1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Connection state tracking for netfilter. This is separated from,
3 but required by, the NAT layer; it can also be used by an iptables
4 extension. */
5
6 /* (C) 1999-2001 Paul `Rusty' Russell
7 * (C) 2002-2006 Netfilter Core Team <coreteam@netfilter.org>
8 * (C) 2003,2004 USAGI/WIDE Project <http://www.linux-ipv6.org>
9 * (C) 2005-2012 Patrick McHardy <kaber@trash.net>
10 */
11
12 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
13
14 #include <linux/types.h>
15 #include <linux/netfilter.h>
16 #include <linux/module.h>
17 #include <linux/sched.h>
18 #include <linux/skbuff.h>
19 #include <linux/proc_fs.h>
20 #include <linux/vmalloc.h>
21 #include <linux/stddef.h>
22 #include <linux/slab.h>
23 #include <linux/random.h>
24 #include <linux/siphash.h>
25 #include <linux/err.h>
26 #include <linux/percpu.h>
27 #include <linux/moduleparam.h>
28 #include <linux/notifier.h>
29 #include <linux/kernel.h>
30 #include <linux/netdevice.h>
31 #include <linux/socket.h>
32 #include <linux/mm.h>
33 #include <linux/nsproxy.h>
34 #include <linux/rculist_nulls.h>
35
36 #include <net/netfilter/nf_conntrack.h>
37 #include <net/netfilter/nf_conntrack_bpf.h>
38 #include <net/netfilter/nf_conntrack_l4proto.h>
39 #include <net/netfilter/nf_conntrack_expect.h>
40 #include <net/netfilter/nf_conntrack_helper.h>
41 #include <net/netfilter/nf_conntrack_core.h>
42 #include <net/netfilter/nf_conntrack_extend.h>
43 #include <net/netfilter/nf_conntrack_acct.h>
44 #include <net/netfilter/nf_conntrack_ecache.h>
45 #include <net/netfilter/nf_conntrack_zones.h>
46 #include <net/netfilter/nf_conntrack_timestamp.h>
47 #include <net/netfilter/nf_conntrack_timeout.h>
48 #include <net/netfilter/nf_conntrack_labels.h>
49 #include <net/netfilter/nf_conntrack_synproxy.h>
50 #include <net/netfilter/nf_nat.h>
51 #include <net/netfilter/nf_nat_helper.h>
52 #include <net/netns/hash.h>
53 #include <net/ip.h>
54
55 #include "nf_internals.h"
56
57 __cacheline_aligned_in_smp spinlock_t nf_conntrack_locks[CONNTRACK_LOCKS];
58 EXPORT_SYMBOL_GPL(nf_conntrack_locks);
59
60 __cacheline_aligned_in_smp DEFINE_SPINLOCK(nf_conntrack_expect_lock);
61 EXPORT_SYMBOL_GPL(nf_conntrack_expect_lock);
62
63 struct hlist_nulls_head *nf_conntrack_hash __read_mostly;
64 EXPORT_SYMBOL_GPL(nf_conntrack_hash);
65
66 struct conntrack_gc_work {
67 struct delayed_work dwork;
68 u32 next_bucket;
69 u32 avg_timeout;
70 u32 count;
71 u32 start_time;
72 bool exiting;
73 bool early_drop;
74 };
75
76 static __read_mostly struct kmem_cache *nf_conntrack_cachep;
77 static DEFINE_SPINLOCK(nf_conntrack_locks_all_lock);
78 static __read_mostly bool nf_conntrack_locks_all;
79
80 /* serialize hash resizes and nf_ct_iterate_cleanup */
81 static DEFINE_MUTEX(nf_conntrack_mutex);
82
83 #define GC_SCAN_INTERVAL_MAX (60ul * HZ)
84 #define GC_SCAN_INTERVAL_MIN (1ul * HZ)
85
86 /* clamp timeouts to this value (TCP unacked) */
87 #define GC_SCAN_INTERVAL_CLAMP (300ul * HZ)
88
89 /* Initial bias pretending we have 100 entries at the upper bound so we don't
90 * wakeup often just because we have three entries with a 1s timeout while still
91 * allowing non-idle machines to wakeup more often when needed.
92 */
93 #define GC_SCAN_INITIAL_COUNT 100
94 #define GC_SCAN_INTERVAL_INIT GC_SCAN_INTERVAL_MAX
95
96 #define GC_SCAN_MAX_DURATION msecs_to_jiffies(10)
97 #define GC_SCAN_EXPIRED_MAX (64000u / HZ)
98
99 #define MIN_CHAINLEN 8u
100 #define MAX_CHAINLEN (32u - MIN_CHAINLEN)
101
102 static struct conntrack_gc_work conntrack_gc_work;
103
nf_conntrack_lock(spinlock_t * lock)104 void nf_conntrack_lock(spinlock_t *lock) __acquires(lock)
105 {
106 /* 1) Acquire the lock */
107 spin_lock(lock);
108
109 /* 2) read nf_conntrack_locks_all, with ACQUIRE semantics
110 * It pairs with the smp_store_release() in nf_conntrack_all_unlock()
111 */
112 if (likely(smp_load_acquire(&nf_conntrack_locks_all) == false))
113 return;
114
115 /* fast path failed, unlock */
116 spin_unlock(lock);
117
118 /* Slow path 1) get global lock */
119 spin_lock(&nf_conntrack_locks_all_lock);
120
121 /* Slow path 2) get the lock we want */
122 spin_lock(lock);
123
124 /* Slow path 3) release the global lock */
125 spin_unlock(&nf_conntrack_locks_all_lock);
126 }
127 EXPORT_SYMBOL_GPL(nf_conntrack_lock);
128
nf_conntrack_double_unlock(unsigned int h1,unsigned int h2)129 static void nf_conntrack_double_unlock(unsigned int h1, unsigned int h2)
130 {
131 h1 %= CONNTRACK_LOCKS;
132 h2 %= CONNTRACK_LOCKS;
133 spin_unlock(&nf_conntrack_locks[h1]);
134 if (h1 != h2)
135 spin_unlock(&nf_conntrack_locks[h2]);
136 }
137
138 /* return true if we need to recompute hashes (in case hash table was resized) */
nf_conntrack_double_lock(struct net * net,unsigned int h1,unsigned int h2,unsigned int sequence)139 static bool nf_conntrack_double_lock(struct net *net, unsigned int h1,
140 unsigned int h2, unsigned int sequence)
141 {
142 h1 %= CONNTRACK_LOCKS;
143 h2 %= CONNTRACK_LOCKS;
144 if (h1 <= h2) {
145 nf_conntrack_lock(&nf_conntrack_locks[h1]);
146 if (h1 != h2)
147 spin_lock_nested(&nf_conntrack_locks[h2],
148 SINGLE_DEPTH_NESTING);
149 } else {
150 nf_conntrack_lock(&nf_conntrack_locks[h2]);
151 spin_lock_nested(&nf_conntrack_locks[h1],
152 SINGLE_DEPTH_NESTING);
153 }
154 if (read_seqcount_retry(&nf_conntrack_generation, sequence)) {
155 nf_conntrack_double_unlock(h1, h2);
156 return true;
157 }
158 return false;
159 }
160
nf_conntrack_all_lock(void)161 static void nf_conntrack_all_lock(void)
162 __acquires(&nf_conntrack_locks_all_lock)
163 {
164 int i;
165
166 spin_lock(&nf_conntrack_locks_all_lock);
167
168 /* For nf_contrack_locks_all, only the latest time when another
169 * CPU will see an update is controlled, by the "release" of the
170 * spin_lock below.
171 * The earliest time is not controlled, an thus KCSAN could detect
172 * a race when nf_conntract_lock() reads the variable.
173 * WRITE_ONCE() is used to ensure the compiler will not
174 * optimize the write.
175 */
176 WRITE_ONCE(nf_conntrack_locks_all, true);
177
178 for (i = 0; i < CONNTRACK_LOCKS; i++) {
179 spin_lock(&nf_conntrack_locks[i]);
180
181 /* This spin_unlock provides the "release" to ensure that
182 * nf_conntrack_locks_all==true is visible to everyone that
183 * acquired spin_lock(&nf_conntrack_locks[]).
184 */
185 spin_unlock(&nf_conntrack_locks[i]);
186 }
187 }
188
nf_conntrack_all_unlock(void)189 static void nf_conntrack_all_unlock(void)
190 __releases(&nf_conntrack_locks_all_lock)
191 {
192 /* All prior stores must be complete before we clear
193 * 'nf_conntrack_locks_all'. Otherwise nf_conntrack_lock()
194 * might observe the false value but not the entire
195 * critical section.
196 * It pairs with the smp_load_acquire() in nf_conntrack_lock()
197 */
198 smp_store_release(&nf_conntrack_locks_all, false);
199 spin_unlock(&nf_conntrack_locks_all_lock);
200 }
201
202 unsigned int nf_conntrack_htable_size __read_mostly;
203 EXPORT_SYMBOL_GPL(nf_conntrack_htable_size);
204
205 unsigned int nf_conntrack_max __read_mostly;
206 EXPORT_SYMBOL_GPL(nf_conntrack_max);
207 seqcount_spinlock_t nf_conntrack_generation __read_mostly;
208 static siphash_aligned_key_t nf_conntrack_hash_rnd;
209
hash_conntrack_raw(const struct nf_conntrack_tuple * tuple,unsigned int zoneid,const struct net * net)210 static u32 hash_conntrack_raw(const struct nf_conntrack_tuple *tuple,
211 unsigned int zoneid,
212 const struct net *net)
213 {
214 struct {
215 struct nf_conntrack_man src;
216 union nf_inet_addr dst_addr;
217 unsigned int zone;
218 u32 net_mix;
219 u16 dport;
220 u16 proto;
221 } __aligned(SIPHASH_ALIGNMENT) combined;
222
223 get_random_once(&nf_conntrack_hash_rnd, sizeof(nf_conntrack_hash_rnd));
224
225 memset(&combined, 0, sizeof(combined));
226
227 /* The direction must be ignored, so handle usable members manually. */
228 combined.src = tuple->src;
229 combined.dst_addr = tuple->dst.u3;
230 combined.zone = zoneid;
231 combined.net_mix = net_hash_mix(net);
232 combined.dport = (__force __u16)tuple->dst.u.all;
233 combined.proto = tuple->dst.protonum;
234
235 return (u32)siphash(&combined, sizeof(combined), &nf_conntrack_hash_rnd);
236 }
237
scale_hash(u32 hash)238 static u32 scale_hash(u32 hash)
239 {
240 return reciprocal_scale(hash, nf_conntrack_htable_size);
241 }
242
__hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple,unsigned int zoneid,unsigned int size)243 static u32 __hash_conntrack(const struct net *net,
244 const struct nf_conntrack_tuple *tuple,
245 unsigned int zoneid,
246 unsigned int size)
247 {
248 return reciprocal_scale(hash_conntrack_raw(tuple, zoneid, net), size);
249 }
250
hash_conntrack(const struct net * net,const struct nf_conntrack_tuple * tuple,unsigned int zoneid)251 static u32 hash_conntrack(const struct net *net,
252 const struct nf_conntrack_tuple *tuple,
253 unsigned int zoneid)
254 {
255 return scale_hash(hash_conntrack_raw(tuple, zoneid, net));
256 }
257
nf_ct_get_tuple_ports(const struct sk_buff * skb,unsigned int dataoff,struct nf_conntrack_tuple * tuple)258 static bool nf_ct_get_tuple_ports(const struct sk_buff *skb,
259 unsigned int dataoff,
260 struct nf_conntrack_tuple *tuple)
261 { struct {
262 __be16 sport;
263 __be16 dport;
264 } _inet_hdr, *inet_hdr;
265
266 /* Actually only need first 4 bytes to get ports. */
267 inet_hdr = skb_header_pointer(skb, dataoff, sizeof(_inet_hdr), &_inet_hdr);
268 if (!inet_hdr)
269 return false;
270
271 tuple->src.u.udp.port = inet_hdr->sport;
272 tuple->dst.u.udp.port = inet_hdr->dport;
273 return true;
274 }
275
276 static bool
nf_ct_get_tuple(const struct sk_buff * skb,unsigned int nhoff,unsigned int dataoff,u_int16_t l3num,u_int8_t protonum,struct net * net,struct nf_conntrack_tuple * tuple)277 nf_ct_get_tuple(const struct sk_buff *skb,
278 unsigned int nhoff,
279 unsigned int dataoff,
280 u_int16_t l3num,
281 u_int8_t protonum,
282 struct net *net,
283 struct nf_conntrack_tuple *tuple)
284 {
285 unsigned int size;
286 const __be32 *ap;
287 __be32 _addrs[8];
288
289 memset(tuple, 0, sizeof(*tuple));
290
291 tuple->src.l3num = l3num;
292 switch (l3num) {
293 case NFPROTO_IPV4:
294 nhoff += offsetof(struct iphdr, saddr);
295 size = 2 * sizeof(__be32);
296 break;
297 case NFPROTO_IPV6:
298 nhoff += offsetof(struct ipv6hdr, saddr);
299 size = sizeof(_addrs);
300 break;
301 default:
302 return true;
303 }
304
305 ap = skb_header_pointer(skb, nhoff, size, _addrs);
306 if (!ap)
307 return false;
308
309 switch (l3num) {
310 case NFPROTO_IPV4:
311 tuple->src.u3.ip = ap[0];
312 tuple->dst.u3.ip = ap[1];
313 break;
314 case NFPROTO_IPV6:
315 memcpy(tuple->src.u3.ip6, ap, sizeof(tuple->src.u3.ip6));
316 memcpy(tuple->dst.u3.ip6, ap + 4, sizeof(tuple->dst.u3.ip6));
317 break;
318 }
319
320 tuple->dst.protonum = protonum;
321 tuple->dst.dir = IP_CT_DIR_ORIGINAL;
322
323 switch (protonum) {
324 #if IS_ENABLED(CONFIG_IPV6)
325 case IPPROTO_ICMPV6:
326 return icmpv6_pkt_to_tuple(skb, dataoff, net, tuple);
327 #endif
328 case IPPROTO_ICMP:
329 return icmp_pkt_to_tuple(skb, dataoff, net, tuple);
330 #ifdef CONFIG_NF_CT_PROTO_GRE
331 case IPPROTO_GRE:
332 return gre_pkt_to_tuple(skb, dataoff, net, tuple);
333 #endif
334 case IPPROTO_TCP:
335 case IPPROTO_UDP:
336 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
337 case IPPROTO_UDPLITE:
338 #endif
339 #ifdef CONFIG_NF_CT_PROTO_SCTP
340 case IPPROTO_SCTP:
341 #endif
342 #ifdef CONFIG_NF_CT_PROTO_DCCP
343 case IPPROTO_DCCP:
344 #endif
345 /* fallthrough */
346 return nf_ct_get_tuple_ports(skb, dataoff, tuple);
347 default:
348 break;
349 }
350
351 return true;
352 }
353
ipv4_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u_int8_t * protonum)354 static int ipv4_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
355 u_int8_t *protonum)
356 {
357 int dataoff = -1;
358 const struct iphdr *iph;
359 struct iphdr _iph;
360
361 iph = skb_header_pointer(skb, nhoff, sizeof(_iph), &_iph);
362 if (!iph)
363 return -1;
364
365 /* Conntrack defragments packets, we might still see fragments
366 * inside ICMP packets though.
367 */
368 if (iph->frag_off & htons(IP_OFFSET))
369 return -1;
370
371 dataoff = nhoff + (iph->ihl << 2);
372 *protonum = iph->protocol;
373
374 /* Check bogus IP headers */
375 if (dataoff > skb->len) {
376 pr_debug("bogus IPv4 packet: nhoff %u, ihl %u, skblen %u\n",
377 nhoff, iph->ihl << 2, skb->len);
378 return -1;
379 }
380 return dataoff;
381 }
382
383 #if IS_ENABLED(CONFIG_IPV6)
ipv6_get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 * protonum)384 static int ipv6_get_l4proto(const struct sk_buff *skb, unsigned int nhoff,
385 u8 *protonum)
386 {
387 int protoff = -1;
388 unsigned int extoff = nhoff + sizeof(struct ipv6hdr);
389 __be16 frag_off;
390 u8 nexthdr;
391
392 if (skb_copy_bits(skb, nhoff + offsetof(struct ipv6hdr, nexthdr),
393 &nexthdr, sizeof(nexthdr)) != 0) {
394 pr_debug("can't get nexthdr\n");
395 return -1;
396 }
397 protoff = ipv6_skip_exthdr(skb, extoff, &nexthdr, &frag_off);
398 /*
399 * (protoff == skb->len) means the packet has not data, just
400 * IPv6 and possibly extensions headers, but it is tracked anyway
401 */
402 if (protoff < 0 || (frag_off & htons(~0x7)) != 0) {
403 pr_debug("can't find proto in pkt\n");
404 return -1;
405 }
406
407 *protonum = nexthdr;
408 return protoff;
409 }
410 #endif
411
get_l4proto(const struct sk_buff * skb,unsigned int nhoff,u8 pf,u8 * l4num)412 static int get_l4proto(const struct sk_buff *skb,
413 unsigned int nhoff, u8 pf, u8 *l4num)
414 {
415 switch (pf) {
416 case NFPROTO_IPV4:
417 return ipv4_get_l4proto(skb, nhoff, l4num);
418 #if IS_ENABLED(CONFIG_IPV6)
419 case NFPROTO_IPV6:
420 return ipv6_get_l4proto(skb, nhoff, l4num);
421 #endif
422 default:
423 *l4num = 0;
424 break;
425 }
426 return -1;
427 }
428
nf_ct_get_tuplepr(const struct sk_buff * skb,unsigned int nhoff,u_int16_t l3num,struct net * net,struct nf_conntrack_tuple * tuple)429 bool nf_ct_get_tuplepr(const struct sk_buff *skb, unsigned int nhoff,
430 u_int16_t l3num,
431 struct net *net, struct nf_conntrack_tuple *tuple)
432 {
433 u8 protonum;
434 int protoff;
435
436 protoff = get_l4proto(skb, nhoff, l3num, &protonum);
437 if (protoff <= 0)
438 return false;
439
440 return nf_ct_get_tuple(skb, nhoff, protoff, l3num, protonum, net, tuple);
441 }
442 EXPORT_SYMBOL_GPL(nf_ct_get_tuplepr);
443
444 bool
nf_ct_invert_tuple(struct nf_conntrack_tuple * inverse,const struct nf_conntrack_tuple * orig)445 nf_ct_invert_tuple(struct nf_conntrack_tuple *inverse,
446 const struct nf_conntrack_tuple *orig)
447 {
448 memset(inverse, 0, sizeof(*inverse));
449
450 inverse->src.l3num = orig->src.l3num;
451
452 switch (orig->src.l3num) {
453 case NFPROTO_IPV4:
454 inverse->src.u3.ip = orig->dst.u3.ip;
455 inverse->dst.u3.ip = orig->src.u3.ip;
456 break;
457 case NFPROTO_IPV6:
458 inverse->src.u3.in6 = orig->dst.u3.in6;
459 inverse->dst.u3.in6 = orig->src.u3.in6;
460 break;
461 default:
462 break;
463 }
464
465 inverse->dst.dir = !orig->dst.dir;
466
467 inverse->dst.protonum = orig->dst.protonum;
468
469 switch (orig->dst.protonum) {
470 case IPPROTO_ICMP:
471 return nf_conntrack_invert_icmp_tuple(inverse, orig);
472 #if IS_ENABLED(CONFIG_IPV6)
473 case IPPROTO_ICMPV6:
474 return nf_conntrack_invert_icmpv6_tuple(inverse, orig);
475 #endif
476 }
477
478 inverse->src.u.all = orig->dst.u.all;
479 inverse->dst.u.all = orig->src.u.all;
480 return true;
481 }
482 EXPORT_SYMBOL_GPL(nf_ct_invert_tuple);
483
484 /* Generate a almost-unique pseudo-id for a given conntrack.
485 *
486 * intentionally doesn't re-use any of the seeds used for hash
487 * table location, we assume id gets exposed to userspace.
488 *
489 * Following nf_conn items do not change throughout lifetime
490 * of the nf_conn:
491 *
492 * 1. nf_conn address
493 * 2. nf_conn->master address (normally NULL)
494 * 3. the associated net namespace
495 * 4. the original direction tuple
496 */
nf_ct_get_id(const struct nf_conn * ct)497 u32 nf_ct_get_id(const struct nf_conn *ct)
498 {
499 static siphash_aligned_key_t ct_id_seed;
500 unsigned long a, b, c, d;
501
502 net_get_random_once(&ct_id_seed, sizeof(ct_id_seed));
503
504 a = (unsigned long)ct;
505 b = (unsigned long)ct->master;
506 c = (unsigned long)nf_ct_net(ct);
507 d = (unsigned long)siphash(&ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
508 sizeof(ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple),
509 &ct_id_seed);
510 #ifdef CONFIG_64BIT
511 return siphash_4u64((u64)a, (u64)b, (u64)c, (u64)d, &ct_id_seed);
512 #else
513 return siphash_4u32((u32)a, (u32)b, (u32)c, (u32)d, &ct_id_seed);
514 #endif
515 }
516 EXPORT_SYMBOL_GPL(nf_ct_get_id);
517
518 static void
clean_from_lists(struct nf_conn * ct)519 clean_from_lists(struct nf_conn *ct)
520 {
521 pr_debug("clean_from_lists(%p)\n", ct);
522 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
523 hlist_nulls_del_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode);
524
525 /* Destroy all pending expectations */
526 nf_ct_remove_expectations(ct);
527 }
528
529 #define NFCT_ALIGN(len) (((len) + NFCT_INFOMASK) & ~NFCT_INFOMASK)
530
531 /* Released via nf_ct_destroy() */
nf_ct_tmpl_alloc(struct net * net,const struct nf_conntrack_zone * zone,gfp_t flags)532 struct nf_conn *nf_ct_tmpl_alloc(struct net *net,
533 const struct nf_conntrack_zone *zone,
534 gfp_t flags)
535 {
536 struct nf_conn *tmpl, *p;
537
538 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK) {
539 tmpl = kzalloc(sizeof(*tmpl) + NFCT_INFOMASK, flags);
540 if (!tmpl)
541 return NULL;
542
543 p = tmpl;
544 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
545 if (tmpl != p) {
546 tmpl = (struct nf_conn *)NFCT_ALIGN((unsigned long)p);
547 tmpl->proto.tmpl_padto = (char *)tmpl - (char *)p;
548 }
549 } else {
550 tmpl = kzalloc(sizeof(*tmpl), flags);
551 if (!tmpl)
552 return NULL;
553 }
554
555 tmpl->status = IPS_TEMPLATE;
556 write_pnet(&tmpl->ct_net, net);
557 nf_ct_zone_add(tmpl, zone);
558 refcount_set(&tmpl->ct_general.use, 1);
559
560 return tmpl;
561 }
562 EXPORT_SYMBOL_GPL(nf_ct_tmpl_alloc);
563
nf_ct_tmpl_free(struct nf_conn * tmpl)564 void nf_ct_tmpl_free(struct nf_conn *tmpl)
565 {
566 kfree(tmpl->ext);
567
568 if (ARCH_KMALLOC_MINALIGN <= NFCT_INFOMASK)
569 kfree((char *)tmpl - tmpl->proto.tmpl_padto);
570 else
571 kfree(tmpl);
572 }
573 EXPORT_SYMBOL_GPL(nf_ct_tmpl_free);
574
destroy_gre_conntrack(struct nf_conn * ct)575 static void destroy_gre_conntrack(struct nf_conn *ct)
576 {
577 #ifdef CONFIG_NF_CT_PROTO_GRE
578 struct nf_conn *master = ct->master;
579
580 if (master)
581 nf_ct_gre_keymap_destroy(master);
582 #endif
583 }
584
nf_ct_destroy(struct nf_conntrack * nfct)585 void nf_ct_destroy(struct nf_conntrack *nfct)
586 {
587 struct nf_conn *ct = (struct nf_conn *)nfct;
588
589 pr_debug("%s(%p)\n", __func__, ct);
590 WARN_ON(refcount_read(&nfct->use) != 0);
591
592 if (unlikely(nf_ct_is_template(ct))) {
593 nf_ct_tmpl_free(ct);
594 return;
595 }
596
597 if (unlikely(nf_ct_protonum(ct) == IPPROTO_GRE))
598 destroy_gre_conntrack(ct);
599
600 /* Expectations will have been removed in clean_from_lists,
601 * except TFTP can create an expectation on the first packet,
602 * before connection is in the list, so we need to clean here,
603 * too.
604 */
605 nf_ct_remove_expectations(ct);
606
607 if (ct->master)
608 nf_ct_put(ct->master);
609
610 pr_debug("%s: returning ct=%p to slab\n", __func__, ct);
611 nf_conntrack_free(ct);
612 }
613 EXPORT_SYMBOL(nf_ct_destroy);
614
__nf_ct_delete_from_lists(struct nf_conn * ct)615 static void __nf_ct_delete_from_lists(struct nf_conn *ct)
616 {
617 struct net *net = nf_ct_net(ct);
618 unsigned int hash, reply_hash;
619 unsigned int sequence;
620
621 do {
622 sequence = read_seqcount_begin(&nf_conntrack_generation);
623 hash = hash_conntrack(net,
624 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
625 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
626 reply_hash = hash_conntrack(net,
627 &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
628 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
629 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
630
631 clean_from_lists(ct);
632 nf_conntrack_double_unlock(hash, reply_hash);
633 }
634
nf_ct_delete_from_lists(struct nf_conn * ct)635 static void nf_ct_delete_from_lists(struct nf_conn *ct)
636 {
637 nf_ct_helper_destroy(ct);
638 local_bh_disable();
639
640 __nf_ct_delete_from_lists(ct);
641
642 local_bh_enable();
643 }
644
nf_ct_add_to_ecache_list(struct nf_conn * ct)645 static void nf_ct_add_to_ecache_list(struct nf_conn *ct)
646 {
647 #ifdef CONFIG_NF_CONNTRACK_EVENTS
648 struct nf_conntrack_net *cnet = nf_ct_pernet(nf_ct_net(ct));
649
650 spin_lock(&cnet->ecache.dying_lock);
651 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
652 &cnet->ecache.dying_list);
653 spin_unlock(&cnet->ecache.dying_lock);
654 #endif
655 }
656
nf_ct_delete(struct nf_conn * ct,u32 portid,int report)657 bool nf_ct_delete(struct nf_conn *ct, u32 portid, int report)
658 {
659 struct nf_conn_tstamp *tstamp;
660 struct net *net;
661
662 if (test_and_set_bit(IPS_DYING_BIT, &ct->status))
663 return false;
664
665 tstamp = nf_conn_tstamp_find(ct);
666 if (tstamp) {
667 s32 timeout = READ_ONCE(ct->timeout) - nfct_time_stamp;
668
669 tstamp->stop = ktime_get_real_ns();
670 if (timeout < 0)
671 tstamp->stop -= jiffies_to_nsecs(-timeout);
672 }
673
674 if (nf_conntrack_event_report(IPCT_DESTROY, ct,
675 portid, report) < 0) {
676 /* destroy event was not delivered. nf_ct_put will
677 * be done by event cache worker on redelivery.
678 */
679 nf_ct_helper_destroy(ct);
680 local_bh_disable();
681 __nf_ct_delete_from_lists(ct);
682 nf_ct_add_to_ecache_list(ct);
683 local_bh_enable();
684
685 nf_conntrack_ecache_work(nf_ct_net(ct), NFCT_ECACHE_DESTROY_FAIL);
686 return false;
687 }
688
689 net = nf_ct_net(ct);
690 if (nf_conntrack_ecache_dwork_pending(net))
691 nf_conntrack_ecache_work(net, NFCT_ECACHE_DESTROY_SENT);
692 nf_ct_delete_from_lists(ct);
693 nf_ct_put(ct);
694 return true;
695 }
696 EXPORT_SYMBOL_GPL(nf_ct_delete);
697
698 static inline bool
nf_ct_key_equal(struct nf_conntrack_tuple_hash * h,const struct nf_conntrack_tuple * tuple,const struct nf_conntrack_zone * zone,const struct net * net)699 nf_ct_key_equal(struct nf_conntrack_tuple_hash *h,
700 const struct nf_conntrack_tuple *tuple,
701 const struct nf_conntrack_zone *zone,
702 const struct net *net)
703 {
704 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
705
706 /* A conntrack can be recreated with the equal tuple,
707 * so we need to check that the conntrack is confirmed
708 */
709 return nf_ct_tuple_equal(tuple, &h->tuple) &&
710 nf_ct_zone_equal(ct, zone, NF_CT_DIRECTION(h)) &&
711 nf_ct_is_confirmed(ct) &&
712 net_eq(net, nf_ct_net(ct));
713 }
714
715 static inline bool
nf_ct_match(const struct nf_conn * ct1,const struct nf_conn * ct2)716 nf_ct_match(const struct nf_conn *ct1, const struct nf_conn *ct2)
717 {
718 return nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
719 &ct2->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
720 nf_ct_tuple_equal(&ct1->tuplehash[IP_CT_DIR_REPLY].tuple,
721 &ct2->tuplehash[IP_CT_DIR_REPLY].tuple) &&
722 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_ORIGINAL) &&
723 nf_ct_zone_equal(ct1, nf_ct_zone(ct2), IP_CT_DIR_REPLY) &&
724 net_eq(nf_ct_net(ct1), nf_ct_net(ct2));
725 }
726
727 /* caller must hold rcu readlock and none of the nf_conntrack_locks */
nf_ct_gc_expired(struct nf_conn * ct)728 static void nf_ct_gc_expired(struct nf_conn *ct)
729 {
730 if (!refcount_inc_not_zero(&ct->ct_general.use))
731 return;
732
733 /* load ->status after refcount increase */
734 smp_acquire__after_ctrl_dep();
735
736 if (nf_ct_should_gc(ct))
737 nf_ct_kill(ct);
738
739 nf_ct_put(ct);
740 }
741
742 /*
743 * Warning :
744 * - Caller must take a reference on returned object
745 * and recheck nf_ct_tuple_equal(tuple, &h->tuple)
746 */
747 static struct nf_conntrack_tuple_hash *
____nf_conntrack_find(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)748 ____nf_conntrack_find(struct net *net, const struct nf_conntrack_zone *zone,
749 const struct nf_conntrack_tuple *tuple, u32 hash)
750 {
751 struct nf_conntrack_tuple_hash *h;
752 struct hlist_nulls_head *ct_hash;
753 struct hlist_nulls_node *n;
754 unsigned int bucket, hsize;
755
756 begin:
757 nf_conntrack_get_ht(&ct_hash, &hsize);
758 bucket = reciprocal_scale(hash, hsize);
759
760 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[bucket], hnnode) {
761 struct nf_conn *ct;
762
763 ct = nf_ct_tuplehash_to_ctrack(h);
764 if (nf_ct_is_expired(ct)) {
765 nf_ct_gc_expired(ct);
766 continue;
767 }
768
769 if (nf_ct_key_equal(h, tuple, zone, net))
770 return h;
771 }
772 /*
773 * if the nulls value we got at the end of this lookup is
774 * not the expected one, we must restart lookup.
775 * We probably met an item that was moved to another chain.
776 */
777 if (get_nulls_value(n) != bucket) {
778 NF_CT_STAT_INC_ATOMIC(net, search_restart);
779 goto begin;
780 }
781
782 return NULL;
783 }
784
785 /* Find a connection corresponding to a tuple. */
786 static struct nf_conntrack_tuple_hash *
__nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple,u32 hash)787 __nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
788 const struct nf_conntrack_tuple *tuple, u32 hash)
789 {
790 struct nf_conntrack_tuple_hash *h;
791 struct nf_conn *ct;
792
793 rcu_read_lock();
794
795 h = ____nf_conntrack_find(net, zone, tuple, hash);
796 if (h) {
797 /* We have a candidate that matches the tuple we're interested
798 * in, try to obtain a reference and re-check tuple
799 */
800 ct = nf_ct_tuplehash_to_ctrack(h);
801 if (likely(refcount_inc_not_zero(&ct->ct_general.use))) {
802 /* re-check key after refcount */
803 smp_acquire__after_ctrl_dep();
804
805 if (likely(nf_ct_key_equal(h, tuple, zone, net)))
806 goto found;
807
808 /* TYPESAFE_BY_RCU recycled the candidate */
809 nf_ct_put(ct);
810 }
811
812 h = NULL;
813 }
814 found:
815 rcu_read_unlock();
816
817 return h;
818 }
819
820 struct nf_conntrack_tuple_hash *
nf_conntrack_find_get(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * tuple)821 nf_conntrack_find_get(struct net *net, const struct nf_conntrack_zone *zone,
822 const struct nf_conntrack_tuple *tuple)
823 {
824 unsigned int rid, zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
825 struct nf_conntrack_tuple_hash *thash;
826
827 thash = __nf_conntrack_find_get(net, zone, tuple,
828 hash_conntrack_raw(tuple, zone_id, net));
829
830 if (thash)
831 return thash;
832
833 rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
834 if (rid != zone_id)
835 return __nf_conntrack_find_get(net, zone, tuple,
836 hash_conntrack_raw(tuple, rid, net));
837 return thash;
838 }
839 EXPORT_SYMBOL_GPL(nf_conntrack_find_get);
840
__nf_conntrack_hash_insert(struct nf_conn * ct,unsigned int hash,unsigned int reply_hash)841 static void __nf_conntrack_hash_insert(struct nf_conn *ct,
842 unsigned int hash,
843 unsigned int reply_hash)
844 {
845 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode,
846 &nf_conntrack_hash[hash]);
847 hlist_nulls_add_head_rcu(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
848 &nf_conntrack_hash[reply_hash]);
849 }
850
nf_ct_ext_valid_pre(const struct nf_ct_ext * ext)851 static bool nf_ct_ext_valid_pre(const struct nf_ct_ext *ext)
852 {
853 /* if ext->gen_id is not equal to nf_conntrack_ext_genid, some extensions
854 * may contain stale pointers to e.g. helper that has been removed.
855 *
856 * The helper can't clear this because the nf_conn object isn't in
857 * any hash and synchronize_rcu() isn't enough because associated skb
858 * might sit in a queue.
859 */
860 return !ext || ext->gen_id == atomic_read(&nf_conntrack_ext_genid);
861 }
862
nf_ct_ext_valid_post(struct nf_ct_ext * ext)863 static bool nf_ct_ext_valid_post(struct nf_ct_ext *ext)
864 {
865 if (!ext)
866 return true;
867
868 if (ext->gen_id != atomic_read(&nf_conntrack_ext_genid))
869 return false;
870
871 /* inserted into conntrack table, nf_ct_iterate_cleanup()
872 * will find it. Disable nf_ct_ext_find() id check.
873 */
874 WRITE_ONCE(ext->gen_id, 0);
875 return true;
876 }
877
878 int
nf_conntrack_hash_check_insert(struct nf_conn * ct)879 nf_conntrack_hash_check_insert(struct nf_conn *ct)
880 {
881 const struct nf_conntrack_zone *zone;
882 struct net *net = nf_ct_net(ct);
883 unsigned int hash, reply_hash;
884 struct nf_conntrack_tuple_hash *h;
885 struct hlist_nulls_node *n;
886 unsigned int max_chainlen;
887 unsigned int chainlen = 0;
888 unsigned int sequence;
889 int err = -EEXIST;
890
891 zone = nf_ct_zone(ct);
892
893 if (!nf_ct_ext_valid_pre(ct->ext)) {
894 NF_CT_STAT_INC_ATOMIC(net, insert_failed);
895 return -ETIMEDOUT;
896 }
897
898 local_bh_disable();
899 do {
900 sequence = read_seqcount_begin(&nf_conntrack_generation);
901 hash = hash_conntrack(net,
902 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
903 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_ORIGINAL));
904 reply_hash = hash_conntrack(net,
905 &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
906 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
907 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
908
909 max_chainlen = MIN_CHAINLEN + prandom_u32_max(MAX_CHAINLEN);
910
911 /* See if there's one in the list already, including reverse */
912 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
913 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
914 zone, net))
915 goto out;
916
917 if (chainlen++ > max_chainlen)
918 goto chaintoolong;
919 }
920
921 chainlen = 0;
922
923 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
924 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
925 zone, net))
926 goto out;
927 if (chainlen++ > max_chainlen)
928 goto chaintoolong;
929 }
930
931 smp_wmb();
932 /* The caller holds a reference to this object */
933 refcount_set(&ct->ct_general.use, 2);
934 __nf_conntrack_hash_insert(ct, hash, reply_hash);
935 nf_conntrack_double_unlock(hash, reply_hash);
936 NF_CT_STAT_INC(net, insert);
937 local_bh_enable();
938
939 if (!nf_ct_ext_valid_post(ct->ext)) {
940 nf_ct_kill(ct);
941 NF_CT_STAT_INC_ATOMIC(net, drop);
942 return -ETIMEDOUT;
943 }
944
945 return 0;
946 chaintoolong:
947 NF_CT_STAT_INC(net, chaintoolong);
948 err = -ENOSPC;
949 out:
950 nf_conntrack_double_unlock(hash, reply_hash);
951 local_bh_enable();
952 return err;
953 }
954 EXPORT_SYMBOL_GPL(nf_conntrack_hash_check_insert);
955
nf_ct_acct_add(struct nf_conn * ct,u32 dir,unsigned int packets,unsigned int bytes)956 void nf_ct_acct_add(struct nf_conn *ct, u32 dir, unsigned int packets,
957 unsigned int bytes)
958 {
959 struct nf_conn_acct *acct;
960
961 acct = nf_conn_acct_find(ct);
962 if (acct) {
963 struct nf_conn_counter *counter = acct->counter;
964
965 atomic64_add(packets, &counter[dir].packets);
966 atomic64_add(bytes, &counter[dir].bytes);
967 }
968 }
969 EXPORT_SYMBOL_GPL(nf_ct_acct_add);
970
nf_ct_acct_merge(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct nf_conn * loser_ct)971 static void nf_ct_acct_merge(struct nf_conn *ct, enum ip_conntrack_info ctinfo,
972 const struct nf_conn *loser_ct)
973 {
974 struct nf_conn_acct *acct;
975
976 acct = nf_conn_acct_find(loser_ct);
977 if (acct) {
978 struct nf_conn_counter *counter = acct->counter;
979 unsigned int bytes;
980
981 /* u32 should be fine since we must have seen one packet. */
982 bytes = atomic64_read(&counter[CTINFO2DIR(ctinfo)].bytes);
983 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), bytes);
984 }
985 }
986
__nf_conntrack_insert_prepare(struct nf_conn * ct)987 static void __nf_conntrack_insert_prepare(struct nf_conn *ct)
988 {
989 struct nf_conn_tstamp *tstamp;
990
991 refcount_inc(&ct->ct_general.use);
992
993 /* set conntrack timestamp, if enabled. */
994 tstamp = nf_conn_tstamp_find(ct);
995 if (tstamp)
996 tstamp->start = ktime_get_real_ns();
997 }
998
999 /* caller must hold locks to prevent concurrent changes */
__nf_ct_resolve_clash(struct sk_buff * skb,struct nf_conntrack_tuple_hash * h)1000 static int __nf_ct_resolve_clash(struct sk_buff *skb,
1001 struct nf_conntrack_tuple_hash *h)
1002 {
1003 /* This is the conntrack entry already in hashes that won race. */
1004 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1005 enum ip_conntrack_info ctinfo;
1006 struct nf_conn *loser_ct;
1007
1008 loser_ct = nf_ct_get(skb, &ctinfo);
1009
1010 if (nf_ct_is_dying(ct))
1011 return NF_DROP;
1012
1013 if (((ct->status & IPS_NAT_DONE_MASK) == 0) ||
1014 nf_ct_match(ct, loser_ct)) {
1015 struct net *net = nf_ct_net(ct);
1016
1017 nf_conntrack_get(&ct->ct_general);
1018
1019 nf_ct_acct_merge(ct, ctinfo, loser_ct);
1020 nf_ct_put(loser_ct);
1021 nf_ct_set(skb, ct, ctinfo);
1022
1023 NF_CT_STAT_INC(net, clash_resolve);
1024 return NF_ACCEPT;
1025 }
1026
1027 return NF_DROP;
1028 }
1029
1030 /**
1031 * nf_ct_resolve_clash_harder - attempt to insert clashing conntrack entry
1032 *
1033 * @skb: skb that causes the collision
1034 * @repl_idx: hash slot for reply direction
1035 *
1036 * Called when origin or reply direction had a clash.
1037 * The skb can be handled without packet drop provided the reply direction
1038 * is unique or there the existing entry has the identical tuple in both
1039 * directions.
1040 *
1041 * Caller must hold conntrack table locks to prevent concurrent updates.
1042 *
1043 * Returns NF_DROP if the clash could not be handled.
1044 */
nf_ct_resolve_clash_harder(struct sk_buff * skb,u32 repl_idx)1045 static int nf_ct_resolve_clash_harder(struct sk_buff *skb, u32 repl_idx)
1046 {
1047 struct nf_conn *loser_ct = (struct nf_conn *)skb_nfct(skb);
1048 const struct nf_conntrack_zone *zone;
1049 struct nf_conntrack_tuple_hash *h;
1050 struct hlist_nulls_node *n;
1051 struct net *net;
1052
1053 zone = nf_ct_zone(loser_ct);
1054 net = nf_ct_net(loser_ct);
1055
1056 /* Reply direction must never result in a clash, unless both origin
1057 * and reply tuples are identical.
1058 */
1059 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[repl_idx], hnnode) {
1060 if (nf_ct_key_equal(h,
1061 &loser_ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1062 zone, net))
1063 return __nf_ct_resolve_clash(skb, h);
1064 }
1065
1066 /* We want the clashing entry to go away real soon: 1 second timeout. */
1067 WRITE_ONCE(loser_ct->timeout, nfct_time_stamp + HZ);
1068
1069 /* IPS_NAT_CLASH removes the entry automatically on the first
1070 * reply. Also prevents UDP tracker from moving the entry to
1071 * ASSURED state, i.e. the entry can always be evicted under
1072 * pressure.
1073 */
1074 loser_ct->status |= IPS_FIXED_TIMEOUT | IPS_NAT_CLASH;
1075
1076 __nf_conntrack_insert_prepare(loser_ct);
1077
1078 /* fake add for ORIGINAL dir: we want lookups to only find the entry
1079 * already in the table. This also hides the clashing entry from
1080 * ctnetlink iteration, i.e. conntrack -L won't show them.
1081 */
1082 hlist_nulls_add_fake(&loser_ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode);
1083
1084 hlist_nulls_add_head_rcu(&loser_ct->tuplehash[IP_CT_DIR_REPLY].hnnode,
1085 &nf_conntrack_hash[repl_idx]);
1086
1087 NF_CT_STAT_INC(net, clash_resolve);
1088 return NF_ACCEPT;
1089 }
1090
1091 /**
1092 * nf_ct_resolve_clash - attempt to handle clash without packet drop
1093 *
1094 * @skb: skb that causes the clash
1095 * @h: tuplehash of the clashing entry already in table
1096 * @reply_hash: hash slot for reply direction
1097 *
1098 * A conntrack entry can be inserted to the connection tracking table
1099 * if there is no existing entry with an identical tuple.
1100 *
1101 * If there is one, @skb (and the assocated, unconfirmed conntrack) has
1102 * to be dropped. In case @skb is retransmitted, next conntrack lookup
1103 * will find the already-existing entry.
1104 *
1105 * The major problem with such packet drop is the extra delay added by
1106 * the packet loss -- it will take some time for a retransmit to occur
1107 * (or the sender to time out when waiting for a reply).
1108 *
1109 * This function attempts to handle the situation without packet drop.
1110 *
1111 * If @skb has no NAT transformation or if the colliding entries are
1112 * exactly the same, only the to-be-confirmed conntrack entry is discarded
1113 * and @skb is associated with the conntrack entry already in the table.
1114 *
1115 * Failing that, the new, unconfirmed conntrack is still added to the table
1116 * provided that the collision only occurs in the ORIGINAL direction.
1117 * The new entry will be added only in the non-clashing REPLY direction,
1118 * so packets in the ORIGINAL direction will continue to match the existing
1119 * entry. The new entry will also have a fixed timeout so it expires --
1120 * due to the collision, it will only see reply traffic.
1121 *
1122 * Returns NF_DROP if the clash could not be resolved.
1123 */
1124 static __cold noinline int
nf_ct_resolve_clash(struct sk_buff * skb,struct nf_conntrack_tuple_hash * h,u32 reply_hash)1125 nf_ct_resolve_clash(struct sk_buff *skb, struct nf_conntrack_tuple_hash *h,
1126 u32 reply_hash)
1127 {
1128 /* This is the conntrack entry already in hashes that won race. */
1129 struct nf_conn *ct = nf_ct_tuplehash_to_ctrack(h);
1130 const struct nf_conntrack_l4proto *l4proto;
1131 enum ip_conntrack_info ctinfo;
1132 struct nf_conn *loser_ct;
1133 struct net *net;
1134 int ret;
1135
1136 loser_ct = nf_ct_get(skb, &ctinfo);
1137 net = nf_ct_net(loser_ct);
1138
1139 l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1140 if (!l4proto->allow_clash)
1141 goto drop;
1142
1143 ret = __nf_ct_resolve_clash(skb, h);
1144 if (ret == NF_ACCEPT)
1145 return ret;
1146
1147 ret = nf_ct_resolve_clash_harder(skb, reply_hash);
1148 if (ret == NF_ACCEPT)
1149 return ret;
1150
1151 drop:
1152 NF_CT_STAT_INC(net, drop);
1153 NF_CT_STAT_INC(net, insert_failed);
1154 return NF_DROP;
1155 }
1156
1157 /* Confirm a connection given skb; places it in hash table */
1158 int
__nf_conntrack_confirm(struct sk_buff * skb)1159 __nf_conntrack_confirm(struct sk_buff *skb)
1160 {
1161 unsigned int chainlen = 0, sequence, max_chainlen;
1162 const struct nf_conntrack_zone *zone;
1163 unsigned int hash, reply_hash;
1164 struct nf_conntrack_tuple_hash *h;
1165 struct nf_conn *ct;
1166 struct nf_conn_help *help;
1167 struct hlist_nulls_node *n;
1168 enum ip_conntrack_info ctinfo;
1169 struct net *net;
1170 int ret = NF_DROP;
1171
1172 ct = nf_ct_get(skb, &ctinfo);
1173 net = nf_ct_net(ct);
1174
1175 /* ipt_REJECT uses nf_conntrack_attach to attach related
1176 ICMP/TCP RST packets in other direction. Actual packet
1177 which created connection will be IP_CT_NEW or for an
1178 expected connection, IP_CT_RELATED. */
1179 if (CTINFO2DIR(ctinfo) != IP_CT_DIR_ORIGINAL)
1180 return NF_ACCEPT;
1181
1182 zone = nf_ct_zone(ct);
1183 local_bh_disable();
1184
1185 do {
1186 sequence = read_seqcount_begin(&nf_conntrack_generation);
1187 /* reuse the hash saved before */
1188 hash = *(unsigned long *)&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev;
1189 hash = scale_hash(hash);
1190 reply_hash = hash_conntrack(net,
1191 &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1192 nf_ct_zone_id(nf_ct_zone(ct), IP_CT_DIR_REPLY));
1193 } while (nf_conntrack_double_lock(net, hash, reply_hash, sequence));
1194
1195 /* We're not in hash table, and we refuse to set up related
1196 * connections for unconfirmed conns. But packet copies and
1197 * REJECT will give spurious warnings here.
1198 */
1199
1200 /* Another skb with the same unconfirmed conntrack may
1201 * win the race. This may happen for bridge(br_flood)
1202 * or broadcast/multicast packets do skb_clone with
1203 * unconfirmed conntrack.
1204 */
1205 if (unlikely(nf_ct_is_confirmed(ct))) {
1206 WARN_ON_ONCE(1);
1207 nf_conntrack_double_unlock(hash, reply_hash);
1208 local_bh_enable();
1209 return NF_DROP;
1210 }
1211
1212 if (!nf_ct_ext_valid_pre(ct->ext)) {
1213 NF_CT_STAT_INC(net, insert_failed);
1214 goto dying;
1215 }
1216
1217 pr_debug("Confirming conntrack %p\n", ct);
1218 /* We have to check the DYING flag after unlink to prevent
1219 * a race against nf_ct_get_next_corpse() possibly called from
1220 * user context, else we insert an already 'dead' hash, blocking
1221 * further use of that particular connection -JM.
1222 */
1223 ct->status |= IPS_CONFIRMED;
1224
1225 if (unlikely(nf_ct_is_dying(ct))) {
1226 NF_CT_STAT_INC(net, insert_failed);
1227 goto dying;
1228 }
1229
1230 max_chainlen = MIN_CHAINLEN + prandom_u32_max(MAX_CHAINLEN);
1231 /* See if there's one in the list already, including reverse:
1232 NAT could have grabbed it without realizing, since we're
1233 not in the hash. If there is, we lost race. */
1234 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[hash], hnnode) {
1235 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1236 zone, net))
1237 goto out;
1238 if (chainlen++ > max_chainlen)
1239 goto chaintoolong;
1240 }
1241
1242 chainlen = 0;
1243 hlist_nulls_for_each_entry(h, n, &nf_conntrack_hash[reply_hash], hnnode) {
1244 if (nf_ct_key_equal(h, &ct->tuplehash[IP_CT_DIR_REPLY].tuple,
1245 zone, net))
1246 goto out;
1247 if (chainlen++ > max_chainlen) {
1248 chaintoolong:
1249 NF_CT_STAT_INC(net, chaintoolong);
1250 NF_CT_STAT_INC(net, insert_failed);
1251 ret = NF_DROP;
1252 goto dying;
1253 }
1254 }
1255
1256 /* Timer relative to confirmation time, not original
1257 setting time, otherwise we'd get timer wrap in
1258 weird delay cases. */
1259 ct->timeout += nfct_time_stamp;
1260
1261 __nf_conntrack_insert_prepare(ct);
1262
1263 /* Since the lookup is lockless, hash insertion must be done after
1264 * starting the timer and setting the CONFIRMED bit. The RCU barriers
1265 * guarantee that no other CPU can find the conntrack before the above
1266 * stores are visible.
1267 */
1268 __nf_conntrack_hash_insert(ct, hash, reply_hash);
1269 nf_conntrack_double_unlock(hash, reply_hash);
1270 local_bh_enable();
1271
1272 /* ext area is still valid (rcu read lock is held,
1273 * but will go out of scope soon, we need to remove
1274 * this conntrack again.
1275 */
1276 if (!nf_ct_ext_valid_post(ct->ext)) {
1277 nf_ct_kill(ct);
1278 NF_CT_STAT_INC_ATOMIC(net, drop);
1279 return NF_DROP;
1280 }
1281
1282 help = nfct_help(ct);
1283 if (help && help->helper)
1284 nf_conntrack_event_cache(IPCT_HELPER, ct);
1285
1286 nf_conntrack_event_cache(master_ct(ct) ?
1287 IPCT_RELATED : IPCT_NEW, ct);
1288 return NF_ACCEPT;
1289
1290 out:
1291 ret = nf_ct_resolve_clash(skb, h, reply_hash);
1292 dying:
1293 nf_conntrack_double_unlock(hash, reply_hash);
1294 local_bh_enable();
1295 return ret;
1296 }
1297 EXPORT_SYMBOL_GPL(__nf_conntrack_confirm);
1298
1299 /* Returns true if a connection correspondings to the tuple (required
1300 for NAT). */
1301 int
nf_conntrack_tuple_taken(const struct nf_conntrack_tuple * tuple,const struct nf_conn * ignored_conntrack)1302 nf_conntrack_tuple_taken(const struct nf_conntrack_tuple *tuple,
1303 const struct nf_conn *ignored_conntrack)
1304 {
1305 struct net *net = nf_ct_net(ignored_conntrack);
1306 const struct nf_conntrack_zone *zone;
1307 struct nf_conntrack_tuple_hash *h;
1308 struct hlist_nulls_head *ct_hash;
1309 unsigned int hash, hsize;
1310 struct hlist_nulls_node *n;
1311 struct nf_conn *ct;
1312
1313 zone = nf_ct_zone(ignored_conntrack);
1314
1315 rcu_read_lock();
1316 begin:
1317 nf_conntrack_get_ht(&ct_hash, &hsize);
1318 hash = __hash_conntrack(net, tuple, nf_ct_zone_id(zone, IP_CT_DIR_REPLY), hsize);
1319
1320 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[hash], hnnode) {
1321 ct = nf_ct_tuplehash_to_ctrack(h);
1322
1323 if (ct == ignored_conntrack)
1324 continue;
1325
1326 if (nf_ct_is_expired(ct)) {
1327 nf_ct_gc_expired(ct);
1328 continue;
1329 }
1330
1331 if (nf_ct_key_equal(h, tuple, zone, net)) {
1332 /* Tuple is taken already, so caller will need to find
1333 * a new source port to use.
1334 *
1335 * Only exception:
1336 * If the *original tuples* are identical, then both
1337 * conntracks refer to the same flow.
1338 * This is a rare situation, it can occur e.g. when
1339 * more than one UDP packet is sent from same socket
1340 * in different threads.
1341 *
1342 * Let nf_ct_resolve_clash() deal with this later.
1343 */
1344 if (nf_ct_tuple_equal(&ignored_conntrack->tuplehash[IP_CT_DIR_ORIGINAL].tuple,
1345 &ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple) &&
1346 nf_ct_zone_equal(ct, zone, IP_CT_DIR_ORIGINAL))
1347 continue;
1348
1349 NF_CT_STAT_INC_ATOMIC(net, found);
1350 rcu_read_unlock();
1351 return 1;
1352 }
1353 }
1354
1355 if (get_nulls_value(n) != hash) {
1356 NF_CT_STAT_INC_ATOMIC(net, search_restart);
1357 goto begin;
1358 }
1359
1360 rcu_read_unlock();
1361
1362 return 0;
1363 }
1364 EXPORT_SYMBOL_GPL(nf_conntrack_tuple_taken);
1365
1366 #define NF_CT_EVICTION_RANGE 8
1367
1368 /* There's a small race here where we may free a just-assured
1369 connection. Too bad: we're in trouble anyway. */
early_drop_list(struct net * net,struct hlist_nulls_head * head)1370 static unsigned int early_drop_list(struct net *net,
1371 struct hlist_nulls_head *head)
1372 {
1373 struct nf_conntrack_tuple_hash *h;
1374 struct hlist_nulls_node *n;
1375 unsigned int drops = 0;
1376 struct nf_conn *tmp;
1377
1378 hlist_nulls_for_each_entry_rcu(h, n, head, hnnode) {
1379 tmp = nf_ct_tuplehash_to_ctrack(h);
1380
1381 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status))
1382 continue;
1383
1384 if (nf_ct_is_expired(tmp)) {
1385 nf_ct_gc_expired(tmp);
1386 continue;
1387 }
1388
1389 if (test_bit(IPS_ASSURED_BIT, &tmp->status) ||
1390 !net_eq(nf_ct_net(tmp), net) ||
1391 nf_ct_is_dying(tmp))
1392 continue;
1393
1394 if (!refcount_inc_not_zero(&tmp->ct_general.use))
1395 continue;
1396
1397 /* load ->ct_net and ->status after refcount increase */
1398 smp_acquire__after_ctrl_dep();
1399
1400 /* kill only if still in same netns -- might have moved due to
1401 * SLAB_TYPESAFE_BY_RCU rules.
1402 *
1403 * We steal the timer reference. If that fails timer has
1404 * already fired or someone else deleted it. Just drop ref
1405 * and move to next entry.
1406 */
1407 if (net_eq(nf_ct_net(tmp), net) &&
1408 nf_ct_is_confirmed(tmp) &&
1409 nf_ct_delete(tmp, 0, 0))
1410 drops++;
1411
1412 nf_ct_put(tmp);
1413 }
1414
1415 return drops;
1416 }
1417
early_drop(struct net * net,unsigned int hash)1418 static noinline int early_drop(struct net *net, unsigned int hash)
1419 {
1420 unsigned int i, bucket;
1421
1422 for (i = 0; i < NF_CT_EVICTION_RANGE; i++) {
1423 struct hlist_nulls_head *ct_hash;
1424 unsigned int hsize, drops;
1425
1426 rcu_read_lock();
1427 nf_conntrack_get_ht(&ct_hash, &hsize);
1428 if (!i)
1429 bucket = reciprocal_scale(hash, hsize);
1430 else
1431 bucket = (bucket + 1) % hsize;
1432
1433 drops = early_drop_list(net, &ct_hash[bucket]);
1434 rcu_read_unlock();
1435
1436 if (drops) {
1437 NF_CT_STAT_ADD_ATOMIC(net, early_drop, drops);
1438 return true;
1439 }
1440 }
1441
1442 return false;
1443 }
1444
gc_worker_skip_ct(const struct nf_conn * ct)1445 static bool gc_worker_skip_ct(const struct nf_conn *ct)
1446 {
1447 return !nf_ct_is_confirmed(ct) || nf_ct_is_dying(ct);
1448 }
1449
gc_worker_can_early_drop(const struct nf_conn * ct)1450 static bool gc_worker_can_early_drop(const struct nf_conn *ct)
1451 {
1452 const struct nf_conntrack_l4proto *l4proto;
1453
1454 if (!test_bit(IPS_ASSURED_BIT, &ct->status))
1455 return true;
1456
1457 l4proto = nf_ct_l4proto_find(nf_ct_protonum(ct));
1458 if (l4proto->can_early_drop && l4proto->can_early_drop(ct))
1459 return true;
1460
1461 return false;
1462 }
1463
gc_worker(struct work_struct * work)1464 static void gc_worker(struct work_struct *work)
1465 {
1466 unsigned int i, hashsz, nf_conntrack_max95 = 0;
1467 u32 end_time, start_time = nfct_time_stamp;
1468 struct conntrack_gc_work *gc_work;
1469 unsigned int expired_count = 0;
1470 unsigned long next_run;
1471 s32 delta_time;
1472 long count;
1473
1474 gc_work = container_of(work, struct conntrack_gc_work, dwork.work);
1475
1476 i = gc_work->next_bucket;
1477 if (gc_work->early_drop)
1478 nf_conntrack_max95 = nf_conntrack_max / 100u * 95u;
1479
1480 if (i == 0) {
1481 gc_work->avg_timeout = GC_SCAN_INTERVAL_INIT;
1482 gc_work->count = GC_SCAN_INITIAL_COUNT;
1483 gc_work->start_time = start_time;
1484 }
1485
1486 next_run = gc_work->avg_timeout;
1487 count = gc_work->count;
1488
1489 end_time = start_time + GC_SCAN_MAX_DURATION;
1490
1491 do {
1492 struct nf_conntrack_tuple_hash *h;
1493 struct hlist_nulls_head *ct_hash;
1494 struct hlist_nulls_node *n;
1495 struct nf_conn *tmp;
1496
1497 rcu_read_lock();
1498
1499 nf_conntrack_get_ht(&ct_hash, &hashsz);
1500 if (i >= hashsz) {
1501 rcu_read_unlock();
1502 break;
1503 }
1504
1505 hlist_nulls_for_each_entry_rcu(h, n, &ct_hash[i], hnnode) {
1506 struct nf_conntrack_net *cnet;
1507 struct net *net;
1508 long expires;
1509
1510 tmp = nf_ct_tuplehash_to_ctrack(h);
1511
1512 if (test_bit(IPS_OFFLOAD_BIT, &tmp->status)) {
1513 nf_ct_offload_timeout(tmp);
1514 continue;
1515 }
1516
1517 if (expired_count > GC_SCAN_EXPIRED_MAX) {
1518 rcu_read_unlock();
1519
1520 gc_work->next_bucket = i;
1521 gc_work->avg_timeout = next_run;
1522 gc_work->count = count;
1523
1524 delta_time = nfct_time_stamp - gc_work->start_time;
1525
1526 /* re-sched immediately if total cycle time is exceeded */
1527 next_run = delta_time < (s32)GC_SCAN_INTERVAL_MAX;
1528 goto early_exit;
1529 }
1530
1531 if (nf_ct_is_expired(tmp)) {
1532 nf_ct_gc_expired(tmp);
1533 expired_count++;
1534 continue;
1535 }
1536
1537 expires = clamp(nf_ct_expires(tmp), GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_CLAMP);
1538 expires = (expires - (long)next_run) / ++count;
1539 next_run += expires;
1540
1541 if (nf_conntrack_max95 == 0 || gc_worker_skip_ct(tmp))
1542 continue;
1543
1544 net = nf_ct_net(tmp);
1545 cnet = nf_ct_pernet(net);
1546 if (atomic_read(&cnet->count) < nf_conntrack_max95)
1547 continue;
1548
1549 /* need to take reference to avoid possible races */
1550 if (!refcount_inc_not_zero(&tmp->ct_general.use))
1551 continue;
1552
1553 /* load ->status after refcount increase */
1554 smp_acquire__after_ctrl_dep();
1555
1556 if (gc_worker_skip_ct(tmp)) {
1557 nf_ct_put(tmp);
1558 continue;
1559 }
1560
1561 if (gc_worker_can_early_drop(tmp)) {
1562 nf_ct_kill(tmp);
1563 expired_count++;
1564 }
1565
1566 nf_ct_put(tmp);
1567 }
1568
1569 /* could check get_nulls_value() here and restart if ct
1570 * was moved to another chain. But given gc is best-effort
1571 * we will just continue with next hash slot.
1572 */
1573 rcu_read_unlock();
1574 cond_resched();
1575 i++;
1576
1577 delta_time = nfct_time_stamp - end_time;
1578 if (delta_time > 0 && i < hashsz) {
1579 gc_work->avg_timeout = next_run;
1580 gc_work->count = count;
1581 gc_work->next_bucket = i;
1582 next_run = 0;
1583 goto early_exit;
1584 }
1585 } while (i < hashsz);
1586
1587 gc_work->next_bucket = 0;
1588
1589 next_run = clamp(next_run, GC_SCAN_INTERVAL_MIN, GC_SCAN_INTERVAL_MAX);
1590
1591 delta_time = max_t(s32, nfct_time_stamp - gc_work->start_time, 1);
1592 if (next_run > (unsigned long)delta_time)
1593 next_run -= delta_time;
1594 else
1595 next_run = 1;
1596
1597 early_exit:
1598 if (gc_work->exiting)
1599 return;
1600
1601 if (next_run)
1602 gc_work->early_drop = false;
1603
1604 queue_delayed_work(system_power_efficient_wq, &gc_work->dwork, next_run);
1605 }
1606
conntrack_gc_work_init(struct conntrack_gc_work * gc_work)1607 static void conntrack_gc_work_init(struct conntrack_gc_work *gc_work)
1608 {
1609 INIT_DELAYED_WORK(&gc_work->dwork, gc_worker);
1610 gc_work->exiting = false;
1611 }
1612
1613 static struct nf_conn *
__nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp,u32 hash)1614 __nf_conntrack_alloc(struct net *net,
1615 const struct nf_conntrack_zone *zone,
1616 const struct nf_conntrack_tuple *orig,
1617 const struct nf_conntrack_tuple *repl,
1618 gfp_t gfp, u32 hash)
1619 {
1620 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
1621 unsigned int ct_count;
1622 struct nf_conn *ct;
1623
1624 /* We don't want any race condition at early drop stage */
1625 ct_count = atomic_inc_return(&cnet->count);
1626
1627 if (nf_conntrack_max && unlikely(ct_count > nf_conntrack_max)) {
1628 if (!early_drop(net, hash)) {
1629 if (!conntrack_gc_work.early_drop)
1630 conntrack_gc_work.early_drop = true;
1631 atomic_dec(&cnet->count);
1632 net_warn_ratelimited("nf_conntrack: table full, dropping packet\n");
1633 return ERR_PTR(-ENOMEM);
1634 }
1635 }
1636
1637 /*
1638 * Do not use kmem_cache_zalloc(), as this cache uses
1639 * SLAB_TYPESAFE_BY_RCU.
1640 */
1641 ct = kmem_cache_alloc(nf_conntrack_cachep, gfp);
1642 if (ct == NULL)
1643 goto out;
1644
1645 spin_lock_init(&ct->lock);
1646 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple = *orig;
1647 ct->tuplehash[IP_CT_DIR_ORIGINAL].hnnode.pprev = NULL;
1648 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *repl;
1649 /* save hash for reusing when confirming */
1650 *(unsigned long *)(&ct->tuplehash[IP_CT_DIR_REPLY].hnnode.pprev) = hash;
1651 ct->status = 0;
1652 WRITE_ONCE(ct->timeout, 0);
1653 write_pnet(&ct->ct_net, net);
1654 memset_after(ct, 0, __nfct_init_offset);
1655
1656 nf_ct_zone_add(ct, zone);
1657
1658 /* Because we use RCU lookups, we set ct_general.use to zero before
1659 * this is inserted in any list.
1660 */
1661 refcount_set(&ct->ct_general.use, 0);
1662 return ct;
1663 out:
1664 atomic_dec(&cnet->count);
1665 return ERR_PTR(-ENOMEM);
1666 }
1667
nf_conntrack_alloc(struct net * net,const struct nf_conntrack_zone * zone,const struct nf_conntrack_tuple * orig,const struct nf_conntrack_tuple * repl,gfp_t gfp)1668 struct nf_conn *nf_conntrack_alloc(struct net *net,
1669 const struct nf_conntrack_zone *zone,
1670 const struct nf_conntrack_tuple *orig,
1671 const struct nf_conntrack_tuple *repl,
1672 gfp_t gfp)
1673 {
1674 return __nf_conntrack_alloc(net, zone, orig, repl, gfp, 0);
1675 }
1676 EXPORT_SYMBOL_GPL(nf_conntrack_alloc);
1677
nf_conntrack_free(struct nf_conn * ct)1678 void nf_conntrack_free(struct nf_conn *ct)
1679 {
1680 struct net *net = nf_ct_net(ct);
1681 struct nf_conntrack_net *cnet;
1682
1683 /* A freed object has refcnt == 0, that's
1684 * the golden rule for SLAB_TYPESAFE_BY_RCU
1685 */
1686 WARN_ON(refcount_read(&ct->ct_general.use) != 0);
1687
1688 if (ct->status & IPS_SRC_NAT_DONE) {
1689 const struct nf_nat_hook *nat_hook;
1690
1691 rcu_read_lock();
1692 nat_hook = rcu_dereference(nf_nat_hook);
1693 if (nat_hook)
1694 nat_hook->remove_nat_bysrc(ct);
1695 rcu_read_unlock();
1696 }
1697
1698 kfree(ct->ext);
1699 kmem_cache_free(nf_conntrack_cachep, ct);
1700 cnet = nf_ct_pernet(net);
1701
1702 smp_mb__before_atomic();
1703 atomic_dec(&cnet->count);
1704 }
1705 EXPORT_SYMBOL_GPL(nf_conntrack_free);
1706
1707
1708 /* Allocate a new conntrack: we return -ENOMEM if classification
1709 failed due to stress. Otherwise it really is unclassifiable. */
1710 static noinline struct nf_conntrack_tuple_hash *
init_conntrack(struct net * net,struct nf_conn * tmpl,const struct nf_conntrack_tuple * tuple,struct sk_buff * skb,unsigned int dataoff,u32 hash)1711 init_conntrack(struct net *net, struct nf_conn *tmpl,
1712 const struct nf_conntrack_tuple *tuple,
1713 struct sk_buff *skb,
1714 unsigned int dataoff, u32 hash)
1715 {
1716 struct nf_conn *ct;
1717 struct nf_conn_help *help;
1718 struct nf_conntrack_tuple repl_tuple;
1719 #ifdef CONFIG_NF_CONNTRACK_EVENTS
1720 struct nf_conntrack_ecache *ecache;
1721 #endif
1722 struct nf_conntrack_expect *exp = NULL;
1723 const struct nf_conntrack_zone *zone;
1724 struct nf_conn_timeout *timeout_ext;
1725 struct nf_conntrack_zone tmp;
1726 struct nf_conntrack_net *cnet;
1727
1728 if (!nf_ct_invert_tuple(&repl_tuple, tuple)) {
1729 pr_debug("Can't invert tuple.\n");
1730 return NULL;
1731 }
1732
1733 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1734 ct = __nf_conntrack_alloc(net, zone, tuple, &repl_tuple, GFP_ATOMIC,
1735 hash);
1736 if (IS_ERR(ct))
1737 return (struct nf_conntrack_tuple_hash *)ct;
1738
1739 if (!nf_ct_add_synproxy(ct, tmpl)) {
1740 nf_conntrack_free(ct);
1741 return ERR_PTR(-ENOMEM);
1742 }
1743
1744 timeout_ext = tmpl ? nf_ct_timeout_find(tmpl) : NULL;
1745
1746 if (timeout_ext)
1747 nf_ct_timeout_ext_add(ct, rcu_dereference(timeout_ext->timeout),
1748 GFP_ATOMIC);
1749
1750 nf_ct_acct_ext_add(ct, GFP_ATOMIC);
1751 nf_ct_tstamp_ext_add(ct, GFP_ATOMIC);
1752 nf_ct_labels_ext_add(ct);
1753
1754 #ifdef CONFIG_NF_CONNTRACK_EVENTS
1755 ecache = tmpl ? nf_ct_ecache_find(tmpl) : NULL;
1756
1757 if ((ecache || net->ct.sysctl_events) &&
1758 !nf_ct_ecache_ext_add(ct, ecache ? ecache->ctmask : 0,
1759 ecache ? ecache->expmask : 0,
1760 GFP_ATOMIC)) {
1761 nf_conntrack_free(ct);
1762 return ERR_PTR(-ENOMEM);
1763 }
1764 #endif
1765
1766 cnet = nf_ct_pernet(net);
1767 if (cnet->expect_count) {
1768 spin_lock_bh(&nf_conntrack_expect_lock);
1769 exp = nf_ct_find_expectation(net, zone, tuple);
1770 if (exp) {
1771 pr_debug("expectation arrives ct=%p exp=%p\n",
1772 ct, exp);
1773 /* Welcome, Mr. Bond. We've been expecting you... */
1774 __set_bit(IPS_EXPECTED_BIT, &ct->status);
1775 /* exp->master safe, refcnt bumped in nf_ct_find_expectation */
1776 ct->master = exp->master;
1777 if (exp->helper) {
1778 help = nf_ct_helper_ext_add(ct, GFP_ATOMIC);
1779 if (help)
1780 rcu_assign_pointer(help->helper, exp->helper);
1781 }
1782
1783 #ifdef CONFIG_NF_CONNTRACK_MARK
1784 ct->mark = READ_ONCE(exp->master->mark);
1785 #endif
1786 #ifdef CONFIG_NF_CONNTRACK_SECMARK
1787 ct->secmark = exp->master->secmark;
1788 #endif
1789 NF_CT_STAT_INC(net, expect_new);
1790 }
1791 spin_unlock_bh(&nf_conntrack_expect_lock);
1792 }
1793 if (!exp && tmpl)
1794 __nf_ct_try_assign_helper(ct, tmpl, GFP_ATOMIC);
1795
1796 /* Other CPU might have obtained a pointer to this object before it was
1797 * released. Because refcount is 0, refcount_inc_not_zero() will fail.
1798 *
1799 * After refcount_set(1) it will succeed; ensure that zeroing of
1800 * ct->status and the correct ct->net pointer are visible; else other
1801 * core might observe CONFIRMED bit which means the entry is valid and
1802 * in the hash table, but its not (anymore).
1803 */
1804 smp_wmb();
1805
1806 /* Now it is going to be associated with an sk_buff, set refcount to 1. */
1807 refcount_set(&ct->ct_general.use, 1);
1808
1809 if (exp) {
1810 if (exp->expectfn)
1811 exp->expectfn(ct, exp);
1812 nf_ct_expect_put(exp);
1813 }
1814
1815 return &ct->tuplehash[IP_CT_DIR_ORIGINAL];
1816 }
1817
1818 /* On success, returns 0, sets skb->_nfct | ctinfo */
1819 static int
resolve_normal_ct(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u_int8_t protonum,const struct nf_hook_state * state)1820 resolve_normal_ct(struct nf_conn *tmpl,
1821 struct sk_buff *skb,
1822 unsigned int dataoff,
1823 u_int8_t protonum,
1824 const struct nf_hook_state *state)
1825 {
1826 const struct nf_conntrack_zone *zone;
1827 struct nf_conntrack_tuple tuple;
1828 struct nf_conntrack_tuple_hash *h;
1829 enum ip_conntrack_info ctinfo;
1830 struct nf_conntrack_zone tmp;
1831 u32 hash, zone_id, rid;
1832 struct nf_conn *ct;
1833
1834 if (!nf_ct_get_tuple(skb, skb_network_offset(skb),
1835 dataoff, state->pf, protonum, state->net,
1836 &tuple)) {
1837 pr_debug("Can't get tuple\n");
1838 return 0;
1839 }
1840
1841 /* look for tuple match */
1842 zone = nf_ct_zone_tmpl(tmpl, skb, &tmp);
1843
1844 zone_id = nf_ct_zone_id(zone, IP_CT_DIR_ORIGINAL);
1845 hash = hash_conntrack_raw(&tuple, zone_id, state->net);
1846 h = __nf_conntrack_find_get(state->net, zone, &tuple, hash);
1847
1848 if (!h) {
1849 rid = nf_ct_zone_id(zone, IP_CT_DIR_REPLY);
1850 if (zone_id != rid) {
1851 u32 tmp = hash_conntrack_raw(&tuple, rid, state->net);
1852
1853 h = __nf_conntrack_find_get(state->net, zone, &tuple, tmp);
1854 }
1855 }
1856
1857 if (!h) {
1858 h = init_conntrack(state->net, tmpl, &tuple,
1859 skb, dataoff, hash);
1860 if (!h)
1861 return 0;
1862 if (IS_ERR(h))
1863 return PTR_ERR(h);
1864 }
1865 ct = nf_ct_tuplehash_to_ctrack(h);
1866
1867 /* It exists; we have (non-exclusive) reference. */
1868 if (NF_CT_DIRECTION(h) == IP_CT_DIR_REPLY) {
1869 ctinfo = IP_CT_ESTABLISHED_REPLY;
1870 } else {
1871 /* Once we've had two way comms, always ESTABLISHED. */
1872 if (test_bit(IPS_SEEN_REPLY_BIT, &ct->status)) {
1873 pr_debug("normal packet for %p\n", ct);
1874 ctinfo = IP_CT_ESTABLISHED;
1875 } else if (test_bit(IPS_EXPECTED_BIT, &ct->status)) {
1876 pr_debug("related packet for %p\n", ct);
1877 ctinfo = IP_CT_RELATED;
1878 } else {
1879 pr_debug("new packet for %p\n", ct);
1880 ctinfo = IP_CT_NEW;
1881 }
1882 }
1883 nf_ct_set(skb, ct, ctinfo);
1884 return 0;
1885 }
1886
1887 /*
1888 * icmp packets need special treatment to handle error messages that are
1889 * related to a connection.
1890 *
1891 * Callers need to check if skb has a conntrack assigned when this
1892 * helper returns; in such case skb belongs to an already known connection.
1893 */
1894 static unsigned int __cold
nf_conntrack_handle_icmp(struct nf_conn * tmpl,struct sk_buff * skb,unsigned int dataoff,u8 protonum,const struct nf_hook_state * state)1895 nf_conntrack_handle_icmp(struct nf_conn *tmpl,
1896 struct sk_buff *skb,
1897 unsigned int dataoff,
1898 u8 protonum,
1899 const struct nf_hook_state *state)
1900 {
1901 int ret;
1902
1903 if (state->pf == NFPROTO_IPV4 && protonum == IPPROTO_ICMP)
1904 ret = nf_conntrack_icmpv4_error(tmpl, skb, dataoff, state);
1905 #if IS_ENABLED(CONFIG_IPV6)
1906 else if (state->pf == NFPROTO_IPV6 && protonum == IPPROTO_ICMPV6)
1907 ret = nf_conntrack_icmpv6_error(tmpl, skb, dataoff, state);
1908 #endif
1909 else
1910 return NF_ACCEPT;
1911
1912 if (ret <= 0)
1913 NF_CT_STAT_INC_ATOMIC(state->net, error);
1914
1915 return ret;
1916 }
1917
generic_packet(struct nf_conn * ct,struct sk_buff * skb,enum ip_conntrack_info ctinfo)1918 static int generic_packet(struct nf_conn *ct, struct sk_buff *skb,
1919 enum ip_conntrack_info ctinfo)
1920 {
1921 const unsigned int *timeout = nf_ct_timeout_lookup(ct);
1922
1923 if (!timeout)
1924 timeout = &nf_generic_pernet(nf_ct_net(ct))->timeout;
1925
1926 nf_ct_refresh_acct(ct, ctinfo, skb, *timeout);
1927 return NF_ACCEPT;
1928 }
1929
1930 /* Returns verdict for packet, or -1 for invalid. */
nf_conntrack_handle_packet(struct nf_conn * ct,struct sk_buff * skb,unsigned int dataoff,enum ip_conntrack_info ctinfo,const struct nf_hook_state * state)1931 static int nf_conntrack_handle_packet(struct nf_conn *ct,
1932 struct sk_buff *skb,
1933 unsigned int dataoff,
1934 enum ip_conntrack_info ctinfo,
1935 const struct nf_hook_state *state)
1936 {
1937 switch (nf_ct_protonum(ct)) {
1938 case IPPROTO_TCP:
1939 return nf_conntrack_tcp_packet(ct, skb, dataoff,
1940 ctinfo, state);
1941 case IPPROTO_UDP:
1942 return nf_conntrack_udp_packet(ct, skb, dataoff,
1943 ctinfo, state);
1944 case IPPROTO_ICMP:
1945 return nf_conntrack_icmp_packet(ct, skb, ctinfo, state);
1946 #if IS_ENABLED(CONFIG_IPV6)
1947 case IPPROTO_ICMPV6:
1948 return nf_conntrack_icmpv6_packet(ct, skb, ctinfo, state);
1949 #endif
1950 #ifdef CONFIG_NF_CT_PROTO_UDPLITE
1951 case IPPROTO_UDPLITE:
1952 return nf_conntrack_udplite_packet(ct, skb, dataoff,
1953 ctinfo, state);
1954 #endif
1955 #ifdef CONFIG_NF_CT_PROTO_SCTP
1956 case IPPROTO_SCTP:
1957 return nf_conntrack_sctp_packet(ct, skb, dataoff,
1958 ctinfo, state);
1959 #endif
1960 #ifdef CONFIG_NF_CT_PROTO_DCCP
1961 case IPPROTO_DCCP:
1962 return nf_conntrack_dccp_packet(ct, skb, dataoff,
1963 ctinfo, state);
1964 #endif
1965 #ifdef CONFIG_NF_CT_PROTO_GRE
1966 case IPPROTO_GRE:
1967 return nf_conntrack_gre_packet(ct, skb, dataoff,
1968 ctinfo, state);
1969 #endif
1970 }
1971
1972 return generic_packet(ct, skb, ctinfo);
1973 }
1974
1975 unsigned int
nf_conntrack_in(struct sk_buff * skb,const struct nf_hook_state * state)1976 nf_conntrack_in(struct sk_buff *skb, const struct nf_hook_state *state)
1977 {
1978 enum ip_conntrack_info ctinfo;
1979 struct nf_conn *ct, *tmpl;
1980 u_int8_t protonum;
1981 int dataoff, ret;
1982
1983 tmpl = nf_ct_get(skb, &ctinfo);
1984 if (tmpl || ctinfo == IP_CT_UNTRACKED) {
1985 /* Previously seen (loopback or untracked)? Ignore. */
1986 if ((tmpl && !nf_ct_is_template(tmpl)) ||
1987 ctinfo == IP_CT_UNTRACKED)
1988 return NF_ACCEPT;
1989 skb->_nfct = 0;
1990 }
1991
1992 /* rcu_read_lock()ed by nf_hook_thresh */
1993 dataoff = get_l4proto(skb, skb_network_offset(skb), state->pf, &protonum);
1994 if (dataoff <= 0) {
1995 pr_debug("not prepared to track yet or error occurred\n");
1996 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
1997 ret = NF_ACCEPT;
1998 goto out;
1999 }
2000
2001 if (protonum == IPPROTO_ICMP || protonum == IPPROTO_ICMPV6) {
2002 ret = nf_conntrack_handle_icmp(tmpl, skb, dataoff,
2003 protonum, state);
2004 if (ret <= 0) {
2005 ret = -ret;
2006 goto out;
2007 }
2008 /* ICMP[v6] protocol trackers may assign one conntrack. */
2009 if (skb->_nfct)
2010 goto out;
2011 }
2012 repeat:
2013 ret = resolve_normal_ct(tmpl, skb, dataoff,
2014 protonum, state);
2015 if (ret < 0) {
2016 /* Too stressed to deal. */
2017 NF_CT_STAT_INC_ATOMIC(state->net, drop);
2018 ret = NF_DROP;
2019 goto out;
2020 }
2021
2022 ct = nf_ct_get(skb, &ctinfo);
2023 if (!ct) {
2024 /* Not valid part of a connection */
2025 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2026 ret = NF_ACCEPT;
2027 goto out;
2028 }
2029
2030 ret = nf_conntrack_handle_packet(ct, skb, dataoff, ctinfo, state);
2031 if (ret <= 0) {
2032 /* Invalid: inverse of the return code tells
2033 * the netfilter core what to do */
2034 pr_debug("nf_conntrack_in: Can't track with proto module\n");
2035 nf_ct_put(ct);
2036 skb->_nfct = 0;
2037 /* Special case: TCP tracker reports an attempt to reopen a
2038 * closed/aborted connection. We have to go back and create a
2039 * fresh conntrack.
2040 */
2041 if (ret == -NF_REPEAT)
2042 goto repeat;
2043
2044 NF_CT_STAT_INC_ATOMIC(state->net, invalid);
2045 if (ret == -NF_DROP)
2046 NF_CT_STAT_INC_ATOMIC(state->net, drop);
2047
2048 ret = -ret;
2049 goto out;
2050 }
2051
2052 if (ctinfo == IP_CT_ESTABLISHED_REPLY &&
2053 !test_and_set_bit(IPS_SEEN_REPLY_BIT, &ct->status))
2054 nf_conntrack_event_cache(IPCT_REPLY, ct);
2055 out:
2056 if (tmpl)
2057 nf_ct_put(tmpl);
2058
2059 return ret;
2060 }
2061 EXPORT_SYMBOL_GPL(nf_conntrack_in);
2062
2063 /* Alter reply tuple (maybe alter helper). This is for NAT, and is
2064 implicitly racy: see __nf_conntrack_confirm */
nf_conntrack_alter_reply(struct nf_conn * ct,const struct nf_conntrack_tuple * newreply)2065 void nf_conntrack_alter_reply(struct nf_conn *ct,
2066 const struct nf_conntrack_tuple *newreply)
2067 {
2068 struct nf_conn_help *help = nfct_help(ct);
2069
2070 /* Should be unconfirmed, so not in hash table yet */
2071 WARN_ON(nf_ct_is_confirmed(ct));
2072
2073 pr_debug("Altering reply tuple of %p to ", ct);
2074 nf_ct_dump_tuple(newreply);
2075
2076 ct->tuplehash[IP_CT_DIR_REPLY].tuple = *newreply;
2077 if (ct->master || (help && !hlist_empty(&help->expectations)))
2078 return;
2079 }
2080 EXPORT_SYMBOL_GPL(nf_conntrack_alter_reply);
2081
2082 /* Refresh conntrack for this many jiffies and do accounting if do_acct is 1 */
__nf_ct_refresh_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb,u32 extra_jiffies,bool do_acct)2083 void __nf_ct_refresh_acct(struct nf_conn *ct,
2084 enum ip_conntrack_info ctinfo,
2085 const struct sk_buff *skb,
2086 u32 extra_jiffies,
2087 bool do_acct)
2088 {
2089 /* Only update if this is not a fixed timeout */
2090 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
2091 goto acct;
2092
2093 /* If not in hash table, timer will not be active yet */
2094 if (nf_ct_is_confirmed(ct))
2095 extra_jiffies += nfct_time_stamp;
2096
2097 if (READ_ONCE(ct->timeout) != extra_jiffies)
2098 WRITE_ONCE(ct->timeout, extra_jiffies);
2099 acct:
2100 if (do_acct)
2101 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2102 }
2103 EXPORT_SYMBOL_GPL(__nf_ct_refresh_acct);
2104
nf_ct_kill_acct(struct nf_conn * ct,enum ip_conntrack_info ctinfo,const struct sk_buff * skb)2105 bool nf_ct_kill_acct(struct nf_conn *ct,
2106 enum ip_conntrack_info ctinfo,
2107 const struct sk_buff *skb)
2108 {
2109 nf_ct_acct_update(ct, CTINFO2DIR(ctinfo), skb->len);
2110
2111 return nf_ct_delete(ct, 0, 0);
2112 }
2113 EXPORT_SYMBOL_GPL(nf_ct_kill_acct);
2114
2115 #if IS_ENABLED(CONFIG_NF_CT_NETLINK)
2116
2117 #include <linux/netfilter/nfnetlink.h>
2118 #include <linux/netfilter/nfnetlink_conntrack.h>
2119 #include <linux/mutex.h>
2120
2121 /* Generic function for tcp/udp/sctp/dccp and alike. */
nf_ct_port_tuple_to_nlattr(struct sk_buff * skb,const struct nf_conntrack_tuple * tuple)2122 int nf_ct_port_tuple_to_nlattr(struct sk_buff *skb,
2123 const struct nf_conntrack_tuple *tuple)
2124 {
2125 if (nla_put_be16(skb, CTA_PROTO_SRC_PORT, tuple->src.u.tcp.port) ||
2126 nla_put_be16(skb, CTA_PROTO_DST_PORT, tuple->dst.u.tcp.port))
2127 goto nla_put_failure;
2128 return 0;
2129
2130 nla_put_failure:
2131 return -1;
2132 }
2133 EXPORT_SYMBOL_GPL(nf_ct_port_tuple_to_nlattr);
2134
2135 const struct nla_policy nf_ct_port_nla_policy[CTA_PROTO_MAX+1] = {
2136 [CTA_PROTO_SRC_PORT] = { .type = NLA_U16 },
2137 [CTA_PROTO_DST_PORT] = { .type = NLA_U16 },
2138 };
2139 EXPORT_SYMBOL_GPL(nf_ct_port_nla_policy);
2140
nf_ct_port_nlattr_to_tuple(struct nlattr * tb[],struct nf_conntrack_tuple * t,u_int32_t flags)2141 int nf_ct_port_nlattr_to_tuple(struct nlattr *tb[],
2142 struct nf_conntrack_tuple *t,
2143 u_int32_t flags)
2144 {
2145 if (flags & CTA_FILTER_FLAG(CTA_PROTO_SRC_PORT)) {
2146 if (!tb[CTA_PROTO_SRC_PORT])
2147 return -EINVAL;
2148
2149 t->src.u.tcp.port = nla_get_be16(tb[CTA_PROTO_SRC_PORT]);
2150 }
2151
2152 if (flags & CTA_FILTER_FLAG(CTA_PROTO_DST_PORT)) {
2153 if (!tb[CTA_PROTO_DST_PORT])
2154 return -EINVAL;
2155
2156 t->dst.u.tcp.port = nla_get_be16(tb[CTA_PROTO_DST_PORT]);
2157 }
2158
2159 return 0;
2160 }
2161 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_to_tuple);
2162
nf_ct_port_nlattr_tuple_size(void)2163 unsigned int nf_ct_port_nlattr_tuple_size(void)
2164 {
2165 static unsigned int size __read_mostly;
2166
2167 if (!size)
2168 size = nla_policy_len(nf_ct_port_nla_policy, CTA_PROTO_MAX + 1);
2169
2170 return size;
2171 }
2172 EXPORT_SYMBOL_GPL(nf_ct_port_nlattr_tuple_size);
2173 #endif
2174
2175 /* Used by ipt_REJECT and ip6t_REJECT. */
nf_conntrack_attach(struct sk_buff * nskb,const struct sk_buff * skb)2176 static void nf_conntrack_attach(struct sk_buff *nskb, const struct sk_buff *skb)
2177 {
2178 struct nf_conn *ct;
2179 enum ip_conntrack_info ctinfo;
2180
2181 /* This ICMP is in reverse direction to the packet which caused it */
2182 ct = nf_ct_get(skb, &ctinfo);
2183 if (CTINFO2DIR(ctinfo) == IP_CT_DIR_ORIGINAL)
2184 ctinfo = IP_CT_RELATED_REPLY;
2185 else
2186 ctinfo = IP_CT_RELATED;
2187
2188 /* Attach to new skbuff, and increment count */
2189 nf_ct_set(nskb, ct, ctinfo);
2190 nf_conntrack_get(skb_nfct(nskb));
2191 }
2192
__nf_conntrack_update(struct net * net,struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)2193 static int __nf_conntrack_update(struct net *net, struct sk_buff *skb,
2194 struct nf_conn *ct,
2195 enum ip_conntrack_info ctinfo)
2196 {
2197 const struct nf_nat_hook *nat_hook;
2198 struct nf_conntrack_tuple_hash *h;
2199 struct nf_conntrack_tuple tuple;
2200 unsigned int status;
2201 int dataoff;
2202 u16 l3num;
2203 u8 l4num;
2204
2205 l3num = nf_ct_l3num(ct);
2206
2207 dataoff = get_l4proto(skb, skb_network_offset(skb), l3num, &l4num);
2208 if (dataoff <= 0)
2209 return -1;
2210
2211 if (!nf_ct_get_tuple(skb, skb_network_offset(skb), dataoff, l3num,
2212 l4num, net, &tuple))
2213 return -1;
2214
2215 if (ct->status & IPS_SRC_NAT) {
2216 memcpy(tuple.src.u3.all,
2217 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u3.all,
2218 sizeof(tuple.src.u3.all));
2219 tuple.src.u.all =
2220 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.src.u.all;
2221 }
2222
2223 if (ct->status & IPS_DST_NAT) {
2224 memcpy(tuple.dst.u3.all,
2225 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u3.all,
2226 sizeof(tuple.dst.u3.all));
2227 tuple.dst.u.all =
2228 ct->tuplehash[IP_CT_DIR_ORIGINAL].tuple.dst.u.all;
2229 }
2230
2231 h = nf_conntrack_find_get(net, nf_ct_zone(ct), &tuple);
2232 if (!h)
2233 return 0;
2234
2235 /* Store status bits of the conntrack that is clashing to re-do NAT
2236 * mangling according to what it has been done already to this packet.
2237 */
2238 status = ct->status;
2239
2240 nf_ct_put(ct);
2241 ct = nf_ct_tuplehash_to_ctrack(h);
2242 nf_ct_set(skb, ct, ctinfo);
2243
2244 nat_hook = rcu_dereference(nf_nat_hook);
2245 if (!nat_hook)
2246 return 0;
2247
2248 if (status & IPS_SRC_NAT &&
2249 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_SRC,
2250 IP_CT_DIR_ORIGINAL) == NF_DROP)
2251 return -1;
2252
2253 if (status & IPS_DST_NAT &&
2254 nat_hook->manip_pkt(skb, ct, NF_NAT_MANIP_DST,
2255 IP_CT_DIR_ORIGINAL) == NF_DROP)
2256 return -1;
2257
2258 return 0;
2259 }
2260
2261 /* This packet is coming from userspace via nf_queue, complete the packet
2262 * processing after the helper invocation in nf_confirm().
2263 */
nf_confirm_cthelper(struct sk_buff * skb,struct nf_conn * ct,enum ip_conntrack_info ctinfo)2264 static int nf_confirm_cthelper(struct sk_buff *skb, struct nf_conn *ct,
2265 enum ip_conntrack_info ctinfo)
2266 {
2267 const struct nf_conntrack_helper *helper;
2268 const struct nf_conn_help *help;
2269 int protoff;
2270
2271 help = nfct_help(ct);
2272 if (!help)
2273 return 0;
2274
2275 helper = rcu_dereference(help->helper);
2276 if (!(helper->flags & NF_CT_HELPER_F_USERSPACE))
2277 return 0;
2278
2279 switch (nf_ct_l3num(ct)) {
2280 case NFPROTO_IPV4:
2281 protoff = skb_network_offset(skb) + ip_hdrlen(skb);
2282 break;
2283 #if IS_ENABLED(CONFIG_IPV6)
2284 case NFPROTO_IPV6: {
2285 __be16 frag_off;
2286 u8 pnum;
2287
2288 pnum = ipv6_hdr(skb)->nexthdr;
2289 protoff = ipv6_skip_exthdr(skb, sizeof(struct ipv6hdr), &pnum,
2290 &frag_off);
2291 if (protoff < 0 || (frag_off & htons(~0x7)) != 0)
2292 return 0;
2293 break;
2294 }
2295 #endif
2296 default:
2297 return 0;
2298 }
2299
2300 if (test_bit(IPS_SEQ_ADJUST_BIT, &ct->status) &&
2301 !nf_is_loopback_packet(skb)) {
2302 if (!nf_ct_seq_adjust(skb, ct, ctinfo, protoff)) {
2303 NF_CT_STAT_INC_ATOMIC(nf_ct_net(ct), drop);
2304 return -1;
2305 }
2306 }
2307
2308 /* We've seen it coming out the other side: confirm it */
2309 return nf_conntrack_confirm(skb) == NF_DROP ? - 1 : 0;
2310 }
2311
nf_conntrack_update(struct net * net,struct sk_buff * skb)2312 static int nf_conntrack_update(struct net *net, struct sk_buff *skb)
2313 {
2314 enum ip_conntrack_info ctinfo;
2315 struct nf_conn *ct;
2316 int err;
2317
2318 ct = nf_ct_get(skb, &ctinfo);
2319 if (!ct)
2320 return 0;
2321
2322 if (!nf_ct_is_confirmed(ct)) {
2323 err = __nf_conntrack_update(net, skb, ct, ctinfo);
2324 if (err < 0)
2325 return err;
2326
2327 ct = nf_ct_get(skb, &ctinfo);
2328 }
2329
2330 return nf_confirm_cthelper(skb, ct, ctinfo);
2331 }
2332
nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple * dst_tuple,const struct sk_buff * skb)2333 static bool nf_conntrack_get_tuple_skb(struct nf_conntrack_tuple *dst_tuple,
2334 const struct sk_buff *skb)
2335 {
2336 const struct nf_conntrack_tuple *src_tuple;
2337 const struct nf_conntrack_tuple_hash *hash;
2338 struct nf_conntrack_tuple srctuple;
2339 enum ip_conntrack_info ctinfo;
2340 struct nf_conn *ct;
2341
2342 ct = nf_ct_get(skb, &ctinfo);
2343 if (ct) {
2344 src_tuple = nf_ct_tuple(ct, CTINFO2DIR(ctinfo));
2345 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2346 return true;
2347 }
2348
2349 if (!nf_ct_get_tuplepr(skb, skb_network_offset(skb),
2350 NFPROTO_IPV4, dev_net(skb->dev),
2351 &srctuple))
2352 return false;
2353
2354 hash = nf_conntrack_find_get(dev_net(skb->dev),
2355 &nf_ct_zone_dflt,
2356 &srctuple);
2357 if (!hash)
2358 return false;
2359
2360 ct = nf_ct_tuplehash_to_ctrack(hash);
2361 src_tuple = nf_ct_tuple(ct, !hash->tuple.dst.dir);
2362 memcpy(dst_tuple, src_tuple, sizeof(*dst_tuple));
2363 nf_ct_put(ct);
2364
2365 return true;
2366 }
2367
2368 /* Bring out ya dead! */
2369 static struct nf_conn *
get_next_corpse(int (* iter)(struct nf_conn * i,void * data),const struct nf_ct_iter_data * iter_data,unsigned int * bucket)2370 get_next_corpse(int (*iter)(struct nf_conn *i, void *data),
2371 const struct nf_ct_iter_data *iter_data, unsigned int *bucket)
2372 {
2373 struct nf_conntrack_tuple_hash *h;
2374 struct nf_conn *ct;
2375 struct hlist_nulls_node *n;
2376 spinlock_t *lockp;
2377
2378 for (; *bucket < nf_conntrack_htable_size; (*bucket)++) {
2379 struct hlist_nulls_head *hslot = &nf_conntrack_hash[*bucket];
2380
2381 if (hlist_nulls_empty(hslot))
2382 continue;
2383
2384 lockp = &nf_conntrack_locks[*bucket % CONNTRACK_LOCKS];
2385 local_bh_disable();
2386 nf_conntrack_lock(lockp);
2387 hlist_nulls_for_each_entry(h, n, hslot, hnnode) {
2388 if (NF_CT_DIRECTION(h) != IP_CT_DIR_REPLY)
2389 continue;
2390 /* All nf_conn objects are added to hash table twice, one
2391 * for original direction tuple, once for the reply tuple.
2392 *
2393 * Exception: In the IPS_NAT_CLASH case, only the reply
2394 * tuple is added (the original tuple already existed for
2395 * a different object).
2396 *
2397 * We only need to call the iterator once for each
2398 * conntrack, so we just use the 'reply' direction
2399 * tuple while iterating.
2400 */
2401 ct = nf_ct_tuplehash_to_ctrack(h);
2402
2403 if (iter_data->net &&
2404 !net_eq(iter_data->net, nf_ct_net(ct)))
2405 continue;
2406
2407 if (iter(ct, iter_data->data))
2408 goto found;
2409 }
2410 spin_unlock(lockp);
2411 local_bh_enable();
2412 cond_resched();
2413 }
2414
2415 return NULL;
2416 found:
2417 refcount_inc(&ct->ct_general.use);
2418 spin_unlock(lockp);
2419 local_bh_enable();
2420 return ct;
2421 }
2422
nf_ct_iterate_cleanup(int (* iter)(struct nf_conn * i,void * data),const struct nf_ct_iter_data * iter_data)2423 static void nf_ct_iterate_cleanup(int (*iter)(struct nf_conn *i, void *data),
2424 const struct nf_ct_iter_data *iter_data)
2425 {
2426 unsigned int bucket = 0;
2427 struct nf_conn *ct;
2428
2429 might_sleep();
2430
2431 mutex_lock(&nf_conntrack_mutex);
2432 while ((ct = get_next_corpse(iter, iter_data, &bucket)) != NULL) {
2433 /* Time to push up daises... */
2434
2435 nf_ct_delete(ct, iter_data->portid, iter_data->report);
2436 nf_ct_put(ct);
2437 cond_resched();
2438 }
2439 mutex_unlock(&nf_conntrack_mutex);
2440 }
2441
nf_ct_iterate_cleanup_net(int (* iter)(struct nf_conn * i,void * data),const struct nf_ct_iter_data * iter_data)2442 void nf_ct_iterate_cleanup_net(int (*iter)(struct nf_conn *i, void *data),
2443 const struct nf_ct_iter_data *iter_data)
2444 {
2445 struct net *net = iter_data->net;
2446 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2447
2448 might_sleep();
2449
2450 if (atomic_read(&cnet->count) == 0)
2451 return;
2452
2453 nf_ct_iterate_cleanup(iter, iter_data);
2454 }
2455 EXPORT_SYMBOL_GPL(nf_ct_iterate_cleanup_net);
2456
2457 /**
2458 * nf_ct_iterate_destroy - destroy unconfirmed conntracks and iterate table
2459 * @iter: callback to invoke for each conntrack
2460 * @data: data to pass to @iter
2461 *
2462 * Like nf_ct_iterate_cleanup, but first marks conntracks on the
2463 * unconfirmed list as dying (so they will not be inserted into
2464 * main table).
2465 *
2466 * Can only be called in module exit path.
2467 */
2468 void
nf_ct_iterate_destroy(int (* iter)(struct nf_conn * i,void * data),void * data)2469 nf_ct_iterate_destroy(int (*iter)(struct nf_conn *i, void *data), void *data)
2470 {
2471 struct nf_ct_iter_data iter_data = {};
2472 struct net *net;
2473
2474 down_read(&net_rwsem);
2475 for_each_net(net) {
2476 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2477
2478 if (atomic_read(&cnet->count) == 0)
2479 continue;
2480 nf_queue_nf_hook_drop(net);
2481 }
2482 up_read(&net_rwsem);
2483
2484 /* Need to wait for netns cleanup worker to finish, if its
2485 * running -- it might have deleted a net namespace from
2486 * the global list, so hook drop above might not have
2487 * affected all namespaces.
2488 */
2489 net_ns_barrier();
2490
2491 /* a skb w. unconfirmed conntrack could have been reinjected just
2492 * before we called nf_queue_nf_hook_drop().
2493 *
2494 * This makes sure its inserted into conntrack table.
2495 */
2496 synchronize_net();
2497
2498 nf_ct_ext_bump_genid();
2499 iter_data.data = data;
2500 nf_ct_iterate_cleanup(iter, &iter_data);
2501
2502 /* Another cpu might be in a rcu read section with
2503 * rcu protected pointer cleared in iter callback
2504 * or hidden via nf_ct_ext_bump_genid() above.
2505 *
2506 * Wait until those are done.
2507 */
2508 synchronize_rcu();
2509 }
2510 EXPORT_SYMBOL_GPL(nf_ct_iterate_destroy);
2511
kill_all(struct nf_conn * i,void * data)2512 static int kill_all(struct nf_conn *i, void *data)
2513 {
2514 return 1;
2515 }
2516
nf_conntrack_cleanup_start(void)2517 void nf_conntrack_cleanup_start(void)
2518 {
2519 cleanup_nf_conntrack_bpf();
2520 conntrack_gc_work.exiting = true;
2521 }
2522
nf_conntrack_cleanup_end(void)2523 void nf_conntrack_cleanup_end(void)
2524 {
2525 RCU_INIT_POINTER(nf_ct_hook, NULL);
2526 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2527 kvfree(nf_conntrack_hash);
2528
2529 nf_conntrack_proto_fini();
2530 nf_conntrack_helper_fini();
2531 nf_conntrack_expect_fini();
2532
2533 kmem_cache_destroy(nf_conntrack_cachep);
2534 }
2535
2536 /*
2537 * Mishearing the voices in his head, our hero wonders how he's
2538 * supposed to kill the mall.
2539 */
nf_conntrack_cleanup_net(struct net * net)2540 void nf_conntrack_cleanup_net(struct net *net)
2541 {
2542 LIST_HEAD(single);
2543
2544 list_add(&net->exit_list, &single);
2545 nf_conntrack_cleanup_net_list(&single);
2546 }
2547
nf_conntrack_cleanup_net_list(struct list_head * net_exit_list)2548 void nf_conntrack_cleanup_net_list(struct list_head *net_exit_list)
2549 {
2550 struct nf_ct_iter_data iter_data = {};
2551 struct net *net;
2552 int busy;
2553
2554 /*
2555 * This makes sure all current packets have passed through
2556 * netfilter framework. Roll on, two-stage module
2557 * delete...
2558 */
2559 synchronize_net();
2560 i_see_dead_people:
2561 busy = 0;
2562 list_for_each_entry(net, net_exit_list, exit_list) {
2563 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2564
2565 iter_data.net = net;
2566 nf_ct_iterate_cleanup_net(kill_all, &iter_data);
2567 if (atomic_read(&cnet->count) != 0)
2568 busy = 1;
2569 }
2570 if (busy) {
2571 schedule();
2572 goto i_see_dead_people;
2573 }
2574
2575 list_for_each_entry(net, net_exit_list, exit_list) {
2576 nf_conntrack_ecache_pernet_fini(net);
2577 nf_conntrack_expect_pernet_fini(net);
2578 free_percpu(net->ct.stat);
2579 }
2580 }
2581
nf_ct_alloc_hashtable(unsigned int * sizep,int nulls)2582 void *nf_ct_alloc_hashtable(unsigned int *sizep, int nulls)
2583 {
2584 struct hlist_nulls_head *hash;
2585 unsigned int nr_slots, i;
2586
2587 if (*sizep > (UINT_MAX / sizeof(struct hlist_nulls_head)))
2588 return NULL;
2589
2590 BUILD_BUG_ON(sizeof(struct hlist_nulls_head) != sizeof(struct hlist_head));
2591 nr_slots = *sizep = roundup(*sizep, PAGE_SIZE / sizeof(struct hlist_nulls_head));
2592
2593 hash = kvcalloc(nr_slots, sizeof(struct hlist_nulls_head), GFP_KERNEL);
2594
2595 if (hash && nulls)
2596 for (i = 0; i < nr_slots; i++)
2597 INIT_HLIST_NULLS_HEAD(&hash[i], i);
2598
2599 return hash;
2600 }
2601 EXPORT_SYMBOL_GPL(nf_ct_alloc_hashtable);
2602
nf_conntrack_hash_resize(unsigned int hashsize)2603 int nf_conntrack_hash_resize(unsigned int hashsize)
2604 {
2605 int i, bucket;
2606 unsigned int old_size;
2607 struct hlist_nulls_head *hash, *old_hash;
2608 struct nf_conntrack_tuple_hash *h;
2609 struct nf_conn *ct;
2610
2611 if (!hashsize)
2612 return -EINVAL;
2613
2614 hash = nf_ct_alloc_hashtable(&hashsize, 1);
2615 if (!hash)
2616 return -ENOMEM;
2617
2618 mutex_lock(&nf_conntrack_mutex);
2619 old_size = nf_conntrack_htable_size;
2620 if (old_size == hashsize) {
2621 mutex_unlock(&nf_conntrack_mutex);
2622 kvfree(hash);
2623 return 0;
2624 }
2625
2626 local_bh_disable();
2627 nf_conntrack_all_lock();
2628 write_seqcount_begin(&nf_conntrack_generation);
2629
2630 /* Lookups in the old hash might happen in parallel, which means we
2631 * might get false negatives during connection lookup. New connections
2632 * created because of a false negative won't make it into the hash
2633 * though since that required taking the locks.
2634 */
2635
2636 for (i = 0; i < nf_conntrack_htable_size; i++) {
2637 while (!hlist_nulls_empty(&nf_conntrack_hash[i])) {
2638 unsigned int zone_id;
2639
2640 h = hlist_nulls_entry(nf_conntrack_hash[i].first,
2641 struct nf_conntrack_tuple_hash, hnnode);
2642 ct = nf_ct_tuplehash_to_ctrack(h);
2643 hlist_nulls_del_rcu(&h->hnnode);
2644
2645 zone_id = nf_ct_zone_id(nf_ct_zone(ct), NF_CT_DIRECTION(h));
2646 bucket = __hash_conntrack(nf_ct_net(ct),
2647 &h->tuple, zone_id, hashsize);
2648 hlist_nulls_add_head_rcu(&h->hnnode, &hash[bucket]);
2649 }
2650 }
2651 old_hash = nf_conntrack_hash;
2652
2653 nf_conntrack_hash = hash;
2654 nf_conntrack_htable_size = hashsize;
2655
2656 write_seqcount_end(&nf_conntrack_generation);
2657 nf_conntrack_all_unlock();
2658 local_bh_enable();
2659
2660 mutex_unlock(&nf_conntrack_mutex);
2661
2662 synchronize_net();
2663 kvfree(old_hash);
2664 return 0;
2665 }
2666
nf_conntrack_set_hashsize(const char * val,const struct kernel_param * kp)2667 int nf_conntrack_set_hashsize(const char *val, const struct kernel_param *kp)
2668 {
2669 unsigned int hashsize;
2670 int rc;
2671
2672 if (current->nsproxy->net_ns != &init_net)
2673 return -EOPNOTSUPP;
2674
2675 /* On boot, we can set this without any fancy locking. */
2676 if (!nf_conntrack_hash)
2677 return param_set_uint(val, kp);
2678
2679 rc = kstrtouint(val, 0, &hashsize);
2680 if (rc)
2681 return rc;
2682
2683 return nf_conntrack_hash_resize(hashsize);
2684 }
2685
nf_conntrack_init_start(void)2686 int nf_conntrack_init_start(void)
2687 {
2688 unsigned long nr_pages = totalram_pages();
2689 int max_factor = 8;
2690 int ret = -ENOMEM;
2691 int i;
2692
2693 seqcount_spinlock_init(&nf_conntrack_generation,
2694 &nf_conntrack_locks_all_lock);
2695
2696 for (i = 0; i < CONNTRACK_LOCKS; i++)
2697 spin_lock_init(&nf_conntrack_locks[i]);
2698
2699 if (!nf_conntrack_htable_size) {
2700 nf_conntrack_htable_size
2701 = (((nr_pages << PAGE_SHIFT) / 16384)
2702 / sizeof(struct hlist_head));
2703 if (BITS_PER_LONG >= 64 &&
2704 nr_pages > (4 * (1024 * 1024 * 1024 / PAGE_SIZE)))
2705 nf_conntrack_htable_size = 262144;
2706 else if (nr_pages > (1024 * 1024 * 1024 / PAGE_SIZE))
2707 nf_conntrack_htable_size = 65536;
2708
2709 if (nf_conntrack_htable_size < 1024)
2710 nf_conntrack_htable_size = 1024;
2711 /* Use a max. factor of one by default to keep the average
2712 * hash chain length at 2 entries. Each entry has to be added
2713 * twice (once for original direction, once for reply).
2714 * When a table size is given we use the old value of 8 to
2715 * avoid implicit reduction of the max entries setting.
2716 */
2717 max_factor = 1;
2718 }
2719
2720 nf_conntrack_hash = nf_ct_alloc_hashtable(&nf_conntrack_htable_size, 1);
2721 if (!nf_conntrack_hash)
2722 return -ENOMEM;
2723
2724 nf_conntrack_max = max_factor * nf_conntrack_htable_size;
2725
2726 nf_conntrack_cachep = kmem_cache_create("nf_conntrack",
2727 sizeof(struct nf_conn),
2728 NFCT_INFOMASK + 1,
2729 SLAB_TYPESAFE_BY_RCU | SLAB_HWCACHE_ALIGN, NULL);
2730 if (!nf_conntrack_cachep)
2731 goto err_cachep;
2732
2733 ret = nf_conntrack_expect_init();
2734 if (ret < 0)
2735 goto err_expect;
2736
2737 ret = nf_conntrack_helper_init();
2738 if (ret < 0)
2739 goto err_helper;
2740
2741 ret = nf_conntrack_proto_init();
2742 if (ret < 0)
2743 goto err_proto;
2744
2745 conntrack_gc_work_init(&conntrack_gc_work);
2746 queue_delayed_work(system_power_efficient_wq, &conntrack_gc_work.dwork, HZ);
2747
2748 ret = register_nf_conntrack_bpf();
2749 if (ret < 0)
2750 goto err_kfunc;
2751
2752 return 0;
2753
2754 err_kfunc:
2755 cancel_delayed_work_sync(&conntrack_gc_work.dwork);
2756 nf_conntrack_proto_fini();
2757 err_proto:
2758 nf_conntrack_helper_fini();
2759 err_helper:
2760 nf_conntrack_expect_fini();
2761 err_expect:
2762 kmem_cache_destroy(nf_conntrack_cachep);
2763 err_cachep:
2764 kvfree(nf_conntrack_hash);
2765 return ret;
2766 }
2767
2768 static const struct nf_ct_hook nf_conntrack_hook = {
2769 .update = nf_conntrack_update,
2770 .destroy = nf_ct_destroy,
2771 .get_tuple_skb = nf_conntrack_get_tuple_skb,
2772 .attach = nf_conntrack_attach,
2773 };
2774
nf_conntrack_init_end(void)2775 void nf_conntrack_init_end(void)
2776 {
2777 RCU_INIT_POINTER(nf_ct_hook, &nf_conntrack_hook);
2778 }
2779
2780 /*
2781 * We need to use special "null" values, not used in hash table
2782 */
2783 #define UNCONFIRMED_NULLS_VAL ((1<<30)+0)
2784
nf_conntrack_init_net(struct net * net)2785 int nf_conntrack_init_net(struct net *net)
2786 {
2787 struct nf_conntrack_net *cnet = nf_ct_pernet(net);
2788 int ret = -ENOMEM;
2789
2790 BUILD_BUG_ON(IP_CT_UNTRACKED == IP_CT_NUMBER);
2791 BUILD_BUG_ON_NOT_POWER_OF_2(CONNTRACK_LOCKS);
2792 atomic_set(&cnet->count, 0);
2793
2794 net->ct.stat = alloc_percpu(struct ip_conntrack_stat);
2795 if (!net->ct.stat)
2796 return ret;
2797
2798 ret = nf_conntrack_expect_pernet_init(net);
2799 if (ret < 0)
2800 goto err_expect;
2801
2802 nf_conntrack_acct_pernet_init(net);
2803 nf_conntrack_tstamp_pernet_init(net);
2804 nf_conntrack_ecache_pernet_init(net);
2805 nf_conntrack_proto_pernet_init(net);
2806
2807 return 0;
2808
2809 err_expect:
2810 free_percpu(net->ct.stat);
2811 return ret;
2812 }
2813
2814 /* ctnetlink code shared by both ctnetlink and nf_conntrack_bpf */
2815
__nf_ct_change_timeout(struct nf_conn * ct,u64 timeout)2816 int __nf_ct_change_timeout(struct nf_conn *ct, u64 timeout)
2817 {
2818 if (test_bit(IPS_FIXED_TIMEOUT_BIT, &ct->status))
2819 return -EPERM;
2820
2821 __nf_ct_set_timeout(ct, timeout);
2822
2823 if (test_bit(IPS_DYING_BIT, &ct->status))
2824 return -ETIME;
2825
2826 return 0;
2827 }
2828 EXPORT_SYMBOL_GPL(__nf_ct_change_timeout);
2829
__nf_ct_change_status(struct nf_conn * ct,unsigned long on,unsigned long off)2830 void __nf_ct_change_status(struct nf_conn *ct, unsigned long on, unsigned long off)
2831 {
2832 unsigned int bit;
2833
2834 /* Ignore these unchangable bits */
2835 on &= ~IPS_UNCHANGEABLE_MASK;
2836 off &= ~IPS_UNCHANGEABLE_MASK;
2837
2838 for (bit = 0; bit < __IPS_MAX_BIT; bit++) {
2839 if (on & (1 << bit))
2840 set_bit(bit, &ct->status);
2841 else if (off & (1 << bit))
2842 clear_bit(bit, &ct->status);
2843 }
2844 }
2845 EXPORT_SYMBOL_GPL(__nf_ct_change_status);
2846
nf_ct_change_status_common(struct nf_conn * ct,unsigned int status)2847 int nf_ct_change_status_common(struct nf_conn *ct, unsigned int status)
2848 {
2849 unsigned long d;
2850
2851 d = ct->status ^ status;
2852
2853 if (d & (IPS_EXPECTED|IPS_CONFIRMED|IPS_DYING))
2854 /* unchangeable */
2855 return -EBUSY;
2856
2857 if (d & IPS_SEEN_REPLY && !(status & IPS_SEEN_REPLY))
2858 /* SEEN_REPLY bit can only be set */
2859 return -EBUSY;
2860
2861 if (d & IPS_ASSURED && !(status & IPS_ASSURED))
2862 /* ASSURED bit can only be set */
2863 return -EBUSY;
2864
2865 __nf_ct_change_status(ct, status, 0);
2866 return 0;
2867 }
2868 EXPORT_SYMBOL_GPL(nf_ct_change_status_common);
2869