1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Intel Corporation. */
3
4 /* Intel(R) Ethernet Connection E800 Series Linux Driver */
5
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
8 #include <generated/utsrelease.h>
9 #include "ice.h"
10 #include "ice_base.h"
11 #include "ice_lib.h"
12 #include "ice_fltr.h"
13 #include "ice_dcb_lib.h"
14 #include "ice_dcb_nl.h"
15 #include "ice_devlink.h"
16 /* Including ice_trace.h with CREATE_TRACE_POINTS defined will generate the
17 * ice tracepoint functions. This must be done exactly once across the
18 * ice driver.
19 */
20 #define CREATE_TRACE_POINTS
21 #include "ice_trace.h"
22 #include "ice_eswitch.h"
23 #include "ice_tc_lib.h"
24 #include "ice_vsi_vlan_ops.h"
25
26 #define DRV_SUMMARY "Intel(R) Ethernet Connection E800 Series Linux Driver"
27 static const char ice_driver_string[] = DRV_SUMMARY;
28 static const char ice_copyright[] = "Copyright (c) 2018, Intel Corporation.";
29
30 /* DDP Package file located in firmware search paths (e.g. /lib/firmware/) */
31 #define ICE_DDP_PKG_PATH "intel/ice/ddp/"
32 #define ICE_DDP_PKG_FILE ICE_DDP_PKG_PATH "ice.pkg"
33
34 MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
35 MODULE_DESCRIPTION(DRV_SUMMARY);
36 MODULE_LICENSE("GPL v2");
37 MODULE_FIRMWARE(ICE_DDP_PKG_FILE);
38
39 static int debug = -1;
40 module_param(debug, int, 0644);
41 #ifndef CONFIG_DYNAMIC_DEBUG
42 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all), hw debug_mask (0x8XXXXXXX)");
43 #else
44 MODULE_PARM_DESC(debug, "netif level (0=none,...,16=all)");
45 #endif /* !CONFIG_DYNAMIC_DEBUG */
46
47 static DEFINE_IDA(ice_aux_ida);
48 DEFINE_STATIC_KEY_FALSE(ice_xdp_locking_key);
49 EXPORT_SYMBOL(ice_xdp_locking_key);
50
51 /**
52 * ice_hw_to_dev - Get device pointer from the hardware structure
53 * @hw: pointer to the device HW structure
54 *
55 * Used to access the device pointer from compilation units which can't easily
56 * include the definition of struct ice_pf without leading to circular header
57 * dependencies.
58 */
ice_hw_to_dev(struct ice_hw * hw)59 struct device *ice_hw_to_dev(struct ice_hw *hw)
60 {
61 struct ice_pf *pf = container_of(hw, struct ice_pf, hw);
62
63 return &pf->pdev->dev;
64 }
65
66 static struct workqueue_struct *ice_wq;
67 static const struct net_device_ops ice_netdev_safe_mode_ops;
68 static const struct net_device_ops ice_netdev_ops;
69
70 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type);
71
72 static void ice_vsi_release_all(struct ice_pf *pf);
73
74 static int ice_rebuild_channels(struct ice_pf *pf);
75 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_adv_fltr);
76
77 static int
78 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
79 void *cb_priv, enum tc_setup_type type, void *type_data,
80 void *data,
81 void (*cleanup)(struct flow_block_cb *block_cb));
82
netif_is_ice(struct net_device * dev)83 bool netif_is_ice(struct net_device *dev)
84 {
85 return dev && (dev->netdev_ops == &ice_netdev_ops);
86 }
87
88 /**
89 * ice_get_tx_pending - returns number of Tx descriptors not processed
90 * @ring: the ring of descriptors
91 */
ice_get_tx_pending(struct ice_tx_ring * ring)92 static u16 ice_get_tx_pending(struct ice_tx_ring *ring)
93 {
94 u16 head, tail;
95
96 head = ring->next_to_clean;
97 tail = ring->next_to_use;
98
99 if (head != tail)
100 return (head < tail) ?
101 tail - head : (tail + ring->count - head);
102 return 0;
103 }
104
105 /**
106 * ice_check_for_hang_subtask - check for and recover hung queues
107 * @pf: pointer to PF struct
108 */
ice_check_for_hang_subtask(struct ice_pf * pf)109 static void ice_check_for_hang_subtask(struct ice_pf *pf)
110 {
111 struct ice_vsi *vsi = NULL;
112 struct ice_hw *hw;
113 unsigned int i;
114 int packets;
115 u32 v;
116
117 ice_for_each_vsi(pf, v)
118 if (pf->vsi[v] && pf->vsi[v]->type == ICE_VSI_PF) {
119 vsi = pf->vsi[v];
120 break;
121 }
122
123 if (!vsi || test_bit(ICE_VSI_DOWN, vsi->state))
124 return;
125
126 if (!(vsi->netdev && netif_carrier_ok(vsi->netdev)))
127 return;
128
129 hw = &vsi->back->hw;
130
131 ice_for_each_txq(vsi, i) {
132 struct ice_tx_ring *tx_ring = vsi->tx_rings[i];
133
134 if (!tx_ring)
135 continue;
136 if (ice_ring_ch_enabled(tx_ring))
137 continue;
138
139 if (tx_ring->desc) {
140 /* If packet counter has not changed the queue is
141 * likely stalled, so force an interrupt for this
142 * queue.
143 *
144 * prev_pkt would be negative if there was no
145 * pending work.
146 */
147 packets = tx_ring->stats.pkts & INT_MAX;
148 if (tx_ring->tx_stats.prev_pkt == packets) {
149 /* Trigger sw interrupt to revive the queue */
150 ice_trigger_sw_intr(hw, tx_ring->q_vector);
151 continue;
152 }
153
154 /* Memory barrier between read of packet count and call
155 * to ice_get_tx_pending()
156 */
157 smp_rmb();
158 tx_ring->tx_stats.prev_pkt =
159 ice_get_tx_pending(tx_ring) ? packets : -1;
160 }
161 }
162 }
163
164 /**
165 * ice_init_mac_fltr - Set initial MAC filters
166 * @pf: board private structure
167 *
168 * Set initial set of MAC filters for PF VSI; configure filters for permanent
169 * address and broadcast address. If an error is encountered, netdevice will be
170 * unregistered.
171 */
ice_init_mac_fltr(struct ice_pf * pf)172 static int ice_init_mac_fltr(struct ice_pf *pf)
173 {
174 struct ice_vsi *vsi;
175 u8 *perm_addr;
176
177 vsi = ice_get_main_vsi(pf);
178 if (!vsi)
179 return -EINVAL;
180
181 perm_addr = vsi->port_info->mac.perm_addr;
182 return ice_fltr_add_mac_and_broadcast(vsi, perm_addr, ICE_FWD_TO_VSI);
183 }
184
185 /**
186 * ice_add_mac_to_sync_list - creates list of MAC addresses to be synced
187 * @netdev: the net device on which the sync is happening
188 * @addr: MAC address to sync
189 *
190 * This is a callback function which is called by the in kernel device sync
191 * functions (like __dev_uc_sync, __dev_mc_sync, etc). This function only
192 * populates the tmp_sync_list, which is later used by ice_add_mac to add the
193 * MAC filters from the hardware.
194 */
ice_add_mac_to_sync_list(struct net_device * netdev,const u8 * addr)195 static int ice_add_mac_to_sync_list(struct net_device *netdev, const u8 *addr)
196 {
197 struct ice_netdev_priv *np = netdev_priv(netdev);
198 struct ice_vsi *vsi = np->vsi;
199
200 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_sync_list, addr,
201 ICE_FWD_TO_VSI))
202 return -EINVAL;
203
204 return 0;
205 }
206
207 /**
208 * ice_add_mac_to_unsync_list - creates list of MAC addresses to be unsynced
209 * @netdev: the net device on which the unsync is happening
210 * @addr: MAC address to unsync
211 *
212 * This is a callback function which is called by the in kernel device unsync
213 * functions (like __dev_uc_unsync, __dev_mc_unsync, etc). This function only
214 * populates the tmp_unsync_list, which is later used by ice_remove_mac to
215 * delete the MAC filters from the hardware.
216 */
ice_add_mac_to_unsync_list(struct net_device * netdev,const u8 * addr)217 static int ice_add_mac_to_unsync_list(struct net_device *netdev, const u8 *addr)
218 {
219 struct ice_netdev_priv *np = netdev_priv(netdev);
220 struct ice_vsi *vsi = np->vsi;
221
222 /* Under some circumstances, we might receive a request to delete our
223 * own device address from our uc list. Because we store the device
224 * address in the VSI's MAC filter list, we need to ignore such
225 * requests and not delete our device address from this list.
226 */
227 if (ether_addr_equal(addr, netdev->dev_addr))
228 return 0;
229
230 if (ice_fltr_add_mac_to_list(vsi, &vsi->tmp_unsync_list, addr,
231 ICE_FWD_TO_VSI))
232 return -EINVAL;
233
234 return 0;
235 }
236
237 /**
238 * ice_vsi_fltr_changed - check if filter state changed
239 * @vsi: VSI to be checked
240 *
241 * returns true if filter state has changed, false otherwise.
242 */
ice_vsi_fltr_changed(struct ice_vsi * vsi)243 static bool ice_vsi_fltr_changed(struct ice_vsi *vsi)
244 {
245 return test_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state) ||
246 test_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
247 }
248
249 /**
250 * ice_set_promisc - Enable promiscuous mode for a given PF
251 * @vsi: the VSI being configured
252 * @promisc_m: mask of promiscuous config bits
253 *
254 */
ice_set_promisc(struct ice_vsi * vsi,u8 promisc_m)255 static int ice_set_promisc(struct ice_vsi *vsi, u8 promisc_m)
256 {
257 int status;
258
259 if (vsi->type != ICE_VSI_PF)
260 return 0;
261
262 if (ice_vsi_has_non_zero_vlans(vsi)) {
263 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
264 status = ice_fltr_set_vlan_vsi_promisc(&vsi->back->hw, vsi,
265 promisc_m);
266 } else {
267 status = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
268 promisc_m, 0);
269 }
270 if (status && status != -EEXIST)
271 return status;
272
273 return 0;
274 }
275
276 /**
277 * ice_clear_promisc - Disable promiscuous mode for a given PF
278 * @vsi: the VSI being configured
279 * @promisc_m: mask of promiscuous config bits
280 *
281 */
ice_clear_promisc(struct ice_vsi * vsi,u8 promisc_m)282 static int ice_clear_promisc(struct ice_vsi *vsi, u8 promisc_m)
283 {
284 int status;
285
286 if (vsi->type != ICE_VSI_PF)
287 return 0;
288
289 if (ice_vsi_has_non_zero_vlans(vsi)) {
290 promisc_m |= (ICE_PROMISC_VLAN_RX | ICE_PROMISC_VLAN_TX);
291 status = ice_fltr_clear_vlan_vsi_promisc(&vsi->back->hw, vsi,
292 promisc_m);
293 } else {
294 status = ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
295 promisc_m, 0);
296 }
297
298 return status;
299 }
300
301 /**
302 * ice_get_devlink_port - Get devlink port from netdev
303 * @netdev: the netdevice structure
304 */
ice_get_devlink_port(struct net_device * netdev)305 static struct devlink_port *ice_get_devlink_port(struct net_device *netdev)
306 {
307 struct ice_pf *pf = ice_netdev_to_pf(netdev);
308
309 if (!ice_is_switchdev_running(pf))
310 return NULL;
311
312 return &pf->devlink_port;
313 }
314
315 /**
316 * ice_vsi_sync_fltr - Update the VSI filter list to the HW
317 * @vsi: ptr to the VSI
318 *
319 * Push any outstanding VSI filter changes through the AdminQ.
320 */
ice_vsi_sync_fltr(struct ice_vsi * vsi)321 static int ice_vsi_sync_fltr(struct ice_vsi *vsi)
322 {
323 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
324 struct device *dev = ice_pf_to_dev(vsi->back);
325 struct net_device *netdev = vsi->netdev;
326 bool promisc_forced_on = false;
327 struct ice_pf *pf = vsi->back;
328 struct ice_hw *hw = &pf->hw;
329 u32 changed_flags = 0;
330 int err;
331
332 if (!vsi->netdev)
333 return -EINVAL;
334
335 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
336 usleep_range(1000, 2000);
337
338 changed_flags = vsi->current_netdev_flags ^ vsi->netdev->flags;
339 vsi->current_netdev_flags = vsi->netdev->flags;
340
341 INIT_LIST_HEAD(&vsi->tmp_sync_list);
342 INIT_LIST_HEAD(&vsi->tmp_unsync_list);
343
344 if (ice_vsi_fltr_changed(vsi)) {
345 clear_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
346 clear_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
347
348 /* grab the netdev's addr_list_lock */
349 netif_addr_lock_bh(netdev);
350 __dev_uc_sync(netdev, ice_add_mac_to_sync_list,
351 ice_add_mac_to_unsync_list);
352 __dev_mc_sync(netdev, ice_add_mac_to_sync_list,
353 ice_add_mac_to_unsync_list);
354 /* our temp lists are populated. release lock */
355 netif_addr_unlock_bh(netdev);
356 }
357
358 /* Remove MAC addresses in the unsync list */
359 err = ice_fltr_remove_mac_list(vsi, &vsi->tmp_unsync_list);
360 ice_fltr_free_list(dev, &vsi->tmp_unsync_list);
361 if (err) {
362 netdev_err(netdev, "Failed to delete MAC filters\n");
363 /* if we failed because of alloc failures, just bail */
364 if (err == -ENOMEM)
365 goto out;
366 }
367
368 /* Add MAC addresses in the sync list */
369 err = ice_fltr_add_mac_list(vsi, &vsi->tmp_sync_list);
370 ice_fltr_free_list(dev, &vsi->tmp_sync_list);
371 /* If filter is added successfully or already exists, do not go into
372 * 'if' condition and report it as error. Instead continue processing
373 * rest of the function.
374 */
375 if (err && err != -EEXIST) {
376 netdev_err(netdev, "Failed to add MAC filters\n");
377 /* If there is no more space for new umac filters, VSI
378 * should go into promiscuous mode. There should be some
379 * space reserved for promiscuous filters.
380 */
381 if (hw->adminq.sq_last_status == ICE_AQ_RC_ENOSPC &&
382 !test_and_set_bit(ICE_FLTR_OVERFLOW_PROMISC,
383 vsi->state)) {
384 promisc_forced_on = true;
385 netdev_warn(netdev, "Reached MAC filter limit, forcing promisc mode on VSI %d\n",
386 vsi->vsi_num);
387 } else {
388 goto out;
389 }
390 }
391 err = 0;
392 /* check for changes in promiscuous modes */
393 if (changed_flags & IFF_ALLMULTI) {
394 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
395 err = ice_set_promisc(vsi, ICE_MCAST_PROMISC_BITS);
396 if (err) {
397 vsi->current_netdev_flags &= ~IFF_ALLMULTI;
398 goto out_promisc;
399 }
400 } else {
401 /* !(vsi->current_netdev_flags & IFF_ALLMULTI) */
402 err = ice_clear_promisc(vsi, ICE_MCAST_PROMISC_BITS);
403 if (err) {
404 vsi->current_netdev_flags |= IFF_ALLMULTI;
405 goto out_promisc;
406 }
407 }
408 }
409
410 if (((changed_flags & IFF_PROMISC) || promisc_forced_on) ||
411 test_bit(ICE_VSI_PROMISC_CHANGED, vsi->state)) {
412 clear_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
413 if (vsi->current_netdev_flags & IFF_PROMISC) {
414 /* Apply Rx filter rule to get traffic from wire */
415 if (!ice_is_dflt_vsi_in_use(pf->first_sw)) {
416 err = ice_set_dflt_vsi(pf->first_sw, vsi);
417 if (err && err != -EEXIST) {
418 netdev_err(netdev, "Error %d setting default VSI %i Rx rule\n",
419 err, vsi->vsi_num);
420 vsi->current_netdev_flags &=
421 ~IFF_PROMISC;
422 goto out_promisc;
423 }
424 err = 0;
425 vlan_ops->dis_rx_filtering(vsi);
426 }
427 } else {
428 /* Clear Rx filter to remove traffic from wire */
429 if (ice_is_vsi_dflt_vsi(pf->first_sw, vsi)) {
430 err = ice_clear_dflt_vsi(pf->first_sw);
431 if (err) {
432 netdev_err(netdev, "Error %d clearing default VSI %i Rx rule\n",
433 err, vsi->vsi_num);
434 vsi->current_netdev_flags |=
435 IFF_PROMISC;
436 goto out_promisc;
437 }
438 if (vsi->netdev->features &
439 NETIF_F_HW_VLAN_CTAG_FILTER)
440 vlan_ops->ena_rx_filtering(vsi);
441 }
442 }
443 }
444 goto exit;
445
446 out_promisc:
447 set_bit(ICE_VSI_PROMISC_CHANGED, vsi->state);
448 goto exit;
449 out:
450 /* if something went wrong then set the changed flag so we try again */
451 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
452 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
453 exit:
454 clear_bit(ICE_CFG_BUSY, vsi->state);
455 return err;
456 }
457
458 /**
459 * ice_sync_fltr_subtask - Sync the VSI filter list with HW
460 * @pf: board private structure
461 */
ice_sync_fltr_subtask(struct ice_pf * pf)462 static void ice_sync_fltr_subtask(struct ice_pf *pf)
463 {
464 int v;
465
466 if (!pf || !(test_bit(ICE_FLAG_FLTR_SYNC, pf->flags)))
467 return;
468
469 clear_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
470
471 ice_for_each_vsi(pf, v)
472 if (pf->vsi[v] && ice_vsi_fltr_changed(pf->vsi[v]) &&
473 ice_vsi_sync_fltr(pf->vsi[v])) {
474 /* come back and try again later */
475 set_bit(ICE_FLAG_FLTR_SYNC, pf->flags);
476 break;
477 }
478 }
479
480 /**
481 * ice_pf_dis_all_vsi - Pause all VSIs on a PF
482 * @pf: the PF
483 * @locked: is the rtnl_lock already held
484 */
ice_pf_dis_all_vsi(struct ice_pf * pf,bool locked)485 static void ice_pf_dis_all_vsi(struct ice_pf *pf, bool locked)
486 {
487 int node;
488 int v;
489
490 ice_for_each_vsi(pf, v)
491 if (pf->vsi[v])
492 ice_dis_vsi(pf->vsi[v], locked);
493
494 for (node = 0; node < ICE_MAX_PF_AGG_NODES; node++)
495 pf->pf_agg_node[node].num_vsis = 0;
496
497 for (node = 0; node < ICE_MAX_VF_AGG_NODES; node++)
498 pf->vf_agg_node[node].num_vsis = 0;
499 }
500
501 /**
502 * ice_clear_sw_switch_recipes - clear switch recipes
503 * @pf: board private structure
504 *
505 * Mark switch recipes as not created in sw structures. There are cases where
506 * rules (especially advanced rules) need to be restored, either re-read from
507 * hardware or added again. For example after the reset. 'recp_created' flag
508 * prevents from doing that and need to be cleared upfront.
509 */
ice_clear_sw_switch_recipes(struct ice_pf * pf)510 static void ice_clear_sw_switch_recipes(struct ice_pf *pf)
511 {
512 struct ice_sw_recipe *recp;
513 u8 i;
514
515 recp = pf->hw.switch_info->recp_list;
516 for (i = 0; i < ICE_MAX_NUM_RECIPES; i++)
517 recp[i].recp_created = false;
518 }
519
520 /**
521 * ice_prepare_for_reset - prep for reset
522 * @pf: board private structure
523 * @reset_type: reset type requested
524 *
525 * Inform or close all dependent features in prep for reset.
526 */
527 static void
ice_prepare_for_reset(struct ice_pf * pf,enum ice_reset_req reset_type)528 ice_prepare_for_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
529 {
530 struct ice_hw *hw = &pf->hw;
531 struct ice_vsi *vsi;
532 struct ice_vf *vf;
533 unsigned int bkt;
534
535 dev_dbg(ice_pf_to_dev(pf), "reset_type=%d\n", reset_type);
536
537 /* already prepared for reset */
538 if (test_bit(ICE_PREPARED_FOR_RESET, pf->state))
539 return;
540
541 ice_unplug_aux_dev(pf);
542
543 /* Notify VFs of impending reset */
544 if (ice_check_sq_alive(hw, &hw->mailboxq))
545 ice_vc_notify_reset(pf);
546
547 /* Disable VFs until reset is completed */
548 mutex_lock(&pf->vfs.table_lock);
549 ice_for_each_vf(pf, bkt, vf)
550 ice_set_vf_state_qs_dis(vf);
551 mutex_unlock(&pf->vfs.table_lock);
552
553 if (ice_is_eswitch_mode_switchdev(pf)) {
554 if (reset_type != ICE_RESET_PFR)
555 ice_clear_sw_switch_recipes(pf);
556 }
557
558 /* release ADQ specific HW and SW resources */
559 vsi = ice_get_main_vsi(pf);
560 if (!vsi)
561 goto skip;
562
563 /* to be on safe side, reset orig_rss_size so that normal flow
564 * of deciding rss_size can take precedence
565 */
566 vsi->orig_rss_size = 0;
567
568 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
569 if (reset_type == ICE_RESET_PFR) {
570 vsi->old_ena_tc = vsi->all_enatc;
571 vsi->old_numtc = vsi->all_numtc;
572 } else {
573 ice_remove_q_channels(vsi, true);
574
575 /* for other reset type, do not support channel rebuild
576 * hence reset needed info
577 */
578 vsi->old_ena_tc = 0;
579 vsi->all_enatc = 0;
580 vsi->old_numtc = 0;
581 vsi->all_numtc = 0;
582 vsi->req_txq = 0;
583 vsi->req_rxq = 0;
584 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
585 memset(&vsi->mqprio_qopt, 0, sizeof(vsi->mqprio_qopt));
586 }
587 }
588 skip:
589
590 /* clear SW filtering DB */
591 ice_clear_hw_tbls(hw);
592 /* disable the VSIs and their queues that are not already DOWN */
593 ice_pf_dis_all_vsi(pf, false);
594
595 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
596 ice_ptp_prepare_for_reset(pf);
597
598 if (ice_is_feature_supported(pf, ICE_F_GNSS))
599 ice_gnss_exit(pf);
600
601 if (hw->port_info)
602 ice_sched_clear_port(hw->port_info);
603
604 ice_shutdown_all_ctrlq(hw);
605
606 set_bit(ICE_PREPARED_FOR_RESET, pf->state);
607 }
608
609 /**
610 * ice_do_reset - Initiate one of many types of resets
611 * @pf: board private structure
612 * @reset_type: reset type requested before this function was called.
613 */
ice_do_reset(struct ice_pf * pf,enum ice_reset_req reset_type)614 static void ice_do_reset(struct ice_pf *pf, enum ice_reset_req reset_type)
615 {
616 struct device *dev = ice_pf_to_dev(pf);
617 struct ice_hw *hw = &pf->hw;
618
619 dev_dbg(dev, "reset_type 0x%x requested\n", reset_type);
620
621 ice_prepare_for_reset(pf, reset_type);
622
623 /* trigger the reset */
624 if (ice_reset(hw, reset_type)) {
625 dev_err(dev, "reset %d failed\n", reset_type);
626 set_bit(ICE_RESET_FAILED, pf->state);
627 clear_bit(ICE_RESET_OICR_RECV, pf->state);
628 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
629 clear_bit(ICE_PFR_REQ, pf->state);
630 clear_bit(ICE_CORER_REQ, pf->state);
631 clear_bit(ICE_GLOBR_REQ, pf->state);
632 wake_up(&pf->reset_wait_queue);
633 return;
634 }
635
636 /* PFR is a bit of a special case because it doesn't result in an OICR
637 * interrupt. So for PFR, rebuild after the reset and clear the reset-
638 * associated state bits.
639 */
640 if (reset_type == ICE_RESET_PFR) {
641 pf->pfr_count++;
642 ice_rebuild(pf, reset_type);
643 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
644 clear_bit(ICE_PFR_REQ, pf->state);
645 wake_up(&pf->reset_wait_queue);
646 ice_reset_all_vfs(pf);
647 }
648 }
649
650 /**
651 * ice_reset_subtask - Set up for resetting the device and driver
652 * @pf: board private structure
653 */
ice_reset_subtask(struct ice_pf * pf)654 static void ice_reset_subtask(struct ice_pf *pf)
655 {
656 enum ice_reset_req reset_type = ICE_RESET_INVAL;
657
658 /* When a CORER/GLOBR/EMPR is about to happen, the hardware triggers an
659 * OICR interrupt. The OICR handler (ice_misc_intr) determines what type
660 * of reset is pending and sets bits in pf->state indicating the reset
661 * type and ICE_RESET_OICR_RECV. So, if the latter bit is set
662 * prepare for pending reset if not already (for PF software-initiated
663 * global resets the software should already be prepared for it as
664 * indicated by ICE_PREPARED_FOR_RESET; for global resets initiated
665 * by firmware or software on other PFs, that bit is not set so prepare
666 * for the reset now), poll for reset done, rebuild and return.
667 */
668 if (test_bit(ICE_RESET_OICR_RECV, pf->state)) {
669 /* Perform the largest reset requested */
670 if (test_and_clear_bit(ICE_CORER_RECV, pf->state))
671 reset_type = ICE_RESET_CORER;
672 if (test_and_clear_bit(ICE_GLOBR_RECV, pf->state))
673 reset_type = ICE_RESET_GLOBR;
674 if (test_and_clear_bit(ICE_EMPR_RECV, pf->state))
675 reset_type = ICE_RESET_EMPR;
676 /* return if no valid reset type requested */
677 if (reset_type == ICE_RESET_INVAL)
678 return;
679 ice_prepare_for_reset(pf, reset_type);
680
681 /* make sure we are ready to rebuild */
682 if (ice_check_reset(&pf->hw)) {
683 set_bit(ICE_RESET_FAILED, pf->state);
684 } else {
685 /* done with reset. start rebuild */
686 pf->hw.reset_ongoing = false;
687 ice_rebuild(pf, reset_type);
688 /* clear bit to resume normal operations, but
689 * ICE_NEEDS_RESTART bit is set in case rebuild failed
690 */
691 clear_bit(ICE_RESET_OICR_RECV, pf->state);
692 clear_bit(ICE_PREPARED_FOR_RESET, pf->state);
693 clear_bit(ICE_PFR_REQ, pf->state);
694 clear_bit(ICE_CORER_REQ, pf->state);
695 clear_bit(ICE_GLOBR_REQ, pf->state);
696 wake_up(&pf->reset_wait_queue);
697 ice_reset_all_vfs(pf);
698 }
699
700 return;
701 }
702
703 /* No pending resets to finish processing. Check for new resets */
704 if (test_bit(ICE_PFR_REQ, pf->state))
705 reset_type = ICE_RESET_PFR;
706 if (test_bit(ICE_CORER_REQ, pf->state))
707 reset_type = ICE_RESET_CORER;
708 if (test_bit(ICE_GLOBR_REQ, pf->state))
709 reset_type = ICE_RESET_GLOBR;
710 /* If no valid reset type requested just return */
711 if (reset_type == ICE_RESET_INVAL)
712 return;
713
714 /* reset if not already down or busy */
715 if (!test_bit(ICE_DOWN, pf->state) &&
716 !test_bit(ICE_CFG_BUSY, pf->state)) {
717 ice_do_reset(pf, reset_type);
718 }
719 }
720
721 /**
722 * ice_print_topo_conflict - print topology conflict message
723 * @vsi: the VSI whose topology status is being checked
724 */
ice_print_topo_conflict(struct ice_vsi * vsi)725 static void ice_print_topo_conflict(struct ice_vsi *vsi)
726 {
727 switch (vsi->port_info->phy.link_info.topo_media_conflict) {
728 case ICE_AQ_LINK_TOPO_CONFLICT:
729 case ICE_AQ_LINK_MEDIA_CONFLICT:
730 case ICE_AQ_LINK_TOPO_UNREACH_PRT:
731 case ICE_AQ_LINK_TOPO_UNDRUTIL_PRT:
732 case ICE_AQ_LINK_TOPO_UNDRUTIL_MEDIA:
733 netdev_info(vsi->netdev, "Potential misconfiguration of the Ethernet port detected. If it was not intended, please use the Intel (R) Ethernet Port Configuration Tool to address the issue.\n");
734 break;
735 case ICE_AQ_LINK_TOPO_UNSUPP_MEDIA:
736 if (test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, vsi->back->flags))
737 netdev_warn(vsi->netdev, "An unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules\n");
738 else
739 netdev_err(vsi->netdev, "Rx/Tx is disabled on this device because an unsupported module type was detected. Refer to the Intel(R) Ethernet Adapters and Devices User Guide for a list of supported modules.\n");
740 break;
741 default:
742 break;
743 }
744 }
745
746 /**
747 * ice_print_link_msg - print link up or down message
748 * @vsi: the VSI whose link status is being queried
749 * @isup: boolean for if the link is now up or down
750 */
ice_print_link_msg(struct ice_vsi * vsi,bool isup)751 void ice_print_link_msg(struct ice_vsi *vsi, bool isup)
752 {
753 struct ice_aqc_get_phy_caps_data *caps;
754 const char *an_advertised;
755 const char *fec_req;
756 const char *speed;
757 const char *fec;
758 const char *fc;
759 const char *an;
760 int status;
761
762 if (!vsi)
763 return;
764
765 if (vsi->current_isup == isup)
766 return;
767
768 vsi->current_isup = isup;
769
770 if (!isup) {
771 netdev_info(vsi->netdev, "NIC Link is Down\n");
772 return;
773 }
774
775 switch (vsi->port_info->phy.link_info.link_speed) {
776 case ICE_AQ_LINK_SPEED_100GB:
777 speed = "100 G";
778 break;
779 case ICE_AQ_LINK_SPEED_50GB:
780 speed = "50 G";
781 break;
782 case ICE_AQ_LINK_SPEED_40GB:
783 speed = "40 G";
784 break;
785 case ICE_AQ_LINK_SPEED_25GB:
786 speed = "25 G";
787 break;
788 case ICE_AQ_LINK_SPEED_20GB:
789 speed = "20 G";
790 break;
791 case ICE_AQ_LINK_SPEED_10GB:
792 speed = "10 G";
793 break;
794 case ICE_AQ_LINK_SPEED_5GB:
795 speed = "5 G";
796 break;
797 case ICE_AQ_LINK_SPEED_2500MB:
798 speed = "2.5 G";
799 break;
800 case ICE_AQ_LINK_SPEED_1000MB:
801 speed = "1 G";
802 break;
803 case ICE_AQ_LINK_SPEED_100MB:
804 speed = "100 M";
805 break;
806 default:
807 speed = "Unknown ";
808 break;
809 }
810
811 switch (vsi->port_info->fc.current_mode) {
812 case ICE_FC_FULL:
813 fc = "Rx/Tx";
814 break;
815 case ICE_FC_TX_PAUSE:
816 fc = "Tx";
817 break;
818 case ICE_FC_RX_PAUSE:
819 fc = "Rx";
820 break;
821 case ICE_FC_NONE:
822 fc = "None";
823 break;
824 default:
825 fc = "Unknown";
826 break;
827 }
828
829 /* Get FEC mode based on negotiated link info */
830 switch (vsi->port_info->phy.link_info.fec_info) {
831 case ICE_AQ_LINK_25G_RS_528_FEC_EN:
832 case ICE_AQ_LINK_25G_RS_544_FEC_EN:
833 fec = "RS-FEC";
834 break;
835 case ICE_AQ_LINK_25G_KR_FEC_EN:
836 fec = "FC-FEC/BASE-R";
837 break;
838 default:
839 fec = "NONE";
840 break;
841 }
842
843 /* check if autoneg completed, might be false due to not supported */
844 if (vsi->port_info->phy.link_info.an_info & ICE_AQ_AN_COMPLETED)
845 an = "True";
846 else
847 an = "False";
848
849 /* Get FEC mode requested based on PHY caps last SW configuration */
850 caps = kzalloc(sizeof(*caps), GFP_KERNEL);
851 if (!caps) {
852 fec_req = "Unknown";
853 an_advertised = "Unknown";
854 goto done;
855 }
856
857 status = ice_aq_get_phy_caps(vsi->port_info, false,
858 ICE_AQC_REPORT_ACTIVE_CFG, caps, NULL);
859 if (status)
860 netdev_info(vsi->netdev, "Get phy capability failed.\n");
861
862 an_advertised = ice_is_phy_caps_an_enabled(caps) ? "On" : "Off";
863
864 if (caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_528_REQ ||
865 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_RS_544_REQ)
866 fec_req = "RS-FEC";
867 else if (caps->link_fec_options & ICE_AQC_PHY_FEC_10G_KR_40G_KR4_REQ ||
868 caps->link_fec_options & ICE_AQC_PHY_FEC_25G_KR_REQ)
869 fec_req = "FC-FEC/BASE-R";
870 else
871 fec_req = "NONE";
872
873 kfree(caps);
874
875 done:
876 netdev_info(vsi->netdev, "NIC Link is up %sbps Full Duplex, Requested FEC: %s, Negotiated FEC: %s, Autoneg Advertised: %s, Autoneg Negotiated: %s, Flow Control: %s\n",
877 speed, fec_req, fec, an_advertised, an, fc);
878 ice_print_topo_conflict(vsi);
879 }
880
881 /**
882 * ice_vsi_link_event - update the VSI's netdev
883 * @vsi: the VSI on which the link event occurred
884 * @link_up: whether or not the VSI needs to be set up or down
885 */
ice_vsi_link_event(struct ice_vsi * vsi,bool link_up)886 static void ice_vsi_link_event(struct ice_vsi *vsi, bool link_up)
887 {
888 if (!vsi)
889 return;
890
891 if (test_bit(ICE_VSI_DOWN, vsi->state) || !vsi->netdev)
892 return;
893
894 if (vsi->type == ICE_VSI_PF) {
895 if (link_up == netif_carrier_ok(vsi->netdev))
896 return;
897
898 if (link_up) {
899 netif_carrier_on(vsi->netdev);
900 netif_tx_wake_all_queues(vsi->netdev);
901 } else {
902 netif_carrier_off(vsi->netdev);
903 netif_tx_stop_all_queues(vsi->netdev);
904 }
905 }
906 }
907
908 /**
909 * ice_set_dflt_mib - send a default config MIB to the FW
910 * @pf: private PF struct
911 *
912 * This function sends a default configuration MIB to the FW.
913 *
914 * If this function errors out at any point, the driver is still able to
915 * function. The main impact is that LFC may not operate as expected.
916 * Therefore an error state in this function should be treated with a DBG
917 * message and continue on with driver rebuild/reenable.
918 */
ice_set_dflt_mib(struct ice_pf * pf)919 static void ice_set_dflt_mib(struct ice_pf *pf)
920 {
921 struct device *dev = ice_pf_to_dev(pf);
922 u8 mib_type, *buf, *lldpmib = NULL;
923 u16 len, typelen, offset = 0;
924 struct ice_lldp_org_tlv *tlv;
925 struct ice_hw *hw = &pf->hw;
926 u32 ouisubtype;
927
928 mib_type = SET_LOCAL_MIB_TYPE_LOCAL_MIB;
929 lldpmib = kzalloc(ICE_LLDPDU_SIZE, GFP_KERNEL);
930 if (!lldpmib) {
931 dev_dbg(dev, "%s Failed to allocate MIB memory\n",
932 __func__);
933 return;
934 }
935
936 /* Add ETS CFG TLV */
937 tlv = (struct ice_lldp_org_tlv *)lldpmib;
938 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
939 ICE_IEEE_ETS_TLV_LEN);
940 tlv->typelen = htons(typelen);
941 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
942 ICE_IEEE_SUBTYPE_ETS_CFG);
943 tlv->ouisubtype = htonl(ouisubtype);
944
945 buf = tlv->tlvinfo;
946 buf[0] = 0;
947
948 /* ETS CFG all UPs map to TC 0. Next 4 (1 - 4) Octets = 0.
949 * Octets 5 - 12 are BW values, set octet 5 to 100% BW.
950 * Octets 13 - 20 are TSA values - leave as zeros
951 */
952 buf[5] = 0x64;
953 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
954 offset += len + 2;
955 tlv = (struct ice_lldp_org_tlv *)
956 ((char *)tlv + sizeof(tlv->typelen) + len);
957
958 /* Add ETS REC TLV */
959 buf = tlv->tlvinfo;
960 tlv->typelen = htons(typelen);
961
962 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
963 ICE_IEEE_SUBTYPE_ETS_REC);
964 tlv->ouisubtype = htonl(ouisubtype);
965
966 /* First octet of buf is reserved
967 * Octets 1 - 4 map UP to TC - all UPs map to zero
968 * Octets 5 - 12 are BW values - set TC 0 to 100%.
969 * Octets 13 - 20 are TSA value - leave as zeros
970 */
971 buf[5] = 0x64;
972 offset += len + 2;
973 tlv = (struct ice_lldp_org_tlv *)
974 ((char *)tlv + sizeof(tlv->typelen) + len);
975
976 /* Add PFC CFG TLV */
977 typelen = ((ICE_TLV_TYPE_ORG << ICE_LLDP_TLV_TYPE_S) |
978 ICE_IEEE_PFC_TLV_LEN);
979 tlv->typelen = htons(typelen);
980
981 ouisubtype = ((ICE_IEEE_8021QAZ_OUI << ICE_LLDP_TLV_OUI_S) |
982 ICE_IEEE_SUBTYPE_PFC_CFG);
983 tlv->ouisubtype = htonl(ouisubtype);
984
985 /* Octet 1 left as all zeros - PFC disabled */
986 buf[0] = 0x08;
987 len = (typelen & ICE_LLDP_TLV_LEN_M) >> ICE_LLDP_TLV_LEN_S;
988 offset += len + 2;
989
990 if (ice_aq_set_lldp_mib(hw, mib_type, (void *)lldpmib, offset, NULL))
991 dev_dbg(dev, "%s Failed to set default LLDP MIB\n", __func__);
992
993 kfree(lldpmib);
994 }
995
996 /**
997 * ice_check_phy_fw_load - check if PHY FW load failed
998 * @pf: pointer to PF struct
999 * @link_cfg_err: bitmap from the link info structure
1000 *
1001 * check if external PHY FW load failed and print an error message if it did
1002 */
ice_check_phy_fw_load(struct ice_pf * pf,u8 link_cfg_err)1003 static void ice_check_phy_fw_load(struct ice_pf *pf, u8 link_cfg_err)
1004 {
1005 if (!(link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE)) {
1006 clear_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1007 return;
1008 }
1009
1010 if (test_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags))
1011 return;
1012
1013 if (link_cfg_err & ICE_AQ_LINK_EXTERNAL_PHY_LOAD_FAILURE) {
1014 dev_err(ice_pf_to_dev(pf), "Device failed to load the FW for the external PHY. Please download and install the latest NVM for your device and try again\n");
1015 set_bit(ICE_FLAG_PHY_FW_LOAD_FAILED, pf->flags);
1016 }
1017 }
1018
1019 /**
1020 * ice_check_module_power
1021 * @pf: pointer to PF struct
1022 * @link_cfg_err: bitmap from the link info structure
1023 *
1024 * check module power level returned by a previous call to aq_get_link_info
1025 * and print error messages if module power level is not supported
1026 */
ice_check_module_power(struct ice_pf * pf,u8 link_cfg_err)1027 static void ice_check_module_power(struct ice_pf *pf, u8 link_cfg_err)
1028 {
1029 /* if module power level is supported, clear the flag */
1030 if (!(link_cfg_err & (ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT |
1031 ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED))) {
1032 clear_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1033 return;
1034 }
1035
1036 /* if ICE_FLAG_MOD_POWER_UNSUPPORTED was previously set and the
1037 * above block didn't clear this bit, there's nothing to do
1038 */
1039 if (test_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags))
1040 return;
1041
1042 if (link_cfg_err & ICE_AQ_LINK_INVAL_MAX_POWER_LIMIT) {
1043 dev_err(ice_pf_to_dev(pf), "The installed module is incompatible with the device's NVM image. Cannot start link\n");
1044 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1045 } else if (link_cfg_err & ICE_AQ_LINK_MODULE_POWER_UNSUPPORTED) {
1046 dev_err(ice_pf_to_dev(pf), "The module's power requirements exceed the device's power supply. Cannot start link\n");
1047 set_bit(ICE_FLAG_MOD_POWER_UNSUPPORTED, pf->flags);
1048 }
1049 }
1050
1051 /**
1052 * ice_check_link_cfg_err - check if link configuration failed
1053 * @pf: pointer to the PF struct
1054 * @link_cfg_err: bitmap from the link info structure
1055 *
1056 * print if any link configuration failure happens due to the value in the
1057 * link_cfg_err parameter in the link info structure
1058 */
ice_check_link_cfg_err(struct ice_pf * pf,u8 link_cfg_err)1059 static void ice_check_link_cfg_err(struct ice_pf *pf, u8 link_cfg_err)
1060 {
1061 ice_check_module_power(pf, link_cfg_err);
1062 ice_check_phy_fw_load(pf, link_cfg_err);
1063 }
1064
1065 /**
1066 * ice_link_event - process the link event
1067 * @pf: PF that the link event is associated with
1068 * @pi: port_info for the port that the link event is associated with
1069 * @link_up: true if the physical link is up and false if it is down
1070 * @link_speed: current link speed received from the link event
1071 *
1072 * Returns 0 on success and negative on failure
1073 */
1074 static int
ice_link_event(struct ice_pf * pf,struct ice_port_info * pi,bool link_up,u16 link_speed)1075 ice_link_event(struct ice_pf *pf, struct ice_port_info *pi, bool link_up,
1076 u16 link_speed)
1077 {
1078 struct device *dev = ice_pf_to_dev(pf);
1079 struct ice_phy_info *phy_info;
1080 struct ice_vsi *vsi;
1081 u16 old_link_speed;
1082 bool old_link;
1083 int status;
1084
1085 phy_info = &pi->phy;
1086 phy_info->link_info_old = phy_info->link_info;
1087
1088 old_link = !!(phy_info->link_info_old.link_info & ICE_AQ_LINK_UP);
1089 old_link_speed = phy_info->link_info_old.link_speed;
1090
1091 /* update the link info structures and re-enable link events,
1092 * don't bail on failure due to other book keeping needed
1093 */
1094 status = ice_update_link_info(pi);
1095 if (status)
1096 dev_dbg(dev, "Failed to update link status on port %d, err %d aq_err %s\n",
1097 pi->lport, status,
1098 ice_aq_str(pi->hw->adminq.sq_last_status));
1099
1100 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
1101
1102 /* Check if the link state is up after updating link info, and treat
1103 * this event as an UP event since the link is actually UP now.
1104 */
1105 if (phy_info->link_info.link_info & ICE_AQ_LINK_UP)
1106 link_up = true;
1107
1108 vsi = ice_get_main_vsi(pf);
1109 if (!vsi || !vsi->port_info)
1110 return -EINVAL;
1111
1112 /* turn off PHY if media was removed */
1113 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags) &&
1114 !(pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE)) {
1115 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
1116 ice_set_link(vsi, false);
1117 }
1118
1119 /* if the old link up/down and speed is the same as the new */
1120 if (link_up == old_link && link_speed == old_link_speed)
1121 return 0;
1122
1123 if (!ice_is_e810(&pf->hw))
1124 ice_ptp_link_change(pf, pf->hw.pf_id, link_up);
1125
1126 if (ice_is_dcb_active(pf)) {
1127 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
1128 ice_dcb_rebuild(pf);
1129 } else {
1130 if (link_up)
1131 ice_set_dflt_mib(pf);
1132 }
1133 ice_vsi_link_event(vsi, link_up);
1134 ice_print_link_msg(vsi, link_up);
1135
1136 ice_vc_notify_link_state(pf);
1137
1138 return 0;
1139 }
1140
1141 /**
1142 * ice_watchdog_subtask - periodic tasks not using event driven scheduling
1143 * @pf: board private structure
1144 */
ice_watchdog_subtask(struct ice_pf * pf)1145 static void ice_watchdog_subtask(struct ice_pf *pf)
1146 {
1147 int i;
1148
1149 /* if interface is down do nothing */
1150 if (test_bit(ICE_DOWN, pf->state) ||
1151 test_bit(ICE_CFG_BUSY, pf->state))
1152 return;
1153
1154 /* make sure we don't do these things too often */
1155 if (time_before(jiffies,
1156 pf->serv_tmr_prev + pf->serv_tmr_period))
1157 return;
1158
1159 pf->serv_tmr_prev = jiffies;
1160
1161 /* Update the stats for active netdevs so the network stack
1162 * can look at updated numbers whenever it cares to
1163 */
1164 ice_update_pf_stats(pf);
1165 ice_for_each_vsi(pf, i)
1166 if (pf->vsi[i] && pf->vsi[i]->netdev)
1167 ice_update_vsi_stats(pf->vsi[i]);
1168 }
1169
1170 /**
1171 * ice_init_link_events - enable/initialize link events
1172 * @pi: pointer to the port_info instance
1173 *
1174 * Returns -EIO on failure, 0 on success
1175 */
ice_init_link_events(struct ice_port_info * pi)1176 static int ice_init_link_events(struct ice_port_info *pi)
1177 {
1178 u16 mask;
1179
1180 mask = ~((u16)(ICE_AQ_LINK_EVENT_UPDOWN | ICE_AQ_LINK_EVENT_MEDIA_NA |
1181 ICE_AQ_LINK_EVENT_MODULE_QUAL_FAIL |
1182 ICE_AQ_LINK_EVENT_PHY_FW_LOAD_FAIL));
1183
1184 if (ice_aq_set_event_mask(pi->hw, pi->lport, mask, NULL)) {
1185 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to set link event mask for port %d\n",
1186 pi->lport);
1187 return -EIO;
1188 }
1189
1190 if (ice_aq_get_link_info(pi, true, NULL, NULL)) {
1191 dev_dbg(ice_hw_to_dev(pi->hw), "Failed to enable link events for port %d\n",
1192 pi->lport);
1193 return -EIO;
1194 }
1195
1196 return 0;
1197 }
1198
1199 /**
1200 * ice_handle_link_event - handle link event via ARQ
1201 * @pf: PF that the link event is associated with
1202 * @event: event structure containing link status info
1203 */
1204 static int
ice_handle_link_event(struct ice_pf * pf,struct ice_rq_event_info * event)1205 ice_handle_link_event(struct ice_pf *pf, struct ice_rq_event_info *event)
1206 {
1207 struct ice_aqc_get_link_status_data *link_data;
1208 struct ice_port_info *port_info;
1209 int status;
1210
1211 link_data = (struct ice_aqc_get_link_status_data *)event->msg_buf;
1212 port_info = pf->hw.port_info;
1213 if (!port_info)
1214 return -EINVAL;
1215
1216 status = ice_link_event(pf, port_info,
1217 !!(link_data->link_info & ICE_AQ_LINK_UP),
1218 le16_to_cpu(link_data->link_speed));
1219 if (status)
1220 dev_dbg(ice_pf_to_dev(pf), "Could not process link event, error %d\n",
1221 status);
1222
1223 return status;
1224 }
1225
1226 enum ice_aq_task_state {
1227 ICE_AQ_TASK_WAITING = 0,
1228 ICE_AQ_TASK_COMPLETE,
1229 ICE_AQ_TASK_CANCELED,
1230 };
1231
1232 struct ice_aq_task {
1233 struct hlist_node entry;
1234
1235 u16 opcode;
1236 struct ice_rq_event_info *event;
1237 enum ice_aq_task_state state;
1238 };
1239
1240 /**
1241 * ice_aq_wait_for_event - Wait for an AdminQ event from firmware
1242 * @pf: pointer to the PF private structure
1243 * @opcode: the opcode to wait for
1244 * @timeout: how long to wait, in jiffies
1245 * @event: storage for the event info
1246 *
1247 * Waits for a specific AdminQ completion event on the ARQ for a given PF. The
1248 * current thread will be put to sleep until the specified event occurs or
1249 * until the given timeout is reached.
1250 *
1251 * To obtain only the descriptor contents, pass an event without an allocated
1252 * msg_buf. If the complete data buffer is desired, allocate the
1253 * event->msg_buf with enough space ahead of time.
1254 *
1255 * Returns: zero on success, or a negative error code on failure.
1256 */
ice_aq_wait_for_event(struct ice_pf * pf,u16 opcode,unsigned long timeout,struct ice_rq_event_info * event)1257 int ice_aq_wait_for_event(struct ice_pf *pf, u16 opcode, unsigned long timeout,
1258 struct ice_rq_event_info *event)
1259 {
1260 struct device *dev = ice_pf_to_dev(pf);
1261 struct ice_aq_task *task;
1262 unsigned long start;
1263 long ret;
1264 int err;
1265
1266 task = kzalloc(sizeof(*task), GFP_KERNEL);
1267 if (!task)
1268 return -ENOMEM;
1269
1270 INIT_HLIST_NODE(&task->entry);
1271 task->opcode = opcode;
1272 task->event = event;
1273 task->state = ICE_AQ_TASK_WAITING;
1274
1275 spin_lock_bh(&pf->aq_wait_lock);
1276 hlist_add_head(&task->entry, &pf->aq_wait_list);
1277 spin_unlock_bh(&pf->aq_wait_lock);
1278
1279 start = jiffies;
1280
1281 ret = wait_event_interruptible_timeout(pf->aq_wait_queue, task->state,
1282 timeout);
1283 switch (task->state) {
1284 case ICE_AQ_TASK_WAITING:
1285 err = ret < 0 ? ret : -ETIMEDOUT;
1286 break;
1287 case ICE_AQ_TASK_CANCELED:
1288 err = ret < 0 ? ret : -ECANCELED;
1289 break;
1290 case ICE_AQ_TASK_COMPLETE:
1291 err = ret < 0 ? ret : 0;
1292 break;
1293 default:
1294 WARN(1, "Unexpected AdminQ wait task state %u", task->state);
1295 err = -EINVAL;
1296 break;
1297 }
1298
1299 dev_dbg(dev, "Waited %u msecs (max %u msecs) for firmware response to op 0x%04x\n",
1300 jiffies_to_msecs(jiffies - start),
1301 jiffies_to_msecs(timeout),
1302 opcode);
1303
1304 spin_lock_bh(&pf->aq_wait_lock);
1305 hlist_del(&task->entry);
1306 spin_unlock_bh(&pf->aq_wait_lock);
1307 kfree(task);
1308
1309 return err;
1310 }
1311
1312 /**
1313 * ice_aq_check_events - Check if any thread is waiting for an AdminQ event
1314 * @pf: pointer to the PF private structure
1315 * @opcode: the opcode of the event
1316 * @event: the event to check
1317 *
1318 * Loops over the current list of pending threads waiting for an AdminQ event.
1319 * For each matching task, copy the contents of the event into the task
1320 * structure and wake up the thread.
1321 *
1322 * If multiple threads wait for the same opcode, they will all be woken up.
1323 *
1324 * Note that event->msg_buf will only be duplicated if the event has a buffer
1325 * with enough space already allocated. Otherwise, only the descriptor and
1326 * message length will be copied.
1327 *
1328 * Returns: true if an event was found, false otherwise
1329 */
ice_aq_check_events(struct ice_pf * pf,u16 opcode,struct ice_rq_event_info * event)1330 static void ice_aq_check_events(struct ice_pf *pf, u16 opcode,
1331 struct ice_rq_event_info *event)
1332 {
1333 struct ice_aq_task *task;
1334 bool found = false;
1335
1336 spin_lock_bh(&pf->aq_wait_lock);
1337 hlist_for_each_entry(task, &pf->aq_wait_list, entry) {
1338 if (task->state || task->opcode != opcode)
1339 continue;
1340
1341 memcpy(&task->event->desc, &event->desc, sizeof(event->desc));
1342 task->event->msg_len = event->msg_len;
1343
1344 /* Only copy the data buffer if a destination was set */
1345 if (task->event->msg_buf &&
1346 task->event->buf_len > event->buf_len) {
1347 memcpy(task->event->msg_buf, event->msg_buf,
1348 event->buf_len);
1349 task->event->buf_len = event->buf_len;
1350 }
1351
1352 task->state = ICE_AQ_TASK_COMPLETE;
1353 found = true;
1354 }
1355 spin_unlock_bh(&pf->aq_wait_lock);
1356
1357 if (found)
1358 wake_up(&pf->aq_wait_queue);
1359 }
1360
1361 /**
1362 * ice_aq_cancel_waiting_tasks - Immediately cancel all waiting tasks
1363 * @pf: the PF private structure
1364 *
1365 * Set all waiting tasks to ICE_AQ_TASK_CANCELED, and wake up their threads.
1366 * This will then cause ice_aq_wait_for_event to exit with -ECANCELED.
1367 */
ice_aq_cancel_waiting_tasks(struct ice_pf * pf)1368 static void ice_aq_cancel_waiting_tasks(struct ice_pf *pf)
1369 {
1370 struct ice_aq_task *task;
1371
1372 spin_lock_bh(&pf->aq_wait_lock);
1373 hlist_for_each_entry(task, &pf->aq_wait_list, entry)
1374 task->state = ICE_AQ_TASK_CANCELED;
1375 spin_unlock_bh(&pf->aq_wait_lock);
1376
1377 wake_up(&pf->aq_wait_queue);
1378 }
1379
1380 /**
1381 * __ice_clean_ctrlq - helper function to clean controlq rings
1382 * @pf: ptr to struct ice_pf
1383 * @q_type: specific Control queue type
1384 */
__ice_clean_ctrlq(struct ice_pf * pf,enum ice_ctl_q q_type)1385 static int __ice_clean_ctrlq(struct ice_pf *pf, enum ice_ctl_q q_type)
1386 {
1387 struct device *dev = ice_pf_to_dev(pf);
1388 struct ice_rq_event_info event;
1389 struct ice_hw *hw = &pf->hw;
1390 struct ice_ctl_q_info *cq;
1391 u16 pending, i = 0;
1392 const char *qtype;
1393 u32 oldval, val;
1394
1395 /* Do not clean control queue if/when PF reset fails */
1396 if (test_bit(ICE_RESET_FAILED, pf->state))
1397 return 0;
1398
1399 switch (q_type) {
1400 case ICE_CTL_Q_ADMIN:
1401 cq = &hw->adminq;
1402 qtype = "Admin";
1403 break;
1404 case ICE_CTL_Q_SB:
1405 cq = &hw->sbq;
1406 qtype = "Sideband";
1407 break;
1408 case ICE_CTL_Q_MAILBOX:
1409 cq = &hw->mailboxq;
1410 qtype = "Mailbox";
1411 /* we are going to try to detect a malicious VF, so set the
1412 * state to begin detection
1413 */
1414 hw->mbx_snapshot.mbx_buf.state = ICE_MAL_VF_DETECT_STATE_NEW_SNAPSHOT;
1415 break;
1416 default:
1417 dev_warn(dev, "Unknown control queue type 0x%x\n", q_type);
1418 return 0;
1419 }
1420
1421 /* check for error indications - PF_xx_AxQLEN register layout for
1422 * FW/MBX/SB are identical so just use defines for PF_FW_AxQLEN.
1423 */
1424 val = rd32(hw, cq->rq.len);
1425 if (val & (PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1426 PF_FW_ARQLEN_ARQCRIT_M)) {
1427 oldval = val;
1428 if (val & PF_FW_ARQLEN_ARQVFE_M)
1429 dev_dbg(dev, "%s Receive Queue VF Error detected\n",
1430 qtype);
1431 if (val & PF_FW_ARQLEN_ARQOVFL_M) {
1432 dev_dbg(dev, "%s Receive Queue Overflow Error detected\n",
1433 qtype);
1434 }
1435 if (val & PF_FW_ARQLEN_ARQCRIT_M)
1436 dev_dbg(dev, "%s Receive Queue Critical Error detected\n",
1437 qtype);
1438 val &= ~(PF_FW_ARQLEN_ARQVFE_M | PF_FW_ARQLEN_ARQOVFL_M |
1439 PF_FW_ARQLEN_ARQCRIT_M);
1440 if (oldval != val)
1441 wr32(hw, cq->rq.len, val);
1442 }
1443
1444 val = rd32(hw, cq->sq.len);
1445 if (val & (PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1446 PF_FW_ATQLEN_ATQCRIT_M)) {
1447 oldval = val;
1448 if (val & PF_FW_ATQLEN_ATQVFE_M)
1449 dev_dbg(dev, "%s Send Queue VF Error detected\n",
1450 qtype);
1451 if (val & PF_FW_ATQLEN_ATQOVFL_M) {
1452 dev_dbg(dev, "%s Send Queue Overflow Error detected\n",
1453 qtype);
1454 }
1455 if (val & PF_FW_ATQLEN_ATQCRIT_M)
1456 dev_dbg(dev, "%s Send Queue Critical Error detected\n",
1457 qtype);
1458 val &= ~(PF_FW_ATQLEN_ATQVFE_M | PF_FW_ATQLEN_ATQOVFL_M |
1459 PF_FW_ATQLEN_ATQCRIT_M);
1460 if (oldval != val)
1461 wr32(hw, cq->sq.len, val);
1462 }
1463
1464 event.buf_len = cq->rq_buf_size;
1465 event.msg_buf = kzalloc(event.buf_len, GFP_KERNEL);
1466 if (!event.msg_buf)
1467 return 0;
1468
1469 do {
1470 u16 opcode;
1471 int ret;
1472
1473 ret = ice_clean_rq_elem(hw, cq, &event, &pending);
1474 if (ret == -EALREADY)
1475 break;
1476 if (ret) {
1477 dev_err(dev, "%s Receive Queue event error %d\n", qtype,
1478 ret);
1479 break;
1480 }
1481
1482 opcode = le16_to_cpu(event.desc.opcode);
1483
1484 /* Notify any thread that might be waiting for this event */
1485 ice_aq_check_events(pf, opcode, &event);
1486
1487 switch (opcode) {
1488 case ice_aqc_opc_get_link_status:
1489 if (ice_handle_link_event(pf, &event))
1490 dev_err(dev, "Could not handle link event\n");
1491 break;
1492 case ice_aqc_opc_event_lan_overflow:
1493 ice_vf_lan_overflow_event(pf, &event);
1494 break;
1495 case ice_mbx_opc_send_msg_to_pf:
1496 if (!ice_is_malicious_vf(pf, &event, i, pending))
1497 ice_vc_process_vf_msg(pf, &event);
1498 break;
1499 case ice_aqc_opc_fw_logging:
1500 ice_output_fw_log(hw, &event.desc, event.msg_buf);
1501 break;
1502 case ice_aqc_opc_lldp_set_mib_change:
1503 ice_dcb_process_lldp_set_mib_change(pf, &event);
1504 break;
1505 default:
1506 dev_dbg(dev, "%s Receive Queue unknown event 0x%04x ignored\n",
1507 qtype, opcode);
1508 break;
1509 }
1510 } while (pending && (i++ < ICE_DFLT_IRQ_WORK));
1511
1512 kfree(event.msg_buf);
1513
1514 return pending && (i == ICE_DFLT_IRQ_WORK);
1515 }
1516
1517 /**
1518 * ice_ctrlq_pending - check if there is a difference between ntc and ntu
1519 * @hw: pointer to hardware info
1520 * @cq: control queue information
1521 *
1522 * returns true if there are pending messages in a queue, false if there aren't
1523 */
ice_ctrlq_pending(struct ice_hw * hw,struct ice_ctl_q_info * cq)1524 static bool ice_ctrlq_pending(struct ice_hw *hw, struct ice_ctl_q_info *cq)
1525 {
1526 u16 ntu;
1527
1528 ntu = (u16)(rd32(hw, cq->rq.head) & cq->rq.head_mask);
1529 return cq->rq.next_to_clean != ntu;
1530 }
1531
1532 /**
1533 * ice_clean_adminq_subtask - clean the AdminQ rings
1534 * @pf: board private structure
1535 */
ice_clean_adminq_subtask(struct ice_pf * pf)1536 static void ice_clean_adminq_subtask(struct ice_pf *pf)
1537 {
1538 struct ice_hw *hw = &pf->hw;
1539
1540 if (!test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
1541 return;
1542
1543 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN))
1544 return;
1545
1546 clear_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
1547
1548 /* There might be a situation where new messages arrive to a control
1549 * queue between processing the last message and clearing the
1550 * EVENT_PENDING bit. So before exiting, check queue head again (using
1551 * ice_ctrlq_pending) and process new messages if any.
1552 */
1553 if (ice_ctrlq_pending(hw, &hw->adminq))
1554 __ice_clean_ctrlq(pf, ICE_CTL_Q_ADMIN);
1555
1556 ice_flush(hw);
1557 }
1558
1559 /**
1560 * ice_clean_mailboxq_subtask - clean the MailboxQ rings
1561 * @pf: board private structure
1562 */
ice_clean_mailboxq_subtask(struct ice_pf * pf)1563 static void ice_clean_mailboxq_subtask(struct ice_pf *pf)
1564 {
1565 struct ice_hw *hw = &pf->hw;
1566
1567 if (!test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state))
1568 return;
1569
1570 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX))
1571 return;
1572
1573 clear_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
1574
1575 if (ice_ctrlq_pending(hw, &hw->mailboxq))
1576 __ice_clean_ctrlq(pf, ICE_CTL_Q_MAILBOX);
1577
1578 ice_flush(hw);
1579 }
1580
1581 /**
1582 * ice_clean_sbq_subtask - clean the Sideband Queue rings
1583 * @pf: board private structure
1584 */
ice_clean_sbq_subtask(struct ice_pf * pf)1585 static void ice_clean_sbq_subtask(struct ice_pf *pf)
1586 {
1587 struct ice_hw *hw = &pf->hw;
1588
1589 /* Nothing to do here if sideband queue is not supported */
1590 if (!ice_is_sbq_supported(hw)) {
1591 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1592 return;
1593 }
1594
1595 if (!test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state))
1596 return;
1597
1598 if (__ice_clean_ctrlq(pf, ICE_CTL_Q_SB))
1599 return;
1600
1601 clear_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
1602
1603 if (ice_ctrlq_pending(hw, &hw->sbq))
1604 __ice_clean_ctrlq(pf, ICE_CTL_Q_SB);
1605
1606 ice_flush(hw);
1607 }
1608
1609 /**
1610 * ice_service_task_schedule - schedule the service task to wake up
1611 * @pf: board private structure
1612 *
1613 * If not already scheduled, this puts the task into the work queue.
1614 */
ice_service_task_schedule(struct ice_pf * pf)1615 void ice_service_task_schedule(struct ice_pf *pf)
1616 {
1617 if (!test_bit(ICE_SERVICE_DIS, pf->state) &&
1618 !test_and_set_bit(ICE_SERVICE_SCHED, pf->state) &&
1619 !test_bit(ICE_NEEDS_RESTART, pf->state))
1620 queue_work(ice_wq, &pf->serv_task);
1621 }
1622
1623 /**
1624 * ice_service_task_complete - finish up the service task
1625 * @pf: board private structure
1626 */
ice_service_task_complete(struct ice_pf * pf)1627 static void ice_service_task_complete(struct ice_pf *pf)
1628 {
1629 WARN_ON(!test_bit(ICE_SERVICE_SCHED, pf->state));
1630
1631 /* force memory (pf->state) to sync before next service task */
1632 smp_mb__before_atomic();
1633 clear_bit(ICE_SERVICE_SCHED, pf->state);
1634 }
1635
1636 /**
1637 * ice_service_task_stop - stop service task and cancel works
1638 * @pf: board private structure
1639 *
1640 * Return 0 if the ICE_SERVICE_DIS bit was not already set,
1641 * 1 otherwise.
1642 */
ice_service_task_stop(struct ice_pf * pf)1643 static int ice_service_task_stop(struct ice_pf *pf)
1644 {
1645 int ret;
1646
1647 ret = test_and_set_bit(ICE_SERVICE_DIS, pf->state);
1648
1649 if (pf->serv_tmr.function)
1650 del_timer_sync(&pf->serv_tmr);
1651 if (pf->serv_task.func)
1652 cancel_work_sync(&pf->serv_task);
1653
1654 clear_bit(ICE_SERVICE_SCHED, pf->state);
1655 return ret;
1656 }
1657
1658 /**
1659 * ice_service_task_restart - restart service task and schedule works
1660 * @pf: board private structure
1661 *
1662 * This function is needed for suspend and resume works (e.g WoL scenario)
1663 */
ice_service_task_restart(struct ice_pf * pf)1664 static void ice_service_task_restart(struct ice_pf *pf)
1665 {
1666 clear_bit(ICE_SERVICE_DIS, pf->state);
1667 ice_service_task_schedule(pf);
1668 }
1669
1670 /**
1671 * ice_service_timer - timer callback to schedule service task
1672 * @t: pointer to timer_list
1673 */
ice_service_timer(struct timer_list * t)1674 static void ice_service_timer(struct timer_list *t)
1675 {
1676 struct ice_pf *pf = from_timer(pf, t, serv_tmr);
1677
1678 mod_timer(&pf->serv_tmr, round_jiffies(pf->serv_tmr_period + jiffies));
1679 ice_service_task_schedule(pf);
1680 }
1681
1682 /**
1683 * ice_handle_mdd_event - handle malicious driver detect event
1684 * @pf: pointer to the PF structure
1685 *
1686 * Called from service task. OICR interrupt handler indicates MDD event.
1687 * VF MDD logging is guarded by net_ratelimit. Additional PF and VF log
1688 * messages are wrapped by netif_msg_[rx|tx]_err. Since VF Rx MDD events
1689 * disable the queue, the PF can be configured to reset the VF using ethtool
1690 * private flag mdd-auto-reset-vf.
1691 */
ice_handle_mdd_event(struct ice_pf * pf)1692 static void ice_handle_mdd_event(struct ice_pf *pf)
1693 {
1694 struct device *dev = ice_pf_to_dev(pf);
1695 struct ice_hw *hw = &pf->hw;
1696 struct ice_vf *vf;
1697 unsigned int bkt;
1698 u32 reg;
1699
1700 if (!test_and_clear_bit(ICE_MDD_EVENT_PENDING, pf->state)) {
1701 /* Since the VF MDD event logging is rate limited, check if
1702 * there are pending MDD events.
1703 */
1704 ice_print_vfs_mdd_events(pf);
1705 return;
1706 }
1707
1708 /* find what triggered an MDD event */
1709 reg = rd32(hw, GL_MDET_TX_PQM);
1710 if (reg & GL_MDET_TX_PQM_VALID_M) {
1711 u8 pf_num = (reg & GL_MDET_TX_PQM_PF_NUM_M) >>
1712 GL_MDET_TX_PQM_PF_NUM_S;
1713 u16 vf_num = (reg & GL_MDET_TX_PQM_VF_NUM_M) >>
1714 GL_MDET_TX_PQM_VF_NUM_S;
1715 u8 event = (reg & GL_MDET_TX_PQM_MAL_TYPE_M) >>
1716 GL_MDET_TX_PQM_MAL_TYPE_S;
1717 u16 queue = ((reg & GL_MDET_TX_PQM_QNUM_M) >>
1718 GL_MDET_TX_PQM_QNUM_S);
1719
1720 if (netif_msg_tx_err(pf))
1721 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1722 event, queue, pf_num, vf_num);
1723 wr32(hw, GL_MDET_TX_PQM, 0xffffffff);
1724 }
1725
1726 reg = rd32(hw, GL_MDET_TX_TCLAN);
1727 if (reg & GL_MDET_TX_TCLAN_VALID_M) {
1728 u8 pf_num = (reg & GL_MDET_TX_TCLAN_PF_NUM_M) >>
1729 GL_MDET_TX_TCLAN_PF_NUM_S;
1730 u16 vf_num = (reg & GL_MDET_TX_TCLAN_VF_NUM_M) >>
1731 GL_MDET_TX_TCLAN_VF_NUM_S;
1732 u8 event = (reg & GL_MDET_TX_TCLAN_MAL_TYPE_M) >>
1733 GL_MDET_TX_TCLAN_MAL_TYPE_S;
1734 u16 queue = ((reg & GL_MDET_TX_TCLAN_QNUM_M) >>
1735 GL_MDET_TX_TCLAN_QNUM_S);
1736
1737 if (netif_msg_tx_err(pf))
1738 dev_info(dev, "Malicious Driver Detection event %d on TX queue %d PF# %d VF# %d\n",
1739 event, queue, pf_num, vf_num);
1740 wr32(hw, GL_MDET_TX_TCLAN, 0xffffffff);
1741 }
1742
1743 reg = rd32(hw, GL_MDET_RX);
1744 if (reg & GL_MDET_RX_VALID_M) {
1745 u8 pf_num = (reg & GL_MDET_RX_PF_NUM_M) >>
1746 GL_MDET_RX_PF_NUM_S;
1747 u16 vf_num = (reg & GL_MDET_RX_VF_NUM_M) >>
1748 GL_MDET_RX_VF_NUM_S;
1749 u8 event = (reg & GL_MDET_RX_MAL_TYPE_M) >>
1750 GL_MDET_RX_MAL_TYPE_S;
1751 u16 queue = ((reg & GL_MDET_RX_QNUM_M) >>
1752 GL_MDET_RX_QNUM_S);
1753
1754 if (netif_msg_rx_err(pf))
1755 dev_info(dev, "Malicious Driver Detection event %d on RX queue %d PF# %d VF# %d\n",
1756 event, queue, pf_num, vf_num);
1757 wr32(hw, GL_MDET_RX, 0xffffffff);
1758 }
1759
1760 /* check to see if this PF caused an MDD event */
1761 reg = rd32(hw, PF_MDET_TX_PQM);
1762 if (reg & PF_MDET_TX_PQM_VALID_M) {
1763 wr32(hw, PF_MDET_TX_PQM, 0xFFFF);
1764 if (netif_msg_tx_err(pf))
1765 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on PF\n");
1766 }
1767
1768 reg = rd32(hw, PF_MDET_TX_TCLAN);
1769 if (reg & PF_MDET_TX_TCLAN_VALID_M) {
1770 wr32(hw, PF_MDET_TX_TCLAN, 0xFFFF);
1771 if (netif_msg_tx_err(pf))
1772 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on PF\n");
1773 }
1774
1775 reg = rd32(hw, PF_MDET_RX);
1776 if (reg & PF_MDET_RX_VALID_M) {
1777 wr32(hw, PF_MDET_RX, 0xFFFF);
1778 if (netif_msg_rx_err(pf))
1779 dev_info(dev, "Malicious Driver Detection event RX detected on PF\n");
1780 }
1781
1782 /* Check to see if one of the VFs caused an MDD event, and then
1783 * increment counters and set print pending
1784 */
1785 mutex_lock(&pf->vfs.table_lock);
1786 ice_for_each_vf(pf, bkt, vf) {
1787 reg = rd32(hw, VP_MDET_TX_PQM(vf->vf_id));
1788 if (reg & VP_MDET_TX_PQM_VALID_M) {
1789 wr32(hw, VP_MDET_TX_PQM(vf->vf_id), 0xFFFF);
1790 vf->mdd_tx_events.count++;
1791 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1792 if (netif_msg_tx_err(pf))
1793 dev_info(dev, "Malicious Driver Detection event TX_PQM detected on VF %d\n",
1794 vf->vf_id);
1795 }
1796
1797 reg = rd32(hw, VP_MDET_TX_TCLAN(vf->vf_id));
1798 if (reg & VP_MDET_TX_TCLAN_VALID_M) {
1799 wr32(hw, VP_MDET_TX_TCLAN(vf->vf_id), 0xFFFF);
1800 vf->mdd_tx_events.count++;
1801 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1802 if (netif_msg_tx_err(pf))
1803 dev_info(dev, "Malicious Driver Detection event TX_TCLAN detected on VF %d\n",
1804 vf->vf_id);
1805 }
1806
1807 reg = rd32(hw, VP_MDET_TX_TDPU(vf->vf_id));
1808 if (reg & VP_MDET_TX_TDPU_VALID_M) {
1809 wr32(hw, VP_MDET_TX_TDPU(vf->vf_id), 0xFFFF);
1810 vf->mdd_tx_events.count++;
1811 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1812 if (netif_msg_tx_err(pf))
1813 dev_info(dev, "Malicious Driver Detection event TX_TDPU detected on VF %d\n",
1814 vf->vf_id);
1815 }
1816
1817 reg = rd32(hw, VP_MDET_RX(vf->vf_id));
1818 if (reg & VP_MDET_RX_VALID_M) {
1819 wr32(hw, VP_MDET_RX(vf->vf_id), 0xFFFF);
1820 vf->mdd_rx_events.count++;
1821 set_bit(ICE_MDD_VF_PRINT_PENDING, pf->state);
1822 if (netif_msg_rx_err(pf))
1823 dev_info(dev, "Malicious Driver Detection event RX detected on VF %d\n",
1824 vf->vf_id);
1825
1826 /* Since the queue is disabled on VF Rx MDD events, the
1827 * PF can be configured to reset the VF through ethtool
1828 * private flag mdd-auto-reset-vf.
1829 */
1830 if (test_bit(ICE_FLAG_MDD_AUTO_RESET_VF, pf->flags)) {
1831 /* VF MDD event counters will be cleared by
1832 * reset, so print the event prior to reset.
1833 */
1834 ice_print_vf_rx_mdd_event(vf);
1835 ice_reset_vf(vf, ICE_VF_RESET_LOCK);
1836 }
1837 }
1838 }
1839 mutex_unlock(&pf->vfs.table_lock);
1840
1841 ice_print_vfs_mdd_events(pf);
1842 }
1843
1844 /**
1845 * ice_force_phys_link_state - Force the physical link state
1846 * @vsi: VSI to force the physical link state to up/down
1847 * @link_up: true/false indicates to set the physical link to up/down
1848 *
1849 * Force the physical link state by getting the current PHY capabilities from
1850 * hardware and setting the PHY config based on the determined capabilities. If
1851 * link changes a link event will be triggered because both the Enable Automatic
1852 * Link Update and LESM Enable bits are set when setting the PHY capabilities.
1853 *
1854 * Returns 0 on success, negative on failure
1855 */
ice_force_phys_link_state(struct ice_vsi * vsi,bool link_up)1856 static int ice_force_phys_link_state(struct ice_vsi *vsi, bool link_up)
1857 {
1858 struct ice_aqc_get_phy_caps_data *pcaps;
1859 struct ice_aqc_set_phy_cfg_data *cfg;
1860 struct ice_port_info *pi;
1861 struct device *dev;
1862 int retcode;
1863
1864 if (!vsi || !vsi->port_info || !vsi->back)
1865 return -EINVAL;
1866 if (vsi->type != ICE_VSI_PF)
1867 return 0;
1868
1869 dev = ice_pf_to_dev(vsi->back);
1870
1871 pi = vsi->port_info;
1872
1873 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1874 if (!pcaps)
1875 return -ENOMEM;
1876
1877 retcode = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
1878 NULL);
1879 if (retcode) {
1880 dev_err(dev, "Failed to get phy capabilities, VSI %d error %d\n",
1881 vsi->vsi_num, retcode);
1882 retcode = -EIO;
1883 goto out;
1884 }
1885
1886 /* No change in link */
1887 if (link_up == !!(pcaps->caps & ICE_AQC_PHY_EN_LINK) &&
1888 link_up == !!(pi->phy.link_info.link_info & ICE_AQ_LINK_UP))
1889 goto out;
1890
1891 /* Use the current user PHY configuration. The current user PHY
1892 * configuration is initialized during probe from PHY capabilities
1893 * software mode, and updated on set PHY configuration.
1894 */
1895 cfg = kmemdup(&pi->phy.curr_user_phy_cfg, sizeof(*cfg), GFP_KERNEL);
1896 if (!cfg) {
1897 retcode = -ENOMEM;
1898 goto out;
1899 }
1900
1901 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT;
1902 if (link_up)
1903 cfg->caps |= ICE_AQ_PHY_ENA_LINK;
1904 else
1905 cfg->caps &= ~ICE_AQ_PHY_ENA_LINK;
1906
1907 retcode = ice_aq_set_phy_cfg(&vsi->back->hw, pi, cfg, NULL);
1908 if (retcode) {
1909 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
1910 vsi->vsi_num, retcode);
1911 retcode = -EIO;
1912 }
1913
1914 kfree(cfg);
1915 out:
1916 kfree(pcaps);
1917 return retcode;
1918 }
1919
1920 /**
1921 * ice_init_nvm_phy_type - Initialize the NVM PHY type
1922 * @pi: port info structure
1923 *
1924 * Initialize nvm_phy_type_[low|high] for link lenient mode support
1925 */
ice_init_nvm_phy_type(struct ice_port_info * pi)1926 static int ice_init_nvm_phy_type(struct ice_port_info *pi)
1927 {
1928 struct ice_aqc_get_phy_caps_data *pcaps;
1929 struct ice_pf *pf = pi->hw->back;
1930 int err;
1931
1932 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
1933 if (!pcaps)
1934 return -ENOMEM;
1935
1936 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_NO_MEDIA,
1937 pcaps, NULL);
1938
1939 if (err) {
1940 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
1941 goto out;
1942 }
1943
1944 pf->nvm_phy_type_hi = pcaps->phy_type_high;
1945 pf->nvm_phy_type_lo = pcaps->phy_type_low;
1946
1947 out:
1948 kfree(pcaps);
1949 return err;
1950 }
1951
1952 /**
1953 * ice_init_link_dflt_override - Initialize link default override
1954 * @pi: port info structure
1955 *
1956 * Initialize link default override and PHY total port shutdown during probe
1957 */
ice_init_link_dflt_override(struct ice_port_info * pi)1958 static void ice_init_link_dflt_override(struct ice_port_info *pi)
1959 {
1960 struct ice_link_default_override_tlv *ldo;
1961 struct ice_pf *pf = pi->hw->back;
1962
1963 ldo = &pf->link_dflt_override;
1964 if (ice_get_link_default_override(ldo, pi))
1965 return;
1966
1967 if (!(ldo->options & ICE_LINK_OVERRIDE_PORT_DIS))
1968 return;
1969
1970 /* Enable Total Port Shutdown (override/replace link-down-on-close
1971 * ethtool private flag) for ports with Port Disable bit set.
1972 */
1973 set_bit(ICE_FLAG_TOTAL_PORT_SHUTDOWN_ENA, pf->flags);
1974 set_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags);
1975 }
1976
1977 /**
1978 * ice_init_phy_cfg_dflt_override - Initialize PHY cfg default override settings
1979 * @pi: port info structure
1980 *
1981 * If default override is enabled, initialize the user PHY cfg speed and FEC
1982 * settings using the default override mask from the NVM.
1983 *
1984 * The PHY should only be configured with the default override settings the
1985 * first time media is available. The ICE_LINK_DEFAULT_OVERRIDE_PENDING state
1986 * is used to indicate that the user PHY cfg default override is initialized
1987 * and the PHY has not been configured with the default override settings. The
1988 * state is set here, and cleared in ice_configure_phy the first time the PHY is
1989 * configured.
1990 *
1991 * This function should be called only if the FW doesn't support default
1992 * configuration mode, as reported by ice_fw_supports_report_dflt_cfg.
1993 */
ice_init_phy_cfg_dflt_override(struct ice_port_info * pi)1994 static void ice_init_phy_cfg_dflt_override(struct ice_port_info *pi)
1995 {
1996 struct ice_link_default_override_tlv *ldo;
1997 struct ice_aqc_set_phy_cfg_data *cfg;
1998 struct ice_phy_info *phy = &pi->phy;
1999 struct ice_pf *pf = pi->hw->back;
2000
2001 ldo = &pf->link_dflt_override;
2002
2003 /* If link default override is enabled, use to mask NVM PHY capabilities
2004 * for speed and FEC default configuration.
2005 */
2006 cfg = &phy->curr_user_phy_cfg;
2007
2008 if (ldo->phy_type_low || ldo->phy_type_high) {
2009 cfg->phy_type_low = pf->nvm_phy_type_lo &
2010 cpu_to_le64(ldo->phy_type_low);
2011 cfg->phy_type_high = pf->nvm_phy_type_hi &
2012 cpu_to_le64(ldo->phy_type_high);
2013 }
2014 cfg->link_fec_opt = ldo->fec_options;
2015 phy->curr_user_fec_req = ICE_FEC_AUTO;
2016
2017 set_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING, pf->state);
2018 }
2019
2020 /**
2021 * ice_init_phy_user_cfg - Initialize the PHY user configuration
2022 * @pi: port info structure
2023 *
2024 * Initialize the current user PHY configuration, speed, FEC, and FC requested
2025 * mode to default. The PHY defaults are from get PHY capabilities topology
2026 * with media so call when media is first available. An error is returned if
2027 * called when media is not available. The PHY initialization completed state is
2028 * set here.
2029 *
2030 * These configurations are used when setting PHY
2031 * configuration. The user PHY configuration is updated on set PHY
2032 * configuration. Returns 0 on success, negative on failure
2033 */
ice_init_phy_user_cfg(struct ice_port_info * pi)2034 static int ice_init_phy_user_cfg(struct ice_port_info *pi)
2035 {
2036 struct ice_aqc_get_phy_caps_data *pcaps;
2037 struct ice_phy_info *phy = &pi->phy;
2038 struct ice_pf *pf = pi->hw->back;
2039 int err;
2040
2041 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2042 return -EIO;
2043
2044 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2045 if (!pcaps)
2046 return -ENOMEM;
2047
2048 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2049 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2050 pcaps, NULL);
2051 else
2052 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2053 pcaps, NULL);
2054 if (err) {
2055 dev_err(ice_pf_to_dev(pf), "Get PHY capability failed.\n");
2056 goto err_out;
2057 }
2058
2059 ice_copy_phy_caps_to_cfg(pi, pcaps, &pi->phy.curr_user_phy_cfg);
2060
2061 /* check if lenient mode is supported and enabled */
2062 if (ice_fw_supports_link_override(pi->hw) &&
2063 !(pcaps->module_compliance_enforcement &
2064 ICE_AQC_MOD_ENFORCE_STRICT_MODE)) {
2065 set_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags);
2066
2067 /* if the FW supports default PHY configuration mode, then the driver
2068 * does not have to apply link override settings. If not,
2069 * initialize user PHY configuration with link override values
2070 */
2071 if (!ice_fw_supports_report_dflt_cfg(pi->hw) &&
2072 (pf->link_dflt_override.options & ICE_LINK_OVERRIDE_EN)) {
2073 ice_init_phy_cfg_dflt_override(pi);
2074 goto out;
2075 }
2076 }
2077
2078 /* if link default override is not enabled, set user flow control and
2079 * FEC settings based on what get_phy_caps returned
2080 */
2081 phy->curr_user_fec_req = ice_caps_to_fec_mode(pcaps->caps,
2082 pcaps->link_fec_options);
2083 phy->curr_user_fc_req = ice_caps_to_fc_mode(pcaps->caps);
2084
2085 out:
2086 phy->curr_user_speed_req = ICE_AQ_LINK_SPEED_M;
2087 set_bit(ICE_PHY_INIT_COMPLETE, pf->state);
2088 err_out:
2089 kfree(pcaps);
2090 return err;
2091 }
2092
2093 /**
2094 * ice_configure_phy - configure PHY
2095 * @vsi: VSI of PHY
2096 *
2097 * Set the PHY configuration. If the current PHY configuration is the same as
2098 * the curr_user_phy_cfg, then do nothing to avoid link flap. Otherwise
2099 * configure the based get PHY capabilities for topology with media.
2100 */
ice_configure_phy(struct ice_vsi * vsi)2101 static int ice_configure_phy(struct ice_vsi *vsi)
2102 {
2103 struct device *dev = ice_pf_to_dev(vsi->back);
2104 struct ice_port_info *pi = vsi->port_info;
2105 struct ice_aqc_get_phy_caps_data *pcaps;
2106 struct ice_aqc_set_phy_cfg_data *cfg;
2107 struct ice_phy_info *phy = &pi->phy;
2108 struct ice_pf *pf = vsi->back;
2109 int err;
2110
2111 /* Ensure we have media as we cannot configure a medialess port */
2112 if (!(phy->link_info.link_info & ICE_AQ_MEDIA_AVAILABLE))
2113 return -EPERM;
2114
2115 ice_print_topo_conflict(vsi);
2116
2117 if (!test_bit(ICE_FLAG_LINK_LENIENT_MODE_ENA, pf->flags) &&
2118 phy->link_info.topo_media_conflict == ICE_AQ_LINK_TOPO_UNSUPP_MEDIA)
2119 return -EPERM;
2120
2121 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags))
2122 return ice_force_phys_link_state(vsi, true);
2123
2124 pcaps = kzalloc(sizeof(*pcaps), GFP_KERNEL);
2125 if (!pcaps)
2126 return -ENOMEM;
2127
2128 /* Get current PHY config */
2129 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_ACTIVE_CFG, pcaps,
2130 NULL);
2131 if (err) {
2132 dev_err(dev, "Failed to get PHY configuration, VSI %d error %d\n",
2133 vsi->vsi_num, err);
2134 goto done;
2135 }
2136
2137 /* If PHY enable link is configured and configuration has not changed,
2138 * there's nothing to do
2139 */
2140 if (pcaps->caps & ICE_AQC_PHY_EN_LINK &&
2141 ice_phy_caps_equals_cfg(pcaps, &phy->curr_user_phy_cfg))
2142 goto done;
2143
2144 /* Use PHY topology as baseline for configuration */
2145 memset(pcaps, 0, sizeof(*pcaps));
2146 if (ice_fw_supports_report_dflt_cfg(pi->hw))
2147 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_DFLT_CFG,
2148 pcaps, NULL);
2149 else
2150 err = ice_aq_get_phy_caps(pi, false, ICE_AQC_REPORT_TOPO_CAP_MEDIA,
2151 pcaps, NULL);
2152 if (err) {
2153 dev_err(dev, "Failed to get PHY caps, VSI %d error %d\n",
2154 vsi->vsi_num, err);
2155 goto done;
2156 }
2157
2158 cfg = kzalloc(sizeof(*cfg), GFP_KERNEL);
2159 if (!cfg) {
2160 err = -ENOMEM;
2161 goto done;
2162 }
2163
2164 ice_copy_phy_caps_to_cfg(pi, pcaps, cfg);
2165
2166 /* Speed - If default override pending, use curr_user_phy_cfg set in
2167 * ice_init_phy_user_cfg_ldo.
2168 */
2169 if (test_and_clear_bit(ICE_LINK_DEFAULT_OVERRIDE_PENDING,
2170 vsi->back->state)) {
2171 cfg->phy_type_low = phy->curr_user_phy_cfg.phy_type_low;
2172 cfg->phy_type_high = phy->curr_user_phy_cfg.phy_type_high;
2173 } else {
2174 u64 phy_low = 0, phy_high = 0;
2175
2176 ice_update_phy_type(&phy_low, &phy_high,
2177 pi->phy.curr_user_speed_req);
2178 cfg->phy_type_low = pcaps->phy_type_low & cpu_to_le64(phy_low);
2179 cfg->phy_type_high = pcaps->phy_type_high &
2180 cpu_to_le64(phy_high);
2181 }
2182
2183 /* Can't provide what was requested; use PHY capabilities */
2184 if (!cfg->phy_type_low && !cfg->phy_type_high) {
2185 cfg->phy_type_low = pcaps->phy_type_low;
2186 cfg->phy_type_high = pcaps->phy_type_high;
2187 }
2188
2189 /* FEC */
2190 ice_cfg_phy_fec(pi, cfg, phy->curr_user_fec_req);
2191
2192 /* Can't provide what was requested; use PHY capabilities */
2193 if (cfg->link_fec_opt !=
2194 (cfg->link_fec_opt & pcaps->link_fec_options)) {
2195 cfg->caps |= pcaps->caps & ICE_AQC_PHY_EN_AUTO_FEC;
2196 cfg->link_fec_opt = pcaps->link_fec_options;
2197 }
2198
2199 /* Flow Control - always supported; no need to check against
2200 * capabilities
2201 */
2202 ice_cfg_phy_fc(pi, cfg, phy->curr_user_fc_req);
2203
2204 /* Enable link and link update */
2205 cfg->caps |= ICE_AQ_PHY_ENA_AUTO_LINK_UPDT | ICE_AQ_PHY_ENA_LINK;
2206
2207 err = ice_aq_set_phy_cfg(&pf->hw, pi, cfg, NULL);
2208 if (err)
2209 dev_err(dev, "Failed to set phy config, VSI %d error %d\n",
2210 vsi->vsi_num, err);
2211
2212 kfree(cfg);
2213 done:
2214 kfree(pcaps);
2215 return err;
2216 }
2217
2218 /**
2219 * ice_check_media_subtask - Check for media
2220 * @pf: pointer to PF struct
2221 *
2222 * If media is available, then initialize PHY user configuration if it is not
2223 * been, and configure the PHY if the interface is up.
2224 */
ice_check_media_subtask(struct ice_pf * pf)2225 static void ice_check_media_subtask(struct ice_pf *pf)
2226 {
2227 struct ice_port_info *pi;
2228 struct ice_vsi *vsi;
2229 int err;
2230
2231 /* No need to check for media if it's already present */
2232 if (!test_bit(ICE_FLAG_NO_MEDIA, pf->flags))
2233 return;
2234
2235 vsi = ice_get_main_vsi(pf);
2236 if (!vsi)
2237 return;
2238
2239 /* Refresh link info and check if media is present */
2240 pi = vsi->port_info;
2241 err = ice_update_link_info(pi);
2242 if (err)
2243 return;
2244
2245 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
2246
2247 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
2248 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state))
2249 ice_init_phy_user_cfg(pi);
2250
2251 /* PHY settings are reset on media insertion, reconfigure
2252 * PHY to preserve settings.
2253 */
2254 if (test_bit(ICE_VSI_DOWN, vsi->state) &&
2255 test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags))
2256 return;
2257
2258 err = ice_configure_phy(vsi);
2259 if (!err)
2260 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
2261
2262 /* A Link Status Event will be generated; the event handler
2263 * will complete bringing the interface up
2264 */
2265 }
2266 }
2267
2268 /**
2269 * ice_service_task - manage and run subtasks
2270 * @work: pointer to work_struct contained by the PF struct
2271 */
ice_service_task(struct work_struct * work)2272 static void ice_service_task(struct work_struct *work)
2273 {
2274 struct ice_pf *pf = container_of(work, struct ice_pf, serv_task);
2275 unsigned long start_time = jiffies;
2276
2277 /* subtasks */
2278
2279 /* process reset requests first */
2280 ice_reset_subtask(pf);
2281
2282 /* bail if a reset/recovery cycle is pending or rebuild failed */
2283 if (ice_is_reset_in_progress(pf->state) ||
2284 test_bit(ICE_SUSPENDED, pf->state) ||
2285 test_bit(ICE_NEEDS_RESTART, pf->state)) {
2286 ice_service_task_complete(pf);
2287 return;
2288 }
2289
2290 if (test_and_clear_bit(ICE_AUX_ERR_PENDING, pf->state)) {
2291 struct iidc_event *event;
2292
2293 event = kzalloc(sizeof(*event), GFP_KERNEL);
2294 if (event) {
2295 set_bit(IIDC_EVENT_CRIT_ERR, event->type);
2296 /* report the entire OICR value to AUX driver */
2297 swap(event->reg, pf->oicr_err_reg);
2298 ice_send_event_to_aux(pf, event);
2299 kfree(event);
2300 }
2301 }
2302
2303 if (test_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags)) {
2304 /* Plug aux device per request */
2305 ice_plug_aux_dev(pf);
2306
2307 /* Mark plugging as done but check whether unplug was
2308 * requested during ice_plug_aux_dev() call
2309 * (e.g. from ice_clear_rdma_cap()) and if so then
2310 * plug aux device.
2311 */
2312 if (!test_and_clear_bit(ICE_FLAG_PLUG_AUX_DEV, pf->flags))
2313 ice_unplug_aux_dev(pf);
2314 }
2315
2316 if (test_and_clear_bit(ICE_FLAG_MTU_CHANGED, pf->flags)) {
2317 struct iidc_event *event;
2318
2319 event = kzalloc(sizeof(*event), GFP_KERNEL);
2320 if (event) {
2321 set_bit(IIDC_EVENT_AFTER_MTU_CHANGE, event->type);
2322 ice_send_event_to_aux(pf, event);
2323 kfree(event);
2324 }
2325 }
2326
2327 ice_clean_adminq_subtask(pf);
2328 ice_check_media_subtask(pf);
2329 ice_check_for_hang_subtask(pf);
2330 ice_sync_fltr_subtask(pf);
2331 ice_handle_mdd_event(pf);
2332 ice_watchdog_subtask(pf);
2333
2334 if (ice_is_safe_mode(pf)) {
2335 ice_service_task_complete(pf);
2336 return;
2337 }
2338
2339 ice_process_vflr_event(pf);
2340 ice_clean_mailboxq_subtask(pf);
2341 ice_clean_sbq_subtask(pf);
2342 ice_sync_arfs_fltrs(pf);
2343 ice_flush_fdir_ctx(pf);
2344
2345 /* Clear ICE_SERVICE_SCHED flag to allow scheduling next event */
2346 ice_service_task_complete(pf);
2347
2348 /* If the tasks have taken longer than one service timer period
2349 * or there is more work to be done, reset the service timer to
2350 * schedule the service task now.
2351 */
2352 if (time_after(jiffies, (start_time + pf->serv_tmr_period)) ||
2353 test_bit(ICE_MDD_EVENT_PENDING, pf->state) ||
2354 test_bit(ICE_VFLR_EVENT_PENDING, pf->state) ||
2355 test_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state) ||
2356 test_bit(ICE_FD_VF_FLUSH_CTX, pf->state) ||
2357 test_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state) ||
2358 test_bit(ICE_ADMINQ_EVENT_PENDING, pf->state))
2359 mod_timer(&pf->serv_tmr, jiffies);
2360 }
2361
2362 /**
2363 * ice_set_ctrlq_len - helper function to set controlq length
2364 * @hw: pointer to the HW instance
2365 */
ice_set_ctrlq_len(struct ice_hw * hw)2366 static void ice_set_ctrlq_len(struct ice_hw *hw)
2367 {
2368 hw->adminq.num_rq_entries = ICE_AQ_LEN;
2369 hw->adminq.num_sq_entries = ICE_AQ_LEN;
2370 hw->adminq.rq_buf_size = ICE_AQ_MAX_BUF_LEN;
2371 hw->adminq.sq_buf_size = ICE_AQ_MAX_BUF_LEN;
2372 hw->mailboxq.num_rq_entries = PF_MBX_ARQLEN_ARQLEN_M;
2373 hw->mailboxq.num_sq_entries = ICE_MBXSQ_LEN;
2374 hw->mailboxq.rq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2375 hw->mailboxq.sq_buf_size = ICE_MBXQ_MAX_BUF_LEN;
2376 hw->sbq.num_rq_entries = ICE_SBQ_LEN;
2377 hw->sbq.num_sq_entries = ICE_SBQ_LEN;
2378 hw->sbq.rq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2379 hw->sbq.sq_buf_size = ICE_SBQ_MAX_BUF_LEN;
2380 }
2381
2382 /**
2383 * ice_schedule_reset - schedule a reset
2384 * @pf: board private structure
2385 * @reset: reset being requested
2386 */
ice_schedule_reset(struct ice_pf * pf,enum ice_reset_req reset)2387 int ice_schedule_reset(struct ice_pf *pf, enum ice_reset_req reset)
2388 {
2389 struct device *dev = ice_pf_to_dev(pf);
2390
2391 /* bail out if earlier reset has failed */
2392 if (test_bit(ICE_RESET_FAILED, pf->state)) {
2393 dev_dbg(dev, "earlier reset has failed\n");
2394 return -EIO;
2395 }
2396 /* bail if reset/recovery already in progress */
2397 if (ice_is_reset_in_progress(pf->state)) {
2398 dev_dbg(dev, "Reset already in progress\n");
2399 return -EBUSY;
2400 }
2401
2402 ice_unplug_aux_dev(pf);
2403
2404 switch (reset) {
2405 case ICE_RESET_PFR:
2406 set_bit(ICE_PFR_REQ, pf->state);
2407 break;
2408 case ICE_RESET_CORER:
2409 set_bit(ICE_CORER_REQ, pf->state);
2410 break;
2411 case ICE_RESET_GLOBR:
2412 set_bit(ICE_GLOBR_REQ, pf->state);
2413 break;
2414 default:
2415 return -EINVAL;
2416 }
2417
2418 ice_service_task_schedule(pf);
2419 return 0;
2420 }
2421
2422 /**
2423 * ice_irq_affinity_notify - Callback for affinity changes
2424 * @notify: context as to what irq was changed
2425 * @mask: the new affinity mask
2426 *
2427 * This is a callback function used by the irq_set_affinity_notifier function
2428 * so that we may register to receive changes to the irq affinity masks.
2429 */
2430 static void
ice_irq_affinity_notify(struct irq_affinity_notify * notify,const cpumask_t * mask)2431 ice_irq_affinity_notify(struct irq_affinity_notify *notify,
2432 const cpumask_t *mask)
2433 {
2434 struct ice_q_vector *q_vector =
2435 container_of(notify, struct ice_q_vector, affinity_notify);
2436
2437 cpumask_copy(&q_vector->affinity_mask, mask);
2438 }
2439
2440 /**
2441 * ice_irq_affinity_release - Callback for affinity notifier release
2442 * @ref: internal core kernel usage
2443 *
2444 * This is a callback function used by the irq_set_affinity_notifier function
2445 * to inform the current notification subscriber that they will no longer
2446 * receive notifications.
2447 */
ice_irq_affinity_release(struct kref __always_unused * ref)2448 static void ice_irq_affinity_release(struct kref __always_unused *ref) {}
2449
2450 /**
2451 * ice_vsi_ena_irq - Enable IRQ for the given VSI
2452 * @vsi: the VSI being configured
2453 */
ice_vsi_ena_irq(struct ice_vsi * vsi)2454 static int ice_vsi_ena_irq(struct ice_vsi *vsi)
2455 {
2456 struct ice_hw *hw = &vsi->back->hw;
2457 int i;
2458
2459 ice_for_each_q_vector(vsi, i)
2460 ice_irq_dynamic_ena(hw, vsi, vsi->q_vectors[i]);
2461
2462 ice_flush(hw);
2463 return 0;
2464 }
2465
2466 /**
2467 * ice_vsi_req_irq_msix - get MSI-X vectors from the OS for the VSI
2468 * @vsi: the VSI being configured
2469 * @basename: name for the vector
2470 */
ice_vsi_req_irq_msix(struct ice_vsi * vsi,char * basename)2471 static int ice_vsi_req_irq_msix(struct ice_vsi *vsi, char *basename)
2472 {
2473 int q_vectors = vsi->num_q_vectors;
2474 struct ice_pf *pf = vsi->back;
2475 int base = vsi->base_vector;
2476 struct device *dev;
2477 int rx_int_idx = 0;
2478 int tx_int_idx = 0;
2479 int vector, err;
2480 int irq_num;
2481
2482 dev = ice_pf_to_dev(pf);
2483 for (vector = 0; vector < q_vectors; vector++) {
2484 struct ice_q_vector *q_vector = vsi->q_vectors[vector];
2485
2486 irq_num = pf->msix_entries[base + vector].vector;
2487
2488 if (q_vector->tx.tx_ring && q_vector->rx.rx_ring) {
2489 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2490 "%s-%s-%d", basename, "TxRx", rx_int_idx++);
2491 tx_int_idx++;
2492 } else if (q_vector->rx.rx_ring) {
2493 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2494 "%s-%s-%d", basename, "rx", rx_int_idx++);
2495 } else if (q_vector->tx.tx_ring) {
2496 snprintf(q_vector->name, sizeof(q_vector->name) - 1,
2497 "%s-%s-%d", basename, "tx", tx_int_idx++);
2498 } else {
2499 /* skip this unused q_vector */
2500 continue;
2501 }
2502 if (vsi->type == ICE_VSI_CTRL && vsi->vf)
2503 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2504 IRQF_SHARED, q_vector->name,
2505 q_vector);
2506 else
2507 err = devm_request_irq(dev, irq_num, vsi->irq_handler,
2508 0, q_vector->name, q_vector);
2509 if (err) {
2510 netdev_err(vsi->netdev, "MSIX request_irq failed, error: %d\n",
2511 err);
2512 goto free_q_irqs;
2513 }
2514
2515 /* register for affinity change notifications */
2516 if (!IS_ENABLED(CONFIG_RFS_ACCEL)) {
2517 struct irq_affinity_notify *affinity_notify;
2518
2519 affinity_notify = &q_vector->affinity_notify;
2520 affinity_notify->notify = ice_irq_affinity_notify;
2521 affinity_notify->release = ice_irq_affinity_release;
2522 irq_set_affinity_notifier(irq_num, affinity_notify);
2523 }
2524
2525 /* assign the mask for this irq */
2526 irq_set_affinity_hint(irq_num, &q_vector->affinity_mask);
2527 }
2528
2529 err = ice_set_cpu_rx_rmap(vsi);
2530 if (err) {
2531 netdev_err(vsi->netdev, "Failed to setup CPU RMAP on VSI %u: %pe\n",
2532 vsi->vsi_num, ERR_PTR(err));
2533 goto free_q_irqs;
2534 }
2535
2536 vsi->irqs_ready = true;
2537 return 0;
2538
2539 free_q_irqs:
2540 while (vector) {
2541 vector--;
2542 irq_num = pf->msix_entries[base + vector].vector;
2543 if (!IS_ENABLED(CONFIG_RFS_ACCEL))
2544 irq_set_affinity_notifier(irq_num, NULL);
2545 irq_set_affinity_hint(irq_num, NULL);
2546 devm_free_irq(dev, irq_num, &vsi->q_vectors[vector]);
2547 }
2548 return err;
2549 }
2550
2551 /**
2552 * ice_xdp_alloc_setup_rings - Allocate and setup Tx rings for XDP
2553 * @vsi: VSI to setup Tx rings used by XDP
2554 *
2555 * Return 0 on success and negative value on error
2556 */
ice_xdp_alloc_setup_rings(struct ice_vsi * vsi)2557 static int ice_xdp_alloc_setup_rings(struct ice_vsi *vsi)
2558 {
2559 struct device *dev = ice_pf_to_dev(vsi->back);
2560 struct ice_tx_desc *tx_desc;
2561 int i, j;
2562
2563 ice_for_each_xdp_txq(vsi, i) {
2564 u16 xdp_q_idx = vsi->alloc_txq + i;
2565 struct ice_tx_ring *xdp_ring;
2566
2567 xdp_ring = kzalloc(sizeof(*xdp_ring), GFP_KERNEL);
2568
2569 if (!xdp_ring)
2570 goto free_xdp_rings;
2571
2572 xdp_ring->q_index = xdp_q_idx;
2573 xdp_ring->reg_idx = vsi->txq_map[xdp_q_idx];
2574 xdp_ring->vsi = vsi;
2575 xdp_ring->netdev = NULL;
2576 xdp_ring->dev = dev;
2577 xdp_ring->count = vsi->num_tx_desc;
2578 xdp_ring->next_dd = ICE_RING_QUARTER(xdp_ring) - 1;
2579 xdp_ring->next_rs = ICE_RING_QUARTER(xdp_ring) - 1;
2580 WRITE_ONCE(vsi->xdp_rings[i], xdp_ring);
2581 if (ice_setup_tx_ring(xdp_ring))
2582 goto free_xdp_rings;
2583 ice_set_ring_xdp(xdp_ring);
2584 spin_lock_init(&xdp_ring->tx_lock);
2585 for (j = 0; j < xdp_ring->count; j++) {
2586 tx_desc = ICE_TX_DESC(xdp_ring, j);
2587 tx_desc->cmd_type_offset_bsz = 0;
2588 }
2589 }
2590
2591 return 0;
2592
2593 free_xdp_rings:
2594 for (; i >= 0; i--)
2595 if (vsi->xdp_rings[i] && vsi->xdp_rings[i]->desc)
2596 ice_free_tx_ring(vsi->xdp_rings[i]);
2597 return -ENOMEM;
2598 }
2599
2600 /**
2601 * ice_vsi_assign_bpf_prog - set or clear bpf prog pointer on VSI
2602 * @vsi: VSI to set the bpf prog on
2603 * @prog: the bpf prog pointer
2604 */
ice_vsi_assign_bpf_prog(struct ice_vsi * vsi,struct bpf_prog * prog)2605 static void ice_vsi_assign_bpf_prog(struct ice_vsi *vsi, struct bpf_prog *prog)
2606 {
2607 struct bpf_prog *old_prog;
2608 int i;
2609
2610 old_prog = xchg(&vsi->xdp_prog, prog);
2611 if (old_prog)
2612 bpf_prog_put(old_prog);
2613
2614 ice_for_each_rxq(vsi, i)
2615 WRITE_ONCE(vsi->rx_rings[i]->xdp_prog, vsi->xdp_prog);
2616 }
2617
2618 /**
2619 * ice_prepare_xdp_rings - Allocate, configure and setup Tx rings for XDP
2620 * @vsi: VSI to bring up Tx rings used by XDP
2621 * @prog: bpf program that will be assigned to VSI
2622 *
2623 * Return 0 on success and negative value on error
2624 */
ice_prepare_xdp_rings(struct ice_vsi * vsi,struct bpf_prog * prog)2625 int ice_prepare_xdp_rings(struct ice_vsi *vsi, struct bpf_prog *prog)
2626 {
2627 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2628 int xdp_rings_rem = vsi->num_xdp_txq;
2629 struct ice_pf *pf = vsi->back;
2630 struct ice_qs_cfg xdp_qs_cfg = {
2631 .qs_mutex = &pf->avail_q_mutex,
2632 .pf_map = pf->avail_txqs,
2633 .pf_map_size = pf->max_pf_txqs,
2634 .q_count = vsi->num_xdp_txq,
2635 .scatter_count = ICE_MAX_SCATTER_TXQS,
2636 .vsi_map = vsi->txq_map,
2637 .vsi_map_offset = vsi->alloc_txq,
2638 .mapping_mode = ICE_VSI_MAP_CONTIG
2639 };
2640 struct device *dev;
2641 int i, v_idx;
2642 int status;
2643
2644 dev = ice_pf_to_dev(pf);
2645 vsi->xdp_rings = devm_kcalloc(dev, vsi->num_xdp_txq,
2646 sizeof(*vsi->xdp_rings), GFP_KERNEL);
2647 if (!vsi->xdp_rings)
2648 return -ENOMEM;
2649
2650 vsi->xdp_mapping_mode = xdp_qs_cfg.mapping_mode;
2651 if (__ice_vsi_get_qs(&xdp_qs_cfg))
2652 goto err_map_xdp;
2653
2654 if (static_key_enabled(&ice_xdp_locking_key))
2655 netdev_warn(vsi->netdev,
2656 "Could not allocate one XDP Tx ring per CPU, XDP_TX/XDP_REDIRECT actions will be slower\n");
2657
2658 if (ice_xdp_alloc_setup_rings(vsi))
2659 goto clear_xdp_rings;
2660
2661 /* follow the logic from ice_vsi_map_rings_to_vectors */
2662 ice_for_each_q_vector(vsi, v_idx) {
2663 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2664 int xdp_rings_per_v, q_id, q_base;
2665
2666 xdp_rings_per_v = DIV_ROUND_UP(xdp_rings_rem,
2667 vsi->num_q_vectors - v_idx);
2668 q_base = vsi->num_xdp_txq - xdp_rings_rem;
2669
2670 for (q_id = q_base; q_id < (q_base + xdp_rings_per_v); q_id++) {
2671 struct ice_tx_ring *xdp_ring = vsi->xdp_rings[q_id];
2672
2673 xdp_ring->q_vector = q_vector;
2674 xdp_ring->next = q_vector->tx.tx_ring;
2675 q_vector->tx.tx_ring = xdp_ring;
2676 }
2677 xdp_rings_rem -= xdp_rings_per_v;
2678 }
2679
2680 ice_for_each_rxq(vsi, i) {
2681 if (static_key_enabled(&ice_xdp_locking_key)) {
2682 vsi->rx_rings[i]->xdp_ring = vsi->xdp_rings[i % vsi->num_xdp_txq];
2683 } else {
2684 struct ice_q_vector *q_vector = vsi->rx_rings[i]->q_vector;
2685 struct ice_tx_ring *ring;
2686
2687 ice_for_each_tx_ring(ring, q_vector->tx) {
2688 if (ice_ring_is_xdp(ring)) {
2689 vsi->rx_rings[i]->xdp_ring = ring;
2690 break;
2691 }
2692 }
2693 }
2694 ice_tx_xsk_pool(vsi, i);
2695 }
2696
2697 /* omit the scheduler update if in reset path; XDP queues will be
2698 * taken into account at the end of ice_vsi_rebuild, where
2699 * ice_cfg_vsi_lan is being called
2700 */
2701 if (ice_is_reset_in_progress(pf->state))
2702 return 0;
2703
2704 /* tell the Tx scheduler that right now we have
2705 * additional queues
2706 */
2707 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2708 max_txqs[i] = vsi->num_txq + vsi->num_xdp_txq;
2709
2710 status = ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2711 max_txqs);
2712 if (status) {
2713 dev_err(dev, "Failed VSI LAN queue config for XDP, error: %d\n",
2714 status);
2715 goto clear_xdp_rings;
2716 }
2717
2718 /* assign the prog only when it's not already present on VSI;
2719 * this flow is a subject of both ethtool -L and ndo_bpf flows;
2720 * VSI rebuild that happens under ethtool -L can expose us to
2721 * the bpf_prog refcount issues as we would be swapping same
2722 * bpf_prog pointers from vsi->xdp_prog and calling bpf_prog_put
2723 * on it as it would be treated as an 'old_prog'; for ndo_bpf
2724 * this is not harmful as dev_xdp_install bumps the refcount
2725 * before calling the op exposed by the driver;
2726 */
2727 if (!ice_is_xdp_ena_vsi(vsi))
2728 ice_vsi_assign_bpf_prog(vsi, prog);
2729
2730 return 0;
2731 clear_xdp_rings:
2732 ice_for_each_xdp_txq(vsi, i)
2733 if (vsi->xdp_rings[i]) {
2734 kfree_rcu(vsi->xdp_rings[i], rcu);
2735 vsi->xdp_rings[i] = NULL;
2736 }
2737
2738 err_map_xdp:
2739 mutex_lock(&pf->avail_q_mutex);
2740 ice_for_each_xdp_txq(vsi, i) {
2741 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2742 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2743 }
2744 mutex_unlock(&pf->avail_q_mutex);
2745
2746 devm_kfree(dev, vsi->xdp_rings);
2747 return -ENOMEM;
2748 }
2749
2750 /**
2751 * ice_destroy_xdp_rings - undo the configuration made by ice_prepare_xdp_rings
2752 * @vsi: VSI to remove XDP rings
2753 *
2754 * Detach XDP rings from irq vectors, clean up the PF bitmap and free
2755 * resources
2756 */
ice_destroy_xdp_rings(struct ice_vsi * vsi)2757 int ice_destroy_xdp_rings(struct ice_vsi *vsi)
2758 {
2759 u16 max_txqs[ICE_MAX_TRAFFIC_CLASS] = { 0 };
2760 struct ice_pf *pf = vsi->back;
2761 int i, v_idx;
2762
2763 /* q_vectors are freed in reset path so there's no point in detaching
2764 * rings; in case of rebuild being triggered not from reset bits
2765 * in pf->state won't be set, so additionally check first q_vector
2766 * against NULL
2767 */
2768 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2769 goto free_qmap;
2770
2771 ice_for_each_q_vector(vsi, v_idx) {
2772 struct ice_q_vector *q_vector = vsi->q_vectors[v_idx];
2773 struct ice_tx_ring *ring;
2774
2775 ice_for_each_tx_ring(ring, q_vector->tx)
2776 if (!ring->tx_buf || !ice_ring_is_xdp(ring))
2777 break;
2778
2779 /* restore the value of last node prior to XDP setup */
2780 q_vector->tx.tx_ring = ring;
2781 }
2782
2783 free_qmap:
2784 mutex_lock(&pf->avail_q_mutex);
2785 ice_for_each_xdp_txq(vsi, i) {
2786 clear_bit(vsi->txq_map[i + vsi->alloc_txq], pf->avail_txqs);
2787 vsi->txq_map[i + vsi->alloc_txq] = ICE_INVAL_Q_INDEX;
2788 }
2789 mutex_unlock(&pf->avail_q_mutex);
2790
2791 ice_for_each_xdp_txq(vsi, i)
2792 if (vsi->xdp_rings[i]) {
2793 if (vsi->xdp_rings[i]->desc) {
2794 synchronize_rcu();
2795 ice_free_tx_ring(vsi->xdp_rings[i]);
2796 }
2797 kfree_rcu(vsi->xdp_rings[i], rcu);
2798 vsi->xdp_rings[i] = NULL;
2799 }
2800
2801 devm_kfree(ice_pf_to_dev(pf), vsi->xdp_rings);
2802 vsi->xdp_rings = NULL;
2803
2804 if (static_key_enabled(&ice_xdp_locking_key))
2805 static_branch_dec(&ice_xdp_locking_key);
2806
2807 if (ice_is_reset_in_progress(pf->state) || !vsi->q_vectors[0])
2808 return 0;
2809
2810 ice_vsi_assign_bpf_prog(vsi, NULL);
2811
2812 /* notify Tx scheduler that we destroyed XDP queues and bring
2813 * back the old number of child nodes
2814 */
2815 for (i = 0; i < vsi->tc_cfg.numtc; i++)
2816 max_txqs[i] = vsi->num_txq;
2817
2818 /* change number of XDP Tx queues to 0 */
2819 vsi->num_xdp_txq = 0;
2820
2821 return ice_cfg_vsi_lan(vsi->port_info, vsi->idx, vsi->tc_cfg.ena_tc,
2822 max_txqs);
2823 }
2824
2825 /**
2826 * ice_vsi_rx_napi_schedule - Schedule napi on RX queues from VSI
2827 * @vsi: VSI to schedule napi on
2828 */
ice_vsi_rx_napi_schedule(struct ice_vsi * vsi)2829 static void ice_vsi_rx_napi_schedule(struct ice_vsi *vsi)
2830 {
2831 int i;
2832
2833 ice_for_each_rxq(vsi, i) {
2834 struct ice_rx_ring *rx_ring = vsi->rx_rings[i];
2835
2836 if (rx_ring->xsk_pool)
2837 napi_schedule(&rx_ring->q_vector->napi);
2838 }
2839 }
2840
2841 /**
2842 * ice_vsi_determine_xdp_res - figure out how many Tx qs can XDP have
2843 * @vsi: VSI to determine the count of XDP Tx qs
2844 *
2845 * returns 0 if Tx qs count is higher than at least half of CPU count,
2846 * -ENOMEM otherwise
2847 */
ice_vsi_determine_xdp_res(struct ice_vsi * vsi)2848 int ice_vsi_determine_xdp_res(struct ice_vsi *vsi)
2849 {
2850 u16 avail = ice_get_avail_txq_count(vsi->back);
2851 u16 cpus = num_possible_cpus();
2852
2853 if (avail < cpus / 2)
2854 return -ENOMEM;
2855
2856 vsi->num_xdp_txq = min_t(u16, avail, cpus);
2857
2858 if (vsi->num_xdp_txq < cpus)
2859 static_branch_inc(&ice_xdp_locking_key);
2860
2861 return 0;
2862 }
2863
2864 /**
2865 * ice_xdp_setup_prog - Add or remove XDP eBPF program
2866 * @vsi: VSI to setup XDP for
2867 * @prog: XDP program
2868 * @extack: netlink extended ack
2869 */
2870 static int
ice_xdp_setup_prog(struct ice_vsi * vsi,struct bpf_prog * prog,struct netlink_ext_ack * extack)2871 ice_xdp_setup_prog(struct ice_vsi *vsi, struct bpf_prog *prog,
2872 struct netlink_ext_ack *extack)
2873 {
2874 int frame_size = vsi->netdev->mtu + ICE_ETH_PKT_HDR_PAD;
2875 bool if_running = netif_running(vsi->netdev);
2876 int ret = 0, xdp_ring_err = 0;
2877
2878 if (frame_size > vsi->rx_buf_len) {
2879 NL_SET_ERR_MSG_MOD(extack, "MTU too large for loading XDP");
2880 return -EOPNOTSUPP;
2881 }
2882
2883 /* need to stop netdev while setting up the program for Rx rings */
2884 if (if_running && !test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
2885 ret = ice_down(vsi);
2886 if (ret) {
2887 NL_SET_ERR_MSG_MOD(extack, "Preparing device for XDP attach failed");
2888 return ret;
2889 }
2890 }
2891
2892 if (!ice_is_xdp_ena_vsi(vsi) && prog) {
2893 xdp_ring_err = ice_vsi_determine_xdp_res(vsi);
2894 if (xdp_ring_err) {
2895 NL_SET_ERR_MSG_MOD(extack, "Not enough Tx resources for XDP");
2896 } else {
2897 xdp_ring_err = ice_prepare_xdp_rings(vsi, prog);
2898 if (xdp_ring_err)
2899 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Tx resources failed");
2900 }
2901 /* reallocate Rx queues that are used for zero-copy */
2902 xdp_ring_err = ice_realloc_zc_buf(vsi, true);
2903 if (xdp_ring_err)
2904 NL_SET_ERR_MSG_MOD(extack, "Setting up XDP Rx resources failed");
2905 } else if (ice_is_xdp_ena_vsi(vsi) && !prog) {
2906 xdp_ring_err = ice_destroy_xdp_rings(vsi);
2907 if (xdp_ring_err)
2908 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Tx resources failed");
2909 /* reallocate Rx queues that were used for zero-copy */
2910 xdp_ring_err = ice_realloc_zc_buf(vsi, false);
2911 if (xdp_ring_err)
2912 NL_SET_ERR_MSG_MOD(extack, "Freeing XDP Rx resources failed");
2913 } else {
2914 /* safe to call even when prog == vsi->xdp_prog as
2915 * dev_xdp_install in net/core/dev.c incremented prog's
2916 * refcount so corresponding bpf_prog_put won't cause
2917 * underflow
2918 */
2919 ice_vsi_assign_bpf_prog(vsi, prog);
2920 }
2921
2922 if (if_running)
2923 ret = ice_up(vsi);
2924
2925 if (!ret && prog)
2926 ice_vsi_rx_napi_schedule(vsi);
2927
2928 return (ret || xdp_ring_err) ? -ENOMEM : 0;
2929 }
2930
2931 /**
2932 * ice_xdp_safe_mode - XDP handler for safe mode
2933 * @dev: netdevice
2934 * @xdp: XDP command
2935 */
ice_xdp_safe_mode(struct net_device __always_unused * dev,struct netdev_bpf * xdp)2936 static int ice_xdp_safe_mode(struct net_device __always_unused *dev,
2937 struct netdev_bpf *xdp)
2938 {
2939 NL_SET_ERR_MSG_MOD(xdp->extack,
2940 "Please provide working DDP firmware package in order to use XDP\n"
2941 "Refer to Documentation/networking/device_drivers/ethernet/intel/ice.rst");
2942 return -EOPNOTSUPP;
2943 }
2944
2945 /**
2946 * ice_xdp - implements XDP handler
2947 * @dev: netdevice
2948 * @xdp: XDP command
2949 */
ice_xdp(struct net_device * dev,struct netdev_bpf * xdp)2950 static int ice_xdp(struct net_device *dev, struct netdev_bpf *xdp)
2951 {
2952 struct ice_netdev_priv *np = netdev_priv(dev);
2953 struct ice_vsi *vsi = np->vsi;
2954
2955 if (vsi->type != ICE_VSI_PF) {
2956 NL_SET_ERR_MSG_MOD(xdp->extack, "XDP can be loaded only on PF VSI");
2957 return -EINVAL;
2958 }
2959
2960 switch (xdp->command) {
2961 case XDP_SETUP_PROG:
2962 return ice_xdp_setup_prog(vsi, xdp->prog, xdp->extack);
2963 case XDP_SETUP_XSK_POOL:
2964 return ice_xsk_pool_setup(vsi, xdp->xsk.pool,
2965 xdp->xsk.queue_id);
2966 default:
2967 return -EINVAL;
2968 }
2969 }
2970
2971 /**
2972 * ice_ena_misc_vector - enable the non-queue interrupts
2973 * @pf: board private structure
2974 */
ice_ena_misc_vector(struct ice_pf * pf)2975 static void ice_ena_misc_vector(struct ice_pf *pf)
2976 {
2977 struct ice_hw *hw = &pf->hw;
2978 u32 val;
2979
2980 /* Disable anti-spoof detection interrupt to prevent spurious event
2981 * interrupts during a function reset. Anti-spoof functionally is
2982 * still supported.
2983 */
2984 val = rd32(hw, GL_MDCK_TX_TDPU);
2985 val |= GL_MDCK_TX_TDPU_RCU_ANTISPOOF_ITR_DIS_M;
2986 wr32(hw, GL_MDCK_TX_TDPU, val);
2987
2988 /* clear things first */
2989 wr32(hw, PFINT_OICR_ENA, 0); /* disable all */
2990 rd32(hw, PFINT_OICR); /* read to clear */
2991
2992 val = (PFINT_OICR_ECC_ERR_M |
2993 PFINT_OICR_MAL_DETECT_M |
2994 PFINT_OICR_GRST_M |
2995 PFINT_OICR_PCI_EXCEPTION_M |
2996 PFINT_OICR_VFLR_M |
2997 PFINT_OICR_HMC_ERR_M |
2998 PFINT_OICR_PE_PUSH_M |
2999 PFINT_OICR_PE_CRITERR_M);
3000
3001 wr32(hw, PFINT_OICR_ENA, val);
3002
3003 /* SW_ITR_IDX = 0, but don't change INTENA */
3004 wr32(hw, GLINT_DYN_CTL(pf->oicr_idx),
3005 GLINT_DYN_CTL_SW_ITR_INDX_M | GLINT_DYN_CTL_INTENA_MSK_M);
3006 }
3007
3008 /**
3009 * ice_misc_intr - misc interrupt handler
3010 * @irq: interrupt number
3011 * @data: pointer to a q_vector
3012 */
ice_misc_intr(int __always_unused irq,void * data)3013 static irqreturn_t ice_misc_intr(int __always_unused irq, void *data)
3014 {
3015 struct ice_pf *pf = (struct ice_pf *)data;
3016 struct ice_hw *hw = &pf->hw;
3017 irqreturn_t ret = IRQ_NONE;
3018 struct device *dev;
3019 u32 oicr, ena_mask;
3020
3021 dev = ice_pf_to_dev(pf);
3022 set_bit(ICE_ADMINQ_EVENT_PENDING, pf->state);
3023 set_bit(ICE_MAILBOXQ_EVENT_PENDING, pf->state);
3024 set_bit(ICE_SIDEBANDQ_EVENT_PENDING, pf->state);
3025
3026 oicr = rd32(hw, PFINT_OICR);
3027 ena_mask = rd32(hw, PFINT_OICR_ENA);
3028
3029 if (oicr & PFINT_OICR_SWINT_M) {
3030 ena_mask &= ~PFINT_OICR_SWINT_M;
3031 pf->sw_int_count++;
3032 }
3033
3034 if (oicr & PFINT_OICR_MAL_DETECT_M) {
3035 ena_mask &= ~PFINT_OICR_MAL_DETECT_M;
3036 set_bit(ICE_MDD_EVENT_PENDING, pf->state);
3037 }
3038 if (oicr & PFINT_OICR_VFLR_M) {
3039 /* disable any further VFLR event notifications */
3040 if (test_bit(ICE_VF_RESETS_DISABLED, pf->state)) {
3041 u32 reg = rd32(hw, PFINT_OICR_ENA);
3042
3043 reg &= ~PFINT_OICR_VFLR_M;
3044 wr32(hw, PFINT_OICR_ENA, reg);
3045 } else {
3046 ena_mask &= ~PFINT_OICR_VFLR_M;
3047 set_bit(ICE_VFLR_EVENT_PENDING, pf->state);
3048 }
3049 }
3050
3051 if (oicr & PFINT_OICR_GRST_M) {
3052 u32 reset;
3053
3054 /* we have a reset warning */
3055 ena_mask &= ~PFINT_OICR_GRST_M;
3056 reset = (rd32(hw, GLGEN_RSTAT) & GLGEN_RSTAT_RESET_TYPE_M) >>
3057 GLGEN_RSTAT_RESET_TYPE_S;
3058
3059 if (reset == ICE_RESET_CORER)
3060 pf->corer_count++;
3061 else if (reset == ICE_RESET_GLOBR)
3062 pf->globr_count++;
3063 else if (reset == ICE_RESET_EMPR)
3064 pf->empr_count++;
3065 else
3066 dev_dbg(dev, "Invalid reset type %d\n", reset);
3067
3068 /* If a reset cycle isn't already in progress, we set a bit in
3069 * pf->state so that the service task can start a reset/rebuild.
3070 */
3071 if (!test_and_set_bit(ICE_RESET_OICR_RECV, pf->state)) {
3072 if (reset == ICE_RESET_CORER)
3073 set_bit(ICE_CORER_RECV, pf->state);
3074 else if (reset == ICE_RESET_GLOBR)
3075 set_bit(ICE_GLOBR_RECV, pf->state);
3076 else
3077 set_bit(ICE_EMPR_RECV, pf->state);
3078
3079 /* There are couple of different bits at play here.
3080 * hw->reset_ongoing indicates whether the hardware is
3081 * in reset. This is set to true when a reset interrupt
3082 * is received and set back to false after the driver
3083 * has determined that the hardware is out of reset.
3084 *
3085 * ICE_RESET_OICR_RECV in pf->state indicates
3086 * that a post reset rebuild is required before the
3087 * driver is operational again. This is set above.
3088 *
3089 * As this is the start of the reset/rebuild cycle, set
3090 * both to indicate that.
3091 */
3092 hw->reset_ongoing = true;
3093 }
3094 }
3095
3096 if (oicr & PFINT_OICR_TSYN_TX_M) {
3097 ena_mask &= ~PFINT_OICR_TSYN_TX_M;
3098 ice_ptp_process_ts(pf);
3099 }
3100
3101 if (oicr & PFINT_OICR_TSYN_EVNT_M) {
3102 u8 tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
3103 u32 gltsyn_stat = rd32(hw, GLTSYN_STAT(tmr_idx));
3104
3105 /* Save EVENTs from GTSYN register */
3106 pf->ptp.ext_ts_irq |= gltsyn_stat & (GLTSYN_STAT_EVENT0_M |
3107 GLTSYN_STAT_EVENT1_M |
3108 GLTSYN_STAT_EVENT2_M);
3109 ena_mask &= ~PFINT_OICR_TSYN_EVNT_M;
3110 kthread_queue_work(pf->ptp.kworker, &pf->ptp.extts_work);
3111 }
3112
3113 #define ICE_AUX_CRIT_ERR (PFINT_OICR_PE_CRITERR_M | PFINT_OICR_HMC_ERR_M | PFINT_OICR_PE_PUSH_M)
3114 if (oicr & ICE_AUX_CRIT_ERR) {
3115 pf->oicr_err_reg |= oicr;
3116 set_bit(ICE_AUX_ERR_PENDING, pf->state);
3117 ena_mask &= ~ICE_AUX_CRIT_ERR;
3118 }
3119
3120 /* Report any remaining unexpected interrupts */
3121 oicr &= ena_mask;
3122 if (oicr) {
3123 dev_dbg(dev, "unhandled interrupt oicr=0x%08x\n", oicr);
3124 /* If a critical error is pending there is no choice but to
3125 * reset the device.
3126 */
3127 if (oicr & (PFINT_OICR_PCI_EXCEPTION_M |
3128 PFINT_OICR_ECC_ERR_M)) {
3129 set_bit(ICE_PFR_REQ, pf->state);
3130 ice_service_task_schedule(pf);
3131 }
3132 }
3133 ret = IRQ_HANDLED;
3134
3135 ice_service_task_schedule(pf);
3136 ice_irq_dynamic_ena(hw, NULL, NULL);
3137
3138 return ret;
3139 }
3140
3141 /**
3142 * ice_dis_ctrlq_interrupts - disable control queue interrupts
3143 * @hw: pointer to HW structure
3144 */
ice_dis_ctrlq_interrupts(struct ice_hw * hw)3145 static void ice_dis_ctrlq_interrupts(struct ice_hw *hw)
3146 {
3147 /* disable Admin queue Interrupt causes */
3148 wr32(hw, PFINT_FW_CTL,
3149 rd32(hw, PFINT_FW_CTL) & ~PFINT_FW_CTL_CAUSE_ENA_M);
3150
3151 /* disable Mailbox queue Interrupt causes */
3152 wr32(hw, PFINT_MBX_CTL,
3153 rd32(hw, PFINT_MBX_CTL) & ~PFINT_MBX_CTL_CAUSE_ENA_M);
3154
3155 wr32(hw, PFINT_SB_CTL,
3156 rd32(hw, PFINT_SB_CTL) & ~PFINT_SB_CTL_CAUSE_ENA_M);
3157
3158 /* disable Control queue Interrupt causes */
3159 wr32(hw, PFINT_OICR_CTL,
3160 rd32(hw, PFINT_OICR_CTL) & ~PFINT_OICR_CTL_CAUSE_ENA_M);
3161
3162 ice_flush(hw);
3163 }
3164
3165 /**
3166 * ice_free_irq_msix_misc - Unroll misc vector setup
3167 * @pf: board private structure
3168 */
ice_free_irq_msix_misc(struct ice_pf * pf)3169 static void ice_free_irq_msix_misc(struct ice_pf *pf)
3170 {
3171 struct ice_hw *hw = &pf->hw;
3172
3173 ice_dis_ctrlq_interrupts(hw);
3174
3175 /* disable OICR interrupt */
3176 wr32(hw, PFINT_OICR_ENA, 0);
3177 ice_flush(hw);
3178
3179 if (pf->msix_entries) {
3180 synchronize_irq(pf->msix_entries[pf->oicr_idx].vector);
3181 devm_free_irq(ice_pf_to_dev(pf),
3182 pf->msix_entries[pf->oicr_idx].vector, pf);
3183 }
3184
3185 pf->num_avail_sw_msix += 1;
3186 ice_free_res(pf->irq_tracker, pf->oicr_idx, ICE_RES_MISC_VEC_ID);
3187 }
3188
3189 /**
3190 * ice_ena_ctrlq_interrupts - enable control queue interrupts
3191 * @hw: pointer to HW structure
3192 * @reg_idx: HW vector index to associate the control queue interrupts with
3193 */
ice_ena_ctrlq_interrupts(struct ice_hw * hw,u16 reg_idx)3194 static void ice_ena_ctrlq_interrupts(struct ice_hw *hw, u16 reg_idx)
3195 {
3196 u32 val;
3197
3198 val = ((reg_idx & PFINT_OICR_CTL_MSIX_INDX_M) |
3199 PFINT_OICR_CTL_CAUSE_ENA_M);
3200 wr32(hw, PFINT_OICR_CTL, val);
3201
3202 /* enable Admin queue Interrupt causes */
3203 val = ((reg_idx & PFINT_FW_CTL_MSIX_INDX_M) |
3204 PFINT_FW_CTL_CAUSE_ENA_M);
3205 wr32(hw, PFINT_FW_CTL, val);
3206
3207 /* enable Mailbox queue Interrupt causes */
3208 val = ((reg_idx & PFINT_MBX_CTL_MSIX_INDX_M) |
3209 PFINT_MBX_CTL_CAUSE_ENA_M);
3210 wr32(hw, PFINT_MBX_CTL, val);
3211
3212 /* This enables Sideband queue Interrupt causes */
3213 val = ((reg_idx & PFINT_SB_CTL_MSIX_INDX_M) |
3214 PFINT_SB_CTL_CAUSE_ENA_M);
3215 wr32(hw, PFINT_SB_CTL, val);
3216
3217 ice_flush(hw);
3218 }
3219
3220 /**
3221 * ice_req_irq_msix_misc - Setup the misc vector to handle non queue events
3222 * @pf: board private structure
3223 *
3224 * This sets up the handler for MSIX 0, which is used to manage the
3225 * non-queue interrupts, e.g. AdminQ and errors. This is not used
3226 * when in MSI or Legacy interrupt mode.
3227 */
ice_req_irq_msix_misc(struct ice_pf * pf)3228 static int ice_req_irq_msix_misc(struct ice_pf *pf)
3229 {
3230 struct device *dev = ice_pf_to_dev(pf);
3231 struct ice_hw *hw = &pf->hw;
3232 int oicr_idx, err = 0;
3233
3234 if (!pf->int_name[0])
3235 snprintf(pf->int_name, sizeof(pf->int_name) - 1, "%s-%s:misc",
3236 dev_driver_string(dev), dev_name(dev));
3237
3238 /* Do not request IRQ but do enable OICR interrupt since settings are
3239 * lost during reset. Note that this function is called only during
3240 * rebuild path and not while reset is in progress.
3241 */
3242 if (ice_is_reset_in_progress(pf->state))
3243 goto skip_req_irq;
3244
3245 /* reserve one vector in irq_tracker for misc interrupts */
3246 oicr_idx = ice_get_res(pf, pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3247 if (oicr_idx < 0)
3248 return oicr_idx;
3249
3250 pf->num_avail_sw_msix -= 1;
3251 pf->oicr_idx = (u16)oicr_idx;
3252
3253 err = devm_request_irq(dev, pf->msix_entries[pf->oicr_idx].vector,
3254 ice_misc_intr, 0, pf->int_name, pf);
3255 if (err) {
3256 dev_err(dev, "devm_request_irq for %s failed: %d\n",
3257 pf->int_name, err);
3258 ice_free_res(pf->irq_tracker, 1, ICE_RES_MISC_VEC_ID);
3259 pf->num_avail_sw_msix += 1;
3260 return err;
3261 }
3262
3263 skip_req_irq:
3264 ice_ena_misc_vector(pf);
3265
3266 ice_ena_ctrlq_interrupts(hw, pf->oicr_idx);
3267 wr32(hw, GLINT_ITR(ICE_RX_ITR, pf->oicr_idx),
3268 ITR_REG_ALIGN(ICE_ITR_8K) >> ICE_ITR_GRAN_S);
3269
3270 ice_flush(hw);
3271 ice_irq_dynamic_ena(hw, NULL, NULL);
3272
3273 return 0;
3274 }
3275
3276 /**
3277 * ice_napi_add - register NAPI handler for the VSI
3278 * @vsi: VSI for which NAPI handler is to be registered
3279 *
3280 * This function is only called in the driver's load path. Registering the NAPI
3281 * handler is done in ice_vsi_alloc_q_vector() for all other cases (i.e. resume,
3282 * reset/rebuild, etc.)
3283 */
ice_napi_add(struct ice_vsi * vsi)3284 static void ice_napi_add(struct ice_vsi *vsi)
3285 {
3286 int v_idx;
3287
3288 if (!vsi->netdev)
3289 return;
3290
3291 ice_for_each_q_vector(vsi, v_idx)
3292 netif_napi_add(vsi->netdev, &vsi->q_vectors[v_idx]->napi,
3293 ice_napi_poll, NAPI_POLL_WEIGHT);
3294 }
3295
3296 /**
3297 * ice_set_ops - set netdev and ethtools ops for the given netdev
3298 * @netdev: netdev instance
3299 */
ice_set_ops(struct net_device * netdev)3300 static void ice_set_ops(struct net_device *netdev)
3301 {
3302 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3303
3304 if (ice_is_safe_mode(pf)) {
3305 netdev->netdev_ops = &ice_netdev_safe_mode_ops;
3306 ice_set_ethtool_safe_mode_ops(netdev);
3307 return;
3308 }
3309
3310 netdev->netdev_ops = &ice_netdev_ops;
3311 netdev->udp_tunnel_nic_info = &pf->hw.udp_tunnel_nic;
3312 ice_set_ethtool_ops(netdev);
3313 }
3314
3315 /**
3316 * ice_set_netdev_features - set features for the given netdev
3317 * @netdev: netdev instance
3318 */
ice_set_netdev_features(struct net_device * netdev)3319 static void ice_set_netdev_features(struct net_device *netdev)
3320 {
3321 struct ice_pf *pf = ice_netdev_to_pf(netdev);
3322 bool is_dvm_ena = ice_is_dvm_ena(&pf->hw);
3323 netdev_features_t csumo_features;
3324 netdev_features_t vlano_features;
3325 netdev_features_t dflt_features;
3326 netdev_features_t tso_features;
3327
3328 if (ice_is_safe_mode(pf)) {
3329 /* safe mode */
3330 netdev->features = NETIF_F_SG | NETIF_F_HIGHDMA;
3331 netdev->hw_features = netdev->features;
3332 return;
3333 }
3334
3335 dflt_features = NETIF_F_SG |
3336 NETIF_F_HIGHDMA |
3337 NETIF_F_NTUPLE |
3338 NETIF_F_RXHASH;
3339
3340 csumo_features = NETIF_F_RXCSUM |
3341 NETIF_F_IP_CSUM |
3342 NETIF_F_SCTP_CRC |
3343 NETIF_F_IPV6_CSUM;
3344
3345 vlano_features = NETIF_F_HW_VLAN_CTAG_FILTER |
3346 NETIF_F_HW_VLAN_CTAG_TX |
3347 NETIF_F_HW_VLAN_CTAG_RX;
3348
3349 /* Enable CTAG/STAG filtering by default in Double VLAN Mode (DVM) */
3350 if (is_dvm_ena)
3351 vlano_features |= NETIF_F_HW_VLAN_STAG_FILTER;
3352
3353 tso_features = NETIF_F_TSO |
3354 NETIF_F_TSO_ECN |
3355 NETIF_F_TSO6 |
3356 NETIF_F_GSO_GRE |
3357 NETIF_F_GSO_UDP_TUNNEL |
3358 NETIF_F_GSO_GRE_CSUM |
3359 NETIF_F_GSO_UDP_TUNNEL_CSUM |
3360 NETIF_F_GSO_PARTIAL |
3361 NETIF_F_GSO_IPXIP4 |
3362 NETIF_F_GSO_IPXIP6 |
3363 NETIF_F_GSO_UDP_L4;
3364
3365 netdev->gso_partial_features |= NETIF_F_GSO_UDP_TUNNEL_CSUM |
3366 NETIF_F_GSO_GRE_CSUM;
3367 /* set features that user can change */
3368 netdev->hw_features = dflt_features | csumo_features |
3369 vlano_features | tso_features;
3370
3371 /* add support for HW_CSUM on packets with MPLS header */
3372 netdev->mpls_features = NETIF_F_HW_CSUM |
3373 NETIF_F_TSO |
3374 NETIF_F_TSO6;
3375
3376 /* enable features */
3377 netdev->features |= netdev->hw_features;
3378
3379 netdev->hw_features |= NETIF_F_HW_TC;
3380
3381 /* encap and VLAN devices inherit default, csumo and tso features */
3382 netdev->hw_enc_features |= dflt_features | csumo_features |
3383 tso_features;
3384 netdev->vlan_features |= dflt_features | csumo_features |
3385 tso_features;
3386
3387 /* advertise support but don't enable by default since only one type of
3388 * VLAN offload can be enabled at a time (i.e. CTAG or STAG). When one
3389 * type turns on the other has to be turned off. This is enforced by the
3390 * ice_fix_features() ndo callback.
3391 */
3392 if (is_dvm_ena)
3393 netdev->hw_features |= NETIF_F_HW_VLAN_STAG_RX |
3394 NETIF_F_HW_VLAN_STAG_TX;
3395 }
3396
3397 /**
3398 * ice_cfg_netdev - Allocate, configure and register a netdev
3399 * @vsi: the VSI associated with the new netdev
3400 *
3401 * Returns 0 on success, negative value on failure
3402 */
ice_cfg_netdev(struct ice_vsi * vsi)3403 static int ice_cfg_netdev(struct ice_vsi *vsi)
3404 {
3405 struct ice_netdev_priv *np;
3406 struct net_device *netdev;
3407 u8 mac_addr[ETH_ALEN];
3408
3409 netdev = alloc_etherdev_mqs(sizeof(*np), vsi->alloc_txq,
3410 vsi->alloc_rxq);
3411 if (!netdev)
3412 return -ENOMEM;
3413
3414 set_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3415 vsi->netdev = netdev;
3416 np = netdev_priv(netdev);
3417 np->vsi = vsi;
3418
3419 ice_set_netdev_features(netdev);
3420
3421 ice_set_ops(netdev);
3422
3423 if (vsi->type == ICE_VSI_PF) {
3424 SET_NETDEV_DEV(netdev, ice_pf_to_dev(vsi->back));
3425 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
3426 eth_hw_addr_set(netdev, mac_addr);
3427 ether_addr_copy(netdev->perm_addr, mac_addr);
3428 }
3429
3430 netdev->priv_flags |= IFF_UNICAST_FLT;
3431
3432 /* Setup netdev TC information */
3433 ice_vsi_cfg_netdev_tc(vsi, vsi->tc_cfg.ena_tc);
3434
3435 /* setup watchdog timeout value to be 5 second */
3436 netdev->watchdog_timeo = 5 * HZ;
3437
3438 netdev->min_mtu = ETH_MIN_MTU;
3439 netdev->max_mtu = ICE_MAX_MTU;
3440
3441 return 0;
3442 }
3443
3444 /**
3445 * ice_fill_rss_lut - Fill the RSS lookup table with default values
3446 * @lut: Lookup table
3447 * @rss_table_size: Lookup table size
3448 * @rss_size: Range of queue number for hashing
3449 */
ice_fill_rss_lut(u8 * lut,u16 rss_table_size,u16 rss_size)3450 void ice_fill_rss_lut(u8 *lut, u16 rss_table_size, u16 rss_size)
3451 {
3452 u16 i;
3453
3454 for (i = 0; i < rss_table_size; i++)
3455 lut[i] = i % rss_size;
3456 }
3457
3458 /**
3459 * ice_pf_vsi_setup - Set up a PF VSI
3460 * @pf: board private structure
3461 * @pi: pointer to the port_info instance
3462 *
3463 * Returns pointer to the successfully allocated VSI software struct
3464 * on success, otherwise returns NULL on failure.
3465 */
3466 static struct ice_vsi *
ice_pf_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3467 ice_pf_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3468 {
3469 return ice_vsi_setup(pf, pi, ICE_VSI_PF, NULL, NULL);
3470 }
3471
3472 static struct ice_vsi *
ice_chnl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi,struct ice_channel * ch)3473 ice_chnl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi,
3474 struct ice_channel *ch)
3475 {
3476 return ice_vsi_setup(pf, pi, ICE_VSI_CHNL, NULL, ch);
3477 }
3478
3479 /**
3480 * ice_ctrl_vsi_setup - Set up a control VSI
3481 * @pf: board private structure
3482 * @pi: pointer to the port_info instance
3483 *
3484 * Returns pointer to the successfully allocated VSI software struct
3485 * on success, otherwise returns NULL on failure.
3486 */
3487 static struct ice_vsi *
ice_ctrl_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3488 ice_ctrl_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3489 {
3490 return ice_vsi_setup(pf, pi, ICE_VSI_CTRL, NULL, NULL);
3491 }
3492
3493 /**
3494 * ice_lb_vsi_setup - Set up a loopback VSI
3495 * @pf: board private structure
3496 * @pi: pointer to the port_info instance
3497 *
3498 * Returns pointer to the successfully allocated VSI software struct
3499 * on success, otherwise returns NULL on failure.
3500 */
3501 struct ice_vsi *
ice_lb_vsi_setup(struct ice_pf * pf,struct ice_port_info * pi)3502 ice_lb_vsi_setup(struct ice_pf *pf, struct ice_port_info *pi)
3503 {
3504 return ice_vsi_setup(pf, pi, ICE_VSI_LB, NULL, NULL);
3505 }
3506
3507 /**
3508 * ice_vlan_rx_add_vid - Add a VLAN ID filter to HW offload
3509 * @netdev: network interface to be adjusted
3510 * @proto: VLAN TPID
3511 * @vid: VLAN ID to be added
3512 *
3513 * net_device_ops implementation for adding VLAN IDs
3514 */
3515 static int
ice_vlan_rx_add_vid(struct net_device * netdev,__be16 proto,u16 vid)3516 ice_vlan_rx_add_vid(struct net_device *netdev, __be16 proto, u16 vid)
3517 {
3518 struct ice_netdev_priv *np = netdev_priv(netdev);
3519 struct ice_vsi_vlan_ops *vlan_ops;
3520 struct ice_vsi *vsi = np->vsi;
3521 struct ice_vlan vlan;
3522 int ret;
3523
3524 /* VLAN 0 is added by default during load/reset */
3525 if (!vid)
3526 return 0;
3527
3528 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3529 usleep_range(1000, 2000);
3530
3531 /* Add multicast promisc rule for the VLAN ID to be added if
3532 * all-multicast is currently enabled.
3533 */
3534 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3535 ret = ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3536 ICE_MCAST_VLAN_PROMISC_BITS,
3537 vid);
3538 if (ret)
3539 goto finish;
3540 }
3541
3542 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3543
3544 /* Add a switch rule for this VLAN ID so its corresponding VLAN tagged
3545 * packets aren't pruned by the device's internal switch on Rx
3546 */
3547 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3548 ret = vlan_ops->add_vlan(vsi, &vlan);
3549 if (ret)
3550 goto finish;
3551
3552 /* If all-multicast is currently enabled and this VLAN ID is only one
3553 * besides VLAN-0 we have to update look-up type of multicast promisc
3554 * rule for VLAN-0 from ICE_SW_LKUP_PROMISC to ICE_SW_LKUP_PROMISC_VLAN.
3555 */
3556 if ((vsi->current_netdev_flags & IFF_ALLMULTI) &&
3557 ice_vsi_num_non_zero_vlans(vsi) == 1) {
3558 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3559 ICE_MCAST_PROMISC_BITS, 0);
3560 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3561 ICE_MCAST_VLAN_PROMISC_BITS, 0);
3562 }
3563
3564 finish:
3565 clear_bit(ICE_CFG_BUSY, vsi->state);
3566
3567 return ret;
3568 }
3569
3570 /**
3571 * ice_vlan_rx_kill_vid - Remove a VLAN ID filter from HW offload
3572 * @netdev: network interface to be adjusted
3573 * @proto: VLAN TPID
3574 * @vid: VLAN ID to be removed
3575 *
3576 * net_device_ops implementation for removing VLAN IDs
3577 */
3578 static int
ice_vlan_rx_kill_vid(struct net_device * netdev,__be16 proto,u16 vid)3579 ice_vlan_rx_kill_vid(struct net_device *netdev, __be16 proto, u16 vid)
3580 {
3581 struct ice_netdev_priv *np = netdev_priv(netdev);
3582 struct ice_vsi_vlan_ops *vlan_ops;
3583 struct ice_vsi *vsi = np->vsi;
3584 struct ice_vlan vlan;
3585 int ret;
3586
3587 /* don't allow removal of VLAN 0 */
3588 if (!vid)
3589 return 0;
3590
3591 while (test_and_set_bit(ICE_CFG_BUSY, vsi->state))
3592 usleep_range(1000, 2000);
3593
3594 ret = ice_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3595 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3596 if (ret) {
3597 netdev_err(netdev, "Error clearing multicast promiscuous mode on VSI %i\n",
3598 vsi->vsi_num);
3599 vsi->current_netdev_flags |= IFF_ALLMULTI;
3600 }
3601
3602 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
3603
3604 /* Make sure VLAN delete is successful before updating VLAN
3605 * information
3606 */
3607 vlan = ICE_VLAN(be16_to_cpu(proto), vid, 0);
3608 ret = vlan_ops->del_vlan(vsi, &vlan);
3609 if (ret)
3610 goto finish;
3611
3612 /* Remove multicast promisc rule for the removed VLAN ID if
3613 * all-multicast is enabled.
3614 */
3615 if (vsi->current_netdev_flags & IFF_ALLMULTI)
3616 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3617 ICE_MCAST_VLAN_PROMISC_BITS, vid);
3618
3619 if (!ice_vsi_has_non_zero_vlans(vsi)) {
3620 /* Update look-up type of multicast promisc rule for VLAN 0
3621 * from ICE_SW_LKUP_PROMISC_VLAN to ICE_SW_LKUP_PROMISC when
3622 * all-multicast is enabled and VLAN 0 is the only VLAN rule.
3623 */
3624 if (vsi->current_netdev_flags & IFF_ALLMULTI) {
3625 ice_fltr_clear_vsi_promisc(&vsi->back->hw, vsi->idx,
3626 ICE_MCAST_VLAN_PROMISC_BITS,
3627 0);
3628 ice_fltr_set_vsi_promisc(&vsi->back->hw, vsi->idx,
3629 ICE_MCAST_PROMISC_BITS, 0);
3630 }
3631 }
3632
3633 finish:
3634 clear_bit(ICE_CFG_BUSY, vsi->state);
3635
3636 return ret;
3637 }
3638
3639 /**
3640 * ice_rep_indr_tc_block_unbind
3641 * @cb_priv: indirection block private data
3642 */
ice_rep_indr_tc_block_unbind(void * cb_priv)3643 static void ice_rep_indr_tc_block_unbind(void *cb_priv)
3644 {
3645 struct ice_indr_block_priv *indr_priv = cb_priv;
3646
3647 list_del(&indr_priv->list);
3648 kfree(indr_priv);
3649 }
3650
3651 /**
3652 * ice_tc_indir_block_unregister - Unregister TC indirect block notifications
3653 * @vsi: VSI struct which has the netdev
3654 */
ice_tc_indir_block_unregister(struct ice_vsi * vsi)3655 static void ice_tc_indir_block_unregister(struct ice_vsi *vsi)
3656 {
3657 struct ice_netdev_priv *np = netdev_priv(vsi->netdev);
3658
3659 flow_indr_dev_unregister(ice_indr_setup_tc_cb, np,
3660 ice_rep_indr_tc_block_unbind);
3661 }
3662
3663 /**
3664 * ice_tc_indir_block_remove - clean indirect TC block notifications
3665 * @pf: PF structure
3666 */
ice_tc_indir_block_remove(struct ice_pf * pf)3667 static void ice_tc_indir_block_remove(struct ice_pf *pf)
3668 {
3669 struct ice_vsi *pf_vsi = ice_get_main_vsi(pf);
3670
3671 if (!pf_vsi)
3672 return;
3673
3674 ice_tc_indir_block_unregister(pf_vsi);
3675 }
3676
3677 /**
3678 * ice_tc_indir_block_register - Register TC indirect block notifications
3679 * @vsi: VSI struct which has the netdev
3680 *
3681 * Returns 0 on success, negative value on failure
3682 */
ice_tc_indir_block_register(struct ice_vsi * vsi)3683 static int ice_tc_indir_block_register(struct ice_vsi *vsi)
3684 {
3685 struct ice_netdev_priv *np;
3686
3687 if (!vsi || !vsi->netdev)
3688 return -EINVAL;
3689
3690 np = netdev_priv(vsi->netdev);
3691
3692 INIT_LIST_HEAD(&np->tc_indr_block_priv_list);
3693 return flow_indr_dev_register(ice_indr_setup_tc_cb, np);
3694 }
3695
3696 /**
3697 * ice_setup_pf_sw - Setup the HW switch on startup or after reset
3698 * @pf: board private structure
3699 *
3700 * Returns 0 on success, negative value on failure
3701 */
ice_setup_pf_sw(struct ice_pf * pf)3702 static int ice_setup_pf_sw(struct ice_pf *pf)
3703 {
3704 struct device *dev = ice_pf_to_dev(pf);
3705 bool dvm = ice_is_dvm_ena(&pf->hw);
3706 struct ice_vsi *vsi;
3707 int status;
3708
3709 if (ice_is_reset_in_progress(pf->state))
3710 return -EBUSY;
3711
3712 status = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
3713 if (status)
3714 return -EIO;
3715
3716 vsi = ice_pf_vsi_setup(pf, pf->hw.port_info);
3717 if (!vsi)
3718 return -ENOMEM;
3719
3720 /* init channel list */
3721 INIT_LIST_HEAD(&vsi->ch_list);
3722
3723 status = ice_cfg_netdev(vsi);
3724 if (status)
3725 goto unroll_vsi_setup;
3726 /* netdev has to be configured before setting frame size */
3727 ice_vsi_cfg_frame_size(vsi);
3728
3729 /* init indirect block notifications */
3730 status = ice_tc_indir_block_register(vsi);
3731 if (status) {
3732 dev_err(dev, "Failed to register netdev notifier\n");
3733 goto unroll_cfg_netdev;
3734 }
3735
3736 /* Setup DCB netlink interface */
3737 ice_dcbnl_setup(vsi);
3738
3739 /* registering the NAPI handler requires both the queues and
3740 * netdev to be created, which are done in ice_pf_vsi_setup()
3741 * and ice_cfg_netdev() respectively
3742 */
3743 ice_napi_add(vsi);
3744
3745 status = ice_init_mac_fltr(pf);
3746 if (status)
3747 goto unroll_napi_add;
3748
3749 return 0;
3750
3751 unroll_napi_add:
3752 ice_tc_indir_block_unregister(vsi);
3753 unroll_cfg_netdev:
3754 if (vsi) {
3755 ice_napi_del(vsi);
3756 if (vsi->netdev) {
3757 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
3758 free_netdev(vsi->netdev);
3759 vsi->netdev = NULL;
3760 }
3761 }
3762
3763 unroll_vsi_setup:
3764 ice_vsi_release(vsi);
3765 return status;
3766 }
3767
3768 /**
3769 * ice_get_avail_q_count - Get count of queues in use
3770 * @pf_qmap: bitmap to get queue use count from
3771 * @lock: pointer to a mutex that protects access to pf_qmap
3772 * @size: size of the bitmap
3773 */
3774 static u16
ice_get_avail_q_count(unsigned long * pf_qmap,struct mutex * lock,u16 size)3775 ice_get_avail_q_count(unsigned long *pf_qmap, struct mutex *lock, u16 size)
3776 {
3777 unsigned long bit;
3778 u16 count = 0;
3779
3780 mutex_lock(lock);
3781 for_each_clear_bit(bit, pf_qmap, size)
3782 count++;
3783 mutex_unlock(lock);
3784
3785 return count;
3786 }
3787
3788 /**
3789 * ice_get_avail_txq_count - Get count of Tx queues in use
3790 * @pf: pointer to an ice_pf instance
3791 */
ice_get_avail_txq_count(struct ice_pf * pf)3792 u16 ice_get_avail_txq_count(struct ice_pf *pf)
3793 {
3794 return ice_get_avail_q_count(pf->avail_txqs, &pf->avail_q_mutex,
3795 pf->max_pf_txqs);
3796 }
3797
3798 /**
3799 * ice_get_avail_rxq_count - Get count of Rx queues in use
3800 * @pf: pointer to an ice_pf instance
3801 */
ice_get_avail_rxq_count(struct ice_pf * pf)3802 u16 ice_get_avail_rxq_count(struct ice_pf *pf)
3803 {
3804 return ice_get_avail_q_count(pf->avail_rxqs, &pf->avail_q_mutex,
3805 pf->max_pf_rxqs);
3806 }
3807
3808 /**
3809 * ice_deinit_pf - Unrolls initialziations done by ice_init_pf
3810 * @pf: board private structure to initialize
3811 */
ice_deinit_pf(struct ice_pf * pf)3812 static void ice_deinit_pf(struct ice_pf *pf)
3813 {
3814 ice_service_task_stop(pf);
3815 mutex_destroy(&pf->adev_mutex);
3816 mutex_destroy(&pf->sw_mutex);
3817 mutex_destroy(&pf->tc_mutex);
3818 mutex_destroy(&pf->avail_q_mutex);
3819 mutex_destroy(&pf->vfs.table_lock);
3820
3821 if (pf->avail_txqs) {
3822 bitmap_free(pf->avail_txqs);
3823 pf->avail_txqs = NULL;
3824 }
3825
3826 if (pf->avail_rxqs) {
3827 bitmap_free(pf->avail_rxqs);
3828 pf->avail_rxqs = NULL;
3829 }
3830
3831 if (pf->ptp.clock)
3832 ptp_clock_unregister(pf->ptp.clock);
3833 }
3834
3835 /**
3836 * ice_set_pf_caps - set PFs capability flags
3837 * @pf: pointer to the PF instance
3838 */
ice_set_pf_caps(struct ice_pf * pf)3839 static void ice_set_pf_caps(struct ice_pf *pf)
3840 {
3841 struct ice_hw_func_caps *func_caps = &pf->hw.func_caps;
3842
3843 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3844 if (func_caps->common_cap.rdma)
3845 set_bit(ICE_FLAG_RDMA_ENA, pf->flags);
3846 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3847 if (func_caps->common_cap.dcb)
3848 set_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
3849 clear_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3850 if (func_caps->common_cap.sr_iov_1_1) {
3851 set_bit(ICE_FLAG_SRIOV_CAPABLE, pf->flags);
3852 pf->vfs.num_supported = min_t(int, func_caps->num_allocd_vfs,
3853 ICE_MAX_SRIOV_VFS);
3854 }
3855 clear_bit(ICE_FLAG_RSS_ENA, pf->flags);
3856 if (func_caps->common_cap.rss_table_size)
3857 set_bit(ICE_FLAG_RSS_ENA, pf->flags);
3858
3859 clear_bit(ICE_FLAG_FD_ENA, pf->flags);
3860 if (func_caps->fd_fltr_guar > 0 || func_caps->fd_fltr_best_effort > 0) {
3861 u16 unused;
3862
3863 /* ctrl_vsi_idx will be set to a valid value when flow director
3864 * is setup by ice_init_fdir
3865 */
3866 pf->ctrl_vsi_idx = ICE_NO_VSI;
3867 set_bit(ICE_FLAG_FD_ENA, pf->flags);
3868 /* force guaranteed filter pool for PF */
3869 ice_alloc_fd_guar_item(&pf->hw, &unused,
3870 func_caps->fd_fltr_guar);
3871 /* force shared filter pool for PF */
3872 ice_alloc_fd_shrd_item(&pf->hw, &unused,
3873 func_caps->fd_fltr_best_effort);
3874 }
3875
3876 clear_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3877 if (func_caps->common_cap.ieee_1588)
3878 set_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags);
3879
3880 pf->max_pf_txqs = func_caps->common_cap.num_txq;
3881 pf->max_pf_rxqs = func_caps->common_cap.num_rxq;
3882 }
3883
3884 /**
3885 * ice_init_pf - Initialize general software structures (struct ice_pf)
3886 * @pf: board private structure to initialize
3887 */
ice_init_pf(struct ice_pf * pf)3888 static int ice_init_pf(struct ice_pf *pf)
3889 {
3890 ice_set_pf_caps(pf);
3891
3892 mutex_init(&pf->sw_mutex);
3893 mutex_init(&pf->tc_mutex);
3894 mutex_init(&pf->adev_mutex);
3895
3896 INIT_HLIST_HEAD(&pf->aq_wait_list);
3897 spin_lock_init(&pf->aq_wait_lock);
3898 init_waitqueue_head(&pf->aq_wait_queue);
3899
3900 init_waitqueue_head(&pf->reset_wait_queue);
3901
3902 /* setup service timer and periodic service task */
3903 timer_setup(&pf->serv_tmr, ice_service_timer, 0);
3904 pf->serv_tmr_period = HZ;
3905 INIT_WORK(&pf->serv_task, ice_service_task);
3906 clear_bit(ICE_SERVICE_SCHED, pf->state);
3907
3908 mutex_init(&pf->avail_q_mutex);
3909 pf->avail_txqs = bitmap_zalloc(pf->max_pf_txqs, GFP_KERNEL);
3910 if (!pf->avail_txqs)
3911 return -ENOMEM;
3912
3913 pf->avail_rxqs = bitmap_zalloc(pf->max_pf_rxqs, GFP_KERNEL);
3914 if (!pf->avail_rxqs) {
3915 bitmap_free(pf->avail_txqs);
3916 pf->avail_txqs = NULL;
3917 return -ENOMEM;
3918 }
3919
3920 mutex_init(&pf->vfs.table_lock);
3921 hash_init(pf->vfs.table);
3922
3923 return 0;
3924 }
3925
3926 /**
3927 * ice_ena_msix_range - Request a range of MSIX vectors from the OS
3928 * @pf: board private structure
3929 *
3930 * compute the number of MSIX vectors required (v_budget) and request from
3931 * the OS. Return the number of vectors reserved or negative on failure
3932 */
ice_ena_msix_range(struct ice_pf * pf)3933 static int ice_ena_msix_range(struct ice_pf *pf)
3934 {
3935 int num_cpus, v_left, v_actual, v_other, v_budget = 0;
3936 struct device *dev = ice_pf_to_dev(pf);
3937 int needed, err, i;
3938
3939 v_left = pf->hw.func_caps.common_cap.num_msix_vectors;
3940 num_cpus = num_online_cpus();
3941
3942 /* reserve for LAN miscellaneous handler */
3943 needed = ICE_MIN_LAN_OICR_MSIX;
3944 if (v_left < needed)
3945 goto no_hw_vecs_left_err;
3946 v_budget += needed;
3947 v_left -= needed;
3948
3949 /* reserve for flow director */
3950 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
3951 needed = ICE_FDIR_MSIX;
3952 if (v_left < needed)
3953 goto no_hw_vecs_left_err;
3954 v_budget += needed;
3955 v_left -= needed;
3956 }
3957
3958 /* reserve for switchdev */
3959 needed = ICE_ESWITCH_MSIX;
3960 if (v_left < needed)
3961 goto no_hw_vecs_left_err;
3962 v_budget += needed;
3963 v_left -= needed;
3964
3965 /* total used for non-traffic vectors */
3966 v_other = v_budget;
3967
3968 /* reserve vectors for LAN traffic */
3969 needed = num_cpus;
3970 if (v_left < needed)
3971 goto no_hw_vecs_left_err;
3972 pf->num_lan_msix = needed;
3973 v_budget += needed;
3974 v_left -= needed;
3975
3976 /* reserve vectors for RDMA auxiliary driver */
3977 if (ice_is_rdma_ena(pf)) {
3978 needed = num_cpus + ICE_RDMA_NUM_AEQ_MSIX;
3979 if (v_left < needed)
3980 goto no_hw_vecs_left_err;
3981 pf->num_rdma_msix = needed;
3982 v_budget += needed;
3983 v_left -= needed;
3984 }
3985
3986 pf->msix_entries = devm_kcalloc(dev, v_budget,
3987 sizeof(*pf->msix_entries), GFP_KERNEL);
3988 if (!pf->msix_entries) {
3989 err = -ENOMEM;
3990 goto exit_err;
3991 }
3992
3993 for (i = 0; i < v_budget; i++)
3994 pf->msix_entries[i].entry = i;
3995
3996 /* actually reserve the vectors */
3997 v_actual = pci_enable_msix_range(pf->pdev, pf->msix_entries,
3998 ICE_MIN_MSIX, v_budget);
3999 if (v_actual < 0) {
4000 dev_err(dev, "unable to reserve MSI-X vectors\n");
4001 err = v_actual;
4002 goto msix_err;
4003 }
4004
4005 if (v_actual < v_budget) {
4006 dev_warn(dev, "not enough OS MSI-X vectors. requested = %d, obtained = %d\n",
4007 v_budget, v_actual);
4008
4009 if (v_actual < ICE_MIN_MSIX) {
4010 /* error if we can't get minimum vectors */
4011 pci_disable_msix(pf->pdev);
4012 err = -ERANGE;
4013 goto msix_err;
4014 } else {
4015 int v_remain = v_actual - v_other;
4016 int v_rdma = 0, v_min_rdma = 0;
4017
4018 if (ice_is_rdma_ena(pf)) {
4019 /* Need at least 1 interrupt in addition to
4020 * AEQ MSIX
4021 */
4022 v_rdma = ICE_RDMA_NUM_AEQ_MSIX + 1;
4023 v_min_rdma = ICE_MIN_RDMA_MSIX;
4024 }
4025
4026 if (v_actual == ICE_MIN_MSIX ||
4027 v_remain < ICE_MIN_LAN_TXRX_MSIX + v_min_rdma) {
4028 dev_warn(dev, "Not enough MSI-X vectors to support RDMA.\n");
4029 clear_bit(ICE_FLAG_RDMA_ENA, pf->flags);
4030
4031 pf->num_rdma_msix = 0;
4032 pf->num_lan_msix = ICE_MIN_LAN_TXRX_MSIX;
4033 } else if ((v_remain < ICE_MIN_LAN_TXRX_MSIX + v_rdma) ||
4034 (v_remain - v_rdma < v_rdma)) {
4035 /* Support minimum RDMA and give remaining
4036 * vectors to LAN MSIX
4037 */
4038 pf->num_rdma_msix = v_min_rdma;
4039 pf->num_lan_msix = v_remain - v_min_rdma;
4040 } else {
4041 /* Split remaining MSIX with RDMA after
4042 * accounting for AEQ MSIX
4043 */
4044 pf->num_rdma_msix = (v_remain - ICE_RDMA_NUM_AEQ_MSIX) / 2 +
4045 ICE_RDMA_NUM_AEQ_MSIX;
4046 pf->num_lan_msix = v_remain - pf->num_rdma_msix;
4047 }
4048
4049 dev_notice(dev, "Enabled %d MSI-X vectors for LAN traffic.\n",
4050 pf->num_lan_msix);
4051
4052 if (ice_is_rdma_ena(pf))
4053 dev_notice(dev, "Enabled %d MSI-X vectors for RDMA.\n",
4054 pf->num_rdma_msix);
4055 }
4056 }
4057
4058 return v_actual;
4059
4060 msix_err:
4061 devm_kfree(dev, pf->msix_entries);
4062 goto exit_err;
4063
4064 no_hw_vecs_left_err:
4065 dev_err(dev, "not enough device MSI-X vectors. requested = %d, available = %d\n",
4066 needed, v_left);
4067 err = -ERANGE;
4068 exit_err:
4069 pf->num_rdma_msix = 0;
4070 pf->num_lan_msix = 0;
4071 return err;
4072 }
4073
4074 /**
4075 * ice_dis_msix - Disable MSI-X interrupt setup in OS
4076 * @pf: board private structure
4077 */
ice_dis_msix(struct ice_pf * pf)4078 static void ice_dis_msix(struct ice_pf *pf)
4079 {
4080 pci_disable_msix(pf->pdev);
4081 devm_kfree(ice_pf_to_dev(pf), pf->msix_entries);
4082 pf->msix_entries = NULL;
4083 }
4084
4085 /**
4086 * ice_clear_interrupt_scheme - Undo things done by ice_init_interrupt_scheme
4087 * @pf: board private structure
4088 */
ice_clear_interrupt_scheme(struct ice_pf * pf)4089 static void ice_clear_interrupt_scheme(struct ice_pf *pf)
4090 {
4091 ice_dis_msix(pf);
4092
4093 if (pf->irq_tracker) {
4094 devm_kfree(ice_pf_to_dev(pf), pf->irq_tracker);
4095 pf->irq_tracker = NULL;
4096 }
4097 }
4098
4099 /**
4100 * ice_init_interrupt_scheme - Determine proper interrupt scheme
4101 * @pf: board private structure to initialize
4102 */
ice_init_interrupt_scheme(struct ice_pf * pf)4103 static int ice_init_interrupt_scheme(struct ice_pf *pf)
4104 {
4105 int vectors;
4106
4107 vectors = ice_ena_msix_range(pf);
4108
4109 if (vectors < 0)
4110 return vectors;
4111
4112 /* set up vector assignment tracking */
4113 pf->irq_tracker = devm_kzalloc(ice_pf_to_dev(pf),
4114 struct_size(pf->irq_tracker, list, vectors),
4115 GFP_KERNEL);
4116 if (!pf->irq_tracker) {
4117 ice_dis_msix(pf);
4118 return -ENOMEM;
4119 }
4120
4121 /* populate SW interrupts pool with number of OS granted IRQs. */
4122 pf->num_avail_sw_msix = (u16)vectors;
4123 pf->irq_tracker->num_entries = (u16)vectors;
4124 pf->irq_tracker->end = pf->irq_tracker->num_entries;
4125
4126 return 0;
4127 }
4128
4129 /**
4130 * ice_is_wol_supported - check if WoL is supported
4131 * @hw: pointer to hardware info
4132 *
4133 * Check if WoL is supported based on the HW configuration.
4134 * Returns true if NVM supports and enables WoL for this port, false otherwise
4135 */
ice_is_wol_supported(struct ice_hw * hw)4136 bool ice_is_wol_supported(struct ice_hw *hw)
4137 {
4138 u16 wol_ctrl;
4139
4140 /* A bit set to 1 in the NVM Software Reserved Word 2 (WoL control
4141 * word) indicates WoL is not supported on the corresponding PF ID.
4142 */
4143 if (ice_read_sr_word(hw, ICE_SR_NVM_WOL_CFG, &wol_ctrl))
4144 return false;
4145
4146 return !(BIT(hw->port_info->lport) & wol_ctrl);
4147 }
4148
4149 /**
4150 * ice_vsi_recfg_qs - Change the number of queues on a VSI
4151 * @vsi: VSI being changed
4152 * @new_rx: new number of Rx queues
4153 * @new_tx: new number of Tx queues
4154 *
4155 * Only change the number of queues if new_tx, or new_rx is non-0.
4156 *
4157 * Returns 0 on success.
4158 */
ice_vsi_recfg_qs(struct ice_vsi * vsi,int new_rx,int new_tx)4159 int ice_vsi_recfg_qs(struct ice_vsi *vsi, int new_rx, int new_tx)
4160 {
4161 struct ice_pf *pf = vsi->back;
4162 int err = 0, timeout = 50;
4163
4164 if (!new_rx && !new_tx)
4165 return -EINVAL;
4166
4167 while (test_and_set_bit(ICE_CFG_BUSY, pf->state)) {
4168 timeout--;
4169 if (!timeout)
4170 return -EBUSY;
4171 usleep_range(1000, 2000);
4172 }
4173
4174 if (new_tx)
4175 vsi->req_txq = (u16)new_tx;
4176 if (new_rx)
4177 vsi->req_rxq = (u16)new_rx;
4178
4179 /* set for the next time the netdev is started */
4180 if (!netif_running(vsi->netdev)) {
4181 ice_vsi_rebuild(vsi, false);
4182 dev_dbg(ice_pf_to_dev(pf), "Link is down, queue count change happens when link is brought up\n");
4183 goto done;
4184 }
4185
4186 ice_vsi_close(vsi);
4187 ice_vsi_rebuild(vsi, false);
4188 ice_pf_dcb_recfg(pf);
4189 ice_vsi_open(vsi);
4190 done:
4191 clear_bit(ICE_CFG_BUSY, pf->state);
4192 return err;
4193 }
4194
4195 /**
4196 * ice_set_safe_mode_vlan_cfg - configure PF VSI to allow all VLANs in safe mode
4197 * @pf: PF to configure
4198 *
4199 * No VLAN offloads/filtering are advertised in safe mode so make sure the PF
4200 * VSI can still Tx/Rx VLAN tagged packets.
4201 */
ice_set_safe_mode_vlan_cfg(struct ice_pf * pf)4202 static void ice_set_safe_mode_vlan_cfg(struct ice_pf *pf)
4203 {
4204 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4205 struct ice_vsi_ctx *ctxt;
4206 struct ice_hw *hw;
4207 int status;
4208
4209 if (!vsi)
4210 return;
4211
4212 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
4213 if (!ctxt)
4214 return;
4215
4216 hw = &pf->hw;
4217 ctxt->info = vsi->info;
4218
4219 ctxt->info.valid_sections =
4220 cpu_to_le16(ICE_AQ_VSI_PROP_VLAN_VALID |
4221 ICE_AQ_VSI_PROP_SECURITY_VALID |
4222 ICE_AQ_VSI_PROP_SW_VALID);
4223
4224 /* disable VLAN anti-spoof */
4225 ctxt->info.sec_flags &= ~(ICE_AQ_VSI_SEC_TX_VLAN_PRUNE_ENA <<
4226 ICE_AQ_VSI_SEC_TX_PRUNE_ENA_S);
4227
4228 /* disable VLAN pruning and keep all other settings */
4229 ctxt->info.sw_flags2 &= ~ICE_AQ_VSI_SW_FLAG_RX_VLAN_PRUNE_ENA;
4230
4231 /* allow all VLANs on Tx and don't strip on Rx */
4232 ctxt->info.inner_vlan_flags = ICE_AQ_VSI_INNER_VLAN_TX_MODE_ALL |
4233 ICE_AQ_VSI_INNER_VLAN_EMODE_NOTHING;
4234
4235 status = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
4236 if (status) {
4237 dev_err(ice_pf_to_dev(vsi->back), "Failed to update VSI for safe mode VLANs, err %d aq_err %s\n",
4238 status, ice_aq_str(hw->adminq.sq_last_status));
4239 } else {
4240 vsi->info.sec_flags = ctxt->info.sec_flags;
4241 vsi->info.sw_flags2 = ctxt->info.sw_flags2;
4242 vsi->info.inner_vlan_flags = ctxt->info.inner_vlan_flags;
4243 }
4244
4245 kfree(ctxt);
4246 }
4247
4248 /**
4249 * ice_log_pkg_init - log result of DDP package load
4250 * @hw: pointer to hardware info
4251 * @state: state of package load
4252 */
ice_log_pkg_init(struct ice_hw * hw,enum ice_ddp_state state)4253 static void ice_log_pkg_init(struct ice_hw *hw, enum ice_ddp_state state)
4254 {
4255 struct ice_pf *pf = hw->back;
4256 struct device *dev;
4257
4258 dev = ice_pf_to_dev(pf);
4259
4260 switch (state) {
4261 case ICE_DDP_PKG_SUCCESS:
4262 dev_info(dev, "The DDP package was successfully loaded: %s version %d.%d.%d.%d\n",
4263 hw->active_pkg_name,
4264 hw->active_pkg_ver.major,
4265 hw->active_pkg_ver.minor,
4266 hw->active_pkg_ver.update,
4267 hw->active_pkg_ver.draft);
4268 break;
4269 case ICE_DDP_PKG_SAME_VERSION_ALREADY_LOADED:
4270 dev_info(dev, "DDP package already present on device: %s version %d.%d.%d.%d\n",
4271 hw->active_pkg_name,
4272 hw->active_pkg_ver.major,
4273 hw->active_pkg_ver.minor,
4274 hw->active_pkg_ver.update,
4275 hw->active_pkg_ver.draft);
4276 break;
4277 case ICE_DDP_PKG_ALREADY_LOADED_NOT_SUPPORTED:
4278 dev_err(dev, "The device has a DDP package that is not supported by the driver. The device has package '%s' version %d.%d.x.x. The driver requires version %d.%d.x.x. Entering Safe Mode.\n",
4279 hw->active_pkg_name,
4280 hw->active_pkg_ver.major,
4281 hw->active_pkg_ver.minor,
4282 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4283 break;
4284 case ICE_DDP_PKG_COMPATIBLE_ALREADY_LOADED:
4285 dev_info(dev, "The driver could not load the DDP package file because a compatible DDP package is already present on the device. The device has package '%s' version %d.%d.%d.%d. The package file found by the driver: '%s' version %d.%d.%d.%d.\n",
4286 hw->active_pkg_name,
4287 hw->active_pkg_ver.major,
4288 hw->active_pkg_ver.minor,
4289 hw->active_pkg_ver.update,
4290 hw->active_pkg_ver.draft,
4291 hw->pkg_name,
4292 hw->pkg_ver.major,
4293 hw->pkg_ver.minor,
4294 hw->pkg_ver.update,
4295 hw->pkg_ver.draft);
4296 break;
4297 case ICE_DDP_PKG_FW_MISMATCH:
4298 dev_err(dev, "The firmware loaded on the device is not compatible with the DDP package. Please update the device's NVM. Entering safe mode.\n");
4299 break;
4300 case ICE_DDP_PKG_INVALID_FILE:
4301 dev_err(dev, "The DDP package file is invalid. Entering Safe Mode.\n");
4302 break;
4303 case ICE_DDP_PKG_FILE_VERSION_TOO_HIGH:
4304 dev_err(dev, "The DDP package file version is higher than the driver supports. Please use an updated driver. Entering Safe Mode.\n");
4305 break;
4306 case ICE_DDP_PKG_FILE_VERSION_TOO_LOW:
4307 dev_err(dev, "The DDP package file version is lower than the driver supports. The driver requires version %d.%d.x.x. Please use an updated DDP Package file. Entering Safe Mode.\n",
4308 ICE_PKG_SUPP_VER_MAJ, ICE_PKG_SUPP_VER_MNR);
4309 break;
4310 case ICE_DDP_PKG_FILE_SIGNATURE_INVALID:
4311 dev_err(dev, "The DDP package could not be loaded because its signature is not valid. Please use a valid DDP Package. Entering Safe Mode.\n");
4312 break;
4313 case ICE_DDP_PKG_FILE_REVISION_TOO_LOW:
4314 dev_err(dev, "The DDP Package could not be loaded because its security revision is too low. Please use an updated DDP Package. Entering Safe Mode.\n");
4315 break;
4316 case ICE_DDP_PKG_LOAD_ERROR:
4317 dev_err(dev, "An error occurred on the device while loading the DDP package. The device will be reset.\n");
4318 /* poll for reset to complete */
4319 if (ice_check_reset(hw))
4320 dev_err(dev, "Error resetting device. Please reload the driver\n");
4321 break;
4322 case ICE_DDP_PKG_ERR:
4323 default:
4324 dev_err(dev, "An unknown error occurred when loading the DDP package. Entering Safe Mode.\n");
4325 break;
4326 }
4327 }
4328
4329 /**
4330 * ice_load_pkg - load/reload the DDP Package file
4331 * @firmware: firmware structure when firmware requested or NULL for reload
4332 * @pf: pointer to the PF instance
4333 *
4334 * Called on probe and post CORER/GLOBR rebuild to load DDP Package and
4335 * initialize HW tables.
4336 */
4337 static void
ice_load_pkg(const struct firmware * firmware,struct ice_pf * pf)4338 ice_load_pkg(const struct firmware *firmware, struct ice_pf *pf)
4339 {
4340 enum ice_ddp_state state = ICE_DDP_PKG_ERR;
4341 struct device *dev = ice_pf_to_dev(pf);
4342 struct ice_hw *hw = &pf->hw;
4343
4344 /* Load DDP Package */
4345 if (firmware && !hw->pkg_copy) {
4346 state = ice_copy_and_init_pkg(hw, firmware->data,
4347 firmware->size);
4348 ice_log_pkg_init(hw, state);
4349 } else if (!firmware && hw->pkg_copy) {
4350 /* Reload package during rebuild after CORER/GLOBR reset */
4351 state = ice_init_pkg(hw, hw->pkg_copy, hw->pkg_size);
4352 ice_log_pkg_init(hw, state);
4353 } else {
4354 dev_err(dev, "The DDP package file failed to load. Entering Safe Mode.\n");
4355 }
4356
4357 if (!ice_is_init_pkg_successful(state)) {
4358 /* Safe Mode */
4359 clear_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4360 return;
4361 }
4362
4363 /* Successful download package is the precondition for advanced
4364 * features, hence setting the ICE_FLAG_ADV_FEATURES flag
4365 */
4366 set_bit(ICE_FLAG_ADV_FEATURES, pf->flags);
4367 }
4368
4369 /**
4370 * ice_verify_cacheline_size - verify driver's assumption of 64 Byte cache lines
4371 * @pf: pointer to the PF structure
4372 *
4373 * There is no error returned here because the driver should be able to handle
4374 * 128 Byte cache lines, so we only print a warning in case issues are seen,
4375 * specifically with Tx.
4376 */
ice_verify_cacheline_size(struct ice_pf * pf)4377 static void ice_verify_cacheline_size(struct ice_pf *pf)
4378 {
4379 if (rd32(&pf->hw, GLPCI_CNF2) & GLPCI_CNF2_CACHELINE_SIZE_M)
4380 dev_warn(ice_pf_to_dev(pf), "%d Byte cache line assumption is invalid, driver may have Tx timeouts!\n",
4381 ICE_CACHE_LINE_BYTES);
4382 }
4383
4384 /**
4385 * ice_send_version - update firmware with driver version
4386 * @pf: PF struct
4387 *
4388 * Returns 0 on success, else error code
4389 */
ice_send_version(struct ice_pf * pf)4390 static int ice_send_version(struct ice_pf *pf)
4391 {
4392 struct ice_driver_ver dv;
4393
4394 dv.major_ver = 0xff;
4395 dv.minor_ver = 0xff;
4396 dv.build_ver = 0xff;
4397 dv.subbuild_ver = 0;
4398 strscpy((char *)dv.driver_string, UTS_RELEASE,
4399 sizeof(dv.driver_string));
4400 return ice_aq_send_driver_ver(&pf->hw, &dv, NULL);
4401 }
4402
4403 /**
4404 * ice_init_fdir - Initialize flow director VSI and configuration
4405 * @pf: pointer to the PF instance
4406 *
4407 * returns 0 on success, negative on error
4408 */
ice_init_fdir(struct ice_pf * pf)4409 static int ice_init_fdir(struct ice_pf *pf)
4410 {
4411 struct device *dev = ice_pf_to_dev(pf);
4412 struct ice_vsi *ctrl_vsi;
4413 int err;
4414
4415 /* Side Band Flow Director needs to have a control VSI.
4416 * Allocate it and store it in the PF.
4417 */
4418 ctrl_vsi = ice_ctrl_vsi_setup(pf, pf->hw.port_info);
4419 if (!ctrl_vsi) {
4420 dev_dbg(dev, "could not create control VSI\n");
4421 return -ENOMEM;
4422 }
4423
4424 err = ice_vsi_open_ctrl(ctrl_vsi);
4425 if (err) {
4426 dev_dbg(dev, "could not open control VSI\n");
4427 goto err_vsi_open;
4428 }
4429
4430 mutex_init(&pf->hw.fdir_fltr_lock);
4431
4432 err = ice_fdir_create_dflt_rules(pf);
4433 if (err)
4434 goto err_fdir_rule;
4435
4436 return 0;
4437
4438 err_fdir_rule:
4439 ice_fdir_release_flows(&pf->hw);
4440 ice_vsi_close(ctrl_vsi);
4441 err_vsi_open:
4442 ice_vsi_release(ctrl_vsi);
4443 if (pf->ctrl_vsi_idx != ICE_NO_VSI) {
4444 pf->vsi[pf->ctrl_vsi_idx] = NULL;
4445 pf->ctrl_vsi_idx = ICE_NO_VSI;
4446 }
4447 return err;
4448 }
4449
4450 /**
4451 * ice_get_opt_fw_name - return optional firmware file name or NULL
4452 * @pf: pointer to the PF instance
4453 */
ice_get_opt_fw_name(struct ice_pf * pf)4454 static char *ice_get_opt_fw_name(struct ice_pf *pf)
4455 {
4456 /* Optional firmware name same as default with additional dash
4457 * followed by a EUI-64 identifier (PCIe Device Serial Number)
4458 */
4459 struct pci_dev *pdev = pf->pdev;
4460 char *opt_fw_filename;
4461 u64 dsn;
4462
4463 /* Determine the name of the optional file using the DSN (two
4464 * dwords following the start of the DSN Capability).
4465 */
4466 dsn = pci_get_dsn(pdev);
4467 if (!dsn)
4468 return NULL;
4469
4470 opt_fw_filename = kzalloc(NAME_MAX, GFP_KERNEL);
4471 if (!opt_fw_filename)
4472 return NULL;
4473
4474 snprintf(opt_fw_filename, NAME_MAX, "%sice-%016llx.pkg",
4475 ICE_DDP_PKG_PATH, dsn);
4476
4477 return opt_fw_filename;
4478 }
4479
4480 /**
4481 * ice_request_fw - Device initialization routine
4482 * @pf: pointer to the PF instance
4483 */
ice_request_fw(struct ice_pf * pf)4484 static void ice_request_fw(struct ice_pf *pf)
4485 {
4486 char *opt_fw_filename = ice_get_opt_fw_name(pf);
4487 const struct firmware *firmware = NULL;
4488 struct device *dev = ice_pf_to_dev(pf);
4489 int err = 0;
4490
4491 /* optional device-specific DDP (if present) overrides the default DDP
4492 * package file. kernel logs a debug message if the file doesn't exist,
4493 * and warning messages for other errors.
4494 */
4495 if (opt_fw_filename) {
4496 err = firmware_request_nowarn(&firmware, opt_fw_filename, dev);
4497 if (err) {
4498 kfree(opt_fw_filename);
4499 goto dflt_pkg_load;
4500 }
4501
4502 /* request for firmware was successful. Download to device */
4503 ice_load_pkg(firmware, pf);
4504 kfree(opt_fw_filename);
4505 release_firmware(firmware);
4506 return;
4507 }
4508
4509 dflt_pkg_load:
4510 err = request_firmware(&firmware, ICE_DDP_PKG_FILE, dev);
4511 if (err) {
4512 dev_err(dev, "The DDP package file was not found or could not be read. Entering Safe Mode\n");
4513 return;
4514 }
4515
4516 /* request for firmware was successful. Download to device */
4517 ice_load_pkg(firmware, pf);
4518 release_firmware(firmware);
4519 }
4520
4521 /**
4522 * ice_print_wake_reason - show the wake up cause in the log
4523 * @pf: pointer to the PF struct
4524 */
ice_print_wake_reason(struct ice_pf * pf)4525 static void ice_print_wake_reason(struct ice_pf *pf)
4526 {
4527 u32 wus = pf->wakeup_reason;
4528 const char *wake_str;
4529
4530 /* if no wake event, nothing to print */
4531 if (!wus)
4532 return;
4533
4534 if (wus & PFPM_WUS_LNKC_M)
4535 wake_str = "Link\n";
4536 else if (wus & PFPM_WUS_MAG_M)
4537 wake_str = "Magic Packet\n";
4538 else if (wus & PFPM_WUS_MNG_M)
4539 wake_str = "Management\n";
4540 else if (wus & PFPM_WUS_FW_RST_WK_M)
4541 wake_str = "Firmware Reset\n";
4542 else
4543 wake_str = "Unknown\n";
4544
4545 dev_info(ice_pf_to_dev(pf), "Wake reason: %s", wake_str);
4546 }
4547
4548 /**
4549 * ice_register_netdev - register netdev and devlink port
4550 * @pf: pointer to the PF struct
4551 */
ice_register_netdev(struct ice_pf * pf)4552 static int ice_register_netdev(struct ice_pf *pf)
4553 {
4554 struct ice_vsi *vsi;
4555 int err = 0;
4556
4557 vsi = ice_get_main_vsi(pf);
4558 if (!vsi || !vsi->netdev)
4559 return -EIO;
4560
4561 err = register_netdev(vsi->netdev);
4562 if (err)
4563 goto err_register_netdev;
4564
4565 set_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4566 netif_carrier_off(vsi->netdev);
4567 netif_tx_stop_all_queues(vsi->netdev);
4568 err = ice_devlink_create_pf_port(pf);
4569 if (err)
4570 goto err_devlink_create;
4571
4572 devlink_port_type_eth_set(&pf->devlink_port, vsi->netdev);
4573
4574 return 0;
4575 err_devlink_create:
4576 unregister_netdev(vsi->netdev);
4577 clear_bit(ICE_VSI_NETDEV_REGISTERED, vsi->state);
4578 err_register_netdev:
4579 free_netdev(vsi->netdev);
4580 vsi->netdev = NULL;
4581 clear_bit(ICE_VSI_NETDEV_ALLOCD, vsi->state);
4582 return err;
4583 }
4584
4585 /**
4586 * ice_probe - Device initialization routine
4587 * @pdev: PCI device information struct
4588 * @ent: entry in ice_pci_tbl
4589 *
4590 * Returns 0 on success, negative on failure
4591 */
4592 static int
ice_probe(struct pci_dev * pdev,const struct pci_device_id __always_unused * ent)4593 ice_probe(struct pci_dev *pdev, const struct pci_device_id __always_unused *ent)
4594 {
4595 struct device *dev = &pdev->dev;
4596 struct ice_pf *pf;
4597 struct ice_hw *hw;
4598 int i, err;
4599
4600 if (pdev->is_virtfn) {
4601 dev_err(dev, "can't probe a virtual function\n");
4602 return -EINVAL;
4603 }
4604
4605 /* this driver uses devres, see
4606 * Documentation/driver-api/driver-model/devres.rst
4607 */
4608 err = pcim_enable_device(pdev);
4609 if (err)
4610 return err;
4611
4612 err = pcim_iomap_regions(pdev, BIT(ICE_BAR0), dev_driver_string(dev));
4613 if (err) {
4614 dev_err(dev, "BAR0 I/O map error %d\n", err);
4615 return err;
4616 }
4617
4618 pf = ice_allocate_pf(dev);
4619 if (!pf)
4620 return -ENOMEM;
4621
4622 /* initialize Auxiliary index to invalid value */
4623 pf->aux_idx = -1;
4624
4625 /* set up for high or low DMA */
4626 err = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(64));
4627 if (err) {
4628 dev_err(dev, "DMA configuration failed: 0x%x\n", err);
4629 return err;
4630 }
4631
4632 pci_enable_pcie_error_reporting(pdev);
4633 pci_set_master(pdev);
4634
4635 pf->pdev = pdev;
4636 pci_set_drvdata(pdev, pf);
4637 set_bit(ICE_DOWN, pf->state);
4638 /* Disable service task until DOWN bit is cleared */
4639 set_bit(ICE_SERVICE_DIS, pf->state);
4640
4641 hw = &pf->hw;
4642 hw->hw_addr = pcim_iomap_table(pdev)[ICE_BAR0];
4643 pci_save_state(pdev);
4644
4645 hw->back = pf;
4646 hw->vendor_id = pdev->vendor;
4647 hw->device_id = pdev->device;
4648 pci_read_config_byte(pdev, PCI_REVISION_ID, &hw->revision_id);
4649 hw->subsystem_vendor_id = pdev->subsystem_vendor;
4650 hw->subsystem_device_id = pdev->subsystem_device;
4651 hw->bus.device = PCI_SLOT(pdev->devfn);
4652 hw->bus.func = PCI_FUNC(pdev->devfn);
4653 ice_set_ctrlq_len(hw);
4654
4655 pf->msg_enable = netif_msg_init(debug, ICE_DFLT_NETIF_M);
4656
4657 #ifndef CONFIG_DYNAMIC_DEBUG
4658 if (debug < -1)
4659 hw->debug_mask = debug;
4660 #endif
4661
4662 err = ice_init_hw(hw);
4663 if (err) {
4664 dev_err(dev, "ice_init_hw failed: %d\n", err);
4665 err = -EIO;
4666 goto err_exit_unroll;
4667 }
4668
4669 ice_init_feature_support(pf);
4670
4671 ice_request_fw(pf);
4672
4673 /* if ice_request_fw fails, ICE_FLAG_ADV_FEATURES bit won't be
4674 * set in pf->state, which will cause ice_is_safe_mode to return
4675 * true
4676 */
4677 if (ice_is_safe_mode(pf)) {
4678 /* we already got function/device capabilities but these don't
4679 * reflect what the driver needs to do in safe mode. Instead of
4680 * adding conditional logic everywhere to ignore these
4681 * device/function capabilities, override them.
4682 */
4683 ice_set_safe_mode_caps(hw);
4684 }
4685
4686 hw->ucast_shared = true;
4687
4688 err = ice_init_pf(pf);
4689 if (err) {
4690 dev_err(dev, "ice_init_pf failed: %d\n", err);
4691 goto err_init_pf_unroll;
4692 }
4693
4694 ice_devlink_init_regions(pf);
4695
4696 pf->hw.udp_tunnel_nic.set_port = ice_udp_tunnel_set_port;
4697 pf->hw.udp_tunnel_nic.unset_port = ice_udp_tunnel_unset_port;
4698 pf->hw.udp_tunnel_nic.flags = UDP_TUNNEL_NIC_INFO_MAY_SLEEP;
4699 pf->hw.udp_tunnel_nic.shared = &pf->hw.udp_tunnel_shared;
4700 i = 0;
4701 if (pf->hw.tnl.valid_count[TNL_VXLAN]) {
4702 pf->hw.udp_tunnel_nic.tables[i].n_entries =
4703 pf->hw.tnl.valid_count[TNL_VXLAN];
4704 pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4705 UDP_TUNNEL_TYPE_VXLAN;
4706 i++;
4707 }
4708 if (pf->hw.tnl.valid_count[TNL_GENEVE]) {
4709 pf->hw.udp_tunnel_nic.tables[i].n_entries =
4710 pf->hw.tnl.valid_count[TNL_GENEVE];
4711 pf->hw.udp_tunnel_nic.tables[i].tunnel_types =
4712 UDP_TUNNEL_TYPE_GENEVE;
4713 i++;
4714 }
4715
4716 pf->num_alloc_vsi = hw->func_caps.guar_num_vsi;
4717 if (!pf->num_alloc_vsi) {
4718 err = -EIO;
4719 goto err_init_pf_unroll;
4720 }
4721 if (pf->num_alloc_vsi > UDP_TUNNEL_NIC_MAX_SHARING_DEVICES) {
4722 dev_warn(&pf->pdev->dev,
4723 "limiting the VSI count due to UDP tunnel limitation %d > %d\n",
4724 pf->num_alloc_vsi, UDP_TUNNEL_NIC_MAX_SHARING_DEVICES);
4725 pf->num_alloc_vsi = UDP_TUNNEL_NIC_MAX_SHARING_DEVICES;
4726 }
4727
4728 pf->vsi = devm_kcalloc(dev, pf->num_alloc_vsi, sizeof(*pf->vsi),
4729 GFP_KERNEL);
4730 if (!pf->vsi) {
4731 err = -ENOMEM;
4732 goto err_init_pf_unroll;
4733 }
4734
4735 err = ice_init_interrupt_scheme(pf);
4736 if (err) {
4737 dev_err(dev, "ice_init_interrupt_scheme failed: %d\n", err);
4738 err = -EIO;
4739 goto err_init_vsi_unroll;
4740 }
4741
4742 /* In case of MSIX we are going to setup the misc vector right here
4743 * to handle admin queue events etc. In case of legacy and MSI
4744 * the misc functionality and queue processing is combined in
4745 * the same vector and that gets setup at open.
4746 */
4747 err = ice_req_irq_msix_misc(pf);
4748 if (err) {
4749 dev_err(dev, "setup of misc vector failed: %d\n", err);
4750 goto err_init_interrupt_unroll;
4751 }
4752
4753 /* create switch struct for the switch element created by FW on boot */
4754 pf->first_sw = devm_kzalloc(dev, sizeof(*pf->first_sw), GFP_KERNEL);
4755 if (!pf->first_sw) {
4756 err = -ENOMEM;
4757 goto err_msix_misc_unroll;
4758 }
4759
4760 if (hw->evb_veb)
4761 pf->first_sw->bridge_mode = BRIDGE_MODE_VEB;
4762 else
4763 pf->first_sw->bridge_mode = BRIDGE_MODE_VEPA;
4764
4765 pf->first_sw->pf = pf;
4766
4767 /* record the sw_id available for later use */
4768 pf->first_sw->sw_id = hw->port_info->sw_id;
4769
4770 err = ice_setup_pf_sw(pf);
4771 if (err) {
4772 dev_err(dev, "probe failed due to setup PF switch: %d\n", err);
4773 goto err_alloc_sw_unroll;
4774 }
4775
4776 clear_bit(ICE_SERVICE_DIS, pf->state);
4777
4778 /* tell the firmware we are up */
4779 err = ice_send_version(pf);
4780 if (err) {
4781 dev_err(dev, "probe failed sending driver version %s. error: %d\n",
4782 UTS_RELEASE, err);
4783 goto err_send_version_unroll;
4784 }
4785
4786 /* since everything is good, start the service timer */
4787 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
4788
4789 err = ice_init_link_events(pf->hw.port_info);
4790 if (err) {
4791 dev_err(dev, "ice_init_link_events failed: %d\n", err);
4792 goto err_send_version_unroll;
4793 }
4794
4795 /* not a fatal error if this fails */
4796 err = ice_init_nvm_phy_type(pf->hw.port_info);
4797 if (err)
4798 dev_err(dev, "ice_init_nvm_phy_type failed: %d\n", err);
4799
4800 /* not a fatal error if this fails */
4801 err = ice_update_link_info(pf->hw.port_info);
4802 if (err)
4803 dev_err(dev, "ice_update_link_info failed: %d\n", err);
4804
4805 ice_init_link_dflt_override(pf->hw.port_info);
4806
4807 ice_check_link_cfg_err(pf,
4808 pf->hw.port_info->phy.link_info.link_cfg_err);
4809
4810 /* if media available, initialize PHY settings */
4811 if (pf->hw.port_info->phy.link_info.link_info &
4812 ICE_AQ_MEDIA_AVAILABLE) {
4813 /* not a fatal error if this fails */
4814 err = ice_init_phy_user_cfg(pf->hw.port_info);
4815 if (err)
4816 dev_err(dev, "ice_init_phy_user_cfg failed: %d\n", err);
4817
4818 if (!test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, pf->flags)) {
4819 struct ice_vsi *vsi = ice_get_main_vsi(pf);
4820
4821 if (vsi)
4822 ice_configure_phy(vsi);
4823 }
4824 } else {
4825 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
4826 }
4827
4828 ice_verify_cacheline_size(pf);
4829
4830 /* Save wakeup reason register for later use */
4831 pf->wakeup_reason = rd32(hw, PFPM_WUS);
4832
4833 /* check for a power management event */
4834 ice_print_wake_reason(pf);
4835
4836 /* clear wake status, all bits */
4837 wr32(hw, PFPM_WUS, U32_MAX);
4838
4839 /* Disable WoL at init, wait for user to enable */
4840 device_set_wakeup_enable(dev, false);
4841
4842 if (ice_is_safe_mode(pf)) {
4843 ice_set_safe_mode_vlan_cfg(pf);
4844 goto probe_done;
4845 }
4846
4847 /* initialize DDP driven features */
4848 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
4849 ice_ptp_init(pf);
4850
4851 if (ice_is_feature_supported(pf, ICE_F_GNSS))
4852 ice_gnss_init(pf);
4853
4854 /* Note: Flow director init failure is non-fatal to load */
4855 if (ice_init_fdir(pf))
4856 dev_err(dev, "could not initialize flow director\n");
4857
4858 /* Note: DCB init failure is non-fatal to load */
4859 if (ice_init_pf_dcb(pf, false)) {
4860 clear_bit(ICE_FLAG_DCB_CAPABLE, pf->flags);
4861 clear_bit(ICE_FLAG_DCB_ENA, pf->flags);
4862 } else {
4863 ice_cfg_lldp_mib_change(&pf->hw, true);
4864 }
4865
4866 if (ice_init_lag(pf))
4867 dev_warn(dev, "Failed to init link aggregation support\n");
4868
4869 /* print PCI link speed and width */
4870 pcie_print_link_status(pf->pdev);
4871
4872 probe_done:
4873 err = ice_register_netdev(pf);
4874 if (err)
4875 goto err_netdev_reg;
4876
4877 err = ice_devlink_register_params(pf);
4878 if (err)
4879 goto err_netdev_reg;
4880
4881 /* ready to go, so clear down state bit */
4882 clear_bit(ICE_DOWN, pf->state);
4883 if (ice_is_rdma_ena(pf)) {
4884 pf->aux_idx = ida_alloc(&ice_aux_ida, GFP_KERNEL);
4885 if (pf->aux_idx < 0) {
4886 dev_err(dev, "Failed to allocate device ID for AUX driver\n");
4887 err = -ENOMEM;
4888 goto err_devlink_reg_param;
4889 }
4890
4891 err = ice_init_rdma(pf);
4892 if (err) {
4893 dev_err(dev, "Failed to initialize RDMA: %d\n", err);
4894 err = -EIO;
4895 goto err_init_aux_unroll;
4896 }
4897 } else {
4898 dev_warn(dev, "RDMA is not supported on this device\n");
4899 }
4900
4901 ice_devlink_register(pf);
4902 return 0;
4903
4904 err_init_aux_unroll:
4905 pf->adev = NULL;
4906 ida_free(&ice_aux_ida, pf->aux_idx);
4907 err_devlink_reg_param:
4908 ice_devlink_unregister_params(pf);
4909 err_netdev_reg:
4910 err_send_version_unroll:
4911 ice_vsi_release_all(pf);
4912 err_alloc_sw_unroll:
4913 set_bit(ICE_SERVICE_DIS, pf->state);
4914 set_bit(ICE_DOWN, pf->state);
4915 devm_kfree(dev, pf->first_sw);
4916 err_msix_misc_unroll:
4917 ice_free_irq_msix_misc(pf);
4918 err_init_interrupt_unroll:
4919 ice_clear_interrupt_scheme(pf);
4920 err_init_vsi_unroll:
4921 devm_kfree(dev, pf->vsi);
4922 err_init_pf_unroll:
4923 ice_deinit_pf(pf);
4924 ice_devlink_destroy_regions(pf);
4925 ice_deinit_hw(hw);
4926 err_exit_unroll:
4927 pci_disable_pcie_error_reporting(pdev);
4928 pci_disable_device(pdev);
4929 return err;
4930 }
4931
4932 /**
4933 * ice_set_wake - enable or disable Wake on LAN
4934 * @pf: pointer to the PF struct
4935 *
4936 * Simple helper for WoL control
4937 */
ice_set_wake(struct ice_pf * pf)4938 static void ice_set_wake(struct ice_pf *pf)
4939 {
4940 struct ice_hw *hw = &pf->hw;
4941 bool wol = pf->wol_ena;
4942
4943 /* clear wake state, otherwise new wake events won't fire */
4944 wr32(hw, PFPM_WUS, U32_MAX);
4945
4946 /* enable / disable APM wake up, no RMW needed */
4947 wr32(hw, PFPM_APM, wol ? PFPM_APM_APME_M : 0);
4948
4949 /* set magic packet filter enabled */
4950 wr32(hw, PFPM_WUFC, wol ? PFPM_WUFC_MAG_M : 0);
4951 }
4952
4953 /**
4954 * ice_setup_mc_magic_wake - setup device to wake on multicast magic packet
4955 * @pf: pointer to the PF struct
4956 *
4957 * Issue firmware command to enable multicast magic wake, making
4958 * sure that any locally administered address (LAA) is used for
4959 * wake, and that PF reset doesn't undo the LAA.
4960 */
ice_setup_mc_magic_wake(struct ice_pf * pf)4961 static void ice_setup_mc_magic_wake(struct ice_pf *pf)
4962 {
4963 struct device *dev = ice_pf_to_dev(pf);
4964 struct ice_hw *hw = &pf->hw;
4965 u8 mac_addr[ETH_ALEN];
4966 struct ice_vsi *vsi;
4967 int status;
4968 u8 flags;
4969
4970 if (!pf->wol_ena)
4971 return;
4972
4973 vsi = ice_get_main_vsi(pf);
4974 if (!vsi)
4975 return;
4976
4977 /* Get current MAC address in case it's an LAA */
4978 if (vsi->netdev)
4979 ether_addr_copy(mac_addr, vsi->netdev->dev_addr);
4980 else
4981 ether_addr_copy(mac_addr, vsi->port_info->mac.perm_addr);
4982
4983 flags = ICE_AQC_MAN_MAC_WR_MC_MAG_EN |
4984 ICE_AQC_MAN_MAC_UPDATE_LAA_WOL |
4985 ICE_AQC_MAN_MAC_WR_WOL_LAA_PFR_KEEP;
4986
4987 status = ice_aq_manage_mac_write(hw, mac_addr, flags, NULL);
4988 if (status)
4989 dev_err(dev, "Failed to enable Multicast Magic Packet wake, err %d aq_err %s\n",
4990 status, ice_aq_str(hw->adminq.sq_last_status));
4991 }
4992
4993 /**
4994 * ice_remove - Device removal routine
4995 * @pdev: PCI device information struct
4996 */
ice_remove(struct pci_dev * pdev)4997 static void ice_remove(struct pci_dev *pdev)
4998 {
4999 struct ice_pf *pf = pci_get_drvdata(pdev);
5000 int i;
5001
5002 ice_devlink_unregister(pf);
5003 for (i = 0; i < ICE_MAX_RESET_WAIT; i++) {
5004 if (!ice_is_reset_in_progress(pf->state))
5005 break;
5006 msleep(100);
5007 }
5008
5009 ice_tc_indir_block_remove(pf);
5010
5011 if (test_bit(ICE_FLAG_SRIOV_ENA, pf->flags)) {
5012 set_bit(ICE_VF_RESETS_DISABLED, pf->state);
5013 ice_free_vfs(pf);
5014 }
5015
5016 ice_service_task_stop(pf);
5017
5018 ice_aq_cancel_waiting_tasks(pf);
5019 ice_unplug_aux_dev(pf);
5020 if (pf->aux_idx >= 0)
5021 ida_free(&ice_aux_ida, pf->aux_idx);
5022 ice_devlink_unregister_params(pf);
5023 set_bit(ICE_DOWN, pf->state);
5024
5025 ice_deinit_lag(pf);
5026 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
5027 ice_ptp_release(pf);
5028 if (ice_is_feature_supported(pf, ICE_F_GNSS))
5029 ice_gnss_exit(pf);
5030 if (!ice_is_safe_mode(pf))
5031 ice_remove_arfs(pf);
5032 ice_setup_mc_magic_wake(pf);
5033 ice_vsi_release_all(pf);
5034 mutex_destroy(&(&pf->hw)->fdir_fltr_lock);
5035 ice_set_wake(pf);
5036 ice_free_irq_msix_misc(pf);
5037 ice_for_each_vsi(pf, i) {
5038 if (!pf->vsi[i])
5039 continue;
5040 ice_vsi_free_q_vectors(pf->vsi[i]);
5041 }
5042 ice_deinit_pf(pf);
5043 ice_devlink_destroy_regions(pf);
5044 ice_deinit_hw(&pf->hw);
5045
5046 /* Issue a PFR as part of the prescribed driver unload flow. Do not
5047 * do it via ice_schedule_reset() since there is no need to rebuild
5048 * and the service task is already stopped.
5049 */
5050 ice_reset(&pf->hw, ICE_RESET_PFR);
5051 pci_wait_for_pending_transaction(pdev);
5052 ice_clear_interrupt_scheme(pf);
5053 pci_disable_pcie_error_reporting(pdev);
5054 pci_disable_device(pdev);
5055 }
5056
5057 /**
5058 * ice_shutdown - PCI callback for shutting down device
5059 * @pdev: PCI device information struct
5060 */
ice_shutdown(struct pci_dev * pdev)5061 static void ice_shutdown(struct pci_dev *pdev)
5062 {
5063 struct ice_pf *pf = pci_get_drvdata(pdev);
5064
5065 ice_remove(pdev);
5066
5067 if (system_state == SYSTEM_POWER_OFF) {
5068 pci_wake_from_d3(pdev, pf->wol_ena);
5069 pci_set_power_state(pdev, PCI_D3hot);
5070 }
5071 }
5072
5073 #ifdef CONFIG_PM
5074 /**
5075 * ice_prepare_for_shutdown - prep for PCI shutdown
5076 * @pf: board private structure
5077 *
5078 * Inform or close all dependent features in prep for PCI device shutdown
5079 */
ice_prepare_for_shutdown(struct ice_pf * pf)5080 static void ice_prepare_for_shutdown(struct ice_pf *pf)
5081 {
5082 struct ice_hw *hw = &pf->hw;
5083 u32 v;
5084
5085 /* Notify VFs of impending reset */
5086 if (ice_check_sq_alive(hw, &hw->mailboxq))
5087 ice_vc_notify_reset(pf);
5088
5089 dev_dbg(ice_pf_to_dev(pf), "Tearing down internal switch for shutdown\n");
5090
5091 /* disable the VSIs and their queues that are not already DOWN */
5092 ice_pf_dis_all_vsi(pf, false);
5093
5094 ice_for_each_vsi(pf, v)
5095 if (pf->vsi[v])
5096 pf->vsi[v]->vsi_num = 0;
5097
5098 ice_shutdown_all_ctrlq(hw);
5099 }
5100
5101 /**
5102 * ice_reinit_interrupt_scheme - Reinitialize interrupt scheme
5103 * @pf: board private structure to reinitialize
5104 *
5105 * This routine reinitialize interrupt scheme that was cleared during
5106 * power management suspend callback.
5107 *
5108 * This should be called during resume routine to re-allocate the q_vectors
5109 * and reacquire interrupts.
5110 */
ice_reinit_interrupt_scheme(struct ice_pf * pf)5111 static int ice_reinit_interrupt_scheme(struct ice_pf *pf)
5112 {
5113 struct device *dev = ice_pf_to_dev(pf);
5114 int ret, v;
5115
5116 /* Since we clear MSIX flag during suspend, we need to
5117 * set it back during resume...
5118 */
5119
5120 ret = ice_init_interrupt_scheme(pf);
5121 if (ret) {
5122 dev_err(dev, "Failed to re-initialize interrupt %d\n", ret);
5123 return ret;
5124 }
5125
5126 /* Remap vectors and rings, after successful re-init interrupts */
5127 ice_for_each_vsi(pf, v) {
5128 if (!pf->vsi[v])
5129 continue;
5130
5131 ret = ice_vsi_alloc_q_vectors(pf->vsi[v]);
5132 if (ret)
5133 goto err_reinit;
5134 ice_vsi_map_rings_to_vectors(pf->vsi[v]);
5135 }
5136
5137 ret = ice_req_irq_msix_misc(pf);
5138 if (ret) {
5139 dev_err(dev, "Setting up misc vector failed after device suspend %d\n",
5140 ret);
5141 goto err_reinit;
5142 }
5143
5144 return 0;
5145
5146 err_reinit:
5147 while (v--)
5148 if (pf->vsi[v])
5149 ice_vsi_free_q_vectors(pf->vsi[v]);
5150
5151 return ret;
5152 }
5153
5154 /**
5155 * ice_suspend
5156 * @dev: generic device information structure
5157 *
5158 * Power Management callback to quiesce the device and prepare
5159 * for D3 transition.
5160 */
ice_suspend(struct device * dev)5161 static int __maybe_unused ice_suspend(struct device *dev)
5162 {
5163 struct pci_dev *pdev = to_pci_dev(dev);
5164 struct ice_pf *pf;
5165 int disabled, v;
5166
5167 pf = pci_get_drvdata(pdev);
5168
5169 if (!ice_pf_state_is_nominal(pf)) {
5170 dev_err(dev, "Device is not ready, no need to suspend it\n");
5171 return -EBUSY;
5172 }
5173
5174 /* Stop watchdog tasks until resume completion.
5175 * Even though it is most likely that the service task is
5176 * disabled if the device is suspended or down, the service task's
5177 * state is controlled by a different state bit, and we should
5178 * store and honor whatever state that bit is in at this point.
5179 */
5180 disabled = ice_service_task_stop(pf);
5181
5182 ice_unplug_aux_dev(pf);
5183
5184 /* Already suspended?, then there is nothing to do */
5185 if (test_and_set_bit(ICE_SUSPENDED, pf->state)) {
5186 if (!disabled)
5187 ice_service_task_restart(pf);
5188 return 0;
5189 }
5190
5191 if (test_bit(ICE_DOWN, pf->state) ||
5192 ice_is_reset_in_progress(pf->state)) {
5193 dev_err(dev, "can't suspend device in reset or already down\n");
5194 if (!disabled)
5195 ice_service_task_restart(pf);
5196 return 0;
5197 }
5198
5199 ice_setup_mc_magic_wake(pf);
5200
5201 ice_prepare_for_shutdown(pf);
5202
5203 ice_set_wake(pf);
5204
5205 /* Free vectors, clear the interrupt scheme and release IRQs
5206 * for proper hibernation, especially with large number of CPUs.
5207 * Otherwise hibernation might fail when mapping all the vectors back
5208 * to CPU0.
5209 */
5210 ice_free_irq_msix_misc(pf);
5211 ice_for_each_vsi(pf, v) {
5212 if (!pf->vsi[v])
5213 continue;
5214 ice_vsi_free_q_vectors(pf->vsi[v]);
5215 }
5216 ice_clear_interrupt_scheme(pf);
5217
5218 pci_save_state(pdev);
5219 pci_wake_from_d3(pdev, pf->wol_ena);
5220 pci_set_power_state(pdev, PCI_D3hot);
5221 return 0;
5222 }
5223
5224 /**
5225 * ice_resume - PM callback for waking up from D3
5226 * @dev: generic device information structure
5227 */
ice_resume(struct device * dev)5228 static int __maybe_unused ice_resume(struct device *dev)
5229 {
5230 struct pci_dev *pdev = to_pci_dev(dev);
5231 enum ice_reset_req reset_type;
5232 struct ice_pf *pf;
5233 struct ice_hw *hw;
5234 int ret;
5235
5236 pci_set_power_state(pdev, PCI_D0);
5237 pci_restore_state(pdev);
5238 pci_save_state(pdev);
5239
5240 if (!pci_device_is_present(pdev))
5241 return -ENODEV;
5242
5243 ret = pci_enable_device_mem(pdev);
5244 if (ret) {
5245 dev_err(dev, "Cannot enable device after suspend\n");
5246 return ret;
5247 }
5248
5249 pf = pci_get_drvdata(pdev);
5250 hw = &pf->hw;
5251
5252 pf->wakeup_reason = rd32(hw, PFPM_WUS);
5253 ice_print_wake_reason(pf);
5254
5255 /* We cleared the interrupt scheme when we suspended, so we need to
5256 * restore it now to resume device functionality.
5257 */
5258 ret = ice_reinit_interrupt_scheme(pf);
5259 if (ret)
5260 dev_err(dev, "Cannot restore interrupt scheme: %d\n", ret);
5261
5262 clear_bit(ICE_DOWN, pf->state);
5263 /* Now perform PF reset and rebuild */
5264 reset_type = ICE_RESET_PFR;
5265 /* re-enable service task for reset, but allow reset to schedule it */
5266 clear_bit(ICE_SERVICE_DIS, pf->state);
5267
5268 if (ice_schedule_reset(pf, reset_type))
5269 dev_err(dev, "Reset during resume failed.\n");
5270
5271 clear_bit(ICE_SUSPENDED, pf->state);
5272 ice_service_task_restart(pf);
5273
5274 /* Restart the service task */
5275 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5276
5277 return 0;
5278 }
5279 #endif /* CONFIG_PM */
5280
5281 /**
5282 * ice_pci_err_detected - warning that PCI error has been detected
5283 * @pdev: PCI device information struct
5284 * @err: the type of PCI error
5285 *
5286 * Called to warn that something happened on the PCI bus and the error handling
5287 * is in progress. Allows the driver to gracefully prepare/handle PCI errors.
5288 */
5289 static pci_ers_result_t
ice_pci_err_detected(struct pci_dev * pdev,pci_channel_state_t err)5290 ice_pci_err_detected(struct pci_dev *pdev, pci_channel_state_t err)
5291 {
5292 struct ice_pf *pf = pci_get_drvdata(pdev);
5293
5294 if (!pf) {
5295 dev_err(&pdev->dev, "%s: unrecoverable device error %d\n",
5296 __func__, err);
5297 return PCI_ERS_RESULT_DISCONNECT;
5298 }
5299
5300 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5301 ice_service_task_stop(pf);
5302
5303 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5304 set_bit(ICE_PFR_REQ, pf->state);
5305 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5306 }
5307 }
5308
5309 return PCI_ERS_RESULT_NEED_RESET;
5310 }
5311
5312 /**
5313 * ice_pci_err_slot_reset - a PCI slot reset has just happened
5314 * @pdev: PCI device information struct
5315 *
5316 * Called to determine if the driver can recover from the PCI slot reset by
5317 * using a register read to determine if the device is recoverable.
5318 */
ice_pci_err_slot_reset(struct pci_dev * pdev)5319 static pci_ers_result_t ice_pci_err_slot_reset(struct pci_dev *pdev)
5320 {
5321 struct ice_pf *pf = pci_get_drvdata(pdev);
5322 pci_ers_result_t result;
5323 int err;
5324 u32 reg;
5325
5326 err = pci_enable_device_mem(pdev);
5327 if (err) {
5328 dev_err(&pdev->dev, "Cannot re-enable PCI device after reset, error %d\n",
5329 err);
5330 result = PCI_ERS_RESULT_DISCONNECT;
5331 } else {
5332 pci_set_master(pdev);
5333 pci_restore_state(pdev);
5334 pci_save_state(pdev);
5335 pci_wake_from_d3(pdev, false);
5336
5337 /* Check for life */
5338 reg = rd32(&pf->hw, GLGEN_RTRIG);
5339 if (!reg)
5340 result = PCI_ERS_RESULT_RECOVERED;
5341 else
5342 result = PCI_ERS_RESULT_DISCONNECT;
5343 }
5344
5345 err = pci_aer_clear_nonfatal_status(pdev);
5346 if (err)
5347 dev_dbg(&pdev->dev, "pci_aer_clear_nonfatal_status() failed, error %d\n",
5348 err);
5349 /* non-fatal, continue */
5350
5351 return result;
5352 }
5353
5354 /**
5355 * ice_pci_err_resume - restart operations after PCI error recovery
5356 * @pdev: PCI device information struct
5357 *
5358 * Called to allow the driver to bring things back up after PCI error and/or
5359 * reset recovery have finished
5360 */
ice_pci_err_resume(struct pci_dev * pdev)5361 static void ice_pci_err_resume(struct pci_dev *pdev)
5362 {
5363 struct ice_pf *pf = pci_get_drvdata(pdev);
5364
5365 if (!pf) {
5366 dev_err(&pdev->dev, "%s failed, device is unrecoverable\n",
5367 __func__);
5368 return;
5369 }
5370
5371 if (test_bit(ICE_SUSPENDED, pf->state)) {
5372 dev_dbg(&pdev->dev, "%s failed to resume normal operations!\n",
5373 __func__);
5374 return;
5375 }
5376
5377 ice_restore_all_vfs_msi_state(pdev);
5378
5379 ice_do_reset(pf, ICE_RESET_PFR);
5380 ice_service_task_restart(pf);
5381 mod_timer(&pf->serv_tmr, round_jiffies(jiffies + pf->serv_tmr_period));
5382 }
5383
5384 /**
5385 * ice_pci_err_reset_prepare - prepare device driver for PCI reset
5386 * @pdev: PCI device information struct
5387 */
ice_pci_err_reset_prepare(struct pci_dev * pdev)5388 static void ice_pci_err_reset_prepare(struct pci_dev *pdev)
5389 {
5390 struct ice_pf *pf = pci_get_drvdata(pdev);
5391
5392 if (!test_bit(ICE_SUSPENDED, pf->state)) {
5393 ice_service_task_stop(pf);
5394
5395 if (!test_bit(ICE_PREPARED_FOR_RESET, pf->state)) {
5396 set_bit(ICE_PFR_REQ, pf->state);
5397 ice_prepare_for_reset(pf, ICE_RESET_PFR);
5398 }
5399 }
5400 }
5401
5402 /**
5403 * ice_pci_err_reset_done - PCI reset done, device driver reset can begin
5404 * @pdev: PCI device information struct
5405 */
ice_pci_err_reset_done(struct pci_dev * pdev)5406 static void ice_pci_err_reset_done(struct pci_dev *pdev)
5407 {
5408 ice_pci_err_resume(pdev);
5409 }
5410
5411 /* ice_pci_tbl - PCI Device ID Table
5412 *
5413 * Wildcard entries (PCI_ANY_ID) should come last
5414 * Last entry must be all 0s
5415 *
5416 * { Vendor ID, Device ID, SubVendor ID, SubDevice ID,
5417 * Class, Class Mask, private data (not used) }
5418 */
5419 static const struct pci_device_id ice_pci_tbl[] = {
5420 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_BACKPLANE), 0 },
5421 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_QSFP), 0 },
5422 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810C_SFP), 0 },
5423 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_BACKPLANE), 0 },
5424 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_QSFP), 0 },
5425 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E810_XXV_SFP), 0 },
5426 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_BACKPLANE), 0 },
5427 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_QSFP), 0 },
5428 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SFP), 0 },
5429 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_10G_BASE_T), 0 },
5430 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823C_SGMII), 0 },
5431 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_BACKPLANE), 0 },
5432 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_QSFP), 0 },
5433 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SFP), 0 },
5434 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_10G_BASE_T), 0 },
5435 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822C_SGMII), 0 },
5436 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_BACKPLANE), 0 },
5437 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SFP), 0 },
5438 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_10G_BASE_T), 0 },
5439 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822L_SGMII), 0 },
5440 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_BACKPLANE), 0 },
5441 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_SFP), 0 },
5442 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_10G_BASE_T), 0 },
5443 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_1GBE), 0 },
5444 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E823L_QSFP), 0 },
5445 { PCI_VDEVICE(INTEL, ICE_DEV_ID_E822_SI_DFLT), 0 },
5446 /* required last entry */
5447 { 0, }
5448 };
5449 MODULE_DEVICE_TABLE(pci, ice_pci_tbl);
5450
5451 static __maybe_unused SIMPLE_DEV_PM_OPS(ice_pm_ops, ice_suspend, ice_resume);
5452
5453 static const struct pci_error_handlers ice_pci_err_handler = {
5454 .error_detected = ice_pci_err_detected,
5455 .slot_reset = ice_pci_err_slot_reset,
5456 .reset_prepare = ice_pci_err_reset_prepare,
5457 .reset_done = ice_pci_err_reset_done,
5458 .resume = ice_pci_err_resume
5459 };
5460
5461 static struct pci_driver ice_driver = {
5462 .name = KBUILD_MODNAME,
5463 .id_table = ice_pci_tbl,
5464 .probe = ice_probe,
5465 .remove = ice_remove,
5466 #ifdef CONFIG_PM
5467 .driver.pm = &ice_pm_ops,
5468 #endif /* CONFIG_PM */
5469 .shutdown = ice_shutdown,
5470 .sriov_configure = ice_sriov_configure,
5471 .err_handler = &ice_pci_err_handler
5472 };
5473
5474 /**
5475 * ice_module_init - Driver registration routine
5476 *
5477 * ice_module_init is the first routine called when the driver is
5478 * loaded. All it does is register with the PCI subsystem.
5479 */
ice_module_init(void)5480 static int __init ice_module_init(void)
5481 {
5482 int status;
5483
5484 pr_info("%s\n", ice_driver_string);
5485 pr_info("%s\n", ice_copyright);
5486
5487 ice_wq = alloc_workqueue("%s", WQ_MEM_RECLAIM, 0, KBUILD_MODNAME);
5488 if (!ice_wq) {
5489 pr_err("Failed to create workqueue\n");
5490 return -ENOMEM;
5491 }
5492
5493 status = pci_register_driver(&ice_driver);
5494 if (status) {
5495 pr_err("failed to register PCI driver, err %d\n", status);
5496 destroy_workqueue(ice_wq);
5497 }
5498
5499 return status;
5500 }
5501 module_init(ice_module_init);
5502
5503 /**
5504 * ice_module_exit - Driver exit cleanup routine
5505 *
5506 * ice_module_exit is called just before the driver is removed
5507 * from memory.
5508 */
ice_module_exit(void)5509 static void __exit ice_module_exit(void)
5510 {
5511 pci_unregister_driver(&ice_driver);
5512 destroy_workqueue(ice_wq);
5513 pr_info("module unloaded\n");
5514 }
5515 module_exit(ice_module_exit);
5516
5517 /**
5518 * ice_set_mac_address - NDO callback to set MAC address
5519 * @netdev: network interface device structure
5520 * @pi: pointer to an address structure
5521 *
5522 * Returns 0 on success, negative on failure
5523 */
ice_set_mac_address(struct net_device * netdev,void * pi)5524 static int ice_set_mac_address(struct net_device *netdev, void *pi)
5525 {
5526 struct ice_netdev_priv *np = netdev_priv(netdev);
5527 struct ice_vsi *vsi = np->vsi;
5528 struct ice_pf *pf = vsi->back;
5529 struct ice_hw *hw = &pf->hw;
5530 struct sockaddr *addr = pi;
5531 u8 old_mac[ETH_ALEN];
5532 u8 flags = 0;
5533 u8 *mac;
5534 int err;
5535
5536 mac = (u8 *)addr->sa_data;
5537
5538 if (!is_valid_ether_addr(mac))
5539 return -EADDRNOTAVAIL;
5540
5541 if (ether_addr_equal(netdev->dev_addr, mac)) {
5542 netdev_dbg(netdev, "already using mac %pM\n", mac);
5543 return 0;
5544 }
5545
5546 if (test_bit(ICE_DOWN, pf->state) ||
5547 ice_is_reset_in_progress(pf->state)) {
5548 netdev_err(netdev, "can't set mac %pM. device not ready\n",
5549 mac);
5550 return -EBUSY;
5551 }
5552
5553 if (ice_chnl_dmac_fltr_cnt(pf)) {
5554 netdev_err(netdev, "can't set mac %pM. Device has tc-flower filters, delete all of them and try again\n",
5555 mac);
5556 return -EAGAIN;
5557 }
5558
5559 netif_addr_lock_bh(netdev);
5560 ether_addr_copy(old_mac, netdev->dev_addr);
5561 /* change the netdev's MAC address */
5562 eth_hw_addr_set(netdev, mac);
5563 netif_addr_unlock_bh(netdev);
5564
5565 /* Clean up old MAC filter. Not an error if old filter doesn't exist */
5566 err = ice_fltr_remove_mac(vsi, old_mac, ICE_FWD_TO_VSI);
5567 if (err && err != -ENOENT) {
5568 err = -EADDRNOTAVAIL;
5569 goto err_update_filters;
5570 }
5571
5572 /* Add filter for new MAC. If filter exists, return success */
5573 err = ice_fltr_add_mac(vsi, mac, ICE_FWD_TO_VSI);
5574 if (err == -EEXIST) {
5575 /* Although this MAC filter is already present in hardware it's
5576 * possible in some cases (e.g. bonding) that dev_addr was
5577 * modified outside of the driver and needs to be restored back
5578 * to this value.
5579 */
5580 netdev_dbg(netdev, "filter for MAC %pM already exists\n", mac);
5581
5582 return 0;
5583 } else if (err) {
5584 /* error if the new filter addition failed */
5585 err = -EADDRNOTAVAIL;
5586 }
5587
5588 err_update_filters:
5589 if (err) {
5590 netdev_err(netdev, "can't set MAC %pM. filter update failed\n",
5591 mac);
5592 netif_addr_lock_bh(netdev);
5593 eth_hw_addr_set(netdev, old_mac);
5594 netif_addr_unlock_bh(netdev);
5595 return err;
5596 }
5597
5598 netdev_dbg(vsi->netdev, "updated MAC address to %pM\n",
5599 netdev->dev_addr);
5600
5601 /* write new MAC address to the firmware */
5602 flags = ICE_AQC_MAN_MAC_UPDATE_LAA_WOL;
5603 err = ice_aq_manage_mac_write(hw, mac, flags, NULL);
5604 if (err) {
5605 netdev_err(netdev, "can't set MAC %pM. write to firmware failed error %d\n",
5606 mac, err);
5607 }
5608 return 0;
5609 }
5610
5611 /**
5612 * ice_set_rx_mode - NDO callback to set the netdev filters
5613 * @netdev: network interface device structure
5614 */
ice_set_rx_mode(struct net_device * netdev)5615 static void ice_set_rx_mode(struct net_device *netdev)
5616 {
5617 struct ice_netdev_priv *np = netdev_priv(netdev);
5618 struct ice_vsi *vsi = np->vsi;
5619
5620 if (!vsi)
5621 return;
5622
5623 /* Set the flags to synchronize filters
5624 * ndo_set_rx_mode may be triggered even without a change in netdev
5625 * flags
5626 */
5627 set_bit(ICE_VSI_UMAC_FLTR_CHANGED, vsi->state);
5628 set_bit(ICE_VSI_MMAC_FLTR_CHANGED, vsi->state);
5629 set_bit(ICE_FLAG_FLTR_SYNC, vsi->back->flags);
5630
5631 /* schedule our worker thread which will take care of
5632 * applying the new filter changes
5633 */
5634 ice_service_task_schedule(vsi->back);
5635 }
5636
5637 /**
5638 * ice_set_tx_maxrate - NDO callback to set the maximum per-queue bitrate
5639 * @netdev: network interface device structure
5640 * @queue_index: Queue ID
5641 * @maxrate: maximum bandwidth in Mbps
5642 */
5643 static int
ice_set_tx_maxrate(struct net_device * netdev,int queue_index,u32 maxrate)5644 ice_set_tx_maxrate(struct net_device *netdev, int queue_index, u32 maxrate)
5645 {
5646 struct ice_netdev_priv *np = netdev_priv(netdev);
5647 struct ice_vsi *vsi = np->vsi;
5648 u16 q_handle;
5649 int status;
5650 u8 tc;
5651
5652 /* Validate maxrate requested is within permitted range */
5653 if (maxrate && (maxrate > (ICE_SCHED_MAX_BW / 1000))) {
5654 netdev_err(netdev, "Invalid max rate %d specified for the queue %d\n",
5655 maxrate, queue_index);
5656 return -EINVAL;
5657 }
5658
5659 q_handle = vsi->tx_rings[queue_index]->q_handle;
5660 tc = ice_dcb_get_tc(vsi, queue_index);
5661
5662 /* Set BW back to default, when user set maxrate to 0 */
5663 if (!maxrate)
5664 status = ice_cfg_q_bw_dflt_lmt(vsi->port_info, vsi->idx, tc,
5665 q_handle, ICE_MAX_BW);
5666 else
5667 status = ice_cfg_q_bw_lmt(vsi->port_info, vsi->idx, tc,
5668 q_handle, ICE_MAX_BW, maxrate * 1000);
5669 if (status)
5670 netdev_err(netdev, "Unable to set Tx max rate, error %d\n",
5671 status);
5672
5673 return status;
5674 }
5675
5676 /**
5677 * ice_fdb_add - add an entry to the hardware database
5678 * @ndm: the input from the stack
5679 * @tb: pointer to array of nladdr (unused)
5680 * @dev: the net device pointer
5681 * @addr: the MAC address entry being added
5682 * @vid: VLAN ID
5683 * @flags: instructions from stack about fdb operation
5684 * @extack: netlink extended ack
5685 */
5686 static int
ice_fdb_add(struct ndmsg * ndm,struct nlattr __always_unused * tb[],struct net_device * dev,const unsigned char * addr,u16 vid,u16 flags,struct netlink_ext_ack __always_unused * extack)5687 ice_fdb_add(struct ndmsg *ndm, struct nlattr __always_unused *tb[],
5688 struct net_device *dev, const unsigned char *addr, u16 vid,
5689 u16 flags, struct netlink_ext_ack __always_unused *extack)
5690 {
5691 int err;
5692
5693 if (vid) {
5694 netdev_err(dev, "VLANs aren't supported yet for dev_uc|mc_add()\n");
5695 return -EINVAL;
5696 }
5697 if (ndm->ndm_state && !(ndm->ndm_state & NUD_PERMANENT)) {
5698 netdev_err(dev, "FDB only supports static addresses\n");
5699 return -EINVAL;
5700 }
5701
5702 if (is_unicast_ether_addr(addr) || is_link_local_ether_addr(addr))
5703 err = dev_uc_add_excl(dev, addr);
5704 else if (is_multicast_ether_addr(addr))
5705 err = dev_mc_add_excl(dev, addr);
5706 else
5707 err = -EINVAL;
5708
5709 /* Only return duplicate errors if NLM_F_EXCL is set */
5710 if (err == -EEXIST && !(flags & NLM_F_EXCL))
5711 err = 0;
5712
5713 return err;
5714 }
5715
5716 /**
5717 * ice_fdb_del - delete an entry from the hardware database
5718 * @ndm: the input from the stack
5719 * @tb: pointer to array of nladdr (unused)
5720 * @dev: the net device pointer
5721 * @addr: the MAC address entry being added
5722 * @vid: VLAN ID
5723 * @extack: netlink extended ack
5724 */
5725 static int
ice_fdb_del(struct ndmsg * ndm,__always_unused struct nlattr * tb[],struct net_device * dev,const unsigned char * addr,__always_unused u16 vid,struct netlink_ext_ack * extack)5726 ice_fdb_del(struct ndmsg *ndm, __always_unused struct nlattr *tb[],
5727 struct net_device *dev, const unsigned char *addr,
5728 __always_unused u16 vid, struct netlink_ext_ack *extack)
5729 {
5730 int err;
5731
5732 if (ndm->ndm_state & NUD_PERMANENT) {
5733 netdev_err(dev, "FDB only supports static addresses\n");
5734 return -EINVAL;
5735 }
5736
5737 if (is_unicast_ether_addr(addr))
5738 err = dev_uc_del(dev, addr);
5739 else if (is_multicast_ether_addr(addr))
5740 err = dev_mc_del(dev, addr);
5741 else
5742 err = -EINVAL;
5743
5744 return err;
5745 }
5746
5747 #define NETIF_VLAN_OFFLOAD_FEATURES (NETIF_F_HW_VLAN_CTAG_RX | \
5748 NETIF_F_HW_VLAN_CTAG_TX | \
5749 NETIF_F_HW_VLAN_STAG_RX | \
5750 NETIF_F_HW_VLAN_STAG_TX)
5751
5752 #define NETIF_VLAN_FILTERING_FEATURES (NETIF_F_HW_VLAN_CTAG_FILTER | \
5753 NETIF_F_HW_VLAN_STAG_FILTER)
5754
5755 /**
5756 * ice_fix_features - fix the netdev features flags based on device limitations
5757 * @netdev: ptr to the netdev that flags are being fixed on
5758 * @features: features that need to be checked and possibly fixed
5759 *
5760 * Make sure any fixups are made to features in this callback. This enables the
5761 * driver to not have to check unsupported configurations throughout the driver
5762 * because that's the responsiblity of this callback.
5763 *
5764 * Single VLAN Mode (SVM) Supported Features:
5765 * NETIF_F_HW_VLAN_CTAG_FILTER
5766 * NETIF_F_HW_VLAN_CTAG_RX
5767 * NETIF_F_HW_VLAN_CTAG_TX
5768 *
5769 * Double VLAN Mode (DVM) Supported Features:
5770 * NETIF_F_HW_VLAN_CTAG_FILTER
5771 * NETIF_F_HW_VLAN_CTAG_RX
5772 * NETIF_F_HW_VLAN_CTAG_TX
5773 *
5774 * NETIF_F_HW_VLAN_STAG_FILTER
5775 * NETIF_HW_VLAN_STAG_RX
5776 * NETIF_HW_VLAN_STAG_TX
5777 *
5778 * Features that need fixing:
5779 * Cannot simultaneously enable CTAG and STAG stripping and/or insertion.
5780 * These are mutually exlusive as the VSI context cannot support multiple
5781 * VLAN ethertypes simultaneously for stripping and/or insertion. If this
5782 * is not done, then default to clearing the requested STAG offload
5783 * settings.
5784 *
5785 * All supported filtering has to be enabled or disabled together. For
5786 * example, in DVM, CTAG and STAG filtering have to be enabled and disabled
5787 * together. If this is not done, then default to VLAN filtering disabled.
5788 * These are mutually exclusive as there is currently no way to
5789 * enable/disable VLAN filtering based on VLAN ethertype when using VLAN
5790 * prune rules.
5791 */
5792 static netdev_features_t
ice_fix_features(struct net_device * netdev,netdev_features_t features)5793 ice_fix_features(struct net_device *netdev, netdev_features_t features)
5794 {
5795 struct ice_netdev_priv *np = netdev_priv(netdev);
5796 netdev_features_t req_vlan_fltr, cur_vlan_fltr;
5797 bool cur_ctag, cur_stag, req_ctag, req_stag;
5798
5799 cur_vlan_fltr = netdev->features & NETIF_VLAN_FILTERING_FEATURES;
5800 cur_ctag = cur_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5801 cur_stag = cur_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5802
5803 req_vlan_fltr = features & NETIF_VLAN_FILTERING_FEATURES;
5804 req_ctag = req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER;
5805 req_stag = req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER;
5806
5807 if (req_vlan_fltr != cur_vlan_fltr) {
5808 if (ice_is_dvm_ena(&np->vsi->back->hw)) {
5809 if (req_ctag && req_stag) {
5810 features |= NETIF_VLAN_FILTERING_FEATURES;
5811 } else if (!req_ctag && !req_stag) {
5812 features &= ~NETIF_VLAN_FILTERING_FEATURES;
5813 } else if ((!cur_ctag && req_ctag && !cur_stag) ||
5814 (!cur_stag && req_stag && !cur_ctag)) {
5815 features |= NETIF_VLAN_FILTERING_FEATURES;
5816 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been enabled for both types.\n");
5817 } else if ((cur_ctag && !req_ctag && cur_stag) ||
5818 (cur_stag && !req_stag && cur_ctag)) {
5819 features &= ~NETIF_VLAN_FILTERING_FEATURES;
5820 netdev_warn(netdev, "802.1Q and 802.1ad VLAN filtering must be either both on or both off. VLAN filtering has been disabled for both types.\n");
5821 }
5822 } else {
5823 if (req_vlan_fltr & NETIF_F_HW_VLAN_STAG_FILTER)
5824 netdev_warn(netdev, "cannot support requested 802.1ad filtering setting in SVM mode\n");
5825
5826 if (req_vlan_fltr & NETIF_F_HW_VLAN_CTAG_FILTER)
5827 features |= NETIF_F_HW_VLAN_CTAG_FILTER;
5828 }
5829 }
5830
5831 if ((features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX)) &&
5832 (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))) {
5833 netdev_warn(netdev, "cannot support CTAG and STAG VLAN stripping and/or insertion simultaneously since CTAG and STAG offloads are mutually exclusive, clearing STAG offload settings\n");
5834 features &= ~(NETIF_F_HW_VLAN_STAG_RX |
5835 NETIF_F_HW_VLAN_STAG_TX);
5836 }
5837
5838 return features;
5839 }
5840
5841 /**
5842 * ice_set_vlan_offload_features - set VLAN offload features for the PF VSI
5843 * @vsi: PF's VSI
5844 * @features: features used to determine VLAN offload settings
5845 *
5846 * First, determine the vlan_ethertype based on the VLAN offload bits in
5847 * features. Then determine if stripping and insertion should be enabled or
5848 * disabled. Finally enable or disable VLAN stripping and insertion.
5849 */
5850 static int
ice_set_vlan_offload_features(struct ice_vsi * vsi,netdev_features_t features)5851 ice_set_vlan_offload_features(struct ice_vsi *vsi, netdev_features_t features)
5852 {
5853 bool enable_stripping = true, enable_insertion = true;
5854 struct ice_vsi_vlan_ops *vlan_ops;
5855 int strip_err = 0, insert_err = 0;
5856 u16 vlan_ethertype = 0;
5857
5858 vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5859
5860 if (features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_STAG_TX))
5861 vlan_ethertype = ETH_P_8021AD;
5862 else if (features & (NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_TX))
5863 vlan_ethertype = ETH_P_8021Q;
5864
5865 if (!(features & (NETIF_F_HW_VLAN_STAG_RX | NETIF_F_HW_VLAN_CTAG_RX)))
5866 enable_stripping = false;
5867 if (!(features & (NETIF_F_HW_VLAN_STAG_TX | NETIF_F_HW_VLAN_CTAG_TX)))
5868 enable_insertion = false;
5869
5870 if (enable_stripping)
5871 strip_err = vlan_ops->ena_stripping(vsi, vlan_ethertype);
5872 else
5873 strip_err = vlan_ops->dis_stripping(vsi);
5874
5875 if (enable_insertion)
5876 insert_err = vlan_ops->ena_insertion(vsi, vlan_ethertype);
5877 else
5878 insert_err = vlan_ops->dis_insertion(vsi);
5879
5880 if (strip_err || insert_err)
5881 return -EIO;
5882
5883 return 0;
5884 }
5885
5886 /**
5887 * ice_set_vlan_filtering_features - set VLAN filtering features for the PF VSI
5888 * @vsi: PF's VSI
5889 * @features: features used to determine VLAN filtering settings
5890 *
5891 * Enable or disable Rx VLAN filtering based on the VLAN filtering bits in the
5892 * features.
5893 */
5894 static int
ice_set_vlan_filtering_features(struct ice_vsi * vsi,netdev_features_t features)5895 ice_set_vlan_filtering_features(struct ice_vsi *vsi, netdev_features_t features)
5896 {
5897 struct ice_vsi_vlan_ops *vlan_ops = ice_get_compat_vsi_vlan_ops(vsi);
5898 int err = 0;
5899
5900 /* support Single VLAN Mode (SVM) and Double VLAN Mode (DVM) by checking
5901 * if either bit is set
5902 */
5903 if (features &
5904 (NETIF_F_HW_VLAN_CTAG_FILTER | NETIF_F_HW_VLAN_STAG_FILTER))
5905 err = vlan_ops->ena_rx_filtering(vsi);
5906 else
5907 err = vlan_ops->dis_rx_filtering(vsi);
5908
5909 return err;
5910 }
5911
5912 /**
5913 * ice_set_vlan_features - set VLAN settings based on suggested feature set
5914 * @netdev: ptr to the netdev being adjusted
5915 * @features: the feature set that the stack is suggesting
5916 *
5917 * Only update VLAN settings if the requested_vlan_features are different than
5918 * the current_vlan_features.
5919 */
5920 static int
ice_set_vlan_features(struct net_device * netdev,netdev_features_t features)5921 ice_set_vlan_features(struct net_device *netdev, netdev_features_t features)
5922 {
5923 netdev_features_t current_vlan_features, requested_vlan_features;
5924 struct ice_netdev_priv *np = netdev_priv(netdev);
5925 struct ice_vsi *vsi = np->vsi;
5926 int err;
5927
5928 current_vlan_features = netdev->features & NETIF_VLAN_OFFLOAD_FEATURES;
5929 requested_vlan_features = features & NETIF_VLAN_OFFLOAD_FEATURES;
5930 if (current_vlan_features ^ requested_vlan_features) {
5931 err = ice_set_vlan_offload_features(vsi, features);
5932 if (err)
5933 return err;
5934 }
5935
5936 current_vlan_features = netdev->features &
5937 NETIF_VLAN_FILTERING_FEATURES;
5938 requested_vlan_features = features & NETIF_VLAN_FILTERING_FEATURES;
5939 if (current_vlan_features ^ requested_vlan_features) {
5940 err = ice_set_vlan_filtering_features(vsi, features);
5941 if (err)
5942 return err;
5943 }
5944
5945 return 0;
5946 }
5947
5948 /**
5949 * ice_set_features - set the netdev feature flags
5950 * @netdev: ptr to the netdev being adjusted
5951 * @features: the feature set that the stack is suggesting
5952 */
5953 static int
ice_set_features(struct net_device * netdev,netdev_features_t features)5954 ice_set_features(struct net_device *netdev, netdev_features_t features)
5955 {
5956 struct ice_netdev_priv *np = netdev_priv(netdev);
5957 struct ice_vsi *vsi = np->vsi;
5958 struct ice_pf *pf = vsi->back;
5959 int ret = 0;
5960
5961 /* Don't set any netdev advanced features with device in Safe Mode */
5962 if (ice_is_safe_mode(vsi->back)) {
5963 dev_err(ice_pf_to_dev(vsi->back), "Device is in Safe Mode - not enabling advanced netdev features\n");
5964 return ret;
5965 }
5966
5967 /* Do not change setting during reset */
5968 if (ice_is_reset_in_progress(pf->state)) {
5969 dev_err(ice_pf_to_dev(vsi->back), "Device is resetting, changing advanced netdev features temporarily unavailable.\n");
5970 return -EBUSY;
5971 }
5972
5973 /* Multiple features can be changed in one call so keep features in
5974 * separate if/else statements to guarantee each feature is checked
5975 */
5976 if (features & NETIF_F_RXHASH && !(netdev->features & NETIF_F_RXHASH))
5977 ice_vsi_manage_rss_lut(vsi, true);
5978 else if (!(features & NETIF_F_RXHASH) &&
5979 netdev->features & NETIF_F_RXHASH)
5980 ice_vsi_manage_rss_lut(vsi, false);
5981
5982 ret = ice_set_vlan_features(netdev, features);
5983 if (ret)
5984 return ret;
5985
5986 if ((features & NETIF_F_NTUPLE) &&
5987 !(netdev->features & NETIF_F_NTUPLE)) {
5988 ice_vsi_manage_fdir(vsi, true);
5989 ice_init_arfs(vsi);
5990 } else if (!(features & NETIF_F_NTUPLE) &&
5991 (netdev->features & NETIF_F_NTUPLE)) {
5992 ice_vsi_manage_fdir(vsi, false);
5993 ice_clear_arfs(vsi);
5994 }
5995
5996 /* don't turn off hw_tc_offload when ADQ is already enabled */
5997 if (!(features & NETIF_F_HW_TC) && ice_is_adq_active(pf)) {
5998 dev_err(ice_pf_to_dev(pf), "ADQ is active, can't turn hw_tc_offload off\n");
5999 return -EACCES;
6000 }
6001
6002 if ((features & NETIF_F_HW_TC) &&
6003 !(netdev->features & NETIF_F_HW_TC))
6004 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6005 else
6006 clear_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
6007
6008 return 0;
6009 }
6010
6011 /**
6012 * ice_vsi_vlan_setup - Setup VLAN offload properties on a PF VSI
6013 * @vsi: VSI to setup VLAN properties for
6014 */
ice_vsi_vlan_setup(struct ice_vsi * vsi)6015 static int ice_vsi_vlan_setup(struct ice_vsi *vsi)
6016 {
6017 int err;
6018
6019 err = ice_set_vlan_offload_features(vsi, vsi->netdev->features);
6020 if (err)
6021 return err;
6022
6023 err = ice_set_vlan_filtering_features(vsi, vsi->netdev->features);
6024 if (err)
6025 return err;
6026
6027 return ice_vsi_add_vlan_zero(vsi);
6028 }
6029
6030 /**
6031 * ice_vsi_cfg - Setup the VSI
6032 * @vsi: the VSI being configured
6033 *
6034 * Return 0 on success and negative value on error
6035 */
ice_vsi_cfg(struct ice_vsi * vsi)6036 int ice_vsi_cfg(struct ice_vsi *vsi)
6037 {
6038 int err;
6039
6040 if (vsi->netdev) {
6041 ice_set_rx_mode(vsi->netdev);
6042
6043 if (vsi->type != ICE_VSI_LB) {
6044 err = ice_vsi_vlan_setup(vsi);
6045
6046 if (err)
6047 return err;
6048 }
6049 }
6050 ice_vsi_cfg_dcb_rings(vsi);
6051
6052 err = ice_vsi_cfg_lan_txqs(vsi);
6053 if (!err && ice_is_xdp_ena_vsi(vsi))
6054 err = ice_vsi_cfg_xdp_txqs(vsi);
6055 if (!err)
6056 err = ice_vsi_cfg_rxqs(vsi);
6057
6058 return err;
6059 }
6060
6061 /* THEORY OF MODERATION:
6062 * The ice driver hardware works differently than the hardware that DIMLIB was
6063 * originally made for. ice hardware doesn't have packet count limits that
6064 * can trigger an interrupt, but it *does* have interrupt rate limit support,
6065 * which is hard-coded to a limit of 250,000 ints/second.
6066 * If not using dynamic moderation, the INTRL value can be modified
6067 * by ethtool rx-usecs-high.
6068 */
6069 struct ice_dim {
6070 /* the throttle rate for interrupts, basically worst case delay before
6071 * an initial interrupt fires, value is stored in microseconds.
6072 */
6073 u16 itr;
6074 };
6075
6076 /* Make a different profile for Rx that doesn't allow quite so aggressive
6077 * moderation at the high end (it maxes out at 126us or about 8k interrupts a
6078 * second.
6079 */
6080 static const struct ice_dim rx_profile[] = {
6081 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6082 {8}, /* 125,000 ints/s */
6083 {16}, /* 62,500 ints/s */
6084 {62}, /* 16,129 ints/s */
6085 {126} /* 7,936 ints/s */
6086 };
6087
6088 /* The transmit profile, which has the same sorts of values
6089 * as the previous struct
6090 */
6091 static const struct ice_dim tx_profile[] = {
6092 {2}, /* 500,000 ints/s, capped at 250K by INTRL */
6093 {8}, /* 125,000 ints/s */
6094 {40}, /* 16,125 ints/s */
6095 {128}, /* 7,812 ints/s */
6096 {256} /* 3,906 ints/s */
6097 };
6098
ice_tx_dim_work(struct work_struct * work)6099 static void ice_tx_dim_work(struct work_struct *work)
6100 {
6101 struct ice_ring_container *rc;
6102 struct dim *dim;
6103 u16 itr;
6104
6105 dim = container_of(work, struct dim, work);
6106 rc = (struct ice_ring_container *)dim->priv;
6107
6108 WARN_ON(dim->profile_ix >= ARRAY_SIZE(tx_profile));
6109
6110 /* look up the values in our local table */
6111 itr = tx_profile[dim->profile_ix].itr;
6112
6113 ice_trace(tx_dim_work, container_of(rc, struct ice_q_vector, tx), dim);
6114 ice_write_itr(rc, itr);
6115
6116 dim->state = DIM_START_MEASURE;
6117 }
6118
ice_rx_dim_work(struct work_struct * work)6119 static void ice_rx_dim_work(struct work_struct *work)
6120 {
6121 struct ice_ring_container *rc;
6122 struct dim *dim;
6123 u16 itr;
6124
6125 dim = container_of(work, struct dim, work);
6126 rc = (struct ice_ring_container *)dim->priv;
6127
6128 WARN_ON(dim->profile_ix >= ARRAY_SIZE(rx_profile));
6129
6130 /* look up the values in our local table */
6131 itr = rx_profile[dim->profile_ix].itr;
6132
6133 ice_trace(rx_dim_work, container_of(rc, struct ice_q_vector, rx), dim);
6134 ice_write_itr(rc, itr);
6135
6136 dim->state = DIM_START_MEASURE;
6137 }
6138
6139 #define ICE_DIM_DEFAULT_PROFILE_IX 1
6140
6141 /**
6142 * ice_init_moderation - set up interrupt moderation
6143 * @q_vector: the vector containing rings to be configured
6144 *
6145 * Set up interrupt moderation registers, with the intent to do the right thing
6146 * when called from reset or from probe, and whether or not dynamic moderation
6147 * is enabled or not. Take special care to write all the registers in both
6148 * dynamic moderation mode or not in order to make sure hardware is in a known
6149 * state.
6150 */
ice_init_moderation(struct ice_q_vector * q_vector)6151 static void ice_init_moderation(struct ice_q_vector *q_vector)
6152 {
6153 struct ice_ring_container *rc;
6154 bool tx_dynamic, rx_dynamic;
6155
6156 rc = &q_vector->tx;
6157 INIT_WORK(&rc->dim.work, ice_tx_dim_work);
6158 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6159 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6160 rc->dim.priv = rc;
6161 tx_dynamic = ITR_IS_DYNAMIC(rc);
6162
6163 /* set the initial TX ITR to match the above */
6164 ice_write_itr(rc, tx_dynamic ?
6165 tx_profile[rc->dim.profile_ix].itr : rc->itr_setting);
6166
6167 rc = &q_vector->rx;
6168 INIT_WORK(&rc->dim.work, ice_rx_dim_work);
6169 rc->dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE;
6170 rc->dim.profile_ix = ICE_DIM_DEFAULT_PROFILE_IX;
6171 rc->dim.priv = rc;
6172 rx_dynamic = ITR_IS_DYNAMIC(rc);
6173
6174 /* set the initial RX ITR to match the above */
6175 ice_write_itr(rc, rx_dynamic ? rx_profile[rc->dim.profile_ix].itr :
6176 rc->itr_setting);
6177
6178 ice_set_q_vector_intrl(q_vector);
6179 }
6180
6181 /**
6182 * ice_napi_enable_all - Enable NAPI for all q_vectors in the VSI
6183 * @vsi: the VSI being configured
6184 */
ice_napi_enable_all(struct ice_vsi * vsi)6185 static void ice_napi_enable_all(struct ice_vsi *vsi)
6186 {
6187 int q_idx;
6188
6189 if (!vsi->netdev)
6190 return;
6191
6192 ice_for_each_q_vector(vsi, q_idx) {
6193 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6194
6195 ice_init_moderation(q_vector);
6196
6197 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6198 napi_enable(&q_vector->napi);
6199 }
6200 }
6201
6202 /**
6203 * ice_up_complete - Finish the last steps of bringing up a connection
6204 * @vsi: The VSI being configured
6205 *
6206 * Return 0 on success and negative value on error
6207 */
ice_up_complete(struct ice_vsi * vsi)6208 static int ice_up_complete(struct ice_vsi *vsi)
6209 {
6210 struct ice_pf *pf = vsi->back;
6211 int err;
6212
6213 ice_vsi_cfg_msix(vsi);
6214
6215 /* Enable only Rx rings, Tx rings were enabled by the FW when the
6216 * Tx queue group list was configured and the context bits were
6217 * programmed using ice_vsi_cfg_txqs
6218 */
6219 err = ice_vsi_start_all_rx_rings(vsi);
6220 if (err)
6221 return err;
6222
6223 clear_bit(ICE_VSI_DOWN, vsi->state);
6224 ice_napi_enable_all(vsi);
6225 ice_vsi_ena_irq(vsi);
6226
6227 if (vsi->port_info &&
6228 (vsi->port_info->phy.link_info.link_info & ICE_AQ_LINK_UP) &&
6229 vsi->netdev) {
6230 ice_print_link_msg(vsi, true);
6231 netif_tx_start_all_queues(vsi->netdev);
6232 netif_carrier_on(vsi->netdev);
6233 if (!ice_is_e810(&pf->hw))
6234 ice_ptp_link_change(pf, pf->hw.pf_id, true);
6235 }
6236
6237 /* Perform an initial read of the statistics registers now to
6238 * set the baseline so counters are ready when interface is up
6239 */
6240 ice_update_eth_stats(vsi);
6241 ice_service_task_schedule(pf);
6242
6243 return 0;
6244 }
6245
6246 /**
6247 * ice_up - Bring the connection back up after being down
6248 * @vsi: VSI being configured
6249 */
ice_up(struct ice_vsi * vsi)6250 int ice_up(struct ice_vsi *vsi)
6251 {
6252 int err;
6253
6254 err = ice_vsi_cfg(vsi);
6255 if (!err)
6256 err = ice_up_complete(vsi);
6257
6258 return err;
6259 }
6260
6261 /**
6262 * ice_fetch_u64_stats_per_ring - get packets and bytes stats per ring
6263 * @syncp: pointer to u64_stats_sync
6264 * @stats: stats that pkts and bytes count will be taken from
6265 * @pkts: packets stats counter
6266 * @bytes: bytes stats counter
6267 *
6268 * This function fetches stats from the ring considering the atomic operations
6269 * that needs to be performed to read u64 values in 32 bit machine.
6270 */
6271 void
ice_fetch_u64_stats_per_ring(struct u64_stats_sync * syncp,struct ice_q_stats stats,u64 * pkts,u64 * bytes)6272 ice_fetch_u64_stats_per_ring(struct u64_stats_sync *syncp,
6273 struct ice_q_stats stats, u64 *pkts, u64 *bytes)
6274 {
6275 unsigned int start;
6276
6277 do {
6278 start = u64_stats_fetch_begin_irq(syncp);
6279 *pkts = stats.pkts;
6280 *bytes = stats.bytes;
6281 } while (u64_stats_fetch_retry_irq(syncp, start));
6282 }
6283
6284 /**
6285 * ice_update_vsi_tx_ring_stats - Update VSI Tx ring stats counters
6286 * @vsi: the VSI to be updated
6287 * @vsi_stats: the stats struct to be updated
6288 * @rings: rings to work on
6289 * @count: number of rings
6290 */
6291 static void
ice_update_vsi_tx_ring_stats(struct ice_vsi * vsi,struct rtnl_link_stats64 * vsi_stats,struct ice_tx_ring ** rings,u16 count)6292 ice_update_vsi_tx_ring_stats(struct ice_vsi *vsi,
6293 struct rtnl_link_stats64 *vsi_stats,
6294 struct ice_tx_ring **rings, u16 count)
6295 {
6296 u16 i;
6297
6298 for (i = 0; i < count; i++) {
6299 struct ice_tx_ring *ring;
6300 u64 pkts = 0, bytes = 0;
6301
6302 ring = READ_ONCE(rings[i]);
6303 if (!ring)
6304 continue;
6305 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes);
6306 vsi_stats->tx_packets += pkts;
6307 vsi_stats->tx_bytes += bytes;
6308 vsi->tx_restart += ring->tx_stats.restart_q;
6309 vsi->tx_busy += ring->tx_stats.tx_busy;
6310 vsi->tx_linearize += ring->tx_stats.tx_linearize;
6311 }
6312 }
6313
6314 /**
6315 * ice_update_vsi_ring_stats - Update VSI stats counters
6316 * @vsi: the VSI to be updated
6317 */
ice_update_vsi_ring_stats(struct ice_vsi * vsi)6318 static void ice_update_vsi_ring_stats(struct ice_vsi *vsi)
6319 {
6320 struct rtnl_link_stats64 *vsi_stats;
6321 u64 pkts, bytes;
6322 int i;
6323
6324 vsi_stats = kzalloc(sizeof(*vsi_stats), GFP_ATOMIC);
6325 if (!vsi_stats)
6326 return;
6327
6328 /* reset non-netdev (extended) stats */
6329 vsi->tx_restart = 0;
6330 vsi->tx_busy = 0;
6331 vsi->tx_linearize = 0;
6332 vsi->rx_buf_failed = 0;
6333 vsi->rx_page_failed = 0;
6334
6335 rcu_read_lock();
6336
6337 /* update Tx rings counters */
6338 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->tx_rings,
6339 vsi->num_txq);
6340
6341 /* update Rx rings counters */
6342 ice_for_each_rxq(vsi, i) {
6343 struct ice_rx_ring *ring = READ_ONCE(vsi->rx_rings[i]);
6344
6345 ice_fetch_u64_stats_per_ring(&ring->syncp, ring->stats, &pkts, &bytes);
6346 vsi_stats->rx_packets += pkts;
6347 vsi_stats->rx_bytes += bytes;
6348 vsi->rx_buf_failed += ring->rx_stats.alloc_buf_failed;
6349 vsi->rx_page_failed += ring->rx_stats.alloc_page_failed;
6350 }
6351
6352 /* update XDP Tx rings counters */
6353 if (ice_is_xdp_ena_vsi(vsi))
6354 ice_update_vsi_tx_ring_stats(vsi, vsi_stats, vsi->xdp_rings,
6355 vsi->num_xdp_txq);
6356
6357 rcu_read_unlock();
6358
6359 vsi->net_stats.tx_packets = vsi_stats->tx_packets;
6360 vsi->net_stats.tx_bytes = vsi_stats->tx_bytes;
6361 vsi->net_stats.rx_packets = vsi_stats->rx_packets;
6362 vsi->net_stats.rx_bytes = vsi_stats->rx_bytes;
6363
6364 kfree(vsi_stats);
6365 }
6366
6367 /**
6368 * ice_update_vsi_stats - Update VSI stats counters
6369 * @vsi: the VSI to be updated
6370 */
ice_update_vsi_stats(struct ice_vsi * vsi)6371 void ice_update_vsi_stats(struct ice_vsi *vsi)
6372 {
6373 struct rtnl_link_stats64 *cur_ns = &vsi->net_stats;
6374 struct ice_eth_stats *cur_es = &vsi->eth_stats;
6375 struct ice_pf *pf = vsi->back;
6376
6377 if (test_bit(ICE_VSI_DOWN, vsi->state) ||
6378 test_bit(ICE_CFG_BUSY, pf->state))
6379 return;
6380
6381 /* get stats as recorded by Tx/Rx rings */
6382 ice_update_vsi_ring_stats(vsi);
6383
6384 /* get VSI stats as recorded by the hardware */
6385 ice_update_eth_stats(vsi);
6386
6387 cur_ns->tx_errors = cur_es->tx_errors;
6388 cur_ns->rx_dropped = cur_es->rx_discards;
6389 cur_ns->tx_dropped = cur_es->tx_discards;
6390 cur_ns->multicast = cur_es->rx_multicast;
6391
6392 /* update some more netdev stats if this is main VSI */
6393 if (vsi->type == ICE_VSI_PF) {
6394 cur_ns->rx_crc_errors = pf->stats.crc_errors;
6395 cur_ns->rx_errors = pf->stats.crc_errors +
6396 pf->stats.illegal_bytes +
6397 pf->stats.rx_len_errors +
6398 pf->stats.rx_undersize +
6399 pf->hw_csum_rx_error +
6400 pf->stats.rx_jabber +
6401 pf->stats.rx_fragments +
6402 pf->stats.rx_oversize;
6403 cur_ns->rx_length_errors = pf->stats.rx_len_errors;
6404 /* record drops from the port level */
6405 cur_ns->rx_missed_errors = pf->stats.eth.rx_discards;
6406 }
6407 }
6408
6409 /**
6410 * ice_update_pf_stats - Update PF port stats counters
6411 * @pf: PF whose stats needs to be updated
6412 */
ice_update_pf_stats(struct ice_pf * pf)6413 void ice_update_pf_stats(struct ice_pf *pf)
6414 {
6415 struct ice_hw_port_stats *prev_ps, *cur_ps;
6416 struct ice_hw *hw = &pf->hw;
6417 u16 fd_ctr_base;
6418 u8 port;
6419
6420 port = hw->port_info->lport;
6421 prev_ps = &pf->stats_prev;
6422 cur_ps = &pf->stats;
6423
6424 ice_stat_update40(hw, GLPRT_GORCL(port), pf->stat_prev_loaded,
6425 &prev_ps->eth.rx_bytes,
6426 &cur_ps->eth.rx_bytes);
6427
6428 ice_stat_update40(hw, GLPRT_UPRCL(port), pf->stat_prev_loaded,
6429 &prev_ps->eth.rx_unicast,
6430 &cur_ps->eth.rx_unicast);
6431
6432 ice_stat_update40(hw, GLPRT_MPRCL(port), pf->stat_prev_loaded,
6433 &prev_ps->eth.rx_multicast,
6434 &cur_ps->eth.rx_multicast);
6435
6436 ice_stat_update40(hw, GLPRT_BPRCL(port), pf->stat_prev_loaded,
6437 &prev_ps->eth.rx_broadcast,
6438 &cur_ps->eth.rx_broadcast);
6439
6440 ice_stat_update32(hw, PRTRPB_RDPC, pf->stat_prev_loaded,
6441 &prev_ps->eth.rx_discards,
6442 &cur_ps->eth.rx_discards);
6443
6444 ice_stat_update40(hw, GLPRT_GOTCL(port), pf->stat_prev_loaded,
6445 &prev_ps->eth.tx_bytes,
6446 &cur_ps->eth.tx_bytes);
6447
6448 ice_stat_update40(hw, GLPRT_UPTCL(port), pf->stat_prev_loaded,
6449 &prev_ps->eth.tx_unicast,
6450 &cur_ps->eth.tx_unicast);
6451
6452 ice_stat_update40(hw, GLPRT_MPTCL(port), pf->stat_prev_loaded,
6453 &prev_ps->eth.tx_multicast,
6454 &cur_ps->eth.tx_multicast);
6455
6456 ice_stat_update40(hw, GLPRT_BPTCL(port), pf->stat_prev_loaded,
6457 &prev_ps->eth.tx_broadcast,
6458 &cur_ps->eth.tx_broadcast);
6459
6460 ice_stat_update32(hw, GLPRT_TDOLD(port), pf->stat_prev_loaded,
6461 &prev_ps->tx_dropped_link_down,
6462 &cur_ps->tx_dropped_link_down);
6463
6464 ice_stat_update40(hw, GLPRT_PRC64L(port), pf->stat_prev_loaded,
6465 &prev_ps->rx_size_64, &cur_ps->rx_size_64);
6466
6467 ice_stat_update40(hw, GLPRT_PRC127L(port), pf->stat_prev_loaded,
6468 &prev_ps->rx_size_127, &cur_ps->rx_size_127);
6469
6470 ice_stat_update40(hw, GLPRT_PRC255L(port), pf->stat_prev_loaded,
6471 &prev_ps->rx_size_255, &cur_ps->rx_size_255);
6472
6473 ice_stat_update40(hw, GLPRT_PRC511L(port), pf->stat_prev_loaded,
6474 &prev_ps->rx_size_511, &cur_ps->rx_size_511);
6475
6476 ice_stat_update40(hw, GLPRT_PRC1023L(port), pf->stat_prev_loaded,
6477 &prev_ps->rx_size_1023, &cur_ps->rx_size_1023);
6478
6479 ice_stat_update40(hw, GLPRT_PRC1522L(port), pf->stat_prev_loaded,
6480 &prev_ps->rx_size_1522, &cur_ps->rx_size_1522);
6481
6482 ice_stat_update40(hw, GLPRT_PRC9522L(port), pf->stat_prev_loaded,
6483 &prev_ps->rx_size_big, &cur_ps->rx_size_big);
6484
6485 ice_stat_update40(hw, GLPRT_PTC64L(port), pf->stat_prev_loaded,
6486 &prev_ps->tx_size_64, &cur_ps->tx_size_64);
6487
6488 ice_stat_update40(hw, GLPRT_PTC127L(port), pf->stat_prev_loaded,
6489 &prev_ps->tx_size_127, &cur_ps->tx_size_127);
6490
6491 ice_stat_update40(hw, GLPRT_PTC255L(port), pf->stat_prev_loaded,
6492 &prev_ps->tx_size_255, &cur_ps->tx_size_255);
6493
6494 ice_stat_update40(hw, GLPRT_PTC511L(port), pf->stat_prev_loaded,
6495 &prev_ps->tx_size_511, &cur_ps->tx_size_511);
6496
6497 ice_stat_update40(hw, GLPRT_PTC1023L(port), pf->stat_prev_loaded,
6498 &prev_ps->tx_size_1023, &cur_ps->tx_size_1023);
6499
6500 ice_stat_update40(hw, GLPRT_PTC1522L(port), pf->stat_prev_loaded,
6501 &prev_ps->tx_size_1522, &cur_ps->tx_size_1522);
6502
6503 ice_stat_update40(hw, GLPRT_PTC9522L(port), pf->stat_prev_loaded,
6504 &prev_ps->tx_size_big, &cur_ps->tx_size_big);
6505
6506 fd_ctr_base = hw->fd_ctr_base;
6507
6508 ice_stat_update40(hw,
6509 GLSTAT_FD_CNT0L(ICE_FD_SB_STAT_IDX(fd_ctr_base)),
6510 pf->stat_prev_loaded, &prev_ps->fd_sb_match,
6511 &cur_ps->fd_sb_match);
6512 ice_stat_update32(hw, GLPRT_LXONRXC(port), pf->stat_prev_loaded,
6513 &prev_ps->link_xon_rx, &cur_ps->link_xon_rx);
6514
6515 ice_stat_update32(hw, GLPRT_LXOFFRXC(port), pf->stat_prev_loaded,
6516 &prev_ps->link_xoff_rx, &cur_ps->link_xoff_rx);
6517
6518 ice_stat_update32(hw, GLPRT_LXONTXC(port), pf->stat_prev_loaded,
6519 &prev_ps->link_xon_tx, &cur_ps->link_xon_tx);
6520
6521 ice_stat_update32(hw, GLPRT_LXOFFTXC(port), pf->stat_prev_loaded,
6522 &prev_ps->link_xoff_tx, &cur_ps->link_xoff_tx);
6523
6524 ice_update_dcb_stats(pf);
6525
6526 ice_stat_update32(hw, GLPRT_CRCERRS(port), pf->stat_prev_loaded,
6527 &prev_ps->crc_errors, &cur_ps->crc_errors);
6528
6529 ice_stat_update32(hw, GLPRT_ILLERRC(port), pf->stat_prev_loaded,
6530 &prev_ps->illegal_bytes, &cur_ps->illegal_bytes);
6531
6532 ice_stat_update32(hw, GLPRT_MLFC(port), pf->stat_prev_loaded,
6533 &prev_ps->mac_local_faults,
6534 &cur_ps->mac_local_faults);
6535
6536 ice_stat_update32(hw, GLPRT_MRFC(port), pf->stat_prev_loaded,
6537 &prev_ps->mac_remote_faults,
6538 &cur_ps->mac_remote_faults);
6539
6540 ice_stat_update32(hw, GLPRT_RLEC(port), pf->stat_prev_loaded,
6541 &prev_ps->rx_len_errors, &cur_ps->rx_len_errors);
6542
6543 ice_stat_update32(hw, GLPRT_RUC(port), pf->stat_prev_loaded,
6544 &prev_ps->rx_undersize, &cur_ps->rx_undersize);
6545
6546 ice_stat_update32(hw, GLPRT_RFC(port), pf->stat_prev_loaded,
6547 &prev_ps->rx_fragments, &cur_ps->rx_fragments);
6548
6549 ice_stat_update32(hw, GLPRT_ROC(port), pf->stat_prev_loaded,
6550 &prev_ps->rx_oversize, &cur_ps->rx_oversize);
6551
6552 ice_stat_update32(hw, GLPRT_RJC(port), pf->stat_prev_loaded,
6553 &prev_ps->rx_jabber, &cur_ps->rx_jabber);
6554
6555 cur_ps->fd_sb_status = test_bit(ICE_FLAG_FD_ENA, pf->flags) ? 1 : 0;
6556
6557 pf->stat_prev_loaded = true;
6558 }
6559
6560 /**
6561 * ice_get_stats64 - get statistics for network device structure
6562 * @netdev: network interface device structure
6563 * @stats: main device statistics structure
6564 */
6565 static
ice_get_stats64(struct net_device * netdev,struct rtnl_link_stats64 * stats)6566 void ice_get_stats64(struct net_device *netdev, struct rtnl_link_stats64 *stats)
6567 {
6568 struct ice_netdev_priv *np = netdev_priv(netdev);
6569 struct rtnl_link_stats64 *vsi_stats;
6570 struct ice_vsi *vsi = np->vsi;
6571
6572 vsi_stats = &vsi->net_stats;
6573
6574 if (!vsi->num_txq || !vsi->num_rxq)
6575 return;
6576
6577 /* netdev packet/byte stats come from ring counter. These are obtained
6578 * by summing up ring counters (done by ice_update_vsi_ring_stats).
6579 * But, only call the update routine and read the registers if VSI is
6580 * not down.
6581 */
6582 if (!test_bit(ICE_VSI_DOWN, vsi->state))
6583 ice_update_vsi_ring_stats(vsi);
6584 stats->tx_packets = vsi_stats->tx_packets;
6585 stats->tx_bytes = vsi_stats->tx_bytes;
6586 stats->rx_packets = vsi_stats->rx_packets;
6587 stats->rx_bytes = vsi_stats->rx_bytes;
6588
6589 /* The rest of the stats can be read from the hardware but instead we
6590 * just return values that the watchdog task has already obtained from
6591 * the hardware.
6592 */
6593 stats->multicast = vsi_stats->multicast;
6594 stats->tx_errors = vsi_stats->tx_errors;
6595 stats->tx_dropped = vsi_stats->tx_dropped;
6596 stats->rx_errors = vsi_stats->rx_errors;
6597 stats->rx_dropped = vsi_stats->rx_dropped;
6598 stats->rx_crc_errors = vsi_stats->rx_crc_errors;
6599 stats->rx_length_errors = vsi_stats->rx_length_errors;
6600 }
6601
6602 /**
6603 * ice_napi_disable_all - Disable NAPI for all q_vectors in the VSI
6604 * @vsi: VSI having NAPI disabled
6605 */
ice_napi_disable_all(struct ice_vsi * vsi)6606 static void ice_napi_disable_all(struct ice_vsi *vsi)
6607 {
6608 int q_idx;
6609
6610 if (!vsi->netdev)
6611 return;
6612
6613 ice_for_each_q_vector(vsi, q_idx) {
6614 struct ice_q_vector *q_vector = vsi->q_vectors[q_idx];
6615
6616 if (q_vector->rx.rx_ring || q_vector->tx.tx_ring)
6617 napi_disable(&q_vector->napi);
6618
6619 cancel_work_sync(&q_vector->tx.dim.work);
6620 cancel_work_sync(&q_vector->rx.dim.work);
6621 }
6622 }
6623
6624 /**
6625 * ice_down - Shutdown the connection
6626 * @vsi: The VSI being stopped
6627 *
6628 * Caller of this function is expected to set the vsi->state ICE_DOWN bit
6629 */
ice_down(struct ice_vsi * vsi)6630 int ice_down(struct ice_vsi *vsi)
6631 {
6632 int i, tx_err, rx_err, link_err = 0, vlan_err = 0;
6633
6634 WARN_ON(!test_bit(ICE_VSI_DOWN, vsi->state));
6635
6636 if (vsi->netdev && vsi->type == ICE_VSI_PF) {
6637 vlan_err = ice_vsi_del_vlan_zero(vsi);
6638 if (!ice_is_e810(&vsi->back->hw))
6639 ice_ptp_link_change(vsi->back, vsi->back->hw.pf_id, false);
6640 netif_carrier_off(vsi->netdev);
6641 netif_tx_disable(vsi->netdev);
6642 } else if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
6643 ice_eswitch_stop_all_tx_queues(vsi->back);
6644 }
6645
6646 ice_vsi_dis_irq(vsi);
6647
6648 tx_err = ice_vsi_stop_lan_tx_rings(vsi, ICE_NO_RESET, 0);
6649 if (tx_err)
6650 netdev_err(vsi->netdev, "Failed stop Tx rings, VSI %d error %d\n",
6651 vsi->vsi_num, tx_err);
6652 if (!tx_err && ice_is_xdp_ena_vsi(vsi)) {
6653 tx_err = ice_vsi_stop_xdp_tx_rings(vsi);
6654 if (tx_err)
6655 netdev_err(vsi->netdev, "Failed stop XDP rings, VSI %d error %d\n",
6656 vsi->vsi_num, tx_err);
6657 }
6658
6659 rx_err = ice_vsi_stop_all_rx_rings(vsi);
6660 if (rx_err)
6661 netdev_err(vsi->netdev, "Failed stop Rx rings, VSI %d error %d\n",
6662 vsi->vsi_num, rx_err);
6663
6664 ice_napi_disable_all(vsi);
6665
6666 if (test_bit(ICE_FLAG_LINK_DOWN_ON_CLOSE_ENA, vsi->back->flags)) {
6667 link_err = ice_force_phys_link_state(vsi, false);
6668 if (link_err)
6669 netdev_err(vsi->netdev, "Failed to set physical link down, VSI %d error %d\n",
6670 vsi->vsi_num, link_err);
6671 }
6672
6673 ice_for_each_txq(vsi, i)
6674 ice_clean_tx_ring(vsi->tx_rings[i]);
6675
6676 ice_for_each_rxq(vsi, i)
6677 ice_clean_rx_ring(vsi->rx_rings[i]);
6678
6679 if (tx_err || rx_err || link_err || vlan_err) {
6680 netdev_err(vsi->netdev, "Failed to close VSI 0x%04X on switch 0x%04X\n",
6681 vsi->vsi_num, vsi->vsw->sw_id);
6682 return -EIO;
6683 }
6684
6685 return 0;
6686 }
6687
6688 /**
6689 * ice_vsi_setup_tx_rings - Allocate VSI Tx queue resources
6690 * @vsi: VSI having resources allocated
6691 *
6692 * Return 0 on success, negative on failure
6693 */
ice_vsi_setup_tx_rings(struct ice_vsi * vsi)6694 int ice_vsi_setup_tx_rings(struct ice_vsi *vsi)
6695 {
6696 int i, err = 0;
6697
6698 if (!vsi->num_txq) {
6699 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Tx queues\n",
6700 vsi->vsi_num);
6701 return -EINVAL;
6702 }
6703
6704 ice_for_each_txq(vsi, i) {
6705 struct ice_tx_ring *ring = vsi->tx_rings[i];
6706
6707 if (!ring)
6708 return -EINVAL;
6709
6710 if (vsi->netdev)
6711 ring->netdev = vsi->netdev;
6712 err = ice_setup_tx_ring(ring);
6713 if (err)
6714 break;
6715 }
6716
6717 return err;
6718 }
6719
6720 /**
6721 * ice_vsi_setup_rx_rings - Allocate VSI Rx queue resources
6722 * @vsi: VSI having resources allocated
6723 *
6724 * Return 0 on success, negative on failure
6725 */
ice_vsi_setup_rx_rings(struct ice_vsi * vsi)6726 int ice_vsi_setup_rx_rings(struct ice_vsi *vsi)
6727 {
6728 int i, err = 0;
6729
6730 if (!vsi->num_rxq) {
6731 dev_err(ice_pf_to_dev(vsi->back), "VSI %d has 0 Rx queues\n",
6732 vsi->vsi_num);
6733 return -EINVAL;
6734 }
6735
6736 ice_for_each_rxq(vsi, i) {
6737 struct ice_rx_ring *ring = vsi->rx_rings[i];
6738
6739 if (!ring)
6740 return -EINVAL;
6741
6742 if (vsi->netdev)
6743 ring->netdev = vsi->netdev;
6744 err = ice_setup_rx_ring(ring);
6745 if (err)
6746 break;
6747 }
6748
6749 return err;
6750 }
6751
6752 /**
6753 * ice_vsi_open_ctrl - open control VSI for use
6754 * @vsi: the VSI to open
6755 *
6756 * Initialization of the Control VSI
6757 *
6758 * Returns 0 on success, negative value on error
6759 */
ice_vsi_open_ctrl(struct ice_vsi * vsi)6760 int ice_vsi_open_ctrl(struct ice_vsi *vsi)
6761 {
6762 char int_name[ICE_INT_NAME_STR_LEN];
6763 struct ice_pf *pf = vsi->back;
6764 struct device *dev;
6765 int err;
6766
6767 dev = ice_pf_to_dev(pf);
6768 /* allocate descriptors */
6769 err = ice_vsi_setup_tx_rings(vsi);
6770 if (err)
6771 goto err_setup_tx;
6772
6773 err = ice_vsi_setup_rx_rings(vsi);
6774 if (err)
6775 goto err_setup_rx;
6776
6777 err = ice_vsi_cfg(vsi);
6778 if (err)
6779 goto err_setup_rx;
6780
6781 snprintf(int_name, sizeof(int_name) - 1, "%s-%s:ctrl",
6782 dev_driver_string(dev), dev_name(dev));
6783 err = ice_vsi_req_irq_msix(vsi, int_name);
6784 if (err)
6785 goto err_setup_rx;
6786
6787 ice_vsi_cfg_msix(vsi);
6788
6789 err = ice_vsi_start_all_rx_rings(vsi);
6790 if (err)
6791 goto err_up_complete;
6792
6793 clear_bit(ICE_VSI_DOWN, vsi->state);
6794 ice_vsi_ena_irq(vsi);
6795
6796 return 0;
6797
6798 err_up_complete:
6799 ice_down(vsi);
6800 err_setup_rx:
6801 ice_vsi_free_rx_rings(vsi);
6802 err_setup_tx:
6803 ice_vsi_free_tx_rings(vsi);
6804
6805 return err;
6806 }
6807
6808 /**
6809 * ice_vsi_open - Called when a network interface is made active
6810 * @vsi: the VSI to open
6811 *
6812 * Initialization of the VSI
6813 *
6814 * Returns 0 on success, negative value on error
6815 */
ice_vsi_open(struct ice_vsi * vsi)6816 int ice_vsi_open(struct ice_vsi *vsi)
6817 {
6818 char int_name[ICE_INT_NAME_STR_LEN];
6819 struct ice_pf *pf = vsi->back;
6820 int err;
6821
6822 /* allocate descriptors */
6823 err = ice_vsi_setup_tx_rings(vsi);
6824 if (err)
6825 goto err_setup_tx;
6826
6827 err = ice_vsi_setup_rx_rings(vsi);
6828 if (err)
6829 goto err_setup_rx;
6830
6831 err = ice_vsi_cfg(vsi);
6832 if (err)
6833 goto err_setup_rx;
6834
6835 snprintf(int_name, sizeof(int_name) - 1, "%s-%s",
6836 dev_driver_string(ice_pf_to_dev(pf)), vsi->netdev->name);
6837 err = ice_vsi_req_irq_msix(vsi, int_name);
6838 if (err)
6839 goto err_setup_rx;
6840
6841 if (vsi->type == ICE_VSI_PF) {
6842 /* Notify the stack of the actual queue counts. */
6843 err = netif_set_real_num_tx_queues(vsi->netdev, vsi->num_txq);
6844 if (err)
6845 goto err_set_qs;
6846
6847 err = netif_set_real_num_rx_queues(vsi->netdev, vsi->num_rxq);
6848 if (err)
6849 goto err_set_qs;
6850 }
6851
6852 err = ice_up_complete(vsi);
6853 if (err)
6854 goto err_up_complete;
6855
6856 return 0;
6857
6858 err_up_complete:
6859 ice_down(vsi);
6860 err_set_qs:
6861 ice_vsi_free_irq(vsi);
6862 err_setup_rx:
6863 ice_vsi_free_rx_rings(vsi);
6864 err_setup_tx:
6865 ice_vsi_free_tx_rings(vsi);
6866
6867 return err;
6868 }
6869
6870 /**
6871 * ice_vsi_release_all - Delete all VSIs
6872 * @pf: PF from which all VSIs are being removed
6873 */
ice_vsi_release_all(struct ice_pf * pf)6874 static void ice_vsi_release_all(struct ice_pf *pf)
6875 {
6876 int err, i;
6877
6878 if (!pf->vsi)
6879 return;
6880
6881 ice_for_each_vsi(pf, i) {
6882 if (!pf->vsi[i])
6883 continue;
6884
6885 if (pf->vsi[i]->type == ICE_VSI_CHNL)
6886 continue;
6887
6888 err = ice_vsi_release(pf->vsi[i]);
6889 if (err)
6890 dev_dbg(ice_pf_to_dev(pf), "Failed to release pf->vsi[%d], err %d, vsi_num = %d\n",
6891 i, err, pf->vsi[i]->vsi_num);
6892 }
6893 }
6894
6895 /**
6896 * ice_vsi_rebuild_by_type - Rebuild VSI of a given type
6897 * @pf: pointer to the PF instance
6898 * @type: VSI type to rebuild
6899 *
6900 * Iterates through the pf->vsi array and rebuilds VSIs of the requested type
6901 */
ice_vsi_rebuild_by_type(struct ice_pf * pf,enum ice_vsi_type type)6902 static int ice_vsi_rebuild_by_type(struct ice_pf *pf, enum ice_vsi_type type)
6903 {
6904 struct device *dev = ice_pf_to_dev(pf);
6905 int i, err;
6906
6907 ice_for_each_vsi(pf, i) {
6908 struct ice_vsi *vsi = pf->vsi[i];
6909
6910 if (!vsi || vsi->type != type)
6911 continue;
6912
6913 /* rebuild the VSI */
6914 err = ice_vsi_rebuild(vsi, true);
6915 if (err) {
6916 dev_err(dev, "rebuild VSI failed, err %d, VSI index %d, type %s\n",
6917 err, vsi->idx, ice_vsi_type_str(type));
6918 return err;
6919 }
6920
6921 /* replay filters for the VSI */
6922 err = ice_replay_vsi(&pf->hw, vsi->idx);
6923 if (err) {
6924 dev_err(dev, "replay VSI failed, error %d, VSI index %d, type %s\n",
6925 err, vsi->idx, ice_vsi_type_str(type));
6926 return err;
6927 }
6928
6929 /* Re-map HW VSI number, using VSI handle that has been
6930 * previously validated in ice_replay_vsi() call above
6931 */
6932 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
6933
6934 /* enable the VSI */
6935 err = ice_ena_vsi(vsi, false);
6936 if (err) {
6937 dev_err(dev, "enable VSI failed, err %d, VSI index %d, type %s\n",
6938 err, vsi->idx, ice_vsi_type_str(type));
6939 return err;
6940 }
6941
6942 dev_info(dev, "VSI rebuilt. VSI index %d, type %s\n", vsi->idx,
6943 ice_vsi_type_str(type));
6944 }
6945
6946 return 0;
6947 }
6948
6949 /**
6950 * ice_update_pf_netdev_link - Update PF netdev link status
6951 * @pf: pointer to the PF instance
6952 */
ice_update_pf_netdev_link(struct ice_pf * pf)6953 static void ice_update_pf_netdev_link(struct ice_pf *pf)
6954 {
6955 bool link_up;
6956 int i;
6957
6958 ice_for_each_vsi(pf, i) {
6959 struct ice_vsi *vsi = pf->vsi[i];
6960
6961 if (!vsi || vsi->type != ICE_VSI_PF)
6962 return;
6963
6964 ice_get_link_status(pf->vsi[i]->port_info, &link_up);
6965 if (link_up) {
6966 netif_carrier_on(pf->vsi[i]->netdev);
6967 netif_tx_wake_all_queues(pf->vsi[i]->netdev);
6968 } else {
6969 netif_carrier_off(pf->vsi[i]->netdev);
6970 netif_tx_stop_all_queues(pf->vsi[i]->netdev);
6971 }
6972 }
6973 }
6974
6975 /**
6976 * ice_rebuild - rebuild after reset
6977 * @pf: PF to rebuild
6978 * @reset_type: type of reset
6979 *
6980 * Do not rebuild VF VSI in this flow because that is already handled via
6981 * ice_reset_all_vfs(). This is because requirements for resetting a VF after a
6982 * PFR/CORER/GLOBER/etc. are different than the normal flow. Also, we don't want
6983 * to reset/rebuild all the VF VSI twice.
6984 */
ice_rebuild(struct ice_pf * pf,enum ice_reset_req reset_type)6985 static void ice_rebuild(struct ice_pf *pf, enum ice_reset_req reset_type)
6986 {
6987 struct device *dev = ice_pf_to_dev(pf);
6988 struct ice_hw *hw = &pf->hw;
6989 bool dvm;
6990 int err;
6991
6992 if (test_bit(ICE_DOWN, pf->state))
6993 goto clear_recovery;
6994
6995 dev_dbg(dev, "rebuilding PF after reset_type=%d\n", reset_type);
6996
6997 #define ICE_EMP_RESET_SLEEP_MS 5000
6998 if (reset_type == ICE_RESET_EMPR) {
6999 /* If an EMP reset has occurred, any previously pending flash
7000 * update will have completed. We no longer know whether or
7001 * not the NVM update EMP reset is restricted.
7002 */
7003 pf->fw_emp_reset_disabled = false;
7004
7005 msleep(ICE_EMP_RESET_SLEEP_MS);
7006 }
7007
7008 err = ice_init_all_ctrlq(hw);
7009 if (err) {
7010 dev_err(dev, "control queues init failed %d\n", err);
7011 goto err_init_ctrlq;
7012 }
7013
7014 /* if DDP was previously loaded successfully */
7015 if (!ice_is_safe_mode(pf)) {
7016 /* reload the SW DB of filter tables */
7017 if (reset_type == ICE_RESET_PFR)
7018 ice_fill_blk_tbls(hw);
7019 else
7020 /* Reload DDP Package after CORER/GLOBR reset */
7021 ice_load_pkg(NULL, pf);
7022 }
7023
7024 err = ice_clear_pf_cfg(hw);
7025 if (err) {
7026 dev_err(dev, "clear PF configuration failed %d\n", err);
7027 goto err_init_ctrlq;
7028 }
7029
7030 if (pf->first_sw->dflt_vsi_ena)
7031 dev_info(dev, "Clearing default VSI, re-enable after reset completes\n");
7032 /* clear the default VSI configuration if it exists */
7033 pf->first_sw->dflt_vsi = NULL;
7034 pf->first_sw->dflt_vsi_ena = false;
7035
7036 ice_clear_pxe_mode(hw);
7037
7038 err = ice_init_nvm(hw);
7039 if (err) {
7040 dev_err(dev, "ice_init_nvm failed %d\n", err);
7041 goto err_init_ctrlq;
7042 }
7043
7044 err = ice_get_caps(hw);
7045 if (err) {
7046 dev_err(dev, "ice_get_caps failed %d\n", err);
7047 goto err_init_ctrlq;
7048 }
7049
7050 err = ice_aq_set_mac_cfg(hw, ICE_AQ_SET_MAC_FRAME_SIZE_MAX, NULL);
7051 if (err) {
7052 dev_err(dev, "set_mac_cfg failed %d\n", err);
7053 goto err_init_ctrlq;
7054 }
7055
7056 dvm = ice_is_dvm_ena(hw);
7057
7058 err = ice_aq_set_port_params(pf->hw.port_info, dvm, NULL);
7059 if (err)
7060 goto err_init_ctrlq;
7061
7062 err = ice_sched_init_port(hw->port_info);
7063 if (err)
7064 goto err_sched_init_port;
7065
7066 /* start misc vector */
7067 err = ice_req_irq_msix_misc(pf);
7068 if (err) {
7069 dev_err(dev, "misc vector setup failed: %d\n", err);
7070 goto err_sched_init_port;
7071 }
7072
7073 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7074 wr32(hw, PFQF_FD_ENA, PFQF_FD_ENA_FD_ENA_M);
7075 if (!rd32(hw, PFQF_FD_SIZE)) {
7076 u16 unused, guar, b_effort;
7077
7078 guar = hw->func_caps.fd_fltr_guar;
7079 b_effort = hw->func_caps.fd_fltr_best_effort;
7080
7081 /* force guaranteed filter pool for PF */
7082 ice_alloc_fd_guar_item(hw, &unused, guar);
7083 /* force shared filter pool for PF */
7084 ice_alloc_fd_shrd_item(hw, &unused, b_effort);
7085 }
7086 }
7087
7088 if (test_bit(ICE_FLAG_DCB_ENA, pf->flags))
7089 ice_dcb_rebuild(pf);
7090
7091 /* If the PF previously had enabled PTP, PTP init needs to happen before
7092 * the VSI rebuild. If not, this causes the PTP link status events to
7093 * fail.
7094 */
7095 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7096 ice_ptp_reset(pf);
7097
7098 if (ice_is_feature_supported(pf, ICE_F_GNSS))
7099 ice_gnss_init(pf);
7100
7101 /* rebuild PF VSI */
7102 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_PF);
7103 if (err) {
7104 dev_err(dev, "PF VSI rebuild failed: %d\n", err);
7105 goto err_vsi_rebuild;
7106 }
7107
7108 /* configure PTP timestamping after VSI rebuild */
7109 if (test_bit(ICE_FLAG_PTP_SUPPORTED, pf->flags))
7110 ice_ptp_cfg_timestamp(pf, false);
7111
7112 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_SWITCHDEV_CTRL);
7113 if (err) {
7114 dev_err(dev, "Switchdev CTRL VSI rebuild failed: %d\n", err);
7115 goto err_vsi_rebuild;
7116 }
7117
7118 if (reset_type == ICE_RESET_PFR) {
7119 err = ice_rebuild_channels(pf);
7120 if (err) {
7121 dev_err(dev, "failed to rebuild and replay ADQ VSIs, err %d\n",
7122 err);
7123 goto err_vsi_rebuild;
7124 }
7125 }
7126
7127 /* If Flow Director is active */
7128 if (test_bit(ICE_FLAG_FD_ENA, pf->flags)) {
7129 err = ice_vsi_rebuild_by_type(pf, ICE_VSI_CTRL);
7130 if (err) {
7131 dev_err(dev, "control VSI rebuild failed: %d\n", err);
7132 goto err_vsi_rebuild;
7133 }
7134
7135 /* replay HW Flow Director recipes */
7136 if (hw->fdir_prof)
7137 ice_fdir_replay_flows(hw);
7138
7139 /* replay Flow Director filters */
7140 ice_fdir_replay_fltrs(pf);
7141
7142 ice_rebuild_arfs(pf);
7143 }
7144
7145 ice_update_pf_netdev_link(pf);
7146
7147 /* tell the firmware we are up */
7148 err = ice_send_version(pf);
7149 if (err) {
7150 dev_err(dev, "Rebuild failed due to error sending driver version: %d\n",
7151 err);
7152 goto err_vsi_rebuild;
7153 }
7154
7155 ice_replay_post(hw);
7156
7157 /* if we get here, reset flow is successful */
7158 clear_bit(ICE_RESET_FAILED, pf->state);
7159
7160 ice_plug_aux_dev(pf);
7161 return;
7162
7163 err_vsi_rebuild:
7164 err_sched_init_port:
7165 ice_sched_cleanup_all(hw);
7166 err_init_ctrlq:
7167 ice_shutdown_all_ctrlq(hw);
7168 set_bit(ICE_RESET_FAILED, pf->state);
7169 clear_recovery:
7170 /* set this bit in PF state to control service task scheduling */
7171 set_bit(ICE_NEEDS_RESTART, pf->state);
7172 dev_err(dev, "Rebuild failed, unload and reload driver\n");
7173 }
7174
7175 /**
7176 * ice_max_xdp_frame_size - returns the maximum allowed frame size for XDP
7177 * @vsi: Pointer to VSI structure
7178 */
ice_max_xdp_frame_size(struct ice_vsi * vsi)7179 static int ice_max_xdp_frame_size(struct ice_vsi *vsi)
7180 {
7181 if (PAGE_SIZE >= 8192 || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
7182 return ICE_RXBUF_2048 - XDP_PACKET_HEADROOM;
7183 else
7184 return ICE_RXBUF_3072;
7185 }
7186
7187 /**
7188 * ice_change_mtu - NDO callback to change the MTU
7189 * @netdev: network interface device structure
7190 * @new_mtu: new value for maximum frame size
7191 *
7192 * Returns 0 on success, negative on failure
7193 */
ice_change_mtu(struct net_device * netdev,int new_mtu)7194 static int ice_change_mtu(struct net_device *netdev, int new_mtu)
7195 {
7196 struct ice_netdev_priv *np = netdev_priv(netdev);
7197 struct ice_vsi *vsi = np->vsi;
7198 struct ice_pf *pf = vsi->back;
7199 u8 count = 0;
7200 int err = 0;
7201
7202 if (new_mtu == (int)netdev->mtu) {
7203 netdev_warn(netdev, "MTU is already %u\n", netdev->mtu);
7204 return 0;
7205 }
7206
7207 if (ice_is_xdp_ena_vsi(vsi)) {
7208 int frame_size = ice_max_xdp_frame_size(vsi);
7209
7210 if (new_mtu + ICE_ETH_PKT_HDR_PAD > frame_size) {
7211 netdev_err(netdev, "max MTU for XDP usage is %d\n",
7212 frame_size - ICE_ETH_PKT_HDR_PAD);
7213 return -EINVAL;
7214 }
7215 }
7216
7217 /* if a reset is in progress, wait for some time for it to complete */
7218 do {
7219 if (ice_is_reset_in_progress(pf->state)) {
7220 count++;
7221 usleep_range(1000, 2000);
7222 } else {
7223 break;
7224 }
7225
7226 } while (count < 100);
7227
7228 if (count == 100) {
7229 netdev_err(netdev, "can't change MTU. Device is busy\n");
7230 return -EBUSY;
7231 }
7232
7233 netdev->mtu = (unsigned int)new_mtu;
7234
7235 /* if VSI is up, bring it down and then back up */
7236 if (!test_and_set_bit(ICE_VSI_DOWN, vsi->state)) {
7237 err = ice_down(vsi);
7238 if (err) {
7239 netdev_err(netdev, "change MTU if_down err %d\n", err);
7240 return err;
7241 }
7242
7243 err = ice_up(vsi);
7244 if (err) {
7245 netdev_err(netdev, "change MTU if_up err %d\n", err);
7246 return err;
7247 }
7248 }
7249
7250 netdev_dbg(netdev, "changed MTU to %d\n", new_mtu);
7251 set_bit(ICE_FLAG_MTU_CHANGED, pf->flags);
7252
7253 return err;
7254 }
7255
7256 /**
7257 * ice_eth_ioctl - Access the hwtstamp interface
7258 * @netdev: network interface device structure
7259 * @ifr: interface request data
7260 * @cmd: ioctl command
7261 */
ice_eth_ioctl(struct net_device * netdev,struct ifreq * ifr,int cmd)7262 static int ice_eth_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
7263 {
7264 struct ice_netdev_priv *np = netdev_priv(netdev);
7265 struct ice_pf *pf = np->vsi->back;
7266
7267 switch (cmd) {
7268 case SIOCGHWTSTAMP:
7269 return ice_ptp_get_ts_config(pf, ifr);
7270 case SIOCSHWTSTAMP:
7271 return ice_ptp_set_ts_config(pf, ifr);
7272 default:
7273 return -EOPNOTSUPP;
7274 }
7275 }
7276
7277 /**
7278 * ice_aq_str - convert AQ err code to a string
7279 * @aq_err: the AQ error code to convert
7280 */
ice_aq_str(enum ice_aq_err aq_err)7281 const char *ice_aq_str(enum ice_aq_err aq_err)
7282 {
7283 switch (aq_err) {
7284 case ICE_AQ_RC_OK:
7285 return "OK";
7286 case ICE_AQ_RC_EPERM:
7287 return "ICE_AQ_RC_EPERM";
7288 case ICE_AQ_RC_ENOENT:
7289 return "ICE_AQ_RC_ENOENT";
7290 case ICE_AQ_RC_ENOMEM:
7291 return "ICE_AQ_RC_ENOMEM";
7292 case ICE_AQ_RC_EBUSY:
7293 return "ICE_AQ_RC_EBUSY";
7294 case ICE_AQ_RC_EEXIST:
7295 return "ICE_AQ_RC_EEXIST";
7296 case ICE_AQ_RC_EINVAL:
7297 return "ICE_AQ_RC_EINVAL";
7298 case ICE_AQ_RC_ENOSPC:
7299 return "ICE_AQ_RC_ENOSPC";
7300 case ICE_AQ_RC_ENOSYS:
7301 return "ICE_AQ_RC_ENOSYS";
7302 case ICE_AQ_RC_EMODE:
7303 return "ICE_AQ_RC_EMODE";
7304 case ICE_AQ_RC_ENOSEC:
7305 return "ICE_AQ_RC_ENOSEC";
7306 case ICE_AQ_RC_EBADSIG:
7307 return "ICE_AQ_RC_EBADSIG";
7308 case ICE_AQ_RC_ESVN:
7309 return "ICE_AQ_RC_ESVN";
7310 case ICE_AQ_RC_EBADMAN:
7311 return "ICE_AQ_RC_EBADMAN";
7312 case ICE_AQ_RC_EBADBUF:
7313 return "ICE_AQ_RC_EBADBUF";
7314 }
7315
7316 return "ICE_AQ_RC_UNKNOWN";
7317 }
7318
7319 /**
7320 * ice_set_rss_lut - Set RSS LUT
7321 * @vsi: Pointer to VSI structure
7322 * @lut: Lookup table
7323 * @lut_size: Lookup table size
7324 *
7325 * Returns 0 on success, negative on failure
7326 */
ice_set_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7327 int ice_set_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7328 {
7329 struct ice_aq_get_set_rss_lut_params params = {};
7330 struct ice_hw *hw = &vsi->back->hw;
7331 int status;
7332
7333 if (!lut)
7334 return -EINVAL;
7335
7336 params.vsi_handle = vsi->idx;
7337 params.lut_size = lut_size;
7338 params.lut_type = vsi->rss_lut_type;
7339 params.lut = lut;
7340
7341 status = ice_aq_set_rss_lut(hw, ¶ms);
7342 if (status)
7343 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS lut, err %d aq_err %s\n",
7344 status, ice_aq_str(hw->adminq.sq_last_status));
7345
7346 return status;
7347 }
7348
7349 /**
7350 * ice_set_rss_key - Set RSS key
7351 * @vsi: Pointer to the VSI structure
7352 * @seed: RSS hash seed
7353 *
7354 * Returns 0 on success, negative on failure
7355 */
ice_set_rss_key(struct ice_vsi * vsi,u8 * seed)7356 int ice_set_rss_key(struct ice_vsi *vsi, u8 *seed)
7357 {
7358 struct ice_hw *hw = &vsi->back->hw;
7359 int status;
7360
7361 if (!seed)
7362 return -EINVAL;
7363
7364 status = ice_aq_set_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7365 if (status)
7366 dev_err(ice_pf_to_dev(vsi->back), "Cannot set RSS key, err %d aq_err %s\n",
7367 status, ice_aq_str(hw->adminq.sq_last_status));
7368
7369 return status;
7370 }
7371
7372 /**
7373 * ice_get_rss_lut - Get RSS LUT
7374 * @vsi: Pointer to VSI structure
7375 * @lut: Buffer to store the lookup table entries
7376 * @lut_size: Size of buffer to store the lookup table entries
7377 *
7378 * Returns 0 on success, negative on failure
7379 */
ice_get_rss_lut(struct ice_vsi * vsi,u8 * lut,u16 lut_size)7380 int ice_get_rss_lut(struct ice_vsi *vsi, u8 *lut, u16 lut_size)
7381 {
7382 struct ice_aq_get_set_rss_lut_params params = {};
7383 struct ice_hw *hw = &vsi->back->hw;
7384 int status;
7385
7386 if (!lut)
7387 return -EINVAL;
7388
7389 params.vsi_handle = vsi->idx;
7390 params.lut_size = lut_size;
7391 params.lut_type = vsi->rss_lut_type;
7392 params.lut = lut;
7393
7394 status = ice_aq_get_rss_lut(hw, ¶ms);
7395 if (status)
7396 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS lut, err %d aq_err %s\n",
7397 status, ice_aq_str(hw->adminq.sq_last_status));
7398
7399 return status;
7400 }
7401
7402 /**
7403 * ice_get_rss_key - Get RSS key
7404 * @vsi: Pointer to VSI structure
7405 * @seed: Buffer to store the key in
7406 *
7407 * Returns 0 on success, negative on failure
7408 */
ice_get_rss_key(struct ice_vsi * vsi,u8 * seed)7409 int ice_get_rss_key(struct ice_vsi *vsi, u8 *seed)
7410 {
7411 struct ice_hw *hw = &vsi->back->hw;
7412 int status;
7413
7414 if (!seed)
7415 return -EINVAL;
7416
7417 status = ice_aq_get_rss_key(hw, vsi->idx, (struct ice_aqc_get_set_rss_keys *)seed);
7418 if (status)
7419 dev_err(ice_pf_to_dev(vsi->back), "Cannot get RSS key, err %d aq_err %s\n",
7420 status, ice_aq_str(hw->adminq.sq_last_status));
7421
7422 return status;
7423 }
7424
7425 /**
7426 * ice_bridge_getlink - Get the hardware bridge mode
7427 * @skb: skb buff
7428 * @pid: process ID
7429 * @seq: RTNL message seq
7430 * @dev: the netdev being configured
7431 * @filter_mask: filter mask passed in
7432 * @nlflags: netlink flags passed in
7433 *
7434 * Return the bridge mode (VEB/VEPA)
7435 */
7436 static int
ice_bridge_getlink(struct sk_buff * skb,u32 pid,u32 seq,struct net_device * dev,u32 filter_mask,int nlflags)7437 ice_bridge_getlink(struct sk_buff *skb, u32 pid, u32 seq,
7438 struct net_device *dev, u32 filter_mask, int nlflags)
7439 {
7440 struct ice_netdev_priv *np = netdev_priv(dev);
7441 struct ice_vsi *vsi = np->vsi;
7442 struct ice_pf *pf = vsi->back;
7443 u16 bmode;
7444
7445 bmode = pf->first_sw->bridge_mode;
7446
7447 return ndo_dflt_bridge_getlink(skb, pid, seq, dev, bmode, 0, 0, nlflags,
7448 filter_mask, NULL);
7449 }
7450
7451 /**
7452 * ice_vsi_update_bridge_mode - Update VSI for switching bridge mode (VEB/VEPA)
7453 * @vsi: Pointer to VSI structure
7454 * @bmode: Hardware bridge mode (VEB/VEPA)
7455 *
7456 * Returns 0 on success, negative on failure
7457 */
ice_vsi_update_bridge_mode(struct ice_vsi * vsi,u16 bmode)7458 static int ice_vsi_update_bridge_mode(struct ice_vsi *vsi, u16 bmode)
7459 {
7460 struct ice_aqc_vsi_props *vsi_props;
7461 struct ice_hw *hw = &vsi->back->hw;
7462 struct ice_vsi_ctx *ctxt;
7463 int ret;
7464
7465 vsi_props = &vsi->info;
7466
7467 ctxt = kzalloc(sizeof(*ctxt), GFP_KERNEL);
7468 if (!ctxt)
7469 return -ENOMEM;
7470
7471 ctxt->info = vsi->info;
7472
7473 if (bmode == BRIDGE_MODE_VEB)
7474 /* change from VEPA to VEB mode */
7475 ctxt->info.sw_flags |= ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7476 else
7477 /* change from VEB to VEPA mode */
7478 ctxt->info.sw_flags &= ~ICE_AQ_VSI_SW_FLAG_ALLOW_LB;
7479 ctxt->info.valid_sections = cpu_to_le16(ICE_AQ_VSI_PROP_SW_VALID);
7480
7481 ret = ice_update_vsi(hw, vsi->idx, ctxt, NULL);
7482 if (ret) {
7483 dev_err(ice_pf_to_dev(vsi->back), "update VSI for bridge mode failed, bmode = %d err %d aq_err %s\n",
7484 bmode, ret, ice_aq_str(hw->adminq.sq_last_status));
7485 goto out;
7486 }
7487 /* Update sw flags for book keeping */
7488 vsi_props->sw_flags = ctxt->info.sw_flags;
7489
7490 out:
7491 kfree(ctxt);
7492 return ret;
7493 }
7494
7495 /**
7496 * ice_bridge_setlink - Set the hardware bridge mode
7497 * @dev: the netdev being configured
7498 * @nlh: RTNL message
7499 * @flags: bridge setlink flags
7500 * @extack: netlink extended ack
7501 *
7502 * Sets the bridge mode (VEB/VEPA) of the switch to which the netdev (VSI) is
7503 * hooked up to. Iterates through the PF VSI list and sets the loopback mode (if
7504 * not already set for all VSIs connected to this switch. And also update the
7505 * unicast switch filter rules for the corresponding switch of the netdev.
7506 */
7507 static int
ice_bridge_setlink(struct net_device * dev,struct nlmsghdr * nlh,u16 __always_unused flags,struct netlink_ext_ack __always_unused * extack)7508 ice_bridge_setlink(struct net_device *dev, struct nlmsghdr *nlh,
7509 u16 __always_unused flags,
7510 struct netlink_ext_ack __always_unused *extack)
7511 {
7512 struct ice_netdev_priv *np = netdev_priv(dev);
7513 struct ice_pf *pf = np->vsi->back;
7514 struct nlattr *attr, *br_spec;
7515 struct ice_hw *hw = &pf->hw;
7516 struct ice_sw *pf_sw;
7517 int rem, v, err = 0;
7518
7519 pf_sw = pf->first_sw;
7520 /* find the attribute in the netlink message */
7521 br_spec = nlmsg_find_attr(nlh, sizeof(struct ifinfomsg), IFLA_AF_SPEC);
7522
7523 nla_for_each_nested(attr, br_spec, rem) {
7524 __u16 mode;
7525
7526 if (nla_type(attr) != IFLA_BRIDGE_MODE)
7527 continue;
7528 mode = nla_get_u16(attr);
7529 if (mode != BRIDGE_MODE_VEPA && mode != BRIDGE_MODE_VEB)
7530 return -EINVAL;
7531 /* Continue if bridge mode is not being flipped */
7532 if (mode == pf_sw->bridge_mode)
7533 continue;
7534 /* Iterates through the PF VSI list and update the loopback
7535 * mode of the VSI
7536 */
7537 ice_for_each_vsi(pf, v) {
7538 if (!pf->vsi[v])
7539 continue;
7540 err = ice_vsi_update_bridge_mode(pf->vsi[v], mode);
7541 if (err)
7542 return err;
7543 }
7544
7545 hw->evb_veb = (mode == BRIDGE_MODE_VEB);
7546 /* Update the unicast switch filter rules for the corresponding
7547 * switch of the netdev
7548 */
7549 err = ice_update_sw_rule_bridge_mode(hw);
7550 if (err) {
7551 netdev_err(dev, "switch rule update failed, mode = %d err %d aq_err %s\n",
7552 mode, err,
7553 ice_aq_str(hw->adminq.sq_last_status));
7554 /* revert hw->evb_veb */
7555 hw->evb_veb = (pf_sw->bridge_mode == BRIDGE_MODE_VEB);
7556 return err;
7557 }
7558
7559 pf_sw->bridge_mode = mode;
7560 }
7561
7562 return 0;
7563 }
7564
7565 /**
7566 * ice_tx_timeout - Respond to a Tx Hang
7567 * @netdev: network interface device structure
7568 * @txqueue: Tx queue
7569 */
ice_tx_timeout(struct net_device * netdev,unsigned int txqueue)7570 static void ice_tx_timeout(struct net_device *netdev, unsigned int txqueue)
7571 {
7572 struct ice_netdev_priv *np = netdev_priv(netdev);
7573 struct ice_tx_ring *tx_ring = NULL;
7574 struct ice_vsi *vsi = np->vsi;
7575 struct ice_pf *pf = vsi->back;
7576 u32 i;
7577
7578 pf->tx_timeout_count++;
7579
7580 /* Check if PFC is enabled for the TC to which the queue belongs
7581 * to. If yes then Tx timeout is not caused by a hung queue, no
7582 * need to reset and rebuild
7583 */
7584 if (ice_is_pfc_causing_hung_q(pf, txqueue)) {
7585 dev_info(ice_pf_to_dev(pf), "Fake Tx hang detected on queue %u, timeout caused by PFC storm\n",
7586 txqueue);
7587 return;
7588 }
7589
7590 /* now that we have an index, find the tx_ring struct */
7591 ice_for_each_txq(vsi, i)
7592 if (vsi->tx_rings[i] && vsi->tx_rings[i]->desc)
7593 if (txqueue == vsi->tx_rings[i]->q_index) {
7594 tx_ring = vsi->tx_rings[i];
7595 break;
7596 }
7597
7598 /* Reset recovery level if enough time has elapsed after last timeout.
7599 * Also ensure no new reset action happens before next timeout period.
7600 */
7601 if (time_after(jiffies, (pf->tx_timeout_last_recovery + HZ * 20)))
7602 pf->tx_timeout_recovery_level = 1;
7603 else if (time_before(jiffies, (pf->tx_timeout_last_recovery +
7604 netdev->watchdog_timeo)))
7605 return;
7606
7607 if (tx_ring) {
7608 struct ice_hw *hw = &pf->hw;
7609 u32 head, val = 0;
7610
7611 head = (rd32(hw, QTX_COMM_HEAD(vsi->txq_map[txqueue])) &
7612 QTX_COMM_HEAD_HEAD_M) >> QTX_COMM_HEAD_HEAD_S;
7613 /* Read interrupt register */
7614 val = rd32(hw, GLINT_DYN_CTL(tx_ring->q_vector->reg_idx));
7615
7616 netdev_info(netdev, "tx_timeout: VSI_num: %d, Q %u, NTC: 0x%x, HW_HEAD: 0x%x, NTU: 0x%x, INT: 0x%x\n",
7617 vsi->vsi_num, txqueue, tx_ring->next_to_clean,
7618 head, tx_ring->next_to_use, val);
7619 }
7620
7621 pf->tx_timeout_last_recovery = jiffies;
7622 netdev_info(netdev, "tx_timeout recovery level %d, txqueue %u\n",
7623 pf->tx_timeout_recovery_level, txqueue);
7624
7625 switch (pf->tx_timeout_recovery_level) {
7626 case 1:
7627 set_bit(ICE_PFR_REQ, pf->state);
7628 break;
7629 case 2:
7630 set_bit(ICE_CORER_REQ, pf->state);
7631 break;
7632 case 3:
7633 set_bit(ICE_GLOBR_REQ, pf->state);
7634 break;
7635 default:
7636 netdev_err(netdev, "tx_timeout recovery unsuccessful, device is in unrecoverable state.\n");
7637 set_bit(ICE_DOWN, pf->state);
7638 set_bit(ICE_VSI_NEEDS_RESTART, vsi->state);
7639 set_bit(ICE_SERVICE_DIS, pf->state);
7640 break;
7641 }
7642
7643 ice_service_task_schedule(pf);
7644 pf->tx_timeout_recovery_level++;
7645 }
7646
7647 /**
7648 * ice_setup_tc_cls_flower - flower classifier offloads
7649 * @np: net device to configure
7650 * @filter_dev: device on which filter is added
7651 * @cls_flower: offload data
7652 */
7653 static int
ice_setup_tc_cls_flower(struct ice_netdev_priv * np,struct net_device * filter_dev,struct flow_cls_offload * cls_flower)7654 ice_setup_tc_cls_flower(struct ice_netdev_priv *np,
7655 struct net_device *filter_dev,
7656 struct flow_cls_offload *cls_flower)
7657 {
7658 struct ice_vsi *vsi = np->vsi;
7659
7660 if (cls_flower->common.chain_index)
7661 return -EOPNOTSUPP;
7662
7663 switch (cls_flower->command) {
7664 case FLOW_CLS_REPLACE:
7665 return ice_add_cls_flower(filter_dev, vsi, cls_flower);
7666 case FLOW_CLS_DESTROY:
7667 return ice_del_cls_flower(vsi, cls_flower);
7668 default:
7669 return -EINVAL;
7670 }
7671 }
7672
7673 /**
7674 * ice_setup_tc_block_cb - callback handler registered for TC block
7675 * @type: TC SETUP type
7676 * @type_data: TC flower offload data that contains user input
7677 * @cb_priv: netdev private data
7678 */
7679 static int
ice_setup_tc_block_cb(enum tc_setup_type type,void * type_data,void * cb_priv)7680 ice_setup_tc_block_cb(enum tc_setup_type type, void *type_data, void *cb_priv)
7681 {
7682 struct ice_netdev_priv *np = cb_priv;
7683
7684 switch (type) {
7685 case TC_SETUP_CLSFLOWER:
7686 return ice_setup_tc_cls_flower(np, np->vsi->netdev,
7687 type_data);
7688 default:
7689 return -EOPNOTSUPP;
7690 }
7691 }
7692
7693 /**
7694 * ice_validate_mqprio_qopt - Validate TCF input parameters
7695 * @vsi: Pointer to VSI
7696 * @mqprio_qopt: input parameters for mqprio queue configuration
7697 *
7698 * This function validates MQPRIO params, such as qcount (power of 2 wherever
7699 * needed), and make sure user doesn't specify qcount and BW rate limit
7700 * for TCs, which are more than "num_tc"
7701 */
7702 static int
ice_validate_mqprio_qopt(struct ice_vsi * vsi,struct tc_mqprio_qopt_offload * mqprio_qopt)7703 ice_validate_mqprio_qopt(struct ice_vsi *vsi,
7704 struct tc_mqprio_qopt_offload *mqprio_qopt)
7705 {
7706 u64 sum_max_rate = 0, sum_min_rate = 0;
7707 int non_power_of_2_qcount = 0;
7708 struct ice_pf *pf = vsi->back;
7709 int max_rss_q_cnt = 0;
7710 struct device *dev;
7711 int i, speed;
7712 u8 num_tc;
7713
7714 if (vsi->type != ICE_VSI_PF)
7715 return -EINVAL;
7716
7717 if (mqprio_qopt->qopt.offset[0] != 0 ||
7718 mqprio_qopt->qopt.num_tc < 1 ||
7719 mqprio_qopt->qopt.num_tc > ICE_CHNL_MAX_TC)
7720 return -EINVAL;
7721
7722 dev = ice_pf_to_dev(pf);
7723 vsi->ch_rss_size = 0;
7724 num_tc = mqprio_qopt->qopt.num_tc;
7725
7726 for (i = 0; num_tc; i++) {
7727 int qcount = mqprio_qopt->qopt.count[i];
7728 u64 max_rate, min_rate, rem;
7729
7730 if (!qcount)
7731 return -EINVAL;
7732
7733 if (is_power_of_2(qcount)) {
7734 if (non_power_of_2_qcount &&
7735 qcount > non_power_of_2_qcount) {
7736 dev_err(dev, "qcount[%d] cannot be greater than non power of 2 qcount[%d]\n",
7737 qcount, non_power_of_2_qcount);
7738 return -EINVAL;
7739 }
7740 if (qcount > max_rss_q_cnt)
7741 max_rss_q_cnt = qcount;
7742 } else {
7743 if (non_power_of_2_qcount &&
7744 qcount != non_power_of_2_qcount) {
7745 dev_err(dev, "Only one non power of 2 qcount allowed[%d,%d]\n",
7746 qcount, non_power_of_2_qcount);
7747 return -EINVAL;
7748 }
7749 if (qcount < max_rss_q_cnt) {
7750 dev_err(dev, "non power of 2 qcount[%d] cannot be less than other qcount[%d]\n",
7751 qcount, max_rss_q_cnt);
7752 return -EINVAL;
7753 }
7754 max_rss_q_cnt = qcount;
7755 non_power_of_2_qcount = qcount;
7756 }
7757
7758 /* TC command takes input in K/N/Gbps or K/M/Gbit etc but
7759 * converts the bandwidth rate limit into Bytes/s when
7760 * passing it down to the driver. So convert input bandwidth
7761 * from Bytes/s to Kbps
7762 */
7763 max_rate = mqprio_qopt->max_rate[i];
7764 max_rate = div_u64(max_rate, ICE_BW_KBPS_DIVISOR);
7765 sum_max_rate += max_rate;
7766
7767 /* min_rate is minimum guaranteed rate and it can't be zero */
7768 min_rate = mqprio_qopt->min_rate[i];
7769 min_rate = div_u64(min_rate, ICE_BW_KBPS_DIVISOR);
7770 sum_min_rate += min_rate;
7771
7772 if (min_rate && min_rate < ICE_MIN_BW_LIMIT) {
7773 dev_err(dev, "TC%d: min_rate(%llu Kbps) < %u Kbps\n", i,
7774 min_rate, ICE_MIN_BW_LIMIT);
7775 return -EINVAL;
7776 }
7777
7778 iter_div_u64_rem(min_rate, ICE_MIN_BW_LIMIT, &rem);
7779 if (rem) {
7780 dev_err(dev, "TC%d: Min Rate not multiple of %u Kbps",
7781 i, ICE_MIN_BW_LIMIT);
7782 return -EINVAL;
7783 }
7784
7785 iter_div_u64_rem(max_rate, ICE_MIN_BW_LIMIT, &rem);
7786 if (rem) {
7787 dev_err(dev, "TC%d: Max Rate not multiple of %u Kbps",
7788 i, ICE_MIN_BW_LIMIT);
7789 return -EINVAL;
7790 }
7791
7792 /* min_rate can't be more than max_rate, except when max_rate
7793 * is zero (implies max_rate sought is max line rate). In such
7794 * a case min_rate can be more than max.
7795 */
7796 if (max_rate && min_rate > max_rate) {
7797 dev_err(dev, "min_rate %llu Kbps can't be more than max_rate %llu Kbps\n",
7798 min_rate, max_rate);
7799 return -EINVAL;
7800 }
7801
7802 if (i >= mqprio_qopt->qopt.num_tc - 1)
7803 break;
7804 if (mqprio_qopt->qopt.offset[i + 1] !=
7805 (mqprio_qopt->qopt.offset[i] + qcount))
7806 return -EINVAL;
7807 }
7808 if (vsi->num_rxq <
7809 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7810 return -EINVAL;
7811 if (vsi->num_txq <
7812 (mqprio_qopt->qopt.offset[i] + mqprio_qopt->qopt.count[i]))
7813 return -EINVAL;
7814
7815 speed = ice_get_link_speed_kbps(vsi);
7816 if (sum_max_rate && sum_max_rate > (u64)speed) {
7817 dev_err(dev, "Invalid max Tx rate(%llu) Kbps > speed(%u) Kbps specified\n",
7818 sum_max_rate, speed);
7819 return -EINVAL;
7820 }
7821 if (sum_min_rate && sum_min_rate > (u64)speed) {
7822 dev_err(dev, "Invalid min Tx rate(%llu) Kbps > speed (%u) Kbps specified\n",
7823 sum_min_rate, speed);
7824 return -EINVAL;
7825 }
7826
7827 /* make sure vsi->ch_rss_size is set correctly based on TC's qcount */
7828 vsi->ch_rss_size = max_rss_q_cnt;
7829
7830 return 0;
7831 }
7832
7833 /**
7834 * ice_add_vsi_to_fdir - add a VSI to the flow director group for PF
7835 * @pf: ptr to PF device
7836 * @vsi: ptr to VSI
7837 */
ice_add_vsi_to_fdir(struct ice_pf * pf,struct ice_vsi * vsi)7838 static int ice_add_vsi_to_fdir(struct ice_pf *pf, struct ice_vsi *vsi)
7839 {
7840 struct device *dev = ice_pf_to_dev(pf);
7841 bool added = false;
7842 struct ice_hw *hw;
7843 int flow;
7844
7845 if (!(vsi->num_gfltr || vsi->num_bfltr))
7846 return -EINVAL;
7847
7848 hw = &pf->hw;
7849 for (flow = 0; flow < ICE_FLTR_PTYPE_MAX; flow++) {
7850 struct ice_fd_hw_prof *prof;
7851 int tun, status;
7852 u64 entry_h;
7853
7854 if (!(hw->fdir_prof && hw->fdir_prof[flow] &&
7855 hw->fdir_prof[flow]->cnt))
7856 continue;
7857
7858 for (tun = 0; tun < ICE_FD_HW_SEG_MAX; tun++) {
7859 enum ice_flow_priority prio;
7860 u64 prof_id;
7861
7862 /* add this VSI to FDir profile for this flow */
7863 prio = ICE_FLOW_PRIO_NORMAL;
7864 prof = hw->fdir_prof[flow];
7865 prof_id = flow + tun * ICE_FLTR_PTYPE_MAX;
7866 status = ice_flow_add_entry(hw, ICE_BLK_FD, prof_id,
7867 prof->vsi_h[0], vsi->idx,
7868 prio, prof->fdir_seg[tun],
7869 &entry_h);
7870 if (status) {
7871 dev_err(dev, "channel VSI idx %d, not able to add to group %d\n",
7872 vsi->idx, flow);
7873 continue;
7874 }
7875
7876 prof->entry_h[prof->cnt][tun] = entry_h;
7877 }
7878
7879 /* store VSI for filter replay and delete */
7880 prof->vsi_h[prof->cnt] = vsi->idx;
7881 prof->cnt++;
7882
7883 added = true;
7884 dev_dbg(dev, "VSI idx %d added to fdir group %d\n", vsi->idx,
7885 flow);
7886 }
7887
7888 if (!added)
7889 dev_dbg(dev, "VSI idx %d not added to fdir groups\n", vsi->idx);
7890
7891 return 0;
7892 }
7893
7894 /**
7895 * ice_add_channel - add a channel by adding VSI
7896 * @pf: ptr to PF device
7897 * @sw_id: underlying HW switching element ID
7898 * @ch: ptr to channel structure
7899 *
7900 * Add a channel (VSI) using add_vsi and queue_map
7901 */
ice_add_channel(struct ice_pf * pf,u16 sw_id,struct ice_channel * ch)7902 static int ice_add_channel(struct ice_pf *pf, u16 sw_id, struct ice_channel *ch)
7903 {
7904 struct device *dev = ice_pf_to_dev(pf);
7905 struct ice_vsi *vsi;
7906
7907 if (ch->type != ICE_VSI_CHNL) {
7908 dev_err(dev, "add new VSI failed, ch->type %d\n", ch->type);
7909 return -EINVAL;
7910 }
7911
7912 vsi = ice_chnl_vsi_setup(pf, pf->hw.port_info, ch);
7913 if (!vsi || vsi->type != ICE_VSI_CHNL) {
7914 dev_err(dev, "create chnl VSI failure\n");
7915 return -EINVAL;
7916 }
7917
7918 ice_add_vsi_to_fdir(pf, vsi);
7919
7920 ch->sw_id = sw_id;
7921 ch->vsi_num = vsi->vsi_num;
7922 ch->info.mapping_flags = vsi->info.mapping_flags;
7923 ch->ch_vsi = vsi;
7924 /* set the back pointer of channel for newly created VSI */
7925 vsi->ch = ch;
7926
7927 memcpy(&ch->info.q_mapping, &vsi->info.q_mapping,
7928 sizeof(vsi->info.q_mapping));
7929 memcpy(&ch->info.tc_mapping, vsi->info.tc_mapping,
7930 sizeof(vsi->info.tc_mapping));
7931
7932 return 0;
7933 }
7934
7935 /**
7936 * ice_chnl_cfg_res
7937 * @vsi: the VSI being setup
7938 * @ch: ptr to channel structure
7939 *
7940 * Configure channel specific resources such as rings, vector.
7941 */
ice_chnl_cfg_res(struct ice_vsi * vsi,struct ice_channel * ch)7942 static void ice_chnl_cfg_res(struct ice_vsi *vsi, struct ice_channel *ch)
7943 {
7944 int i;
7945
7946 for (i = 0; i < ch->num_txq; i++) {
7947 struct ice_q_vector *tx_q_vector, *rx_q_vector;
7948 struct ice_ring_container *rc;
7949 struct ice_tx_ring *tx_ring;
7950 struct ice_rx_ring *rx_ring;
7951
7952 tx_ring = vsi->tx_rings[ch->base_q + i];
7953 rx_ring = vsi->rx_rings[ch->base_q + i];
7954 if (!tx_ring || !rx_ring)
7955 continue;
7956
7957 /* setup ring being channel enabled */
7958 tx_ring->ch = ch;
7959 rx_ring->ch = ch;
7960
7961 /* following code block sets up vector specific attributes */
7962 tx_q_vector = tx_ring->q_vector;
7963 rx_q_vector = rx_ring->q_vector;
7964 if (!tx_q_vector && !rx_q_vector)
7965 continue;
7966
7967 if (tx_q_vector) {
7968 tx_q_vector->ch = ch;
7969 /* setup Tx and Rx ITR setting if DIM is off */
7970 rc = &tx_q_vector->tx;
7971 if (!ITR_IS_DYNAMIC(rc))
7972 ice_write_itr(rc, rc->itr_setting);
7973 }
7974 if (rx_q_vector) {
7975 rx_q_vector->ch = ch;
7976 /* setup Tx and Rx ITR setting if DIM is off */
7977 rc = &rx_q_vector->rx;
7978 if (!ITR_IS_DYNAMIC(rc))
7979 ice_write_itr(rc, rc->itr_setting);
7980 }
7981 }
7982
7983 /* it is safe to assume that, if channel has non-zero num_t[r]xq, then
7984 * GLINT_ITR register would have written to perform in-context
7985 * update, hence perform flush
7986 */
7987 if (ch->num_txq || ch->num_rxq)
7988 ice_flush(&vsi->back->hw);
7989 }
7990
7991 /**
7992 * ice_cfg_chnl_all_res - configure channel resources
7993 * @vsi: pte to main_vsi
7994 * @ch: ptr to channel structure
7995 *
7996 * This function configures channel specific resources such as flow-director
7997 * counter index, and other resources such as queues, vectors, ITR settings
7998 */
7999 static void
ice_cfg_chnl_all_res(struct ice_vsi * vsi,struct ice_channel * ch)8000 ice_cfg_chnl_all_res(struct ice_vsi *vsi, struct ice_channel *ch)
8001 {
8002 /* configure channel (aka ADQ) resources such as queues, vectors,
8003 * ITR settings for channel specific vectors and anything else
8004 */
8005 ice_chnl_cfg_res(vsi, ch);
8006 }
8007
8008 /**
8009 * ice_setup_hw_channel - setup new channel
8010 * @pf: ptr to PF device
8011 * @vsi: the VSI being setup
8012 * @ch: ptr to channel structure
8013 * @sw_id: underlying HW switching element ID
8014 * @type: type of channel to be created (VMDq2/VF)
8015 *
8016 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8017 * and configures Tx rings accordingly
8018 */
8019 static int
ice_setup_hw_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch,u16 sw_id,u8 type)8020 ice_setup_hw_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8021 struct ice_channel *ch, u16 sw_id, u8 type)
8022 {
8023 struct device *dev = ice_pf_to_dev(pf);
8024 int ret;
8025
8026 ch->base_q = vsi->next_base_q;
8027 ch->type = type;
8028
8029 ret = ice_add_channel(pf, sw_id, ch);
8030 if (ret) {
8031 dev_err(dev, "failed to add_channel using sw_id %u\n", sw_id);
8032 return ret;
8033 }
8034
8035 /* configure/setup ADQ specific resources */
8036 ice_cfg_chnl_all_res(vsi, ch);
8037
8038 /* make sure to update the next_base_q so that subsequent channel's
8039 * (aka ADQ) VSI queue map is correct
8040 */
8041 vsi->next_base_q = vsi->next_base_q + ch->num_rxq;
8042 dev_dbg(dev, "added channel: vsi_num %u, num_rxq %u\n", ch->vsi_num,
8043 ch->num_rxq);
8044
8045 return 0;
8046 }
8047
8048 /**
8049 * ice_setup_channel - setup new channel using uplink element
8050 * @pf: ptr to PF device
8051 * @vsi: the VSI being setup
8052 * @ch: ptr to channel structure
8053 *
8054 * Setup new channel (VSI) based on specified type (VMDq2/VF)
8055 * and uplink switching element
8056 */
8057 static bool
ice_setup_channel(struct ice_pf * pf,struct ice_vsi * vsi,struct ice_channel * ch)8058 ice_setup_channel(struct ice_pf *pf, struct ice_vsi *vsi,
8059 struct ice_channel *ch)
8060 {
8061 struct device *dev = ice_pf_to_dev(pf);
8062 u16 sw_id;
8063 int ret;
8064
8065 if (vsi->type != ICE_VSI_PF) {
8066 dev_err(dev, "unsupported parent VSI type(%d)\n", vsi->type);
8067 return false;
8068 }
8069
8070 sw_id = pf->first_sw->sw_id;
8071
8072 /* create channel (VSI) */
8073 ret = ice_setup_hw_channel(pf, vsi, ch, sw_id, ICE_VSI_CHNL);
8074 if (ret) {
8075 dev_err(dev, "failed to setup hw_channel\n");
8076 return false;
8077 }
8078 dev_dbg(dev, "successfully created channel()\n");
8079
8080 return ch->ch_vsi ? true : false;
8081 }
8082
8083 /**
8084 * ice_set_bw_limit - setup BW limit for Tx traffic based on max_tx_rate
8085 * @vsi: VSI to be configured
8086 * @max_tx_rate: max Tx rate in Kbps to be configured as maximum BW limit
8087 * @min_tx_rate: min Tx rate in Kbps to be configured as minimum BW limit
8088 */
8089 static int
ice_set_bw_limit(struct ice_vsi * vsi,u64 max_tx_rate,u64 min_tx_rate)8090 ice_set_bw_limit(struct ice_vsi *vsi, u64 max_tx_rate, u64 min_tx_rate)
8091 {
8092 int err;
8093
8094 err = ice_set_min_bw_limit(vsi, min_tx_rate);
8095 if (err)
8096 return err;
8097
8098 return ice_set_max_bw_limit(vsi, max_tx_rate);
8099 }
8100
8101 /**
8102 * ice_create_q_channel - function to create channel
8103 * @vsi: VSI to be configured
8104 * @ch: ptr to channel (it contains channel specific params)
8105 *
8106 * This function creates channel (VSI) using num_queues specified by user,
8107 * reconfigs RSS if needed.
8108 */
ice_create_q_channel(struct ice_vsi * vsi,struct ice_channel * ch)8109 static int ice_create_q_channel(struct ice_vsi *vsi, struct ice_channel *ch)
8110 {
8111 struct ice_pf *pf = vsi->back;
8112 struct device *dev;
8113
8114 if (!ch)
8115 return -EINVAL;
8116
8117 dev = ice_pf_to_dev(pf);
8118 if (!ch->num_txq || !ch->num_rxq) {
8119 dev_err(dev, "Invalid num_queues requested: %d\n", ch->num_rxq);
8120 return -EINVAL;
8121 }
8122
8123 if (!vsi->cnt_q_avail || vsi->cnt_q_avail < ch->num_txq) {
8124 dev_err(dev, "cnt_q_avail (%u) less than num_queues %d\n",
8125 vsi->cnt_q_avail, ch->num_txq);
8126 return -EINVAL;
8127 }
8128
8129 if (!ice_setup_channel(pf, vsi, ch)) {
8130 dev_info(dev, "Failed to setup channel\n");
8131 return -EINVAL;
8132 }
8133 /* configure BW rate limit */
8134 if (ch->ch_vsi && (ch->max_tx_rate || ch->min_tx_rate)) {
8135 int ret;
8136
8137 ret = ice_set_bw_limit(ch->ch_vsi, ch->max_tx_rate,
8138 ch->min_tx_rate);
8139 if (ret)
8140 dev_err(dev, "failed to set Tx rate of %llu Kbps for VSI(%u)\n",
8141 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8142 else
8143 dev_dbg(dev, "set Tx rate of %llu Kbps for VSI(%u)\n",
8144 ch->max_tx_rate, ch->ch_vsi->vsi_num);
8145 }
8146
8147 vsi->cnt_q_avail -= ch->num_txq;
8148
8149 return 0;
8150 }
8151
8152 /**
8153 * ice_rem_all_chnl_fltrs - removes all channel filters
8154 * @pf: ptr to PF, TC-flower based filter are tracked at PF level
8155 *
8156 * Remove all advanced switch filters only if they are channel specific
8157 * tc-flower based filter
8158 */
ice_rem_all_chnl_fltrs(struct ice_pf * pf)8159 static void ice_rem_all_chnl_fltrs(struct ice_pf *pf)
8160 {
8161 struct ice_tc_flower_fltr *fltr;
8162 struct hlist_node *node;
8163
8164 /* to remove all channel filters, iterate an ordered list of filters */
8165 hlist_for_each_entry_safe(fltr, node,
8166 &pf->tc_flower_fltr_list,
8167 tc_flower_node) {
8168 struct ice_rule_query_data rule;
8169 int status;
8170
8171 /* for now process only channel specific filters */
8172 if (!ice_is_chnl_fltr(fltr))
8173 continue;
8174
8175 rule.rid = fltr->rid;
8176 rule.rule_id = fltr->rule_id;
8177 rule.vsi_handle = fltr->dest_id;
8178 status = ice_rem_adv_rule_by_id(&pf->hw, &rule);
8179 if (status) {
8180 if (status == -ENOENT)
8181 dev_dbg(ice_pf_to_dev(pf), "TC flower filter (rule_id %u) does not exist\n",
8182 rule.rule_id);
8183 else
8184 dev_err(ice_pf_to_dev(pf), "failed to delete TC flower filter, status %d\n",
8185 status);
8186 } else if (fltr->dest_vsi) {
8187 /* update advanced switch filter count */
8188 if (fltr->dest_vsi->type == ICE_VSI_CHNL) {
8189 u32 flags = fltr->flags;
8190
8191 fltr->dest_vsi->num_chnl_fltr--;
8192 if (flags & (ICE_TC_FLWR_FIELD_DST_MAC |
8193 ICE_TC_FLWR_FIELD_ENC_DST_MAC))
8194 pf->num_dmac_chnl_fltrs--;
8195 }
8196 }
8197
8198 hlist_del(&fltr->tc_flower_node);
8199 kfree(fltr);
8200 }
8201 }
8202
8203 /**
8204 * ice_remove_q_channels - Remove queue channels for the TCs
8205 * @vsi: VSI to be configured
8206 * @rem_fltr: delete advanced switch filter or not
8207 *
8208 * Remove queue channels for the TCs
8209 */
ice_remove_q_channels(struct ice_vsi * vsi,bool rem_fltr)8210 static void ice_remove_q_channels(struct ice_vsi *vsi, bool rem_fltr)
8211 {
8212 struct ice_channel *ch, *ch_tmp;
8213 struct ice_pf *pf = vsi->back;
8214 int i;
8215
8216 /* remove all tc-flower based filter if they are channel filters only */
8217 if (rem_fltr)
8218 ice_rem_all_chnl_fltrs(pf);
8219
8220 /* remove ntuple filters since queue configuration is being changed */
8221 if (vsi->netdev->features & NETIF_F_NTUPLE) {
8222 struct ice_hw *hw = &pf->hw;
8223
8224 mutex_lock(&hw->fdir_fltr_lock);
8225 ice_fdir_del_all_fltrs(vsi);
8226 mutex_unlock(&hw->fdir_fltr_lock);
8227 }
8228
8229 /* perform cleanup for channels if they exist */
8230 list_for_each_entry_safe(ch, ch_tmp, &vsi->ch_list, list) {
8231 struct ice_vsi *ch_vsi;
8232
8233 list_del(&ch->list);
8234 ch_vsi = ch->ch_vsi;
8235 if (!ch_vsi) {
8236 kfree(ch);
8237 continue;
8238 }
8239
8240 /* Reset queue contexts */
8241 for (i = 0; i < ch->num_rxq; i++) {
8242 struct ice_tx_ring *tx_ring;
8243 struct ice_rx_ring *rx_ring;
8244
8245 tx_ring = vsi->tx_rings[ch->base_q + i];
8246 rx_ring = vsi->rx_rings[ch->base_q + i];
8247 if (tx_ring) {
8248 tx_ring->ch = NULL;
8249 if (tx_ring->q_vector)
8250 tx_ring->q_vector->ch = NULL;
8251 }
8252 if (rx_ring) {
8253 rx_ring->ch = NULL;
8254 if (rx_ring->q_vector)
8255 rx_ring->q_vector->ch = NULL;
8256 }
8257 }
8258
8259 /* Release FD resources for the channel VSI */
8260 ice_fdir_rem_adq_chnl(&pf->hw, ch->ch_vsi->idx);
8261
8262 /* clear the VSI from scheduler tree */
8263 ice_rm_vsi_lan_cfg(ch->ch_vsi->port_info, ch->ch_vsi->idx);
8264
8265 /* Delete VSI from FW */
8266 ice_vsi_delete(ch->ch_vsi);
8267
8268 /* Delete VSI from PF and HW VSI arrays */
8269 ice_vsi_clear(ch->ch_vsi);
8270
8271 /* free the channel */
8272 kfree(ch);
8273 }
8274
8275 /* clear the channel VSI map which is stored in main VSI */
8276 ice_for_each_chnl_tc(i)
8277 vsi->tc_map_vsi[i] = NULL;
8278
8279 /* reset main VSI's all TC information */
8280 vsi->all_enatc = 0;
8281 vsi->all_numtc = 0;
8282 }
8283
8284 /**
8285 * ice_rebuild_channels - rebuild channel
8286 * @pf: ptr to PF
8287 *
8288 * Recreate channel VSIs and replay filters
8289 */
ice_rebuild_channels(struct ice_pf * pf)8290 static int ice_rebuild_channels(struct ice_pf *pf)
8291 {
8292 struct device *dev = ice_pf_to_dev(pf);
8293 struct ice_vsi *main_vsi;
8294 bool rem_adv_fltr = true;
8295 struct ice_channel *ch;
8296 struct ice_vsi *vsi;
8297 int tc_idx = 1;
8298 int i, err;
8299
8300 main_vsi = ice_get_main_vsi(pf);
8301 if (!main_vsi)
8302 return 0;
8303
8304 if (!test_bit(ICE_FLAG_TC_MQPRIO, pf->flags) ||
8305 main_vsi->old_numtc == 1)
8306 return 0; /* nothing to be done */
8307
8308 /* reconfigure main VSI based on old value of TC and cached values
8309 * for MQPRIO opts
8310 */
8311 err = ice_vsi_cfg_tc(main_vsi, main_vsi->old_ena_tc);
8312 if (err) {
8313 dev_err(dev, "failed configuring TC(ena_tc:0x%02x) for HW VSI=%u\n",
8314 main_vsi->old_ena_tc, main_vsi->vsi_num);
8315 return err;
8316 }
8317
8318 /* rebuild ADQ VSIs */
8319 ice_for_each_vsi(pf, i) {
8320 enum ice_vsi_type type;
8321
8322 vsi = pf->vsi[i];
8323 if (!vsi || vsi->type != ICE_VSI_CHNL)
8324 continue;
8325
8326 type = vsi->type;
8327
8328 /* rebuild ADQ VSI */
8329 err = ice_vsi_rebuild(vsi, true);
8330 if (err) {
8331 dev_err(dev, "VSI (type:%s) at index %d rebuild failed, err %d\n",
8332 ice_vsi_type_str(type), vsi->idx, err);
8333 goto cleanup;
8334 }
8335
8336 /* Re-map HW VSI number, using VSI handle that has been
8337 * previously validated in ice_replay_vsi() call above
8338 */
8339 vsi->vsi_num = ice_get_hw_vsi_num(&pf->hw, vsi->idx);
8340
8341 /* replay filters for the VSI */
8342 err = ice_replay_vsi(&pf->hw, vsi->idx);
8343 if (err) {
8344 dev_err(dev, "VSI (type:%s) replay failed, err %d, VSI index %d\n",
8345 ice_vsi_type_str(type), err, vsi->idx);
8346 rem_adv_fltr = false;
8347 goto cleanup;
8348 }
8349 dev_info(dev, "VSI (type:%s) at index %d rebuilt successfully\n",
8350 ice_vsi_type_str(type), vsi->idx);
8351
8352 /* store ADQ VSI at correct TC index in main VSI's
8353 * map of TC to VSI
8354 */
8355 main_vsi->tc_map_vsi[tc_idx++] = vsi;
8356 }
8357
8358 /* ADQ VSI(s) has been rebuilt successfully, so setup
8359 * channel for main VSI's Tx and Rx rings
8360 */
8361 list_for_each_entry(ch, &main_vsi->ch_list, list) {
8362 struct ice_vsi *ch_vsi;
8363
8364 ch_vsi = ch->ch_vsi;
8365 if (!ch_vsi)
8366 continue;
8367
8368 /* reconfig channel resources */
8369 ice_cfg_chnl_all_res(main_vsi, ch);
8370
8371 /* replay BW rate limit if it is non-zero */
8372 if (!ch->max_tx_rate && !ch->min_tx_rate)
8373 continue;
8374
8375 err = ice_set_bw_limit(ch_vsi, ch->max_tx_rate,
8376 ch->min_tx_rate);
8377 if (err)
8378 dev_err(dev, "failed (err:%d) to rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8379 err, ch->max_tx_rate, ch->min_tx_rate,
8380 ch_vsi->vsi_num);
8381 else
8382 dev_dbg(dev, "successfully rebuild BW rate limit, max_tx_rate: %llu Kbps, min_tx_rate: %llu Kbps for VSI(%u)\n",
8383 ch->max_tx_rate, ch->min_tx_rate,
8384 ch_vsi->vsi_num);
8385 }
8386
8387 /* reconfig RSS for main VSI */
8388 if (main_vsi->ch_rss_size)
8389 ice_vsi_cfg_rss_lut_key(main_vsi);
8390
8391 return 0;
8392
8393 cleanup:
8394 ice_remove_q_channels(main_vsi, rem_adv_fltr);
8395 return err;
8396 }
8397
8398 /**
8399 * ice_create_q_channels - Add queue channel for the given TCs
8400 * @vsi: VSI to be configured
8401 *
8402 * Configures queue channel mapping to the given TCs
8403 */
ice_create_q_channels(struct ice_vsi * vsi)8404 static int ice_create_q_channels(struct ice_vsi *vsi)
8405 {
8406 struct ice_pf *pf = vsi->back;
8407 struct ice_channel *ch;
8408 int ret = 0, i;
8409
8410 ice_for_each_chnl_tc(i) {
8411 if (!(vsi->all_enatc & BIT(i)))
8412 continue;
8413
8414 ch = kzalloc(sizeof(*ch), GFP_KERNEL);
8415 if (!ch) {
8416 ret = -ENOMEM;
8417 goto err_free;
8418 }
8419 INIT_LIST_HEAD(&ch->list);
8420 ch->num_rxq = vsi->mqprio_qopt.qopt.count[i];
8421 ch->num_txq = vsi->mqprio_qopt.qopt.count[i];
8422 ch->base_q = vsi->mqprio_qopt.qopt.offset[i];
8423 ch->max_tx_rate = vsi->mqprio_qopt.max_rate[i];
8424 ch->min_tx_rate = vsi->mqprio_qopt.min_rate[i];
8425
8426 /* convert to Kbits/s */
8427 if (ch->max_tx_rate)
8428 ch->max_tx_rate = div_u64(ch->max_tx_rate,
8429 ICE_BW_KBPS_DIVISOR);
8430 if (ch->min_tx_rate)
8431 ch->min_tx_rate = div_u64(ch->min_tx_rate,
8432 ICE_BW_KBPS_DIVISOR);
8433
8434 ret = ice_create_q_channel(vsi, ch);
8435 if (ret) {
8436 dev_err(ice_pf_to_dev(pf),
8437 "failed creating channel TC:%d\n", i);
8438 kfree(ch);
8439 goto err_free;
8440 }
8441 list_add_tail(&ch->list, &vsi->ch_list);
8442 vsi->tc_map_vsi[i] = ch->ch_vsi;
8443 dev_dbg(ice_pf_to_dev(pf),
8444 "successfully created channel: VSI %pK\n", ch->ch_vsi);
8445 }
8446 return 0;
8447
8448 err_free:
8449 ice_remove_q_channels(vsi, false);
8450
8451 return ret;
8452 }
8453
8454 /**
8455 * ice_setup_tc_mqprio_qdisc - configure multiple traffic classes
8456 * @netdev: net device to configure
8457 * @type_data: TC offload data
8458 */
ice_setup_tc_mqprio_qdisc(struct net_device * netdev,void * type_data)8459 static int ice_setup_tc_mqprio_qdisc(struct net_device *netdev, void *type_data)
8460 {
8461 struct tc_mqprio_qopt_offload *mqprio_qopt = type_data;
8462 struct ice_netdev_priv *np = netdev_priv(netdev);
8463 struct ice_vsi *vsi = np->vsi;
8464 struct ice_pf *pf = vsi->back;
8465 u16 mode, ena_tc_qdisc = 0;
8466 int cur_txq, cur_rxq;
8467 u8 hw = 0, num_tcf;
8468 struct device *dev;
8469 int ret, i;
8470
8471 dev = ice_pf_to_dev(pf);
8472 num_tcf = mqprio_qopt->qopt.num_tc;
8473 hw = mqprio_qopt->qopt.hw;
8474 mode = mqprio_qopt->mode;
8475 if (!hw) {
8476 clear_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8477 vsi->ch_rss_size = 0;
8478 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8479 goto config_tcf;
8480 }
8481
8482 /* Generate queue region map for number of TCF requested */
8483 for (i = 0; i < num_tcf; i++)
8484 ena_tc_qdisc |= BIT(i);
8485
8486 switch (mode) {
8487 case TC_MQPRIO_MODE_CHANNEL:
8488
8489 ret = ice_validate_mqprio_qopt(vsi, mqprio_qopt);
8490 if (ret) {
8491 netdev_err(netdev, "failed to validate_mqprio_qopt(), ret %d\n",
8492 ret);
8493 return ret;
8494 }
8495 memcpy(&vsi->mqprio_qopt, mqprio_qopt, sizeof(*mqprio_qopt));
8496 set_bit(ICE_FLAG_TC_MQPRIO, pf->flags);
8497 /* don't assume state of hw_tc_offload during driver load
8498 * and set the flag for TC flower filter if hw_tc_offload
8499 * already ON
8500 */
8501 if (vsi->netdev->features & NETIF_F_HW_TC)
8502 set_bit(ICE_FLAG_CLS_FLOWER, pf->flags);
8503 break;
8504 default:
8505 return -EINVAL;
8506 }
8507
8508 config_tcf:
8509
8510 /* Requesting same TCF configuration as already enabled */
8511 if (ena_tc_qdisc == vsi->tc_cfg.ena_tc &&
8512 mode != TC_MQPRIO_MODE_CHANNEL)
8513 return 0;
8514
8515 /* Pause VSI queues */
8516 ice_dis_vsi(vsi, true);
8517
8518 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags))
8519 ice_remove_q_channels(vsi, true);
8520
8521 if (!hw && !test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8522 vsi->req_txq = min_t(int, ice_get_avail_txq_count(pf),
8523 num_online_cpus());
8524 vsi->req_rxq = min_t(int, ice_get_avail_rxq_count(pf),
8525 num_online_cpus());
8526 } else {
8527 /* logic to rebuild VSI, same like ethtool -L */
8528 u16 offset = 0, qcount_tx = 0, qcount_rx = 0;
8529
8530 for (i = 0; i < num_tcf; i++) {
8531 if (!(ena_tc_qdisc & BIT(i)))
8532 continue;
8533
8534 offset = vsi->mqprio_qopt.qopt.offset[i];
8535 qcount_rx = vsi->mqprio_qopt.qopt.count[i];
8536 qcount_tx = vsi->mqprio_qopt.qopt.count[i];
8537 }
8538 vsi->req_txq = offset + qcount_tx;
8539 vsi->req_rxq = offset + qcount_rx;
8540
8541 /* store away original rss_size info, so that it gets reused
8542 * form ice_vsi_rebuild during tc-qdisc delete stage - to
8543 * determine, what should be the rss_sizefor main VSI
8544 */
8545 vsi->orig_rss_size = vsi->rss_size;
8546 }
8547
8548 /* save current values of Tx and Rx queues before calling VSI rebuild
8549 * for fallback option
8550 */
8551 cur_txq = vsi->num_txq;
8552 cur_rxq = vsi->num_rxq;
8553
8554 /* proceed with rebuild main VSI using correct number of queues */
8555 ret = ice_vsi_rebuild(vsi, false);
8556 if (ret) {
8557 /* fallback to current number of queues */
8558 dev_info(dev, "Rebuild failed with new queues, try with current number of queues\n");
8559 vsi->req_txq = cur_txq;
8560 vsi->req_rxq = cur_rxq;
8561 clear_bit(ICE_RESET_FAILED, pf->state);
8562 if (ice_vsi_rebuild(vsi, false)) {
8563 dev_err(dev, "Rebuild of main VSI failed again\n");
8564 return ret;
8565 }
8566 }
8567
8568 vsi->all_numtc = num_tcf;
8569 vsi->all_enatc = ena_tc_qdisc;
8570 ret = ice_vsi_cfg_tc(vsi, ena_tc_qdisc);
8571 if (ret) {
8572 netdev_err(netdev, "failed configuring TC for VSI id=%d\n",
8573 vsi->vsi_num);
8574 goto exit;
8575 }
8576
8577 if (test_bit(ICE_FLAG_TC_MQPRIO, pf->flags)) {
8578 u64 max_tx_rate = vsi->mqprio_qopt.max_rate[0];
8579 u64 min_tx_rate = vsi->mqprio_qopt.min_rate[0];
8580
8581 /* set TC0 rate limit if specified */
8582 if (max_tx_rate || min_tx_rate) {
8583 /* convert to Kbits/s */
8584 if (max_tx_rate)
8585 max_tx_rate = div_u64(max_tx_rate, ICE_BW_KBPS_DIVISOR);
8586 if (min_tx_rate)
8587 min_tx_rate = div_u64(min_tx_rate, ICE_BW_KBPS_DIVISOR);
8588
8589 ret = ice_set_bw_limit(vsi, max_tx_rate, min_tx_rate);
8590 if (!ret) {
8591 dev_dbg(dev, "set Tx rate max %llu min %llu for VSI(%u)\n",
8592 max_tx_rate, min_tx_rate, vsi->vsi_num);
8593 } else {
8594 dev_err(dev, "failed to set Tx rate max %llu min %llu for VSI(%u)\n",
8595 max_tx_rate, min_tx_rate, vsi->vsi_num);
8596 goto exit;
8597 }
8598 }
8599 ret = ice_create_q_channels(vsi);
8600 if (ret) {
8601 netdev_err(netdev, "failed configuring queue channels\n");
8602 goto exit;
8603 } else {
8604 netdev_dbg(netdev, "successfully configured channels\n");
8605 }
8606 }
8607
8608 if (vsi->ch_rss_size)
8609 ice_vsi_cfg_rss_lut_key(vsi);
8610
8611 exit:
8612 /* if error, reset the all_numtc and all_enatc */
8613 if (ret) {
8614 vsi->all_numtc = 0;
8615 vsi->all_enatc = 0;
8616 }
8617 /* resume VSI */
8618 ice_ena_vsi(vsi, true);
8619
8620 return ret;
8621 }
8622
8623 static LIST_HEAD(ice_block_cb_list);
8624
8625 static int
ice_setup_tc(struct net_device * netdev,enum tc_setup_type type,void * type_data)8626 ice_setup_tc(struct net_device *netdev, enum tc_setup_type type,
8627 void *type_data)
8628 {
8629 struct ice_netdev_priv *np = netdev_priv(netdev);
8630 struct ice_pf *pf = np->vsi->back;
8631 int err;
8632
8633 switch (type) {
8634 case TC_SETUP_BLOCK:
8635 return flow_block_cb_setup_simple(type_data,
8636 &ice_block_cb_list,
8637 ice_setup_tc_block_cb,
8638 np, np, true);
8639 case TC_SETUP_QDISC_MQPRIO:
8640 /* setup traffic classifier for receive side */
8641 mutex_lock(&pf->tc_mutex);
8642 err = ice_setup_tc_mqprio_qdisc(netdev, type_data);
8643 mutex_unlock(&pf->tc_mutex);
8644 return err;
8645 default:
8646 return -EOPNOTSUPP;
8647 }
8648 return -EOPNOTSUPP;
8649 }
8650
8651 static struct ice_indr_block_priv *
ice_indr_block_priv_lookup(struct ice_netdev_priv * np,struct net_device * netdev)8652 ice_indr_block_priv_lookup(struct ice_netdev_priv *np,
8653 struct net_device *netdev)
8654 {
8655 struct ice_indr_block_priv *cb_priv;
8656
8657 list_for_each_entry(cb_priv, &np->tc_indr_block_priv_list, list) {
8658 if (!cb_priv->netdev)
8659 return NULL;
8660 if (cb_priv->netdev == netdev)
8661 return cb_priv;
8662 }
8663 return NULL;
8664 }
8665
8666 static int
ice_indr_setup_block_cb(enum tc_setup_type type,void * type_data,void * indr_priv)8667 ice_indr_setup_block_cb(enum tc_setup_type type, void *type_data,
8668 void *indr_priv)
8669 {
8670 struct ice_indr_block_priv *priv = indr_priv;
8671 struct ice_netdev_priv *np = priv->np;
8672
8673 switch (type) {
8674 case TC_SETUP_CLSFLOWER:
8675 return ice_setup_tc_cls_flower(np, priv->netdev,
8676 (struct flow_cls_offload *)
8677 type_data);
8678 default:
8679 return -EOPNOTSUPP;
8680 }
8681 }
8682
8683 static int
ice_indr_setup_tc_block(struct net_device * netdev,struct Qdisc * sch,struct ice_netdev_priv * np,struct flow_block_offload * f,void * data,void (* cleanup)(struct flow_block_cb * block_cb))8684 ice_indr_setup_tc_block(struct net_device *netdev, struct Qdisc *sch,
8685 struct ice_netdev_priv *np,
8686 struct flow_block_offload *f, void *data,
8687 void (*cleanup)(struct flow_block_cb *block_cb))
8688 {
8689 struct ice_indr_block_priv *indr_priv;
8690 struct flow_block_cb *block_cb;
8691
8692 if (!ice_is_tunnel_supported(netdev) &&
8693 !(is_vlan_dev(netdev) &&
8694 vlan_dev_real_dev(netdev) == np->vsi->netdev))
8695 return -EOPNOTSUPP;
8696
8697 if (f->binder_type != FLOW_BLOCK_BINDER_TYPE_CLSACT_INGRESS)
8698 return -EOPNOTSUPP;
8699
8700 switch (f->command) {
8701 case FLOW_BLOCK_BIND:
8702 indr_priv = ice_indr_block_priv_lookup(np, netdev);
8703 if (indr_priv)
8704 return -EEXIST;
8705
8706 indr_priv = kzalloc(sizeof(*indr_priv), GFP_KERNEL);
8707 if (!indr_priv)
8708 return -ENOMEM;
8709
8710 indr_priv->netdev = netdev;
8711 indr_priv->np = np;
8712 list_add(&indr_priv->list, &np->tc_indr_block_priv_list);
8713
8714 block_cb =
8715 flow_indr_block_cb_alloc(ice_indr_setup_block_cb,
8716 indr_priv, indr_priv,
8717 ice_rep_indr_tc_block_unbind,
8718 f, netdev, sch, data, np,
8719 cleanup);
8720
8721 if (IS_ERR(block_cb)) {
8722 list_del(&indr_priv->list);
8723 kfree(indr_priv);
8724 return PTR_ERR(block_cb);
8725 }
8726 flow_block_cb_add(block_cb, f);
8727 list_add_tail(&block_cb->driver_list, &ice_block_cb_list);
8728 break;
8729 case FLOW_BLOCK_UNBIND:
8730 indr_priv = ice_indr_block_priv_lookup(np, netdev);
8731 if (!indr_priv)
8732 return -ENOENT;
8733
8734 block_cb = flow_block_cb_lookup(f->block,
8735 ice_indr_setup_block_cb,
8736 indr_priv);
8737 if (!block_cb)
8738 return -ENOENT;
8739
8740 flow_indr_block_cb_remove(block_cb, f);
8741
8742 list_del(&block_cb->driver_list);
8743 break;
8744 default:
8745 return -EOPNOTSUPP;
8746 }
8747 return 0;
8748 }
8749
8750 static int
ice_indr_setup_tc_cb(struct net_device * netdev,struct Qdisc * sch,void * cb_priv,enum tc_setup_type type,void * type_data,void * data,void (* cleanup)(struct flow_block_cb * block_cb))8751 ice_indr_setup_tc_cb(struct net_device *netdev, struct Qdisc *sch,
8752 void *cb_priv, enum tc_setup_type type, void *type_data,
8753 void *data,
8754 void (*cleanup)(struct flow_block_cb *block_cb))
8755 {
8756 switch (type) {
8757 case TC_SETUP_BLOCK:
8758 return ice_indr_setup_tc_block(netdev, sch, cb_priv, type_data,
8759 data, cleanup);
8760
8761 default:
8762 return -EOPNOTSUPP;
8763 }
8764 }
8765
8766 /**
8767 * ice_open - Called when a network interface becomes active
8768 * @netdev: network interface device structure
8769 *
8770 * The open entry point is called when a network interface is made
8771 * active by the system (IFF_UP). At this point all resources needed
8772 * for transmit and receive operations are allocated, the interrupt
8773 * handler is registered with the OS, the netdev watchdog is enabled,
8774 * and the stack is notified that the interface is ready.
8775 *
8776 * Returns 0 on success, negative value on failure
8777 */
ice_open(struct net_device * netdev)8778 int ice_open(struct net_device *netdev)
8779 {
8780 struct ice_netdev_priv *np = netdev_priv(netdev);
8781 struct ice_pf *pf = np->vsi->back;
8782
8783 if (ice_is_reset_in_progress(pf->state)) {
8784 netdev_err(netdev, "can't open net device while reset is in progress");
8785 return -EBUSY;
8786 }
8787
8788 return ice_open_internal(netdev);
8789 }
8790
8791 /**
8792 * ice_open_internal - Called when a network interface becomes active
8793 * @netdev: network interface device structure
8794 *
8795 * Internal ice_open implementation. Should not be used directly except for ice_open and reset
8796 * handling routine
8797 *
8798 * Returns 0 on success, negative value on failure
8799 */
ice_open_internal(struct net_device * netdev)8800 int ice_open_internal(struct net_device *netdev)
8801 {
8802 struct ice_netdev_priv *np = netdev_priv(netdev);
8803 struct ice_vsi *vsi = np->vsi;
8804 struct ice_pf *pf = vsi->back;
8805 struct ice_port_info *pi;
8806 int err;
8807
8808 if (test_bit(ICE_NEEDS_RESTART, pf->state)) {
8809 netdev_err(netdev, "driver needs to be unloaded and reloaded\n");
8810 return -EIO;
8811 }
8812
8813 netif_carrier_off(netdev);
8814
8815 pi = vsi->port_info;
8816 err = ice_update_link_info(pi);
8817 if (err) {
8818 netdev_err(netdev, "Failed to get link info, error %d\n", err);
8819 return err;
8820 }
8821
8822 ice_check_link_cfg_err(pf, pi->phy.link_info.link_cfg_err);
8823
8824 /* Set PHY if there is media, otherwise, turn off PHY */
8825 if (pi->phy.link_info.link_info & ICE_AQ_MEDIA_AVAILABLE) {
8826 clear_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8827 if (!test_bit(ICE_PHY_INIT_COMPLETE, pf->state)) {
8828 err = ice_init_phy_user_cfg(pi);
8829 if (err) {
8830 netdev_err(netdev, "Failed to initialize PHY settings, error %d\n",
8831 err);
8832 return err;
8833 }
8834 }
8835
8836 err = ice_configure_phy(vsi);
8837 if (err) {
8838 netdev_err(netdev, "Failed to set physical link up, error %d\n",
8839 err);
8840 return err;
8841 }
8842 } else {
8843 set_bit(ICE_FLAG_NO_MEDIA, pf->flags);
8844 ice_set_link(vsi, false);
8845 }
8846
8847 err = ice_vsi_open(vsi);
8848 if (err)
8849 netdev_err(netdev, "Failed to open VSI 0x%04X on switch 0x%04X\n",
8850 vsi->vsi_num, vsi->vsw->sw_id);
8851
8852 /* Update existing tunnels information */
8853 udp_tunnel_get_rx_info(netdev);
8854
8855 return err;
8856 }
8857
8858 /**
8859 * ice_stop - Disables a network interface
8860 * @netdev: network interface device structure
8861 *
8862 * The stop entry point is called when an interface is de-activated by the OS,
8863 * and the netdevice enters the DOWN state. The hardware is still under the
8864 * driver's control, but the netdev interface is disabled.
8865 *
8866 * Returns success only - not allowed to fail
8867 */
ice_stop(struct net_device * netdev)8868 int ice_stop(struct net_device *netdev)
8869 {
8870 struct ice_netdev_priv *np = netdev_priv(netdev);
8871 struct ice_vsi *vsi = np->vsi;
8872 struct ice_pf *pf = vsi->back;
8873
8874 if (ice_is_reset_in_progress(pf->state)) {
8875 netdev_err(netdev, "can't stop net device while reset is in progress");
8876 return -EBUSY;
8877 }
8878
8879 ice_vsi_close(vsi);
8880
8881 return 0;
8882 }
8883
8884 /**
8885 * ice_features_check - Validate encapsulated packet conforms to limits
8886 * @skb: skb buffer
8887 * @netdev: This port's netdev
8888 * @features: Offload features that the stack believes apply
8889 */
8890 static netdev_features_t
ice_features_check(struct sk_buff * skb,struct net_device __always_unused * netdev,netdev_features_t features)8891 ice_features_check(struct sk_buff *skb,
8892 struct net_device __always_unused *netdev,
8893 netdev_features_t features)
8894 {
8895 bool gso = skb_is_gso(skb);
8896 size_t len;
8897
8898 /* No point in doing any of this if neither checksum nor GSO are
8899 * being requested for this frame. We can rule out both by just
8900 * checking for CHECKSUM_PARTIAL
8901 */
8902 if (skb->ip_summed != CHECKSUM_PARTIAL)
8903 return features;
8904
8905 /* We cannot support GSO if the MSS is going to be less than
8906 * 64 bytes. If it is then we need to drop support for GSO.
8907 */
8908 if (gso && (skb_shinfo(skb)->gso_size < ICE_TXD_CTX_MIN_MSS))
8909 features &= ~NETIF_F_GSO_MASK;
8910
8911 len = skb_network_offset(skb);
8912 if (len > ICE_TXD_MACLEN_MAX || len & 0x1)
8913 goto out_rm_features;
8914
8915 len = skb_network_header_len(skb);
8916 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
8917 goto out_rm_features;
8918
8919 if (skb->encapsulation) {
8920 /* this must work for VXLAN frames AND IPIP/SIT frames, and in
8921 * the case of IPIP frames, the transport header pointer is
8922 * after the inner header! So check to make sure that this
8923 * is a GRE or UDP_TUNNEL frame before doing that math.
8924 */
8925 if (gso && (skb_shinfo(skb)->gso_type &
8926 (SKB_GSO_GRE | SKB_GSO_UDP_TUNNEL))) {
8927 len = skb_inner_network_header(skb) -
8928 skb_transport_header(skb);
8929 if (len > ICE_TXD_L4LEN_MAX || len & 0x1)
8930 goto out_rm_features;
8931 }
8932
8933 len = skb_inner_network_header_len(skb);
8934 if (len > ICE_TXD_IPLEN_MAX || len & 0x1)
8935 goto out_rm_features;
8936 }
8937
8938 return features;
8939 out_rm_features:
8940 return features & ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
8941 }
8942
8943 static const struct net_device_ops ice_netdev_safe_mode_ops = {
8944 .ndo_open = ice_open,
8945 .ndo_stop = ice_stop,
8946 .ndo_start_xmit = ice_start_xmit,
8947 .ndo_set_mac_address = ice_set_mac_address,
8948 .ndo_validate_addr = eth_validate_addr,
8949 .ndo_change_mtu = ice_change_mtu,
8950 .ndo_get_stats64 = ice_get_stats64,
8951 .ndo_tx_timeout = ice_tx_timeout,
8952 .ndo_bpf = ice_xdp_safe_mode,
8953 };
8954
8955 static const struct net_device_ops ice_netdev_ops = {
8956 .ndo_open = ice_open,
8957 .ndo_stop = ice_stop,
8958 .ndo_start_xmit = ice_start_xmit,
8959 .ndo_select_queue = ice_select_queue,
8960 .ndo_features_check = ice_features_check,
8961 .ndo_fix_features = ice_fix_features,
8962 .ndo_set_rx_mode = ice_set_rx_mode,
8963 .ndo_set_mac_address = ice_set_mac_address,
8964 .ndo_validate_addr = eth_validate_addr,
8965 .ndo_change_mtu = ice_change_mtu,
8966 .ndo_get_stats64 = ice_get_stats64,
8967 .ndo_set_tx_maxrate = ice_set_tx_maxrate,
8968 .ndo_eth_ioctl = ice_eth_ioctl,
8969 .ndo_set_vf_spoofchk = ice_set_vf_spoofchk,
8970 .ndo_set_vf_mac = ice_set_vf_mac,
8971 .ndo_get_vf_config = ice_get_vf_cfg,
8972 .ndo_set_vf_trust = ice_set_vf_trust,
8973 .ndo_set_vf_vlan = ice_set_vf_port_vlan,
8974 .ndo_set_vf_link_state = ice_set_vf_link_state,
8975 .ndo_get_vf_stats = ice_get_vf_stats,
8976 .ndo_set_vf_rate = ice_set_vf_bw,
8977 .ndo_vlan_rx_add_vid = ice_vlan_rx_add_vid,
8978 .ndo_vlan_rx_kill_vid = ice_vlan_rx_kill_vid,
8979 .ndo_setup_tc = ice_setup_tc,
8980 .ndo_set_features = ice_set_features,
8981 .ndo_bridge_getlink = ice_bridge_getlink,
8982 .ndo_bridge_setlink = ice_bridge_setlink,
8983 .ndo_fdb_add = ice_fdb_add,
8984 .ndo_fdb_del = ice_fdb_del,
8985 #ifdef CONFIG_RFS_ACCEL
8986 .ndo_rx_flow_steer = ice_rx_flow_steer,
8987 #endif
8988 .ndo_tx_timeout = ice_tx_timeout,
8989 .ndo_bpf = ice_xdp,
8990 .ndo_xdp_xmit = ice_xdp_xmit,
8991 .ndo_xsk_wakeup = ice_xsk_wakeup,
8992 .ndo_get_devlink_port = ice_get_devlink_port,
8993 };
8994