcp_init_sender(sender, receiver,
587 				skb, dataoff, tcph,
588 				end, win);
589 
590 		if (dir == IP_CT_DIR_REPLY && !tcph->ack)
591 			return NFCT_TCP_ACCEPT;
592 	}
593 
594 	if (!(tcph->ack)) {
595 		/*
596 		 * If there is no ACK, just pretend it was set and OK.
597 		 */
598 		ack = sack = receiver->td_end;
599 	} else if (((tcp_flag_word(tcph) & (TCP_FLAG_ACK|TCP_FLAG_RST)) ==
600 		    (TCP_FLAG_ACK|TCP_FLAG_RST))
601 		   && (ack == 0)) {
602 		/*
603 		 * Broken TCP stacks, that set ACK in RST packets as well
604 		 * with zero ack value.
605 		 */
606 		ack = sack = receiver->td_end;
607 	}
608 
609 	if (tcph->rst && seq == 0 && state->state == TCP_CONNTRACK_SYN_SENT)
610 		/*
611 		 * RST sent answering SYN.
612 		 */
613 		seq = end = sender->td_end;
614 
615 	seq_ok = before(seq, sender->td_maxend + 1);
616 	if (!seq_ok) {
617 		u32 overshot = end - sender->td_maxend + 1;
618 		bool ack_ok;
619 
620 		ack_ok = after(sack, receiver->td_end - MAXACKWINDOW(sender) - 1);
621 		in_recv_win = receiver->td_maxwin &&
622 			      after(end, sender->td_end - receiver->td_maxwin - 1);
623 
624 		if (in_recv_win &&
625 		    ack_ok &&
626 		    overshot <= receiver->td_maxwin &&
627 		    before(sack, receiver->td_end + 1)) {
628 			/* Work around TCPs that send more bytes than allowed by
629 			 * the receive window.
630 			 *
631 			 * If the (marked as invalid) packet is allowed to pass by
632 			 * the ruleset and the peer acks this data, then its possible
633 			 * all future packets will trigger 'ACK is over upper bound' check.
634 			 *
635 			 * Thus if only the sequence check fails then do update td_end so
636 			 * possible ACK for this data can update internal state.
637 			 */
638 			sender->td_end = end;
639 			sender->flags |= IP_CT_TCP_FLAG_DATA_UNACKNOWLEDGED;
640 
641 			return nf_tcp_log_invalid(skb, ct, hook_state, sender, NFCT_TCP_IGNORE,
642 						  "%u bytes more than expected", overshot);
643 		}
644 
645 		return nf_tcp_log_invalid(skb, ct, hook_state, sender, NFCT_TCP_INVALID,
646 					  "SEQ is over upper bound %u (over the window of the receiver)",
647 					  sender->td_maxend + 1);
648 	}
649 
650 	if (!before(sack, receiver->td_end + 1))
651 		return nf_tcp_log_invalid(skb, ct, hook_state, sender, NFCT_TCP_INVALID,
652 					  "ACK is over upper bound %u (ACKed data not seen yet)",
653 					  receiver->td_end + 1);
654 
655 	/* Is the ending sequence in the receive window (if available)? */
656 	in_recv_win = !receiver->td_maxwin ||
657 		      after(end, sender->td_end - receiver->td_maxwin - 1);
658 	if (!in_recv_win)
659 		return nf_tcp_log_invalid(skb, ct, hook_state, sender, NFCT_TCP_IGNORE,
660 					  "SEQ is under lower bound %u (already ACKed data retransmitted)",
661 					  sender->td_end - receiver->td_maxwin - 1);
662 	if (!after(sack, receiver->td_end - MAXACKWINDOW(sender) - 1))
663 		return nf_tcp_log_invalid(skb, ct, hook_state, sender, NFCT_TCP_IGNORE,
664 					  "ignored ACK under lower bound %u (possible overly delayed)",
665 					  receiver->td_end - MAXACKWINDOW(sender) - 1);
666 
667 	/* Take into account window scaling (RFC 1323). */
668 	if (!tcph->syn)
669 		win <<= sender->td_scale;
670 
671 	/* Update sender data. */
672 	swin = win + (sack - ack);
673 	if (sender->td_maxwin < swin)
674 		sender->td_maxwin = swin;
675 	if (after(end, sender->td_end)) {
676 		sender->td_end = end;
677 		sender->flags |= IP_CT_TCP_FLAG_DATA_UNACKNOWLEDGED;
678 	}
679 	if (tcph->ack) {
680 		if (!(sender->flags & IP_CT_TCP_FLAG_MAXACK_SET)) {
681 			sender->td_maxack = ack;
682 			sender->flags |= IP_CT_TCP_FLAG_MAXACK_SET;
683 		} else if (after(ack, sender->td_maxack)) {
684 			sender->td_maxack = ack;
685 		}
686 	}
687 
688 	/* Update receiver data. */
689 	if (receiver->td_maxwin != 0 && after(end, sender->td_maxend))
690 		receiver->td_maxwin += end - sender->td_maxend;
691 	if (after(sack + win, receiver->td_maxend - 1)) {
692 		receiver->td_maxend = sack + win;
693 		if (win == 0)
694 			receiver->td_maxend++;
695 	}
696 	if (ack == receiver->td_end)
697 		receiver->flags &= ~IP_CT_TCP_FLAG_DATA_UNACKNOWLEDGED;
698 
699 	/* Check retransmissions. */
700 	if (index == TCP_ACK_SET) {
701 		if (state->last_dir == dir &&
702 		    state->last_seq == seq &&
703 		    state->last_ack == ack &&
704 		    state->last_end == end &&
705 		    state->last_win == win_raw) {
706 			state->retrans++;
707 		} else {
708 			state->last_dir = dir;
709 			state->last_seq = seq;
710 			state->last_ack = ack;
711 			state->last_end = end;
712 			state->last_win = win_raw;
713 			state->retrans = 0;
714 		}
715 	}
716 
717 	return NFCT_TCP_ACCEPT;
718 }
719 
nf_tcp_handle_invalid(struct nf_conn * ct,enum ip_conntrack_dir dir,int index,const struct sk_buff * skb,const struct nf_hook_state * hook_state)720 static void __cold nf_tcp_handle_invalid(struct nf_conn *ct,
721 					 enum ip_conntrack_dir dir,
722 					 int index,
723 					 const struct sk_buff *skb,
724 					 const struct nf_hook_state *hook_state)
725 {
726 	const unsigned int *timeouts;
727 	const struct nf_tcp_net *tn;
728 	unsigned int timeout;
729 	u32 expires;
730 
731 	if (!test_bit(IPS_ASSURED_BIT, &ct->status) ||
732 	    test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
733 		return;
734 
735 	/* We don't want to have connections hanging around in ESTABLISHED
736 	 * state for long time 'just because' conntrack deemed a FIN/RST
737 	 * out-of-window.
738 	 *
739 	 * Shrink the timeout just like when there is unacked data.
740 	 * This speeds up eviction of 'dead' connections where the
741 	 * connection and conntracks internal state are out of sync.
742 	 */
743 	switch (index) {
744 	case TCP_RST_SET:
745 	case TCP_FIN_SET:
746 		break;
747 	default:
748 		return;
749 	}
750 
751 	if (ct->proto.tcp.last_dir != dir &&
752 	    (ct->proto.tcp.last_index == TCP_FIN_SET ||
753 	     ct->proto.tcp.last_index == TCP_RST_SET)) {
754 		expires = nf_ct_expires(ct);
755 		if (expires < 120 * HZ)
756 			return;
757 
758 		tn = nf_tcp_pernet(nf_ct_net(ct));
759 		timeouts = nf_ct_timeout_lookup(ct);
760 		if (!timeouts)
761 			timeouts = tn->timeouts;
762 
763 		timeout = READ_ONCE(timeouts[TCP_CONNTRACK_UNACK]);
764 		if (expires > timeout) {
765 			nf_ct_l4proto_log_invalid(skb, ct, hook_state,
766 					  "packet (index %d, dir %d) response for index %d lower timeout to %u",
767 					  index, dir, ct->proto.tcp.last_index, timeout);
768 
769 			WRITE_ONCE(ct->timeout, timeout + nfct_time_stamp);
770 		}
771 	} else {
772 		ct->proto.tcp.last_index = index;
773 		ct->proto.tcp.last_dir = dir;
774 	}
775 }
776 
777 /* table of valid flag combinations - PUSH, ECE and CWR are always valid */
778 static const u8 tcp_valid_flags[(TCPHDR_FIN|TCPHDR_SYN|TCPHDR_RST|TCPHDR_ACK|
779 				 TCPHDR_URG) + 1] =
780 {
781 	[TCPHDR_SYN]				= 1,
782 	[TCPHDR_SYN|TCPHDR_URG]			= 1,
783 	[TCPHDR_SYN|TCPHDR_ACK]			= 1,
784 	[TCPHDR_RST]				= 1,
785 	[TCPHDR_RST|TCPHDR_ACK]			= 1,
786 	[TCPHDR_FIN|TCPHDR_ACK]			= 1,
787 	[TCPHDR_FIN|TCPHDR_ACK|TCPHDR_URG]	= 1,
788 	[TCPHDR_ACK]				= 1,
789 	[TCPHDR_ACK|TCPHDR_URG]			= 1,
790 };
791 
tcp_error_log(const struct sk_buff * skb,const struct nf_hook_state * state,const char * msg)792 static void tcp_error_log(const struct sk_buff *skb,
793 			  const struct nf_hook_state *state,
794 			  const char *msg)
795 {
796 	nf_l4proto_log_invalid(skb, state, IPPROTO_TCP, "%s", msg);
797 }
798 
799 /* Protect conntrack agaist broken packets. Code taken from ipt_unclean.c.  */
tcp_error(const struct tcphdr * th,struct sk_buff * skb,unsigned int dataoff,const struct nf_hook_state * state)800 static bool tcp_error(const struct tcphdr *th,
801 		      struct sk_buff *skb,
802 		      unsigned int dataoff,
803 		      const struct nf_hook_state *state)
804 {
805 	unsigned int tcplen = skb->len - dataoff;
806 	u8 tcpflags;
807 
808 	/* Not whole TCP header or malformed packet */
809 	if (th->doff*4 < sizeof(struct tcphdr) || tcplen < th->doff*4) {
810 		tcp_error_log(skb, state, "truncated packet");
811 		return true;
812 	}
813 
814 	/* Checksum invalid? Ignore.
815 	 * We skip checking packets on the outgoing path
816 	 * because the checksum is assumed to be correct.
817 	 */
818 	/* FIXME: Source route IP option packets --RR */
819 	if (state->net->ct.sysctl_checksum &&
820 	    state->hook == NF_INET_PRE_ROUTING &&
821 	    nf_checksum(skb, state->hook, dataoff, IPPROTO_TCP, state->pf)) {
822 		tcp_error_log(skb, state, "bad checksum");
823 		return true;
824 	}
825 
826 	/* Check TCP flags. */
827 	tcpflags = (tcp_flag_byte(th) & ~(TCPHDR_ECE|TCPHDR_CWR|TCPHDR_PSH));
828 	if (!tcp_valid_flags[tcpflags]) {
829 		tcp_error_log(skb, state, "invalid tcp flag combination");
830 		return true;
831 	}
832 
833 	return false;
834 }
835 
tcp_new(struct nf_conn * ct,const struct sk_buff * skb,unsigned int dataoff,const struct tcphdr * th)836 static noinline bool tcp_new(struct nf_conn *ct, const struct sk_buff *skb,
837 			     unsigned int dataoff,
838 			     const struct tcphdr *th)
839 {
840 	enum tcp_conntrack new_state;
841 	struct net *net = nf_ct_net(ct);
842 	const struct nf_tcp_net *tn = nf_tcp_pernet(net);
843 
844 	/* Don't need lock here: this conntrack not in circulation yet */
845 	new_state = tcp_conntracks[0][get_conntrack_index(th)][TCP_CONNTRACK_NONE];
846 
847 	/* Invalid: delete conntrack */
848 	if (new_state >= TCP_CONNTRACK_MAX) {
849 		pr_debug("nf_ct_tcp: invalid new deleting.\n");
850 		return false;
851 	}
852 
853 	if (new_state == TCP_CONNTRACK_SYN_SENT) {
854 		memset(&ct->proto.tcp, 0, sizeof(ct->proto.tcp));
855 		/* SYN packet */
856 		ct->proto.tcp.seen[0].td_end =
857 			segment_seq_plus_len(ntohl(th->seq), skb->len,
858 					     dataoff, th);
859 		ct->proto.tcp.seen[0].td_maxwin = ntohs(th->window);
860 		if (ct->proto.tcp.seen[0].td_maxwin == 0)
861 			ct->proto.tcp.seen[0].td_maxwin = 1;
862 		ct->proto.tcp.seen[0].td_maxend =
863 			ct->proto.tcp.seen[0].td_end;
864 
865 		tcp_options(skb, dataoff, th, &ct->proto.tcp.seen[0]);
866 	} else if (tn->tcp_loose == 0) {
867 		/* Don't try to pick up connections. */
868 		return false;
869 	} else {
870 		memset(&ct->proto.tcp, 0, sizeof(ct->proto.tcp));
871 		/*
872 		 * We are in the middle of a connection,
873 		 * its history is lost for us.
874 		 * Let's try to use the data from the packet.
875 		 */
876 		ct->proto.tcp.seen[0].td_end =
877 			segment_seq_plus_len(ntohl(th->seq), skb->len,
878 					     dataoff, th);
879 		ct->proto.tcp.seen[0].td_maxwin = ntohs(th->window);
880 		if (ct->proto.tcp.seen[0].td_maxwin == 0)
881 			ct->proto.tcp.seen[0].td_maxwin = 1;
882 		ct->proto.tcp.seen[0].td_maxend =
883 			ct->proto.tcp.seen[0].td_end +
884 			ct->proto.tcp.seen[0].td_maxwin;
885 
886 		/* We assume SACK and liberal window checking to handle
887 		 * window scaling */
888 		ct->proto.tcp.seen[0].flags =
889 		ct->proto.tcp.seen[1].flags = IP_CT_TCP_FLAG_SACK_PERM |
890 					      IP_CT_TCP_FLAG_BE_LIBERAL;
891 	}
892 
893 	/* tcp_packet will set them */
894 	ct->proto.tcp.last_index = TCP_NONE_SET;
895 	return true;
896 }
897 
tcp_can_early_drop(const struct nf_conn * ct)898 static bool tcp_can_early_drop(const struct nf_conn *ct)
899 {
900 	switch (ct->proto.tcp.state) {
901 	case TCP_CONNTRACK_FIN_WAIT:
902 	case TCP_CONNTRACK_LAST_ACK:
903 	case TCP_CONNTRACK_TIME_WAIT:
904 	case TCP_CONNTRACK_CLOSE:
905 	case TCP_CONNTRACK_CLOSE_WAIT:
906 		return true;
907 	default:
908 		break;
909 	}
910 
911 	return false;
912 }
913 
nf_ct_tcp_state_reset(struct ip_ct_tcp_state * state)914 static void nf_ct_tcp_state_reset(struct ip_ct_tcp_state *state)
915 {
916 	state->td_end		= 0;
917 	state->td_maxend	= 0;
918 	state->td_maxwin	= 0;
919 	state->td_maxack	= 0;
920 	state->td_scale		= 0;
921 	state->flags		&= IP_CT_TCP_FLAG_BE_LIBERAL;
922 }
923 
924 /* Returns verdict for packet, or -1 for invalid. */
nf_conntrack_tcp_packet(struct nf_conn * ct,struct sk_buff * skb,unsigned int dataoff,enum ip_conntrack_info ctinfo,const struct nf_hook_state * state)925 int nf_conntrack_tcp_packet(struct nf_conn *ct,
926 			    struct sk_buff *skb,
927 			    unsigned int dataoff,
928 			    enum ip_conntrack_info ctinfo,
929 			    const struct nf_hook_state *state)
930 {
931 	struct net *net = nf_ct_net(ct);
932 	struct nf_tcp_net *tn = nf_tcp_pernet(net);
933 	struct nf_conntrack_tuple *tuple;
934 	enum tcp_conntrack new_state, old_state;
935 	unsigned int index, *timeouts;
936 	enum nf_ct_tcp_action res;
937 	enum ip_conntrack_dir dir;
938 	const struct tcphdr *th;
939 	struct tcphdr _tcph;
940 	unsigned long timeout;
941 
942 	th = skb_header_pointer(skb, dataoff, sizeof(_tcph), &_tcph);
943 	if (th == NULL)
944 		return -NF_ACCEPT;
945 
946 	if (tcp_error(th, skb, dataoff, state))
947 		return -NF_ACCEPT;
948 
949 	if (!nf_ct_is_confirmed(ct) && !tcp_new(ct, skb, dataoff, th))
950 		return -NF_ACCEPT;
951 
952 	spin_lock_bh(&ct->lock);
953 	old_state = ct->proto.tcp.state;
954 	dir = CTINFO2DIR(ctinfo);
955 	index = get_conntrack_index(th);
956 	new_state = tcp_conntracks[dir][index][old_state];
957 	tuple = &ct->tuplehash[dir].tuple;
958 
959 	switch (new_state) {
960 	case TCP_CONNTRACK_SYN_SENT:
961 		if (old_state < TCP_CONNTRACK_TIME_WAIT)
962 			break;
963 		/* RFC 1122: "When a connection is closed actively,
964 		 * it MUST linger in TIME-WAIT state for a time 2xMSL
965 		 * (Maximum Segment Lifetime). However, it MAY accept
966 		 * a new SYN from the remote TCP to reopen the connection
967 		 * directly from TIME-WAIT state, if..."
968 		 * We ignore the conditions because we are in the
969 		 * TIME-WAIT state anyway.
970 		 *
971 		 * Handle aborted connections: we and the server
972 		 * think there is an existing connection but the client
973 		 * aborts it and starts a new one.
974 		 */
975 		if (((ct->proto.tcp.seen[dir].flags
976 		      | ct->proto.tcp.seen[!dir].flags)
977 		     & IP_CT_TCP_FLAG_CLOSE_INIT)
978 		    || (ct->proto.tcp.last_dir == dir
979 		        && ct->proto.tcp.last_index == TCP_RST_SET)) {
980 			/* Attempt to reopen a closed/aborted connection.
981 			 * Delete this connection and look up again. */
982 			spin_unlock_bh(&ct->lock);
983 
984 			/* Only repeat if we can actually remove the timer.
985 			 * Destruction may already be in progress in process
986 			 * context and we must give it a chance to terminate.
987 			 */
988 			if (nf_ct_kill(ct))
989 				return -NF_REPEAT;
990 			return NF_DROP;
991 		}
992 		fallthrough;
993 	case TCP_CONNTRACK_IGNORE:
994 		/* Ignored packets:
995 		 *
996 		 * Our connection entry may be out of sync, so ignore
997 		 * packets which may signal the real connection between
998 		 * the client and the server.
999 		 *
1000 		 * a) SYN in ORIGINAL
1001 		 * b) SYN/ACK in REPLY
1002 		 * c) ACK in reply direction after initial SYN in original.
1003 		 *
1004 		 * If the ignored packet is invalid, the receiver will send
1005 		 * a RST we'll catch below.
1006 		 */
1007 		if (index == TCP_SYNACK_SET
1008 		    && ct->proto.tcp.last_index == TCP_SYN_SET
1009 		    && ct->proto.tcp.last_dir != dir
1010 		    && ntohl(th->ack_seq) == ct->proto.tcp.last_end) {
1011 			/* b) This SYN/ACK acknowledges a SYN that we earlier
1012 			 * ignored as invalid. This means that the client and
1013 			 * the server are both in sync, while the firewall is
1014 			 * not. We get in sync from the previously annotated
1015 			 * values.
1016 			 */
1017 			old_state = TCP_CONNTRACK_SYN_SENT;
1018 			new_state = TCP_CONNTRACK_SYN_RECV;
1019 			ct->proto.tcp.seen[ct->proto.tcp.last_dir].td_end =
1020 				ct->proto.tcp.last_end;
1021 			ct->proto.tcp.seen[ct->proto.tcp.last_dir].td_maxend =
1022 				ct->proto.tcp.last_end;
1023 			ct->proto.tcp.seen[ct->proto.tcp.last_dir].td_maxwin =
1024 				ct->proto.tcp.last_win == 0 ?
1025 					1 : ct->proto.tcp.last_win;
1026 			ct->proto.tcp.seen[ct->proto.tcp.last_dir].td_scale =
1027 				ct->proto.tcp.last_wscale;
1028 			ct->proto.tcp.last_flags &= ~IP_CT_EXP_CHALLENGE_ACK;
1029 			ct->proto.tcp.seen[ct->proto.tcp.last_dir].flags =
1030 				ct->proto.tcp.last_flags;
1031 			nf_ct_tcp_state_reset(&ct->proto.tcp.seen[dir]);
1032 			break;
1033 		}
1034 		ct->proto.tcp.last_index = index;
1035 		ct->proto.tcp.last_dir = dir;
1036 		ct->proto.tcp.last_seq = ntohl(th->seq);
1037 		ct->proto.tcp.last_end =
1038 		    segment_seq_plus_len(ntohl(th->seq), skb->len, dataoff, th);
1039 		ct->proto.tcp.last_win = ntohs(th->window);
1040 
1041 		/* a) This is a SYN in ORIGINAL. The client and the server
1042 		 * may be in sync but we are not. In that case, we annotate
1043 		 * the TCP options and let the packet go through. If it is a
1044 		 * valid SYN packet, the server will reply with a SYN/ACK, and
1045 		 * then we'll get in sync. Otherwise, the server potentially
1046 		 * responds with a challenge ACK if implementing RFC5961.
1047 		 */
1048 		if (index == TCP_SYN_SET && dir == IP_CT_DIR_ORIGINAL) {
1049 			struct ip_ct_tcp_state seen = {};
1050 
1051 			ct->proto.tcp.last_flags =
1052 			ct->proto.tcp.last_wscale = 0;
1053 			tcp_options(skb, dataoff, th, &seen);
1054 			if (seen.flags & IP_CT_TCP_FLAG_WINDOW_SCALE) {
1055 				ct->proto.tcp.last_flags |=
1056 					IP_CT_TCP_FLAG_WINDOW_SCALE;
1057 				ct->proto.tcp.last_wscale = seen.td_scale;
1058 			}
1059 			if (seen.flags & IP_CT_TCP_FLAG_SACK_PERM) {
1060 				ct->proto.tcp.last_flags |=
1061 					IP_CT_TCP_FLAG_SACK_PERM;
1062 			}
1063 			/* Mark the potential for RFC5961 challenge ACK,
1064 			 * this pose a special problem for LAST_ACK state
1065 			 * as ACK is intrepretated as ACKing last FIN.
1066 			 */
1067 			if (old_state == TCP_CONNTRACK_LAST_ACK)
1068 				ct->proto.tcp.last_flags |=
1069 					IP_CT_EXP_CHALLENGE_ACK;
1070 		}
1071 
1072 		/* possible challenge ack reply to syn */
1073 		if (old_state == TCP_CONNTRACK_SYN_SENT &&
1074 		    index == TCP_ACK_SET &&
1075 		    dir == IP_CT_DIR_REPLY)
1076 			ct->proto.tcp.last_ack = ntohl(th->ack_seq);
1077 
1078 		spin_unlock_bh(&ct->lock);
1079 		nf_ct_l4proto_log_invalid(skb, ct, state,
1080 					  "packet (index %d) in dir %d ignored, state %s",
1081 					  index, dir,
1082 					  tcp_conntrack_names[old_state]);
1083 		return NF_ACCEPT;
1084 	case TCP_CONNTRACK_MAX:
1085 		/* Special case for SYN proxy: when the SYN to the server or
1086 		 * the SYN/ACK from the server is lost, the client may transmit
1087 		 * a keep-alive packet while in SYN_SENT state. This needs to
1088 		 * be associated with the original conntrack entry in order to
1089 		 * generate a new SYN with the correct sequence number.
1090 		 */
1091 		if (nfct_synproxy(ct) && old_state == TCP_CONNTRACK_SYN_SENT &&
1092 		    index == TCP_ACK_SET && dir == IP_CT_DIR_ORIGINAL &&
1093 		    ct->proto.tcp.last_dir == IP_CT_DIR_ORIGINAL &&
1094 		    ct->proto.tcp.seen[dir].td_end - 1 == ntohl(th->seq)) {
1095 			pr_debug("nf_ct_tcp: SYN proxy client keep alive\n");
1096 			spin_unlock_bh(&ct->lock);
1097 			return NF_ACCEPT;
1098 		}
1099 
1100 		/* Invalid packet */
1101 		spin_unlock_bh(&ct->lock);
1102 		nf_ct_l4proto_log_invalid(skb, ct, state,
1103 					  "packet (index %d) in dir %d invalid, state %s",
1104 					  index, dir,
1105 					  tcp_conntrack_names[old_state]);
1106 		return -NF_ACCEPT;
1107 	case TCP_CONNTRACK_TIME_WAIT:
1108 		/* RFC5961 compliance cause stack to send "challenge-ACK"
1109 		 * e.g. in response to spurious SYNs.  Conntrack MUST
1110 		 * not believe this ACK is acking last FIN.
1111 		 */
1112 		if (old_state == TCP_CONNTRACK_LAST_ACK &&
1113 		    index == TCP_ACK_SET &&
1114 		    ct->proto.tcp.last_dir != dir &&
1115 		    ct->proto.tcp.last_index == TCP_SYN_SET &&
1116 		    (ct->proto.tcp.last_flags & IP_CT_EXP_CHALLENGE_ACK)) {
1117 			/* Detected RFC5961 challenge ACK */
1118 			ct->proto.tcp.last_flags &= ~IP_CT_EXP_CHALLENGE_ACK;
1119 			spin_unlock_bh(&ct->lock);
1120 			nf_ct_l4proto_log_invalid(skb, ct, state, "challenge-ack ignored");
1121 			return NF_ACCEPT; /* Don't change state */
1122 		}
1123 		break;
1124 	case TCP_CONNTRACK_SYN_SENT2:
1125 		/* tcp_conntracks table is not smart enough to handle
1126 		 * simultaneous open.
1127 		 */
1128 		ct->proto.tcp.last_flags |= IP_CT_TCP_SIMULTANEOUS_OPEN;
1129 		break;
1130 	case TCP_CONNTRACK_SYN_RECV:
1131 		if (dir == IP_CT_DIR_REPLY && index == TCP_ACK_SET &&
1132 		    ct->proto.tcp.last_flags & IP_CT_TCP_SIMULTANEOUS_OPEN)
1133 			new_state = TCP_CONNTRACK_ESTABLISHED;
1134 		break;
1135 	case TCP_CONNTRACK_CLOSE:
1136 		if (index != TCP_RST_SET)
1137 			break;
1138 
1139 		/* If we are closing, tuple might have been re-used already.
1140 		 * last_index, last_ack, and all other ct fields used for
1141 		 * sequence/window validation are outdated in that case.
1142 		 *
1143 		 * As the conntrack can already be expired by GC under pressure,
1144 		 * just skip validation checks.
1145 		 */
1146 		if (tcp_can_early_drop(ct))
1147 			goto in_window;
1148 
1149 		/* td_maxack might be outdated if we let a SYN through earlier */
1150 		if ((ct->proto.tcp.seen[!dir].flags & IP_CT_TCP_FLAG_MAXACK_SET) &&
1151 		    ct->proto.tcp.last_index != TCP_SYN_SET) {
1152 			u32 seq = ntohl(th->seq);
1153 
1154 			/* If we are not in established state and SEQ=0 this is most
1155 			 * likely an answer to a SYN we let go through above (last_index
1156 			 * can be updated due to out-of-order ACKs).
1157 			 */
1158 			if (seq == 0 && !nf_conntrack_tcp_established(ct))
1159 				break;
1160 
1161 			if (before(seq, ct->proto.tcp.seen[!dir].td_maxack) &&
1162 			    !tn->tcp_ignore_invalid_rst) {
1163 				/* Invalid RST  */
1164 				spin_unlock_bh(&ct->lock);
1165 				nf_ct_l4proto_log_invalid(skb, ct, state, "invalid rst");
1166 				return -NF_ACCEPT;
1167 			}
1168 
1169 			if (!nf_conntrack_tcp_established(ct) ||
1170 			    seq == ct->proto.tcp.seen[!dir].td_maxack)
1171 				break;
1172 
1173 			/* Check if rst is part of train, such as
1174 			 *   foo:80 > bar:4379: P, 235946583:235946602(19) ack 42
1175 			 *   foo:80 > bar:4379: R, 235946602:235946602(0)  ack 42
1176 			 */
1177 			if (ct->proto.tcp.last_index == TCP_ACK_SET &&
1178 			    ct->proto.tcp.last_dir == dir &&
1179 			    seq == ct->proto.tcp.last_end)
1180 				break;
1181 
1182 			/* ... RST sequence number doesn't match exactly, keep
1183 			 * established state to allow a possible challenge ACK.
1184 			 */
1185 			new_state = old_state;
1186 		}
1187 		if (((test_bit(IPS_SEEN_REPLY_BIT, &ct->status)
1188 			 && ct->proto.tcp.last_index == TCP_SYN_SET)
1189 			|| (!test_bit(IPS_ASSURED_BIT, &ct->status)
1190 			    && ct->proto.tcp.last_index == TCP_ACK_SET))
1191 		    && ntohl(th->ack_seq) == ct->proto.tcp.last_end) {
1192 			/* RST sent to invalid SYN or ACK we had let through
1193 			 * at a) and c) above:
1194 			 *
1195 			 * a) SYN was in window then
1196 			 * c) we hold a half-open connection.
1197 			 *
1198 			 * Delete our connection entry.
1199 			 * We skip window checking, because packet might ACK
1200 			 * segments we ignored. */
1201 			goto in_window;
1202 		}
1203 
1204 		/* Reset in response to a challenge-ack we let through earlier */
1205 		if (old_state == TCP_CONNTRACK_SYN_SENT &&
1206 		    ct->proto.tcp.last_index == TCP_ACK_SET &&
1207 		    ct->proto.tcp.last_dir == IP_CT_DIR_REPLY &&
1208 		    ntohl(th->seq) == ct->proto.tcp.last_ack)
1209 			goto in_window;
1210 
1211 		break;
1212 	default:
1213 		/* Keep compilers happy. */
1214 		break;
1215 	}
1216 
1217 	res = tcp_in_window(ct, dir, index,
1218 			    skb, dataoff, th, state);
1219 	switch (res) {
1220 	case NFCT_TCP_IGNORE:
1221 		spin_unlock_bh(&ct->lock);
1222 		return NF_ACCEPT;
1223 	case NFCT_TCP_INVALID:
1224 		nf_tcp_handle_invalid(ct, dir, index, skb, state);
1225 		spin_unlock_bh(&ct->lock);
1226 		return -NF_ACCEPT;
1227 	case NFCT_TCP_ACCEPT:
1228 		break;
1229 	}
1230      in_window:
1231 	/* From now on we have got in-window packets */
1232 	ct->proto.tcp.last_index = index;
1233 	ct->proto.tcp.last_dir = dir;
1234 
1235 	pr_debug("tcp_conntracks: ");
1236 	nf_ct_dump_tuple(tuple);
1237 	pr_debug("syn=%i ack=%i fin=%i rst=%i old=%i new=%i\n",
1238 		 (th->syn ? 1 : 0), (th->ack ? 1 : 0),
1239 		 (th->fin ? 1 : 0), (th->rst ? 1 : 0),
1240 		 old_state, new_state);
1241 
1242 	ct->proto.tcp.state = new_state;
1243 	if (old_state != new_state
1244 	    && new_state == TCP_CONNTRACK_FIN_WAIT)
1245 		ct->proto.tcp.seen[dir].flags |= IP_CT_TCP_FLAG_CLOSE_INIT;
1246 
1247 	timeouts = nf_ct_timeout_lookup(ct);
1248 	if (!timeouts)
1249 		timeouts = tn->timeouts;
1250 
1251 	if (ct->proto.tcp.retrans >= tn->tcp_max_retrans &&
1252 	    timeouts[new_state] > timeouts[TCP_CONNTRACK_RETRANS])
1253 		timeout = timeouts[TCP_CONNTRACK_RETRANS];
1254 	else if (unlikely(index == TCP_RST_SET))
1255 		timeout = timeouts[TCP_CONNTRACK_CLOSE];
1256 	else if ((ct->proto.tcp.seen[0].flags | ct->proto.tcp.seen[1].flags) &
1257 		 IP_CT_TCP_FLAG_DATA_UNACKNOWLEDGED &&
1258 		 timeouts[new_state] > timeouts[TCP_CONNTRACK_UNACK])
1259 		timeout = timeouts[TCP_CONNTRACK_UNACK];
1260 	else if (ct->proto.tcp.last_win == 0 &&
1261 		 timeouts[new_state] > timeouts[TCP_CONNTRACK_RETRANS])
1262 		timeout = timeouts[TCP_CONNTRACK_RETRANS];
1263 	else
1264 		timeout = timeouts[new_state];
1265 	spin_unlock_bh(&ct->lock);
1266 
1267 	if (new_state != old_state)
1268 		nf_conntrack_event_cache(IPCT_PROTOINFO, ct);
1269 
1270 	if (!test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1271 		/* If only reply is a RST, we can consider ourselves not to
1272 		   have an established connection: this is a fairly common
1273 		   problem case, so we can delete the conntrack
1274 		   immediately.  --RR */
1275 		if (th->rst) {
1276 			nf_ct_kill_acct(ct, ctinfo, skb);
1277 			return NF_ACCEPT;
1278 		}
1279 
1280 		if (index == TCP_SYN_SET && old_state == TCP_CONNTRACK_SYN_SENT) {
1281 			/* do not renew timeout on SYN retransmit.
1282 			 *
1283 			 * Else port reuse by client or NAT middlebox can keep
1284 			 * entry alive indefinitely (including nat info).
1285 			 */
1286 			return NF_ACCEPT;
1287 		}
1288 
1289 		/* ESTABLISHED without SEEN_REPLY, i.e. mid-connection
1290 		 * pickup with loose=1. Avoid large ESTABLISHED timeout.
1291 		 */
1292 		if (new_state == TCP_CONNTRACK_ESTABLISHED &&
1293 		    timeout > timeouts[TCP_CONNTRACK_UNACK])
1294 			timeout = timeouts[TCP_CONNTRACK_UNACK];
1295 	} else if (!test_bit(IPS_ASSURED_BIT, &ct->status)
1296 		   && (old_state == TCP_CONNTRACK_SYN_RECV
1297 		       || old_state == TCP_CONNTRACK_ESTABLISHED)
1298 		   && new_state == TCP_CONNTRACK_ESTABLISHED) {
1299 		/* Set ASSURED if we see valid ack in ESTABLISHED
1300 		   after SYN_RECV or a valid answer for a picked up
1301 		   connection. */
1302 		set_bit(IPS_ASSURED_BIT, &ct->status);
1303 		nf_conntrack_event_cache(IPCT_ASSURED, ct);
1304 	}
1305 	nf_ct_refresh_acct(ct, ctinfo, skb, timeout);
1306 
1307 	return NF_ACCEPT;
1308 }
1309 
1310 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1311 
1312 #include <linux/netfilter/nfnetlink.h>
1313 #include <linux/netfilter/nfnetlink_conntrack.h>
1314 
tcp_to_nlattr(struct sk_buff * skb,struct nlattr * nla,struct nf_conn * ct,bool destroy)1315 static int tcp_to_nlattr(struct sk_buff *skb, struct nlattr *nla,
1316 			 struct nf_conn *ct, bool destroy)
1317 {
1318 	struct nlattr *nest_parms;
1319 	struct nf_ct_tcp_flags tmp = {};
1320 
1321 	spin_lock_bh(&ct->lock);
1322 	nest_parms = nla_nest_start(skb, CTA_PROTOINFO_TCP);
1323 	if (!nest_parms)
1324 		goto nla_put_failure;
1325 
1326 	if (nla_put_u8(skb, CTA_PROTOINFO_TCP_STATE, ct->proto.tcp.state))
1327 		goto nla_put_failure;
1328 
1329 	if (destroy)
1330 		goto skip_state;
1331 
1332 	if (nla_put_u8(skb, CTA_PROTOINFO_TCP_WSCALE_ORIGINAL,
1333 		       ct->proto.tcp.seen[0].td_scale) ||
1334 	    nla_put_u8(skb, CTA_PROTOINFO_TCP_WSCALE_REPLY,
1335 		       ct->proto.tcp.seen[1].td_scale))
1336 		goto nla_put_failure;
1337 
1338 	tmp.flags = ct->proto.tcp.seen[0].flags;
1339 	if (nla_put(skb, CTA_PROTOINFO_TCP_FLAGS_ORIGINAL,
1340 		    sizeof(struct nf_ct_tcp_flags), &tmp))
1341 		goto nla_put_failure;
1342 
1343 	tmp.flags = ct->proto.tcp.seen[1].flags;
1344 	if (nla_put(skb, CTA_PROTOINFO_TCP_FLAGS_REPLY,
1345 		    sizeof(struct nf_ct_tcp_flags), &tmp))
1346 		goto nla_put_failure;
1347 skip_state:
1348 	spin_unlock_bh(&ct->lock);
1349 	nla_nest_end(skb, nest_parms);
1350 
1351 	return 0;
1352 
1353 nla_put_failure:
1354 	spin_unlock_bh(&ct->lock);
1355 	return -1;
1356 }
1357 
1358 static const struct nla_policy tcp_nla_policy[CTA_PROTOINFO_TCP_MAX+1] = {
1359 	[CTA_PROTOINFO_TCP_STATE]	    = { .type = NLA_U8 },
1360 	[CTA_PROTOINFO_TCP_WSCALE_ORIGINAL] = { .type = NLA_U8 },
1361 	[CTA_PROTOINFO_TCP_WSCALE_REPLY]    = { .type = NLA_U8 },
1362 	[CTA_PROTOINFO_TCP_FLAGS_ORIGINAL]  = { .len = sizeof(struct nf_ct_tcp_flags) },
1363 	[CTA_PROTOINFO_TCP_FLAGS_REPLY]	    = { .len = sizeof(struct nf_ct_tcp_flags) },
1364 };
1365 
1366 #define TCP_NLATTR_SIZE	( \
1367 	NLA_ALIGN(NLA_HDRLEN + 1) + \
1368 	NLA_ALIGN(NLA_HDRLEN + 1) + \
1369 	NLA_ALIGN(NLA_HDRLEN + sizeof(struct nf_ct_tcp_flags)) + \
1370 	NLA_ALIGN(NLA_HDRLEN + sizeof(struct nf_ct_tcp_flags)))
1371 
nlattr_to_tcp(struct nlattr * cda[],struct nf_conn * ct)1372 static int nlattr_to_tcp(struct nlattr *cda[], struct nf_conn *ct)
1373 {
1374 	struct nlattr *pattr = cda[CTA_PROTOINFO_TCP];
1375 	struct nlattr *tb[CTA_PROTOINFO_TCP_MAX+1];
1376 	int err;
1377 
1378 	/* updates could not contain anything about the private
1379 	 * protocol info, in that case skip the parsing */
1380 	if (!pattr)
1381 		return 0;
1382 
1383 	err = nla_parse_nested_deprecated(tb, CTA_PROTOINFO_TCP_MAX, pattr,
1384 					  tcp_nla_policy, NULL);
1385 	if (err < 0)
1386 		return err;
1387 
1388 	if (tb[CTA_PROTOINFO_TCP_STATE] &&
1389 	    nla_get_u8(tb[CTA_PROTOINFO_TCP_STATE]) >= TCP_CONNTRACK_MAX)
1390 		return -EINVAL;
1391 
1392 	spin_lock_bh(&ct->lock);
1393 	if (tb[CTA_PROTOINFO_TCP_STATE])
1394 		ct->proto.tcp.state = nla_get_u8(tb[CTA_PROTOINFO_TCP_STATE]);
1395 
1396 	if (tb[CTA_PROTOINFO_TCP_FLAGS_ORIGINAL]) {
1397 		struct nf_ct_tcp_flags *attr =
1398 			nla_data(tb[CTA_PROTOINFO_TCP_FLAGS_ORIGINAL]);
1399 		ct->proto.tcp.seen[0].flags &= ~attr->mask;
1400 		ct->proto.tcp.seen[0].flags |= attr->flags & attr->mask;
1401 	}
1402 
1403 	if (tb[CTA_PROTOINFO_TCP_FLAGS_REPLY]) {
1404 		struct nf_ct_tcp_flags *attr =
1405 			nla_data(tb[CTA_PROTOINFO_TCP_FLAGS_REPLY]);
1406 		ct->proto.tcp.seen[1].flags &= ~attr->mask;
1407 		ct->proto.tcp.seen[1].flags |= attr->flags & attr->mask;
1408 	}
1409 
1410 	if (tb[CTA_PROTOINFO_TCP_WSCALE_ORIGINAL] &&
1411 	    tb[CTA_PROTOINFO_TCP_WSCALE_REPLY] &&
1412 	    ct->proto.tcp.seen[0].flags & IP_CT_TCP_FLAG_WINDOW_SCALE &&
1413 	    ct->proto.tcp.seen[1].flags & IP_CT_TCP_FLAG_WINDOW_SCALE) {
1414 		ct->proto.tcp.seen[0].td_scale =
1415 			nla_get_u8(tb[CTA_PROTOINFO_TCP_WSCALE_ORIGINAL]);
1416 		ct->proto.tcp.seen[1].td_scale =
1417 			nla_get_u8(tb[CTA_PROTOINFO_TCP_WSCALE_REPLY]);
1418 	}
1419 	spin_unlock_bh(&ct->lock);
1420 
1421 	return 0;
1422 }
1423 
tcp_nlattr_tuple_size(void)1424 static unsigned int tcp_nlattr_tuple_size(void)
1425 {
1426 	static unsigned int size __read_mostly;
1427 
1428 	if (!size)
1429 		size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
1430 
1431 	return size;
1432 }
1433 #endif
1434 
1435 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
1436 
1437 #include <linux/netfilter/nfnetlink.h>
1438 #include <linux/netfilter/nfnetlink_cttimeout.h>
1439 
tcp_timeout_nlattr_to_obj(struct nlattr * tb[],struct net * net,void * data)1440 static int tcp_timeout_nlattr_to_obj(struct nlattr *tb[],
1441 				     struct net *net, void *data)
1442 {
1443 	struct nf_tcp_net *tn = nf_tcp_pernet(net);
1444 	unsigned int *timeouts = data;
1445 	int i;
1446 
1447 	if (!timeouts)
1448 		timeouts = tn->timeouts;
1449 	/* set default TCP timeouts. */
1450 	for (i=0; i<TCP_CONNTRACK_TIMEOUT_MAX; i++)
1451 		timeouts[i] = tn->timeouts[i];
1452 
1453 	if (tb[CTA_TIMEOUT_TCP_SYN_SENT]) {
1454 		timeouts[TCP_CONNTRACK_SYN_SENT] =
1455 			ntohl(nla_get_be32(tb[CTA_TIMEOUT_TCP_SYN_SENT]))*HZ;
1456 	}
1457 
1458 	if (tb[CTA_TIMEOUT_TCP_SYN_RECV]) {
1459 		timeouts[TCP_CONNTRACK_SYN_RECV] =
1460 			ntohl(nla_get_be32(tb[CTA_TIMEOUT_TCP_SYN_RECV]))*HZ;
1461 	}
1462 	if (tb[CTA_TIMEOUT_TCP_ESTABLISHED]) {
1463 		timeouts[TCP_CONNTRACK_ESTABLISHED] =
1464 			ntohl(nla_get_be32(tb[CTA_TIMEOUT_TCP_ESTABLISHED]))*HZ;
1465 	}
1466 	if (tb[CTA_TIMEOUT_TCP_FIN_WAIT]) {
1467 		timeouts[TCP_CONNTRACK_FIN_WAIT] =
1468 			ntohl(nla_get_be32(tb[CTA_TIMEOUT_TCP_FIN_WAIT]))*HZ;
1469 	}
1470 	if (tb[CTA_TIMEOUT_TCP_CLOSE_WAIT]) {
1471 		timeouts[TCP_CONNTRACK_CLOSE_WAIT] =
1472 			ntohl(nla_get_be32(tb[CTA_TIMEOUT_TCP_CLOSE_WAIT]))*HZ;
1473 	}
1474 	if (tb[CTA_TIMEOUT_TCP_LAST_ACK]) {
1475 		timeouts[TCP_CONNTRACK_LAST_ACK] =
1476 			ntohl(nla_get_be32(tb[CTA_TIMEOUT_TCP_LAST_ACK]))*HZ;
1477 	}
1478 	if (tb[CTA_TIMEOUT_TCP_TIME_WAIT]) {
1479 		timeouts[TCP_CONNTRACK_TIME_WAIT] =
1480 			ntohl(nla_get_be32(tb[CTA_TIMEOUT_TCP_TIME_WAIT]))*HZ;
1481 	}
1482 	if (tb[CTA_TIMEOUT_TCP_CLOSE]) {
1483 		timeouts[TCP_CONNTRACK_CLOSE] =
1484 			ntohl(nla_get_be32(tb[CTA_TIMEOUT_TCP_CLOSE]))*HZ;
1485 	}
1486 	if (tb[CTA_TIMEOUT_TCP_SYN_SENT2]) {
1487 		timeouts[TCP_CONNTRACK_SYN_SENT2] =
1488 			ntohl(nla_get_be32(tb[CTA_TIMEOUT_TCP_SYN_SENT2]))*HZ;
1489 	}
1490 	if (tb[CTA_TIMEOUT_TCP_RETRANS]) {
1491 		timeouts[TCP_CONNTRACK_RETRANS] =
1492 			ntohl(nla_get_be32(tb[CTA_TIMEOUT_TCP_RETRANS]))*HZ;
1493 	}
1494 	if (tb[CTA_TIMEOUT_TCP_UNACK]) {
1495 		timeouts[TCP_CONNTRACK_UNACK] =
1496 			ntohl(nla_get_be32(tb[CTA_TIMEOUT_TCP_UNACK]))*HZ;
1497 	}
1498 
1499 	timeouts[CTA_TIMEOUT_TCP_UNSPEC] = timeouts[CTA_TIMEOUT_TCP_SYN_SENT];
1500 	return 0;
1501 }
1502 
1503 static int
tcp_timeout_obj_to_nlattr(struct sk_buff * skb,const void * data)1504 tcp_timeout_obj_to_nlattr(struct sk_buff *skb, const void *data)
1505 {
1506 	const unsigned int *timeouts = data;
1507 
1508 	if (nla_put_be32(skb, CTA_TIMEOUT_TCP_SYN_SENT,
1509 			htonl(timeouts[TCP_CONNTRACK_SYN_SENT] / HZ)) ||
1510 	    nla_put_be32(skb, CTA_TIMEOUT_TCP_SYN_RECV,
1511 			 htonl(timeouts[TCP_CONNTRACK_SYN_RECV] / HZ)) ||
1512 	    nla_put_be32(skb, CTA_TIMEOUT_TCP_ESTABLISHED,
1513 			 htonl(timeouts[TCP_CONNTRACK_ESTABLISHED] / HZ)) ||
1514 	    nla_put_be32(skb, CTA_TIMEOUT_TCP_FIN_WAIT,
1515 			 htonl(timeouts[TCP_CONNTRACK_FIN_WAIT] / HZ)) ||
1516 	    nla_put_be32(skb, CTA_TIMEOUT_TCP_CLOSE_WAIT,
1517 			 htonl(timeouts[TCP_CONNTRACK_CLOSE_WAIT] / HZ)) ||
1518 	    nla_put_be32(skb, CTA_TIMEOUT_TCP_LAST_ACK,
1519 			 htonl(timeouts[TCP_CONNTRACK_LAST_ACK] / HZ)) ||
1520 	    nla_put_be32(skb, CTA_TIMEOUT_TCP_TIME_WAIT,
1521 			 htonl(timeouts[TCP_CONNTRACK_TIME_WAIT] / HZ)) ||
1522 	    nla_put_be32(skb, CTA_TIMEOUT_TCP_CLOSE,
1523 			 htonl(timeouts[TCP_CONNTRACK_CLOSE] / HZ)) ||
1524 	    nla_put_be32(skb, CTA_TIMEOUT_TCP_SYN_SENT2,
1525 			 htonl(timeouts[TCP_CONNTRACK_SYN_SENT2] / HZ)) ||
1526 	    nla_put_be32(skb, CTA_TIMEOUT_TCP_RETRANS,
1527 			 htonl(timeouts[TCP_CONNTRACK_RETRANS] / HZ)) ||
1528 	    nla_put_be32(skb, CTA_TIMEOUT_TCP_UNACK,
1529 			 htonl(timeouts[TCP_CONNTRACK_UNACK] / HZ)))
1530 		goto nla_put_failure;
1531 	return 0;
1532 
1533 nla_put_failure:
1534 	return -ENOSPC;
1535 }
1536 
1537 static const struct nla_policy tcp_timeout_nla_policy[CTA_TIMEOUT_TCP_MAX+1] = {
1538 	[CTA_TIMEOUT_TCP_SYN_SENT]	= { .type = NLA_U32 },
1539 	[CTA_TIMEOUT_TCP_SYN_RECV]	= { .type = NLA_U32 },
1540 	[CTA_TIMEOUT_TCP_ESTABLISHED]	= { .type = NLA_U32 },
1541 	[CTA_TIMEOUT_TCP_FIN_WAIT]	= { .type = NLA_U32 },
1542 	[CTA_TIMEOUT_TCP_CLOSE_WAIT]	= { .type = NLA_U32 },
1543 	[CTA_TIMEOUT_TCP_LAST_ACK]	= { .type = NLA_U32 },
1544 	[CTA_TIMEOUT_TCP_TIME_WAIT]	= { .type = NLA_U32 },
1545 	[CTA_TIMEOUT_TCP_CLOSE]		= { .type = NLA_U32 },
1546 	[CTA_TIMEOUT_TCP_SYN_SENT2]	= { .type = NLA_U32 },
1547 	[CTA_TIMEOUT_TCP_RETRANS]	= { .type = NLA_U32 },
1548 	[CTA_TIMEOUT_TCP_UNACK]		= { .type = NLA_U32 },
1549 };
1550 #endif /* CONFIG_NF_CONNTRACK_TIMEOUT */
1551 
nf_conntrack_tcp_init_net(struct net * net)1552 void nf_conntrack_tcp_init_net(struct net *net)
1553 {
1554 	struct nf_tcp_net *tn = nf_tcp_pernet(net);
1555 	int i;
1556 
1557 	for (i = 0; i < TCP_CONNTRACK_TIMEOUT_MAX; i++)
1558 		tn->timeouts[i] = tcp_timeouts[i];
1559 
1560 	/* timeouts[0] is unused, make it same as SYN_SENT so
1561 	 * ->timeouts[0] contains 'new' timeout, like udp or icmp.
1562 	 */
1563 	tn->timeouts[0] = tcp_timeouts[TCP_CONNTRACK_SYN_SENT];
1564 
1565 	/* If it is set to zero, we disable picking up already established
1566 	 * connections.
1567 	 */
1568 	tn->tcp_loose = 1;
1569 
1570 	/* "Be conservative in what you do,
1571 	 *  be liberal in what you accept from others."
1572 	 * If it's non-zero, we mark only out of window RST segments as INVALID.
1573 	 */
1574 	tn->tcp_be_liberal = 0;
1575 
1576 	/* If it's non-zero, we turn off RST sequence number check */
1577 	tn->tcp_ignore_invalid_rst = 0;
1578 
1579 	/* Max number of the retransmitted packets without receiving an (acceptable)
1580 	 * ACK from the destination. If this number is reached, a shorter timer
1581 	 * will be started.
1582 	 */
1583 	tn->tcp_max_retrans = 3;
1584 
1585 #if IS_ENABLED(CONFIG_NF_FLOW_TABLE)
1586 	tn->offload_timeout = 30 * HZ;
1587 #endif
1588 }
1589 
1590 const struct nf_conntrack_l4proto nf_conntrack_l4proto_tcp =
1591 {
1592 	.l4proto 		= IPPROTO_TCP,
1593 #ifdef CONFIG_NF_CONNTRACK_PROCFS
1594 	.print_conntrack 	= tcp_print_conntrack,
1595 #endif
1596 	.can_early_drop		= tcp_can_early_drop,
1597 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
1598 	.to_nlattr		= tcp_to_nlattr,
1599 	.from_nlattr		= nlattr_to_tcp,
1600 	.tuple_to_nlattr	= nf_ct_port_tuple_to_nlattr,
1601 	.nlattr_to_tuple	= nf_ct_port_nlattr_to_tuple,
1602 	.nlattr_tuple_size	= tcp_nlattr_tuple_size,
1603 	.nlattr_size		= TCP_NLATTR_SIZE,
1604 	.nla_policy		= nf_ct_port_nla_policy,
1605 #endif
1606 #ifdef CONFIG_NF_CONNTRACK_TIMEOUT
1607 	.ctnl_timeout		= {
1608 		.nlattr_to_obj	= tcp_timeout_nlattr_to_obj,
1609 		.obj_to_nlattr	= tcp_timeout_obj_to_nlattr,
1610 		.nlattr_max	= CTA_TIMEOUT_TCP_MAX,
1611 		.obj_size	= sizeof(unsigned int) *
1612 					TCP_CONNTRACK_TIMEOUT_MAX,
1613 		.nla_policy	= tcp_timeout_nla_policy,
1614 	},
1615 #endif /* CONFIG_NF_CONNTRACK_TIMEOUT */
1616 };
1617