1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * NET3 Protocol independent device support routines.
4 *
5 * Derived from the non IP parts of dev.c 1.0.19
6 * Authors: Ross Biro
7 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
8 * Mark Evans, <evansmp@uhura.aston.ac.uk>
9 *
10 * Additional Authors:
11 * Florian la Roche <rzsfl@rz.uni-sb.de>
12 * Alan Cox <gw4pts@gw4pts.ampr.org>
13 * David Hinds <dahinds@users.sourceforge.net>
14 * Alexey Kuznetsov <kuznet@ms2.inr.ac.ru>
15 * Adam Sulmicki <adam@cfar.umd.edu>
16 * Pekka Riikonen <priikone@poesidon.pspt.fi>
17 *
18 * Changes:
19 * D.J. Barrow : Fixed bug where dev->refcnt gets set
20 * to 2 if register_netdev gets called
21 * before net_dev_init & also removed a
22 * few lines of code in the process.
23 * Alan Cox : device private ioctl copies fields back.
24 * Alan Cox : Transmit queue code does relevant
25 * stunts to keep the queue safe.
26 * Alan Cox : Fixed double lock.
27 * Alan Cox : Fixed promisc NULL pointer trap
28 * ???????? : Support the full private ioctl range
29 * Alan Cox : Moved ioctl permission check into
30 * drivers
31 * Tim Kordas : SIOCADDMULTI/SIOCDELMULTI
32 * Alan Cox : 100 backlog just doesn't cut it when
33 * you start doing multicast video 8)
34 * Alan Cox : Rewrote net_bh and list manager.
35 * Alan Cox : Fix ETH_P_ALL echoback lengths.
36 * Alan Cox : Took out transmit every packet pass
37 * Saved a few bytes in the ioctl handler
38 * Alan Cox : Network driver sets packet type before
39 * calling netif_rx. Saves a function
40 * call a packet.
41 * Alan Cox : Hashed net_bh()
42 * Richard Kooijman: Timestamp fixes.
43 * Alan Cox : Wrong field in SIOCGIFDSTADDR
44 * Alan Cox : Device lock protection.
45 * Alan Cox : Fixed nasty side effect of device close
46 * changes.
47 * Rudi Cilibrasi : Pass the right thing to
48 * set_mac_address()
49 * Dave Miller : 32bit quantity for the device lock to
50 * make it work out on a Sparc.
51 * Bjorn Ekwall : Added KERNELD hack.
52 * Alan Cox : Cleaned up the backlog initialise.
53 * Craig Metz : SIOCGIFCONF fix if space for under
54 * 1 device.
55 * Thomas Bogendoerfer : Return ENODEV for dev_open, if there
56 * is no device open function.
57 * Andi Kleen : Fix error reporting for SIOCGIFCONF
58 * Michael Chastain : Fix signed/unsigned for SIOCGIFCONF
59 * Cyrus Durgin : Cleaned for KMOD
60 * Adam Sulmicki : Bug Fix : Network Device Unload
61 * A network device unload needs to purge
62 * the backlog queue.
63 * Paul Rusty Russell : SIOCSIFNAME
64 * Pekka Riikonen : Netdev boot-time settings code
65 * Andrew Morton : Make unregister_netdevice wait
66 * indefinitely on dev->refcnt
67 * J Hadi Salim : - Backlog queue sampling
68 * - netif_rx() feedback
69 */
70
71 #include <linux/uaccess.h>
72 #include <linux/bitmap.h>
73 #include <linux/capability.h>
74 #include <linux/cpu.h>
75 #include <linux/types.h>
76 #include <linux/kernel.h>
77 #include <linux/hash.h>
78 #include <linux/slab.h>
79 #include <linux/sched.h>
80 #include <linux/sched/mm.h>
81 #include <linux/mutex.h>
82 #include <linux/rwsem.h>
83 #include <linux/string.h>
84 #include <linux/mm.h>
85 #include <linux/socket.h>
86 #include <linux/sockios.h>
87 #include <linux/errno.h>
88 #include <linux/interrupt.h>
89 #include <linux/if_ether.h>
90 #include <linux/netdevice.h>
91 #include <linux/etherdevice.h>
92 #include <linux/ethtool.h>
93 #include <linux/skbuff.h>
94 #include <linux/kthread.h>
95 #include <linux/bpf.h>
96 #include <linux/bpf_trace.h>
97 #include <net/net_namespace.h>
98 #include <net/sock.h>
99 #include <net/busy_poll.h>
100 #include <linux/rtnetlink.h>
101 #include <linux/stat.h>
102 #include <net/dsa.h>
103 #include <net/dst.h>
104 #include <net/dst_metadata.h>
105 #include <net/gro.h>
106 #include <net/pkt_sched.h>
107 #include <net/pkt_cls.h>
108 #include <net/checksum.h>
109 #include <net/xfrm.h>
110 #include <net/tcx.h>
111 #include <linux/highmem.h>
112 #include <linux/init.h>
113 #include <linux/module.h>
114 #include <linux/netpoll.h>
115 #include <linux/rcupdate.h>
116 #include <linux/delay.h>
117 #include <net/iw_handler.h>
118 #include <asm/current.h>
119 #include <linux/audit.h>
120 #include <linux/dmaengine.h>
121 #include <linux/err.h>
122 #include <linux/ctype.h>
123 #include <linux/if_arp.h>
124 #include <linux/if_vlan.h>
125 #include <linux/ip.h>
126 #include <net/ip.h>
127 #include <net/mpls.h>
128 #include <linux/ipv6.h>
129 #include <linux/in.h>
130 #include <linux/jhash.h>
131 #include <linux/random.h>
132 #include <trace/events/napi.h>
133 #include <trace/events/net.h>
134 #include <trace/events/skb.h>
135 #include <trace/events/qdisc.h>
136 #include <trace/events/xdp.h>
137 #include <linux/inetdevice.h>
138 #include <linux/cpu_rmap.h>
139 #include <linux/static_key.h>
140 #include <linux/hashtable.h>
141 #include <linux/vmalloc.h>
142 #include <linux/if_macvlan.h>
143 #include <linux/errqueue.h>
144 #include <linux/hrtimer.h>
145 #include <linux/netfilter_netdev.h>
146 #include <linux/crash_dump.h>
147 #include <linux/sctp.h>
148 #include <net/udp_tunnel.h>
149 #include <linux/net_namespace.h>
150 #include <linux/indirect_call_wrapper.h>
151 #include <net/devlink.h>
152 #include <linux/pm_runtime.h>
153 #include <linux/prandom.h>
154 #include <linux/once_lite.h>
155 #include <net/netdev_rx_queue.h>
156
157 #include "dev.h"
158 #include "net-sysfs.h"
159
160 static DEFINE_SPINLOCK(ptype_lock);
161 struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
162 struct list_head ptype_all __read_mostly; /* Taps */
163
164 static int netif_rx_internal(struct sk_buff *skb);
165 static int call_netdevice_notifiers_extack(unsigned long val,
166 struct net_device *dev,
167 struct netlink_ext_ack *extack);
168 static struct napi_struct *napi_by_id(unsigned int napi_id);
169
170 /*
171 * The @dev_base_head list is protected by @dev_base_lock and the rtnl
172 * semaphore.
173 *
174 * Pure readers hold dev_base_lock for reading, or rcu_read_lock()
175 *
176 * Writers must hold the rtnl semaphore while they loop through the
177 * dev_base_head list, and hold dev_base_lock for writing when they do the
178 * actual updates. This allows pure readers to access the list even
179 * while a writer is preparing to update it.
180 *
181 * To put it another way, dev_base_lock is held for writing only to
182 * protect against pure readers; the rtnl semaphore provides the
183 * protection against other writers.
184 *
185 * See, for example usages, register_netdevice() and
186 * unregister_netdevice(), which must be called with the rtnl
187 * semaphore held.
188 */
189 DEFINE_RWLOCK(dev_base_lock);
190 EXPORT_SYMBOL(dev_base_lock);
191
192 static DEFINE_MUTEX(ifalias_mutex);
193
194 /* protects napi_hash addition/deletion and napi_gen_id */
195 static DEFINE_SPINLOCK(napi_hash_lock);
196
197 static unsigned int napi_gen_id = NR_CPUS;
198 static DEFINE_READ_MOSTLY_HASHTABLE(napi_hash, 8);
199
200 static DECLARE_RWSEM(devnet_rename_sem);
201
dev_base_seq_inc(struct net * net)202 static inline void dev_base_seq_inc(struct net *net)
203 {
204 while (++net->dev_base_seq == 0)
205 ;
206 }
207
dev_name_hash(struct net * net,const char * name)208 static inline struct hlist_head *dev_name_hash(struct net *net, const char *name)
209 {
210 unsigned int hash = full_name_hash(net, name, strnlen(name, IFNAMSIZ));
211
212 return &net->dev_name_head[hash_32(hash, NETDEV_HASHBITS)];
213 }
214
dev_index_hash(struct net * net,int ifindex)215 static inline struct hlist_head *dev_index_hash(struct net *net, int ifindex)
216 {
217 return &net->dev_index_head[ifindex & (NETDEV_HASHENTRIES - 1)];
218 }
219
rps_lock_irqsave(struct softnet_data * sd,unsigned long * flags)220 static inline void rps_lock_irqsave(struct softnet_data *sd,
221 unsigned long *flags)
222 {
223 if (IS_ENABLED(CONFIG_RPS))
224 spin_lock_irqsave(&sd->input_pkt_queue.lock, *flags);
225 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
226 local_irq_save(*flags);
227 }
228
rps_lock_irq_disable(struct softnet_data * sd)229 static inline void rps_lock_irq_disable(struct softnet_data *sd)
230 {
231 if (IS_ENABLED(CONFIG_RPS))
232 spin_lock_irq(&sd->input_pkt_queue.lock);
233 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
234 local_irq_disable();
235 }
236
rps_unlock_irq_restore(struct softnet_data * sd,unsigned long * flags)237 static inline void rps_unlock_irq_restore(struct softnet_data *sd,
238 unsigned long *flags)
239 {
240 if (IS_ENABLED(CONFIG_RPS))
241 spin_unlock_irqrestore(&sd->input_pkt_queue.lock, *flags);
242 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
243 local_irq_restore(*flags);
244 }
245
rps_unlock_irq_enable(struct softnet_data * sd)246 static inline void rps_unlock_irq_enable(struct softnet_data *sd)
247 {
248 if (IS_ENABLED(CONFIG_RPS))
249 spin_unlock_irq(&sd->input_pkt_queue.lock);
250 else if (!IS_ENABLED(CONFIG_PREEMPT_RT))
251 local_irq_enable();
252 }
253
netdev_name_node_alloc(struct net_device * dev,const char * name)254 static struct netdev_name_node *netdev_name_node_alloc(struct net_device *dev,
255 const char *name)
256 {
257 struct netdev_name_node *name_node;
258
259 name_node = kmalloc(sizeof(*name_node), GFP_KERNEL);
260 if (!name_node)
261 return NULL;
262 INIT_HLIST_NODE(&name_node->hlist);
263 name_node->dev = dev;
264 name_node->name = name;
265 return name_node;
266 }
267
268 static struct netdev_name_node *
netdev_name_node_head_alloc(struct net_device * dev)269 netdev_name_node_head_alloc(struct net_device *dev)
270 {
271 struct netdev_name_node *name_node;
272
273 name_node = netdev_name_node_alloc(dev, dev->name);
274 if (!name_node)
275 return NULL;
276 INIT_LIST_HEAD(&name_node->list);
277 return name_node;
278 }
279
netdev_name_node_free(struct netdev_name_node * name_node)280 static void netdev_name_node_free(struct netdev_name_node *name_node)
281 {
282 kfree(name_node);
283 }
284
netdev_name_node_add(struct net * net,struct netdev_name_node * name_node)285 static void netdev_name_node_add(struct net *net,
286 struct netdev_name_node *name_node)
287 {
288 hlist_add_head_rcu(&name_node->hlist,
289 dev_name_hash(net, name_node->name));
290 }
291
netdev_name_node_del(struct netdev_name_node * name_node)292 static void netdev_name_node_del(struct netdev_name_node *name_node)
293 {
294 hlist_del_rcu(&name_node->hlist);
295 }
296
netdev_name_node_lookup(struct net * net,const char * name)297 static struct netdev_name_node *netdev_name_node_lookup(struct net *net,
298 const char *name)
299 {
300 struct hlist_head *head = dev_name_hash(net, name);
301 struct netdev_name_node *name_node;
302
303 hlist_for_each_entry(name_node, head, hlist)
304 if (!strcmp(name_node->name, name))
305 return name_node;
306 return NULL;
307 }
308
netdev_name_node_lookup_rcu(struct net * net,const char * name)309 static struct netdev_name_node *netdev_name_node_lookup_rcu(struct net *net,
310 const char *name)
311 {
312 struct hlist_head *head = dev_name_hash(net, name);
313 struct netdev_name_node *name_node;
314
315 hlist_for_each_entry_rcu(name_node, head, hlist)
316 if (!strcmp(name_node->name, name))
317 return name_node;
318 return NULL;
319 }
320
netdev_name_in_use(struct net * net,const char * name)321 bool netdev_name_in_use(struct net *net, const char *name)
322 {
323 return netdev_name_node_lookup(net, name);
324 }
325 EXPORT_SYMBOL(netdev_name_in_use);
326
netdev_name_node_alt_create(struct net_device * dev,const char * name)327 int netdev_name_node_alt_create(struct net_device *dev, const char *name)
328 {
329 struct netdev_name_node *name_node;
330 struct net *net = dev_net(dev);
331
332 name_node = netdev_name_node_lookup(net, name);
333 if (name_node)
334 return -EEXIST;
335 name_node = netdev_name_node_alloc(dev, name);
336 if (!name_node)
337 return -ENOMEM;
338 netdev_name_node_add(net, name_node);
339 /* The node that holds dev->name acts as a head of per-device list. */
340 list_add_tail(&name_node->list, &dev->name_node->list);
341
342 return 0;
343 }
344
__netdev_name_node_alt_destroy(struct netdev_name_node * name_node)345 static void __netdev_name_node_alt_destroy(struct netdev_name_node *name_node)
346 {
347 list_del(&name_node->list);
348 kfree(name_node->name);
349 netdev_name_node_free(name_node);
350 }
351
netdev_name_node_alt_destroy(struct net_device * dev,const char * name)352 int netdev_name_node_alt_destroy(struct net_device *dev, const char *name)
353 {
354 struct netdev_name_node *name_node;
355 struct net *net = dev_net(dev);
356
357 name_node = netdev_name_node_lookup(net, name);
358 if (!name_node)
359 return -ENOENT;
360 /* lookup might have found our primary name or a name belonging
361 * to another device.
362 */
363 if (name_node == dev->name_node || name_node->dev != dev)
364 return -EINVAL;
365
366 netdev_name_node_del(name_node);
367 synchronize_rcu();
368 __netdev_name_node_alt_destroy(name_node);
369
370 return 0;
371 }
372
netdev_name_node_alt_flush(struct net_device * dev)373 static void netdev_name_node_alt_flush(struct net_device *dev)
374 {
375 struct netdev_name_node *name_node, *tmp;
376
377 list_for_each_entry_safe(name_node, tmp, &dev->name_node->list, list)
378 __netdev_name_node_alt_destroy(name_node);
379 }
380
381 /* Device list insertion */
list_netdevice(struct net_device * dev)382 static void list_netdevice(struct net_device *dev)
383 {
384 struct netdev_name_node *name_node;
385 struct net *net = dev_net(dev);
386
387 ASSERT_RTNL();
388
389 write_lock(&dev_base_lock);
390 list_add_tail_rcu(&dev->dev_list, &net->dev_base_head);
391 netdev_name_node_add(net, dev->name_node);
392 hlist_add_head_rcu(&dev->index_hlist,
393 dev_index_hash(net, dev->ifindex));
394 write_unlock(&dev_base_lock);
395
396 netdev_for_each_altname(dev, name_node)
397 netdev_name_node_add(net, name_node);
398
399 /* We reserved the ifindex, this can't fail */
400 WARN_ON(xa_store(&net->dev_by_index, dev->ifindex, dev, GFP_KERNEL));
401
402 dev_base_seq_inc(net);
403 }
404
405 /* Device list removal
406 * caller must respect a RCU grace period before freeing/reusing dev
407 */
unlist_netdevice(struct net_device * dev,bool lock)408 static void unlist_netdevice(struct net_device *dev, bool lock)
409 {
410 struct netdev_name_node *name_node;
411 struct net *net = dev_net(dev);
412
413 ASSERT_RTNL();
414
415 xa_erase(&net->dev_by_index, dev->ifindex);
416
417 netdev_for_each_altname(dev, name_node)
418 netdev_name_node_del(name_node);
419
420 /* Unlink dev from the device chain */
421 if (lock)
422 write_lock(&dev_base_lock);
423 list_del_rcu(&dev->dev_list);
424 netdev_name_node_del(dev->name_node);
425 hlist_del_rcu(&dev->index_hlist);
426 if (lock)
427 write_unlock(&dev_base_lock);
428
429 dev_base_seq_inc(dev_net(dev));
430 }
431
432 /*
433 * Our notifier list
434 */
435
436 static RAW_NOTIFIER_HEAD(netdev_chain);
437
438 /*
439 * Device drivers call our routines to queue packets here. We empty the
440 * queue in the local softnet handler.
441 */
442
443 DEFINE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
444 EXPORT_PER_CPU_SYMBOL(softnet_data);
445
446 #ifdef CONFIG_LOCKDEP
447 /*
448 * register_netdevice() inits txq->_xmit_lock and sets lockdep class
449 * according to dev->type
450 */
451 static const unsigned short netdev_lock_type[] = {
452 ARPHRD_NETROM, ARPHRD_ETHER, ARPHRD_EETHER, ARPHRD_AX25,
453 ARPHRD_PRONET, ARPHRD_CHAOS, ARPHRD_IEEE802, ARPHRD_ARCNET,
454 ARPHRD_APPLETLK, ARPHRD_DLCI, ARPHRD_ATM, ARPHRD_METRICOM,
455 ARPHRD_IEEE1394, ARPHRD_EUI64, ARPHRD_INFINIBAND, ARPHRD_SLIP,
456 ARPHRD_CSLIP, ARPHRD_SLIP6, ARPHRD_CSLIP6, ARPHRD_RSRVD,
457 ARPHRD_ADAPT, ARPHRD_ROSE, ARPHRD_X25, ARPHRD_HWX25,
458 ARPHRD_PPP, ARPHRD_CISCO, ARPHRD_LAPB, ARPHRD_DDCMP,
459 ARPHRD_RAWHDLC, ARPHRD_TUNNEL, ARPHRD_TUNNEL6, ARPHRD_FRAD,
460 ARPHRD_SKIP, ARPHRD_LOOPBACK, ARPHRD_LOCALTLK, ARPHRD_FDDI,
461 ARPHRD_BIF, ARPHRD_SIT, ARPHRD_IPDDP, ARPHRD_IPGRE,
462 ARPHRD_PIMREG, ARPHRD_HIPPI, ARPHRD_ASH, ARPHRD_ECONET,
463 ARPHRD_IRDA, ARPHRD_FCPP, ARPHRD_FCAL, ARPHRD_FCPL,
464 ARPHRD_FCFABRIC, ARPHRD_IEEE80211, ARPHRD_IEEE80211_PRISM,
465 ARPHRD_IEEE80211_RADIOTAP, ARPHRD_PHONET, ARPHRD_PHONET_PIPE,
466 ARPHRD_IEEE802154, ARPHRD_VOID, ARPHRD_NONE};
467
468 static const char *const netdev_lock_name[] = {
469 "_xmit_NETROM", "_xmit_ETHER", "_xmit_EETHER", "_xmit_AX25",
470 "_xmit_PRONET", "_xmit_CHAOS", "_xmit_IEEE802", "_xmit_ARCNET",
471 "_xmit_APPLETLK", "_xmit_DLCI", "_xmit_ATM", "_xmit_METRICOM",
472 "_xmit_IEEE1394", "_xmit_EUI64", "_xmit_INFINIBAND", "_xmit_SLIP",
473 "_xmit_CSLIP", "_xmit_SLIP6", "_xmit_CSLIP6", "_xmit_RSRVD",
474 "_xmit_ADAPT", "_xmit_ROSE", "_xmit_X25", "_xmit_HWX25",
475 "_xmit_PPP", "_xmit_CISCO", "_xmit_LAPB", "_xmit_DDCMP",
476 "_xmit_RAWHDLC", "_xmit_TUNNEL", "_xmit_TUNNEL6", "_xmit_FRAD",
477 "_xmit_SKIP", "_xmit_LOOPBACK", "_xmit_LOCALTLK", "_xmit_FDDI",
478 "_xmit_BIF", "_xmit_SIT", "_xmit_IPDDP", "_xmit_IPGRE",
479 "_xmit_PIMREG", "_xmit_HIPPI", "_xmit_ASH", "_xmit_ECONET",
480 "_xmit_IRDA", "_xmit_FCPP", "_xmit_FCAL", "_xmit_FCPL",
481 "_xmit_FCFABRIC", "_xmit_IEEE80211", "_xmit_IEEE80211_PRISM",
482 "_xmit_IEEE80211_RADIOTAP", "_xmit_PHONET", "_xmit_PHONET_PIPE",
483 "_xmit_IEEE802154", "_xmit_VOID", "_xmit_NONE"};
484
485 static struct lock_class_key netdev_xmit_lock_key[ARRAY_SIZE(netdev_lock_type)];
486 static struct lock_class_key netdev_addr_lock_key[ARRAY_SIZE(netdev_lock_type)];
487
netdev_lock_pos(unsigned short dev_type)488 static inline unsigned short netdev_lock_pos(unsigned short dev_type)
489 {
490 int i;
491
492 for (i = 0; i < ARRAY_SIZE(netdev_lock_type); i++)
493 if (netdev_lock_type[i] == dev_type)
494 return i;
495 /* the last key is used by default */
496 return ARRAY_SIZE(netdev_lock_type) - 1;
497 }
498
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)499 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
500 unsigned short dev_type)
501 {
502 int i;
503
504 i = netdev_lock_pos(dev_type);
505 lockdep_set_class_and_name(lock, &netdev_xmit_lock_key[i],
506 netdev_lock_name[i]);
507 }
508
netdev_set_addr_lockdep_class(struct net_device * dev)509 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
510 {
511 int i;
512
513 i = netdev_lock_pos(dev->type);
514 lockdep_set_class_and_name(&dev->addr_list_lock,
515 &netdev_addr_lock_key[i],
516 netdev_lock_name[i]);
517 }
518 #else
netdev_set_xmit_lockdep_class(spinlock_t * lock,unsigned short dev_type)519 static inline void netdev_set_xmit_lockdep_class(spinlock_t *lock,
520 unsigned short dev_type)
521 {
522 }
523
netdev_set_addr_lockdep_class(struct net_device * dev)524 static inline void netdev_set_addr_lockdep_class(struct net_device *dev)
525 {
526 }
527 #endif
528
529 /*******************************************************************************
530 *
531 * Protocol management and registration routines
532 *
533 *******************************************************************************/
534
535
536 /*
537 * Add a protocol ID to the list. Now that the input handler is
538 * smarter we can dispense with all the messy stuff that used to be
539 * here.
540 *
541 * BEWARE!!! Protocol handlers, mangling input packets,
542 * MUST BE last in hash buckets and checking protocol handlers
543 * MUST start from promiscuous ptype_all chain in net_bh.
544 * It is true now, do not change it.
545 * Explanation follows: if protocol handler, mangling packet, will
546 * be the first on list, it is not able to sense, that packet
547 * is cloned and should be copied-on-write, so that it will
548 * change it and subsequent readers will get broken packet.
549 * --ANK (980803)
550 */
551
ptype_head(const struct packet_type * pt)552 static inline struct list_head *ptype_head(const struct packet_type *pt)
553 {
554 if (pt->type == htons(ETH_P_ALL))
555 return pt->dev ? &pt->dev->ptype_all : &ptype_all;
556 else
557 return pt->dev ? &pt->dev->ptype_specific :
558 &ptype_base[ntohs(pt->type) & PTYPE_HASH_MASK];
559 }
560
561 /**
562 * dev_add_pack - add packet handler
563 * @pt: packet type declaration
564 *
565 * Add a protocol handler to the networking stack. The passed &packet_type
566 * is linked into kernel lists and may not be freed until it has been
567 * removed from the kernel lists.
568 *
569 * This call does not sleep therefore it can not
570 * guarantee all CPU's that are in middle of receiving packets
571 * will see the new packet type (until the next received packet).
572 */
573
dev_add_pack(struct packet_type * pt)574 void dev_add_pack(struct packet_type *pt)
575 {
576 struct list_head *head = ptype_head(pt);
577
578 spin_lock(&ptype_lock);
579 list_add_rcu(&pt->list, head);
580 spin_unlock(&ptype_lock);
581 }
582 EXPORT_SYMBOL(dev_add_pack);
583
584 /**
585 * __dev_remove_pack - remove packet handler
586 * @pt: packet type declaration
587 *
588 * Remove a protocol handler that was previously added to the kernel
589 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
590 * from the kernel lists and can be freed or reused once this function
591 * returns.
592 *
593 * The packet type might still be in use by receivers
594 * and must not be freed until after all the CPU's have gone
595 * through a quiescent state.
596 */
__dev_remove_pack(struct packet_type * pt)597 void __dev_remove_pack(struct packet_type *pt)
598 {
599 struct list_head *head = ptype_head(pt);
600 struct packet_type *pt1;
601
602 spin_lock(&ptype_lock);
603
604 list_for_each_entry(pt1, head, list) {
605 if (pt == pt1) {
606 list_del_rcu(&pt->list);
607 goto out;
608 }
609 }
610
611 pr_warn("dev_remove_pack: %p not found\n", pt);
612 out:
613 spin_unlock(&ptype_lock);
614 }
615 EXPORT_SYMBOL(__dev_remove_pack);
616
617 /**
618 * dev_remove_pack - remove packet handler
619 * @pt: packet type declaration
620 *
621 * Remove a protocol handler that was previously added to the kernel
622 * protocol handlers by dev_add_pack(). The passed &packet_type is removed
623 * from the kernel lists and can be freed or reused once this function
624 * returns.
625 *
626 * This call sleeps to guarantee that no CPU is looking at the packet
627 * type after return.
628 */
dev_remove_pack(struct packet_type * pt)629 void dev_remove_pack(struct packet_type *pt)
630 {
631 __dev_remove_pack(pt);
632
633 synchronize_net();
634 }
635 EXPORT_SYMBOL(dev_remove_pack);
636
637
638 /*******************************************************************************
639 *
640 * Device Interface Subroutines
641 *
642 *******************************************************************************/
643
644 /**
645 * dev_get_iflink - get 'iflink' value of a interface
646 * @dev: targeted interface
647 *
648 * Indicates the ifindex the interface is linked to.
649 * Physical interfaces have the same 'ifindex' and 'iflink' values.
650 */
651
dev_get_iflink(const struct net_device * dev)652 int dev_get_iflink(const struct net_device *dev)
653 {
654 if (dev->netdev_ops && dev->netdev_ops->ndo_get_iflink)
655 return dev->netdev_ops->ndo_get_iflink(dev);
656
657 return dev->ifindex;
658 }
659 EXPORT_SYMBOL(dev_get_iflink);
660
661 /**
662 * dev_fill_metadata_dst - Retrieve tunnel egress information.
663 * @dev: targeted interface
664 * @skb: The packet.
665 *
666 * For better visibility of tunnel traffic OVS needs to retrieve
667 * egress tunnel information for a packet. Following API allows
668 * user to get this info.
669 */
dev_fill_metadata_dst(struct net_device * dev,struct sk_buff * skb)670 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb)
671 {
672 struct ip_tunnel_info *info;
673
674 if (!dev->netdev_ops || !dev->netdev_ops->ndo_fill_metadata_dst)
675 return -EINVAL;
676
677 info = skb_tunnel_info_unclone(skb);
678 if (!info)
679 return -ENOMEM;
680 if (unlikely(!(info->mode & IP_TUNNEL_INFO_TX)))
681 return -EINVAL;
682
683 return dev->netdev_ops->ndo_fill_metadata_dst(dev, skb);
684 }
685 EXPORT_SYMBOL_GPL(dev_fill_metadata_dst);
686
dev_fwd_path(struct net_device_path_stack * stack)687 static struct net_device_path *dev_fwd_path(struct net_device_path_stack *stack)
688 {
689 int k = stack->num_paths++;
690
691 if (WARN_ON_ONCE(k >= NET_DEVICE_PATH_STACK_MAX))
692 return NULL;
693
694 return &stack->path[k];
695 }
696
dev_fill_forward_path(const struct net_device * dev,const u8 * daddr,struct net_device_path_stack * stack)697 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
698 struct net_device_path_stack *stack)
699 {
700 const struct net_device *last_dev;
701 struct net_device_path_ctx ctx = {
702 .dev = dev,
703 };
704 struct net_device_path *path;
705 int ret = 0;
706
707 memcpy(ctx.daddr, daddr, sizeof(ctx.daddr));
708 stack->num_paths = 0;
709 while (ctx.dev && ctx.dev->netdev_ops->ndo_fill_forward_path) {
710 last_dev = ctx.dev;
711 path = dev_fwd_path(stack);
712 if (!path)
713 return -1;
714
715 memset(path, 0, sizeof(struct net_device_path));
716 ret = ctx.dev->netdev_ops->ndo_fill_forward_path(&ctx, path);
717 if (ret < 0)
718 return -1;
719
720 if (WARN_ON_ONCE(last_dev == ctx.dev))
721 return -1;
722 }
723
724 if (!ctx.dev)
725 return ret;
726
727 path = dev_fwd_path(stack);
728 if (!path)
729 return -1;
730 path->type = DEV_PATH_ETHERNET;
731 path->dev = ctx.dev;
732
733 return ret;
734 }
735 EXPORT_SYMBOL_GPL(dev_fill_forward_path);
736
737 /**
738 * __dev_get_by_name - find a device by its name
739 * @net: the applicable net namespace
740 * @name: name to find
741 *
742 * Find an interface by name. Must be called under RTNL semaphore
743 * or @dev_base_lock. If the name is found a pointer to the device
744 * is returned. If the name is not found then %NULL is returned. The
745 * reference counters are not incremented so the caller must be
746 * careful with locks.
747 */
748
__dev_get_by_name(struct net * net,const char * name)749 struct net_device *__dev_get_by_name(struct net *net, const char *name)
750 {
751 struct netdev_name_node *node_name;
752
753 node_name = netdev_name_node_lookup(net, name);
754 return node_name ? node_name->dev : NULL;
755 }
756 EXPORT_SYMBOL(__dev_get_by_name);
757
758 /**
759 * dev_get_by_name_rcu - find a device by its name
760 * @net: the applicable net namespace
761 * @name: name to find
762 *
763 * Find an interface by name.
764 * If the name is found a pointer to the device is returned.
765 * If the name is not found then %NULL is returned.
766 * The reference counters are not incremented so the caller must be
767 * careful with locks. The caller must hold RCU lock.
768 */
769
dev_get_by_name_rcu(struct net * net,const char * name)770 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name)
771 {
772 struct netdev_name_node *node_name;
773
774 node_name = netdev_name_node_lookup_rcu(net, name);
775 return node_name ? node_name->dev : NULL;
776 }
777 EXPORT_SYMBOL(dev_get_by_name_rcu);
778
779 /* Deprecated for new users, call netdev_get_by_name() instead */
dev_get_by_name(struct net * net,const char * name)780 struct net_device *dev_get_by_name(struct net *net, const char *name)
781 {
782 struct net_device *dev;
783
784 rcu_read_lock();
785 dev = dev_get_by_name_rcu(net, name);
786 dev_hold(dev);
787 rcu_read_unlock();
788 return dev;
789 }
790 EXPORT_SYMBOL(dev_get_by_name);
791
792 /**
793 * netdev_get_by_name() - find a device by its name
794 * @net: the applicable net namespace
795 * @name: name to find
796 * @tracker: tracking object for the acquired reference
797 * @gfp: allocation flags for the tracker
798 *
799 * Find an interface by name. This can be called from any
800 * context and does its own locking. The returned handle has
801 * the usage count incremented and the caller must use netdev_put() to
802 * release it when it is no longer needed. %NULL is returned if no
803 * matching device is found.
804 */
netdev_get_by_name(struct net * net,const char * name,netdevice_tracker * tracker,gfp_t gfp)805 struct net_device *netdev_get_by_name(struct net *net, const char *name,
806 netdevice_tracker *tracker, gfp_t gfp)
807 {
808 struct net_device *dev;
809
810 dev = dev_get_by_name(net, name);
811 if (dev)
812 netdev_tracker_alloc(dev, tracker, gfp);
813 return dev;
814 }
815 EXPORT_SYMBOL(netdev_get_by_name);
816
817 /**
818 * __dev_get_by_index - find a device by its ifindex
819 * @net: the applicable net namespace
820 * @ifindex: index of device
821 *
822 * Search for an interface by index. Returns %NULL if the device
823 * is not found or a pointer to the device. The device has not
824 * had its reference counter increased so the caller must be careful
825 * about locking. The caller must hold either the RTNL semaphore
826 * or @dev_base_lock.
827 */
828
__dev_get_by_index(struct net * net,int ifindex)829 struct net_device *__dev_get_by_index(struct net *net, int ifindex)
830 {
831 struct net_device *dev;
832 struct hlist_head *head = dev_index_hash(net, ifindex);
833
834 hlist_for_each_entry(dev, head, index_hlist)
835 if (dev->ifindex == ifindex)
836 return dev;
837
838 return NULL;
839 }
840 EXPORT_SYMBOL(__dev_get_by_index);
841
842 /**
843 * dev_get_by_index_rcu - find a device by its ifindex
844 * @net: the applicable net namespace
845 * @ifindex: index of device
846 *
847 * Search for an interface by index. Returns %NULL if the device
848 * is not found or a pointer to the device. The device has not
849 * had its reference counter increased so the caller must be careful
850 * about locking. The caller must hold RCU lock.
851 */
852
dev_get_by_index_rcu(struct net * net,int ifindex)853 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex)
854 {
855 struct net_device *dev;
856 struct hlist_head *head = dev_index_hash(net, ifindex);
857
858 hlist_for_each_entry_rcu(dev, head, index_hlist)
859 if (dev->ifindex == ifindex)
860 return dev;
861
862 return NULL;
863 }
864 EXPORT_SYMBOL(dev_get_by_index_rcu);
865
866 /* Deprecated for new users, call netdev_get_by_index() instead */
dev_get_by_index(struct net * net,int ifindex)867 struct net_device *dev_get_by_index(struct net *net, int ifindex)
868 {
869 struct net_device *dev;
870
871 rcu_read_lock();
872 dev = dev_get_by_index_rcu(net, ifindex);
873 dev_hold(dev);
874 rcu_read_unlock();
875 return dev;
876 }
877 EXPORT_SYMBOL(dev_get_by_index);
878
879 /**
880 * netdev_get_by_index() - find a device by its ifindex
881 * @net: the applicable net namespace
882 * @ifindex: index of device
883 * @tracker: tracking object for the acquired reference
884 * @gfp: allocation flags for the tracker
885 *
886 * Search for an interface by index. Returns NULL if the device
887 * is not found or a pointer to the device. The device returned has
888 * had a reference added and the pointer is safe until the user calls
889 * netdev_put() to indicate they have finished with it.
890 */
netdev_get_by_index(struct net * net,int ifindex,netdevice_tracker * tracker,gfp_t gfp)891 struct net_device *netdev_get_by_index(struct net *net, int ifindex,
892 netdevice_tracker *tracker, gfp_t gfp)
893 {
894 struct net_device *dev;
895
896 dev = dev_get_by_index(net, ifindex);
897 if (dev)
898 netdev_tracker_alloc(dev, tracker, gfp);
899 return dev;
900 }
901 EXPORT_SYMBOL(netdev_get_by_index);
902
903 /**
904 * dev_get_by_napi_id - find a device by napi_id
905 * @napi_id: ID of the NAPI struct
906 *
907 * Search for an interface by NAPI ID. Returns %NULL if the device
908 * is not found or a pointer to the device. The device has not had
909 * its reference counter increased so the caller must be careful
910 * about locking. The caller must hold RCU lock.
911 */
912
dev_get_by_napi_id(unsigned int napi_id)913 struct net_device *dev_get_by_napi_id(unsigned int napi_id)
914 {
915 struct napi_struct *napi;
916
917 WARN_ON_ONCE(!rcu_read_lock_held());
918
919 if (napi_id < MIN_NAPI_ID)
920 return NULL;
921
922 napi = napi_by_id(napi_id);
923
924 return napi ? napi->dev : NULL;
925 }
926 EXPORT_SYMBOL(dev_get_by_napi_id);
927
928 /**
929 * netdev_get_name - get a netdevice name, knowing its ifindex.
930 * @net: network namespace
931 * @name: a pointer to the buffer where the name will be stored.
932 * @ifindex: the ifindex of the interface to get the name from.
933 */
netdev_get_name(struct net * net,char * name,int ifindex)934 int netdev_get_name(struct net *net, char *name, int ifindex)
935 {
936 struct net_device *dev;
937 int ret;
938
939 down_read(&devnet_rename_sem);
940 rcu_read_lock();
941
942 dev = dev_get_by_index_rcu(net, ifindex);
943 if (!dev) {
944 ret = -ENODEV;
945 goto out;
946 }
947
948 strcpy(name, dev->name);
949
950 ret = 0;
951 out:
952 rcu_read_unlock();
953 up_read(&devnet_rename_sem);
954 return ret;
955 }
956
957 /**
958 * dev_getbyhwaddr_rcu - find a device by its hardware address
959 * @net: the applicable net namespace
960 * @type: media type of device
961 * @ha: hardware address
962 *
963 * Search for an interface by MAC address. Returns NULL if the device
964 * is not found or a pointer to the device.
965 * The caller must hold RCU or RTNL.
966 * The returned device has not had its ref count increased
967 * and the caller must therefore be careful about locking
968 *
969 */
970
dev_getbyhwaddr_rcu(struct net * net,unsigned short type,const char * ha)971 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
972 const char *ha)
973 {
974 struct net_device *dev;
975
976 for_each_netdev_rcu(net, dev)
977 if (dev->type == type &&
978 !memcmp(dev->dev_addr, ha, dev->addr_len))
979 return dev;
980
981 return NULL;
982 }
983 EXPORT_SYMBOL(dev_getbyhwaddr_rcu);
984
dev_getfirstbyhwtype(struct net * net,unsigned short type)985 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type)
986 {
987 struct net_device *dev, *ret = NULL;
988
989 rcu_read_lock();
990 for_each_netdev_rcu(net, dev)
991 if (dev->type == type) {
992 dev_hold(dev);
993 ret = dev;
994 break;
995 }
996 rcu_read_unlock();
997 return ret;
998 }
999 EXPORT_SYMBOL(dev_getfirstbyhwtype);
1000
1001 /**
1002 * __dev_get_by_flags - find any device with given flags
1003 * @net: the applicable net namespace
1004 * @if_flags: IFF_* values
1005 * @mask: bitmask of bits in if_flags to check
1006 *
1007 * Search for any interface with the given flags. Returns NULL if a device
1008 * is not found or a pointer to the device. Must be called inside
1009 * rtnl_lock(), and result refcount is unchanged.
1010 */
1011
__dev_get_by_flags(struct net * net,unsigned short if_flags,unsigned short mask)1012 struct net_device *__dev_get_by_flags(struct net *net, unsigned short if_flags,
1013 unsigned short mask)
1014 {
1015 struct net_device *dev, *ret;
1016
1017 ASSERT_RTNL();
1018
1019 ret = NULL;
1020 for_each_netdev(net, dev) {
1021 if (((dev->flags ^ if_flags) & mask) == 0) {
1022 ret = dev;
1023 break;
1024 }
1025 }
1026 return ret;
1027 }
1028 EXPORT_SYMBOL(__dev_get_by_flags);
1029
1030 /**
1031 * dev_valid_name - check if name is okay for network device
1032 * @name: name string
1033 *
1034 * Network device names need to be valid file names to
1035 * allow sysfs to work. We also disallow any kind of
1036 * whitespace.
1037 */
dev_valid_name(const char * name)1038 bool dev_valid_name(const char *name)
1039 {
1040 if (*name == '\0')
1041 return false;
1042 if (strnlen(name, IFNAMSIZ) == IFNAMSIZ)
1043 return false;
1044 if (!strcmp(name, ".") || !strcmp(name, ".."))
1045 return false;
1046
1047 while (*name) {
1048 if (*name == '/' || *name == ':' || isspace(*name))
1049 return false;
1050 name++;
1051 }
1052 return true;
1053 }
1054 EXPORT_SYMBOL(dev_valid_name);
1055
1056 /**
1057 * __dev_alloc_name - allocate a name for a device
1058 * @net: network namespace to allocate the device name in
1059 * @name: name format string
1060 * @buf: scratch buffer and result name string
1061 *
1062 * Passed a format string - eg "lt%d" it will try and find a suitable
1063 * id. It scans list of devices to build up a free map, then chooses
1064 * the first empty slot. The caller must hold the dev_base or rtnl lock
1065 * while allocating the name and adding the device in order to avoid
1066 * duplicates.
1067 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1068 * Returns the number of the unit assigned or a negative errno code.
1069 */
1070
__dev_alloc_name(struct net * net,const char * name,char * buf)1071 static int __dev_alloc_name(struct net *net, const char *name, char *buf)
1072 {
1073 int i = 0;
1074 const char *p;
1075 const int max_netdevices = 8*PAGE_SIZE;
1076 unsigned long *inuse;
1077 struct net_device *d;
1078
1079 if (!dev_valid_name(name))
1080 return -EINVAL;
1081
1082 p = strchr(name, '%');
1083 if (p) {
1084 /*
1085 * Verify the string as this thing may have come from
1086 * the user. There must be either one "%d" and no other "%"
1087 * characters.
1088 */
1089 if (p[1] != 'd' || strchr(p + 2, '%'))
1090 return -EINVAL;
1091
1092 /* Use one page as a bit array of possible slots */
1093 inuse = bitmap_zalloc(max_netdevices, GFP_ATOMIC);
1094 if (!inuse)
1095 return -ENOMEM;
1096
1097 for_each_netdev(net, d) {
1098 struct netdev_name_node *name_node;
1099
1100 netdev_for_each_altname(d, name_node) {
1101 if (!sscanf(name_node->name, name, &i))
1102 continue;
1103 if (i < 0 || i >= max_netdevices)
1104 continue;
1105
1106 /* avoid cases where sscanf is not exact inverse of printf */
1107 snprintf(buf, IFNAMSIZ, name, i);
1108 if (!strncmp(buf, name_node->name, IFNAMSIZ))
1109 __set_bit(i, inuse);
1110 }
1111 if (!sscanf(d->name, name, &i))
1112 continue;
1113 if (i < 0 || i >= max_netdevices)
1114 continue;
1115
1116 /* avoid cases where sscanf is not exact inverse of printf */
1117 snprintf(buf, IFNAMSIZ, name, i);
1118 if (!strncmp(buf, d->name, IFNAMSIZ))
1119 __set_bit(i, inuse);
1120 }
1121
1122 i = find_first_zero_bit(inuse, max_netdevices);
1123 bitmap_free(inuse);
1124 }
1125
1126 snprintf(buf, IFNAMSIZ, name, i);
1127 if (!netdev_name_in_use(net, buf))
1128 return i;
1129
1130 /* It is possible to run out of possible slots
1131 * when the name is long and there isn't enough space left
1132 * for the digits, or if all bits are used.
1133 */
1134 return -ENFILE;
1135 }
1136
dev_prep_valid_name(struct net * net,struct net_device * dev,const char * want_name,char * out_name)1137 static int dev_prep_valid_name(struct net *net, struct net_device *dev,
1138 const char *want_name, char *out_name)
1139 {
1140 int ret;
1141
1142 if (!dev_valid_name(want_name))
1143 return -EINVAL;
1144
1145 if (strchr(want_name, '%')) {
1146 ret = __dev_alloc_name(net, want_name, out_name);
1147 return ret < 0 ? ret : 0;
1148 } else if (netdev_name_in_use(net, want_name)) {
1149 return -EEXIST;
1150 } else if (out_name != want_name) {
1151 strscpy(out_name, want_name, IFNAMSIZ);
1152 }
1153
1154 return 0;
1155 }
1156
dev_alloc_name_ns(struct net * net,struct net_device * dev,const char * name)1157 static int dev_alloc_name_ns(struct net *net,
1158 struct net_device *dev,
1159 const char *name)
1160 {
1161 char buf[IFNAMSIZ];
1162 int ret;
1163
1164 BUG_ON(!net);
1165 ret = __dev_alloc_name(net, name, buf);
1166 if (ret >= 0)
1167 strscpy(dev->name, buf, IFNAMSIZ);
1168 return ret;
1169 }
1170
1171 /**
1172 * dev_alloc_name - allocate a name for a device
1173 * @dev: device
1174 * @name: name format string
1175 *
1176 * Passed a format string - eg "lt%d" it will try and find a suitable
1177 * id. It scans list of devices to build up a free map, then chooses
1178 * the first empty slot. The caller must hold the dev_base or rtnl lock
1179 * while allocating the name and adding the device in order to avoid
1180 * duplicates.
1181 * Limited to bits_per_byte * page size devices (ie 32K on most platforms).
1182 * Returns the number of the unit assigned or a negative errno code.
1183 */
1184
dev_alloc_name(struct net_device * dev,const char * name)1185 int dev_alloc_name(struct net_device *dev, const char *name)
1186 {
1187 return dev_alloc_name_ns(dev_net(dev), dev, name);
1188 }
1189 EXPORT_SYMBOL(dev_alloc_name);
1190
dev_get_valid_name(struct net * net,struct net_device * dev,const char * name)1191 static int dev_get_valid_name(struct net *net, struct net_device *dev,
1192 const char *name)
1193 {
1194 char buf[IFNAMSIZ];
1195 int ret;
1196
1197 ret = dev_prep_valid_name(net, dev, name, buf);
1198 if (ret >= 0)
1199 strscpy(dev->name, buf, IFNAMSIZ);
1200 return ret;
1201 }
1202
1203 /**
1204 * dev_change_name - change name of a device
1205 * @dev: device
1206 * @newname: name (or format string) must be at least IFNAMSIZ
1207 *
1208 * Change name of a device, can pass format strings "eth%d".
1209 * for wildcarding.
1210 */
dev_change_name(struct net_device * dev,const char * newname)1211 int dev_change_name(struct net_device *dev, const char *newname)
1212 {
1213 unsigned char old_assign_type;
1214 char oldname[IFNAMSIZ];
1215 int err = 0;
1216 int ret;
1217 struct net *net;
1218
1219 ASSERT_RTNL();
1220 BUG_ON(!dev_net(dev));
1221
1222 net = dev_net(dev);
1223
1224 down_write(&devnet_rename_sem);
1225
1226 if (strncmp(newname, dev->name, IFNAMSIZ) == 0) {
1227 up_write(&devnet_rename_sem);
1228 return 0;
1229 }
1230
1231 memcpy(oldname, dev->name, IFNAMSIZ);
1232
1233 err = dev_get_valid_name(net, dev, newname);
1234 if (err < 0) {
1235 up_write(&devnet_rename_sem);
1236 return err;
1237 }
1238
1239 if (oldname[0] && !strchr(oldname, '%'))
1240 netdev_info(dev, "renamed from %s%s\n", oldname,
1241 dev->flags & IFF_UP ? " (while UP)" : "");
1242
1243 old_assign_type = dev->name_assign_type;
1244 dev->name_assign_type = NET_NAME_RENAMED;
1245
1246 rollback:
1247 ret = device_rename(&dev->dev, dev->name);
1248 if (ret) {
1249 memcpy(dev->name, oldname, IFNAMSIZ);
1250 dev->name_assign_type = old_assign_type;
1251 up_write(&devnet_rename_sem);
1252 return ret;
1253 }
1254
1255 up_write(&devnet_rename_sem);
1256
1257 netdev_adjacent_rename_links(dev, oldname);
1258
1259 write_lock(&dev_base_lock);
1260 netdev_name_node_del(dev->name_node);
1261 write_unlock(&dev_base_lock);
1262
1263 synchronize_rcu();
1264
1265 write_lock(&dev_base_lock);
1266 netdev_name_node_add(net, dev->name_node);
1267 write_unlock(&dev_base_lock);
1268
1269 ret = call_netdevice_notifiers(NETDEV_CHANGENAME, dev);
1270 ret = notifier_to_errno(ret);
1271
1272 if (ret) {
1273 /* err >= 0 after dev_alloc_name() or stores the first errno */
1274 if (err >= 0) {
1275 err = ret;
1276 down_write(&devnet_rename_sem);
1277 memcpy(dev->name, oldname, IFNAMSIZ);
1278 memcpy(oldname, newname, IFNAMSIZ);
1279 dev->name_assign_type = old_assign_type;
1280 old_assign_type = NET_NAME_RENAMED;
1281 goto rollback;
1282 } else {
1283 netdev_err(dev, "name change rollback failed: %d\n",
1284 ret);
1285 }
1286 }
1287
1288 return err;
1289 }
1290
1291 /**
1292 * dev_set_alias - change ifalias of a device
1293 * @dev: device
1294 * @alias: name up to IFALIASZ
1295 * @len: limit of bytes to copy from info
1296 *
1297 * Set ifalias for a device,
1298 */
dev_set_alias(struct net_device * dev,const char * alias,size_t len)1299 int dev_set_alias(struct net_device *dev, const char *alias, size_t len)
1300 {
1301 struct dev_ifalias *new_alias = NULL;
1302
1303 if (len >= IFALIASZ)
1304 return -EINVAL;
1305
1306 if (len) {
1307 new_alias = kmalloc(sizeof(*new_alias) + len + 1, GFP_KERNEL);
1308 if (!new_alias)
1309 return -ENOMEM;
1310
1311 memcpy(new_alias->ifalias, alias, len);
1312 new_alias->ifalias[len] = 0;
1313 }
1314
1315 mutex_lock(&ifalias_mutex);
1316 new_alias = rcu_replace_pointer(dev->ifalias, new_alias,
1317 mutex_is_locked(&ifalias_mutex));
1318 mutex_unlock(&ifalias_mutex);
1319
1320 if (new_alias)
1321 kfree_rcu(new_alias, rcuhead);
1322
1323 return len;
1324 }
1325 EXPORT_SYMBOL(dev_set_alias);
1326
1327 /**
1328 * dev_get_alias - get ifalias of a device
1329 * @dev: device
1330 * @name: buffer to store name of ifalias
1331 * @len: size of buffer
1332 *
1333 * get ifalias for a device. Caller must make sure dev cannot go
1334 * away, e.g. rcu read lock or own a reference count to device.
1335 */
dev_get_alias(const struct net_device * dev,char * name,size_t len)1336 int dev_get_alias(const struct net_device *dev, char *name, size_t len)
1337 {
1338 const struct dev_ifalias *alias;
1339 int ret = 0;
1340
1341 rcu_read_lock();
1342 alias = rcu_dereference(dev->ifalias);
1343 if (alias)
1344 ret = snprintf(name, len, "%s", alias->ifalias);
1345 rcu_read_unlock();
1346
1347 return ret;
1348 }
1349
1350 /**
1351 * netdev_features_change - device changes features
1352 * @dev: device to cause notification
1353 *
1354 * Called to indicate a device has changed features.
1355 */
netdev_features_change(struct net_device * dev)1356 void netdev_features_change(struct net_device *dev)
1357 {
1358 call_netdevice_notifiers(NETDEV_FEAT_CHANGE, dev);
1359 }
1360 EXPORT_SYMBOL(netdev_features_change);
1361
1362 /**
1363 * netdev_state_change - device changes state
1364 * @dev: device to cause notification
1365 *
1366 * Called to indicate a device has changed state. This function calls
1367 * the notifier chains for netdev_chain and sends a NEWLINK message
1368 * to the routing socket.
1369 */
netdev_state_change(struct net_device * dev)1370 void netdev_state_change(struct net_device *dev)
1371 {
1372 if (dev->flags & IFF_UP) {
1373 struct netdev_notifier_change_info change_info = {
1374 .info.dev = dev,
1375 };
1376
1377 call_netdevice_notifiers_info(NETDEV_CHANGE,
1378 &change_info.info);
1379 rtmsg_ifinfo(RTM_NEWLINK, dev, 0, GFP_KERNEL, 0, NULL);
1380 }
1381 }
1382 EXPORT_SYMBOL(netdev_state_change);
1383
1384 /**
1385 * __netdev_notify_peers - notify network peers about existence of @dev,
1386 * to be called when rtnl lock is already held.
1387 * @dev: network device
1388 *
1389 * Generate traffic such that interested network peers are aware of
1390 * @dev, such as by generating a gratuitous ARP. This may be used when
1391 * a device wants to inform the rest of the network about some sort of
1392 * reconfiguration such as a failover event or virtual machine
1393 * migration.
1394 */
__netdev_notify_peers(struct net_device * dev)1395 void __netdev_notify_peers(struct net_device *dev)
1396 {
1397 ASSERT_RTNL();
1398 call_netdevice_notifiers(NETDEV_NOTIFY_PEERS, dev);
1399 call_netdevice_notifiers(NETDEV_RESEND_IGMP, dev);
1400 }
1401 EXPORT_SYMBOL(__netdev_notify_peers);
1402
1403 /**
1404 * netdev_notify_peers - notify network peers about existence of @dev
1405 * @dev: network device
1406 *
1407 * Generate traffic such that interested network peers are aware of
1408 * @dev, such as by generating a gratuitous ARP. This may be used when
1409 * a device wants to inform the rest of the network about some sort of
1410 * reconfiguration such as a failover event or virtual machine
1411 * migration.
1412 */
netdev_notify_peers(struct net_device * dev)1413 void netdev_notify_peers(struct net_device *dev)
1414 {
1415 rtnl_lock();
1416 __netdev_notify_peers(dev);
1417 rtnl_unlock();
1418 }
1419 EXPORT_SYMBOL(netdev_notify_peers);
1420
1421 static int napi_threaded_poll(void *data);
1422
napi_kthread_create(struct napi_struct * n)1423 static int napi_kthread_create(struct napi_struct *n)
1424 {
1425 int err = 0;
1426
1427 /* Create and wake up the kthread once to put it in
1428 * TASK_INTERRUPTIBLE mode to avoid the blocked task
1429 * warning and work with loadavg.
1430 */
1431 n->thread = kthread_run(napi_threaded_poll, n, "napi/%s-%d",
1432 n->dev->name, n->napi_id);
1433 if (IS_ERR(n->thread)) {
1434 err = PTR_ERR(n->thread);
1435 pr_err("kthread_run failed with err %d\n", err);
1436 n->thread = NULL;
1437 }
1438
1439 return err;
1440 }
1441
__dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1442 static int __dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1443 {
1444 const struct net_device_ops *ops = dev->netdev_ops;
1445 int ret;
1446
1447 ASSERT_RTNL();
1448 dev_addr_check(dev);
1449
1450 if (!netif_device_present(dev)) {
1451 /* may be detached because parent is runtime-suspended */
1452 if (dev->dev.parent)
1453 pm_runtime_resume(dev->dev.parent);
1454 if (!netif_device_present(dev))
1455 return -ENODEV;
1456 }
1457
1458 /* Block netpoll from trying to do any rx path servicing.
1459 * If we don't do this there is a chance ndo_poll_controller
1460 * or ndo_poll may be running while we open the device
1461 */
1462 netpoll_poll_disable(dev);
1463
1464 ret = call_netdevice_notifiers_extack(NETDEV_PRE_UP, dev, extack);
1465 ret = notifier_to_errno(ret);
1466 if (ret)
1467 return ret;
1468
1469 set_bit(__LINK_STATE_START, &dev->state);
1470
1471 if (ops->ndo_validate_addr)
1472 ret = ops->ndo_validate_addr(dev);
1473
1474 if (!ret && ops->ndo_open)
1475 ret = ops->ndo_open(dev);
1476
1477 netpoll_poll_enable(dev);
1478
1479 if (ret)
1480 clear_bit(__LINK_STATE_START, &dev->state);
1481 else {
1482 dev->flags |= IFF_UP;
1483 dev_set_rx_mode(dev);
1484 dev_activate(dev);
1485 add_device_randomness(dev->dev_addr, dev->addr_len);
1486 }
1487
1488 return ret;
1489 }
1490
1491 /**
1492 * dev_open - prepare an interface for use.
1493 * @dev: device to open
1494 * @extack: netlink extended ack
1495 *
1496 * Takes a device from down to up state. The device's private open
1497 * function is invoked and then the multicast lists are loaded. Finally
1498 * the device is moved into the up state and a %NETDEV_UP message is
1499 * sent to the netdev notifier chain.
1500 *
1501 * Calling this function on an active interface is a nop. On a failure
1502 * a negative errno code is returned.
1503 */
dev_open(struct net_device * dev,struct netlink_ext_ack * extack)1504 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack)
1505 {
1506 int ret;
1507
1508 if (dev->flags & IFF_UP)
1509 return 0;
1510
1511 ret = __dev_open(dev, extack);
1512 if (ret < 0)
1513 return ret;
1514
1515 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1516 call_netdevice_notifiers(NETDEV_UP, dev);
1517
1518 return ret;
1519 }
1520 EXPORT_SYMBOL(dev_open);
1521
__dev_close_many(struct list_head * head)1522 static void __dev_close_many(struct list_head *head)
1523 {
1524 struct net_device *dev;
1525
1526 ASSERT_RTNL();
1527 might_sleep();
1528
1529 list_for_each_entry(dev, head, close_list) {
1530 /* Temporarily disable netpoll until the interface is down */
1531 netpoll_poll_disable(dev);
1532
1533 call_netdevice_notifiers(NETDEV_GOING_DOWN, dev);
1534
1535 clear_bit(__LINK_STATE_START, &dev->state);
1536
1537 /* Synchronize to scheduled poll. We cannot touch poll list, it
1538 * can be even on different cpu. So just clear netif_running().
1539 *
1540 * dev->stop() will invoke napi_disable() on all of it's
1541 * napi_struct instances on this device.
1542 */
1543 smp_mb__after_atomic(); /* Commit netif_running(). */
1544 }
1545
1546 dev_deactivate_many(head);
1547
1548 list_for_each_entry(dev, head, close_list) {
1549 const struct net_device_ops *ops = dev->netdev_ops;
1550
1551 /*
1552 * Call the device specific close. This cannot fail.
1553 * Only if device is UP
1554 *
1555 * We allow it to be called even after a DETACH hot-plug
1556 * event.
1557 */
1558 if (ops->ndo_stop)
1559 ops->ndo_stop(dev);
1560
1561 dev->flags &= ~IFF_UP;
1562 netpoll_poll_enable(dev);
1563 }
1564 }
1565
__dev_close(struct net_device * dev)1566 static void __dev_close(struct net_device *dev)
1567 {
1568 LIST_HEAD(single);
1569
1570 list_add(&dev->close_list, &single);
1571 __dev_close_many(&single);
1572 list_del(&single);
1573 }
1574
dev_close_many(struct list_head * head,bool unlink)1575 void dev_close_many(struct list_head *head, bool unlink)
1576 {
1577 struct net_device *dev, *tmp;
1578
1579 /* Remove the devices that don't need to be closed */
1580 list_for_each_entry_safe(dev, tmp, head, close_list)
1581 if (!(dev->flags & IFF_UP))
1582 list_del_init(&dev->close_list);
1583
1584 __dev_close_many(head);
1585
1586 list_for_each_entry_safe(dev, tmp, head, close_list) {
1587 rtmsg_ifinfo(RTM_NEWLINK, dev, IFF_UP | IFF_RUNNING, GFP_KERNEL, 0, NULL);
1588 call_netdevice_notifiers(NETDEV_DOWN, dev);
1589 if (unlink)
1590 list_del_init(&dev->close_list);
1591 }
1592 }
1593 EXPORT_SYMBOL(dev_close_many);
1594
1595 /**
1596 * dev_close - shutdown an interface.
1597 * @dev: device to shutdown
1598 *
1599 * This function moves an active device into down state. A
1600 * %NETDEV_GOING_DOWN is sent to the netdev notifier chain. The device
1601 * is then deactivated and finally a %NETDEV_DOWN is sent to the notifier
1602 * chain.
1603 */
dev_close(struct net_device * dev)1604 void dev_close(struct net_device *dev)
1605 {
1606 if (dev->flags & IFF_UP) {
1607 LIST_HEAD(single);
1608
1609 list_add(&dev->close_list, &single);
1610 dev_close_many(&single, true);
1611 list_del(&single);
1612 }
1613 }
1614 EXPORT_SYMBOL(dev_close);
1615
1616
1617 /**
1618 * dev_disable_lro - disable Large Receive Offload on a device
1619 * @dev: device
1620 *
1621 * Disable Large Receive Offload (LRO) on a net device. Must be
1622 * called under RTNL. This is needed if received packets may be
1623 * forwarded to another interface.
1624 */
dev_disable_lro(struct net_device * dev)1625 void dev_disable_lro(struct net_device *dev)
1626 {
1627 struct net_device *lower_dev;
1628 struct list_head *iter;
1629
1630 dev->wanted_features &= ~NETIF_F_LRO;
1631 netdev_update_features(dev);
1632
1633 if (unlikely(dev->features & NETIF_F_LRO))
1634 netdev_WARN(dev, "failed to disable LRO!\n");
1635
1636 netdev_for_each_lower_dev(dev, lower_dev, iter)
1637 dev_disable_lro(lower_dev);
1638 }
1639 EXPORT_SYMBOL(dev_disable_lro);
1640
1641 /**
1642 * dev_disable_gro_hw - disable HW Generic Receive Offload on a device
1643 * @dev: device
1644 *
1645 * Disable HW Generic Receive Offload (GRO_HW) on a net device. Must be
1646 * called under RTNL. This is needed if Generic XDP is installed on
1647 * the device.
1648 */
dev_disable_gro_hw(struct net_device * dev)1649 static void dev_disable_gro_hw(struct net_device *dev)
1650 {
1651 dev->wanted_features &= ~NETIF_F_GRO_HW;
1652 netdev_update_features(dev);
1653
1654 if (unlikely(dev->features & NETIF_F_GRO_HW))
1655 netdev_WARN(dev, "failed to disable GRO_HW!\n");
1656 }
1657
netdev_cmd_to_name(enum netdev_cmd cmd)1658 const char *netdev_cmd_to_name(enum netdev_cmd cmd)
1659 {
1660 #define N(val) \
1661 case NETDEV_##val: \
1662 return "NETDEV_" __stringify(val);
1663 switch (cmd) {
1664 N(UP) N(DOWN) N(REBOOT) N(CHANGE) N(REGISTER) N(UNREGISTER)
1665 N(CHANGEMTU) N(CHANGEADDR) N(GOING_DOWN) N(CHANGENAME) N(FEAT_CHANGE)
1666 N(BONDING_FAILOVER) N(PRE_UP) N(PRE_TYPE_CHANGE) N(POST_TYPE_CHANGE)
1667 N(POST_INIT) N(PRE_UNINIT) N(RELEASE) N(NOTIFY_PEERS) N(JOIN)
1668 N(CHANGEUPPER) N(RESEND_IGMP) N(PRECHANGEMTU) N(CHANGEINFODATA)
1669 N(BONDING_INFO) N(PRECHANGEUPPER) N(CHANGELOWERSTATE)
1670 N(UDP_TUNNEL_PUSH_INFO) N(UDP_TUNNEL_DROP_INFO) N(CHANGE_TX_QUEUE_LEN)
1671 N(CVLAN_FILTER_PUSH_INFO) N(CVLAN_FILTER_DROP_INFO)
1672 N(SVLAN_FILTER_PUSH_INFO) N(SVLAN_FILTER_DROP_INFO)
1673 N(PRE_CHANGEADDR) N(OFFLOAD_XSTATS_ENABLE) N(OFFLOAD_XSTATS_DISABLE)
1674 N(OFFLOAD_XSTATS_REPORT_USED) N(OFFLOAD_XSTATS_REPORT_DELTA)
1675 N(XDP_FEAT_CHANGE)
1676 }
1677 #undef N
1678 return "UNKNOWN_NETDEV_EVENT";
1679 }
1680 EXPORT_SYMBOL_GPL(netdev_cmd_to_name);
1681
call_netdevice_notifier(struct notifier_block * nb,unsigned long val,struct net_device * dev)1682 static int call_netdevice_notifier(struct notifier_block *nb, unsigned long val,
1683 struct net_device *dev)
1684 {
1685 struct netdev_notifier_info info = {
1686 .dev = dev,
1687 };
1688
1689 return nb->notifier_call(nb, val, &info);
1690 }
1691
call_netdevice_register_notifiers(struct notifier_block * nb,struct net_device * dev)1692 static int call_netdevice_register_notifiers(struct notifier_block *nb,
1693 struct net_device *dev)
1694 {
1695 int err;
1696
1697 err = call_netdevice_notifier(nb, NETDEV_REGISTER, dev);
1698 err = notifier_to_errno(err);
1699 if (err)
1700 return err;
1701
1702 if (!(dev->flags & IFF_UP))
1703 return 0;
1704
1705 call_netdevice_notifier(nb, NETDEV_UP, dev);
1706 return 0;
1707 }
1708
call_netdevice_unregister_notifiers(struct notifier_block * nb,struct net_device * dev)1709 static void call_netdevice_unregister_notifiers(struct notifier_block *nb,
1710 struct net_device *dev)
1711 {
1712 if (dev->flags & IFF_UP) {
1713 call_netdevice_notifier(nb, NETDEV_GOING_DOWN,
1714 dev);
1715 call_netdevice_notifier(nb, NETDEV_DOWN, dev);
1716 }
1717 call_netdevice_notifier(nb, NETDEV_UNREGISTER, dev);
1718 }
1719
call_netdevice_register_net_notifiers(struct notifier_block * nb,struct net * net)1720 static int call_netdevice_register_net_notifiers(struct notifier_block *nb,
1721 struct net *net)
1722 {
1723 struct net_device *dev;
1724 int err;
1725
1726 for_each_netdev(net, dev) {
1727 err = call_netdevice_register_notifiers(nb, dev);
1728 if (err)
1729 goto rollback;
1730 }
1731 return 0;
1732
1733 rollback:
1734 for_each_netdev_continue_reverse(net, dev)
1735 call_netdevice_unregister_notifiers(nb, dev);
1736 return err;
1737 }
1738
call_netdevice_unregister_net_notifiers(struct notifier_block * nb,struct net * net)1739 static void call_netdevice_unregister_net_notifiers(struct notifier_block *nb,
1740 struct net *net)
1741 {
1742 struct net_device *dev;
1743
1744 for_each_netdev(net, dev)
1745 call_netdevice_unregister_notifiers(nb, dev);
1746 }
1747
1748 static int dev_boot_phase = 1;
1749
1750 /**
1751 * register_netdevice_notifier - register a network notifier block
1752 * @nb: notifier
1753 *
1754 * Register a notifier to be called when network device events occur.
1755 * The notifier passed is linked into the kernel structures and must
1756 * not be reused until it has been unregistered. A negative errno code
1757 * is returned on a failure.
1758 *
1759 * When registered all registration and up events are replayed
1760 * to the new notifier to allow device to have a race free
1761 * view of the network device list.
1762 */
1763
register_netdevice_notifier(struct notifier_block * nb)1764 int register_netdevice_notifier(struct notifier_block *nb)
1765 {
1766 struct net *net;
1767 int err;
1768
1769 /* Close race with setup_net() and cleanup_net() */
1770 down_write(&pernet_ops_rwsem);
1771 rtnl_lock();
1772 err = raw_notifier_chain_register(&netdev_chain, nb);
1773 if (err)
1774 goto unlock;
1775 if (dev_boot_phase)
1776 goto unlock;
1777 for_each_net(net) {
1778 err = call_netdevice_register_net_notifiers(nb, net);
1779 if (err)
1780 goto rollback;
1781 }
1782
1783 unlock:
1784 rtnl_unlock();
1785 up_write(&pernet_ops_rwsem);
1786 return err;
1787
1788 rollback:
1789 for_each_net_continue_reverse(net)
1790 call_netdevice_unregister_net_notifiers(nb, net);
1791
1792 raw_notifier_chain_unregister(&netdev_chain, nb);
1793 goto unlock;
1794 }
1795 EXPORT_SYMBOL(register_netdevice_notifier);
1796
1797 /**
1798 * unregister_netdevice_notifier - unregister a network notifier block
1799 * @nb: notifier
1800 *
1801 * Unregister a notifier previously registered by
1802 * register_netdevice_notifier(). The notifier is unlinked into the
1803 * kernel structures and may then be reused. A negative errno code
1804 * is returned on a failure.
1805 *
1806 * After unregistering unregister and down device events are synthesized
1807 * for all devices on the device list to the removed notifier to remove
1808 * the need for special case cleanup code.
1809 */
1810
unregister_netdevice_notifier(struct notifier_block * nb)1811 int unregister_netdevice_notifier(struct notifier_block *nb)
1812 {
1813 struct net *net;
1814 int err;
1815
1816 /* Close race with setup_net() and cleanup_net() */
1817 down_write(&pernet_ops_rwsem);
1818 rtnl_lock();
1819 err = raw_notifier_chain_unregister(&netdev_chain, nb);
1820 if (err)
1821 goto unlock;
1822
1823 for_each_net(net)
1824 call_netdevice_unregister_net_notifiers(nb, net);
1825
1826 unlock:
1827 rtnl_unlock();
1828 up_write(&pernet_ops_rwsem);
1829 return err;
1830 }
1831 EXPORT_SYMBOL(unregister_netdevice_notifier);
1832
__register_netdevice_notifier_net(struct net * net,struct notifier_block * nb,bool ignore_call_fail)1833 static int __register_netdevice_notifier_net(struct net *net,
1834 struct notifier_block *nb,
1835 bool ignore_call_fail)
1836 {
1837 int err;
1838
1839 err = raw_notifier_chain_register(&net->netdev_chain, nb);
1840 if (err)
1841 return err;
1842 if (dev_boot_phase)
1843 return 0;
1844
1845 err = call_netdevice_register_net_notifiers(nb, net);
1846 if (err && !ignore_call_fail)
1847 goto chain_unregister;
1848
1849 return 0;
1850
1851 chain_unregister:
1852 raw_notifier_chain_unregister(&net->netdev_chain, nb);
1853 return err;
1854 }
1855
__unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1856 static int __unregister_netdevice_notifier_net(struct net *net,
1857 struct notifier_block *nb)
1858 {
1859 int err;
1860
1861 err = raw_notifier_chain_unregister(&net->netdev_chain, nb);
1862 if (err)
1863 return err;
1864
1865 call_netdevice_unregister_net_notifiers(nb, net);
1866 return 0;
1867 }
1868
1869 /**
1870 * register_netdevice_notifier_net - register a per-netns network notifier block
1871 * @net: network namespace
1872 * @nb: notifier
1873 *
1874 * Register a notifier to be called when network device events occur.
1875 * The notifier passed is linked into the kernel structures and must
1876 * not be reused until it has been unregistered. A negative errno code
1877 * is returned on a failure.
1878 *
1879 * When registered all registration and up events are replayed
1880 * to the new notifier to allow device to have a race free
1881 * view of the network device list.
1882 */
1883
register_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1884 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb)
1885 {
1886 int err;
1887
1888 rtnl_lock();
1889 err = __register_netdevice_notifier_net(net, nb, false);
1890 rtnl_unlock();
1891 return err;
1892 }
1893 EXPORT_SYMBOL(register_netdevice_notifier_net);
1894
1895 /**
1896 * unregister_netdevice_notifier_net - unregister a per-netns
1897 * network notifier block
1898 * @net: network namespace
1899 * @nb: notifier
1900 *
1901 * Unregister a notifier previously registered by
1902 * register_netdevice_notifier_net(). The notifier is unlinked from the
1903 * kernel structures and may then be reused. A negative errno code
1904 * is returned on a failure.
1905 *
1906 * After unregistering unregister and down device events are synthesized
1907 * for all devices on the device list to the removed notifier to remove
1908 * the need for special case cleanup code.
1909 */
1910
unregister_netdevice_notifier_net(struct net * net,struct notifier_block * nb)1911 int unregister_netdevice_notifier_net(struct net *net,
1912 struct notifier_block *nb)
1913 {
1914 int err;
1915
1916 rtnl_lock();
1917 err = __unregister_netdevice_notifier_net(net, nb);
1918 rtnl_unlock();
1919 return err;
1920 }
1921 EXPORT_SYMBOL(unregister_netdevice_notifier_net);
1922
__move_netdevice_notifier_net(struct net * src_net,struct net * dst_net,struct notifier_block * nb)1923 static void __move_netdevice_notifier_net(struct net *src_net,
1924 struct net *dst_net,
1925 struct notifier_block *nb)
1926 {
1927 __unregister_netdevice_notifier_net(src_net, nb);
1928 __register_netdevice_notifier_net(dst_net, nb, true);
1929 }
1930
register_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1931 int register_netdevice_notifier_dev_net(struct net_device *dev,
1932 struct notifier_block *nb,
1933 struct netdev_net_notifier *nn)
1934 {
1935 int err;
1936
1937 rtnl_lock();
1938 err = __register_netdevice_notifier_net(dev_net(dev), nb, false);
1939 if (!err) {
1940 nn->nb = nb;
1941 list_add(&nn->list, &dev->net_notifier_list);
1942 }
1943 rtnl_unlock();
1944 return err;
1945 }
1946 EXPORT_SYMBOL(register_netdevice_notifier_dev_net);
1947
unregister_netdevice_notifier_dev_net(struct net_device * dev,struct notifier_block * nb,struct netdev_net_notifier * nn)1948 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
1949 struct notifier_block *nb,
1950 struct netdev_net_notifier *nn)
1951 {
1952 int err;
1953
1954 rtnl_lock();
1955 list_del(&nn->list);
1956 err = __unregister_netdevice_notifier_net(dev_net(dev), nb);
1957 rtnl_unlock();
1958 return err;
1959 }
1960 EXPORT_SYMBOL(unregister_netdevice_notifier_dev_net);
1961
move_netdevice_notifiers_dev_net(struct net_device * dev,struct net * net)1962 static void move_netdevice_notifiers_dev_net(struct net_device *dev,
1963 struct net *net)
1964 {
1965 struct netdev_net_notifier *nn;
1966
1967 list_for_each_entry(nn, &dev->net_notifier_list, list)
1968 __move_netdevice_notifier_net(dev_net(dev), net, nn->nb);
1969 }
1970
1971 /**
1972 * call_netdevice_notifiers_info - call all network notifier blocks
1973 * @val: value passed unmodified to notifier function
1974 * @info: notifier information data
1975 *
1976 * Call all network notifier blocks. Parameters and return value
1977 * are as for raw_notifier_call_chain().
1978 */
1979
call_netdevice_notifiers_info(unsigned long val,struct netdev_notifier_info * info)1980 int call_netdevice_notifiers_info(unsigned long val,
1981 struct netdev_notifier_info *info)
1982 {
1983 struct net *net = dev_net(info->dev);
1984 int ret;
1985
1986 ASSERT_RTNL();
1987
1988 /* Run per-netns notifier block chain first, then run the global one.
1989 * Hopefully, one day, the global one is going to be removed after
1990 * all notifier block registrators get converted to be per-netns.
1991 */
1992 ret = raw_notifier_call_chain(&net->netdev_chain, val, info);
1993 if (ret & NOTIFY_STOP_MASK)
1994 return ret;
1995 return raw_notifier_call_chain(&netdev_chain, val, info);
1996 }
1997
1998 /**
1999 * call_netdevice_notifiers_info_robust - call per-netns notifier blocks
2000 * for and rollback on error
2001 * @val_up: value passed unmodified to notifier function
2002 * @val_down: value passed unmodified to the notifier function when
2003 * recovering from an error on @val_up
2004 * @info: notifier information data
2005 *
2006 * Call all per-netns network notifier blocks, but not notifier blocks on
2007 * the global notifier chain. Parameters and return value are as for
2008 * raw_notifier_call_chain_robust().
2009 */
2010
2011 static int
call_netdevice_notifiers_info_robust(unsigned long val_up,unsigned long val_down,struct netdev_notifier_info * info)2012 call_netdevice_notifiers_info_robust(unsigned long val_up,
2013 unsigned long val_down,
2014 struct netdev_notifier_info *info)
2015 {
2016 struct net *net = dev_net(info->dev);
2017
2018 ASSERT_RTNL();
2019
2020 return raw_notifier_call_chain_robust(&net->netdev_chain,
2021 val_up, val_down, info);
2022 }
2023
call_netdevice_notifiers_extack(unsigned long val,struct net_device * dev,struct netlink_ext_ack * extack)2024 static int call_netdevice_notifiers_extack(unsigned long val,
2025 struct net_device *dev,
2026 struct netlink_ext_ack *extack)
2027 {
2028 struct netdev_notifier_info info = {
2029 .dev = dev,
2030 .extack = extack,
2031 };
2032
2033 return call_netdevice_notifiers_info(val, &info);
2034 }
2035
2036 /**
2037 * call_netdevice_notifiers - call all network notifier blocks
2038 * @val: value passed unmodified to notifier function
2039 * @dev: net_device pointer passed unmodified to notifier function
2040 *
2041 * Call all network notifier blocks. Parameters and return value
2042 * are as for raw_notifier_call_chain().
2043 */
2044
call_netdevice_notifiers(unsigned long val,struct net_device * dev)2045 int call_netdevice_notifiers(unsigned long val, struct net_device *dev)
2046 {
2047 return call_netdevice_notifiers_extack(val, dev, NULL);
2048 }
2049 EXPORT_SYMBOL(call_netdevice_notifiers);
2050
2051 /**
2052 * call_netdevice_notifiers_mtu - call all network notifier blocks
2053 * @val: value passed unmodified to notifier function
2054 * @dev: net_device pointer passed unmodified to notifier function
2055 * @arg: additional u32 argument passed to the notifier function
2056 *
2057 * Call all network notifier blocks. Parameters and return value
2058 * are as for raw_notifier_call_chain().
2059 */
call_netdevice_notifiers_mtu(unsigned long val,struct net_device * dev,u32 arg)2060 static int call_netdevice_notifiers_mtu(unsigned long val,
2061 struct net_device *dev, u32 arg)
2062 {
2063 struct netdev_notifier_info_ext info = {
2064 .info.dev = dev,
2065 .ext.mtu = arg,
2066 };
2067
2068 BUILD_BUG_ON(offsetof(struct netdev_notifier_info_ext, info) != 0);
2069
2070 return call_netdevice_notifiers_info(val, &info.info);
2071 }
2072
2073 #ifdef CONFIG_NET_INGRESS
2074 static DEFINE_STATIC_KEY_FALSE(ingress_needed_key);
2075
net_inc_ingress_queue(void)2076 void net_inc_ingress_queue(void)
2077 {
2078 static_branch_inc(&ingress_needed_key);
2079 }
2080 EXPORT_SYMBOL_GPL(net_inc_ingress_queue);
2081
net_dec_ingress_queue(void)2082 void net_dec_ingress_queue(void)
2083 {
2084 static_branch_dec(&ingress_needed_key);
2085 }
2086 EXPORT_SYMBOL_GPL(net_dec_ingress_queue);
2087 #endif
2088
2089 #ifdef CONFIG_NET_EGRESS
2090 static DEFINE_STATIC_KEY_FALSE(egress_needed_key);
2091
net_inc_egress_queue(void)2092 void net_inc_egress_queue(void)
2093 {
2094 static_branch_inc(&egress_needed_key);
2095 }
2096 EXPORT_SYMBOL_GPL(net_inc_egress_queue);
2097
net_dec_egress_queue(void)2098 void net_dec_egress_queue(void)
2099 {
2100 static_branch_dec(&egress_needed_key);
2101 }
2102 EXPORT_SYMBOL_GPL(net_dec_egress_queue);
2103 #endif
2104
2105 DEFINE_STATIC_KEY_FALSE(netstamp_needed_key);
2106 EXPORT_SYMBOL(netstamp_needed_key);
2107 #ifdef CONFIG_JUMP_LABEL
2108 static atomic_t netstamp_needed_deferred;
2109 static atomic_t netstamp_wanted;
netstamp_clear(struct work_struct * work)2110 static void netstamp_clear(struct work_struct *work)
2111 {
2112 int deferred = atomic_xchg(&netstamp_needed_deferred, 0);
2113 int wanted;
2114
2115 wanted = atomic_add_return(deferred, &netstamp_wanted);
2116 if (wanted > 0)
2117 static_branch_enable(&netstamp_needed_key);
2118 else
2119 static_branch_disable(&netstamp_needed_key);
2120 }
2121 static DECLARE_WORK(netstamp_work, netstamp_clear);
2122 #endif
2123
net_enable_timestamp(void)2124 void net_enable_timestamp(void)
2125 {
2126 #ifdef CONFIG_JUMP_LABEL
2127 int wanted = atomic_read(&netstamp_wanted);
2128
2129 while (wanted > 0) {
2130 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted + 1))
2131 return;
2132 }
2133 atomic_inc(&netstamp_needed_deferred);
2134 schedule_work(&netstamp_work);
2135 #else
2136 static_branch_inc(&netstamp_needed_key);
2137 #endif
2138 }
2139 EXPORT_SYMBOL(net_enable_timestamp);
2140
net_disable_timestamp(void)2141 void net_disable_timestamp(void)
2142 {
2143 #ifdef CONFIG_JUMP_LABEL
2144 int wanted = atomic_read(&netstamp_wanted);
2145
2146 while (wanted > 1) {
2147 if (atomic_try_cmpxchg(&netstamp_wanted, &wanted, wanted - 1))
2148 return;
2149 }
2150 atomic_dec(&netstamp_needed_deferred);
2151 schedule_work(&netstamp_work);
2152 #else
2153 static_branch_dec(&netstamp_needed_key);
2154 #endif
2155 }
2156 EXPORT_SYMBOL(net_disable_timestamp);
2157
net_timestamp_set(struct sk_buff * skb)2158 static inline void net_timestamp_set(struct sk_buff *skb)
2159 {
2160 skb->tstamp = 0;
2161 skb->mono_delivery_time = 0;
2162 if (static_branch_unlikely(&netstamp_needed_key))
2163 skb->tstamp = ktime_get_real();
2164 }
2165
2166 #define net_timestamp_check(COND, SKB) \
2167 if (static_branch_unlikely(&netstamp_needed_key)) { \
2168 if ((COND) && !(SKB)->tstamp) \
2169 (SKB)->tstamp = ktime_get_real(); \
2170 } \
2171
is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb)2172 bool is_skb_forwardable(const struct net_device *dev, const struct sk_buff *skb)
2173 {
2174 return __is_skb_forwardable(dev, skb, true);
2175 }
2176 EXPORT_SYMBOL_GPL(is_skb_forwardable);
2177
__dev_forward_skb2(struct net_device * dev,struct sk_buff * skb,bool check_mtu)2178 static int __dev_forward_skb2(struct net_device *dev, struct sk_buff *skb,
2179 bool check_mtu)
2180 {
2181 int ret = ____dev_forward_skb(dev, skb, check_mtu);
2182
2183 if (likely(!ret)) {
2184 skb->protocol = eth_type_trans(skb, dev);
2185 skb_postpull_rcsum(skb, eth_hdr(skb), ETH_HLEN);
2186 }
2187
2188 return ret;
2189 }
2190
__dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2191 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2192 {
2193 return __dev_forward_skb2(dev, skb, true);
2194 }
2195 EXPORT_SYMBOL_GPL(__dev_forward_skb);
2196
2197 /**
2198 * dev_forward_skb - loopback an skb to another netif
2199 *
2200 * @dev: destination network device
2201 * @skb: buffer to forward
2202 *
2203 * return values:
2204 * NET_RX_SUCCESS (no congestion)
2205 * NET_RX_DROP (packet was dropped, but freed)
2206 *
2207 * dev_forward_skb can be used for injecting an skb from the
2208 * start_xmit function of one device into the receive queue
2209 * of another device.
2210 *
2211 * The receiving device may be in another namespace, so
2212 * we have to clear all information in the skb that could
2213 * impact namespace isolation.
2214 */
dev_forward_skb(struct net_device * dev,struct sk_buff * skb)2215 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb)
2216 {
2217 return __dev_forward_skb(dev, skb) ?: netif_rx_internal(skb);
2218 }
2219 EXPORT_SYMBOL_GPL(dev_forward_skb);
2220
dev_forward_skb_nomtu(struct net_device * dev,struct sk_buff * skb)2221 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb)
2222 {
2223 return __dev_forward_skb2(dev, skb, false) ?: netif_rx_internal(skb);
2224 }
2225
deliver_skb(struct sk_buff * skb,struct packet_type * pt_prev,struct net_device * orig_dev)2226 static inline int deliver_skb(struct sk_buff *skb,
2227 struct packet_type *pt_prev,
2228 struct net_device *orig_dev)
2229 {
2230 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
2231 return -ENOMEM;
2232 refcount_inc(&skb->users);
2233 return pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
2234 }
2235
deliver_ptype_list_skb(struct sk_buff * skb,struct packet_type ** pt,struct net_device * orig_dev,__be16 type,struct list_head * ptype_list)2236 static inline void deliver_ptype_list_skb(struct sk_buff *skb,
2237 struct packet_type **pt,
2238 struct net_device *orig_dev,
2239 __be16 type,
2240 struct list_head *ptype_list)
2241 {
2242 struct packet_type *ptype, *pt_prev = *pt;
2243
2244 list_for_each_entry_rcu(ptype, ptype_list, list) {
2245 if (ptype->type != type)
2246 continue;
2247 if (pt_prev)
2248 deliver_skb(skb, pt_prev, orig_dev);
2249 pt_prev = ptype;
2250 }
2251 *pt = pt_prev;
2252 }
2253
skb_loop_sk(struct packet_type * ptype,struct sk_buff * skb)2254 static inline bool skb_loop_sk(struct packet_type *ptype, struct sk_buff *skb)
2255 {
2256 if (!ptype->af_packet_priv || !skb->sk)
2257 return false;
2258
2259 if (ptype->id_match)
2260 return ptype->id_match(ptype, skb->sk);
2261 else if ((struct sock *)ptype->af_packet_priv == skb->sk)
2262 return true;
2263
2264 return false;
2265 }
2266
2267 /**
2268 * dev_nit_active - return true if any network interface taps are in use
2269 *
2270 * @dev: network device to check for the presence of taps
2271 */
dev_nit_active(struct net_device * dev)2272 bool dev_nit_active(struct net_device *dev)
2273 {
2274 return !list_empty(&ptype_all) || !list_empty(&dev->ptype_all);
2275 }
2276 EXPORT_SYMBOL_GPL(dev_nit_active);
2277
2278 /*
2279 * Support routine. Sends outgoing frames to any network
2280 * taps currently in use.
2281 */
2282
dev_queue_xmit_nit(struct sk_buff * skb,struct net_device * dev)2283 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev)
2284 {
2285 struct packet_type *ptype;
2286 struct sk_buff *skb2 = NULL;
2287 struct packet_type *pt_prev = NULL;
2288 struct list_head *ptype_list = &ptype_all;
2289
2290 rcu_read_lock();
2291 again:
2292 list_for_each_entry_rcu(ptype, ptype_list, list) {
2293 if (ptype->ignore_outgoing)
2294 continue;
2295
2296 /* Never send packets back to the socket
2297 * they originated from - MvS (miquels@drinkel.ow.org)
2298 */
2299 if (skb_loop_sk(ptype, skb))
2300 continue;
2301
2302 if (pt_prev) {
2303 deliver_skb(skb2, pt_prev, skb->dev);
2304 pt_prev = ptype;
2305 continue;
2306 }
2307
2308 /* need to clone skb, done only once */
2309 skb2 = skb_clone(skb, GFP_ATOMIC);
2310 if (!skb2)
2311 goto out_unlock;
2312
2313 net_timestamp_set(skb2);
2314
2315 /* skb->nh should be correctly
2316 * set by sender, so that the second statement is
2317 * just protection against buggy protocols.
2318 */
2319 skb_reset_mac_header(skb2);
2320
2321 if (skb_network_header(skb2) < skb2->data ||
2322 skb_network_header(skb2) > skb_tail_pointer(skb2)) {
2323 net_crit_ratelimited("protocol %04x is buggy, dev %s\n",
2324 ntohs(skb2->protocol),
2325 dev->name);
2326 skb_reset_network_header(skb2);
2327 }
2328
2329 skb2->transport_header = skb2->network_header;
2330 skb2->pkt_type = PACKET_OUTGOING;
2331 pt_prev = ptype;
2332 }
2333
2334 if (ptype_list == &ptype_all) {
2335 ptype_list = &dev->ptype_all;
2336 goto again;
2337 }
2338 out_unlock:
2339 if (pt_prev) {
2340 if (!skb_orphan_frags_rx(skb2, GFP_ATOMIC))
2341 pt_prev->func(skb2, skb->dev, pt_prev, skb->dev);
2342 else
2343 kfree_skb(skb2);
2344 }
2345 rcu_read_unlock();
2346 }
2347 EXPORT_SYMBOL_GPL(dev_queue_xmit_nit);
2348
2349 /**
2350 * netif_setup_tc - Handle tc mappings on real_num_tx_queues change
2351 * @dev: Network device
2352 * @txq: number of queues available
2353 *
2354 * If real_num_tx_queues is changed the tc mappings may no longer be
2355 * valid. To resolve this verify the tc mapping remains valid and if
2356 * not NULL the mapping. With no priorities mapping to this
2357 * offset/count pair it will no longer be used. In the worst case TC0
2358 * is invalid nothing can be done so disable priority mappings. If is
2359 * expected that drivers will fix this mapping if they can before
2360 * calling netif_set_real_num_tx_queues.
2361 */
netif_setup_tc(struct net_device * dev,unsigned int txq)2362 static void netif_setup_tc(struct net_device *dev, unsigned int txq)
2363 {
2364 int i;
2365 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2366
2367 /* If TC0 is invalidated disable TC mapping */
2368 if (tc->offset + tc->count > txq) {
2369 netdev_warn(dev, "Number of in use tx queues changed invalidating tc mappings. Priority traffic classification disabled!\n");
2370 dev->num_tc = 0;
2371 return;
2372 }
2373
2374 /* Invalidated prio to tc mappings set to TC0 */
2375 for (i = 1; i < TC_BITMASK + 1; i++) {
2376 int q = netdev_get_prio_tc_map(dev, i);
2377
2378 tc = &dev->tc_to_txq[q];
2379 if (tc->offset + tc->count > txq) {
2380 netdev_warn(dev, "Number of in use tx queues changed. Priority %i to tc mapping %i is no longer valid. Setting map to 0\n",
2381 i, q);
2382 netdev_set_prio_tc_map(dev, i, 0);
2383 }
2384 }
2385 }
2386
netdev_txq_to_tc(struct net_device * dev,unsigned int txq)2387 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq)
2388 {
2389 if (dev->num_tc) {
2390 struct netdev_tc_txq *tc = &dev->tc_to_txq[0];
2391 int i;
2392
2393 /* walk through the TCs and see if it falls into any of them */
2394 for (i = 0; i < TC_MAX_QUEUE; i++, tc++) {
2395 if ((txq - tc->offset) < tc->count)
2396 return i;
2397 }
2398
2399 /* didn't find it, just return -1 to indicate no match */
2400 return -1;
2401 }
2402
2403 return 0;
2404 }
2405 EXPORT_SYMBOL(netdev_txq_to_tc);
2406
2407 #ifdef CONFIG_XPS
2408 static struct static_key xps_needed __read_mostly;
2409 static struct static_key xps_rxqs_needed __read_mostly;
2410 static DEFINE_MUTEX(xps_map_mutex);
2411 #define xmap_dereference(P) \
2412 rcu_dereference_protected((P), lockdep_is_held(&xps_map_mutex))
2413
remove_xps_queue(struct xps_dev_maps * dev_maps,struct xps_dev_maps * old_maps,int tci,u16 index)2414 static bool remove_xps_queue(struct xps_dev_maps *dev_maps,
2415 struct xps_dev_maps *old_maps, int tci, u16 index)
2416 {
2417 struct xps_map *map = NULL;
2418 int pos;
2419
2420 map = xmap_dereference(dev_maps->attr_map[tci]);
2421 if (!map)
2422 return false;
2423
2424 for (pos = map->len; pos--;) {
2425 if (map->queues[pos] != index)
2426 continue;
2427
2428 if (map->len > 1) {
2429 map->queues[pos] = map->queues[--map->len];
2430 break;
2431 }
2432
2433 if (old_maps)
2434 RCU_INIT_POINTER(old_maps->attr_map[tci], NULL);
2435 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2436 kfree_rcu(map, rcu);
2437 return false;
2438 }
2439
2440 return true;
2441 }
2442
remove_xps_queue_cpu(struct net_device * dev,struct xps_dev_maps * dev_maps,int cpu,u16 offset,u16 count)2443 static bool remove_xps_queue_cpu(struct net_device *dev,
2444 struct xps_dev_maps *dev_maps,
2445 int cpu, u16 offset, u16 count)
2446 {
2447 int num_tc = dev_maps->num_tc;
2448 bool active = false;
2449 int tci;
2450
2451 for (tci = cpu * num_tc; num_tc--; tci++) {
2452 int i, j;
2453
2454 for (i = count, j = offset; i--; j++) {
2455 if (!remove_xps_queue(dev_maps, NULL, tci, j))
2456 break;
2457 }
2458
2459 active |= i < 0;
2460 }
2461
2462 return active;
2463 }
2464
reset_xps_maps(struct net_device * dev,struct xps_dev_maps * dev_maps,enum xps_map_type type)2465 static void reset_xps_maps(struct net_device *dev,
2466 struct xps_dev_maps *dev_maps,
2467 enum xps_map_type type)
2468 {
2469 static_key_slow_dec_cpuslocked(&xps_needed);
2470 if (type == XPS_RXQS)
2471 static_key_slow_dec_cpuslocked(&xps_rxqs_needed);
2472
2473 RCU_INIT_POINTER(dev->xps_maps[type], NULL);
2474
2475 kfree_rcu(dev_maps, rcu);
2476 }
2477
clean_xps_maps(struct net_device * dev,enum xps_map_type type,u16 offset,u16 count)2478 static void clean_xps_maps(struct net_device *dev, enum xps_map_type type,
2479 u16 offset, u16 count)
2480 {
2481 struct xps_dev_maps *dev_maps;
2482 bool active = false;
2483 int i, j;
2484
2485 dev_maps = xmap_dereference(dev->xps_maps[type]);
2486 if (!dev_maps)
2487 return;
2488
2489 for (j = 0; j < dev_maps->nr_ids; j++)
2490 active |= remove_xps_queue_cpu(dev, dev_maps, j, offset, count);
2491 if (!active)
2492 reset_xps_maps(dev, dev_maps, type);
2493
2494 if (type == XPS_CPUS) {
2495 for (i = offset + (count - 1); count--; i--)
2496 netdev_queue_numa_node_write(
2497 netdev_get_tx_queue(dev, i), NUMA_NO_NODE);
2498 }
2499 }
2500
netif_reset_xps_queues(struct net_device * dev,u16 offset,u16 count)2501 static void netif_reset_xps_queues(struct net_device *dev, u16 offset,
2502 u16 count)
2503 {
2504 if (!static_key_false(&xps_needed))
2505 return;
2506
2507 cpus_read_lock();
2508 mutex_lock(&xps_map_mutex);
2509
2510 if (static_key_false(&xps_rxqs_needed))
2511 clean_xps_maps(dev, XPS_RXQS, offset, count);
2512
2513 clean_xps_maps(dev, XPS_CPUS, offset, count);
2514
2515 mutex_unlock(&xps_map_mutex);
2516 cpus_read_unlock();
2517 }
2518
netif_reset_xps_queues_gt(struct net_device * dev,u16 index)2519 static void netif_reset_xps_queues_gt(struct net_device *dev, u16 index)
2520 {
2521 netif_reset_xps_queues(dev, index, dev->num_tx_queues - index);
2522 }
2523
expand_xps_map(struct xps_map * map,int attr_index,u16 index,bool is_rxqs_map)2524 static struct xps_map *expand_xps_map(struct xps_map *map, int attr_index,
2525 u16 index, bool is_rxqs_map)
2526 {
2527 struct xps_map *new_map;
2528 int alloc_len = XPS_MIN_MAP_ALLOC;
2529 int i, pos;
2530
2531 for (pos = 0; map && pos < map->len; pos++) {
2532 if (map->queues[pos] != index)
2533 continue;
2534 return map;
2535 }
2536
2537 /* Need to add tx-queue to this CPU's/rx-queue's existing map */
2538 if (map) {
2539 if (pos < map->alloc_len)
2540 return map;
2541
2542 alloc_len = map->alloc_len * 2;
2543 }
2544
2545 /* Need to allocate new map to store tx-queue on this CPU's/rx-queue's
2546 * map
2547 */
2548 if (is_rxqs_map)
2549 new_map = kzalloc(XPS_MAP_SIZE(alloc_len), GFP_KERNEL);
2550 else
2551 new_map = kzalloc_node(XPS_MAP_SIZE(alloc_len), GFP_KERNEL,
2552 cpu_to_node(attr_index));
2553 if (!new_map)
2554 return NULL;
2555
2556 for (i = 0; i < pos; i++)
2557 new_map->queues[i] = map->queues[i];
2558 new_map->alloc_len = alloc_len;
2559 new_map->len = pos;
2560
2561 return new_map;
2562 }
2563
2564 /* Copy xps maps at a given index */
xps_copy_dev_maps(struct xps_dev_maps * dev_maps,struct xps_dev_maps * new_dev_maps,int index,int tc,bool skip_tc)2565 static void xps_copy_dev_maps(struct xps_dev_maps *dev_maps,
2566 struct xps_dev_maps *new_dev_maps, int index,
2567 int tc, bool skip_tc)
2568 {
2569 int i, tci = index * dev_maps->num_tc;
2570 struct xps_map *map;
2571
2572 /* copy maps belonging to foreign traffic classes */
2573 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2574 if (i == tc && skip_tc)
2575 continue;
2576
2577 /* fill in the new device map from the old device map */
2578 map = xmap_dereference(dev_maps->attr_map[tci]);
2579 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2580 }
2581 }
2582
2583 /* Must be called under cpus_read_lock */
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)2584 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
2585 u16 index, enum xps_map_type type)
2586 {
2587 struct xps_dev_maps *dev_maps, *new_dev_maps = NULL, *old_dev_maps = NULL;
2588 const unsigned long *online_mask = NULL;
2589 bool active = false, copy = false;
2590 int i, j, tci, numa_node_id = -2;
2591 int maps_sz, num_tc = 1, tc = 0;
2592 struct xps_map *map, *new_map;
2593 unsigned int nr_ids;
2594
2595 WARN_ON_ONCE(index >= dev->num_tx_queues);
2596
2597 if (dev->num_tc) {
2598 /* Do not allow XPS on subordinate device directly */
2599 num_tc = dev->num_tc;
2600 if (num_tc < 0)
2601 return -EINVAL;
2602
2603 /* If queue belongs to subordinate dev use its map */
2604 dev = netdev_get_tx_queue(dev, index)->sb_dev ? : dev;
2605
2606 tc = netdev_txq_to_tc(dev, index);
2607 if (tc < 0)
2608 return -EINVAL;
2609 }
2610
2611 mutex_lock(&xps_map_mutex);
2612
2613 dev_maps = xmap_dereference(dev->xps_maps[type]);
2614 if (type == XPS_RXQS) {
2615 maps_sz = XPS_RXQ_DEV_MAPS_SIZE(num_tc, dev->num_rx_queues);
2616 nr_ids = dev->num_rx_queues;
2617 } else {
2618 maps_sz = XPS_CPU_DEV_MAPS_SIZE(num_tc);
2619 if (num_possible_cpus() > 1)
2620 online_mask = cpumask_bits(cpu_online_mask);
2621 nr_ids = nr_cpu_ids;
2622 }
2623
2624 if (maps_sz < L1_CACHE_BYTES)
2625 maps_sz = L1_CACHE_BYTES;
2626
2627 /* The old dev_maps could be larger or smaller than the one we're
2628 * setting up now, as dev->num_tc or nr_ids could have been updated in
2629 * between. We could try to be smart, but let's be safe instead and only
2630 * copy foreign traffic classes if the two map sizes match.
2631 */
2632 if (dev_maps &&
2633 dev_maps->num_tc == num_tc && dev_maps->nr_ids == nr_ids)
2634 copy = true;
2635
2636 /* allocate memory for queue storage */
2637 for (j = -1; j = netif_attrmask_next_and(j, online_mask, mask, nr_ids),
2638 j < nr_ids;) {
2639 if (!new_dev_maps) {
2640 new_dev_maps = kzalloc(maps_sz, GFP_KERNEL);
2641 if (!new_dev_maps) {
2642 mutex_unlock(&xps_map_mutex);
2643 return -ENOMEM;
2644 }
2645
2646 new_dev_maps->nr_ids = nr_ids;
2647 new_dev_maps->num_tc = num_tc;
2648 }
2649
2650 tci = j * num_tc + tc;
2651 map = copy ? xmap_dereference(dev_maps->attr_map[tci]) : NULL;
2652
2653 map = expand_xps_map(map, j, index, type == XPS_RXQS);
2654 if (!map)
2655 goto error;
2656
2657 RCU_INIT_POINTER(new_dev_maps->attr_map[tci], map);
2658 }
2659
2660 if (!new_dev_maps)
2661 goto out_no_new_maps;
2662
2663 if (!dev_maps) {
2664 /* Increment static keys at most once per type */
2665 static_key_slow_inc_cpuslocked(&xps_needed);
2666 if (type == XPS_RXQS)
2667 static_key_slow_inc_cpuslocked(&xps_rxqs_needed);
2668 }
2669
2670 for (j = 0; j < nr_ids; j++) {
2671 bool skip_tc = false;
2672
2673 tci = j * num_tc + tc;
2674 if (netif_attr_test_mask(j, mask, nr_ids) &&
2675 netif_attr_test_online(j, online_mask, nr_ids)) {
2676 /* add tx-queue to CPU/rx-queue maps */
2677 int pos = 0;
2678
2679 skip_tc = true;
2680
2681 map = xmap_dereference(new_dev_maps->attr_map[tci]);
2682 while ((pos < map->len) && (map->queues[pos] != index))
2683 pos++;
2684
2685 if (pos == map->len)
2686 map->queues[map->len++] = index;
2687 #ifdef CONFIG_NUMA
2688 if (type == XPS_CPUS) {
2689 if (numa_node_id == -2)
2690 numa_node_id = cpu_to_node(j);
2691 else if (numa_node_id != cpu_to_node(j))
2692 numa_node_id = -1;
2693 }
2694 #endif
2695 }
2696
2697 if (copy)
2698 xps_copy_dev_maps(dev_maps, new_dev_maps, j, tc,
2699 skip_tc);
2700 }
2701
2702 rcu_assign_pointer(dev->xps_maps[type], new_dev_maps);
2703
2704 /* Cleanup old maps */
2705 if (!dev_maps)
2706 goto out_no_old_maps;
2707
2708 for (j = 0; j < dev_maps->nr_ids; j++) {
2709 for (i = num_tc, tci = j * dev_maps->num_tc; i--; tci++) {
2710 map = xmap_dereference(dev_maps->attr_map[tci]);
2711 if (!map)
2712 continue;
2713
2714 if (copy) {
2715 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2716 if (map == new_map)
2717 continue;
2718 }
2719
2720 RCU_INIT_POINTER(dev_maps->attr_map[tci], NULL);
2721 kfree_rcu(map, rcu);
2722 }
2723 }
2724
2725 old_dev_maps = dev_maps;
2726
2727 out_no_old_maps:
2728 dev_maps = new_dev_maps;
2729 active = true;
2730
2731 out_no_new_maps:
2732 if (type == XPS_CPUS)
2733 /* update Tx queue numa node */
2734 netdev_queue_numa_node_write(netdev_get_tx_queue(dev, index),
2735 (numa_node_id >= 0) ?
2736 numa_node_id : NUMA_NO_NODE);
2737
2738 if (!dev_maps)
2739 goto out_no_maps;
2740
2741 /* removes tx-queue from unused CPUs/rx-queues */
2742 for (j = 0; j < dev_maps->nr_ids; j++) {
2743 tci = j * dev_maps->num_tc;
2744
2745 for (i = 0; i < dev_maps->num_tc; i++, tci++) {
2746 if (i == tc &&
2747 netif_attr_test_mask(j, mask, dev_maps->nr_ids) &&
2748 netif_attr_test_online(j, online_mask, dev_maps->nr_ids))
2749 continue;
2750
2751 active |= remove_xps_queue(dev_maps,
2752 copy ? old_dev_maps : NULL,
2753 tci, index);
2754 }
2755 }
2756
2757 if (old_dev_maps)
2758 kfree_rcu(old_dev_maps, rcu);
2759
2760 /* free map if not active */
2761 if (!active)
2762 reset_xps_maps(dev, dev_maps, type);
2763
2764 out_no_maps:
2765 mutex_unlock(&xps_map_mutex);
2766
2767 return 0;
2768 error:
2769 /* remove any maps that we added */
2770 for (j = 0; j < nr_ids; j++) {
2771 for (i = num_tc, tci = j * num_tc; i--; tci++) {
2772 new_map = xmap_dereference(new_dev_maps->attr_map[tci]);
2773 map = copy ?
2774 xmap_dereference(dev_maps->attr_map[tci]) :
2775 NULL;
2776 if (new_map && new_map != map)
2777 kfree(new_map);
2778 }
2779 }
2780
2781 mutex_unlock(&xps_map_mutex);
2782
2783 kfree(new_dev_maps);
2784 return -ENOMEM;
2785 }
2786 EXPORT_SYMBOL_GPL(__netif_set_xps_queue);
2787
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)2788 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
2789 u16 index)
2790 {
2791 int ret;
2792
2793 cpus_read_lock();
2794 ret = __netif_set_xps_queue(dev, cpumask_bits(mask), index, XPS_CPUS);
2795 cpus_read_unlock();
2796
2797 return ret;
2798 }
2799 EXPORT_SYMBOL(netif_set_xps_queue);
2800
2801 #endif
netdev_unbind_all_sb_channels(struct net_device * dev)2802 static void netdev_unbind_all_sb_channels(struct net_device *dev)
2803 {
2804 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2805
2806 /* Unbind any subordinate channels */
2807 while (txq-- != &dev->_tx[0]) {
2808 if (txq->sb_dev)
2809 netdev_unbind_sb_channel(dev, txq->sb_dev);
2810 }
2811 }
2812
netdev_reset_tc(struct net_device * dev)2813 void netdev_reset_tc(struct net_device *dev)
2814 {
2815 #ifdef CONFIG_XPS
2816 netif_reset_xps_queues_gt(dev, 0);
2817 #endif
2818 netdev_unbind_all_sb_channels(dev);
2819
2820 /* Reset TC configuration of device */
2821 dev->num_tc = 0;
2822 memset(dev->tc_to_txq, 0, sizeof(dev->tc_to_txq));
2823 memset(dev->prio_tc_map, 0, sizeof(dev->prio_tc_map));
2824 }
2825 EXPORT_SYMBOL(netdev_reset_tc);
2826
netdev_set_tc_queue(struct net_device * dev,u8 tc,u16 count,u16 offset)2827 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset)
2828 {
2829 if (tc >= dev->num_tc)
2830 return -EINVAL;
2831
2832 #ifdef CONFIG_XPS
2833 netif_reset_xps_queues(dev, offset, count);
2834 #endif
2835 dev->tc_to_txq[tc].count = count;
2836 dev->tc_to_txq[tc].offset = offset;
2837 return 0;
2838 }
2839 EXPORT_SYMBOL(netdev_set_tc_queue);
2840
netdev_set_num_tc(struct net_device * dev,u8 num_tc)2841 int netdev_set_num_tc(struct net_device *dev, u8 num_tc)
2842 {
2843 if (num_tc > TC_MAX_QUEUE)
2844 return -EINVAL;
2845
2846 #ifdef CONFIG_XPS
2847 netif_reset_xps_queues_gt(dev, 0);
2848 #endif
2849 netdev_unbind_all_sb_channels(dev);
2850
2851 dev->num_tc = num_tc;
2852 return 0;
2853 }
2854 EXPORT_SYMBOL(netdev_set_num_tc);
2855
netdev_unbind_sb_channel(struct net_device * dev,struct net_device * sb_dev)2856 void netdev_unbind_sb_channel(struct net_device *dev,
2857 struct net_device *sb_dev)
2858 {
2859 struct netdev_queue *txq = &dev->_tx[dev->num_tx_queues];
2860
2861 #ifdef CONFIG_XPS
2862 netif_reset_xps_queues_gt(sb_dev, 0);
2863 #endif
2864 memset(sb_dev->tc_to_txq, 0, sizeof(sb_dev->tc_to_txq));
2865 memset(sb_dev->prio_tc_map, 0, sizeof(sb_dev->prio_tc_map));
2866
2867 while (txq-- != &dev->_tx[0]) {
2868 if (txq->sb_dev == sb_dev)
2869 txq->sb_dev = NULL;
2870 }
2871 }
2872 EXPORT_SYMBOL(netdev_unbind_sb_channel);
2873
netdev_bind_sb_channel_queue(struct net_device * dev,struct net_device * sb_dev,u8 tc,u16 count,u16 offset)2874 int netdev_bind_sb_channel_queue(struct net_device *dev,
2875 struct net_device *sb_dev,
2876 u8 tc, u16 count, u16 offset)
2877 {
2878 /* Make certain the sb_dev and dev are already configured */
2879 if (sb_dev->num_tc >= 0 || tc >= dev->num_tc)
2880 return -EINVAL;
2881
2882 /* We cannot hand out queues we don't have */
2883 if ((offset + count) > dev->real_num_tx_queues)
2884 return -EINVAL;
2885
2886 /* Record the mapping */
2887 sb_dev->tc_to_txq[tc].count = count;
2888 sb_dev->tc_to_txq[tc].offset = offset;
2889
2890 /* Provide a way for Tx queue to find the tc_to_txq map or
2891 * XPS map for itself.
2892 */
2893 while (count--)
2894 netdev_get_tx_queue(dev, count + offset)->sb_dev = sb_dev;
2895
2896 return 0;
2897 }
2898 EXPORT_SYMBOL(netdev_bind_sb_channel_queue);
2899
netdev_set_sb_channel(struct net_device * dev,u16 channel)2900 int netdev_set_sb_channel(struct net_device *dev, u16 channel)
2901 {
2902 /* Do not use a multiqueue device to represent a subordinate channel */
2903 if (netif_is_multiqueue(dev))
2904 return -ENODEV;
2905
2906 /* We allow channels 1 - 32767 to be used for subordinate channels.
2907 * Channel 0 is meant to be "native" mode and used only to represent
2908 * the main root device. We allow writing 0 to reset the device back
2909 * to normal mode after being used as a subordinate channel.
2910 */
2911 if (channel > S16_MAX)
2912 return -EINVAL;
2913
2914 dev->num_tc = -channel;
2915
2916 return 0;
2917 }
2918 EXPORT_SYMBOL(netdev_set_sb_channel);
2919
2920 /*
2921 * Routine to help set real_num_tx_queues. To avoid skbs mapped to queues
2922 * greater than real_num_tx_queues stale skbs on the qdisc must be flushed.
2923 */
netif_set_real_num_tx_queues(struct net_device * dev,unsigned int txq)2924 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq)
2925 {
2926 bool disabling;
2927 int rc;
2928
2929 disabling = txq < dev->real_num_tx_queues;
2930
2931 if (txq < 1 || txq > dev->num_tx_queues)
2932 return -EINVAL;
2933
2934 if (dev->reg_state == NETREG_REGISTERED ||
2935 dev->reg_state == NETREG_UNREGISTERING) {
2936 ASSERT_RTNL();
2937
2938 rc = netdev_queue_update_kobjects(dev, dev->real_num_tx_queues,
2939 txq);
2940 if (rc)
2941 return rc;
2942
2943 if (dev->num_tc)
2944 netif_setup_tc(dev, txq);
2945
2946 dev_qdisc_change_real_num_tx(dev, txq);
2947
2948 dev->real_num_tx_queues = txq;
2949
2950 if (disabling) {
2951 synchronize_net();
2952 qdisc_reset_all_tx_gt(dev, txq);
2953 #ifdef CONFIG_XPS
2954 netif_reset_xps_queues_gt(dev, txq);
2955 #endif
2956 }
2957 } else {
2958 dev->real_num_tx_queues = txq;
2959 }
2960
2961 return 0;
2962 }
2963 EXPORT_SYMBOL(netif_set_real_num_tx_queues);
2964
2965 #ifdef CONFIG_SYSFS
2966 /**
2967 * netif_set_real_num_rx_queues - set actual number of RX queues used
2968 * @dev: Network device
2969 * @rxq: Actual number of RX queues
2970 *
2971 * This must be called either with the rtnl_lock held or before
2972 * registration of the net device. Returns 0 on success, or a
2973 * negative error code. If called before registration, it always
2974 * succeeds.
2975 */
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxq)2976 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq)
2977 {
2978 int rc;
2979
2980 if (rxq < 1 || rxq > dev->num_rx_queues)
2981 return -EINVAL;
2982
2983 if (dev->reg_state == NETREG_REGISTERED) {
2984 ASSERT_RTNL();
2985
2986 rc = net_rx_queue_update_kobjects(dev, dev->real_num_rx_queues,
2987 rxq);
2988 if (rc)
2989 return rc;
2990 }
2991
2992 dev->real_num_rx_queues = rxq;
2993 return 0;
2994 }
2995 EXPORT_SYMBOL(netif_set_real_num_rx_queues);
2996 #endif
2997
2998 /**
2999 * netif_set_real_num_queues - set actual number of RX and TX queues used
3000 * @dev: Network device
3001 * @txq: Actual number of TX queues
3002 * @rxq: Actual number of RX queues
3003 *
3004 * Set the real number of both TX and RX queues.
3005 * Does nothing if the number of queues is already correct.
3006 */
netif_set_real_num_queues(struct net_device * dev,unsigned int txq,unsigned int rxq)3007 int netif_set_real_num_queues(struct net_device *dev,
3008 unsigned int txq, unsigned int rxq)
3009 {
3010 unsigned int old_rxq = dev->real_num_rx_queues;
3011 int err;
3012
3013 if (txq < 1 || txq > dev->num_tx_queues ||
3014 rxq < 1 || rxq > dev->num_rx_queues)
3015 return -EINVAL;
3016
3017 /* Start from increases, so the error path only does decreases -
3018 * decreases can't fail.
3019 */
3020 if (rxq > dev->real_num_rx_queues) {
3021 err = netif_set_real_num_rx_queues(dev, rxq);
3022 if (err)
3023 return err;
3024 }
3025 if (txq > dev->real_num_tx_queues) {
3026 err = netif_set_real_num_tx_queues(dev, txq);
3027 if (err)
3028 goto undo_rx;
3029 }
3030 if (rxq < dev->real_num_rx_queues)
3031 WARN_ON(netif_set_real_num_rx_queues(dev, rxq));
3032 if (txq < dev->real_num_tx_queues)
3033 WARN_ON(netif_set_real_num_tx_queues(dev, txq));
3034
3035 return 0;
3036 undo_rx:
3037 WARN_ON(netif_set_real_num_rx_queues(dev, old_rxq));
3038 return err;
3039 }
3040 EXPORT_SYMBOL(netif_set_real_num_queues);
3041
3042 /**
3043 * netif_set_tso_max_size() - set the max size of TSO frames supported
3044 * @dev: netdev to update
3045 * @size: max skb->len of a TSO frame
3046 *
3047 * Set the limit on the size of TSO super-frames the device can handle.
3048 * Unless explicitly set the stack will assume the value of
3049 * %GSO_LEGACY_MAX_SIZE.
3050 */
netif_set_tso_max_size(struct net_device * dev,unsigned int size)3051 void netif_set_tso_max_size(struct net_device *dev, unsigned int size)
3052 {
3053 dev->tso_max_size = min(GSO_MAX_SIZE, size);
3054 if (size < READ_ONCE(dev->gso_max_size))
3055 netif_set_gso_max_size(dev, size);
3056 if (size < READ_ONCE(dev->gso_ipv4_max_size))
3057 netif_set_gso_ipv4_max_size(dev, size);
3058 }
3059 EXPORT_SYMBOL(netif_set_tso_max_size);
3060
3061 /**
3062 * netif_set_tso_max_segs() - set the max number of segs supported for TSO
3063 * @dev: netdev to update
3064 * @segs: max number of TCP segments
3065 *
3066 * Set the limit on the number of TCP segments the device can generate from
3067 * a single TSO super-frame.
3068 * Unless explicitly set the stack will assume the value of %GSO_MAX_SEGS.
3069 */
netif_set_tso_max_segs(struct net_device * dev,unsigned int segs)3070 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs)
3071 {
3072 dev->tso_max_segs = segs;
3073 if (segs < READ_ONCE(dev->gso_max_segs))
3074 netif_set_gso_max_segs(dev, segs);
3075 }
3076 EXPORT_SYMBOL(netif_set_tso_max_segs);
3077
3078 /**
3079 * netif_inherit_tso_max() - copy all TSO limits from a lower device to an upper
3080 * @to: netdev to update
3081 * @from: netdev from which to copy the limits
3082 */
netif_inherit_tso_max(struct net_device * to,const struct net_device * from)3083 void netif_inherit_tso_max(struct net_device *to, const struct net_device *from)
3084 {
3085 netif_set_tso_max_size(to, from->tso_max_size);
3086 netif_set_tso_max_segs(to, from->tso_max_segs);
3087 }
3088 EXPORT_SYMBOL(netif_inherit_tso_max);
3089
3090 /**
3091 * netif_get_num_default_rss_queues - default number of RSS queues
3092 *
3093 * Default value is the number of physical cores if there are only 1 or 2, or
3094 * divided by 2 if there are more.
3095 */
netif_get_num_default_rss_queues(void)3096 int netif_get_num_default_rss_queues(void)
3097 {
3098 cpumask_var_t cpus;
3099 int cpu, count = 0;
3100
3101 if (unlikely(is_kdump_kernel() || !zalloc_cpumask_var(&cpus, GFP_KERNEL)))
3102 return 1;
3103
3104 cpumask_copy(cpus, cpu_online_mask);
3105 for_each_cpu(cpu, cpus) {
3106 ++count;
3107 cpumask_andnot(cpus, cpus, topology_sibling_cpumask(cpu));
3108 }
3109 free_cpumask_var(cpus);
3110
3111 return count > 2 ? DIV_ROUND_UP(count, 2) : count;
3112 }
3113 EXPORT_SYMBOL(netif_get_num_default_rss_queues);
3114
__netif_reschedule(struct Qdisc * q)3115 static void __netif_reschedule(struct Qdisc *q)
3116 {
3117 struct softnet_data *sd;
3118 unsigned long flags;
3119
3120 local_irq_save(flags);
3121 sd = this_cpu_ptr(&softnet_data);
3122 q->next_sched = NULL;
3123 *sd->output_queue_tailp = q;
3124 sd->output_queue_tailp = &q->next_sched;
3125 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3126 local_irq_restore(flags);
3127 }
3128
__netif_schedule(struct Qdisc * q)3129 void __netif_schedule(struct Qdisc *q)
3130 {
3131 if (!test_and_set_bit(__QDISC_STATE_SCHED, &q->state))
3132 __netif_reschedule(q);
3133 }
3134 EXPORT_SYMBOL(__netif_schedule);
3135
3136 struct dev_kfree_skb_cb {
3137 enum skb_drop_reason reason;
3138 };
3139
get_kfree_skb_cb(const struct sk_buff * skb)3140 static struct dev_kfree_skb_cb *get_kfree_skb_cb(const struct sk_buff *skb)
3141 {
3142 return (struct dev_kfree_skb_cb *)skb->cb;
3143 }
3144
netif_schedule_queue(struct netdev_queue * txq)3145 void netif_schedule_queue(struct netdev_queue *txq)
3146 {
3147 rcu_read_lock();
3148 if (!netif_xmit_stopped(txq)) {
3149 struct Qdisc *q = rcu_dereference(txq->qdisc);
3150
3151 __netif_schedule(q);
3152 }
3153 rcu_read_unlock();
3154 }
3155 EXPORT_SYMBOL(netif_schedule_queue);
3156
netif_tx_wake_queue(struct netdev_queue * dev_queue)3157 void netif_tx_wake_queue(struct netdev_queue *dev_queue)
3158 {
3159 if (test_and_clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state)) {
3160 struct Qdisc *q;
3161
3162 rcu_read_lock();
3163 q = rcu_dereference(dev_queue->qdisc);
3164 __netif_schedule(q);
3165 rcu_read_unlock();
3166 }
3167 }
3168 EXPORT_SYMBOL(netif_tx_wake_queue);
3169
dev_kfree_skb_irq_reason(struct sk_buff * skb,enum skb_drop_reason reason)3170 void dev_kfree_skb_irq_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3171 {
3172 unsigned long flags;
3173
3174 if (unlikely(!skb))
3175 return;
3176
3177 if (likely(refcount_read(&skb->users) == 1)) {
3178 smp_rmb();
3179 refcount_set(&skb->users, 0);
3180 } else if (likely(!refcount_dec_and_test(&skb->users))) {
3181 return;
3182 }
3183 get_kfree_skb_cb(skb)->reason = reason;
3184 local_irq_save(flags);
3185 skb->next = __this_cpu_read(softnet_data.completion_queue);
3186 __this_cpu_write(softnet_data.completion_queue, skb);
3187 raise_softirq_irqoff(NET_TX_SOFTIRQ);
3188 local_irq_restore(flags);
3189 }
3190 EXPORT_SYMBOL(dev_kfree_skb_irq_reason);
3191
dev_kfree_skb_any_reason(struct sk_buff * skb,enum skb_drop_reason reason)3192 void dev_kfree_skb_any_reason(struct sk_buff *skb, enum skb_drop_reason reason)
3193 {
3194 if (in_hardirq() || irqs_disabled())
3195 dev_kfree_skb_irq_reason(skb, reason);
3196 else
3197 kfree_skb_reason(skb, reason);
3198 }
3199 EXPORT_SYMBOL(dev_kfree_skb_any_reason);
3200
3201
3202 /**
3203 * netif_device_detach - mark device as removed
3204 * @dev: network device
3205 *
3206 * Mark device as removed from system and therefore no longer available.
3207 */
netif_device_detach(struct net_device * dev)3208 void netif_device_detach(struct net_device *dev)
3209 {
3210 if (test_and_clear_bit(__LINK_STATE_PRESENT, &dev->state) &&
3211 netif_running(dev)) {
3212 netif_tx_stop_all_queues(dev);
3213 }
3214 }
3215 EXPORT_SYMBOL(netif_device_detach);
3216
3217 /**
3218 * netif_device_attach - mark device as attached
3219 * @dev: network device
3220 *
3221 * Mark device as attached from system and restart if needed.
3222 */
netif_device_attach(struct net_device * dev)3223 void netif_device_attach(struct net_device *dev)
3224 {
3225 if (!test_and_set_bit(__LINK_STATE_PRESENT, &dev->state) &&
3226 netif_running(dev)) {
3227 netif_tx_wake_all_queues(dev);
3228 __netdev_watchdog_up(dev);
3229 }
3230 }
3231 EXPORT_SYMBOL(netif_device_attach);
3232
3233 /*
3234 * Returns a Tx hash based on the given packet descriptor a Tx queues' number
3235 * to be used as a distribution range.
3236 */
skb_tx_hash(const struct net_device * dev,const struct net_device * sb_dev,struct sk_buff * skb)3237 static u16 skb_tx_hash(const struct net_device *dev,
3238 const struct net_device *sb_dev,
3239 struct sk_buff *skb)
3240 {
3241 u32 hash;
3242 u16 qoffset = 0;
3243 u16 qcount = dev->real_num_tx_queues;
3244
3245 if (dev->num_tc) {
3246 u8 tc = netdev_get_prio_tc_map(dev, skb->priority);
3247
3248 qoffset = sb_dev->tc_to_txq[tc].offset;
3249 qcount = sb_dev->tc_to_txq[tc].count;
3250 if (unlikely(!qcount)) {
3251 net_warn_ratelimited("%s: invalid qcount, qoffset %u for tc %u\n",
3252 sb_dev->name, qoffset, tc);
3253 qoffset = 0;
3254 qcount = dev->real_num_tx_queues;
3255 }
3256 }
3257
3258 if (skb_rx_queue_recorded(skb)) {
3259 DEBUG_NET_WARN_ON_ONCE(qcount == 0);
3260 hash = skb_get_rx_queue(skb);
3261 if (hash >= qoffset)
3262 hash -= qoffset;
3263 while (unlikely(hash >= qcount))
3264 hash -= qcount;
3265 return hash + qoffset;
3266 }
3267
3268 return (u16) reciprocal_scale(skb_get_hash(skb), qcount) + qoffset;
3269 }
3270
skb_warn_bad_offload(const struct sk_buff * skb)3271 void skb_warn_bad_offload(const struct sk_buff *skb)
3272 {
3273 static const netdev_features_t null_features;
3274 struct net_device *dev = skb->dev;
3275 const char *name = "";
3276
3277 if (!net_ratelimit())
3278 return;
3279
3280 if (dev) {
3281 if (dev->dev.parent)
3282 name = dev_driver_string(dev->dev.parent);
3283 else
3284 name = netdev_name(dev);
3285 }
3286 skb_dump(KERN_WARNING, skb, false);
3287 WARN(1, "%s: caps=(%pNF, %pNF)\n",
3288 name, dev ? &dev->features : &null_features,
3289 skb->sk ? &skb->sk->sk_route_caps : &null_features);
3290 }
3291
3292 /*
3293 * Invalidate hardware checksum when packet is to be mangled, and
3294 * complete checksum manually on outgoing path.
3295 */
skb_checksum_help(struct sk_buff * skb)3296 int skb_checksum_help(struct sk_buff *skb)
3297 {
3298 __wsum csum;
3299 int ret = 0, offset;
3300
3301 if (skb->ip_summed == CHECKSUM_COMPLETE)
3302 goto out_set_summed;
3303
3304 if (unlikely(skb_is_gso(skb))) {
3305 skb_warn_bad_offload(skb);
3306 return -EINVAL;
3307 }
3308
3309 /* Before computing a checksum, we should make sure no frag could
3310 * be modified by an external entity : checksum could be wrong.
3311 */
3312 if (skb_has_shared_frag(skb)) {
3313 ret = __skb_linearize(skb);
3314 if (ret)
3315 goto out;
3316 }
3317
3318 offset = skb_checksum_start_offset(skb);
3319 ret = -EINVAL;
3320 if (unlikely(offset >= skb_headlen(skb))) {
3321 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3322 WARN_ONCE(true, "offset (%d) >= skb_headlen() (%u)\n",
3323 offset, skb_headlen(skb));
3324 goto out;
3325 }
3326 csum = skb_checksum(skb, offset, skb->len - offset, 0);
3327
3328 offset += skb->csum_offset;
3329 if (unlikely(offset + sizeof(__sum16) > skb_headlen(skb))) {
3330 DO_ONCE_LITE(skb_dump, KERN_ERR, skb, false);
3331 WARN_ONCE(true, "offset+2 (%zu) > skb_headlen() (%u)\n",
3332 offset + sizeof(__sum16), skb_headlen(skb));
3333 goto out;
3334 }
3335 ret = skb_ensure_writable(skb, offset + sizeof(__sum16));
3336 if (ret)
3337 goto out;
3338
3339 *(__sum16 *)(skb->data + offset) = csum_fold(csum) ?: CSUM_MANGLED_0;
3340 out_set_summed:
3341 skb->ip_summed = CHECKSUM_NONE;
3342 out:
3343 return ret;
3344 }
3345 EXPORT_SYMBOL(skb_checksum_help);
3346
skb_crc32c_csum_help(struct sk_buff * skb)3347 int skb_crc32c_csum_help(struct sk_buff *skb)
3348 {
3349 __le32 crc32c_csum;
3350 int ret = 0, offset, start;
3351
3352 if (skb->ip_summed != CHECKSUM_PARTIAL)
3353 goto out;
3354
3355 if (unlikely(skb_is_gso(skb)))
3356 goto out;
3357
3358 /* Before computing a checksum, we should make sure no frag could
3359 * be modified by an external entity : checksum could be wrong.
3360 */
3361 if (unlikely(skb_has_shared_frag(skb))) {
3362 ret = __skb_linearize(skb);
3363 if (ret)
3364 goto out;
3365 }
3366 start = skb_checksum_start_offset(skb);
3367 offset = start + offsetof(struct sctphdr, checksum);
3368 if (WARN_ON_ONCE(offset >= skb_headlen(skb))) {
3369 ret = -EINVAL;
3370 goto out;
3371 }
3372
3373 ret = skb_ensure_writable(skb, offset + sizeof(__le32));
3374 if (ret)
3375 goto out;
3376
3377 crc32c_csum = cpu_to_le32(~__skb_checksum(skb, start,
3378 skb->len - start, ~(__u32)0,
3379 crc32c_csum_stub));
3380 *(__le32 *)(skb->data + offset) = crc32c_csum;
3381 skb_reset_csum_not_inet(skb);
3382 out:
3383 return ret;
3384 }
3385
skb_network_protocol(struct sk_buff * skb,int * depth)3386 __be16 skb_network_protocol(struct sk_buff *skb, int *depth)
3387 {
3388 __be16 type = skb->protocol;
3389
3390 /* Tunnel gso handlers can set protocol to ethernet. */
3391 if (type == htons(ETH_P_TEB)) {
3392 struct ethhdr *eth;
3393
3394 if (unlikely(!pskb_may_pull(skb, sizeof(struct ethhdr))))
3395 return 0;
3396
3397 eth = (struct ethhdr *)skb->data;
3398 type = eth->h_proto;
3399 }
3400
3401 return vlan_get_protocol_and_depth(skb, type, depth);
3402 }
3403
3404
3405 /* Take action when hardware reception checksum errors are detected. */
3406 #ifdef CONFIG_BUG
do_netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3407 static void do_netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3408 {
3409 netdev_err(dev, "hw csum failure\n");
3410 skb_dump(KERN_ERR, skb, true);
3411 dump_stack();
3412 }
3413
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)3414 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb)
3415 {
3416 DO_ONCE_LITE(do_netdev_rx_csum_fault, dev, skb);
3417 }
3418 EXPORT_SYMBOL(netdev_rx_csum_fault);
3419 #endif
3420
3421 /* XXX: check that highmem exists at all on the given machine. */
illegal_highdma(struct net_device * dev,struct sk_buff * skb)3422 static int illegal_highdma(struct net_device *dev, struct sk_buff *skb)
3423 {
3424 #ifdef CONFIG_HIGHMEM
3425 int i;
3426
3427 if (!(dev->features & NETIF_F_HIGHDMA)) {
3428 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3429 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3430
3431 if (PageHighMem(skb_frag_page(frag)))
3432 return 1;
3433 }
3434 }
3435 #endif
3436 return 0;
3437 }
3438
3439 /* If MPLS offload request, verify we are testing hardware MPLS features
3440 * instead of standard features for the netdev.
3441 */
3442 #if IS_ENABLED(CONFIG_NET_MPLS_GSO)
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3443 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3444 netdev_features_t features,
3445 __be16 type)
3446 {
3447 if (eth_p_mpls(type))
3448 features &= skb->dev->mpls_features;
3449
3450 return features;
3451 }
3452 #else
net_mpls_features(struct sk_buff * skb,netdev_features_t features,__be16 type)3453 static netdev_features_t net_mpls_features(struct sk_buff *skb,
3454 netdev_features_t features,
3455 __be16 type)
3456 {
3457 return features;
3458 }
3459 #endif
3460
harmonize_features(struct sk_buff * skb,netdev_features_t features)3461 static netdev_features_t harmonize_features(struct sk_buff *skb,
3462 netdev_features_t features)
3463 {
3464 __be16 type;
3465
3466 type = skb_network_protocol(skb, NULL);
3467 features = net_mpls_features(skb, features, type);
3468
3469 if (skb->ip_summed != CHECKSUM_NONE &&
3470 !can_checksum_protocol(features, type)) {
3471 features &= ~(NETIF_F_CSUM_MASK | NETIF_F_GSO_MASK);
3472 }
3473 if (illegal_highdma(skb->dev, skb))
3474 features &= ~NETIF_F_SG;
3475
3476 return features;
3477 }
3478
passthru_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3479 netdev_features_t passthru_features_check(struct sk_buff *skb,
3480 struct net_device *dev,
3481 netdev_features_t features)
3482 {
3483 return features;
3484 }
3485 EXPORT_SYMBOL(passthru_features_check);
3486
dflt_features_check(struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3487 static netdev_features_t dflt_features_check(struct sk_buff *skb,
3488 struct net_device *dev,
3489 netdev_features_t features)
3490 {
3491 return vlan_features_check(skb, features);
3492 }
3493
gso_features_check(const struct sk_buff * skb,struct net_device * dev,netdev_features_t features)3494 static netdev_features_t gso_features_check(const struct sk_buff *skb,
3495 struct net_device *dev,
3496 netdev_features_t features)
3497 {
3498 u16 gso_segs = skb_shinfo(skb)->gso_segs;
3499
3500 if (gso_segs > READ_ONCE(dev->gso_max_segs))
3501 return features & ~NETIF_F_GSO_MASK;
3502
3503 if (unlikely(skb->len >= READ_ONCE(dev->gso_max_size)))
3504 return features & ~NETIF_F_GSO_MASK;
3505
3506 if (!skb_shinfo(skb)->gso_type) {
3507 skb_warn_bad_offload(skb);
3508 return features & ~NETIF_F_GSO_MASK;
3509 }
3510
3511 /* Support for GSO partial features requires software
3512 * intervention before we can actually process the packets
3513 * so we need to strip support for any partial features now
3514 * and we can pull them back in after we have partially
3515 * segmented the frame.
3516 */
3517 if (!(skb_shinfo(skb)->gso_type & SKB_GSO_PARTIAL))
3518 features &= ~dev->gso_partial_features;
3519
3520 /* Make sure to clear the IPv4 ID mangling feature if the
3521 * IPv4 header has the potential to be fragmented.
3522 */
3523 if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV4) {
3524 struct iphdr *iph = skb->encapsulation ?
3525 inner_ip_hdr(skb) : ip_hdr(skb);
3526
3527 if (!(iph->frag_off & htons(IP_DF)))
3528 features &= ~NETIF_F_TSO_MANGLEID;
3529 }
3530
3531 return features;
3532 }
3533
netif_skb_features(struct sk_buff * skb)3534 netdev_features_t netif_skb_features(struct sk_buff *skb)
3535 {
3536 struct net_device *dev = skb->dev;
3537 netdev_features_t features = dev->features;
3538
3539 if (skb_is_gso(skb))
3540 features = gso_features_check(skb, dev, features);
3541
3542 /* If encapsulation offload request, verify we are testing
3543 * hardware encapsulation features instead of standard
3544 * features for the netdev
3545 */
3546 if (skb->encapsulation)
3547 features &= dev->hw_enc_features;
3548
3549 if (skb_vlan_tagged(skb))
3550 features = netdev_intersect_features(features,
3551 dev->vlan_features |
3552 NETIF_F_HW_VLAN_CTAG_TX |
3553 NETIF_F_HW_VLAN_STAG_TX);
3554
3555 if (dev->netdev_ops->ndo_features_check)
3556 features &= dev->netdev_ops->ndo_features_check(skb, dev,
3557 features);
3558 else
3559 features &= dflt_features_check(skb, dev, features);
3560
3561 return harmonize_features(skb, features);
3562 }
3563 EXPORT_SYMBOL(netif_skb_features);
3564
xmit_one(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)3565 static int xmit_one(struct sk_buff *skb, struct net_device *dev,
3566 struct netdev_queue *txq, bool more)
3567 {
3568 unsigned int len;
3569 int rc;
3570
3571 if (dev_nit_active(dev))
3572 dev_queue_xmit_nit(skb, dev);
3573
3574 len = skb->len;
3575 trace_net_dev_start_xmit(skb, dev);
3576 rc = netdev_start_xmit(skb, dev, txq, more);
3577 trace_net_dev_xmit(skb, rc, dev, len);
3578
3579 return rc;
3580 }
3581
dev_hard_start_xmit(struct sk_buff * first,struct net_device * dev,struct netdev_queue * txq,int * ret)3582 struct sk_buff *dev_hard_start_xmit(struct sk_buff *first, struct net_device *dev,
3583 struct netdev_queue *txq, int *ret)
3584 {
3585 struct sk_buff *skb = first;
3586 int rc = NETDEV_TX_OK;
3587
3588 while (skb) {
3589 struct sk_buff *next = skb->next;
3590
3591 skb_mark_not_on_list(skb);
3592 rc = xmit_one(skb, dev, txq, next != NULL);
3593 if (unlikely(!dev_xmit_complete(rc))) {
3594 skb->next = next;
3595 goto out;
3596 }
3597
3598 skb = next;
3599 if (netif_tx_queue_stopped(txq) && skb) {
3600 rc = NETDEV_TX_BUSY;
3601 break;
3602 }
3603 }
3604
3605 out:
3606 *ret = rc;
3607 return skb;
3608 }
3609
validate_xmit_vlan(struct sk_buff * skb,netdev_features_t features)3610 static struct sk_buff *validate_xmit_vlan(struct sk_buff *skb,
3611 netdev_features_t features)
3612 {
3613 if (skb_vlan_tag_present(skb) &&
3614 !vlan_hw_offload_capable(features, skb->vlan_proto))
3615 skb = __vlan_hwaccel_push_inside(skb);
3616 return skb;
3617 }
3618
skb_csum_hwoffload_help(struct sk_buff * skb,const netdev_features_t features)3619 int skb_csum_hwoffload_help(struct sk_buff *skb,
3620 const netdev_features_t features)
3621 {
3622 if (unlikely(skb_csum_is_sctp(skb)))
3623 return !!(features & NETIF_F_SCTP_CRC) ? 0 :
3624 skb_crc32c_csum_help(skb);
3625
3626 if (features & NETIF_F_HW_CSUM)
3627 return 0;
3628
3629 if (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) {
3630 switch (skb->csum_offset) {
3631 case offsetof(struct tcphdr, check):
3632 case offsetof(struct udphdr, check):
3633 return 0;
3634 }
3635 }
3636
3637 return skb_checksum_help(skb);
3638 }
3639 EXPORT_SYMBOL(skb_csum_hwoffload_help);
3640
validate_xmit_skb(struct sk_buff * skb,struct net_device * dev,bool * again)3641 static struct sk_buff *validate_xmit_skb(struct sk_buff *skb, struct net_device *dev, bool *again)
3642 {
3643 netdev_features_t features;
3644
3645 features = netif_skb_features(skb);
3646 skb = validate_xmit_vlan(skb, features);
3647 if (unlikely(!skb))
3648 goto out_null;
3649
3650 skb = sk_validate_xmit_skb(skb, dev);
3651 if (unlikely(!skb))
3652 goto out_null;
3653
3654 if (netif_needs_gso(skb, features)) {
3655 struct sk_buff *segs;
3656
3657 segs = skb_gso_segment(skb, features);
3658 if (IS_ERR(segs)) {
3659 goto out_kfree_skb;
3660 } else if (segs) {
3661 consume_skb(skb);
3662 skb = segs;
3663 }
3664 } else {
3665 if (skb_needs_linearize(skb, features) &&
3666 __skb_linearize(skb))
3667 goto out_kfree_skb;
3668
3669 /* If packet is not checksummed and device does not
3670 * support checksumming for this protocol, complete
3671 * checksumming here.
3672 */
3673 if (skb->ip_summed == CHECKSUM_PARTIAL) {
3674 if (skb->encapsulation)
3675 skb_set_inner_transport_header(skb,
3676 skb_checksum_start_offset(skb));
3677 else
3678 skb_set_transport_header(skb,
3679 skb_checksum_start_offset(skb));
3680 if (skb_csum_hwoffload_help(skb, features))
3681 goto out_kfree_skb;
3682 }
3683 }
3684
3685 skb = validate_xmit_xfrm(skb, features, again);
3686
3687 return skb;
3688
3689 out_kfree_skb:
3690 kfree_skb(skb);
3691 out_null:
3692 dev_core_stats_tx_dropped_inc(dev);
3693 return NULL;
3694 }
3695
validate_xmit_skb_list(struct sk_buff * skb,struct net_device * dev,bool * again)3696 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again)
3697 {
3698 struct sk_buff *next, *head = NULL, *tail;
3699
3700 for (; skb != NULL; skb = next) {
3701 next = skb->next;
3702 skb_mark_not_on_list(skb);
3703
3704 /* in case skb wont be segmented, point to itself */
3705 skb->prev = skb;
3706
3707 skb = validate_xmit_skb(skb, dev, again);
3708 if (!skb)
3709 continue;
3710
3711 if (!head)
3712 head = skb;
3713 else
3714 tail->next = skb;
3715 /* If skb was segmented, skb->prev points to
3716 * the last segment. If not, it still contains skb.
3717 */
3718 tail = skb->prev;
3719 }
3720 return head;
3721 }
3722 EXPORT_SYMBOL_GPL(validate_xmit_skb_list);
3723
qdisc_pkt_len_init(struct sk_buff * skb)3724 static void qdisc_pkt_len_init(struct sk_buff *skb)
3725 {
3726 const struct skb_shared_info *shinfo = skb_shinfo(skb);
3727
3728 qdisc_skb_cb(skb)->pkt_len = skb->len;
3729
3730 /* To get more precise estimation of bytes sent on wire,
3731 * we add to pkt_len the headers size of all segments
3732 */
3733 if (shinfo->gso_size && skb_transport_header_was_set(skb)) {
3734 u16 gso_segs = shinfo->gso_segs;
3735 unsigned int hdr_len;
3736
3737 /* mac layer + network layer */
3738 hdr_len = skb_transport_offset(skb);
3739
3740 /* + transport layer */
3741 if (likely(shinfo->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6))) {
3742 const struct tcphdr *th;
3743 struct tcphdr _tcphdr;
3744
3745 th = skb_header_pointer(skb, hdr_len,
3746 sizeof(_tcphdr), &_tcphdr);
3747 if (likely(th))
3748 hdr_len += __tcp_hdrlen(th);
3749 } else {
3750 struct udphdr _udphdr;
3751
3752 if (skb_header_pointer(skb, hdr_len,
3753 sizeof(_udphdr), &_udphdr))
3754 hdr_len += sizeof(struct udphdr);
3755 }
3756
3757 if (shinfo->gso_type & SKB_GSO_DODGY)
3758 gso_segs = DIV_ROUND_UP(skb->len - hdr_len,
3759 shinfo->gso_size);
3760
3761 qdisc_skb_cb(skb)->pkt_len += (gso_segs - 1) * hdr_len;
3762 }
3763 }
3764
dev_qdisc_enqueue(struct sk_buff * skb,struct Qdisc * q,struct sk_buff ** to_free,struct netdev_queue * txq)3765 static int dev_qdisc_enqueue(struct sk_buff *skb, struct Qdisc *q,
3766 struct sk_buff **to_free,
3767 struct netdev_queue *txq)
3768 {
3769 int rc;
3770
3771 rc = q->enqueue(skb, q, to_free) & NET_XMIT_MASK;
3772 if (rc == NET_XMIT_SUCCESS)
3773 trace_qdisc_enqueue(q, txq, skb);
3774 return rc;
3775 }
3776
__dev_xmit_skb(struct sk_buff * skb,struct Qdisc * q,struct net_device * dev,struct netdev_queue * txq)3777 static inline int __dev_xmit_skb(struct sk_buff *skb, struct Qdisc *q,
3778 struct net_device *dev,
3779 struct netdev_queue *txq)
3780 {
3781 spinlock_t *root_lock = qdisc_lock(q);
3782 struct sk_buff *to_free = NULL;
3783 bool contended;
3784 int rc;
3785
3786 qdisc_calculate_pkt_len(skb, q);
3787
3788 if (q->flags & TCQ_F_NOLOCK) {
3789 if (q->flags & TCQ_F_CAN_BYPASS && nolock_qdisc_is_empty(q) &&
3790 qdisc_run_begin(q)) {
3791 /* Retest nolock_qdisc_is_empty() within the protection
3792 * of q->seqlock to protect from racing with requeuing.
3793 */
3794 if (unlikely(!nolock_qdisc_is_empty(q))) {
3795 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3796 __qdisc_run(q);
3797 qdisc_run_end(q);
3798
3799 goto no_lock_out;
3800 }
3801
3802 qdisc_bstats_cpu_update(q, skb);
3803 if (sch_direct_xmit(skb, q, dev, txq, NULL, true) &&
3804 !nolock_qdisc_is_empty(q))
3805 __qdisc_run(q);
3806
3807 qdisc_run_end(q);
3808 return NET_XMIT_SUCCESS;
3809 }
3810
3811 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3812 qdisc_run(q);
3813
3814 no_lock_out:
3815 if (unlikely(to_free))
3816 kfree_skb_list_reason(to_free,
3817 SKB_DROP_REASON_QDISC_DROP);
3818 return rc;
3819 }
3820
3821 /*
3822 * Heuristic to force contended enqueues to serialize on a
3823 * separate lock before trying to get qdisc main lock.
3824 * This permits qdisc->running owner to get the lock more
3825 * often and dequeue packets faster.
3826 * On PREEMPT_RT it is possible to preempt the qdisc owner during xmit
3827 * and then other tasks will only enqueue packets. The packets will be
3828 * sent after the qdisc owner is scheduled again. To prevent this
3829 * scenario the task always serialize on the lock.
3830 */
3831 contended = qdisc_is_running(q) || IS_ENABLED(CONFIG_PREEMPT_RT);
3832 if (unlikely(contended))
3833 spin_lock(&q->busylock);
3834
3835 spin_lock(root_lock);
3836 if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED, &q->state))) {
3837 __qdisc_drop(skb, &to_free);
3838 rc = NET_XMIT_DROP;
3839 } else if ((q->flags & TCQ_F_CAN_BYPASS) && !qdisc_qlen(q) &&
3840 qdisc_run_begin(q)) {
3841 /*
3842 * This is a work-conserving queue; there are no old skbs
3843 * waiting to be sent out; and the qdisc is not running -
3844 * xmit the skb directly.
3845 */
3846
3847 qdisc_bstats_update(q, skb);
3848
3849 if (sch_direct_xmit(skb, q, dev, txq, root_lock, true)) {
3850 if (unlikely(contended)) {
3851 spin_unlock(&q->busylock);
3852 contended = false;
3853 }
3854 __qdisc_run(q);
3855 }
3856
3857 qdisc_run_end(q);
3858 rc = NET_XMIT_SUCCESS;
3859 } else {
3860 rc = dev_qdisc_enqueue(skb, q, &to_free, txq);
3861 if (qdisc_run_begin(q)) {
3862 if (unlikely(contended)) {
3863 spin_unlock(&q->busylock);
3864 contended = false;
3865 }
3866 __qdisc_run(q);
3867 qdisc_run_end(q);
3868 }
3869 }
3870 spin_unlock(root_lock);
3871 if (unlikely(to_free))
3872 kfree_skb_list_reason(to_free, SKB_DROP_REASON_QDISC_DROP);
3873 if (unlikely(contended))
3874 spin_unlock(&q->busylock);
3875 return rc;
3876 }
3877
3878 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
skb_update_prio(struct sk_buff * skb)3879 static void skb_update_prio(struct sk_buff *skb)
3880 {
3881 const struct netprio_map *map;
3882 const struct sock *sk;
3883 unsigned int prioidx;
3884
3885 if (skb->priority)
3886 return;
3887 map = rcu_dereference_bh(skb->dev->priomap);
3888 if (!map)
3889 return;
3890 sk = skb_to_full_sk(skb);
3891 if (!sk)
3892 return;
3893
3894 prioidx = sock_cgroup_prioidx(&sk->sk_cgrp_data);
3895
3896 if (prioidx < map->priomap_len)
3897 skb->priority = map->priomap[prioidx];
3898 }
3899 #else
3900 #define skb_update_prio(skb)
3901 #endif
3902
3903 /**
3904 * dev_loopback_xmit - loop back @skb
3905 * @net: network namespace this loopback is happening in
3906 * @sk: sk needed to be a netfilter okfn
3907 * @skb: buffer to transmit
3908 */
dev_loopback_xmit(struct net * net,struct sock * sk,struct sk_buff * skb)3909 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *skb)
3910 {
3911 skb_reset_mac_header(skb);
3912 __skb_pull(skb, skb_network_offset(skb));
3913 skb->pkt_type = PACKET_LOOPBACK;
3914 if (skb->ip_summed == CHECKSUM_NONE)
3915 skb->ip_summed = CHECKSUM_UNNECESSARY;
3916 DEBUG_NET_WARN_ON_ONCE(!skb_dst(skb));
3917 skb_dst_force(skb);
3918 netif_rx(skb);
3919 return 0;
3920 }
3921 EXPORT_SYMBOL(dev_loopback_xmit);
3922
3923 #ifdef CONFIG_NET_EGRESS
3924 static struct netdev_queue *
netdev_tx_queue_mapping(struct net_device * dev,struct sk_buff * skb)3925 netdev_tx_queue_mapping(struct net_device *dev, struct sk_buff *skb)
3926 {
3927 int qm = skb_get_queue_mapping(skb);
3928
3929 return netdev_get_tx_queue(dev, netdev_cap_txqueue(dev, qm));
3930 }
3931
netdev_xmit_txqueue_skipped(void)3932 static bool netdev_xmit_txqueue_skipped(void)
3933 {
3934 return __this_cpu_read(softnet_data.xmit.skip_txqueue);
3935 }
3936
netdev_xmit_skip_txqueue(bool skip)3937 void netdev_xmit_skip_txqueue(bool skip)
3938 {
3939 __this_cpu_write(softnet_data.xmit.skip_txqueue, skip);
3940 }
3941 EXPORT_SYMBOL_GPL(netdev_xmit_skip_txqueue);
3942 #endif /* CONFIG_NET_EGRESS */
3943
3944 #ifdef CONFIG_NET_XGRESS
tc_run(struct tcx_entry * entry,struct sk_buff * skb)3945 static int tc_run(struct tcx_entry *entry, struct sk_buff *skb)
3946 {
3947 int ret = TC_ACT_UNSPEC;
3948 #ifdef CONFIG_NET_CLS_ACT
3949 struct mini_Qdisc *miniq = rcu_dereference_bh(entry->miniq);
3950 struct tcf_result res;
3951
3952 if (!miniq)
3953 return ret;
3954
3955 tc_skb_cb(skb)->mru = 0;
3956 tc_skb_cb(skb)->post_ct = false;
3957
3958 mini_qdisc_bstats_cpu_update(miniq, skb);
3959 ret = tcf_classify(skb, miniq->block, miniq->filter_list, &res, false);
3960 /* Only tcf related quirks below. */
3961 switch (ret) {
3962 case TC_ACT_SHOT:
3963 mini_qdisc_qstats_cpu_drop(miniq);
3964 break;
3965 case TC_ACT_OK:
3966 case TC_ACT_RECLASSIFY:
3967 skb->tc_index = TC_H_MIN(res.classid);
3968 break;
3969 }
3970 #endif /* CONFIG_NET_CLS_ACT */
3971 return ret;
3972 }
3973
3974 static DEFINE_STATIC_KEY_FALSE(tcx_needed_key);
3975
tcx_inc(void)3976 void tcx_inc(void)
3977 {
3978 static_branch_inc(&tcx_needed_key);
3979 }
3980
tcx_dec(void)3981 void tcx_dec(void)
3982 {
3983 static_branch_dec(&tcx_needed_key);
3984 }
3985
3986 static __always_inline enum tcx_action_base
tcx_run(const struct bpf_mprog_entry * entry,struct sk_buff * skb,const bool needs_mac)3987 tcx_run(const struct bpf_mprog_entry *entry, struct sk_buff *skb,
3988 const bool needs_mac)
3989 {
3990 const struct bpf_mprog_fp *fp;
3991 const struct bpf_prog *prog;
3992 int ret = TCX_NEXT;
3993
3994 if (needs_mac)
3995 __skb_push(skb, skb->mac_len);
3996 bpf_mprog_foreach_prog(entry, fp, prog) {
3997 bpf_compute_data_pointers(skb);
3998 ret = bpf_prog_run(prog, skb);
3999 if (ret != TCX_NEXT)
4000 break;
4001 }
4002 if (needs_mac)
4003 __skb_pull(skb, skb->mac_len);
4004 return tcx_action_code(skb, ret);
4005 }
4006
4007 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4008 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4009 struct net_device *orig_dev, bool *another)
4010 {
4011 struct bpf_mprog_entry *entry = rcu_dereference_bh(skb->dev->tcx_ingress);
4012 int sch_ret;
4013
4014 if (!entry)
4015 return skb;
4016 if (*pt_prev) {
4017 *ret = deliver_skb(skb, *pt_prev, orig_dev);
4018 *pt_prev = NULL;
4019 }
4020
4021 qdisc_skb_cb(skb)->pkt_len = skb->len;
4022 tcx_set_ingress(skb, true);
4023
4024 if (static_branch_unlikely(&tcx_needed_key)) {
4025 sch_ret = tcx_run(entry, skb, true);
4026 if (sch_ret != TC_ACT_UNSPEC)
4027 goto ingress_verdict;
4028 }
4029 sch_ret = tc_run(tcx_entry(entry), skb);
4030 ingress_verdict:
4031 switch (sch_ret) {
4032 case TC_ACT_REDIRECT:
4033 /* skb_mac_header check was done by BPF, so we can safely
4034 * push the L2 header back before redirecting to another
4035 * netdev.
4036 */
4037 __skb_push(skb, skb->mac_len);
4038 if (skb_do_redirect(skb) == -EAGAIN) {
4039 __skb_pull(skb, skb->mac_len);
4040 *another = true;
4041 break;
4042 }
4043 *ret = NET_RX_SUCCESS;
4044 return NULL;
4045 case TC_ACT_SHOT:
4046 kfree_skb_reason(skb, SKB_DROP_REASON_TC_INGRESS);
4047 *ret = NET_RX_DROP;
4048 return NULL;
4049 /* used by tc_run */
4050 case TC_ACT_STOLEN:
4051 case TC_ACT_QUEUED:
4052 case TC_ACT_TRAP:
4053 consume_skb(skb);
4054 fallthrough;
4055 case TC_ACT_CONSUMED:
4056 *ret = NET_RX_SUCCESS;
4057 return NULL;
4058 }
4059
4060 return skb;
4061 }
4062
4063 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4064 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4065 {
4066 struct bpf_mprog_entry *entry = rcu_dereference_bh(dev->tcx_egress);
4067 int sch_ret;
4068
4069 if (!entry)
4070 return skb;
4071
4072 /* qdisc_skb_cb(skb)->pkt_len & tcx_set_ingress() was
4073 * already set by the caller.
4074 */
4075 if (static_branch_unlikely(&tcx_needed_key)) {
4076 sch_ret = tcx_run(entry, skb, false);
4077 if (sch_ret != TC_ACT_UNSPEC)
4078 goto egress_verdict;
4079 }
4080 sch_ret = tc_run(tcx_entry(entry), skb);
4081 egress_verdict:
4082 switch (sch_ret) {
4083 case TC_ACT_REDIRECT:
4084 /* No need to push/pop skb's mac_header here on egress! */
4085 skb_do_redirect(skb);
4086 *ret = NET_XMIT_SUCCESS;
4087 return NULL;
4088 case TC_ACT_SHOT:
4089 kfree_skb_reason(skb, SKB_DROP_REASON_TC_EGRESS);
4090 *ret = NET_XMIT_DROP;
4091 return NULL;
4092 /* used by tc_run */
4093 case TC_ACT_STOLEN:
4094 case TC_ACT_QUEUED:
4095 case TC_ACT_TRAP:
4096 consume_skb(skb);
4097 fallthrough;
4098 case TC_ACT_CONSUMED:
4099 *ret = NET_XMIT_SUCCESS;
4100 return NULL;
4101 }
4102
4103 return skb;
4104 }
4105 #else
4106 static __always_inline struct sk_buff *
sch_handle_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev,bool * another)4107 sch_handle_ingress(struct sk_buff *skb, struct packet_type **pt_prev, int *ret,
4108 struct net_device *orig_dev, bool *another)
4109 {
4110 return skb;
4111 }
4112
4113 static __always_inline struct sk_buff *
sch_handle_egress(struct sk_buff * skb,int * ret,struct net_device * dev)4114 sch_handle_egress(struct sk_buff *skb, int *ret, struct net_device *dev)
4115 {
4116 return skb;
4117 }
4118 #endif /* CONFIG_NET_XGRESS */
4119
4120 #ifdef CONFIG_XPS
__get_xps_queue_idx(struct net_device * dev,struct sk_buff * skb,struct xps_dev_maps * dev_maps,unsigned int tci)4121 static int __get_xps_queue_idx(struct net_device *dev, struct sk_buff *skb,
4122 struct xps_dev_maps *dev_maps, unsigned int tci)
4123 {
4124 int tc = netdev_get_prio_tc_map(dev, skb->priority);
4125 struct xps_map *map;
4126 int queue_index = -1;
4127
4128 if (tc >= dev_maps->num_tc || tci >= dev_maps->nr_ids)
4129 return queue_index;
4130
4131 tci *= dev_maps->num_tc;
4132 tci += tc;
4133
4134 map = rcu_dereference(dev_maps->attr_map[tci]);
4135 if (map) {
4136 if (map->len == 1)
4137 queue_index = map->queues[0];
4138 else
4139 queue_index = map->queues[reciprocal_scale(
4140 skb_get_hash(skb), map->len)];
4141 if (unlikely(queue_index >= dev->real_num_tx_queues))
4142 queue_index = -1;
4143 }
4144 return queue_index;
4145 }
4146 #endif
4147
get_xps_queue(struct net_device * dev,struct net_device * sb_dev,struct sk_buff * skb)4148 static int get_xps_queue(struct net_device *dev, struct net_device *sb_dev,
4149 struct sk_buff *skb)
4150 {
4151 #ifdef CONFIG_XPS
4152 struct xps_dev_maps *dev_maps;
4153 struct sock *sk = skb->sk;
4154 int queue_index = -1;
4155
4156 if (!static_key_false(&xps_needed))
4157 return -1;
4158
4159 rcu_read_lock();
4160 if (!static_key_false(&xps_rxqs_needed))
4161 goto get_cpus_map;
4162
4163 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_RXQS]);
4164 if (dev_maps) {
4165 int tci = sk_rx_queue_get(sk);
4166
4167 if (tci >= 0)
4168 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4169 tci);
4170 }
4171
4172 get_cpus_map:
4173 if (queue_index < 0) {
4174 dev_maps = rcu_dereference(sb_dev->xps_maps[XPS_CPUS]);
4175 if (dev_maps) {
4176 unsigned int tci = skb->sender_cpu - 1;
4177
4178 queue_index = __get_xps_queue_idx(dev, skb, dev_maps,
4179 tci);
4180 }
4181 }
4182 rcu_read_unlock();
4183
4184 return queue_index;
4185 #else
4186 return -1;
4187 #endif
4188 }
4189
dev_pick_tx_zero(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4190 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
4191 struct net_device *sb_dev)
4192 {
4193 return 0;
4194 }
4195 EXPORT_SYMBOL(dev_pick_tx_zero);
4196
dev_pick_tx_cpu_id(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4197 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
4198 struct net_device *sb_dev)
4199 {
4200 return (u16)raw_smp_processor_id() % dev->real_num_tx_queues;
4201 }
4202 EXPORT_SYMBOL(dev_pick_tx_cpu_id);
4203
netdev_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4204 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
4205 struct net_device *sb_dev)
4206 {
4207 struct sock *sk = skb->sk;
4208 int queue_index = sk_tx_queue_get(sk);
4209
4210 sb_dev = sb_dev ? : dev;
4211
4212 if (queue_index < 0 || skb->ooo_okay ||
4213 queue_index >= dev->real_num_tx_queues) {
4214 int new_index = get_xps_queue(dev, sb_dev, skb);
4215
4216 if (new_index < 0)
4217 new_index = skb_tx_hash(dev, sb_dev, skb);
4218
4219 if (queue_index != new_index && sk &&
4220 sk_fullsock(sk) &&
4221 rcu_access_pointer(sk->sk_dst_cache))
4222 sk_tx_queue_set(sk, new_index);
4223
4224 queue_index = new_index;
4225 }
4226
4227 return queue_index;
4228 }
4229 EXPORT_SYMBOL(netdev_pick_tx);
4230
netdev_core_pick_tx(struct net_device * dev,struct sk_buff * skb,struct net_device * sb_dev)4231 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
4232 struct sk_buff *skb,
4233 struct net_device *sb_dev)
4234 {
4235 int queue_index = 0;
4236
4237 #ifdef CONFIG_XPS
4238 u32 sender_cpu = skb->sender_cpu - 1;
4239
4240 if (sender_cpu >= (u32)NR_CPUS)
4241 skb->sender_cpu = raw_smp_processor_id() + 1;
4242 #endif
4243
4244 if (dev->real_num_tx_queues != 1) {
4245 const struct net_device_ops *ops = dev->netdev_ops;
4246
4247 if (ops->ndo_select_queue)
4248 queue_index = ops->ndo_select_queue(dev, skb, sb_dev);
4249 else
4250 queue_index = netdev_pick_tx(dev, skb, sb_dev);
4251
4252 queue_index = netdev_cap_txqueue(dev, queue_index);
4253 }
4254
4255 skb_set_queue_mapping(skb, queue_index);
4256 return netdev_get_tx_queue(dev, queue_index);
4257 }
4258
4259 /**
4260 * __dev_queue_xmit() - transmit a buffer
4261 * @skb: buffer to transmit
4262 * @sb_dev: suboordinate device used for L2 forwarding offload
4263 *
4264 * Queue a buffer for transmission to a network device. The caller must
4265 * have set the device and priority and built the buffer before calling
4266 * this function. The function can be called from an interrupt.
4267 *
4268 * When calling this method, interrupts MUST be enabled. This is because
4269 * the BH enable code must have IRQs enabled so that it will not deadlock.
4270 *
4271 * Regardless of the return value, the skb is consumed, so it is currently
4272 * difficult to retry a send to this method. (You can bump the ref count
4273 * before sending to hold a reference for retry if you are careful.)
4274 *
4275 * Return:
4276 * * 0 - buffer successfully transmitted
4277 * * positive qdisc return code - NET_XMIT_DROP etc.
4278 * * negative errno - other errors
4279 */
__dev_queue_xmit(struct sk_buff * skb,struct net_device * sb_dev)4280 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev)
4281 {
4282 struct net_device *dev = skb->dev;
4283 struct netdev_queue *txq = NULL;
4284 struct Qdisc *q;
4285 int rc = -ENOMEM;
4286 bool again = false;
4287
4288 skb_reset_mac_header(skb);
4289 skb_assert_len(skb);
4290
4291 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_SCHED_TSTAMP))
4292 __skb_tstamp_tx(skb, NULL, NULL, skb->sk, SCM_TSTAMP_SCHED);
4293
4294 /* Disable soft irqs for various locks below. Also
4295 * stops preemption for RCU.
4296 */
4297 rcu_read_lock_bh();
4298
4299 skb_update_prio(skb);
4300
4301 qdisc_pkt_len_init(skb);
4302 tcx_set_ingress(skb, false);
4303 #ifdef CONFIG_NET_EGRESS
4304 if (static_branch_unlikely(&egress_needed_key)) {
4305 if (nf_hook_egress_active()) {
4306 skb = nf_hook_egress(skb, &rc, dev);
4307 if (!skb)
4308 goto out;
4309 }
4310
4311 netdev_xmit_skip_txqueue(false);
4312
4313 nf_skip_egress(skb, true);
4314 skb = sch_handle_egress(skb, &rc, dev);
4315 if (!skb)
4316 goto out;
4317 nf_skip_egress(skb, false);
4318
4319 if (netdev_xmit_txqueue_skipped())
4320 txq = netdev_tx_queue_mapping(dev, skb);
4321 }
4322 #endif
4323 /* If device/qdisc don't need skb->dst, release it right now while
4324 * its hot in this cpu cache.
4325 */
4326 if (dev->priv_flags & IFF_XMIT_DST_RELEASE)
4327 skb_dst_drop(skb);
4328 else
4329 skb_dst_force(skb);
4330
4331 if (!txq)
4332 txq = netdev_core_pick_tx(dev, skb, sb_dev);
4333
4334 q = rcu_dereference_bh(txq->qdisc);
4335
4336 trace_net_dev_queue(skb);
4337 if (q->enqueue) {
4338 rc = __dev_xmit_skb(skb, q, dev, txq);
4339 goto out;
4340 }
4341
4342 /* The device has no queue. Common case for software devices:
4343 * loopback, all the sorts of tunnels...
4344
4345 * Really, it is unlikely that netif_tx_lock protection is necessary
4346 * here. (f.e. loopback and IP tunnels are clean ignoring statistics
4347 * counters.)
4348 * However, it is possible, that they rely on protection
4349 * made by us here.
4350
4351 * Check this and shot the lock. It is not prone from deadlocks.
4352 *Either shot noqueue qdisc, it is even simpler 8)
4353 */
4354 if (dev->flags & IFF_UP) {
4355 int cpu = smp_processor_id(); /* ok because BHs are off */
4356
4357 /* Other cpus might concurrently change txq->xmit_lock_owner
4358 * to -1 or to their cpu id, but not to our id.
4359 */
4360 if (READ_ONCE(txq->xmit_lock_owner) != cpu) {
4361 if (dev_xmit_recursion())
4362 goto recursion_alert;
4363
4364 skb = validate_xmit_skb(skb, dev, &again);
4365 if (!skb)
4366 goto out;
4367
4368 HARD_TX_LOCK(dev, txq, cpu);
4369
4370 if (!netif_xmit_stopped(txq)) {
4371 dev_xmit_recursion_inc();
4372 skb = dev_hard_start_xmit(skb, dev, txq, &rc);
4373 dev_xmit_recursion_dec();
4374 if (dev_xmit_complete(rc)) {
4375 HARD_TX_UNLOCK(dev, txq);
4376 goto out;
4377 }
4378 }
4379 HARD_TX_UNLOCK(dev, txq);
4380 net_crit_ratelimited("Virtual device %s asks to queue packet!\n",
4381 dev->name);
4382 } else {
4383 /* Recursion is detected! It is possible,
4384 * unfortunately
4385 */
4386 recursion_alert:
4387 net_crit_ratelimited("Dead loop on virtual device %s, fix it urgently!\n",
4388 dev->name);
4389 }
4390 }
4391
4392 rc = -ENETDOWN;
4393 rcu_read_unlock_bh();
4394
4395 dev_core_stats_tx_dropped_inc(dev);
4396 kfree_skb_list(skb);
4397 return rc;
4398 out:
4399 rcu_read_unlock_bh();
4400 return rc;
4401 }
4402 EXPORT_SYMBOL(__dev_queue_xmit);
4403
__dev_direct_xmit(struct sk_buff * skb,u16 queue_id)4404 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
4405 {
4406 struct net_device *dev = skb->dev;
4407 struct sk_buff *orig_skb = skb;
4408 struct netdev_queue *txq;
4409 int ret = NETDEV_TX_BUSY;
4410 bool again = false;
4411
4412 if (unlikely(!netif_running(dev) ||
4413 !netif_carrier_ok(dev)))
4414 goto drop;
4415
4416 skb = validate_xmit_skb_list(skb, dev, &again);
4417 if (skb != orig_skb)
4418 goto drop;
4419
4420 skb_set_queue_mapping(skb, queue_id);
4421 txq = skb_get_tx_queue(dev, skb);
4422
4423 local_bh_disable();
4424
4425 dev_xmit_recursion_inc();
4426 HARD_TX_LOCK(dev, txq, smp_processor_id());
4427 if (!netif_xmit_frozen_or_drv_stopped(txq))
4428 ret = netdev_start_xmit(skb, dev, txq, false);
4429 HARD_TX_UNLOCK(dev, txq);
4430 dev_xmit_recursion_dec();
4431
4432 local_bh_enable();
4433 return ret;
4434 drop:
4435 dev_core_stats_tx_dropped_inc(dev);
4436 kfree_skb_list(skb);
4437 return NET_XMIT_DROP;
4438 }
4439 EXPORT_SYMBOL(__dev_direct_xmit);
4440
4441 /*************************************************************************
4442 * Receiver routines
4443 *************************************************************************/
4444
4445 int netdev_max_backlog __read_mostly = 1000;
4446 EXPORT_SYMBOL(netdev_max_backlog);
4447
4448 int netdev_tstamp_prequeue __read_mostly = 1;
4449 unsigned int sysctl_skb_defer_max __read_mostly = 64;
4450 int netdev_budget __read_mostly = 300;
4451 /* Must be at least 2 jiffes to guarantee 1 jiffy timeout */
4452 unsigned int __read_mostly netdev_budget_usecs = 2 * USEC_PER_SEC / HZ;
4453 int weight_p __read_mostly = 64; /* old backlog weight */
4454 int dev_weight_rx_bias __read_mostly = 1; /* bias for backlog weight */
4455 int dev_weight_tx_bias __read_mostly = 1; /* bias for output_queue quota */
4456 int dev_rx_weight __read_mostly = 64;
4457 int dev_tx_weight __read_mostly = 64;
4458
4459 /* Called with irq disabled */
____napi_schedule(struct softnet_data * sd,struct napi_struct * napi)4460 static inline void ____napi_schedule(struct softnet_data *sd,
4461 struct napi_struct *napi)
4462 {
4463 struct task_struct *thread;
4464
4465 lockdep_assert_irqs_disabled();
4466
4467 if (test_bit(NAPI_STATE_THREADED, &napi->state)) {
4468 /* Paired with smp_mb__before_atomic() in
4469 * napi_enable()/dev_set_threaded().
4470 * Use READ_ONCE() to guarantee a complete
4471 * read on napi->thread. Only call
4472 * wake_up_process() when it's not NULL.
4473 */
4474 thread = READ_ONCE(napi->thread);
4475 if (thread) {
4476 /* Avoid doing set_bit() if the thread is in
4477 * INTERRUPTIBLE state, cause napi_thread_wait()
4478 * makes sure to proceed with napi polling
4479 * if the thread is explicitly woken from here.
4480 */
4481 if (READ_ONCE(thread->__state) != TASK_INTERRUPTIBLE)
4482 set_bit(NAPI_STATE_SCHED_THREADED, &napi->state);
4483 wake_up_process(thread);
4484 return;
4485 }
4486 }
4487
4488 list_add_tail(&napi->poll_list, &sd->poll_list);
4489 WRITE_ONCE(napi->list_owner, smp_processor_id());
4490 /* If not called from net_rx_action()
4491 * we have to raise NET_RX_SOFTIRQ.
4492 */
4493 if (!sd->in_net_rx_action)
4494 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4495 }
4496
4497 #ifdef CONFIG_RPS
4498
4499 /* One global table that all flow-based protocols share. */
4500 struct rps_sock_flow_table __rcu *rps_sock_flow_table __read_mostly;
4501 EXPORT_SYMBOL(rps_sock_flow_table);
4502 u32 rps_cpu_mask __read_mostly;
4503 EXPORT_SYMBOL(rps_cpu_mask);
4504
4505 struct static_key_false rps_needed __read_mostly;
4506 EXPORT_SYMBOL(rps_needed);
4507 struct static_key_false rfs_needed __read_mostly;
4508 EXPORT_SYMBOL(rfs_needed);
4509
4510 static struct rps_dev_flow *
set_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow * rflow,u16 next_cpu)4511 set_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4512 struct rps_dev_flow *rflow, u16 next_cpu)
4513 {
4514 if (next_cpu < nr_cpu_ids) {
4515 #ifdef CONFIG_RFS_ACCEL
4516 struct netdev_rx_queue *rxqueue;
4517 struct rps_dev_flow_table *flow_table;
4518 struct rps_dev_flow *old_rflow;
4519 u32 flow_id;
4520 u16 rxq_index;
4521 int rc;
4522
4523 /* Should we steer this flow to a different hardware queue? */
4524 if (!skb_rx_queue_recorded(skb) || !dev->rx_cpu_rmap ||
4525 !(dev->features & NETIF_F_NTUPLE))
4526 goto out;
4527 rxq_index = cpu_rmap_lookup_index(dev->rx_cpu_rmap, next_cpu);
4528 if (rxq_index == skb_get_rx_queue(skb))
4529 goto out;
4530
4531 rxqueue = dev->_rx + rxq_index;
4532 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4533 if (!flow_table)
4534 goto out;
4535 flow_id = skb_get_hash(skb) & flow_table->mask;
4536 rc = dev->netdev_ops->ndo_rx_flow_steer(dev, skb,
4537 rxq_index, flow_id);
4538 if (rc < 0)
4539 goto out;
4540 old_rflow = rflow;
4541 rflow = &flow_table->flows[flow_id];
4542 rflow->filter = rc;
4543 if (old_rflow->filter == rflow->filter)
4544 old_rflow->filter = RPS_NO_FILTER;
4545 out:
4546 #endif
4547 rflow->last_qtail =
4548 per_cpu(softnet_data, next_cpu).input_queue_head;
4549 }
4550
4551 rflow->cpu = next_cpu;
4552 return rflow;
4553 }
4554
4555 /*
4556 * get_rps_cpu is called from netif_receive_skb and returns the target
4557 * CPU from the RPS map of the receiving queue for a given skb.
4558 * rcu_read_lock must be held on entry.
4559 */
get_rps_cpu(struct net_device * dev,struct sk_buff * skb,struct rps_dev_flow ** rflowp)4560 static int get_rps_cpu(struct net_device *dev, struct sk_buff *skb,
4561 struct rps_dev_flow **rflowp)
4562 {
4563 const struct rps_sock_flow_table *sock_flow_table;
4564 struct netdev_rx_queue *rxqueue = dev->_rx;
4565 struct rps_dev_flow_table *flow_table;
4566 struct rps_map *map;
4567 int cpu = -1;
4568 u32 tcpu;
4569 u32 hash;
4570
4571 if (skb_rx_queue_recorded(skb)) {
4572 u16 index = skb_get_rx_queue(skb);
4573
4574 if (unlikely(index >= dev->real_num_rx_queues)) {
4575 WARN_ONCE(dev->real_num_rx_queues > 1,
4576 "%s received packet on queue %u, but number "
4577 "of RX queues is %u\n",
4578 dev->name, index, dev->real_num_rx_queues);
4579 goto done;
4580 }
4581 rxqueue += index;
4582 }
4583
4584 /* Avoid computing hash if RFS/RPS is not active for this rxqueue */
4585
4586 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4587 map = rcu_dereference(rxqueue->rps_map);
4588 if (!flow_table && !map)
4589 goto done;
4590
4591 skb_reset_network_header(skb);
4592 hash = skb_get_hash(skb);
4593 if (!hash)
4594 goto done;
4595
4596 sock_flow_table = rcu_dereference(rps_sock_flow_table);
4597 if (flow_table && sock_flow_table) {
4598 struct rps_dev_flow *rflow;
4599 u32 next_cpu;
4600 u32 ident;
4601
4602 /* First check into global flow table if there is a match.
4603 * This READ_ONCE() pairs with WRITE_ONCE() from rps_record_sock_flow().
4604 */
4605 ident = READ_ONCE(sock_flow_table->ents[hash & sock_flow_table->mask]);
4606 if ((ident ^ hash) & ~rps_cpu_mask)
4607 goto try_rps;
4608
4609 next_cpu = ident & rps_cpu_mask;
4610
4611 /* OK, now we know there is a match,
4612 * we can look at the local (per receive queue) flow table
4613 */
4614 rflow = &flow_table->flows[hash & flow_table->mask];
4615 tcpu = rflow->cpu;
4616
4617 /*
4618 * If the desired CPU (where last recvmsg was done) is
4619 * different from current CPU (one in the rx-queue flow
4620 * table entry), switch if one of the following holds:
4621 * - Current CPU is unset (>= nr_cpu_ids).
4622 * - Current CPU is offline.
4623 * - The current CPU's queue tail has advanced beyond the
4624 * last packet that was enqueued using this table entry.
4625 * This guarantees that all previous packets for the flow
4626 * have been dequeued, thus preserving in order delivery.
4627 */
4628 if (unlikely(tcpu != next_cpu) &&
4629 (tcpu >= nr_cpu_ids || !cpu_online(tcpu) ||
4630 ((int)(per_cpu(softnet_data, tcpu).input_queue_head -
4631 rflow->last_qtail)) >= 0)) {
4632 tcpu = next_cpu;
4633 rflow = set_rps_cpu(dev, skb, rflow, next_cpu);
4634 }
4635
4636 if (tcpu < nr_cpu_ids && cpu_online(tcpu)) {
4637 *rflowp = rflow;
4638 cpu = tcpu;
4639 goto done;
4640 }
4641 }
4642
4643 try_rps:
4644
4645 if (map) {
4646 tcpu = map->cpus[reciprocal_scale(hash, map->len)];
4647 if (cpu_online(tcpu)) {
4648 cpu = tcpu;
4649 goto done;
4650 }
4651 }
4652
4653 done:
4654 return cpu;
4655 }
4656
4657 #ifdef CONFIG_RFS_ACCEL
4658
4659 /**
4660 * rps_may_expire_flow - check whether an RFS hardware filter may be removed
4661 * @dev: Device on which the filter was set
4662 * @rxq_index: RX queue index
4663 * @flow_id: Flow ID passed to ndo_rx_flow_steer()
4664 * @filter_id: Filter ID returned by ndo_rx_flow_steer()
4665 *
4666 * Drivers that implement ndo_rx_flow_steer() should periodically call
4667 * this function for each installed filter and remove the filters for
4668 * which it returns %true.
4669 */
rps_may_expire_flow(struct net_device * dev,u16 rxq_index,u32 flow_id,u16 filter_id)4670 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index,
4671 u32 flow_id, u16 filter_id)
4672 {
4673 struct netdev_rx_queue *rxqueue = dev->_rx + rxq_index;
4674 struct rps_dev_flow_table *flow_table;
4675 struct rps_dev_flow *rflow;
4676 bool expire = true;
4677 unsigned int cpu;
4678
4679 rcu_read_lock();
4680 flow_table = rcu_dereference(rxqueue->rps_flow_table);
4681 if (flow_table && flow_id <= flow_table->mask) {
4682 rflow = &flow_table->flows[flow_id];
4683 cpu = READ_ONCE(rflow->cpu);
4684 if (rflow->filter == filter_id && cpu < nr_cpu_ids &&
4685 ((int)(per_cpu(softnet_data, cpu).input_queue_head -
4686 rflow->last_qtail) <
4687 (int)(10 * flow_table->mask)))
4688 expire = false;
4689 }
4690 rcu_read_unlock();
4691 return expire;
4692 }
4693 EXPORT_SYMBOL(rps_may_expire_flow);
4694
4695 #endif /* CONFIG_RFS_ACCEL */
4696
4697 /* Called from hardirq (IPI) context */
rps_trigger_softirq(void * data)4698 static void rps_trigger_softirq(void *data)
4699 {
4700 struct softnet_data *sd = data;
4701
4702 ____napi_schedule(sd, &sd->backlog);
4703 sd->received_rps++;
4704 }
4705
4706 #endif /* CONFIG_RPS */
4707
4708 /* Called from hardirq (IPI) context */
trigger_rx_softirq(void * data)4709 static void trigger_rx_softirq(void *data)
4710 {
4711 struct softnet_data *sd = data;
4712
4713 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4714 smp_store_release(&sd->defer_ipi_scheduled, 0);
4715 }
4716
4717 /*
4718 * After we queued a packet into sd->input_pkt_queue,
4719 * we need to make sure this queue is serviced soon.
4720 *
4721 * - If this is another cpu queue, link it to our rps_ipi_list,
4722 * and make sure we will process rps_ipi_list from net_rx_action().
4723 *
4724 * - If this is our own queue, NAPI schedule our backlog.
4725 * Note that this also raises NET_RX_SOFTIRQ.
4726 */
napi_schedule_rps(struct softnet_data * sd)4727 static void napi_schedule_rps(struct softnet_data *sd)
4728 {
4729 struct softnet_data *mysd = this_cpu_ptr(&softnet_data);
4730
4731 #ifdef CONFIG_RPS
4732 if (sd != mysd) {
4733 sd->rps_ipi_next = mysd->rps_ipi_list;
4734 mysd->rps_ipi_list = sd;
4735
4736 /* If not called from net_rx_action() or napi_threaded_poll()
4737 * we have to raise NET_RX_SOFTIRQ.
4738 */
4739 if (!mysd->in_net_rx_action && !mysd->in_napi_threaded_poll)
4740 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
4741 return;
4742 }
4743 #endif /* CONFIG_RPS */
4744 __napi_schedule_irqoff(&mysd->backlog);
4745 }
4746
4747 #ifdef CONFIG_NET_FLOW_LIMIT
4748 int netdev_flow_limit_table_len __read_mostly = (1 << 12);
4749 #endif
4750
skb_flow_limit(struct sk_buff * skb,unsigned int qlen)4751 static bool skb_flow_limit(struct sk_buff *skb, unsigned int qlen)
4752 {
4753 #ifdef CONFIG_NET_FLOW_LIMIT
4754 struct sd_flow_limit *fl;
4755 struct softnet_data *sd;
4756 unsigned int old_flow, new_flow;
4757
4758 if (qlen < (READ_ONCE(netdev_max_backlog) >> 1))
4759 return false;
4760
4761 sd = this_cpu_ptr(&softnet_data);
4762
4763 rcu_read_lock();
4764 fl = rcu_dereference(sd->flow_limit);
4765 if (fl) {
4766 new_flow = skb_get_hash(skb) & (fl->num_buckets - 1);
4767 old_flow = fl->history[fl->history_head];
4768 fl->history[fl->history_head] = new_flow;
4769
4770 fl->history_head++;
4771 fl->history_head &= FLOW_LIMIT_HISTORY - 1;
4772
4773 if (likely(fl->buckets[old_flow]))
4774 fl->buckets[old_flow]--;
4775
4776 if (++fl->buckets[new_flow] > (FLOW_LIMIT_HISTORY >> 1)) {
4777 fl->count++;
4778 rcu_read_unlock();
4779 return true;
4780 }
4781 }
4782 rcu_read_unlock();
4783 #endif
4784 return false;
4785 }
4786
4787 /*
4788 * enqueue_to_backlog is called to queue an skb to a per CPU backlog
4789 * queue (may be a remote CPU queue).
4790 */
enqueue_to_backlog(struct sk_buff * skb,int cpu,unsigned int * qtail)4791 static int enqueue_to_backlog(struct sk_buff *skb, int cpu,
4792 unsigned int *qtail)
4793 {
4794 enum skb_drop_reason reason;
4795 struct softnet_data *sd;
4796 unsigned long flags;
4797 unsigned int qlen;
4798
4799 reason = SKB_DROP_REASON_NOT_SPECIFIED;
4800 sd = &per_cpu(softnet_data, cpu);
4801
4802 rps_lock_irqsave(sd, &flags);
4803 if (!netif_running(skb->dev))
4804 goto drop;
4805 qlen = skb_queue_len(&sd->input_pkt_queue);
4806 if (qlen <= READ_ONCE(netdev_max_backlog) && !skb_flow_limit(skb, qlen)) {
4807 if (qlen) {
4808 enqueue:
4809 __skb_queue_tail(&sd->input_pkt_queue, skb);
4810 input_queue_tail_incr_save(sd, qtail);
4811 rps_unlock_irq_restore(sd, &flags);
4812 return NET_RX_SUCCESS;
4813 }
4814
4815 /* Schedule NAPI for backlog device
4816 * We can use non atomic operation since we own the queue lock
4817 */
4818 if (!__test_and_set_bit(NAPI_STATE_SCHED, &sd->backlog.state))
4819 napi_schedule_rps(sd);
4820 goto enqueue;
4821 }
4822 reason = SKB_DROP_REASON_CPU_BACKLOG;
4823
4824 drop:
4825 sd->dropped++;
4826 rps_unlock_irq_restore(sd, &flags);
4827
4828 dev_core_stats_rx_dropped_inc(skb->dev);
4829 kfree_skb_reason(skb, reason);
4830 return NET_RX_DROP;
4831 }
4832
netif_get_rxqueue(struct sk_buff * skb)4833 static struct netdev_rx_queue *netif_get_rxqueue(struct sk_buff *skb)
4834 {
4835 struct net_device *dev = skb->dev;
4836 struct netdev_rx_queue *rxqueue;
4837
4838 rxqueue = dev->_rx;
4839
4840 if (skb_rx_queue_recorded(skb)) {
4841 u16 index = skb_get_rx_queue(skb);
4842
4843 if (unlikely(index >= dev->real_num_rx_queues)) {
4844 WARN_ONCE(dev->real_num_rx_queues > 1,
4845 "%s received packet on queue %u, but number "
4846 "of RX queues is %u\n",
4847 dev->name, index, dev->real_num_rx_queues);
4848
4849 return rxqueue; /* Return first rxqueue */
4850 }
4851 rxqueue += index;
4852 }
4853 return rxqueue;
4854 }
4855
bpf_prog_run_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4856 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
4857 struct bpf_prog *xdp_prog)
4858 {
4859 void *orig_data, *orig_data_end, *hard_start;
4860 struct netdev_rx_queue *rxqueue;
4861 bool orig_bcast, orig_host;
4862 u32 mac_len, frame_sz;
4863 __be16 orig_eth_type;
4864 struct ethhdr *eth;
4865 u32 metalen, act;
4866 int off;
4867
4868 /* The XDP program wants to see the packet starting at the MAC
4869 * header.
4870 */
4871 mac_len = skb->data - skb_mac_header(skb);
4872 hard_start = skb->data - skb_headroom(skb);
4873
4874 /* SKB "head" area always have tailroom for skb_shared_info */
4875 frame_sz = (void *)skb_end_pointer(skb) - hard_start;
4876 frame_sz += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
4877
4878 rxqueue = netif_get_rxqueue(skb);
4879 xdp_init_buff(xdp, frame_sz, &rxqueue->xdp_rxq);
4880 xdp_prepare_buff(xdp, hard_start, skb_headroom(skb) - mac_len,
4881 skb_headlen(skb) + mac_len, true);
4882
4883 orig_data_end = xdp->data_end;
4884 orig_data = xdp->data;
4885 eth = (struct ethhdr *)xdp->data;
4886 orig_host = ether_addr_equal_64bits(eth->h_dest, skb->dev->dev_addr);
4887 orig_bcast = is_multicast_ether_addr_64bits(eth->h_dest);
4888 orig_eth_type = eth->h_proto;
4889
4890 act = bpf_prog_run_xdp(xdp_prog, xdp);
4891
4892 /* check if bpf_xdp_adjust_head was used */
4893 off = xdp->data - orig_data;
4894 if (off) {
4895 if (off > 0)
4896 __skb_pull(skb, off);
4897 else if (off < 0)
4898 __skb_push(skb, -off);
4899
4900 skb->mac_header += off;
4901 skb_reset_network_header(skb);
4902 }
4903
4904 /* check if bpf_xdp_adjust_tail was used */
4905 off = xdp->data_end - orig_data_end;
4906 if (off != 0) {
4907 skb_set_tail_pointer(skb, xdp->data_end - xdp->data);
4908 skb->len += off; /* positive on grow, negative on shrink */
4909 }
4910
4911 /* check if XDP changed eth hdr such SKB needs update */
4912 eth = (struct ethhdr *)xdp->data;
4913 if ((orig_eth_type != eth->h_proto) ||
4914 (orig_host != ether_addr_equal_64bits(eth->h_dest,
4915 skb->dev->dev_addr)) ||
4916 (orig_bcast != is_multicast_ether_addr_64bits(eth->h_dest))) {
4917 __skb_push(skb, ETH_HLEN);
4918 skb->pkt_type = PACKET_HOST;
4919 skb->protocol = eth_type_trans(skb, skb->dev);
4920 }
4921
4922 /* Redirect/Tx gives L2 packet, code that will reuse skb must __skb_pull
4923 * before calling us again on redirect path. We do not call do_redirect
4924 * as we leave that up to the caller.
4925 *
4926 * Caller is responsible for managing lifetime of skb (i.e. calling
4927 * kfree_skb in response to actions it cannot handle/XDP_DROP).
4928 */
4929 switch (act) {
4930 case XDP_REDIRECT:
4931 case XDP_TX:
4932 __skb_push(skb, mac_len);
4933 break;
4934 case XDP_PASS:
4935 metalen = xdp->data - xdp->data_meta;
4936 if (metalen)
4937 skb_metadata_set(skb, metalen);
4938 break;
4939 }
4940
4941 return act;
4942 }
4943
netif_receive_generic_xdp(struct sk_buff * skb,struct xdp_buff * xdp,struct bpf_prog * xdp_prog)4944 static u32 netif_receive_generic_xdp(struct sk_buff *skb,
4945 struct xdp_buff *xdp,
4946 struct bpf_prog *xdp_prog)
4947 {
4948 u32 act = XDP_DROP;
4949
4950 /* Reinjected packets coming from act_mirred or similar should
4951 * not get XDP generic processing.
4952 */
4953 if (skb_is_redirected(skb))
4954 return XDP_PASS;
4955
4956 /* XDP packets must be linear and must have sufficient headroom
4957 * of XDP_PACKET_HEADROOM bytes. This is the guarantee that also
4958 * native XDP provides, thus we need to do it here as well.
4959 */
4960 if (skb_cloned(skb) || skb_is_nonlinear(skb) ||
4961 skb_headroom(skb) < XDP_PACKET_HEADROOM) {
4962 int hroom = XDP_PACKET_HEADROOM - skb_headroom(skb);
4963 int troom = skb->tail + skb->data_len - skb->end;
4964
4965 /* In case we have to go down the path and also linearize,
4966 * then lets do the pskb_expand_head() work just once here.
4967 */
4968 if (pskb_expand_head(skb,
4969 hroom > 0 ? ALIGN(hroom, NET_SKB_PAD) : 0,
4970 troom > 0 ? troom + 128 : 0, GFP_ATOMIC))
4971 goto do_drop;
4972 if (skb_linearize(skb))
4973 goto do_drop;
4974 }
4975
4976 act = bpf_prog_run_generic_xdp(skb, xdp, xdp_prog);
4977 switch (act) {
4978 case XDP_REDIRECT:
4979 case XDP_TX:
4980 case XDP_PASS:
4981 break;
4982 default:
4983 bpf_warn_invalid_xdp_action(skb->dev, xdp_prog, act);
4984 fallthrough;
4985 case XDP_ABORTED:
4986 trace_xdp_exception(skb->dev, xdp_prog, act);
4987 fallthrough;
4988 case XDP_DROP:
4989 do_drop:
4990 kfree_skb(skb);
4991 break;
4992 }
4993
4994 return act;
4995 }
4996
4997 /* When doing generic XDP we have to bypass the qdisc layer and the
4998 * network taps in order to match in-driver-XDP behavior. This also means
4999 * that XDP packets are able to starve other packets going through a qdisc,
5000 * and DDOS attacks will be more effective. In-driver-XDP use dedicated TX
5001 * queues, so they do not have this starvation issue.
5002 */
generic_xdp_tx(struct sk_buff * skb,struct bpf_prog * xdp_prog)5003 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog)
5004 {
5005 struct net_device *dev = skb->dev;
5006 struct netdev_queue *txq;
5007 bool free_skb = true;
5008 int cpu, rc;
5009
5010 txq = netdev_core_pick_tx(dev, skb, NULL);
5011 cpu = smp_processor_id();
5012 HARD_TX_LOCK(dev, txq, cpu);
5013 if (!netif_xmit_frozen_or_drv_stopped(txq)) {
5014 rc = netdev_start_xmit(skb, dev, txq, 0);
5015 if (dev_xmit_complete(rc))
5016 free_skb = false;
5017 }
5018 HARD_TX_UNLOCK(dev, txq);
5019 if (free_skb) {
5020 trace_xdp_exception(dev, xdp_prog, XDP_TX);
5021 dev_core_stats_tx_dropped_inc(dev);
5022 kfree_skb(skb);
5023 }
5024 }
5025
5026 static DEFINE_STATIC_KEY_FALSE(generic_xdp_needed_key);
5027
do_xdp_generic(struct bpf_prog * xdp_prog,struct sk_buff * skb)5028 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb)
5029 {
5030 if (xdp_prog) {
5031 struct xdp_buff xdp;
5032 u32 act;
5033 int err;
5034
5035 act = netif_receive_generic_xdp(skb, &xdp, xdp_prog);
5036 if (act != XDP_PASS) {
5037 switch (act) {
5038 case XDP_REDIRECT:
5039 err = xdp_do_generic_redirect(skb->dev, skb,
5040 &xdp, xdp_prog);
5041 if (err)
5042 goto out_redir;
5043 break;
5044 case XDP_TX:
5045 generic_xdp_tx(skb, xdp_prog);
5046 break;
5047 }
5048 return XDP_DROP;
5049 }
5050 }
5051 return XDP_PASS;
5052 out_redir:
5053 kfree_skb_reason(skb, SKB_DROP_REASON_XDP);
5054 return XDP_DROP;
5055 }
5056 EXPORT_SYMBOL_GPL(do_xdp_generic);
5057
netif_rx_internal(struct sk_buff * skb)5058 static int netif_rx_internal(struct sk_buff *skb)
5059 {
5060 int ret;
5061
5062 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5063
5064 trace_netif_rx(skb);
5065
5066 #ifdef CONFIG_RPS
5067 if (static_branch_unlikely(&rps_needed)) {
5068 struct rps_dev_flow voidflow, *rflow = &voidflow;
5069 int cpu;
5070
5071 rcu_read_lock();
5072
5073 cpu = get_rps_cpu(skb->dev, skb, &rflow);
5074 if (cpu < 0)
5075 cpu = smp_processor_id();
5076
5077 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5078
5079 rcu_read_unlock();
5080 } else
5081 #endif
5082 {
5083 unsigned int qtail;
5084
5085 ret = enqueue_to_backlog(skb, smp_processor_id(), &qtail);
5086 }
5087 return ret;
5088 }
5089
5090 /**
5091 * __netif_rx - Slightly optimized version of netif_rx
5092 * @skb: buffer to post
5093 *
5094 * This behaves as netif_rx except that it does not disable bottom halves.
5095 * As a result this function may only be invoked from the interrupt context
5096 * (either hard or soft interrupt).
5097 */
__netif_rx(struct sk_buff * skb)5098 int __netif_rx(struct sk_buff *skb)
5099 {
5100 int ret;
5101
5102 lockdep_assert_once(hardirq_count() | softirq_count());
5103
5104 trace_netif_rx_entry(skb);
5105 ret = netif_rx_internal(skb);
5106 trace_netif_rx_exit(ret);
5107 return ret;
5108 }
5109 EXPORT_SYMBOL(__netif_rx);
5110
5111 /**
5112 * netif_rx - post buffer to the network code
5113 * @skb: buffer to post
5114 *
5115 * This function receives a packet from a device driver and queues it for
5116 * the upper (protocol) levels to process via the backlog NAPI device. It
5117 * always succeeds. The buffer may be dropped during processing for
5118 * congestion control or by the protocol layers.
5119 * The network buffer is passed via the backlog NAPI device. Modern NIC
5120 * driver should use NAPI and GRO.
5121 * This function can used from interrupt and from process context. The
5122 * caller from process context must not disable interrupts before invoking
5123 * this function.
5124 *
5125 * return values:
5126 * NET_RX_SUCCESS (no congestion)
5127 * NET_RX_DROP (packet was dropped)
5128 *
5129 */
netif_rx(struct sk_buff * skb)5130 int netif_rx(struct sk_buff *skb)
5131 {
5132 bool need_bh_off = !(hardirq_count() | softirq_count());
5133 int ret;
5134
5135 if (need_bh_off)
5136 local_bh_disable();
5137 trace_netif_rx_entry(skb);
5138 ret = netif_rx_internal(skb);
5139 trace_netif_rx_exit(ret);
5140 if (need_bh_off)
5141 local_bh_enable();
5142 return ret;
5143 }
5144 EXPORT_SYMBOL(netif_rx);
5145
net_tx_action(struct softirq_action * h)5146 static __latent_entropy void net_tx_action(struct softirq_action *h)
5147 {
5148 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
5149
5150 if (sd->completion_queue) {
5151 struct sk_buff *clist;
5152
5153 local_irq_disable();
5154 clist = sd->completion_queue;
5155 sd->completion_queue = NULL;
5156 local_irq_enable();
5157
5158 while (clist) {
5159 struct sk_buff *skb = clist;
5160
5161 clist = clist->next;
5162
5163 WARN_ON(refcount_read(&skb->users));
5164 if (likely(get_kfree_skb_cb(skb)->reason == SKB_CONSUMED))
5165 trace_consume_skb(skb, net_tx_action);
5166 else
5167 trace_kfree_skb(skb, net_tx_action,
5168 get_kfree_skb_cb(skb)->reason);
5169
5170 if (skb->fclone != SKB_FCLONE_UNAVAILABLE)
5171 __kfree_skb(skb);
5172 else
5173 __napi_kfree_skb(skb,
5174 get_kfree_skb_cb(skb)->reason);
5175 }
5176 }
5177
5178 if (sd->output_queue) {
5179 struct Qdisc *head;
5180
5181 local_irq_disable();
5182 head = sd->output_queue;
5183 sd->output_queue = NULL;
5184 sd->output_queue_tailp = &sd->output_queue;
5185 local_irq_enable();
5186
5187 rcu_read_lock();
5188
5189 while (head) {
5190 struct Qdisc *q = head;
5191 spinlock_t *root_lock = NULL;
5192
5193 head = head->next_sched;
5194
5195 /* We need to make sure head->next_sched is read
5196 * before clearing __QDISC_STATE_SCHED
5197 */
5198 smp_mb__before_atomic();
5199
5200 if (!(q->flags & TCQ_F_NOLOCK)) {
5201 root_lock = qdisc_lock(q);
5202 spin_lock(root_lock);
5203 } else if (unlikely(test_bit(__QDISC_STATE_DEACTIVATED,
5204 &q->state))) {
5205 /* There is a synchronize_net() between
5206 * STATE_DEACTIVATED flag being set and
5207 * qdisc_reset()/some_qdisc_is_busy() in
5208 * dev_deactivate(), so we can safely bail out
5209 * early here to avoid data race between
5210 * qdisc_deactivate() and some_qdisc_is_busy()
5211 * for lockless qdisc.
5212 */
5213 clear_bit(__QDISC_STATE_SCHED, &q->state);
5214 continue;
5215 }
5216
5217 clear_bit(__QDISC_STATE_SCHED, &q->state);
5218 qdisc_run(q);
5219 if (root_lock)
5220 spin_unlock(root_lock);
5221 }
5222
5223 rcu_read_unlock();
5224 }
5225
5226 xfrm_dev_backlog(sd);
5227 }
5228
5229 #if IS_ENABLED(CONFIG_BRIDGE) && IS_ENABLED(CONFIG_ATM_LANE)
5230 /* This hook is defined here for ATM LANE */
5231 int (*br_fdb_test_addr_hook)(struct net_device *dev,
5232 unsigned char *addr) __read_mostly;
5233 EXPORT_SYMBOL_GPL(br_fdb_test_addr_hook);
5234 #endif
5235
5236 /**
5237 * netdev_is_rx_handler_busy - check if receive handler is registered
5238 * @dev: device to check
5239 *
5240 * Check if a receive handler is already registered for a given device.
5241 * Return true if there one.
5242 *
5243 * The caller must hold the rtnl_mutex.
5244 */
netdev_is_rx_handler_busy(struct net_device * dev)5245 bool netdev_is_rx_handler_busy(struct net_device *dev)
5246 {
5247 ASSERT_RTNL();
5248 return dev && rtnl_dereference(dev->rx_handler);
5249 }
5250 EXPORT_SYMBOL_GPL(netdev_is_rx_handler_busy);
5251
5252 /**
5253 * netdev_rx_handler_register - register receive handler
5254 * @dev: device to register a handler for
5255 * @rx_handler: receive handler to register
5256 * @rx_handler_data: data pointer that is used by rx handler
5257 *
5258 * Register a receive handler for a device. This handler will then be
5259 * called from __netif_receive_skb. A negative errno code is returned
5260 * on a failure.
5261 *
5262 * The caller must hold the rtnl_mutex.
5263 *
5264 * For a general description of rx_handler, see enum rx_handler_result.
5265 */
netdev_rx_handler_register(struct net_device * dev,rx_handler_func_t * rx_handler,void * rx_handler_data)5266 int netdev_rx_handler_register(struct net_device *dev,
5267 rx_handler_func_t *rx_handler,
5268 void *rx_handler_data)
5269 {
5270 if (netdev_is_rx_handler_busy(dev))
5271 return -EBUSY;
5272
5273 if (dev->priv_flags & IFF_NO_RX_HANDLER)
5274 return -EINVAL;
5275
5276 /* Note: rx_handler_data must be set before rx_handler */
5277 rcu_assign_pointer(dev->rx_handler_data, rx_handler_data);
5278 rcu_assign_pointer(dev->rx_handler, rx_handler);
5279
5280 return 0;
5281 }
5282 EXPORT_SYMBOL_GPL(netdev_rx_handler_register);
5283
5284 /**
5285 * netdev_rx_handler_unregister - unregister receive handler
5286 * @dev: device to unregister a handler from
5287 *
5288 * Unregister a receive handler from a device.
5289 *
5290 * The caller must hold the rtnl_mutex.
5291 */
netdev_rx_handler_unregister(struct net_device * dev)5292 void netdev_rx_handler_unregister(struct net_device *dev)
5293 {
5294
5295 ASSERT_RTNL();
5296 RCU_INIT_POINTER(dev->rx_handler, NULL);
5297 /* a reader seeing a non NULL rx_handler in a rcu_read_lock()
5298 * section has a guarantee to see a non NULL rx_handler_data
5299 * as well.
5300 */
5301 synchronize_net();
5302 RCU_INIT_POINTER(dev->rx_handler_data, NULL);
5303 }
5304 EXPORT_SYMBOL_GPL(netdev_rx_handler_unregister);
5305
5306 /*
5307 * Limit the use of PFMEMALLOC reserves to those protocols that implement
5308 * the special handling of PFMEMALLOC skbs.
5309 */
skb_pfmemalloc_protocol(struct sk_buff * skb)5310 static bool skb_pfmemalloc_protocol(struct sk_buff *skb)
5311 {
5312 switch (skb->protocol) {
5313 case htons(ETH_P_ARP):
5314 case htons(ETH_P_IP):
5315 case htons(ETH_P_IPV6):
5316 case htons(ETH_P_8021Q):
5317 case htons(ETH_P_8021AD):
5318 return true;
5319 default:
5320 return false;
5321 }
5322 }
5323
nf_ingress(struct sk_buff * skb,struct packet_type ** pt_prev,int * ret,struct net_device * orig_dev)5324 static inline int nf_ingress(struct sk_buff *skb, struct packet_type **pt_prev,
5325 int *ret, struct net_device *orig_dev)
5326 {
5327 if (nf_hook_ingress_active(skb)) {
5328 int ingress_retval;
5329
5330 if (*pt_prev) {
5331 *ret = deliver_skb(skb, *pt_prev, orig_dev);
5332 *pt_prev = NULL;
5333 }
5334
5335 rcu_read_lock();
5336 ingress_retval = nf_hook_ingress(skb);
5337 rcu_read_unlock();
5338 return ingress_retval;
5339 }
5340 return 0;
5341 }
5342
__netif_receive_skb_core(struct sk_buff ** pskb,bool pfmemalloc,struct packet_type ** ppt_prev)5343 static int __netif_receive_skb_core(struct sk_buff **pskb, bool pfmemalloc,
5344 struct packet_type **ppt_prev)
5345 {
5346 struct packet_type *ptype, *pt_prev;
5347 rx_handler_func_t *rx_handler;
5348 struct sk_buff *skb = *pskb;
5349 struct net_device *orig_dev;
5350 bool deliver_exact = false;
5351 int ret = NET_RX_DROP;
5352 __be16 type;
5353
5354 net_timestamp_check(!READ_ONCE(netdev_tstamp_prequeue), skb);
5355
5356 trace_netif_receive_skb(skb);
5357
5358 orig_dev = skb->dev;
5359
5360 skb_reset_network_header(skb);
5361 if (!skb_transport_header_was_set(skb))
5362 skb_reset_transport_header(skb);
5363 skb_reset_mac_len(skb);
5364
5365 pt_prev = NULL;
5366
5367 another_round:
5368 skb->skb_iif = skb->dev->ifindex;
5369
5370 __this_cpu_inc(softnet_data.processed);
5371
5372 if (static_branch_unlikely(&generic_xdp_needed_key)) {
5373 int ret2;
5374
5375 migrate_disable();
5376 ret2 = do_xdp_generic(rcu_dereference(skb->dev->xdp_prog), skb);
5377 migrate_enable();
5378
5379 if (ret2 != XDP_PASS) {
5380 ret = NET_RX_DROP;
5381 goto out;
5382 }
5383 }
5384
5385 if (eth_type_vlan(skb->protocol)) {
5386 skb = skb_vlan_untag(skb);
5387 if (unlikely(!skb))
5388 goto out;
5389 }
5390
5391 if (skb_skip_tc_classify(skb))
5392 goto skip_classify;
5393
5394 if (pfmemalloc)
5395 goto skip_taps;
5396
5397 list_for_each_entry_rcu(ptype, &ptype_all, list) {
5398 if (pt_prev)
5399 ret = deliver_skb(skb, pt_prev, orig_dev);
5400 pt_prev = ptype;
5401 }
5402
5403 list_for_each_entry_rcu(ptype, &skb->dev->ptype_all, list) {
5404 if (pt_prev)
5405 ret = deliver_skb(skb, pt_prev, orig_dev);
5406 pt_prev = ptype;
5407 }
5408
5409 skip_taps:
5410 #ifdef CONFIG_NET_INGRESS
5411 if (static_branch_unlikely(&ingress_needed_key)) {
5412 bool another = false;
5413
5414 nf_skip_egress(skb, true);
5415 skb = sch_handle_ingress(skb, &pt_prev, &ret, orig_dev,
5416 &another);
5417 if (another)
5418 goto another_round;
5419 if (!skb)
5420 goto out;
5421
5422 nf_skip_egress(skb, false);
5423 if (nf_ingress(skb, &pt_prev, &ret, orig_dev) < 0)
5424 goto out;
5425 }
5426 #endif
5427 skb_reset_redirect(skb);
5428 skip_classify:
5429 if (pfmemalloc && !skb_pfmemalloc_protocol(skb))
5430 goto drop;
5431
5432 if (skb_vlan_tag_present(skb)) {
5433 if (pt_prev) {
5434 ret = deliver_skb(skb, pt_prev, orig_dev);
5435 pt_prev = NULL;
5436 }
5437 if (vlan_do_receive(&skb))
5438 goto another_round;
5439 else if (unlikely(!skb))
5440 goto out;
5441 }
5442
5443 rx_handler = rcu_dereference(skb->dev->rx_handler);
5444 if (rx_handler) {
5445 if (pt_prev) {
5446 ret = deliver_skb(skb, pt_prev, orig_dev);
5447 pt_prev = NULL;
5448 }
5449 switch (rx_handler(&skb)) {
5450 case RX_HANDLER_CONSUMED:
5451 ret = NET_RX_SUCCESS;
5452 goto out;
5453 case RX_HANDLER_ANOTHER:
5454 goto another_round;
5455 case RX_HANDLER_EXACT:
5456 deliver_exact = true;
5457 break;
5458 case RX_HANDLER_PASS:
5459 break;
5460 default:
5461 BUG();
5462 }
5463 }
5464
5465 if (unlikely(skb_vlan_tag_present(skb)) && !netdev_uses_dsa(skb->dev)) {
5466 check_vlan_id:
5467 if (skb_vlan_tag_get_id(skb)) {
5468 /* Vlan id is non 0 and vlan_do_receive() above couldn't
5469 * find vlan device.
5470 */
5471 skb->pkt_type = PACKET_OTHERHOST;
5472 } else if (eth_type_vlan(skb->protocol)) {
5473 /* Outer header is 802.1P with vlan 0, inner header is
5474 * 802.1Q or 802.1AD and vlan_do_receive() above could
5475 * not find vlan dev for vlan id 0.
5476 */
5477 __vlan_hwaccel_clear_tag(skb);
5478 skb = skb_vlan_untag(skb);
5479 if (unlikely(!skb))
5480 goto out;
5481 if (vlan_do_receive(&skb))
5482 /* After stripping off 802.1P header with vlan 0
5483 * vlan dev is found for inner header.
5484 */
5485 goto another_round;
5486 else if (unlikely(!skb))
5487 goto out;
5488 else
5489 /* We have stripped outer 802.1P vlan 0 header.
5490 * But could not find vlan dev.
5491 * check again for vlan id to set OTHERHOST.
5492 */
5493 goto check_vlan_id;
5494 }
5495 /* Note: we might in the future use prio bits
5496 * and set skb->priority like in vlan_do_receive()
5497 * For the time being, just ignore Priority Code Point
5498 */
5499 __vlan_hwaccel_clear_tag(skb);
5500 }
5501
5502 type = skb->protocol;
5503
5504 /* deliver only exact match when indicated */
5505 if (likely(!deliver_exact)) {
5506 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5507 &ptype_base[ntohs(type) &
5508 PTYPE_HASH_MASK]);
5509 }
5510
5511 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5512 &orig_dev->ptype_specific);
5513
5514 if (unlikely(skb->dev != orig_dev)) {
5515 deliver_ptype_list_skb(skb, &pt_prev, orig_dev, type,
5516 &skb->dev->ptype_specific);
5517 }
5518
5519 if (pt_prev) {
5520 if (unlikely(skb_orphan_frags_rx(skb, GFP_ATOMIC)))
5521 goto drop;
5522 *ppt_prev = pt_prev;
5523 } else {
5524 drop:
5525 if (!deliver_exact)
5526 dev_core_stats_rx_dropped_inc(skb->dev);
5527 else
5528 dev_core_stats_rx_nohandler_inc(skb->dev);
5529 kfree_skb_reason(skb, SKB_DROP_REASON_UNHANDLED_PROTO);
5530 /* Jamal, now you will not able to escape explaining
5531 * me how you were going to use this. :-)
5532 */
5533 ret = NET_RX_DROP;
5534 }
5535
5536 out:
5537 /* The invariant here is that if *ppt_prev is not NULL
5538 * then skb should also be non-NULL.
5539 *
5540 * Apparently *ppt_prev assignment above holds this invariant due to
5541 * skb dereferencing near it.
5542 */
5543 *pskb = skb;
5544 return ret;
5545 }
5546
__netif_receive_skb_one_core(struct sk_buff * skb,bool pfmemalloc)5547 static int __netif_receive_skb_one_core(struct sk_buff *skb, bool pfmemalloc)
5548 {
5549 struct net_device *orig_dev = skb->dev;
5550 struct packet_type *pt_prev = NULL;
5551 int ret;
5552
5553 ret = __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5554 if (pt_prev)
5555 ret = INDIRECT_CALL_INET(pt_prev->func, ipv6_rcv, ip_rcv, skb,
5556 skb->dev, pt_prev, orig_dev);
5557 return ret;
5558 }
5559
5560 /**
5561 * netif_receive_skb_core - special purpose version of netif_receive_skb
5562 * @skb: buffer to process
5563 *
5564 * More direct receive version of netif_receive_skb(). It should
5565 * only be used by callers that have a need to skip RPS and Generic XDP.
5566 * Caller must also take care of handling if ``(page_is_)pfmemalloc``.
5567 *
5568 * This function may only be called from softirq context and interrupts
5569 * should be enabled.
5570 *
5571 * Return values (usually ignored):
5572 * NET_RX_SUCCESS: no congestion
5573 * NET_RX_DROP: packet was dropped
5574 */
netif_receive_skb_core(struct sk_buff * skb)5575 int netif_receive_skb_core(struct sk_buff *skb)
5576 {
5577 int ret;
5578
5579 rcu_read_lock();
5580 ret = __netif_receive_skb_one_core(skb, false);
5581 rcu_read_unlock();
5582
5583 return ret;
5584 }
5585 EXPORT_SYMBOL(netif_receive_skb_core);
5586
__netif_receive_skb_list_ptype(struct list_head * head,struct packet_type * pt_prev,struct net_device * orig_dev)5587 static inline void __netif_receive_skb_list_ptype(struct list_head *head,
5588 struct packet_type *pt_prev,
5589 struct net_device *orig_dev)
5590 {
5591 struct sk_buff *skb, *next;
5592
5593 if (!pt_prev)
5594 return;
5595 if (list_empty(head))
5596 return;
5597 if (pt_prev->list_func != NULL)
5598 INDIRECT_CALL_INET(pt_prev->list_func, ipv6_list_rcv,
5599 ip_list_rcv, head, pt_prev, orig_dev);
5600 else
5601 list_for_each_entry_safe(skb, next, head, list) {
5602 skb_list_del_init(skb);
5603 pt_prev->func(skb, skb->dev, pt_prev, orig_dev);
5604 }
5605 }
5606
__netif_receive_skb_list_core(struct list_head * head,bool pfmemalloc)5607 static void __netif_receive_skb_list_core(struct list_head *head, bool pfmemalloc)
5608 {
5609 /* Fast-path assumptions:
5610 * - There is no RX handler.
5611 * - Only one packet_type matches.
5612 * If either of these fails, we will end up doing some per-packet
5613 * processing in-line, then handling the 'last ptype' for the whole
5614 * sublist. This can't cause out-of-order delivery to any single ptype,
5615 * because the 'last ptype' must be constant across the sublist, and all
5616 * other ptypes are handled per-packet.
5617 */
5618 /* Current (common) ptype of sublist */
5619 struct packet_type *pt_curr = NULL;
5620 /* Current (common) orig_dev of sublist */
5621 struct net_device *od_curr = NULL;
5622 struct list_head sublist;
5623 struct sk_buff *skb, *next;
5624
5625 INIT_LIST_HEAD(&sublist);
5626 list_for_each_entry_safe(skb, next, head, list) {
5627 struct net_device *orig_dev = skb->dev;
5628 struct packet_type *pt_prev = NULL;
5629
5630 skb_list_del_init(skb);
5631 __netif_receive_skb_core(&skb, pfmemalloc, &pt_prev);
5632 if (!pt_prev)
5633 continue;
5634 if (pt_curr != pt_prev || od_curr != orig_dev) {
5635 /* dispatch old sublist */
5636 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5637 /* start new sublist */
5638 INIT_LIST_HEAD(&sublist);
5639 pt_curr = pt_prev;
5640 od_curr = orig_dev;
5641 }
5642 list_add_tail(&skb->list, &sublist);
5643 }
5644
5645 /* dispatch final sublist */
5646 __netif_receive_skb_list_ptype(&sublist, pt_curr, od_curr);
5647 }
5648
__netif_receive_skb(struct sk_buff * skb)5649 static int __netif_receive_skb(struct sk_buff *skb)
5650 {
5651 int ret;
5652
5653 if (sk_memalloc_socks() && skb_pfmemalloc(skb)) {
5654 unsigned int noreclaim_flag;
5655
5656 /*
5657 * PFMEMALLOC skbs are special, they should
5658 * - be delivered to SOCK_MEMALLOC sockets only
5659 * - stay away from userspace
5660 * - have bounded memory usage
5661 *
5662 * Use PF_MEMALLOC as this saves us from propagating the allocation
5663 * context down to all allocation sites.
5664 */
5665 noreclaim_flag = memalloc_noreclaim_save();
5666 ret = __netif_receive_skb_one_core(skb, true);
5667 memalloc_noreclaim_restore(noreclaim_flag);
5668 } else
5669 ret = __netif_receive_skb_one_core(skb, false);
5670
5671 return ret;
5672 }
5673
__netif_receive_skb_list(struct list_head * head)5674 static void __netif_receive_skb_list(struct list_head *head)
5675 {
5676 unsigned long noreclaim_flag = 0;
5677 struct sk_buff *skb, *next;
5678 bool pfmemalloc = false; /* Is current sublist PF_MEMALLOC? */
5679
5680 list_for_each_entry_safe(skb, next, head, list) {
5681 if ((sk_memalloc_socks() && skb_pfmemalloc(skb)) != pfmemalloc) {
5682 struct list_head sublist;
5683
5684 /* Handle the previous sublist */
5685 list_cut_before(&sublist, head, &skb->list);
5686 if (!list_empty(&sublist))
5687 __netif_receive_skb_list_core(&sublist, pfmemalloc);
5688 pfmemalloc = !pfmemalloc;
5689 /* See comments in __netif_receive_skb */
5690 if (pfmemalloc)
5691 noreclaim_flag = memalloc_noreclaim_save();
5692 else
5693 memalloc_noreclaim_restore(noreclaim_flag);
5694 }
5695 }
5696 /* Handle the remaining sublist */
5697 if (!list_empty(head))
5698 __netif_receive_skb_list_core(head, pfmemalloc);
5699 /* Restore pflags */
5700 if (pfmemalloc)
5701 memalloc_noreclaim_restore(noreclaim_flag);
5702 }
5703
generic_xdp_install(struct net_device * dev,struct netdev_bpf * xdp)5704 static int generic_xdp_install(struct net_device *dev, struct netdev_bpf *xdp)
5705 {
5706 struct bpf_prog *old = rtnl_dereference(dev->xdp_prog);
5707 struct bpf_prog *new = xdp->prog;
5708 int ret = 0;
5709
5710 switch (xdp->command) {
5711 case XDP_SETUP_PROG:
5712 rcu_assign_pointer(dev->xdp_prog, new);
5713 if (old)
5714 bpf_prog_put(old);
5715
5716 if (old && !new) {
5717 static_branch_dec(&generic_xdp_needed_key);
5718 } else if (new && !old) {
5719 static_branch_inc(&generic_xdp_needed_key);
5720 dev_disable_lro(dev);
5721 dev_disable_gro_hw(dev);
5722 }
5723 break;
5724
5725 default:
5726 ret = -EINVAL;
5727 break;
5728 }
5729
5730 return ret;
5731 }
5732
netif_receive_skb_internal(struct sk_buff * skb)5733 static int netif_receive_skb_internal(struct sk_buff *skb)
5734 {
5735 int ret;
5736
5737 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5738
5739 if (skb_defer_rx_timestamp(skb))
5740 return NET_RX_SUCCESS;
5741
5742 rcu_read_lock();
5743 #ifdef CONFIG_RPS
5744 if (static_branch_unlikely(&rps_needed)) {
5745 struct rps_dev_flow voidflow, *rflow = &voidflow;
5746 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5747
5748 if (cpu >= 0) {
5749 ret = enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5750 rcu_read_unlock();
5751 return ret;
5752 }
5753 }
5754 #endif
5755 ret = __netif_receive_skb(skb);
5756 rcu_read_unlock();
5757 return ret;
5758 }
5759
netif_receive_skb_list_internal(struct list_head * head)5760 void netif_receive_skb_list_internal(struct list_head *head)
5761 {
5762 struct sk_buff *skb, *next;
5763 struct list_head sublist;
5764
5765 INIT_LIST_HEAD(&sublist);
5766 list_for_each_entry_safe(skb, next, head, list) {
5767 net_timestamp_check(READ_ONCE(netdev_tstamp_prequeue), skb);
5768 skb_list_del_init(skb);
5769 if (!skb_defer_rx_timestamp(skb))
5770 list_add_tail(&skb->list, &sublist);
5771 }
5772 list_splice_init(&sublist, head);
5773
5774 rcu_read_lock();
5775 #ifdef CONFIG_RPS
5776 if (static_branch_unlikely(&rps_needed)) {
5777 list_for_each_entry_safe(skb, next, head, list) {
5778 struct rps_dev_flow voidflow, *rflow = &voidflow;
5779 int cpu = get_rps_cpu(skb->dev, skb, &rflow);
5780
5781 if (cpu >= 0) {
5782 /* Will be handled, remove from list */
5783 skb_list_del_init(skb);
5784 enqueue_to_backlog(skb, cpu, &rflow->last_qtail);
5785 }
5786 }
5787 }
5788 #endif
5789 __netif_receive_skb_list(head);
5790 rcu_read_unlock();
5791 }
5792
5793 /**
5794 * netif_receive_skb - process receive buffer from network
5795 * @skb: buffer to process
5796 *
5797 * netif_receive_skb() is the main receive data processing function.
5798 * It always succeeds. The buffer may be dropped during processing
5799 * for congestion control or by the protocol layers.
5800 *
5801 * This function may only be called from softirq context and interrupts
5802 * should be enabled.
5803 *
5804 * Return values (usually ignored):
5805 * NET_RX_SUCCESS: no congestion
5806 * NET_RX_DROP: packet was dropped
5807 */
netif_receive_skb(struct sk_buff * skb)5808 int netif_receive_skb(struct sk_buff *skb)
5809 {
5810 int ret;
5811
5812 trace_netif_receive_skb_entry(skb);
5813
5814 ret = netif_receive_skb_internal(skb);
5815 trace_netif_receive_skb_exit(ret);
5816
5817 return ret;
5818 }
5819 EXPORT_SYMBOL(netif_receive_skb);
5820
5821 /**
5822 * netif_receive_skb_list - process many receive buffers from network
5823 * @head: list of skbs to process.
5824 *
5825 * Since return value of netif_receive_skb() is normally ignored, and
5826 * wouldn't be meaningful for a list, this function returns void.
5827 *
5828 * This function may only be called from softirq context and interrupts
5829 * should be enabled.
5830 */
netif_receive_skb_list(struct list_head * head)5831 void netif_receive_skb_list(struct list_head *head)
5832 {
5833 struct sk_buff *skb;
5834
5835 if (list_empty(head))
5836 return;
5837 if (trace_netif_receive_skb_list_entry_enabled()) {
5838 list_for_each_entry(skb, head, list)
5839 trace_netif_receive_skb_list_entry(skb);
5840 }
5841 netif_receive_skb_list_internal(head);
5842 trace_netif_receive_skb_list_exit(0);
5843 }
5844 EXPORT_SYMBOL(netif_receive_skb_list);
5845
5846 static DEFINE_PER_CPU(struct work_struct, flush_works);
5847
5848 /* Network device is going away, flush any packets still pending */
flush_backlog(struct work_struct * work)5849 static void flush_backlog(struct work_struct *work)
5850 {
5851 struct sk_buff *skb, *tmp;
5852 struct softnet_data *sd;
5853
5854 local_bh_disable();
5855 sd = this_cpu_ptr(&softnet_data);
5856
5857 rps_lock_irq_disable(sd);
5858 skb_queue_walk_safe(&sd->input_pkt_queue, skb, tmp) {
5859 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5860 __skb_unlink(skb, &sd->input_pkt_queue);
5861 dev_kfree_skb_irq(skb);
5862 input_queue_head_incr(sd);
5863 }
5864 }
5865 rps_unlock_irq_enable(sd);
5866
5867 skb_queue_walk_safe(&sd->process_queue, skb, tmp) {
5868 if (skb->dev->reg_state == NETREG_UNREGISTERING) {
5869 __skb_unlink(skb, &sd->process_queue);
5870 kfree_skb(skb);
5871 input_queue_head_incr(sd);
5872 }
5873 }
5874 local_bh_enable();
5875 }
5876
flush_required(int cpu)5877 static bool flush_required(int cpu)
5878 {
5879 #if IS_ENABLED(CONFIG_RPS)
5880 struct softnet_data *sd = &per_cpu(softnet_data, cpu);
5881 bool do_flush;
5882
5883 rps_lock_irq_disable(sd);
5884
5885 /* as insertion into process_queue happens with the rps lock held,
5886 * process_queue access may race only with dequeue
5887 */
5888 do_flush = !skb_queue_empty(&sd->input_pkt_queue) ||
5889 !skb_queue_empty_lockless(&sd->process_queue);
5890 rps_unlock_irq_enable(sd);
5891
5892 return do_flush;
5893 #endif
5894 /* without RPS we can't safely check input_pkt_queue: during a
5895 * concurrent remote skb_queue_splice() we can detect as empty both
5896 * input_pkt_queue and process_queue even if the latter could end-up
5897 * containing a lot of packets.
5898 */
5899 return true;
5900 }
5901
flush_all_backlogs(void)5902 static void flush_all_backlogs(void)
5903 {
5904 static cpumask_t flush_cpus;
5905 unsigned int cpu;
5906
5907 /* since we are under rtnl lock protection we can use static data
5908 * for the cpumask and avoid allocating on stack the possibly
5909 * large mask
5910 */
5911 ASSERT_RTNL();
5912
5913 cpus_read_lock();
5914
5915 cpumask_clear(&flush_cpus);
5916 for_each_online_cpu(cpu) {
5917 if (flush_required(cpu)) {
5918 queue_work_on(cpu, system_highpri_wq,
5919 per_cpu_ptr(&flush_works, cpu));
5920 cpumask_set_cpu(cpu, &flush_cpus);
5921 }
5922 }
5923
5924 /* we can have in flight packet[s] on the cpus we are not flushing,
5925 * synchronize_net() in unregister_netdevice_many() will take care of
5926 * them
5927 */
5928 for_each_cpu(cpu, &flush_cpus)
5929 flush_work(per_cpu_ptr(&flush_works, cpu));
5930
5931 cpus_read_unlock();
5932 }
5933
net_rps_send_ipi(struct softnet_data * remsd)5934 static void net_rps_send_ipi(struct softnet_data *remsd)
5935 {
5936 #ifdef CONFIG_RPS
5937 while (remsd) {
5938 struct softnet_data *next = remsd->rps_ipi_next;
5939
5940 if (cpu_online(remsd->cpu))
5941 smp_call_function_single_async(remsd->cpu, &remsd->csd);
5942 remsd = next;
5943 }
5944 #endif
5945 }
5946
5947 /*
5948 * net_rps_action_and_irq_enable sends any pending IPI's for rps.
5949 * Note: called with local irq disabled, but exits with local irq enabled.
5950 */
net_rps_action_and_irq_enable(struct softnet_data * sd)5951 static void net_rps_action_and_irq_enable(struct softnet_data *sd)
5952 {
5953 #ifdef CONFIG_RPS
5954 struct softnet_data *remsd = sd->rps_ipi_list;
5955
5956 if (remsd) {
5957 sd->rps_ipi_list = NULL;
5958
5959 local_irq_enable();
5960
5961 /* Send pending IPI's to kick RPS processing on remote cpus. */
5962 net_rps_send_ipi(remsd);
5963 } else
5964 #endif
5965 local_irq_enable();
5966 }
5967
sd_has_rps_ipi_waiting(struct softnet_data * sd)5968 static bool sd_has_rps_ipi_waiting(struct softnet_data *sd)
5969 {
5970 #ifdef CONFIG_RPS
5971 return sd->rps_ipi_list != NULL;
5972 #else
5973 return false;
5974 #endif
5975 }
5976
process_backlog(struct napi_struct * napi,int quota)5977 static int process_backlog(struct napi_struct *napi, int quota)
5978 {
5979 struct softnet_data *sd = container_of(napi, struct softnet_data, backlog);
5980 bool again = true;
5981 int work = 0;
5982
5983 /* Check if we have pending ipi, its better to send them now,
5984 * not waiting net_rx_action() end.
5985 */
5986 if (sd_has_rps_ipi_waiting(sd)) {
5987 local_irq_disable();
5988 net_rps_action_and_irq_enable(sd);
5989 }
5990
5991 napi->weight = READ_ONCE(dev_rx_weight);
5992 while (again) {
5993 struct sk_buff *skb;
5994
5995 while ((skb = __skb_dequeue(&sd->process_queue))) {
5996 rcu_read_lock();
5997 __netif_receive_skb(skb);
5998 rcu_read_unlock();
5999 input_queue_head_incr(sd);
6000 if (++work >= quota)
6001 return work;
6002
6003 }
6004
6005 rps_lock_irq_disable(sd);
6006 if (skb_queue_empty(&sd->input_pkt_queue)) {
6007 /*
6008 * Inline a custom version of __napi_complete().
6009 * only current cpu owns and manipulates this napi,
6010 * and NAPI_STATE_SCHED is the only possible flag set
6011 * on backlog.
6012 * We can use a plain write instead of clear_bit(),
6013 * and we dont need an smp_mb() memory barrier.
6014 */
6015 napi->state = 0;
6016 again = false;
6017 } else {
6018 skb_queue_splice_tail_init(&sd->input_pkt_queue,
6019 &sd->process_queue);
6020 }
6021 rps_unlock_irq_enable(sd);
6022 }
6023
6024 return work;
6025 }
6026
6027 /**
6028 * __napi_schedule - schedule for receive
6029 * @n: entry to schedule
6030 *
6031 * The entry's receive function will be scheduled to run.
6032 * Consider using __napi_schedule_irqoff() if hard irqs are masked.
6033 */
__napi_schedule(struct napi_struct * n)6034 void __napi_schedule(struct napi_struct *n)
6035 {
6036 unsigned long flags;
6037
6038 local_irq_save(flags);
6039 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6040 local_irq_restore(flags);
6041 }
6042 EXPORT_SYMBOL(__napi_schedule);
6043
6044 /**
6045 * napi_schedule_prep - check if napi can be scheduled
6046 * @n: napi context
6047 *
6048 * Test if NAPI routine is already running, and if not mark
6049 * it as running. This is used as a condition variable to
6050 * insure only one NAPI poll instance runs. We also make
6051 * sure there is no pending NAPI disable.
6052 */
napi_schedule_prep(struct napi_struct * n)6053 bool napi_schedule_prep(struct napi_struct *n)
6054 {
6055 unsigned long new, val = READ_ONCE(n->state);
6056
6057 do {
6058 if (unlikely(val & NAPIF_STATE_DISABLE))
6059 return false;
6060 new = val | NAPIF_STATE_SCHED;
6061
6062 /* Sets STATE_MISSED bit if STATE_SCHED was already set
6063 * This was suggested by Alexander Duyck, as compiler
6064 * emits better code than :
6065 * if (val & NAPIF_STATE_SCHED)
6066 * new |= NAPIF_STATE_MISSED;
6067 */
6068 new |= (val & NAPIF_STATE_SCHED) / NAPIF_STATE_SCHED *
6069 NAPIF_STATE_MISSED;
6070 } while (!try_cmpxchg(&n->state, &val, new));
6071
6072 return !(val & NAPIF_STATE_SCHED);
6073 }
6074 EXPORT_SYMBOL(napi_schedule_prep);
6075
6076 /**
6077 * __napi_schedule_irqoff - schedule for receive
6078 * @n: entry to schedule
6079 *
6080 * Variant of __napi_schedule() assuming hard irqs are masked.
6081 *
6082 * On PREEMPT_RT enabled kernels this maps to __napi_schedule()
6083 * because the interrupt disabled assumption might not be true
6084 * due to force-threaded interrupts and spinlock substitution.
6085 */
__napi_schedule_irqoff(struct napi_struct * n)6086 void __napi_schedule_irqoff(struct napi_struct *n)
6087 {
6088 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6089 ____napi_schedule(this_cpu_ptr(&softnet_data), n);
6090 else
6091 __napi_schedule(n);
6092 }
6093 EXPORT_SYMBOL(__napi_schedule_irqoff);
6094
napi_complete_done(struct napi_struct * n,int work_done)6095 bool napi_complete_done(struct napi_struct *n, int work_done)
6096 {
6097 unsigned long flags, val, new, timeout = 0;
6098 bool ret = true;
6099
6100 /*
6101 * 1) Don't let napi dequeue from the cpu poll list
6102 * just in case its running on a different cpu.
6103 * 2) If we are busy polling, do nothing here, we have
6104 * the guarantee we will be called later.
6105 */
6106 if (unlikely(n->state & (NAPIF_STATE_NPSVC |
6107 NAPIF_STATE_IN_BUSY_POLL)))
6108 return false;
6109
6110 if (work_done) {
6111 if (n->gro_bitmask)
6112 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6113 n->defer_hard_irqs_count = READ_ONCE(n->dev->napi_defer_hard_irqs);
6114 }
6115 if (n->defer_hard_irqs_count > 0) {
6116 n->defer_hard_irqs_count--;
6117 timeout = READ_ONCE(n->dev->gro_flush_timeout);
6118 if (timeout)
6119 ret = false;
6120 }
6121 if (n->gro_bitmask) {
6122 /* When the NAPI instance uses a timeout and keeps postponing
6123 * it, we need to bound somehow the time packets are kept in
6124 * the GRO layer
6125 */
6126 napi_gro_flush(n, !!timeout);
6127 }
6128
6129 gro_normal_list(n);
6130
6131 if (unlikely(!list_empty(&n->poll_list))) {
6132 /* If n->poll_list is not empty, we need to mask irqs */
6133 local_irq_save(flags);
6134 list_del_init(&n->poll_list);
6135 local_irq_restore(flags);
6136 }
6137 WRITE_ONCE(n->list_owner, -1);
6138
6139 val = READ_ONCE(n->state);
6140 do {
6141 WARN_ON_ONCE(!(val & NAPIF_STATE_SCHED));
6142
6143 new = val & ~(NAPIF_STATE_MISSED | NAPIF_STATE_SCHED |
6144 NAPIF_STATE_SCHED_THREADED |
6145 NAPIF_STATE_PREFER_BUSY_POLL);
6146
6147 /* If STATE_MISSED was set, leave STATE_SCHED set,
6148 * because we will call napi->poll() one more time.
6149 * This C code was suggested by Alexander Duyck to help gcc.
6150 */
6151 new |= (val & NAPIF_STATE_MISSED) / NAPIF_STATE_MISSED *
6152 NAPIF_STATE_SCHED;
6153 } while (!try_cmpxchg(&n->state, &val, new));
6154
6155 if (unlikely(val & NAPIF_STATE_MISSED)) {
6156 __napi_schedule(n);
6157 return false;
6158 }
6159
6160 if (timeout)
6161 hrtimer_start(&n->timer, ns_to_ktime(timeout),
6162 HRTIMER_MODE_REL_PINNED);
6163 return ret;
6164 }
6165 EXPORT_SYMBOL(napi_complete_done);
6166
6167 /* must be called under rcu_read_lock(), as we dont take a reference */
napi_by_id(unsigned int napi_id)6168 static struct napi_struct *napi_by_id(unsigned int napi_id)
6169 {
6170 unsigned int hash = napi_id % HASH_SIZE(napi_hash);
6171 struct napi_struct *napi;
6172
6173 hlist_for_each_entry_rcu(napi, &napi_hash[hash], napi_hash_node)
6174 if (napi->napi_id == napi_id)
6175 return napi;
6176
6177 return NULL;
6178 }
6179
6180 #if defined(CONFIG_NET_RX_BUSY_POLL)
6181
__busy_poll_stop(struct napi_struct * napi,bool skip_schedule)6182 static void __busy_poll_stop(struct napi_struct *napi, bool skip_schedule)
6183 {
6184 if (!skip_schedule) {
6185 gro_normal_list(napi);
6186 __napi_schedule(napi);
6187 return;
6188 }
6189
6190 if (napi->gro_bitmask) {
6191 /* flush too old packets
6192 * If HZ < 1000, flush all packets.
6193 */
6194 napi_gro_flush(napi, HZ >= 1000);
6195 }
6196
6197 gro_normal_list(napi);
6198 clear_bit(NAPI_STATE_SCHED, &napi->state);
6199 }
6200
busy_poll_stop(struct napi_struct * napi,void * have_poll_lock,bool prefer_busy_poll,u16 budget)6201 static void busy_poll_stop(struct napi_struct *napi, void *have_poll_lock, bool prefer_busy_poll,
6202 u16 budget)
6203 {
6204 bool skip_schedule = false;
6205 unsigned long timeout;
6206 int rc;
6207
6208 /* Busy polling means there is a high chance device driver hard irq
6209 * could not grab NAPI_STATE_SCHED, and that NAPI_STATE_MISSED was
6210 * set in napi_schedule_prep().
6211 * Since we are about to call napi->poll() once more, we can safely
6212 * clear NAPI_STATE_MISSED.
6213 *
6214 * Note: x86 could use a single "lock and ..." instruction
6215 * to perform these two clear_bit()
6216 */
6217 clear_bit(NAPI_STATE_MISSED, &napi->state);
6218 clear_bit(NAPI_STATE_IN_BUSY_POLL, &napi->state);
6219
6220 local_bh_disable();
6221
6222 if (prefer_busy_poll) {
6223 napi->defer_hard_irqs_count = READ_ONCE(napi->dev->napi_defer_hard_irqs);
6224 timeout = READ_ONCE(napi->dev->gro_flush_timeout);
6225 if (napi->defer_hard_irqs_count && timeout) {
6226 hrtimer_start(&napi->timer, ns_to_ktime(timeout), HRTIMER_MODE_REL_PINNED);
6227 skip_schedule = true;
6228 }
6229 }
6230
6231 /* All we really want here is to re-enable device interrupts.
6232 * Ideally, a new ndo_busy_poll_stop() could avoid another round.
6233 */
6234 rc = napi->poll(napi, budget);
6235 /* We can't gro_normal_list() here, because napi->poll() might have
6236 * rearmed the napi (napi_complete_done()) in which case it could
6237 * already be running on another CPU.
6238 */
6239 trace_napi_poll(napi, rc, budget);
6240 netpoll_poll_unlock(have_poll_lock);
6241 if (rc == budget)
6242 __busy_poll_stop(napi, skip_schedule);
6243 local_bh_enable();
6244 }
6245
napi_busy_loop(unsigned int napi_id,bool (* loop_end)(void *,unsigned long),void * loop_end_arg,bool prefer_busy_poll,u16 budget)6246 void napi_busy_loop(unsigned int napi_id,
6247 bool (*loop_end)(void *, unsigned long),
6248 void *loop_end_arg, bool prefer_busy_poll, u16 budget)
6249 {
6250 unsigned long start_time = loop_end ? busy_loop_current_time() : 0;
6251 int (*napi_poll)(struct napi_struct *napi, int budget);
6252 void *have_poll_lock = NULL;
6253 struct napi_struct *napi;
6254
6255 restart:
6256 napi_poll = NULL;
6257
6258 rcu_read_lock();
6259
6260 napi = napi_by_id(napi_id);
6261 if (!napi)
6262 goto out;
6263
6264 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6265 preempt_disable();
6266 for (;;) {
6267 int work = 0;
6268
6269 local_bh_disable();
6270 if (!napi_poll) {
6271 unsigned long val = READ_ONCE(napi->state);
6272
6273 /* If multiple threads are competing for this napi,
6274 * we avoid dirtying napi->state as much as we can.
6275 */
6276 if (val & (NAPIF_STATE_DISABLE | NAPIF_STATE_SCHED |
6277 NAPIF_STATE_IN_BUSY_POLL)) {
6278 if (prefer_busy_poll)
6279 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6280 goto count;
6281 }
6282 if (cmpxchg(&napi->state, val,
6283 val | NAPIF_STATE_IN_BUSY_POLL |
6284 NAPIF_STATE_SCHED) != val) {
6285 if (prefer_busy_poll)
6286 set_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6287 goto count;
6288 }
6289 have_poll_lock = netpoll_poll_lock(napi);
6290 napi_poll = napi->poll;
6291 }
6292 work = napi_poll(napi, budget);
6293 trace_napi_poll(napi, work, budget);
6294 gro_normal_list(napi);
6295 count:
6296 if (work > 0)
6297 __NET_ADD_STATS(dev_net(napi->dev),
6298 LINUX_MIB_BUSYPOLLRXPACKETS, work);
6299 local_bh_enable();
6300
6301 if (!loop_end || loop_end(loop_end_arg, start_time))
6302 break;
6303
6304 if (unlikely(need_resched())) {
6305 if (napi_poll)
6306 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6307 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6308 preempt_enable();
6309 rcu_read_unlock();
6310 cond_resched();
6311 if (loop_end(loop_end_arg, start_time))
6312 return;
6313 goto restart;
6314 }
6315 cpu_relax();
6316 }
6317 if (napi_poll)
6318 busy_poll_stop(napi, have_poll_lock, prefer_busy_poll, budget);
6319 if (!IS_ENABLED(CONFIG_PREEMPT_RT))
6320 preempt_enable();
6321 out:
6322 rcu_read_unlock();
6323 }
6324 EXPORT_SYMBOL(napi_busy_loop);
6325
6326 #endif /* CONFIG_NET_RX_BUSY_POLL */
6327
napi_hash_add(struct napi_struct * napi)6328 static void napi_hash_add(struct napi_struct *napi)
6329 {
6330 if (test_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state))
6331 return;
6332
6333 spin_lock(&napi_hash_lock);
6334
6335 /* 0..NR_CPUS range is reserved for sender_cpu use */
6336 do {
6337 if (unlikely(++napi_gen_id < MIN_NAPI_ID))
6338 napi_gen_id = MIN_NAPI_ID;
6339 } while (napi_by_id(napi_gen_id));
6340 napi->napi_id = napi_gen_id;
6341
6342 hlist_add_head_rcu(&napi->napi_hash_node,
6343 &napi_hash[napi->napi_id % HASH_SIZE(napi_hash)]);
6344
6345 spin_unlock(&napi_hash_lock);
6346 }
6347
6348 /* Warning : caller is responsible to make sure rcu grace period
6349 * is respected before freeing memory containing @napi
6350 */
napi_hash_del(struct napi_struct * napi)6351 static void napi_hash_del(struct napi_struct *napi)
6352 {
6353 spin_lock(&napi_hash_lock);
6354
6355 hlist_del_init_rcu(&napi->napi_hash_node);
6356
6357 spin_unlock(&napi_hash_lock);
6358 }
6359
napi_watchdog(struct hrtimer * timer)6360 static enum hrtimer_restart napi_watchdog(struct hrtimer *timer)
6361 {
6362 struct napi_struct *napi;
6363
6364 napi = container_of(timer, struct napi_struct, timer);
6365
6366 /* Note : we use a relaxed variant of napi_schedule_prep() not setting
6367 * NAPI_STATE_MISSED, since we do not react to a device IRQ.
6368 */
6369 if (!napi_disable_pending(napi) &&
6370 !test_and_set_bit(NAPI_STATE_SCHED, &napi->state)) {
6371 clear_bit(NAPI_STATE_PREFER_BUSY_POLL, &napi->state);
6372 __napi_schedule_irqoff(napi);
6373 }
6374
6375 return HRTIMER_NORESTART;
6376 }
6377
init_gro_hash(struct napi_struct * napi)6378 static void init_gro_hash(struct napi_struct *napi)
6379 {
6380 int i;
6381
6382 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6383 INIT_LIST_HEAD(&napi->gro_hash[i].list);
6384 napi->gro_hash[i].count = 0;
6385 }
6386 napi->gro_bitmask = 0;
6387 }
6388
dev_set_threaded(struct net_device * dev,bool threaded)6389 int dev_set_threaded(struct net_device *dev, bool threaded)
6390 {
6391 struct napi_struct *napi;
6392 int err = 0;
6393
6394 if (dev->threaded == threaded)
6395 return 0;
6396
6397 if (threaded) {
6398 list_for_each_entry(napi, &dev->napi_list, dev_list) {
6399 if (!napi->thread) {
6400 err = napi_kthread_create(napi);
6401 if (err) {
6402 threaded = false;
6403 break;
6404 }
6405 }
6406 }
6407 }
6408
6409 dev->threaded = threaded;
6410
6411 /* Make sure kthread is created before THREADED bit
6412 * is set.
6413 */
6414 smp_mb__before_atomic();
6415
6416 /* Setting/unsetting threaded mode on a napi might not immediately
6417 * take effect, if the current napi instance is actively being
6418 * polled. In this case, the switch between threaded mode and
6419 * softirq mode will happen in the next round of napi_schedule().
6420 * This should not cause hiccups/stalls to the live traffic.
6421 */
6422 list_for_each_entry(napi, &dev->napi_list, dev_list)
6423 assign_bit(NAPI_STATE_THREADED, &napi->state, threaded);
6424
6425 return err;
6426 }
6427 EXPORT_SYMBOL(dev_set_threaded);
6428
netif_napi_add_weight(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)6429 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
6430 int (*poll)(struct napi_struct *, int), int weight)
6431 {
6432 if (WARN_ON(test_and_set_bit(NAPI_STATE_LISTED, &napi->state)))
6433 return;
6434
6435 INIT_LIST_HEAD(&napi->poll_list);
6436 INIT_HLIST_NODE(&napi->napi_hash_node);
6437 hrtimer_init(&napi->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_PINNED);
6438 napi->timer.function = napi_watchdog;
6439 init_gro_hash(napi);
6440 napi->skb = NULL;
6441 INIT_LIST_HEAD(&napi->rx_list);
6442 napi->rx_count = 0;
6443 napi->poll = poll;
6444 if (weight > NAPI_POLL_WEIGHT)
6445 netdev_err_once(dev, "%s() called with weight %d\n", __func__,
6446 weight);
6447 napi->weight = weight;
6448 napi->dev = dev;
6449 #ifdef CONFIG_NETPOLL
6450 napi->poll_owner = -1;
6451 #endif
6452 napi->list_owner = -1;
6453 set_bit(NAPI_STATE_SCHED, &napi->state);
6454 set_bit(NAPI_STATE_NPSVC, &napi->state);
6455 list_add_rcu(&napi->dev_list, &dev->napi_list);
6456 napi_hash_add(napi);
6457 napi_get_frags_check(napi);
6458 /* Create kthread for this napi if dev->threaded is set.
6459 * Clear dev->threaded if kthread creation failed so that
6460 * threaded mode will not be enabled in napi_enable().
6461 */
6462 if (dev->threaded && napi_kthread_create(napi))
6463 dev->threaded = 0;
6464 }
6465 EXPORT_SYMBOL(netif_napi_add_weight);
6466
napi_disable(struct napi_struct * n)6467 void napi_disable(struct napi_struct *n)
6468 {
6469 unsigned long val, new;
6470
6471 might_sleep();
6472 set_bit(NAPI_STATE_DISABLE, &n->state);
6473
6474 val = READ_ONCE(n->state);
6475 do {
6476 while (val & (NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC)) {
6477 usleep_range(20, 200);
6478 val = READ_ONCE(n->state);
6479 }
6480
6481 new = val | NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC;
6482 new &= ~(NAPIF_STATE_THREADED | NAPIF_STATE_PREFER_BUSY_POLL);
6483 } while (!try_cmpxchg(&n->state, &val, new));
6484
6485 hrtimer_cancel(&n->timer);
6486
6487 clear_bit(NAPI_STATE_DISABLE, &n->state);
6488 }
6489 EXPORT_SYMBOL(napi_disable);
6490
6491 /**
6492 * napi_enable - enable NAPI scheduling
6493 * @n: NAPI context
6494 *
6495 * Resume NAPI from being scheduled on this context.
6496 * Must be paired with napi_disable.
6497 */
napi_enable(struct napi_struct * n)6498 void napi_enable(struct napi_struct *n)
6499 {
6500 unsigned long new, val = READ_ONCE(n->state);
6501
6502 do {
6503 BUG_ON(!test_bit(NAPI_STATE_SCHED, &val));
6504
6505 new = val & ~(NAPIF_STATE_SCHED | NAPIF_STATE_NPSVC);
6506 if (n->dev->threaded && n->thread)
6507 new |= NAPIF_STATE_THREADED;
6508 } while (!try_cmpxchg(&n->state, &val, new));
6509 }
6510 EXPORT_SYMBOL(napi_enable);
6511
flush_gro_hash(struct napi_struct * napi)6512 static void flush_gro_hash(struct napi_struct *napi)
6513 {
6514 int i;
6515
6516 for (i = 0; i < GRO_HASH_BUCKETS; i++) {
6517 struct sk_buff *skb, *n;
6518
6519 list_for_each_entry_safe(skb, n, &napi->gro_hash[i].list, list)
6520 kfree_skb(skb);
6521 napi->gro_hash[i].count = 0;
6522 }
6523 }
6524
6525 /* Must be called in process context */
__netif_napi_del(struct napi_struct * napi)6526 void __netif_napi_del(struct napi_struct *napi)
6527 {
6528 if (!test_and_clear_bit(NAPI_STATE_LISTED, &napi->state))
6529 return;
6530
6531 napi_hash_del(napi);
6532 list_del_rcu(&napi->dev_list);
6533 napi_free_frags(napi);
6534
6535 flush_gro_hash(napi);
6536 napi->gro_bitmask = 0;
6537
6538 if (napi->thread) {
6539 kthread_stop(napi->thread);
6540 napi->thread = NULL;
6541 }
6542 }
6543 EXPORT_SYMBOL(__netif_napi_del);
6544
__napi_poll(struct napi_struct * n,bool * repoll)6545 static int __napi_poll(struct napi_struct *n, bool *repoll)
6546 {
6547 int work, weight;
6548
6549 weight = n->weight;
6550
6551 /* This NAPI_STATE_SCHED test is for avoiding a race
6552 * with netpoll's poll_napi(). Only the entity which
6553 * obtains the lock and sees NAPI_STATE_SCHED set will
6554 * actually make the ->poll() call. Therefore we avoid
6555 * accidentally calling ->poll() when NAPI is not scheduled.
6556 */
6557 work = 0;
6558 if (test_bit(NAPI_STATE_SCHED, &n->state)) {
6559 work = n->poll(n, weight);
6560 trace_napi_poll(n, work, weight);
6561 }
6562
6563 if (unlikely(work > weight))
6564 netdev_err_once(n->dev, "NAPI poll function %pS returned %d, exceeding its budget of %d.\n",
6565 n->poll, work, weight);
6566
6567 if (likely(work < weight))
6568 return work;
6569
6570 /* Drivers must not modify the NAPI state if they
6571 * consume the entire weight. In such cases this code
6572 * still "owns" the NAPI instance and therefore can
6573 * move the instance around on the list at-will.
6574 */
6575 if (unlikely(napi_disable_pending(n))) {
6576 napi_complete(n);
6577 return work;
6578 }
6579
6580 /* The NAPI context has more processing work, but busy-polling
6581 * is preferred. Exit early.
6582 */
6583 if (napi_prefer_busy_poll(n)) {
6584 if (napi_complete_done(n, work)) {
6585 /* If timeout is not set, we need to make sure
6586 * that the NAPI is re-scheduled.
6587 */
6588 napi_schedule(n);
6589 }
6590 return work;
6591 }
6592
6593 if (n->gro_bitmask) {
6594 /* flush too old packets
6595 * If HZ < 1000, flush all packets.
6596 */
6597 napi_gro_flush(n, HZ >= 1000);
6598 }
6599
6600 gro_normal_list(n);
6601
6602 /* Some drivers may have called napi_schedule
6603 * prior to exhausting their budget.
6604 */
6605 if (unlikely(!list_empty(&n->poll_list))) {
6606 pr_warn_once("%s: Budget exhausted after napi rescheduled\n",
6607 n->dev ? n->dev->name : "backlog");
6608 return work;
6609 }
6610
6611 *repoll = true;
6612
6613 return work;
6614 }
6615
napi_poll(struct napi_struct * n,struct list_head * repoll)6616 static int napi_poll(struct napi_struct *n, struct list_head *repoll)
6617 {
6618 bool do_repoll = false;
6619 void *have;
6620 int work;
6621
6622 list_del_init(&n->poll_list);
6623
6624 have = netpoll_poll_lock(n);
6625
6626 work = __napi_poll(n, &do_repoll);
6627
6628 if (do_repoll)
6629 list_add_tail(&n->poll_list, repoll);
6630
6631 netpoll_poll_unlock(have);
6632
6633 return work;
6634 }
6635
napi_thread_wait(struct napi_struct * napi)6636 static int napi_thread_wait(struct napi_struct *napi)
6637 {
6638 bool woken = false;
6639
6640 set_current_state(TASK_INTERRUPTIBLE);
6641
6642 while (!kthread_should_stop()) {
6643 /* Testing SCHED_THREADED bit here to make sure the current
6644 * kthread owns this napi and could poll on this napi.
6645 * Testing SCHED bit is not enough because SCHED bit might be
6646 * set by some other busy poll thread or by napi_disable().
6647 */
6648 if (test_bit(NAPI_STATE_SCHED_THREADED, &napi->state) || woken) {
6649 WARN_ON(!list_empty(&napi->poll_list));
6650 __set_current_state(TASK_RUNNING);
6651 return 0;
6652 }
6653
6654 schedule();
6655 /* woken being true indicates this thread owns this napi. */
6656 woken = true;
6657 set_current_state(TASK_INTERRUPTIBLE);
6658 }
6659 __set_current_state(TASK_RUNNING);
6660
6661 return -1;
6662 }
6663
skb_defer_free_flush(struct softnet_data * sd)6664 static void skb_defer_free_flush(struct softnet_data *sd)
6665 {
6666 struct sk_buff *skb, *next;
6667
6668 /* Paired with WRITE_ONCE() in skb_attempt_defer_free() */
6669 if (!READ_ONCE(sd->defer_list))
6670 return;
6671
6672 spin_lock(&sd->defer_lock);
6673 skb = sd->defer_list;
6674 sd->defer_list = NULL;
6675 sd->defer_count = 0;
6676 spin_unlock(&sd->defer_lock);
6677
6678 while (skb != NULL) {
6679 next = skb->next;
6680 napi_consume_skb(skb, 1);
6681 skb = next;
6682 }
6683 }
6684
napi_threaded_poll(void * data)6685 static int napi_threaded_poll(void *data)
6686 {
6687 struct napi_struct *napi = data;
6688 struct softnet_data *sd;
6689 void *have;
6690
6691 while (!napi_thread_wait(napi)) {
6692 for (;;) {
6693 bool repoll = false;
6694
6695 local_bh_disable();
6696 sd = this_cpu_ptr(&softnet_data);
6697 sd->in_napi_threaded_poll = true;
6698
6699 have = netpoll_poll_lock(napi);
6700 __napi_poll(napi, &repoll);
6701 netpoll_poll_unlock(have);
6702
6703 sd->in_napi_threaded_poll = false;
6704 barrier();
6705
6706 if (sd_has_rps_ipi_waiting(sd)) {
6707 local_irq_disable();
6708 net_rps_action_and_irq_enable(sd);
6709 }
6710 skb_defer_free_flush(sd);
6711 local_bh_enable();
6712
6713 if (!repoll)
6714 break;
6715
6716 cond_resched();
6717 }
6718 }
6719 return 0;
6720 }
6721
net_rx_action(struct softirq_action * h)6722 static __latent_entropy void net_rx_action(struct softirq_action *h)
6723 {
6724 struct softnet_data *sd = this_cpu_ptr(&softnet_data);
6725 unsigned long time_limit = jiffies +
6726 usecs_to_jiffies(READ_ONCE(netdev_budget_usecs));
6727 int budget = READ_ONCE(netdev_budget);
6728 LIST_HEAD(list);
6729 LIST_HEAD(repoll);
6730
6731 start:
6732 sd->in_net_rx_action = true;
6733 local_irq_disable();
6734 list_splice_init(&sd->poll_list, &list);
6735 local_irq_enable();
6736
6737 for (;;) {
6738 struct napi_struct *n;
6739
6740 skb_defer_free_flush(sd);
6741
6742 if (list_empty(&list)) {
6743 if (list_empty(&repoll)) {
6744 sd->in_net_rx_action = false;
6745 barrier();
6746 /* We need to check if ____napi_schedule()
6747 * had refilled poll_list while
6748 * sd->in_net_rx_action was true.
6749 */
6750 if (!list_empty(&sd->poll_list))
6751 goto start;
6752 if (!sd_has_rps_ipi_waiting(sd))
6753 goto end;
6754 }
6755 break;
6756 }
6757
6758 n = list_first_entry(&list, struct napi_struct, poll_list);
6759 budget -= napi_poll(n, &repoll);
6760
6761 /* If softirq window is exhausted then punt.
6762 * Allow this to run for 2 jiffies since which will allow
6763 * an average latency of 1.5/HZ.
6764 */
6765 if (unlikely(budget <= 0 ||
6766 time_after_eq(jiffies, time_limit))) {
6767 sd->time_squeeze++;
6768 break;
6769 }
6770 }
6771
6772 local_irq_disable();
6773
6774 list_splice_tail_init(&sd->poll_list, &list);
6775 list_splice_tail(&repoll, &list);
6776 list_splice(&list, &sd->poll_list);
6777 if (!list_empty(&sd->poll_list))
6778 __raise_softirq_irqoff(NET_RX_SOFTIRQ);
6779 else
6780 sd->in_net_rx_action = false;
6781
6782 net_rps_action_and_irq_enable(sd);
6783 end:;
6784 }
6785
6786 struct netdev_adjacent {
6787 struct net_device *dev;
6788 netdevice_tracker dev_tracker;
6789
6790 /* upper master flag, there can only be one master device per list */
6791 bool master;
6792
6793 /* lookup ignore flag */
6794 bool ignore;
6795
6796 /* counter for the number of times this device was added to us */
6797 u16 ref_nr;
6798
6799 /* private field for the users */
6800 void *private;
6801
6802 struct list_head list;
6803 struct rcu_head rcu;
6804 };
6805
__netdev_find_adj(struct net_device * adj_dev,struct list_head * adj_list)6806 static struct netdev_adjacent *__netdev_find_adj(struct net_device *adj_dev,
6807 struct list_head *adj_list)
6808 {
6809 struct netdev_adjacent *adj;
6810
6811 list_for_each_entry(adj, adj_list, list) {
6812 if (adj->dev == adj_dev)
6813 return adj;
6814 }
6815 return NULL;
6816 }
6817
____netdev_has_upper_dev(struct net_device * upper_dev,struct netdev_nested_priv * priv)6818 static int ____netdev_has_upper_dev(struct net_device *upper_dev,
6819 struct netdev_nested_priv *priv)
6820 {
6821 struct net_device *dev = (struct net_device *)priv->data;
6822
6823 return upper_dev == dev;
6824 }
6825
6826 /**
6827 * netdev_has_upper_dev - Check if device is linked to an upper device
6828 * @dev: device
6829 * @upper_dev: upper device to check
6830 *
6831 * Find out if a device is linked to specified upper device and return true
6832 * in case it is. Note that this checks only immediate upper device,
6833 * not through a complete stack of devices. The caller must hold the RTNL lock.
6834 */
netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)6835 bool netdev_has_upper_dev(struct net_device *dev,
6836 struct net_device *upper_dev)
6837 {
6838 struct netdev_nested_priv priv = {
6839 .data = (void *)upper_dev,
6840 };
6841
6842 ASSERT_RTNL();
6843
6844 return netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6845 &priv);
6846 }
6847 EXPORT_SYMBOL(netdev_has_upper_dev);
6848
6849 /**
6850 * netdev_has_upper_dev_all_rcu - Check if device is linked to an upper device
6851 * @dev: device
6852 * @upper_dev: upper device to check
6853 *
6854 * Find out if a device is linked to specified upper device and return true
6855 * in case it is. Note that this checks the entire upper device chain.
6856 * The caller must hold rcu lock.
6857 */
6858
netdev_has_upper_dev_all_rcu(struct net_device * dev,struct net_device * upper_dev)6859 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
6860 struct net_device *upper_dev)
6861 {
6862 struct netdev_nested_priv priv = {
6863 .data = (void *)upper_dev,
6864 };
6865
6866 return !!netdev_walk_all_upper_dev_rcu(dev, ____netdev_has_upper_dev,
6867 &priv);
6868 }
6869 EXPORT_SYMBOL(netdev_has_upper_dev_all_rcu);
6870
6871 /**
6872 * netdev_has_any_upper_dev - Check if device is linked to some device
6873 * @dev: device
6874 *
6875 * Find out if a device is linked to an upper device and return true in case
6876 * it is. The caller must hold the RTNL lock.
6877 */
netdev_has_any_upper_dev(struct net_device * dev)6878 bool netdev_has_any_upper_dev(struct net_device *dev)
6879 {
6880 ASSERT_RTNL();
6881
6882 return !list_empty(&dev->adj_list.upper);
6883 }
6884 EXPORT_SYMBOL(netdev_has_any_upper_dev);
6885
6886 /**
6887 * netdev_master_upper_dev_get - Get master upper device
6888 * @dev: device
6889 *
6890 * Find a master upper device and return pointer to it or NULL in case
6891 * it's not there. The caller must hold the RTNL lock.
6892 */
netdev_master_upper_dev_get(struct net_device * dev)6893 struct net_device *netdev_master_upper_dev_get(struct net_device *dev)
6894 {
6895 struct netdev_adjacent *upper;
6896
6897 ASSERT_RTNL();
6898
6899 if (list_empty(&dev->adj_list.upper))
6900 return NULL;
6901
6902 upper = list_first_entry(&dev->adj_list.upper,
6903 struct netdev_adjacent, list);
6904 if (likely(upper->master))
6905 return upper->dev;
6906 return NULL;
6907 }
6908 EXPORT_SYMBOL(netdev_master_upper_dev_get);
6909
__netdev_master_upper_dev_get(struct net_device * dev)6910 static struct net_device *__netdev_master_upper_dev_get(struct net_device *dev)
6911 {
6912 struct netdev_adjacent *upper;
6913
6914 ASSERT_RTNL();
6915
6916 if (list_empty(&dev->adj_list.upper))
6917 return NULL;
6918
6919 upper = list_first_entry(&dev->adj_list.upper,
6920 struct netdev_adjacent, list);
6921 if (likely(upper->master) && !upper->ignore)
6922 return upper->dev;
6923 return NULL;
6924 }
6925
6926 /**
6927 * netdev_has_any_lower_dev - Check if device is linked to some device
6928 * @dev: device
6929 *
6930 * Find out if a device is linked to a lower device and return true in case
6931 * it is. The caller must hold the RTNL lock.
6932 */
netdev_has_any_lower_dev(struct net_device * dev)6933 static bool netdev_has_any_lower_dev(struct net_device *dev)
6934 {
6935 ASSERT_RTNL();
6936
6937 return !list_empty(&dev->adj_list.lower);
6938 }
6939
netdev_adjacent_get_private(struct list_head * adj_list)6940 void *netdev_adjacent_get_private(struct list_head *adj_list)
6941 {
6942 struct netdev_adjacent *adj;
6943
6944 adj = list_entry(adj_list, struct netdev_adjacent, list);
6945
6946 return adj->private;
6947 }
6948 EXPORT_SYMBOL(netdev_adjacent_get_private);
6949
6950 /**
6951 * netdev_upper_get_next_dev_rcu - Get the next dev from upper list
6952 * @dev: device
6953 * @iter: list_head ** of the current position
6954 *
6955 * Gets the next device from the dev's upper list, starting from iter
6956 * position. The caller must hold RCU read lock.
6957 */
netdev_upper_get_next_dev_rcu(struct net_device * dev,struct list_head ** iter)6958 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
6959 struct list_head **iter)
6960 {
6961 struct netdev_adjacent *upper;
6962
6963 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6964
6965 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
6966
6967 if (&upper->list == &dev->adj_list.upper)
6968 return NULL;
6969
6970 *iter = &upper->list;
6971
6972 return upper->dev;
6973 }
6974 EXPORT_SYMBOL(netdev_upper_get_next_dev_rcu);
6975
__netdev_next_upper_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)6976 static struct net_device *__netdev_next_upper_dev(struct net_device *dev,
6977 struct list_head **iter,
6978 bool *ignore)
6979 {
6980 struct netdev_adjacent *upper;
6981
6982 upper = list_entry((*iter)->next, struct netdev_adjacent, list);
6983
6984 if (&upper->list == &dev->adj_list.upper)
6985 return NULL;
6986
6987 *iter = &upper->list;
6988 *ignore = upper->ignore;
6989
6990 return upper->dev;
6991 }
6992
netdev_next_upper_dev_rcu(struct net_device * dev,struct list_head ** iter)6993 static struct net_device *netdev_next_upper_dev_rcu(struct net_device *dev,
6994 struct list_head **iter)
6995 {
6996 struct netdev_adjacent *upper;
6997
6998 WARN_ON_ONCE(!rcu_read_lock_held() && !lockdep_rtnl_is_held());
6999
7000 upper = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7001
7002 if (&upper->list == &dev->adj_list.upper)
7003 return NULL;
7004
7005 *iter = &upper->list;
7006
7007 return upper->dev;
7008 }
7009
__netdev_walk_all_upper_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7010 static int __netdev_walk_all_upper_dev(struct net_device *dev,
7011 int (*fn)(struct net_device *dev,
7012 struct netdev_nested_priv *priv),
7013 struct netdev_nested_priv *priv)
7014 {
7015 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7016 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7017 int ret, cur = 0;
7018 bool ignore;
7019
7020 now = dev;
7021 iter = &dev->adj_list.upper;
7022
7023 while (1) {
7024 if (now != dev) {
7025 ret = fn(now, priv);
7026 if (ret)
7027 return ret;
7028 }
7029
7030 next = NULL;
7031 while (1) {
7032 udev = __netdev_next_upper_dev(now, &iter, &ignore);
7033 if (!udev)
7034 break;
7035 if (ignore)
7036 continue;
7037
7038 next = udev;
7039 niter = &udev->adj_list.upper;
7040 dev_stack[cur] = now;
7041 iter_stack[cur++] = iter;
7042 break;
7043 }
7044
7045 if (!next) {
7046 if (!cur)
7047 return 0;
7048 next = dev_stack[--cur];
7049 niter = iter_stack[cur];
7050 }
7051
7052 now = next;
7053 iter = niter;
7054 }
7055
7056 return 0;
7057 }
7058
netdev_walk_all_upper_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7059 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
7060 int (*fn)(struct net_device *dev,
7061 struct netdev_nested_priv *priv),
7062 struct netdev_nested_priv *priv)
7063 {
7064 struct net_device *udev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7065 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7066 int ret, cur = 0;
7067
7068 now = dev;
7069 iter = &dev->adj_list.upper;
7070
7071 while (1) {
7072 if (now != dev) {
7073 ret = fn(now, priv);
7074 if (ret)
7075 return ret;
7076 }
7077
7078 next = NULL;
7079 while (1) {
7080 udev = netdev_next_upper_dev_rcu(now, &iter);
7081 if (!udev)
7082 break;
7083
7084 next = udev;
7085 niter = &udev->adj_list.upper;
7086 dev_stack[cur] = now;
7087 iter_stack[cur++] = iter;
7088 break;
7089 }
7090
7091 if (!next) {
7092 if (!cur)
7093 return 0;
7094 next = dev_stack[--cur];
7095 niter = iter_stack[cur];
7096 }
7097
7098 now = next;
7099 iter = niter;
7100 }
7101
7102 return 0;
7103 }
7104 EXPORT_SYMBOL_GPL(netdev_walk_all_upper_dev_rcu);
7105
__netdev_has_upper_dev(struct net_device * dev,struct net_device * upper_dev)7106 static bool __netdev_has_upper_dev(struct net_device *dev,
7107 struct net_device *upper_dev)
7108 {
7109 struct netdev_nested_priv priv = {
7110 .flags = 0,
7111 .data = (void *)upper_dev,
7112 };
7113
7114 ASSERT_RTNL();
7115
7116 return __netdev_walk_all_upper_dev(dev, ____netdev_has_upper_dev,
7117 &priv);
7118 }
7119
7120 /**
7121 * netdev_lower_get_next_private - Get the next ->private from the
7122 * lower neighbour list
7123 * @dev: device
7124 * @iter: list_head ** of the current position
7125 *
7126 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7127 * list, starting from iter position. The caller must hold either hold the
7128 * RTNL lock or its own locking that guarantees that the neighbour lower
7129 * list will remain unchanged.
7130 */
netdev_lower_get_next_private(struct net_device * dev,struct list_head ** iter)7131 void *netdev_lower_get_next_private(struct net_device *dev,
7132 struct list_head **iter)
7133 {
7134 struct netdev_adjacent *lower;
7135
7136 lower = list_entry(*iter, struct netdev_adjacent, list);
7137
7138 if (&lower->list == &dev->adj_list.lower)
7139 return NULL;
7140
7141 *iter = lower->list.next;
7142
7143 return lower->private;
7144 }
7145 EXPORT_SYMBOL(netdev_lower_get_next_private);
7146
7147 /**
7148 * netdev_lower_get_next_private_rcu - Get the next ->private from the
7149 * lower neighbour list, RCU
7150 * variant
7151 * @dev: device
7152 * @iter: list_head ** of the current position
7153 *
7154 * Gets the next netdev_adjacent->private from the dev's lower neighbour
7155 * list, starting from iter position. The caller must hold RCU read lock.
7156 */
netdev_lower_get_next_private_rcu(struct net_device * dev,struct list_head ** iter)7157 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
7158 struct list_head **iter)
7159 {
7160 struct netdev_adjacent *lower;
7161
7162 WARN_ON_ONCE(!rcu_read_lock_held() && !rcu_read_lock_bh_held());
7163
7164 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7165
7166 if (&lower->list == &dev->adj_list.lower)
7167 return NULL;
7168
7169 *iter = &lower->list;
7170
7171 return lower->private;
7172 }
7173 EXPORT_SYMBOL(netdev_lower_get_next_private_rcu);
7174
7175 /**
7176 * netdev_lower_get_next - Get the next device from the lower neighbour
7177 * list
7178 * @dev: device
7179 * @iter: list_head ** of the current position
7180 *
7181 * Gets the next netdev_adjacent from the dev's lower neighbour
7182 * list, starting from iter position. The caller must hold RTNL lock or
7183 * its own locking that guarantees that the neighbour lower
7184 * list will remain unchanged.
7185 */
netdev_lower_get_next(struct net_device * dev,struct list_head ** iter)7186 void *netdev_lower_get_next(struct net_device *dev, struct list_head **iter)
7187 {
7188 struct netdev_adjacent *lower;
7189
7190 lower = list_entry(*iter, struct netdev_adjacent, list);
7191
7192 if (&lower->list == &dev->adj_list.lower)
7193 return NULL;
7194
7195 *iter = lower->list.next;
7196
7197 return lower->dev;
7198 }
7199 EXPORT_SYMBOL(netdev_lower_get_next);
7200
netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter)7201 static struct net_device *netdev_next_lower_dev(struct net_device *dev,
7202 struct list_head **iter)
7203 {
7204 struct netdev_adjacent *lower;
7205
7206 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7207
7208 if (&lower->list == &dev->adj_list.lower)
7209 return NULL;
7210
7211 *iter = &lower->list;
7212
7213 return lower->dev;
7214 }
7215
__netdev_next_lower_dev(struct net_device * dev,struct list_head ** iter,bool * ignore)7216 static struct net_device *__netdev_next_lower_dev(struct net_device *dev,
7217 struct list_head **iter,
7218 bool *ignore)
7219 {
7220 struct netdev_adjacent *lower;
7221
7222 lower = list_entry((*iter)->next, struct netdev_adjacent, list);
7223
7224 if (&lower->list == &dev->adj_list.lower)
7225 return NULL;
7226
7227 *iter = &lower->list;
7228 *ignore = lower->ignore;
7229
7230 return lower->dev;
7231 }
7232
netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7233 int netdev_walk_all_lower_dev(struct net_device *dev,
7234 int (*fn)(struct net_device *dev,
7235 struct netdev_nested_priv *priv),
7236 struct netdev_nested_priv *priv)
7237 {
7238 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7239 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7240 int ret, cur = 0;
7241
7242 now = dev;
7243 iter = &dev->adj_list.lower;
7244
7245 while (1) {
7246 if (now != dev) {
7247 ret = fn(now, priv);
7248 if (ret)
7249 return ret;
7250 }
7251
7252 next = NULL;
7253 while (1) {
7254 ldev = netdev_next_lower_dev(now, &iter);
7255 if (!ldev)
7256 break;
7257
7258 next = ldev;
7259 niter = &ldev->adj_list.lower;
7260 dev_stack[cur] = now;
7261 iter_stack[cur++] = iter;
7262 break;
7263 }
7264
7265 if (!next) {
7266 if (!cur)
7267 return 0;
7268 next = dev_stack[--cur];
7269 niter = iter_stack[cur];
7270 }
7271
7272 now = next;
7273 iter = niter;
7274 }
7275
7276 return 0;
7277 }
7278 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev);
7279
__netdev_walk_all_lower_dev(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7280 static int __netdev_walk_all_lower_dev(struct net_device *dev,
7281 int (*fn)(struct net_device *dev,
7282 struct netdev_nested_priv *priv),
7283 struct netdev_nested_priv *priv)
7284 {
7285 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7286 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7287 int ret, cur = 0;
7288 bool ignore;
7289
7290 now = dev;
7291 iter = &dev->adj_list.lower;
7292
7293 while (1) {
7294 if (now != dev) {
7295 ret = fn(now, priv);
7296 if (ret)
7297 return ret;
7298 }
7299
7300 next = NULL;
7301 while (1) {
7302 ldev = __netdev_next_lower_dev(now, &iter, &ignore);
7303 if (!ldev)
7304 break;
7305 if (ignore)
7306 continue;
7307
7308 next = ldev;
7309 niter = &ldev->adj_list.lower;
7310 dev_stack[cur] = now;
7311 iter_stack[cur++] = iter;
7312 break;
7313 }
7314
7315 if (!next) {
7316 if (!cur)
7317 return 0;
7318 next = dev_stack[--cur];
7319 niter = iter_stack[cur];
7320 }
7321
7322 now = next;
7323 iter = niter;
7324 }
7325
7326 return 0;
7327 }
7328
netdev_next_lower_dev_rcu(struct net_device * dev,struct list_head ** iter)7329 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
7330 struct list_head **iter)
7331 {
7332 struct netdev_adjacent *lower;
7333
7334 lower = list_entry_rcu((*iter)->next, struct netdev_adjacent, list);
7335 if (&lower->list == &dev->adj_list.lower)
7336 return NULL;
7337
7338 *iter = &lower->list;
7339
7340 return lower->dev;
7341 }
7342 EXPORT_SYMBOL(netdev_next_lower_dev_rcu);
7343
__netdev_upper_depth(struct net_device * dev)7344 static u8 __netdev_upper_depth(struct net_device *dev)
7345 {
7346 struct net_device *udev;
7347 struct list_head *iter;
7348 u8 max_depth = 0;
7349 bool ignore;
7350
7351 for (iter = &dev->adj_list.upper,
7352 udev = __netdev_next_upper_dev(dev, &iter, &ignore);
7353 udev;
7354 udev = __netdev_next_upper_dev(dev, &iter, &ignore)) {
7355 if (ignore)
7356 continue;
7357 if (max_depth < udev->upper_level)
7358 max_depth = udev->upper_level;
7359 }
7360
7361 return max_depth;
7362 }
7363
__netdev_lower_depth(struct net_device * dev)7364 static u8 __netdev_lower_depth(struct net_device *dev)
7365 {
7366 struct net_device *ldev;
7367 struct list_head *iter;
7368 u8 max_depth = 0;
7369 bool ignore;
7370
7371 for (iter = &dev->adj_list.lower,
7372 ldev = __netdev_next_lower_dev(dev, &iter, &ignore);
7373 ldev;
7374 ldev = __netdev_next_lower_dev(dev, &iter, &ignore)) {
7375 if (ignore)
7376 continue;
7377 if (max_depth < ldev->lower_level)
7378 max_depth = ldev->lower_level;
7379 }
7380
7381 return max_depth;
7382 }
7383
__netdev_update_upper_level(struct net_device * dev,struct netdev_nested_priv * __unused)7384 static int __netdev_update_upper_level(struct net_device *dev,
7385 struct netdev_nested_priv *__unused)
7386 {
7387 dev->upper_level = __netdev_upper_depth(dev) + 1;
7388 return 0;
7389 }
7390
7391 #ifdef CONFIG_LOCKDEP
7392 static LIST_HEAD(net_unlink_list);
7393
net_unlink_todo(struct net_device * dev)7394 static void net_unlink_todo(struct net_device *dev)
7395 {
7396 if (list_empty(&dev->unlink_list))
7397 list_add_tail(&dev->unlink_list, &net_unlink_list);
7398 }
7399 #endif
7400
__netdev_update_lower_level(struct net_device * dev,struct netdev_nested_priv * priv)7401 static int __netdev_update_lower_level(struct net_device *dev,
7402 struct netdev_nested_priv *priv)
7403 {
7404 dev->lower_level = __netdev_lower_depth(dev) + 1;
7405
7406 #ifdef CONFIG_LOCKDEP
7407 if (!priv)
7408 return 0;
7409
7410 if (priv->flags & NESTED_SYNC_IMM)
7411 dev->nested_level = dev->lower_level - 1;
7412 if (priv->flags & NESTED_SYNC_TODO)
7413 net_unlink_todo(dev);
7414 #endif
7415 return 0;
7416 }
7417
netdev_walk_all_lower_dev_rcu(struct net_device * dev,int (* fn)(struct net_device * dev,struct netdev_nested_priv * priv),struct netdev_nested_priv * priv)7418 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
7419 int (*fn)(struct net_device *dev,
7420 struct netdev_nested_priv *priv),
7421 struct netdev_nested_priv *priv)
7422 {
7423 struct net_device *ldev, *next, *now, *dev_stack[MAX_NEST_DEV + 1];
7424 struct list_head *niter, *iter, *iter_stack[MAX_NEST_DEV + 1];
7425 int ret, cur = 0;
7426
7427 now = dev;
7428 iter = &dev->adj_list.lower;
7429
7430 while (1) {
7431 if (now != dev) {
7432 ret = fn(now, priv);
7433 if (ret)
7434 return ret;
7435 }
7436
7437 next = NULL;
7438 while (1) {
7439 ldev = netdev_next_lower_dev_rcu(now, &iter);
7440 if (!ldev)
7441 break;
7442
7443 next = ldev;
7444 niter = &ldev->adj_list.lower;
7445 dev_stack[cur] = now;
7446 iter_stack[cur++] = iter;
7447 break;
7448 }
7449
7450 if (!next) {
7451 if (!cur)
7452 return 0;
7453 next = dev_stack[--cur];
7454 niter = iter_stack[cur];
7455 }
7456
7457 now = next;
7458 iter = niter;
7459 }
7460
7461 return 0;
7462 }
7463 EXPORT_SYMBOL_GPL(netdev_walk_all_lower_dev_rcu);
7464
7465 /**
7466 * netdev_lower_get_first_private_rcu - Get the first ->private from the
7467 * lower neighbour list, RCU
7468 * variant
7469 * @dev: device
7470 *
7471 * Gets the first netdev_adjacent->private from the dev's lower neighbour
7472 * list. The caller must hold RCU read lock.
7473 */
netdev_lower_get_first_private_rcu(struct net_device * dev)7474 void *netdev_lower_get_first_private_rcu(struct net_device *dev)
7475 {
7476 struct netdev_adjacent *lower;
7477
7478 lower = list_first_or_null_rcu(&dev->adj_list.lower,
7479 struct netdev_adjacent, list);
7480 if (lower)
7481 return lower->private;
7482 return NULL;
7483 }
7484 EXPORT_SYMBOL(netdev_lower_get_first_private_rcu);
7485
7486 /**
7487 * netdev_master_upper_dev_get_rcu - Get master upper device
7488 * @dev: device
7489 *
7490 * Find a master upper device and return pointer to it or NULL in case
7491 * it's not there. The caller must hold the RCU read lock.
7492 */
netdev_master_upper_dev_get_rcu(struct net_device * dev)7493 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev)
7494 {
7495 struct netdev_adjacent *upper;
7496
7497 upper = list_first_or_null_rcu(&dev->adj_list.upper,
7498 struct netdev_adjacent, list);
7499 if (upper && likely(upper->master))
7500 return upper->dev;
7501 return NULL;
7502 }
7503 EXPORT_SYMBOL(netdev_master_upper_dev_get_rcu);
7504
netdev_adjacent_sysfs_add(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7505 static int netdev_adjacent_sysfs_add(struct net_device *dev,
7506 struct net_device *adj_dev,
7507 struct list_head *dev_list)
7508 {
7509 char linkname[IFNAMSIZ+7];
7510
7511 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7512 "upper_%s" : "lower_%s", adj_dev->name);
7513 return sysfs_create_link(&(dev->dev.kobj), &(adj_dev->dev.kobj),
7514 linkname);
7515 }
netdev_adjacent_sysfs_del(struct net_device * dev,char * name,struct list_head * dev_list)7516 static void netdev_adjacent_sysfs_del(struct net_device *dev,
7517 char *name,
7518 struct list_head *dev_list)
7519 {
7520 char linkname[IFNAMSIZ+7];
7521
7522 sprintf(linkname, dev_list == &dev->adj_list.upper ?
7523 "upper_%s" : "lower_%s", name);
7524 sysfs_remove_link(&(dev->dev.kobj), linkname);
7525 }
7526
netdev_adjacent_is_neigh_list(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list)7527 static inline bool netdev_adjacent_is_neigh_list(struct net_device *dev,
7528 struct net_device *adj_dev,
7529 struct list_head *dev_list)
7530 {
7531 return (dev_list == &dev->adj_list.upper ||
7532 dev_list == &dev->adj_list.lower) &&
7533 net_eq(dev_net(dev), dev_net(adj_dev));
7534 }
7535
__netdev_adjacent_dev_insert(struct net_device * dev,struct net_device * adj_dev,struct list_head * dev_list,void * private,bool master)7536 static int __netdev_adjacent_dev_insert(struct net_device *dev,
7537 struct net_device *adj_dev,
7538 struct list_head *dev_list,
7539 void *private, bool master)
7540 {
7541 struct netdev_adjacent *adj;
7542 int ret;
7543
7544 adj = __netdev_find_adj(adj_dev, dev_list);
7545
7546 if (adj) {
7547 adj->ref_nr += 1;
7548 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d\n",
7549 dev->name, adj_dev->name, adj->ref_nr);
7550
7551 return 0;
7552 }
7553
7554 adj = kmalloc(sizeof(*adj), GFP_KERNEL);
7555 if (!adj)
7556 return -ENOMEM;
7557
7558 adj->dev = adj_dev;
7559 adj->master = master;
7560 adj->ref_nr = 1;
7561 adj->private = private;
7562 adj->ignore = false;
7563 netdev_hold(adj_dev, &adj->dev_tracker, GFP_KERNEL);
7564
7565 pr_debug("Insert adjacency: dev %s adj_dev %s adj->ref_nr %d; dev_hold on %s\n",
7566 dev->name, adj_dev->name, adj->ref_nr, adj_dev->name);
7567
7568 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list)) {
7569 ret = netdev_adjacent_sysfs_add(dev, adj_dev, dev_list);
7570 if (ret)
7571 goto free_adj;
7572 }
7573
7574 /* Ensure that master link is always the first item in list. */
7575 if (master) {
7576 ret = sysfs_create_link(&(dev->dev.kobj),
7577 &(adj_dev->dev.kobj), "master");
7578 if (ret)
7579 goto remove_symlinks;
7580
7581 list_add_rcu(&adj->list, dev_list);
7582 } else {
7583 list_add_tail_rcu(&adj->list, dev_list);
7584 }
7585
7586 return 0;
7587
7588 remove_symlinks:
7589 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7590 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7591 free_adj:
7592 netdev_put(adj_dev, &adj->dev_tracker);
7593 kfree(adj);
7594
7595 return ret;
7596 }
7597
__netdev_adjacent_dev_remove(struct net_device * dev,struct net_device * adj_dev,u16 ref_nr,struct list_head * dev_list)7598 static void __netdev_adjacent_dev_remove(struct net_device *dev,
7599 struct net_device *adj_dev,
7600 u16 ref_nr,
7601 struct list_head *dev_list)
7602 {
7603 struct netdev_adjacent *adj;
7604
7605 pr_debug("Remove adjacency: dev %s adj_dev %s ref_nr %d\n",
7606 dev->name, adj_dev->name, ref_nr);
7607
7608 adj = __netdev_find_adj(adj_dev, dev_list);
7609
7610 if (!adj) {
7611 pr_err("Adjacency does not exist for device %s from %s\n",
7612 dev->name, adj_dev->name);
7613 WARN_ON(1);
7614 return;
7615 }
7616
7617 if (adj->ref_nr > ref_nr) {
7618 pr_debug("adjacency: %s to %s ref_nr - %d = %d\n",
7619 dev->name, adj_dev->name, ref_nr,
7620 adj->ref_nr - ref_nr);
7621 adj->ref_nr -= ref_nr;
7622 return;
7623 }
7624
7625 if (adj->master)
7626 sysfs_remove_link(&(dev->dev.kobj), "master");
7627
7628 if (netdev_adjacent_is_neigh_list(dev, adj_dev, dev_list))
7629 netdev_adjacent_sysfs_del(dev, adj_dev->name, dev_list);
7630
7631 list_del_rcu(&adj->list);
7632 pr_debug("adjacency: dev_put for %s, because link removed from %s to %s\n",
7633 adj_dev->name, dev->name, adj_dev->name);
7634 netdev_put(adj_dev, &adj->dev_tracker);
7635 kfree_rcu(adj, rcu);
7636 }
7637
__netdev_adjacent_dev_link_lists(struct net_device * dev,struct net_device * upper_dev,struct list_head * up_list,struct list_head * down_list,void * private,bool master)7638 static int __netdev_adjacent_dev_link_lists(struct net_device *dev,
7639 struct net_device *upper_dev,
7640 struct list_head *up_list,
7641 struct list_head *down_list,
7642 void *private, bool master)
7643 {
7644 int ret;
7645
7646 ret = __netdev_adjacent_dev_insert(dev, upper_dev, up_list,
7647 private, master);
7648 if (ret)
7649 return ret;
7650
7651 ret = __netdev_adjacent_dev_insert(upper_dev, dev, down_list,
7652 private, false);
7653 if (ret) {
7654 __netdev_adjacent_dev_remove(dev, upper_dev, 1, up_list);
7655 return ret;
7656 }
7657
7658 return 0;
7659 }
7660
__netdev_adjacent_dev_unlink_lists(struct net_device * dev,struct net_device * upper_dev,u16 ref_nr,struct list_head * up_list,struct list_head * down_list)7661 static void __netdev_adjacent_dev_unlink_lists(struct net_device *dev,
7662 struct net_device *upper_dev,
7663 u16 ref_nr,
7664 struct list_head *up_list,
7665 struct list_head *down_list)
7666 {
7667 __netdev_adjacent_dev_remove(dev, upper_dev, ref_nr, up_list);
7668 __netdev_adjacent_dev_remove(upper_dev, dev, ref_nr, down_list);
7669 }
7670
__netdev_adjacent_dev_link_neighbour(struct net_device * dev,struct net_device * upper_dev,void * private,bool master)7671 static int __netdev_adjacent_dev_link_neighbour(struct net_device *dev,
7672 struct net_device *upper_dev,
7673 void *private, bool master)
7674 {
7675 return __netdev_adjacent_dev_link_lists(dev, upper_dev,
7676 &dev->adj_list.upper,
7677 &upper_dev->adj_list.lower,
7678 private, master);
7679 }
7680
__netdev_adjacent_dev_unlink_neighbour(struct net_device * dev,struct net_device * upper_dev)7681 static void __netdev_adjacent_dev_unlink_neighbour(struct net_device *dev,
7682 struct net_device *upper_dev)
7683 {
7684 __netdev_adjacent_dev_unlink_lists(dev, upper_dev, 1,
7685 &dev->adj_list.upper,
7686 &upper_dev->adj_list.lower);
7687 }
7688
__netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,bool master,void * upper_priv,void * upper_info,struct netdev_nested_priv * priv,struct netlink_ext_ack * extack)7689 static int __netdev_upper_dev_link(struct net_device *dev,
7690 struct net_device *upper_dev, bool master,
7691 void *upper_priv, void *upper_info,
7692 struct netdev_nested_priv *priv,
7693 struct netlink_ext_ack *extack)
7694 {
7695 struct netdev_notifier_changeupper_info changeupper_info = {
7696 .info = {
7697 .dev = dev,
7698 .extack = extack,
7699 },
7700 .upper_dev = upper_dev,
7701 .master = master,
7702 .linking = true,
7703 .upper_info = upper_info,
7704 };
7705 struct net_device *master_dev;
7706 int ret = 0;
7707
7708 ASSERT_RTNL();
7709
7710 if (dev == upper_dev)
7711 return -EBUSY;
7712
7713 /* To prevent loops, check if dev is not upper device to upper_dev. */
7714 if (__netdev_has_upper_dev(upper_dev, dev))
7715 return -EBUSY;
7716
7717 if ((dev->lower_level + upper_dev->upper_level) > MAX_NEST_DEV)
7718 return -EMLINK;
7719
7720 if (!master) {
7721 if (__netdev_has_upper_dev(dev, upper_dev))
7722 return -EEXIST;
7723 } else {
7724 master_dev = __netdev_master_upper_dev_get(dev);
7725 if (master_dev)
7726 return master_dev == upper_dev ? -EEXIST : -EBUSY;
7727 }
7728
7729 ret = call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7730 &changeupper_info.info);
7731 ret = notifier_to_errno(ret);
7732 if (ret)
7733 return ret;
7734
7735 ret = __netdev_adjacent_dev_link_neighbour(dev, upper_dev, upper_priv,
7736 master);
7737 if (ret)
7738 return ret;
7739
7740 ret = call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7741 &changeupper_info.info);
7742 ret = notifier_to_errno(ret);
7743 if (ret)
7744 goto rollback;
7745
7746 __netdev_update_upper_level(dev, NULL);
7747 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7748
7749 __netdev_update_lower_level(upper_dev, priv);
7750 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7751 priv);
7752
7753 return 0;
7754
7755 rollback:
7756 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7757
7758 return ret;
7759 }
7760
7761 /**
7762 * netdev_upper_dev_link - Add a link to the upper device
7763 * @dev: device
7764 * @upper_dev: new upper device
7765 * @extack: netlink extended ack
7766 *
7767 * Adds a link to device which is upper to this one. The caller must hold
7768 * the RTNL lock. On a failure a negative errno code is returned.
7769 * On success the reference counts are adjusted and the function
7770 * returns zero.
7771 */
netdev_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,struct netlink_ext_ack * extack)7772 int netdev_upper_dev_link(struct net_device *dev,
7773 struct net_device *upper_dev,
7774 struct netlink_ext_ack *extack)
7775 {
7776 struct netdev_nested_priv priv = {
7777 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7778 .data = NULL,
7779 };
7780
7781 return __netdev_upper_dev_link(dev, upper_dev, false,
7782 NULL, NULL, &priv, extack);
7783 }
7784 EXPORT_SYMBOL(netdev_upper_dev_link);
7785
7786 /**
7787 * netdev_master_upper_dev_link - Add a master link to the upper device
7788 * @dev: device
7789 * @upper_dev: new upper device
7790 * @upper_priv: upper device private
7791 * @upper_info: upper info to be passed down via notifier
7792 * @extack: netlink extended ack
7793 *
7794 * Adds a link to device which is upper to this one. In this case, only
7795 * one master upper device can be linked, although other non-master devices
7796 * might be linked as well. The caller must hold the RTNL lock.
7797 * On a failure a negative errno code is returned. On success the reference
7798 * counts are adjusted and the function returns zero.
7799 */
netdev_master_upper_dev_link(struct net_device * dev,struct net_device * upper_dev,void * upper_priv,void * upper_info,struct netlink_ext_ack * extack)7800 int netdev_master_upper_dev_link(struct net_device *dev,
7801 struct net_device *upper_dev,
7802 void *upper_priv, void *upper_info,
7803 struct netlink_ext_ack *extack)
7804 {
7805 struct netdev_nested_priv priv = {
7806 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7807 .data = NULL,
7808 };
7809
7810 return __netdev_upper_dev_link(dev, upper_dev, true,
7811 upper_priv, upper_info, &priv, extack);
7812 }
7813 EXPORT_SYMBOL(netdev_master_upper_dev_link);
7814
__netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev,struct netdev_nested_priv * priv)7815 static void __netdev_upper_dev_unlink(struct net_device *dev,
7816 struct net_device *upper_dev,
7817 struct netdev_nested_priv *priv)
7818 {
7819 struct netdev_notifier_changeupper_info changeupper_info = {
7820 .info = {
7821 .dev = dev,
7822 },
7823 .upper_dev = upper_dev,
7824 .linking = false,
7825 };
7826
7827 ASSERT_RTNL();
7828
7829 changeupper_info.master = netdev_master_upper_dev_get(dev) == upper_dev;
7830
7831 call_netdevice_notifiers_info(NETDEV_PRECHANGEUPPER,
7832 &changeupper_info.info);
7833
7834 __netdev_adjacent_dev_unlink_neighbour(dev, upper_dev);
7835
7836 call_netdevice_notifiers_info(NETDEV_CHANGEUPPER,
7837 &changeupper_info.info);
7838
7839 __netdev_update_upper_level(dev, NULL);
7840 __netdev_walk_all_lower_dev(dev, __netdev_update_upper_level, NULL);
7841
7842 __netdev_update_lower_level(upper_dev, priv);
7843 __netdev_walk_all_upper_dev(upper_dev, __netdev_update_lower_level,
7844 priv);
7845 }
7846
7847 /**
7848 * netdev_upper_dev_unlink - Removes a link to upper device
7849 * @dev: device
7850 * @upper_dev: new upper device
7851 *
7852 * Removes a link to device which is upper to this one. The caller must hold
7853 * the RTNL lock.
7854 */
netdev_upper_dev_unlink(struct net_device * dev,struct net_device * upper_dev)7855 void netdev_upper_dev_unlink(struct net_device *dev,
7856 struct net_device *upper_dev)
7857 {
7858 struct netdev_nested_priv priv = {
7859 .flags = NESTED_SYNC_TODO,
7860 .data = NULL,
7861 };
7862
7863 __netdev_upper_dev_unlink(dev, upper_dev, &priv);
7864 }
7865 EXPORT_SYMBOL(netdev_upper_dev_unlink);
7866
__netdev_adjacent_dev_set(struct net_device * upper_dev,struct net_device * lower_dev,bool val)7867 static void __netdev_adjacent_dev_set(struct net_device *upper_dev,
7868 struct net_device *lower_dev,
7869 bool val)
7870 {
7871 struct netdev_adjacent *adj;
7872
7873 adj = __netdev_find_adj(lower_dev, &upper_dev->adj_list.lower);
7874 if (adj)
7875 adj->ignore = val;
7876
7877 adj = __netdev_find_adj(upper_dev, &lower_dev->adj_list.upper);
7878 if (adj)
7879 adj->ignore = val;
7880 }
7881
netdev_adjacent_dev_disable(struct net_device * upper_dev,struct net_device * lower_dev)7882 static void netdev_adjacent_dev_disable(struct net_device *upper_dev,
7883 struct net_device *lower_dev)
7884 {
7885 __netdev_adjacent_dev_set(upper_dev, lower_dev, true);
7886 }
7887
netdev_adjacent_dev_enable(struct net_device * upper_dev,struct net_device * lower_dev)7888 static void netdev_adjacent_dev_enable(struct net_device *upper_dev,
7889 struct net_device *lower_dev)
7890 {
7891 __netdev_adjacent_dev_set(upper_dev, lower_dev, false);
7892 }
7893
netdev_adjacent_change_prepare(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev,struct netlink_ext_ack * extack)7894 int netdev_adjacent_change_prepare(struct net_device *old_dev,
7895 struct net_device *new_dev,
7896 struct net_device *dev,
7897 struct netlink_ext_ack *extack)
7898 {
7899 struct netdev_nested_priv priv = {
7900 .flags = 0,
7901 .data = NULL,
7902 };
7903 int err;
7904
7905 if (!new_dev)
7906 return 0;
7907
7908 if (old_dev && new_dev != old_dev)
7909 netdev_adjacent_dev_disable(dev, old_dev);
7910 err = __netdev_upper_dev_link(new_dev, dev, false, NULL, NULL, &priv,
7911 extack);
7912 if (err) {
7913 if (old_dev && new_dev != old_dev)
7914 netdev_adjacent_dev_enable(dev, old_dev);
7915 return err;
7916 }
7917
7918 return 0;
7919 }
7920 EXPORT_SYMBOL(netdev_adjacent_change_prepare);
7921
netdev_adjacent_change_commit(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)7922 void netdev_adjacent_change_commit(struct net_device *old_dev,
7923 struct net_device *new_dev,
7924 struct net_device *dev)
7925 {
7926 struct netdev_nested_priv priv = {
7927 .flags = NESTED_SYNC_IMM | NESTED_SYNC_TODO,
7928 .data = NULL,
7929 };
7930
7931 if (!new_dev || !old_dev)
7932 return;
7933
7934 if (new_dev == old_dev)
7935 return;
7936
7937 netdev_adjacent_dev_enable(dev, old_dev);
7938 __netdev_upper_dev_unlink(old_dev, dev, &priv);
7939 }
7940 EXPORT_SYMBOL(netdev_adjacent_change_commit);
7941
netdev_adjacent_change_abort(struct net_device * old_dev,struct net_device * new_dev,struct net_device * dev)7942 void netdev_adjacent_change_abort(struct net_device *old_dev,
7943 struct net_device *new_dev,
7944 struct net_device *dev)
7945 {
7946 struct netdev_nested_priv priv = {
7947 .flags = 0,
7948 .data = NULL,
7949 };
7950
7951 if (!new_dev)
7952 return;
7953
7954 if (old_dev && new_dev != old_dev)
7955 netdev_adjacent_dev_enable(dev, old_dev);
7956
7957 __netdev_upper_dev_unlink(new_dev, dev, &priv);
7958 }
7959 EXPORT_SYMBOL(netdev_adjacent_change_abort);
7960
7961 /**
7962 * netdev_bonding_info_change - Dispatch event about slave change
7963 * @dev: device
7964 * @bonding_info: info to dispatch
7965 *
7966 * Send NETDEV_BONDING_INFO to netdev notifiers with info.
7967 * The caller must hold the RTNL lock.
7968 */
netdev_bonding_info_change(struct net_device * dev,struct netdev_bonding_info * bonding_info)7969 void netdev_bonding_info_change(struct net_device *dev,
7970 struct netdev_bonding_info *bonding_info)
7971 {
7972 struct netdev_notifier_bonding_info info = {
7973 .info.dev = dev,
7974 };
7975
7976 memcpy(&info.bonding_info, bonding_info,
7977 sizeof(struct netdev_bonding_info));
7978 call_netdevice_notifiers_info(NETDEV_BONDING_INFO,
7979 &info.info);
7980 }
7981 EXPORT_SYMBOL(netdev_bonding_info_change);
7982
netdev_offload_xstats_enable_l3(struct net_device * dev,struct netlink_ext_ack * extack)7983 static int netdev_offload_xstats_enable_l3(struct net_device *dev,
7984 struct netlink_ext_ack *extack)
7985 {
7986 struct netdev_notifier_offload_xstats_info info = {
7987 .info.dev = dev,
7988 .info.extack = extack,
7989 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
7990 };
7991 int err;
7992 int rc;
7993
7994 dev->offload_xstats_l3 = kzalloc(sizeof(*dev->offload_xstats_l3),
7995 GFP_KERNEL);
7996 if (!dev->offload_xstats_l3)
7997 return -ENOMEM;
7998
7999 rc = call_netdevice_notifiers_info_robust(NETDEV_OFFLOAD_XSTATS_ENABLE,
8000 NETDEV_OFFLOAD_XSTATS_DISABLE,
8001 &info.info);
8002 err = notifier_to_errno(rc);
8003 if (err)
8004 goto free_stats;
8005
8006 return 0;
8007
8008 free_stats:
8009 kfree(dev->offload_xstats_l3);
8010 dev->offload_xstats_l3 = NULL;
8011 return err;
8012 }
8013
netdev_offload_xstats_enable(struct net_device * dev,enum netdev_offload_xstats_type type,struct netlink_ext_ack * extack)8014 int netdev_offload_xstats_enable(struct net_device *dev,
8015 enum netdev_offload_xstats_type type,
8016 struct netlink_ext_ack *extack)
8017 {
8018 ASSERT_RTNL();
8019
8020 if (netdev_offload_xstats_enabled(dev, type))
8021 return -EALREADY;
8022
8023 switch (type) {
8024 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8025 return netdev_offload_xstats_enable_l3(dev, extack);
8026 }
8027
8028 WARN_ON(1);
8029 return -EINVAL;
8030 }
8031 EXPORT_SYMBOL(netdev_offload_xstats_enable);
8032
netdev_offload_xstats_disable_l3(struct net_device * dev)8033 static void netdev_offload_xstats_disable_l3(struct net_device *dev)
8034 {
8035 struct netdev_notifier_offload_xstats_info info = {
8036 .info.dev = dev,
8037 .type = NETDEV_OFFLOAD_XSTATS_TYPE_L3,
8038 };
8039
8040 call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_DISABLE,
8041 &info.info);
8042 kfree(dev->offload_xstats_l3);
8043 dev->offload_xstats_l3 = NULL;
8044 }
8045
netdev_offload_xstats_disable(struct net_device * dev,enum netdev_offload_xstats_type type)8046 int netdev_offload_xstats_disable(struct net_device *dev,
8047 enum netdev_offload_xstats_type type)
8048 {
8049 ASSERT_RTNL();
8050
8051 if (!netdev_offload_xstats_enabled(dev, type))
8052 return -EALREADY;
8053
8054 switch (type) {
8055 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8056 netdev_offload_xstats_disable_l3(dev);
8057 return 0;
8058 }
8059
8060 WARN_ON(1);
8061 return -EINVAL;
8062 }
8063 EXPORT_SYMBOL(netdev_offload_xstats_disable);
8064
netdev_offload_xstats_disable_all(struct net_device * dev)8065 static void netdev_offload_xstats_disable_all(struct net_device *dev)
8066 {
8067 netdev_offload_xstats_disable(dev, NETDEV_OFFLOAD_XSTATS_TYPE_L3);
8068 }
8069
8070 static struct rtnl_hw_stats64 *
netdev_offload_xstats_get_ptr(const struct net_device * dev,enum netdev_offload_xstats_type type)8071 netdev_offload_xstats_get_ptr(const struct net_device *dev,
8072 enum netdev_offload_xstats_type type)
8073 {
8074 switch (type) {
8075 case NETDEV_OFFLOAD_XSTATS_TYPE_L3:
8076 return dev->offload_xstats_l3;
8077 }
8078
8079 WARN_ON(1);
8080 return NULL;
8081 }
8082
netdev_offload_xstats_enabled(const struct net_device * dev,enum netdev_offload_xstats_type type)8083 bool netdev_offload_xstats_enabled(const struct net_device *dev,
8084 enum netdev_offload_xstats_type type)
8085 {
8086 ASSERT_RTNL();
8087
8088 return netdev_offload_xstats_get_ptr(dev, type);
8089 }
8090 EXPORT_SYMBOL(netdev_offload_xstats_enabled);
8091
8092 struct netdev_notifier_offload_xstats_ru {
8093 bool used;
8094 };
8095
8096 struct netdev_notifier_offload_xstats_rd {
8097 struct rtnl_hw_stats64 stats;
8098 bool used;
8099 };
8100
netdev_hw_stats64_add(struct rtnl_hw_stats64 * dest,const struct rtnl_hw_stats64 * src)8101 static void netdev_hw_stats64_add(struct rtnl_hw_stats64 *dest,
8102 const struct rtnl_hw_stats64 *src)
8103 {
8104 dest->rx_packets += src->rx_packets;
8105 dest->tx_packets += src->tx_packets;
8106 dest->rx_bytes += src->rx_bytes;
8107 dest->tx_bytes += src->tx_bytes;
8108 dest->rx_errors += src->rx_errors;
8109 dest->tx_errors += src->tx_errors;
8110 dest->rx_dropped += src->rx_dropped;
8111 dest->tx_dropped += src->tx_dropped;
8112 dest->multicast += src->multicast;
8113 }
8114
netdev_offload_xstats_get_used(struct net_device * dev,enum netdev_offload_xstats_type type,bool * p_used,struct netlink_ext_ack * extack)8115 static int netdev_offload_xstats_get_used(struct net_device *dev,
8116 enum netdev_offload_xstats_type type,
8117 bool *p_used,
8118 struct netlink_ext_ack *extack)
8119 {
8120 struct netdev_notifier_offload_xstats_ru report_used = {};
8121 struct netdev_notifier_offload_xstats_info info = {
8122 .info.dev = dev,
8123 .info.extack = extack,
8124 .type = type,
8125 .report_used = &report_used,
8126 };
8127 int rc;
8128
8129 WARN_ON(!netdev_offload_xstats_enabled(dev, type));
8130 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_USED,
8131 &info.info);
8132 *p_used = report_used.used;
8133 return notifier_to_errno(rc);
8134 }
8135
netdev_offload_xstats_get_stats(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8136 static int netdev_offload_xstats_get_stats(struct net_device *dev,
8137 enum netdev_offload_xstats_type type,
8138 struct rtnl_hw_stats64 *p_stats,
8139 bool *p_used,
8140 struct netlink_ext_ack *extack)
8141 {
8142 struct netdev_notifier_offload_xstats_rd report_delta = {};
8143 struct netdev_notifier_offload_xstats_info info = {
8144 .info.dev = dev,
8145 .info.extack = extack,
8146 .type = type,
8147 .report_delta = &report_delta,
8148 };
8149 struct rtnl_hw_stats64 *stats;
8150 int rc;
8151
8152 stats = netdev_offload_xstats_get_ptr(dev, type);
8153 if (WARN_ON(!stats))
8154 return -EINVAL;
8155
8156 rc = call_netdevice_notifiers_info(NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
8157 &info.info);
8158
8159 /* Cache whatever we got, even if there was an error, otherwise the
8160 * successful stats retrievals would get lost.
8161 */
8162 netdev_hw_stats64_add(stats, &report_delta.stats);
8163
8164 if (p_stats)
8165 *p_stats = *stats;
8166 *p_used = report_delta.used;
8167
8168 return notifier_to_errno(rc);
8169 }
8170
netdev_offload_xstats_get(struct net_device * dev,enum netdev_offload_xstats_type type,struct rtnl_hw_stats64 * p_stats,bool * p_used,struct netlink_ext_ack * extack)8171 int netdev_offload_xstats_get(struct net_device *dev,
8172 enum netdev_offload_xstats_type type,
8173 struct rtnl_hw_stats64 *p_stats, bool *p_used,
8174 struct netlink_ext_ack *extack)
8175 {
8176 ASSERT_RTNL();
8177
8178 if (p_stats)
8179 return netdev_offload_xstats_get_stats(dev, type, p_stats,
8180 p_used, extack);
8181 else
8182 return netdev_offload_xstats_get_used(dev, type, p_used,
8183 extack);
8184 }
8185 EXPORT_SYMBOL(netdev_offload_xstats_get);
8186
8187 void
netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd * report_delta,const struct rtnl_hw_stats64 * stats)8188 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *report_delta,
8189 const struct rtnl_hw_stats64 *stats)
8190 {
8191 report_delta->used = true;
8192 netdev_hw_stats64_add(&report_delta->stats, stats);
8193 }
8194 EXPORT_SYMBOL(netdev_offload_xstats_report_delta);
8195
8196 void
netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru * report_used)8197 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *report_used)
8198 {
8199 report_used->used = true;
8200 }
8201 EXPORT_SYMBOL(netdev_offload_xstats_report_used);
8202
netdev_offload_xstats_push_delta(struct net_device * dev,enum netdev_offload_xstats_type type,const struct rtnl_hw_stats64 * p_stats)8203 void netdev_offload_xstats_push_delta(struct net_device *dev,
8204 enum netdev_offload_xstats_type type,
8205 const struct rtnl_hw_stats64 *p_stats)
8206 {
8207 struct rtnl_hw_stats64 *stats;
8208
8209 ASSERT_RTNL();
8210
8211 stats = netdev_offload_xstats_get_ptr(dev, type);
8212 if (WARN_ON(!stats))
8213 return;
8214
8215 netdev_hw_stats64_add(stats, p_stats);
8216 }
8217 EXPORT_SYMBOL(netdev_offload_xstats_push_delta);
8218
8219 /**
8220 * netdev_get_xmit_slave - Get the xmit slave of master device
8221 * @dev: device
8222 * @skb: The packet
8223 * @all_slaves: assume all the slaves are active
8224 *
8225 * The reference counters are not incremented so the caller must be
8226 * careful with locks. The caller must hold RCU lock.
8227 * %NULL is returned if no slave is found.
8228 */
8229
netdev_get_xmit_slave(struct net_device * dev,struct sk_buff * skb,bool all_slaves)8230 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
8231 struct sk_buff *skb,
8232 bool all_slaves)
8233 {
8234 const struct net_device_ops *ops = dev->netdev_ops;
8235
8236 if (!ops->ndo_get_xmit_slave)
8237 return NULL;
8238 return ops->ndo_get_xmit_slave(dev, skb, all_slaves);
8239 }
8240 EXPORT_SYMBOL(netdev_get_xmit_slave);
8241
netdev_sk_get_lower_dev(struct net_device * dev,struct sock * sk)8242 static struct net_device *netdev_sk_get_lower_dev(struct net_device *dev,
8243 struct sock *sk)
8244 {
8245 const struct net_device_ops *ops = dev->netdev_ops;
8246
8247 if (!ops->ndo_sk_get_lower_dev)
8248 return NULL;
8249 return ops->ndo_sk_get_lower_dev(dev, sk);
8250 }
8251
8252 /**
8253 * netdev_sk_get_lowest_dev - Get the lowest device in chain given device and socket
8254 * @dev: device
8255 * @sk: the socket
8256 *
8257 * %NULL is returned if no lower device is found.
8258 */
8259
netdev_sk_get_lowest_dev(struct net_device * dev,struct sock * sk)8260 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
8261 struct sock *sk)
8262 {
8263 struct net_device *lower;
8264
8265 lower = netdev_sk_get_lower_dev(dev, sk);
8266 while (lower) {
8267 dev = lower;
8268 lower = netdev_sk_get_lower_dev(dev, sk);
8269 }
8270
8271 return dev;
8272 }
8273 EXPORT_SYMBOL(netdev_sk_get_lowest_dev);
8274
netdev_adjacent_add_links(struct net_device * dev)8275 static void netdev_adjacent_add_links(struct net_device *dev)
8276 {
8277 struct netdev_adjacent *iter;
8278
8279 struct net *net = dev_net(dev);
8280
8281 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8282 if (!net_eq(net, dev_net(iter->dev)))
8283 continue;
8284 netdev_adjacent_sysfs_add(iter->dev, dev,
8285 &iter->dev->adj_list.lower);
8286 netdev_adjacent_sysfs_add(dev, iter->dev,
8287 &dev->adj_list.upper);
8288 }
8289
8290 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8291 if (!net_eq(net, dev_net(iter->dev)))
8292 continue;
8293 netdev_adjacent_sysfs_add(iter->dev, dev,
8294 &iter->dev->adj_list.upper);
8295 netdev_adjacent_sysfs_add(dev, iter->dev,
8296 &dev->adj_list.lower);
8297 }
8298 }
8299
netdev_adjacent_del_links(struct net_device * dev)8300 static void netdev_adjacent_del_links(struct net_device *dev)
8301 {
8302 struct netdev_adjacent *iter;
8303
8304 struct net *net = dev_net(dev);
8305
8306 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8307 if (!net_eq(net, dev_net(iter->dev)))
8308 continue;
8309 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8310 &iter->dev->adj_list.lower);
8311 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8312 &dev->adj_list.upper);
8313 }
8314
8315 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8316 if (!net_eq(net, dev_net(iter->dev)))
8317 continue;
8318 netdev_adjacent_sysfs_del(iter->dev, dev->name,
8319 &iter->dev->adj_list.upper);
8320 netdev_adjacent_sysfs_del(dev, iter->dev->name,
8321 &dev->adj_list.lower);
8322 }
8323 }
8324
netdev_adjacent_rename_links(struct net_device * dev,char * oldname)8325 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname)
8326 {
8327 struct netdev_adjacent *iter;
8328
8329 struct net *net = dev_net(dev);
8330
8331 list_for_each_entry(iter, &dev->adj_list.upper, list) {
8332 if (!net_eq(net, dev_net(iter->dev)))
8333 continue;
8334 netdev_adjacent_sysfs_del(iter->dev, oldname,
8335 &iter->dev->adj_list.lower);
8336 netdev_adjacent_sysfs_add(iter->dev, dev,
8337 &iter->dev->adj_list.lower);
8338 }
8339
8340 list_for_each_entry(iter, &dev->adj_list.lower, list) {
8341 if (!net_eq(net, dev_net(iter->dev)))
8342 continue;
8343 netdev_adjacent_sysfs_del(iter->dev, oldname,
8344 &iter->dev->adj_list.upper);
8345 netdev_adjacent_sysfs_add(iter->dev, dev,
8346 &iter->dev->adj_list.upper);
8347 }
8348 }
8349
netdev_lower_dev_get_private(struct net_device * dev,struct net_device * lower_dev)8350 void *netdev_lower_dev_get_private(struct net_device *dev,
8351 struct net_device *lower_dev)
8352 {
8353 struct netdev_adjacent *lower;
8354
8355 if (!lower_dev)
8356 return NULL;
8357 lower = __netdev_find_adj(lower_dev, &dev->adj_list.lower);
8358 if (!lower)
8359 return NULL;
8360
8361 return lower->private;
8362 }
8363 EXPORT_SYMBOL(netdev_lower_dev_get_private);
8364
8365
8366 /**
8367 * netdev_lower_state_changed - Dispatch event about lower device state change
8368 * @lower_dev: device
8369 * @lower_state_info: state to dispatch
8370 *
8371 * Send NETDEV_CHANGELOWERSTATE to netdev notifiers with info.
8372 * The caller must hold the RTNL lock.
8373 */
netdev_lower_state_changed(struct net_device * lower_dev,void * lower_state_info)8374 void netdev_lower_state_changed(struct net_device *lower_dev,
8375 void *lower_state_info)
8376 {
8377 struct netdev_notifier_changelowerstate_info changelowerstate_info = {
8378 .info.dev = lower_dev,
8379 };
8380
8381 ASSERT_RTNL();
8382 changelowerstate_info.lower_state_info = lower_state_info;
8383 call_netdevice_notifiers_info(NETDEV_CHANGELOWERSTATE,
8384 &changelowerstate_info.info);
8385 }
8386 EXPORT_SYMBOL(netdev_lower_state_changed);
8387
dev_change_rx_flags(struct net_device * dev,int flags)8388 static void dev_change_rx_flags(struct net_device *dev, int flags)
8389 {
8390 const struct net_device_ops *ops = dev->netdev_ops;
8391
8392 if (ops->ndo_change_rx_flags)
8393 ops->ndo_change_rx_flags(dev, flags);
8394 }
8395
__dev_set_promiscuity(struct net_device * dev,int inc,bool notify)8396 static int __dev_set_promiscuity(struct net_device *dev, int inc, bool notify)
8397 {
8398 unsigned int old_flags = dev->flags;
8399 kuid_t uid;
8400 kgid_t gid;
8401
8402 ASSERT_RTNL();
8403
8404 dev->flags |= IFF_PROMISC;
8405 dev->promiscuity += inc;
8406 if (dev->promiscuity == 0) {
8407 /*
8408 * Avoid overflow.
8409 * If inc causes overflow, untouch promisc and return error.
8410 */
8411 if (inc < 0)
8412 dev->flags &= ~IFF_PROMISC;
8413 else {
8414 dev->promiscuity -= inc;
8415 netdev_warn(dev, "promiscuity touches roof, set promiscuity failed. promiscuity feature of device might be broken.\n");
8416 return -EOVERFLOW;
8417 }
8418 }
8419 if (dev->flags != old_flags) {
8420 netdev_info(dev, "%s promiscuous mode\n",
8421 dev->flags & IFF_PROMISC ? "entered" : "left");
8422 if (audit_enabled) {
8423 current_uid_gid(&uid, &gid);
8424 audit_log(audit_context(), GFP_ATOMIC,
8425 AUDIT_ANOM_PROMISCUOUS,
8426 "dev=%s prom=%d old_prom=%d auid=%u uid=%u gid=%u ses=%u",
8427 dev->name, (dev->flags & IFF_PROMISC),
8428 (old_flags & IFF_PROMISC),
8429 from_kuid(&init_user_ns, audit_get_loginuid(current)),
8430 from_kuid(&init_user_ns, uid),
8431 from_kgid(&init_user_ns, gid),
8432 audit_get_sessionid(current));
8433 }
8434
8435 dev_change_rx_flags(dev, IFF_PROMISC);
8436 }
8437 if (notify)
8438 __dev_notify_flags(dev, old_flags, IFF_PROMISC, 0, NULL);
8439 return 0;
8440 }
8441
8442 /**
8443 * dev_set_promiscuity - update promiscuity count on a device
8444 * @dev: device
8445 * @inc: modifier
8446 *
8447 * Add or remove promiscuity from a device. While the count in the device
8448 * remains above zero the interface remains promiscuous. Once it hits zero
8449 * the device reverts back to normal filtering operation. A negative inc
8450 * value is used to drop promiscuity on the device.
8451 * Return 0 if successful or a negative errno code on error.
8452 */
dev_set_promiscuity(struct net_device * dev,int inc)8453 int dev_set_promiscuity(struct net_device *dev, int inc)
8454 {
8455 unsigned int old_flags = dev->flags;
8456 int err;
8457
8458 err = __dev_set_promiscuity(dev, inc, true);
8459 if (err < 0)
8460 return err;
8461 if (dev->flags != old_flags)
8462 dev_set_rx_mode(dev);
8463 return err;
8464 }
8465 EXPORT_SYMBOL(dev_set_promiscuity);
8466
__dev_set_allmulti(struct net_device * dev,int inc,bool notify)8467 static int __dev_set_allmulti(struct net_device *dev, int inc, bool notify)
8468 {
8469 unsigned int old_flags = dev->flags, old_gflags = dev->gflags;
8470
8471 ASSERT_RTNL();
8472
8473 dev->flags |= IFF_ALLMULTI;
8474 dev->allmulti += inc;
8475 if (dev->allmulti == 0) {
8476 /*
8477 * Avoid overflow.
8478 * If inc causes overflow, untouch allmulti and return error.
8479 */
8480 if (inc < 0)
8481 dev->flags &= ~IFF_ALLMULTI;
8482 else {
8483 dev->allmulti -= inc;
8484 netdev_warn(dev, "allmulti touches roof, set allmulti failed. allmulti feature of device might be broken.\n");
8485 return -EOVERFLOW;
8486 }
8487 }
8488 if (dev->flags ^ old_flags) {
8489 netdev_info(dev, "%s allmulticast mode\n",
8490 dev->flags & IFF_ALLMULTI ? "entered" : "left");
8491 dev_change_rx_flags(dev, IFF_ALLMULTI);
8492 dev_set_rx_mode(dev);
8493 if (notify)
8494 __dev_notify_flags(dev, old_flags,
8495 dev->gflags ^ old_gflags, 0, NULL);
8496 }
8497 return 0;
8498 }
8499
8500 /**
8501 * dev_set_allmulti - update allmulti count on a device
8502 * @dev: device
8503 * @inc: modifier
8504 *
8505 * Add or remove reception of all multicast frames to a device. While the
8506 * count in the device remains above zero the interface remains listening
8507 * to all interfaces. Once it hits zero the device reverts back to normal
8508 * filtering operation. A negative @inc value is used to drop the counter
8509 * when releasing a resource needing all multicasts.
8510 * Return 0 if successful or a negative errno code on error.
8511 */
8512
dev_set_allmulti(struct net_device * dev,int inc)8513 int dev_set_allmulti(struct net_device *dev, int inc)
8514 {
8515 return __dev_set_allmulti(dev, inc, true);
8516 }
8517 EXPORT_SYMBOL(dev_set_allmulti);
8518
8519 /*
8520 * Upload unicast and multicast address lists to device and
8521 * configure RX filtering. When the device doesn't support unicast
8522 * filtering it is put in promiscuous mode while unicast addresses
8523 * are present.
8524 */
__dev_set_rx_mode(struct net_device * dev)8525 void __dev_set_rx_mode(struct net_device *dev)
8526 {
8527 const struct net_device_ops *ops = dev->netdev_ops;
8528
8529 /* dev_open will call this function so the list will stay sane. */
8530 if (!(dev->flags&IFF_UP))
8531 return;
8532
8533 if (!netif_device_present(dev))
8534 return;
8535
8536 if (!(dev->priv_flags & IFF_UNICAST_FLT)) {
8537 /* Unicast addresses changes may only happen under the rtnl,
8538 * therefore calling __dev_set_promiscuity here is safe.
8539 */
8540 if (!netdev_uc_empty(dev) && !dev->uc_promisc) {
8541 __dev_set_promiscuity(dev, 1, false);
8542 dev->uc_promisc = true;
8543 } else if (netdev_uc_empty(dev) && dev->uc_promisc) {
8544 __dev_set_promiscuity(dev, -1, false);
8545 dev->uc_promisc = false;
8546 }
8547 }
8548
8549 if (ops->ndo_set_rx_mode)
8550 ops->ndo_set_rx_mode(dev);
8551 }
8552
dev_set_rx_mode(struct net_device * dev)8553 void dev_set_rx_mode(struct net_device *dev)
8554 {
8555 netif_addr_lock_bh(dev);
8556 __dev_set_rx_mode(dev);
8557 netif_addr_unlock_bh(dev);
8558 }
8559
8560 /**
8561 * dev_get_flags - get flags reported to userspace
8562 * @dev: device
8563 *
8564 * Get the combination of flag bits exported through APIs to userspace.
8565 */
dev_get_flags(const struct net_device * dev)8566 unsigned int dev_get_flags(const struct net_device *dev)
8567 {
8568 unsigned int flags;
8569
8570 flags = (dev->flags & ~(IFF_PROMISC |
8571 IFF_ALLMULTI |
8572 IFF_RUNNING |
8573 IFF_LOWER_UP |
8574 IFF_DORMANT)) |
8575 (dev->gflags & (IFF_PROMISC |
8576 IFF_ALLMULTI));
8577
8578 if (netif_running(dev)) {
8579 if (netif_oper_up(dev))
8580 flags |= IFF_RUNNING;
8581 if (netif_carrier_ok(dev))
8582 flags |= IFF_LOWER_UP;
8583 if (netif_dormant(dev))
8584 flags |= IFF_DORMANT;
8585 }
8586
8587 return flags;
8588 }
8589 EXPORT_SYMBOL(dev_get_flags);
8590
__dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8591 int __dev_change_flags(struct net_device *dev, unsigned int flags,
8592 struct netlink_ext_ack *extack)
8593 {
8594 unsigned int old_flags = dev->flags;
8595 int ret;
8596
8597 ASSERT_RTNL();
8598
8599 /*
8600 * Set the flags on our device.
8601 */
8602
8603 dev->flags = (flags & (IFF_DEBUG | IFF_NOTRAILERS | IFF_NOARP |
8604 IFF_DYNAMIC | IFF_MULTICAST | IFF_PORTSEL |
8605 IFF_AUTOMEDIA)) |
8606 (dev->flags & (IFF_UP | IFF_VOLATILE | IFF_PROMISC |
8607 IFF_ALLMULTI));
8608
8609 /*
8610 * Load in the correct multicast list now the flags have changed.
8611 */
8612
8613 if ((old_flags ^ flags) & IFF_MULTICAST)
8614 dev_change_rx_flags(dev, IFF_MULTICAST);
8615
8616 dev_set_rx_mode(dev);
8617
8618 /*
8619 * Have we downed the interface. We handle IFF_UP ourselves
8620 * according to user attempts to set it, rather than blindly
8621 * setting it.
8622 */
8623
8624 ret = 0;
8625 if ((old_flags ^ flags) & IFF_UP) {
8626 if (old_flags & IFF_UP)
8627 __dev_close(dev);
8628 else
8629 ret = __dev_open(dev, extack);
8630 }
8631
8632 if ((flags ^ dev->gflags) & IFF_PROMISC) {
8633 int inc = (flags & IFF_PROMISC) ? 1 : -1;
8634 unsigned int old_flags = dev->flags;
8635
8636 dev->gflags ^= IFF_PROMISC;
8637
8638 if (__dev_set_promiscuity(dev, inc, false) >= 0)
8639 if (dev->flags != old_flags)
8640 dev_set_rx_mode(dev);
8641 }
8642
8643 /* NOTE: order of synchronization of IFF_PROMISC and IFF_ALLMULTI
8644 * is important. Some (broken) drivers set IFF_PROMISC, when
8645 * IFF_ALLMULTI is requested not asking us and not reporting.
8646 */
8647 if ((flags ^ dev->gflags) & IFF_ALLMULTI) {
8648 int inc = (flags & IFF_ALLMULTI) ? 1 : -1;
8649
8650 dev->gflags ^= IFF_ALLMULTI;
8651 __dev_set_allmulti(dev, inc, false);
8652 }
8653
8654 return ret;
8655 }
8656
__dev_notify_flags(struct net_device * dev,unsigned int old_flags,unsigned int gchanges,u32 portid,const struct nlmsghdr * nlh)8657 void __dev_notify_flags(struct net_device *dev, unsigned int old_flags,
8658 unsigned int gchanges, u32 portid,
8659 const struct nlmsghdr *nlh)
8660 {
8661 unsigned int changes = dev->flags ^ old_flags;
8662
8663 if (gchanges)
8664 rtmsg_ifinfo(RTM_NEWLINK, dev, gchanges, GFP_ATOMIC, portid, nlh);
8665
8666 if (changes & IFF_UP) {
8667 if (dev->flags & IFF_UP)
8668 call_netdevice_notifiers(NETDEV_UP, dev);
8669 else
8670 call_netdevice_notifiers(NETDEV_DOWN, dev);
8671 }
8672
8673 if (dev->flags & IFF_UP &&
8674 (changes & ~(IFF_UP | IFF_PROMISC | IFF_ALLMULTI | IFF_VOLATILE))) {
8675 struct netdev_notifier_change_info change_info = {
8676 .info = {
8677 .dev = dev,
8678 },
8679 .flags_changed = changes,
8680 };
8681
8682 call_netdevice_notifiers_info(NETDEV_CHANGE, &change_info.info);
8683 }
8684 }
8685
8686 /**
8687 * dev_change_flags - change device settings
8688 * @dev: device
8689 * @flags: device state flags
8690 * @extack: netlink extended ack
8691 *
8692 * Change settings on device based state flags. The flags are
8693 * in the userspace exported format.
8694 */
dev_change_flags(struct net_device * dev,unsigned int flags,struct netlink_ext_ack * extack)8695 int dev_change_flags(struct net_device *dev, unsigned int flags,
8696 struct netlink_ext_ack *extack)
8697 {
8698 int ret;
8699 unsigned int changes, old_flags = dev->flags, old_gflags = dev->gflags;
8700
8701 ret = __dev_change_flags(dev, flags, extack);
8702 if (ret < 0)
8703 return ret;
8704
8705 changes = (old_flags ^ dev->flags) | (old_gflags ^ dev->gflags);
8706 __dev_notify_flags(dev, old_flags, changes, 0, NULL);
8707 return ret;
8708 }
8709 EXPORT_SYMBOL(dev_change_flags);
8710
__dev_set_mtu(struct net_device * dev,int new_mtu)8711 int __dev_set_mtu(struct net_device *dev, int new_mtu)
8712 {
8713 const struct net_device_ops *ops = dev->netdev_ops;
8714
8715 if (ops->ndo_change_mtu)
8716 return ops->ndo_change_mtu(dev, new_mtu);
8717
8718 /* Pairs with all the lockless reads of dev->mtu in the stack */
8719 WRITE_ONCE(dev->mtu, new_mtu);
8720 return 0;
8721 }
8722 EXPORT_SYMBOL(__dev_set_mtu);
8723
dev_validate_mtu(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8724 int dev_validate_mtu(struct net_device *dev, int new_mtu,
8725 struct netlink_ext_ack *extack)
8726 {
8727 /* MTU must be positive, and in range */
8728 if (new_mtu < 0 || new_mtu < dev->min_mtu) {
8729 NL_SET_ERR_MSG(extack, "mtu less than device minimum");
8730 return -EINVAL;
8731 }
8732
8733 if (dev->max_mtu > 0 && new_mtu > dev->max_mtu) {
8734 NL_SET_ERR_MSG(extack, "mtu greater than device maximum");
8735 return -EINVAL;
8736 }
8737 return 0;
8738 }
8739
8740 /**
8741 * dev_set_mtu_ext - Change maximum transfer unit
8742 * @dev: device
8743 * @new_mtu: new transfer unit
8744 * @extack: netlink extended ack
8745 *
8746 * Change the maximum transfer size of the network device.
8747 */
dev_set_mtu_ext(struct net_device * dev,int new_mtu,struct netlink_ext_ack * extack)8748 int dev_set_mtu_ext(struct net_device *dev, int new_mtu,
8749 struct netlink_ext_ack *extack)
8750 {
8751 int err, orig_mtu;
8752
8753 if (new_mtu == dev->mtu)
8754 return 0;
8755
8756 err = dev_validate_mtu(dev, new_mtu, extack);
8757 if (err)
8758 return err;
8759
8760 if (!netif_device_present(dev))
8761 return -ENODEV;
8762
8763 err = call_netdevice_notifiers(NETDEV_PRECHANGEMTU, dev);
8764 err = notifier_to_errno(err);
8765 if (err)
8766 return err;
8767
8768 orig_mtu = dev->mtu;
8769 err = __dev_set_mtu(dev, new_mtu);
8770
8771 if (!err) {
8772 err = call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8773 orig_mtu);
8774 err = notifier_to_errno(err);
8775 if (err) {
8776 /* setting mtu back and notifying everyone again,
8777 * so that they have a chance to revert changes.
8778 */
8779 __dev_set_mtu(dev, orig_mtu);
8780 call_netdevice_notifiers_mtu(NETDEV_CHANGEMTU, dev,
8781 new_mtu);
8782 }
8783 }
8784 return err;
8785 }
8786
dev_set_mtu(struct net_device * dev,int new_mtu)8787 int dev_set_mtu(struct net_device *dev, int new_mtu)
8788 {
8789 struct netlink_ext_ack extack;
8790 int err;
8791
8792 memset(&extack, 0, sizeof(extack));
8793 err = dev_set_mtu_ext(dev, new_mtu, &extack);
8794 if (err && extack._msg)
8795 net_err_ratelimited("%s: %s\n", dev->name, extack._msg);
8796 return err;
8797 }
8798 EXPORT_SYMBOL(dev_set_mtu);
8799
8800 /**
8801 * dev_change_tx_queue_len - Change TX queue length of a netdevice
8802 * @dev: device
8803 * @new_len: new tx queue length
8804 */
dev_change_tx_queue_len(struct net_device * dev,unsigned long new_len)8805 int dev_change_tx_queue_len(struct net_device *dev, unsigned long new_len)
8806 {
8807 unsigned int orig_len = dev->tx_queue_len;
8808 int res;
8809
8810 if (new_len != (unsigned int)new_len)
8811 return -ERANGE;
8812
8813 if (new_len != orig_len) {
8814 dev->tx_queue_len = new_len;
8815 res = call_netdevice_notifiers(NETDEV_CHANGE_TX_QUEUE_LEN, dev);
8816 res = notifier_to_errno(res);
8817 if (res)
8818 goto err_rollback;
8819 res = dev_qdisc_change_tx_queue_len(dev);
8820 if (res)
8821 goto err_rollback;
8822 }
8823
8824 return 0;
8825
8826 err_rollback:
8827 netdev_err(dev, "refused to change device tx_queue_len\n");
8828 dev->tx_queue_len = orig_len;
8829 return res;
8830 }
8831
8832 /**
8833 * dev_set_group - Change group this device belongs to
8834 * @dev: device
8835 * @new_group: group this device should belong to
8836 */
dev_set_group(struct net_device * dev,int new_group)8837 void dev_set_group(struct net_device *dev, int new_group)
8838 {
8839 dev->group = new_group;
8840 }
8841
8842 /**
8843 * dev_pre_changeaddr_notify - Call NETDEV_PRE_CHANGEADDR.
8844 * @dev: device
8845 * @addr: new address
8846 * @extack: netlink extended ack
8847 */
dev_pre_changeaddr_notify(struct net_device * dev,const char * addr,struct netlink_ext_ack * extack)8848 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
8849 struct netlink_ext_ack *extack)
8850 {
8851 struct netdev_notifier_pre_changeaddr_info info = {
8852 .info.dev = dev,
8853 .info.extack = extack,
8854 .dev_addr = addr,
8855 };
8856 int rc;
8857
8858 rc = call_netdevice_notifiers_info(NETDEV_PRE_CHANGEADDR, &info.info);
8859 return notifier_to_errno(rc);
8860 }
8861 EXPORT_SYMBOL(dev_pre_changeaddr_notify);
8862
8863 /**
8864 * dev_set_mac_address - Change Media Access Control Address
8865 * @dev: device
8866 * @sa: new address
8867 * @extack: netlink extended ack
8868 *
8869 * Change the hardware (MAC) address of the device
8870 */
dev_set_mac_address(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8871 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
8872 struct netlink_ext_ack *extack)
8873 {
8874 const struct net_device_ops *ops = dev->netdev_ops;
8875 int err;
8876
8877 if (!ops->ndo_set_mac_address)
8878 return -EOPNOTSUPP;
8879 if (sa->sa_family != dev->type)
8880 return -EINVAL;
8881 if (!netif_device_present(dev))
8882 return -ENODEV;
8883 err = dev_pre_changeaddr_notify(dev, sa->sa_data, extack);
8884 if (err)
8885 return err;
8886 if (memcmp(dev->dev_addr, sa->sa_data, dev->addr_len)) {
8887 err = ops->ndo_set_mac_address(dev, sa);
8888 if (err)
8889 return err;
8890 }
8891 dev->addr_assign_type = NET_ADDR_SET;
8892 call_netdevice_notifiers(NETDEV_CHANGEADDR, dev);
8893 add_device_randomness(dev->dev_addr, dev->addr_len);
8894 return 0;
8895 }
8896 EXPORT_SYMBOL(dev_set_mac_address);
8897
8898 static DECLARE_RWSEM(dev_addr_sem);
8899
dev_set_mac_address_user(struct net_device * dev,struct sockaddr * sa,struct netlink_ext_ack * extack)8900 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
8901 struct netlink_ext_ack *extack)
8902 {
8903 int ret;
8904
8905 down_write(&dev_addr_sem);
8906 ret = dev_set_mac_address(dev, sa, extack);
8907 up_write(&dev_addr_sem);
8908 return ret;
8909 }
8910 EXPORT_SYMBOL(dev_set_mac_address_user);
8911
dev_get_mac_address(struct sockaddr * sa,struct net * net,char * dev_name)8912 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name)
8913 {
8914 size_t size = sizeof(sa->sa_data_min);
8915 struct net_device *dev;
8916 int ret = 0;
8917
8918 down_read(&dev_addr_sem);
8919 rcu_read_lock();
8920
8921 dev = dev_get_by_name_rcu(net, dev_name);
8922 if (!dev) {
8923 ret = -ENODEV;
8924 goto unlock;
8925 }
8926 if (!dev->addr_len)
8927 memset(sa->sa_data, 0, size);
8928 else
8929 memcpy(sa->sa_data, dev->dev_addr,
8930 min_t(size_t, size, dev->addr_len));
8931 sa->sa_family = dev->type;
8932
8933 unlock:
8934 rcu_read_unlock();
8935 up_read(&dev_addr_sem);
8936 return ret;
8937 }
8938 EXPORT_SYMBOL(dev_get_mac_address);
8939
8940 /**
8941 * dev_change_carrier - Change device carrier
8942 * @dev: device
8943 * @new_carrier: new value
8944 *
8945 * Change device carrier
8946 */
dev_change_carrier(struct net_device * dev,bool new_carrier)8947 int dev_change_carrier(struct net_device *dev, bool new_carrier)
8948 {
8949 const struct net_device_ops *ops = dev->netdev_ops;
8950
8951 if (!ops->ndo_change_carrier)
8952 return -EOPNOTSUPP;
8953 if (!netif_device_present(dev))
8954 return -ENODEV;
8955 return ops->ndo_change_carrier(dev, new_carrier);
8956 }
8957
8958 /**
8959 * dev_get_phys_port_id - Get device physical port ID
8960 * @dev: device
8961 * @ppid: port ID
8962 *
8963 * Get device physical port ID
8964 */
dev_get_phys_port_id(struct net_device * dev,struct netdev_phys_item_id * ppid)8965 int dev_get_phys_port_id(struct net_device *dev,
8966 struct netdev_phys_item_id *ppid)
8967 {
8968 const struct net_device_ops *ops = dev->netdev_ops;
8969
8970 if (!ops->ndo_get_phys_port_id)
8971 return -EOPNOTSUPP;
8972 return ops->ndo_get_phys_port_id(dev, ppid);
8973 }
8974
8975 /**
8976 * dev_get_phys_port_name - Get device physical port name
8977 * @dev: device
8978 * @name: port name
8979 * @len: limit of bytes to copy to name
8980 *
8981 * Get device physical port name
8982 */
dev_get_phys_port_name(struct net_device * dev,char * name,size_t len)8983 int dev_get_phys_port_name(struct net_device *dev,
8984 char *name, size_t len)
8985 {
8986 const struct net_device_ops *ops = dev->netdev_ops;
8987 int err;
8988
8989 if (ops->ndo_get_phys_port_name) {
8990 err = ops->ndo_get_phys_port_name(dev, name, len);
8991 if (err != -EOPNOTSUPP)
8992 return err;
8993 }
8994 return devlink_compat_phys_port_name_get(dev, name, len);
8995 }
8996
8997 /**
8998 * dev_get_port_parent_id - Get the device's port parent identifier
8999 * @dev: network device
9000 * @ppid: pointer to a storage for the port's parent identifier
9001 * @recurse: allow/disallow recursion to lower devices
9002 *
9003 * Get the devices's port parent identifier
9004 */
dev_get_port_parent_id(struct net_device * dev,struct netdev_phys_item_id * ppid,bool recurse)9005 int dev_get_port_parent_id(struct net_device *dev,
9006 struct netdev_phys_item_id *ppid,
9007 bool recurse)
9008 {
9009 const struct net_device_ops *ops = dev->netdev_ops;
9010 struct netdev_phys_item_id first = { };
9011 struct net_device *lower_dev;
9012 struct list_head *iter;
9013 int err;
9014
9015 if (ops->ndo_get_port_parent_id) {
9016 err = ops->ndo_get_port_parent_id(dev, ppid);
9017 if (err != -EOPNOTSUPP)
9018 return err;
9019 }
9020
9021 err = devlink_compat_switch_id_get(dev, ppid);
9022 if (!recurse || err != -EOPNOTSUPP)
9023 return err;
9024
9025 netdev_for_each_lower_dev(dev, lower_dev, iter) {
9026 err = dev_get_port_parent_id(lower_dev, ppid, true);
9027 if (err)
9028 break;
9029 if (!first.id_len)
9030 first = *ppid;
9031 else if (memcmp(&first, ppid, sizeof(*ppid)))
9032 return -EOPNOTSUPP;
9033 }
9034
9035 return err;
9036 }
9037 EXPORT_SYMBOL(dev_get_port_parent_id);
9038
9039 /**
9040 * netdev_port_same_parent_id - Indicate if two network devices have
9041 * the same port parent identifier
9042 * @a: first network device
9043 * @b: second network device
9044 */
netdev_port_same_parent_id(struct net_device * a,struct net_device * b)9045 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b)
9046 {
9047 struct netdev_phys_item_id a_id = { };
9048 struct netdev_phys_item_id b_id = { };
9049
9050 if (dev_get_port_parent_id(a, &a_id, true) ||
9051 dev_get_port_parent_id(b, &b_id, true))
9052 return false;
9053
9054 return netdev_phys_item_id_same(&a_id, &b_id);
9055 }
9056 EXPORT_SYMBOL(netdev_port_same_parent_id);
9057
9058 /**
9059 * dev_change_proto_down - set carrier according to proto_down.
9060 *
9061 * @dev: device
9062 * @proto_down: new value
9063 */
dev_change_proto_down(struct net_device * dev,bool proto_down)9064 int dev_change_proto_down(struct net_device *dev, bool proto_down)
9065 {
9066 if (!(dev->priv_flags & IFF_CHANGE_PROTO_DOWN))
9067 return -EOPNOTSUPP;
9068 if (!netif_device_present(dev))
9069 return -ENODEV;
9070 if (proto_down)
9071 netif_carrier_off(dev);
9072 else
9073 netif_carrier_on(dev);
9074 dev->proto_down = proto_down;
9075 return 0;
9076 }
9077
9078 /**
9079 * dev_change_proto_down_reason - proto down reason
9080 *
9081 * @dev: device
9082 * @mask: proto down mask
9083 * @value: proto down value
9084 */
dev_change_proto_down_reason(struct net_device * dev,unsigned long mask,u32 value)9085 void dev_change_proto_down_reason(struct net_device *dev, unsigned long mask,
9086 u32 value)
9087 {
9088 int b;
9089
9090 if (!mask) {
9091 dev->proto_down_reason = value;
9092 } else {
9093 for_each_set_bit(b, &mask, 32) {
9094 if (value & (1 << b))
9095 dev->proto_down_reason |= BIT(b);
9096 else
9097 dev->proto_down_reason &= ~BIT(b);
9098 }
9099 }
9100 }
9101
9102 struct bpf_xdp_link {
9103 struct bpf_link link;
9104 struct net_device *dev; /* protected by rtnl_lock, no refcnt held */
9105 int flags;
9106 };
9107
dev_xdp_mode(struct net_device * dev,u32 flags)9108 static enum bpf_xdp_mode dev_xdp_mode(struct net_device *dev, u32 flags)
9109 {
9110 if (flags & XDP_FLAGS_HW_MODE)
9111 return XDP_MODE_HW;
9112 if (flags & XDP_FLAGS_DRV_MODE)
9113 return XDP_MODE_DRV;
9114 if (flags & XDP_FLAGS_SKB_MODE)
9115 return XDP_MODE_SKB;
9116 return dev->netdev_ops->ndo_bpf ? XDP_MODE_DRV : XDP_MODE_SKB;
9117 }
9118
dev_xdp_bpf_op(struct net_device * dev,enum bpf_xdp_mode mode)9119 static bpf_op_t dev_xdp_bpf_op(struct net_device *dev, enum bpf_xdp_mode mode)
9120 {
9121 switch (mode) {
9122 case XDP_MODE_SKB:
9123 return generic_xdp_install;
9124 case XDP_MODE_DRV:
9125 case XDP_MODE_HW:
9126 return dev->netdev_ops->ndo_bpf;
9127 default:
9128 return NULL;
9129 }
9130 }
9131
dev_xdp_link(struct net_device * dev,enum bpf_xdp_mode mode)9132 static struct bpf_xdp_link *dev_xdp_link(struct net_device *dev,
9133 enum bpf_xdp_mode mode)
9134 {
9135 return dev->xdp_state[mode].link;
9136 }
9137
dev_xdp_prog(struct net_device * dev,enum bpf_xdp_mode mode)9138 static struct bpf_prog *dev_xdp_prog(struct net_device *dev,
9139 enum bpf_xdp_mode mode)
9140 {
9141 struct bpf_xdp_link *link = dev_xdp_link(dev, mode);
9142
9143 if (link)
9144 return link->link.prog;
9145 return dev->xdp_state[mode].prog;
9146 }
9147
dev_xdp_prog_count(struct net_device * dev)9148 u8 dev_xdp_prog_count(struct net_device *dev)
9149 {
9150 u8 count = 0;
9151 int i;
9152
9153 for (i = 0; i < __MAX_XDP_MODE; i++)
9154 if (dev->xdp_state[i].prog || dev->xdp_state[i].link)
9155 count++;
9156 return count;
9157 }
9158 EXPORT_SYMBOL_GPL(dev_xdp_prog_count);
9159
dev_xdp_prog_id(struct net_device * dev,enum bpf_xdp_mode mode)9160 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode)
9161 {
9162 struct bpf_prog *prog = dev_xdp_prog(dev, mode);
9163
9164 return prog ? prog->aux->id : 0;
9165 }
9166
dev_xdp_set_link(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_xdp_link * link)9167 static void dev_xdp_set_link(struct net_device *dev, enum bpf_xdp_mode mode,
9168 struct bpf_xdp_link *link)
9169 {
9170 dev->xdp_state[mode].link = link;
9171 dev->xdp_state[mode].prog = NULL;
9172 }
9173
dev_xdp_set_prog(struct net_device * dev,enum bpf_xdp_mode mode,struct bpf_prog * prog)9174 static void dev_xdp_set_prog(struct net_device *dev, enum bpf_xdp_mode mode,
9175 struct bpf_prog *prog)
9176 {
9177 dev->xdp_state[mode].link = NULL;
9178 dev->xdp_state[mode].prog = prog;
9179 }
9180
dev_xdp_install(struct net_device * dev,enum bpf_xdp_mode mode,bpf_op_t bpf_op,struct netlink_ext_ack * extack,u32 flags,struct bpf_prog * prog)9181 static int dev_xdp_install(struct net_device *dev, enum bpf_xdp_mode mode,
9182 bpf_op_t bpf_op, struct netlink_ext_ack *extack,
9183 u32 flags, struct bpf_prog *prog)
9184 {
9185 struct netdev_bpf xdp;
9186 int err;
9187
9188 memset(&xdp, 0, sizeof(xdp));
9189 xdp.command = mode == XDP_MODE_HW ? XDP_SETUP_PROG_HW : XDP_SETUP_PROG;
9190 xdp.extack = extack;
9191 xdp.flags = flags;
9192 xdp.prog = prog;
9193
9194 /* Drivers assume refcnt is already incremented (i.e, prog pointer is
9195 * "moved" into driver), so they don't increment it on their own, but
9196 * they do decrement refcnt when program is detached or replaced.
9197 * Given net_device also owns link/prog, we need to bump refcnt here
9198 * to prevent drivers from underflowing it.
9199 */
9200 if (prog)
9201 bpf_prog_inc(prog);
9202 err = bpf_op(dev, &xdp);
9203 if (err) {
9204 if (prog)
9205 bpf_prog_put(prog);
9206 return err;
9207 }
9208
9209 if (mode != XDP_MODE_HW)
9210 bpf_prog_change_xdp(dev_xdp_prog(dev, mode), prog);
9211
9212 return 0;
9213 }
9214
dev_xdp_uninstall(struct net_device * dev)9215 static void dev_xdp_uninstall(struct net_device *dev)
9216 {
9217 struct bpf_xdp_link *link;
9218 struct bpf_prog *prog;
9219 enum bpf_xdp_mode mode;
9220 bpf_op_t bpf_op;
9221
9222 ASSERT_RTNL();
9223
9224 for (mode = XDP_MODE_SKB; mode < __MAX_XDP_MODE; mode++) {
9225 prog = dev_xdp_prog(dev, mode);
9226 if (!prog)
9227 continue;
9228
9229 bpf_op = dev_xdp_bpf_op(dev, mode);
9230 if (!bpf_op)
9231 continue;
9232
9233 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9234
9235 /* auto-detach link from net device */
9236 link = dev_xdp_link(dev, mode);
9237 if (link)
9238 link->dev = NULL;
9239 else
9240 bpf_prog_put(prog);
9241
9242 dev_xdp_set_link(dev, mode, NULL);
9243 }
9244 }
9245
dev_xdp_attach(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog,u32 flags)9246 static int dev_xdp_attach(struct net_device *dev, struct netlink_ext_ack *extack,
9247 struct bpf_xdp_link *link, struct bpf_prog *new_prog,
9248 struct bpf_prog *old_prog, u32 flags)
9249 {
9250 unsigned int num_modes = hweight32(flags & XDP_FLAGS_MODES);
9251 struct bpf_prog *cur_prog;
9252 struct net_device *upper;
9253 struct list_head *iter;
9254 enum bpf_xdp_mode mode;
9255 bpf_op_t bpf_op;
9256 int err;
9257
9258 ASSERT_RTNL();
9259
9260 /* either link or prog attachment, never both */
9261 if (link && (new_prog || old_prog))
9262 return -EINVAL;
9263 /* link supports only XDP mode flags */
9264 if (link && (flags & ~XDP_FLAGS_MODES)) {
9265 NL_SET_ERR_MSG(extack, "Invalid XDP flags for BPF link attachment");
9266 return -EINVAL;
9267 }
9268 /* just one XDP mode bit should be set, zero defaults to drv/skb mode */
9269 if (num_modes > 1) {
9270 NL_SET_ERR_MSG(extack, "Only one XDP mode flag can be set");
9271 return -EINVAL;
9272 }
9273 /* avoid ambiguity if offload + drv/skb mode progs are both loaded */
9274 if (!num_modes && dev_xdp_prog_count(dev) > 1) {
9275 NL_SET_ERR_MSG(extack,
9276 "More than one program loaded, unset mode is ambiguous");
9277 return -EINVAL;
9278 }
9279 /* old_prog != NULL implies XDP_FLAGS_REPLACE is set */
9280 if (old_prog && !(flags & XDP_FLAGS_REPLACE)) {
9281 NL_SET_ERR_MSG(extack, "XDP_FLAGS_REPLACE is not specified");
9282 return -EINVAL;
9283 }
9284
9285 mode = dev_xdp_mode(dev, flags);
9286 /* can't replace attached link */
9287 if (dev_xdp_link(dev, mode)) {
9288 NL_SET_ERR_MSG(extack, "Can't replace active BPF XDP link");
9289 return -EBUSY;
9290 }
9291
9292 /* don't allow if an upper device already has a program */
9293 netdev_for_each_upper_dev_rcu(dev, upper, iter) {
9294 if (dev_xdp_prog_count(upper) > 0) {
9295 NL_SET_ERR_MSG(extack, "Cannot attach when an upper device already has a program");
9296 return -EEXIST;
9297 }
9298 }
9299
9300 cur_prog = dev_xdp_prog(dev, mode);
9301 /* can't replace attached prog with link */
9302 if (link && cur_prog) {
9303 NL_SET_ERR_MSG(extack, "Can't replace active XDP program with BPF link");
9304 return -EBUSY;
9305 }
9306 if ((flags & XDP_FLAGS_REPLACE) && cur_prog != old_prog) {
9307 NL_SET_ERR_MSG(extack, "Active program does not match expected");
9308 return -EEXIST;
9309 }
9310
9311 /* put effective new program into new_prog */
9312 if (link)
9313 new_prog = link->link.prog;
9314
9315 if (new_prog) {
9316 bool offload = mode == XDP_MODE_HW;
9317 enum bpf_xdp_mode other_mode = mode == XDP_MODE_SKB
9318 ? XDP_MODE_DRV : XDP_MODE_SKB;
9319
9320 if ((flags & XDP_FLAGS_UPDATE_IF_NOEXIST) && cur_prog) {
9321 NL_SET_ERR_MSG(extack, "XDP program already attached");
9322 return -EBUSY;
9323 }
9324 if (!offload && dev_xdp_prog(dev, other_mode)) {
9325 NL_SET_ERR_MSG(extack, "Native and generic XDP can't be active at the same time");
9326 return -EEXIST;
9327 }
9328 if (!offload && bpf_prog_is_offloaded(new_prog->aux)) {
9329 NL_SET_ERR_MSG(extack, "Using offloaded program without HW_MODE flag is not supported");
9330 return -EINVAL;
9331 }
9332 if (bpf_prog_is_dev_bound(new_prog->aux) && !bpf_offload_dev_match(new_prog, dev)) {
9333 NL_SET_ERR_MSG(extack, "Program bound to different device");
9334 return -EINVAL;
9335 }
9336 if (new_prog->expected_attach_type == BPF_XDP_DEVMAP) {
9337 NL_SET_ERR_MSG(extack, "BPF_XDP_DEVMAP programs can not be attached to a device");
9338 return -EINVAL;
9339 }
9340 if (new_prog->expected_attach_type == BPF_XDP_CPUMAP) {
9341 NL_SET_ERR_MSG(extack, "BPF_XDP_CPUMAP programs can not be attached to a device");
9342 return -EINVAL;
9343 }
9344 }
9345
9346 /* don't call drivers if the effective program didn't change */
9347 if (new_prog != cur_prog) {
9348 bpf_op = dev_xdp_bpf_op(dev, mode);
9349 if (!bpf_op) {
9350 NL_SET_ERR_MSG(extack, "Underlying driver does not support XDP in native mode");
9351 return -EOPNOTSUPP;
9352 }
9353
9354 err = dev_xdp_install(dev, mode, bpf_op, extack, flags, new_prog);
9355 if (err)
9356 return err;
9357 }
9358
9359 if (link)
9360 dev_xdp_set_link(dev, mode, link);
9361 else
9362 dev_xdp_set_prog(dev, mode, new_prog);
9363 if (cur_prog)
9364 bpf_prog_put(cur_prog);
9365
9366 return 0;
9367 }
9368
dev_xdp_attach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9369 static int dev_xdp_attach_link(struct net_device *dev,
9370 struct netlink_ext_ack *extack,
9371 struct bpf_xdp_link *link)
9372 {
9373 return dev_xdp_attach(dev, extack, link, NULL, NULL, link->flags);
9374 }
9375
dev_xdp_detach_link(struct net_device * dev,struct netlink_ext_ack * extack,struct bpf_xdp_link * link)9376 static int dev_xdp_detach_link(struct net_device *dev,
9377 struct netlink_ext_ack *extack,
9378 struct bpf_xdp_link *link)
9379 {
9380 enum bpf_xdp_mode mode;
9381 bpf_op_t bpf_op;
9382
9383 ASSERT_RTNL();
9384
9385 mode = dev_xdp_mode(dev, link->flags);
9386 if (dev_xdp_link(dev, mode) != link)
9387 return -EINVAL;
9388
9389 bpf_op = dev_xdp_bpf_op(dev, mode);
9390 WARN_ON(dev_xdp_install(dev, mode, bpf_op, NULL, 0, NULL));
9391 dev_xdp_set_link(dev, mode, NULL);
9392 return 0;
9393 }
9394
bpf_xdp_link_release(struct bpf_link * link)9395 static void bpf_xdp_link_release(struct bpf_link *link)
9396 {
9397 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9398
9399 rtnl_lock();
9400
9401 /* if racing with net_device's tear down, xdp_link->dev might be
9402 * already NULL, in which case link was already auto-detached
9403 */
9404 if (xdp_link->dev) {
9405 WARN_ON(dev_xdp_detach_link(xdp_link->dev, NULL, xdp_link));
9406 xdp_link->dev = NULL;
9407 }
9408
9409 rtnl_unlock();
9410 }
9411
bpf_xdp_link_detach(struct bpf_link * link)9412 static int bpf_xdp_link_detach(struct bpf_link *link)
9413 {
9414 bpf_xdp_link_release(link);
9415 return 0;
9416 }
9417
bpf_xdp_link_dealloc(struct bpf_link * link)9418 static void bpf_xdp_link_dealloc(struct bpf_link *link)
9419 {
9420 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9421
9422 kfree(xdp_link);
9423 }
9424
bpf_xdp_link_show_fdinfo(const struct bpf_link * link,struct seq_file * seq)9425 static void bpf_xdp_link_show_fdinfo(const struct bpf_link *link,
9426 struct seq_file *seq)
9427 {
9428 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9429 u32 ifindex = 0;
9430
9431 rtnl_lock();
9432 if (xdp_link->dev)
9433 ifindex = xdp_link->dev->ifindex;
9434 rtnl_unlock();
9435
9436 seq_printf(seq, "ifindex:\t%u\n", ifindex);
9437 }
9438
bpf_xdp_link_fill_link_info(const struct bpf_link * link,struct bpf_link_info * info)9439 static int bpf_xdp_link_fill_link_info(const struct bpf_link *link,
9440 struct bpf_link_info *info)
9441 {
9442 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9443 u32 ifindex = 0;
9444
9445 rtnl_lock();
9446 if (xdp_link->dev)
9447 ifindex = xdp_link->dev->ifindex;
9448 rtnl_unlock();
9449
9450 info->xdp.ifindex = ifindex;
9451 return 0;
9452 }
9453
bpf_xdp_link_update(struct bpf_link * link,struct bpf_prog * new_prog,struct bpf_prog * old_prog)9454 static int bpf_xdp_link_update(struct bpf_link *link, struct bpf_prog *new_prog,
9455 struct bpf_prog *old_prog)
9456 {
9457 struct bpf_xdp_link *xdp_link = container_of(link, struct bpf_xdp_link, link);
9458 enum bpf_xdp_mode mode;
9459 bpf_op_t bpf_op;
9460 int err = 0;
9461
9462 rtnl_lock();
9463
9464 /* link might have been auto-released already, so fail */
9465 if (!xdp_link->dev) {
9466 err = -ENOLINK;
9467 goto out_unlock;
9468 }
9469
9470 if (old_prog && link->prog != old_prog) {
9471 err = -EPERM;
9472 goto out_unlock;
9473 }
9474 old_prog = link->prog;
9475 if (old_prog->type != new_prog->type ||
9476 old_prog->expected_attach_type != new_prog->expected_attach_type) {
9477 err = -EINVAL;
9478 goto out_unlock;
9479 }
9480
9481 if (old_prog == new_prog) {
9482 /* no-op, don't disturb drivers */
9483 bpf_prog_put(new_prog);
9484 goto out_unlock;
9485 }
9486
9487 mode = dev_xdp_mode(xdp_link->dev, xdp_link->flags);
9488 bpf_op = dev_xdp_bpf_op(xdp_link->dev, mode);
9489 err = dev_xdp_install(xdp_link->dev, mode, bpf_op, NULL,
9490 xdp_link->flags, new_prog);
9491 if (err)
9492 goto out_unlock;
9493
9494 old_prog = xchg(&link->prog, new_prog);
9495 bpf_prog_put(old_prog);
9496
9497 out_unlock:
9498 rtnl_unlock();
9499 return err;
9500 }
9501
9502 static const struct bpf_link_ops bpf_xdp_link_lops = {
9503 .release = bpf_xdp_link_release,
9504 .dealloc = bpf_xdp_link_dealloc,
9505 .detach = bpf_xdp_link_detach,
9506 .show_fdinfo = bpf_xdp_link_show_fdinfo,
9507 .fill_link_info = bpf_xdp_link_fill_link_info,
9508 .update_prog = bpf_xdp_link_update,
9509 };
9510
bpf_xdp_link_attach(const union bpf_attr * attr,struct bpf_prog * prog)9511 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
9512 {
9513 struct net *net = current->nsproxy->net_ns;
9514 struct bpf_link_primer link_primer;
9515 struct netlink_ext_ack extack = {};
9516 struct bpf_xdp_link *link;
9517 struct net_device *dev;
9518 int err, fd;
9519
9520 rtnl_lock();
9521 dev = dev_get_by_index(net, attr->link_create.target_ifindex);
9522 if (!dev) {
9523 rtnl_unlock();
9524 return -EINVAL;
9525 }
9526
9527 link = kzalloc(sizeof(*link), GFP_USER);
9528 if (!link) {
9529 err = -ENOMEM;
9530 goto unlock;
9531 }
9532
9533 bpf_link_init(&link->link, BPF_LINK_TYPE_XDP, &bpf_xdp_link_lops, prog);
9534 link->dev = dev;
9535 link->flags = attr->link_create.flags;
9536
9537 err = bpf_link_prime(&link->link, &link_primer);
9538 if (err) {
9539 kfree(link);
9540 goto unlock;
9541 }
9542
9543 err = dev_xdp_attach_link(dev, &extack, link);
9544 rtnl_unlock();
9545
9546 if (err) {
9547 link->dev = NULL;
9548 bpf_link_cleanup(&link_primer);
9549 trace_bpf_xdp_link_attach_failed(extack._msg);
9550 goto out_put_dev;
9551 }
9552
9553 fd = bpf_link_settle(&link_primer);
9554 /* link itself doesn't hold dev's refcnt to not complicate shutdown */
9555 dev_put(dev);
9556 return fd;
9557
9558 unlock:
9559 rtnl_unlock();
9560
9561 out_put_dev:
9562 dev_put(dev);
9563 return err;
9564 }
9565
9566 /**
9567 * dev_change_xdp_fd - set or clear a bpf program for a device rx path
9568 * @dev: device
9569 * @extack: netlink extended ack
9570 * @fd: new program fd or negative value to clear
9571 * @expected_fd: old program fd that userspace expects to replace or clear
9572 * @flags: xdp-related flags
9573 *
9574 * Set or clear a bpf program for a device
9575 */
dev_change_xdp_fd(struct net_device * dev,struct netlink_ext_ack * extack,int fd,int expected_fd,u32 flags)9576 int dev_change_xdp_fd(struct net_device *dev, struct netlink_ext_ack *extack,
9577 int fd, int expected_fd, u32 flags)
9578 {
9579 enum bpf_xdp_mode mode = dev_xdp_mode(dev, flags);
9580 struct bpf_prog *new_prog = NULL, *old_prog = NULL;
9581 int err;
9582
9583 ASSERT_RTNL();
9584
9585 if (fd >= 0) {
9586 new_prog = bpf_prog_get_type_dev(fd, BPF_PROG_TYPE_XDP,
9587 mode != XDP_MODE_SKB);
9588 if (IS_ERR(new_prog))
9589 return PTR_ERR(new_prog);
9590 }
9591
9592 if (expected_fd >= 0) {
9593 old_prog = bpf_prog_get_type_dev(expected_fd, BPF_PROG_TYPE_XDP,
9594 mode != XDP_MODE_SKB);
9595 if (IS_ERR(old_prog)) {
9596 err = PTR_ERR(old_prog);
9597 old_prog = NULL;
9598 goto err_out;
9599 }
9600 }
9601
9602 err = dev_xdp_attach(dev, extack, NULL, new_prog, old_prog, flags);
9603
9604 err_out:
9605 if (err && new_prog)
9606 bpf_prog_put(new_prog);
9607 if (old_prog)
9608 bpf_prog_put(old_prog);
9609 return err;
9610 }
9611
9612 /**
9613 * dev_index_reserve() - allocate an ifindex in a namespace
9614 * @net: the applicable net namespace
9615 * @ifindex: requested ifindex, pass %0 to get one allocated
9616 *
9617 * Allocate a ifindex for a new device. Caller must either use the ifindex
9618 * to store the device (via list_netdevice()) or call dev_index_release()
9619 * to give the index up.
9620 *
9621 * Return: a suitable unique value for a new device interface number or -errno.
9622 */
dev_index_reserve(struct net * net,u32 ifindex)9623 static int dev_index_reserve(struct net *net, u32 ifindex)
9624 {
9625 int err;
9626
9627 if (ifindex > INT_MAX) {
9628 DEBUG_NET_WARN_ON_ONCE(1);
9629 return -EINVAL;
9630 }
9631
9632 if (!ifindex)
9633 err = xa_alloc_cyclic(&net->dev_by_index, &ifindex, NULL,
9634 xa_limit_31b, &net->ifindex, GFP_KERNEL);
9635 else
9636 err = xa_insert(&net->dev_by_index, ifindex, NULL, GFP_KERNEL);
9637 if (err < 0)
9638 return err;
9639
9640 return ifindex;
9641 }
9642
dev_index_release(struct net * net,int ifindex)9643 static void dev_index_release(struct net *net, int ifindex)
9644 {
9645 /* Expect only unused indexes, unlist_netdevice() removes the used */
9646 WARN_ON(xa_erase(&net->dev_by_index, ifindex));
9647 }
9648
9649 /* Delayed registration/unregisteration */
9650 LIST_HEAD(net_todo_list);
9651 DECLARE_WAIT_QUEUE_HEAD(netdev_unregistering_wq);
9652
net_set_todo(struct net_device * dev)9653 static void net_set_todo(struct net_device *dev)
9654 {
9655 list_add_tail(&dev->todo_list, &net_todo_list);
9656 atomic_inc(&dev_net(dev)->dev_unreg_count);
9657 }
9658
netdev_sync_upper_features(struct net_device * lower,struct net_device * upper,netdev_features_t features)9659 static netdev_features_t netdev_sync_upper_features(struct net_device *lower,
9660 struct net_device *upper, netdev_features_t features)
9661 {
9662 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9663 netdev_features_t feature;
9664 int feature_bit;
9665
9666 for_each_netdev_feature(upper_disables, feature_bit) {
9667 feature = __NETIF_F_BIT(feature_bit);
9668 if (!(upper->wanted_features & feature)
9669 && (features & feature)) {
9670 netdev_dbg(lower, "Dropping feature %pNF, upper dev %s has it off.\n",
9671 &feature, upper->name);
9672 features &= ~feature;
9673 }
9674 }
9675
9676 return features;
9677 }
9678
netdev_sync_lower_features(struct net_device * upper,struct net_device * lower,netdev_features_t features)9679 static void netdev_sync_lower_features(struct net_device *upper,
9680 struct net_device *lower, netdev_features_t features)
9681 {
9682 netdev_features_t upper_disables = NETIF_F_UPPER_DISABLES;
9683 netdev_features_t feature;
9684 int feature_bit;
9685
9686 for_each_netdev_feature(upper_disables, feature_bit) {
9687 feature = __NETIF_F_BIT(feature_bit);
9688 if (!(features & feature) && (lower->features & feature)) {
9689 netdev_dbg(upper, "Disabling feature %pNF on lower dev %s.\n",
9690 &feature, lower->name);
9691 lower->wanted_features &= ~feature;
9692 __netdev_update_features(lower);
9693
9694 if (unlikely(lower->features & feature))
9695 netdev_WARN(upper, "failed to disable %pNF on %s!\n",
9696 &feature, lower->name);
9697 else
9698 netdev_features_change(lower);
9699 }
9700 }
9701 }
9702
netdev_fix_features(struct net_device * dev,netdev_features_t features)9703 static netdev_features_t netdev_fix_features(struct net_device *dev,
9704 netdev_features_t features)
9705 {
9706 /* Fix illegal checksum combinations */
9707 if ((features & NETIF_F_HW_CSUM) &&
9708 (features & (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM))) {
9709 netdev_warn(dev, "mixed HW and IP checksum settings.\n");
9710 features &= ~(NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
9711 }
9712
9713 /* TSO requires that SG is present as well. */
9714 if ((features & NETIF_F_ALL_TSO) && !(features & NETIF_F_SG)) {
9715 netdev_dbg(dev, "Dropping TSO features since no SG feature.\n");
9716 features &= ~NETIF_F_ALL_TSO;
9717 }
9718
9719 if ((features & NETIF_F_TSO) && !(features & NETIF_F_HW_CSUM) &&
9720 !(features & NETIF_F_IP_CSUM)) {
9721 netdev_dbg(dev, "Dropping TSO features since no CSUM feature.\n");
9722 features &= ~NETIF_F_TSO;
9723 features &= ~NETIF_F_TSO_ECN;
9724 }
9725
9726 if ((features & NETIF_F_TSO6) && !(features & NETIF_F_HW_CSUM) &&
9727 !(features & NETIF_F_IPV6_CSUM)) {
9728 netdev_dbg(dev, "Dropping TSO6 features since no CSUM feature.\n");
9729 features &= ~NETIF_F_TSO6;
9730 }
9731
9732 /* TSO with IPv4 ID mangling requires IPv4 TSO be enabled */
9733 if ((features & NETIF_F_TSO_MANGLEID) && !(features & NETIF_F_TSO))
9734 features &= ~NETIF_F_TSO_MANGLEID;
9735
9736 /* TSO ECN requires that TSO is present as well. */
9737 if ((features & NETIF_F_ALL_TSO) == NETIF_F_TSO_ECN)
9738 features &= ~NETIF_F_TSO_ECN;
9739
9740 /* Software GSO depends on SG. */
9741 if ((features & NETIF_F_GSO) && !(features & NETIF_F_SG)) {
9742 netdev_dbg(dev, "Dropping NETIF_F_GSO since no SG feature.\n");
9743 features &= ~NETIF_F_GSO;
9744 }
9745
9746 /* GSO partial features require GSO partial be set */
9747 if ((features & dev->gso_partial_features) &&
9748 !(features & NETIF_F_GSO_PARTIAL)) {
9749 netdev_dbg(dev,
9750 "Dropping partially supported GSO features since no GSO partial.\n");
9751 features &= ~dev->gso_partial_features;
9752 }
9753
9754 if (!(features & NETIF_F_RXCSUM)) {
9755 /* NETIF_F_GRO_HW implies doing RXCSUM since every packet
9756 * successfully merged by hardware must also have the
9757 * checksum verified by hardware. If the user does not
9758 * want to enable RXCSUM, logically, we should disable GRO_HW.
9759 */
9760 if (features & NETIF_F_GRO_HW) {
9761 netdev_dbg(dev, "Dropping NETIF_F_GRO_HW since no RXCSUM feature.\n");
9762 features &= ~NETIF_F_GRO_HW;
9763 }
9764 }
9765
9766 /* LRO/HW-GRO features cannot be combined with RX-FCS */
9767 if (features & NETIF_F_RXFCS) {
9768 if (features & NETIF_F_LRO) {
9769 netdev_dbg(dev, "Dropping LRO feature since RX-FCS is requested.\n");
9770 features &= ~NETIF_F_LRO;
9771 }
9772
9773 if (features & NETIF_F_GRO_HW) {
9774 netdev_dbg(dev, "Dropping HW-GRO feature since RX-FCS is requested.\n");
9775 features &= ~NETIF_F_GRO_HW;
9776 }
9777 }
9778
9779 if ((features & NETIF_F_GRO_HW) && (features & NETIF_F_LRO)) {
9780 netdev_dbg(dev, "Dropping LRO feature since HW-GRO is requested.\n");
9781 features &= ~NETIF_F_LRO;
9782 }
9783
9784 if (features & NETIF_F_HW_TLS_TX) {
9785 bool ip_csum = (features & (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM)) ==
9786 (NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM);
9787 bool hw_csum = features & NETIF_F_HW_CSUM;
9788
9789 if (!ip_csum && !hw_csum) {
9790 netdev_dbg(dev, "Dropping TLS TX HW offload feature since no CSUM feature.\n");
9791 features &= ~NETIF_F_HW_TLS_TX;
9792 }
9793 }
9794
9795 if ((features & NETIF_F_HW_TLS_RX) && !(features & NETIF_F_RXCSUM)) {
9796 netdev_dbg(dev, "Dropping TLS RX HW offload feature since no RXCSUM feature.\n");
9797 features &= ~NETIF_F_HW_TLS_RX;
9798 }
9799
9800 return features;
9801 }
9802
__netdev_update_features(struct net_device * dev)9803 int __netdev_update_features(struct net_device *dev)
9804 {
9805 struct net_device *upper, *lower;
9806 netdev_features_t features;
9807 struct list_head *iter;
9808 int err = -1;
9809
9810 ASSERT_RTNL();
9811
9812 features = netdev_get_wanted_features(dev);
9813
9814 if (dev->netdev_ops->ndo_fix_features)
9815 features = dev->netdev_ops->ndo_fix_features(dev, features);
9816
9817 /* driver might be less strict about feature dependencies */
9818 features = netdev_fix_features(dev, features);
9819
9820 /* some features can't be enabled if they're off on an upper device */
9821 netdev_for_each_upper_dev_rcu(dev, upper, iter)
9822 features = netdev_sync_upper_features(dev, upper, features);
9823
9824 if (dev->features == features)
9825 goto sync_lower;
9826
9827 netdev_dbg(dev, "Features changed: %pNF -> %pNF\n",
9828 &dev->features, &features);
9829
9830 if (dev->netdev_ops->ndo_set_features)
9831 err = dev->netdev_ops->ndo_set_features(dev, features);
9832 else
9833 err = 0;
9834
9835 if (unlikely(err < 0)) {
9836 netdev_err(dev,
9837 "set_features() failed (%d); wanted %pNF, left %pNF\n",
9838 err, &features, &dev->features);
9839 /* return non-0 since some features might have changed and
9840 * it's better to fire a spurious notification than miss it
9841 */
9842 return -1;
9843 }
9844
9845 sync_lower:
9846 /* some features must be disabled on lower devices when disabled
9847 * on an upper device (think: bonding master or bridge)
9848 */
9849 netdev_for_each_lower_dev(dev, lower, iter)
9850 netdev_sync_lower_features(dev, lower, features);
9851
9852 if (!err) {
9853 netdev_features_t diff = features ^ dev->features;
9854
9855 if (diff & NETIF_F_RX_UDP_TUNNEL_PORT) {
9856 /* udp_tunnel_{get,drop}_rx_info both need
9857 * NETIF_F_RX_UDP_TUNNEL_PORT enabled on the
9858 * device, or they won't do anything.
9859 * Thus we need to update dev->features
9860 * *before* calling udp_tunnel_get_rx_info,
9861 * but *after* calling udp_tunnel_drop_rx_info.
9862 */
9863 if (features & NETIF_F_RX_UDP_TUNNEL_PORT) {
9864 dev->features = features;
9865 udp_tunnel_get_rx_info(dev);
9866 } else {
9867 udp_tunnel_drop_rx_info(dev);
9868 }
9869 }
9870
9871 if (diff & NETIF_F_HW_VLAN_CTAG_FILTER) {
9872 if (features & NETIF_F_HW_VLAN_CTAG_FILTER) {
9873 dev->features = features;
9874 err |= vlan_get_rx_ctag_filter_info(dev);
9875 } else {
9876 vlan_drop_rx_ctag_filter_info(dev);
9877 }
9878 }
9879
9880 if (diff & NETIF_F_HW_VLAN_STAG_FILTER) {
9881 if (features & NETIF_F_HW_VLAN_STAG_FILTER) {
9882 dev->features = features;
9883 err |= vlan_get_rx_stag_filter_info(dev);
9884 } else {
9885 vlan_drop_rx_stag_filter_info(dev);
9886 }
9887 }
9888
9889 dev->features = features;
9890 }
9891
9892 return err < 0 ? 0 : 1;
9893 }
9894
9895 /**
9896 * netdev_update_features - recalculate device features
9897 * @dev: the device to check
9898 *
9899 * Recalculate dev->features set and send notifications if it
9900 * has changed. Should be called after driver or hardware dependent
9901 * conditions might have changed that influence the features.
9902 */
netdev_update_features(struct net_device * dev)9903 void netdev_update_features(struct net_device *dev)
9904 {
9905 if (__netdev_update_features(dev))
9906 netdev_features_change(dev);
9907 }
9908 EXPORT_SYMBOL(netdev_update_features);
9909
9910 /**
9911 * netdev_change_features - recalculate device features
9912 * @dev: the device to check
9913 *
9914 * Recalculate dev->features set and send notifications even
9915 * if they have not changed. Should be called instead of
9916 * netdev_update_features() if also dev->vlan_features might
9917 * have changed to allow the changes to be propagated to stacked
9918 * VLAN devices.
9919 */
netdev_change_features(struct net_device * dev)9920 void netdev_change_features(struct net_device *dev)
9921 {
9922 __netdev_update_features(dev);
9923 netdev_features_change(dev);
9924 }
9925 EXPORT_SYMBOL(netdev_change_features);
9926
9927 /**
9928 * netif_stacked_transfer_operstate - transfer operstate
9929 * @rootdev: the root or lower level device to transfer state from
9930 * @dev: the device to transfer operstate to
9931 *
9932 * Transfer operational state from root to device. This is normally
9933 * called when a stacking relationship exists between the root
9934 * device and the device(a leaf device).
9935 */
netif_stacked_transfer_operstate(const struct net_device * rootdev,struct net_device * dev)9936 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
9937 struct net_device *dev)
9938 {
9939 if (rootdev->operstate == IF_OPER_DORMANT)
9940 netif_dormant_on(dev);
9941 else
9942 netif_dormant_off(dev);
9943
9944 if (rootdev->operstate == IF_OPER_TESTING)
9945 netif_testing_on(dev);
9946 else
9947 netif_testing_off(dev);
9948
9949 if (netif_carrier_ok(rootdev))
9950 netif_carrier_on(dev);
9951 else
9952 netif_carrier_off(dev);
9953 }
9954 EXPORT_SYMBOL(netif_stacked_transfer_operstate);
9955
netif_alloc_rx_queues(struct net_device * dev)9956 static int netif_alloc_rx_queues(struct net_device *dev)
9957 {
9958 unsigned int i, count = dev->num_rx_queues;
9959 struct netdev_rx_queue *rx;
9960 size_t sz = count * sizeof(*rx);
9961 int err = 0;
9962
9963 BUG_ON(count < 1);
9964
9965 rx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
9966 if (!rx)
9967 return -ENOMEM;
9968
9969 dev->_rx = rx;
9970
9971 for (i = 0; i < count; i++) {
9972 rx[i].dev = dev;
9973
9974 /* XDP RX-queue setup */
9975 err = xdp_rxq_info_reg(&rx[i].xdp_rxq, dev, i, 0);
9976 if (err < 0)
9977 goto err_rxq_info;
9978 }
9979 return 0;
9980
9981 err_rxq_info:
9982 /* Rollback successful reg's and free other resources */
9983 while (i--)
9984 xdp_rxq_info_unreg(&rx[i].xdp_rxq);
9985 kvfree(dev->_rx);
9986 dev->_rx = NULL;
9987 return err;
9988 }
9989
netif_free_rx_queues(struct net_device * dev)9990 static void netif_free_rx_queues(struct net_device *dev)
9991 {
9992 unsigned int i, count = dev->num_rx_queues;
9993
9994 /* netif_alloc_rx_queues alloc failed, resources have been unreg'ed */
9995 if (!dev->_rx)
9996 return;
9997
9998 for (i = 0; i < count; i++)
9999 xdp_rxq_info_unreg(&dev->_rx[i].xdp_rxq);
10000
10001 kvfree(dev->_rx);
10002 }
10003
netdev_init_one_queue(struct net_device * dev,struct netdev_queue * queue,void * _unused)10004 static void netdev_init_one_queue(struct net_device *dev,
10005 struct netdev_queue *queue, void *_unused)
10006 {
10007 /* Initialize queue lock */
10008 spin_lock_init(&queue->_xmit_lock);
10009 netdev_set_xmit_lockdep_class(&queue->_xmit_lock, dev->type);
10010 queue->xmit_lock_owner = -1;
10011 netdev_queue_numa_node_write(queue, NUMA_NO_NODE);
10012 queue->dev = dev;
10013 #ifdef CONFIG_BQL
10014 dql_init(&queue->dql, HZ);
10015 #endif
10016 }
10017
netif_free_tx_queues(struct net_device * dev)10018 static void netif_free_tx_queues(struct net_device *dev)
10019 {
10020 kvfree(dev->_tx);
10021 }
10022
netif_alloc_netdev_queues(struct net_device * dev)10023 static int netif_alloc_netdev_queues(struct net_device *dev)
10024 {
10025 unsigned int count = dev->num_tx_queues;
10026 struct netdev_queue *tx;
10027 size_t sz = count * sizeof(*tx);
10028
10029 if (count < 1 || count > 0xffff)
10030 return -EINVAL;
10031
10032 tx = kvzalloc(sz, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10033 if (!tx)
10034 return -ENOMEM;
10035
10036 dev->_tx = tx;
10037
10038 netdev_for_each_tx_queue(dev, netdev_init_one_queue, NULL);
10039 spin_lock_init(&dev->tx_global_lock);
10040
10041 return 0;
10042 }
10043
netif_tx_stop_all_queues(struct net_device * dev)10044 void netif_tx_stop_all_queues(struct net_device *dev)
10045 {
10046 unsigned int i;
10047
10048 for (i = 0; i < dev->num_tx_queues; i++) {
10049 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
10050
10051 netif_tx_stop_queue(txq);
10052 }
10053 }
10054 EXPORT_SYMBOL(netif_tx_stop_all_queues);
10055
netdev_do_alloc_pcpu_stats(struct net_device * dev)10056 static int netdev_do_alloc_pcpu_stats(struct net_device *dev)
10057 {
10058 void __percpu *v;
10059
10060 /* Drivers implementing ndo_get_peer_dev must support tstat
10061 * accounting, so that skb_do_redirect() can bump the dev's
10062 * RX stats upon network namespace switch.
10063 */
10064 if (dev->netdev_ops->ndo_get_peer_dev &&
10065 dev->pcpu_stat_type != NETDEV_PCPU_STAT_TSTATS)
10066 return -EOPNOTSUPP;
10067
10068 switch (dev->pcpu_stat_type) {
10069 case NETDEV_PCPU_STAT_NONE:
10070 return 0;
10071 case NETDEV_PCPU_STAT_LSTATS:
10072 v = dev->lstats = netdev_alloc_pcpu_stats(struct pcpu_lstats);
10073 break;
10074 case NETDEV_PCPU_STAT_TSTATS:
10075 v = dev->tstats = netdev_alloc_pcpu_stats(struct pcpu_sw_netstats);
10076 break;
10077 case NETDEV_PCPU_STAT_DSTATS:
10078 v = dev->dstats = netdev_alloc_pcpu_stats(struct pcpu_dstats);
10079 break;
10080 default:
10081 return -EINVAL;
10082 }
10083
10084 return v ? 0 : -ENOMEM;
10085 }
10086
netdev_do_free_pcpu_stats(struct net_device * dev)10087 static void netdev_do_free_pcpu_stats(struct net_device *dev)
10088 {
10089 switch (dev->pcpu_stat_type) {
10090 case NETDEV_PCPU_STAT_NONE:
10091 return;
10092 case NETDEV_PCPU_STAT_LSTATS:
10093 free_percpu(dev->lstats);
10094 break;
10095 case NETDEV_PCPU_STAT_TSTATS:
10096 free_percpu(dev->tstats);
10097 break;
10098 case NETDEV_PCPU_STAT_DSTATS:
10099 free_percpu(dev->dstats);
10100 break;
10101 }
10102 }
10103
10104 /**
10105 * register_netdevice() - register a network device
10106 * @dev: device to register
10107 *
10108 * Take a prepared network device structure and make it externally accessible.
10109 * A %NETDEV_REGISTER message is sent to the netdev notifier chain.
10110 * Callers must hold the rtnl lock - you may want register_netdev()
10111 * instead of this.
10112 */
register_netdevice(struct net_device * dev)10113 int register_netdevice(struct net_device *dev)
10114 {
10115 int ret;
10116 struct net *net = dev_net(dev);
10117
10118 BUILD_BUG_ON(sizeof(netdev_features_t) * BITS_PER_BYTE <
10119 NETDEV_FEATURE_COUNT);
10120 BUG_ON(dev_boot_phase);
10121 ASSERT_RTNL();
10122
10123 might_sleep();
10124
10125 /* When net_device's are persistent, this will be fatal. */
10126 BUG_ON(dev->reg_state != NETREG_UNINITIALIZED);
10127 BUG_ON(!net);
10128
10129 ret = ethtool_check_ops(dev->ethtool_ops);
10130 if (ret)
10131 return ret;
10132
10133 spin_lock_init(&dev->addr_list_lock);
10134 netdev_set_addr_lockdep_class(dev);
10135
10136 ret = dev_get_valid_name(net, dev, dev->name);
10137 if (ret < 0)
10138 goto out;
10139
10140 ret = -ENOMEM;
10141 dev->name_node = netdev_name_node_head_alloc(dev);
10142 if (!dev->name_node)
10143 goto out;
10144
10145 /* Init, if this function is available */
10146 if (dev->netdev_ops->ndo_init) {
10147 ret = dev->netdev_ops->ndo_init(dev);
10148 if (ret) {
10149 if (ret > 0)
10150 ret = -EIO;
10151 goto err_free_name;
10152 }
10153 }
10154
10155 if (((dev->hw_features | dev->features) &
10156 NETIF_F_HW_VLAN_CTAG_FILTER) &&
10157 (!dev->netdev_ops->ndo_vlan_rx_add_vid ||
10158 !dev->netdev_ops->ndo_vlan_rx_kill_vid)) {
10159 netdev_WARN(dev, "Buggy VLAN acceleration in driver!\n");
10160 ret = -EINVAL;
10161 goto err_uninit;
10162 }
10163
10164 ret = netdev_do_alloc_pcpu_stats(dev);
10165 if (ret)
10166 goto err_uninit;
10167
10168 ret = dev_index_reserve(net, dev->ifindex);
10169 if (ret < 0)
10170 goto err_free_pcpu;
10171 dev->ifindex = ret;
10172
10173 /* Transfer changeable features to wanted_features and enable
10174 * software offloads (GSO and GRO).
10175 */
10176 dev->hw_features |= (NETIF_F_SOFT_FEATURES | NETIF_F_SOFT_FEATURES_OFF);
10177 dev->features |= NETIF_F_SOFT_FEATURES;
10178
10179 if (dev->udp_tunnel_nic_info) {
10180 dev->features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10181 dev->hw_features |= NETIF_F_RX_UDP_TUNNEL_PORT;
10182 }
10183
10184 dev->wanted_features = dev->features & dev->hw_features;
10185
10186 if (!(dev->flags & IFF_LOOPBACK))
10187 dev->hw_features |= NETIF_F_NOCACHE_COPY;
10188
10189 /* If IPv4 TCP segmentation offload is supported we should also
10190 * allow the device to enable segmenting the frame with the option
10191 * of ignoring a static IP ID value. This doesn't enable the
10192 * feature itself but allows the user to enable it later.
10193 */
10194 if (dev->hw_features & NETIF_F_TSO)
10195 dev->hw_features |= NETIF_F_TSO_MANGLEID;
10196 if (dev->vlan_features & NETIF_F_TSO)
10197 dev->vlan_features |= NETIF_F_TSO_MANGLEID;
10198 if (dev->mpls_features & NETIF_F_TSO)
10199 dev->mpls_features |= NETIF_F_TSO_MANGLEID;
10200 if (dev->hw_enc_features & NETIF_F_TSO)
10201 dev->hw_enc_features |= NETIF_F_TSO_MANGLEID;
10202
10203 /* Make NETIF_F_HIGHDMA inheritable to VLAN devices.
10204 */
10205 dev->vlan_features |= NETIF_F_HIGHDMA;
10206
10207 /* Make NETIF_F_SG inheritable to tunnel devices.
10208 */
10209 dev->hw_enc_features |= NETIF_F_SG | NETIF_F_GSO_PARTIAL;
10210
10211 /* Make NETIF_F_SG inheritable to MPLS.
10212 */
10213 dev->mpls_features |= NETIF_F_SG;
10214
10215 ret = call_netdevice_notifiers(NETDEV_POST_INIT, dev);
10216 ret = notifier_to_errno(ret);
10217 if (ret)
10218 goto err_ifindex_release;
10219
10220 ret = netdev_register_kobject(dev);
10221 write_lock(&dev_base_lock);
10222 dev->reg_state = ret ? NETREG_UNREGISTERED : NETREG_REGISTERED;
10223 write_unlock(&dev_base_lock);
10224 if (ret)
10225 goto err_uninit_notify;
10226
10227 __netdev_update_features(dev);
10228
10229 /*
10230 * Default initial state at registry is that the
10231 * device is present.
10232 */
10233
10234 set_bit(__LINK_STATE_PRESENT, &dev->state);
10235
10236 linkwatch_init_dev(dev);
10237
10238 dev_init_scheduler(dev);
10239
10240 netdev_hold(dev, &dev->dev_registered_tracker, GFP_KERNEL);
10241 list_netdevice(dev);
10242
10243 add_device_randomness(dev->dev_addr, dev->addr_len);
10244
10245 /* If the device has permanent device address, driver should
10246 * set dev_addr and also addr_assign_type should be set to
10247 * NET_ADDR_PERM (default value).
10248 */
10249 if (dev->addr_assign_type == NET_ADDR_PERM)
10250 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
10251
10252 /* Notify protocols, that a new device appeared. */
10253 ret = call_netdevice_notifiers(NETDEV_REGISTER, dev);
10254 ret = notifier_to_errno(ret);
10255 if (ret) {
10256 /* Expect explicit free_netdev() on failure */
10257 dev->needs_free_netdev = false;
10258 unregister_netdevice_queue(dev, NULL);
10259 goto out;
10260 }
10261 /*
10262 * Prevent userspace races by waiting until the network
10263 * device is fully setup before sending notifications.
10264 */
10265 if (!dev->rtnl_link_ops ||
10266 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
10267 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
10268
10269 out:
10270 return ret;
10271
10272 err_uninit_notify:
10273 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
10274 err_ifindex_release:
10275 dev_index_release(net, dev->ifindex);
10276 err_free_pcpu:
10277 netdev_do_free_pcpu_stats(dev);
10278 err_uninit:
10279 if (dev->netdev_ops->ndo_uninit)
10280 dev->netdev_ops->ndo_uninit(dev);
10281 if (dev->priv_destructor)
10282 dev->priv_destructor(dev);
10283 err_free_name:
10284 netdev_name_node_free(dev->name_node);
10285 goto out;
10286 }
10287 EXPORT_SYMBOL(register_netdevice);
10288
10289 /**
10290 * init_dummy_netdev - init a dummy network device for NAPI
10291 * @dev: device to init
10292 *
10293 * This takes a network device structure and initialize the minimum
10294 * amount of fields so it can be used to schedule NAPI polls without
10295 * registering a full blown interface. This is to be used by drivers
10296 * that need to tie several hardware interfaces to a single NAPI
10297 * poll scheduler due to HW limitations.
10298 */
init_dummy_netdev(struct net_device * dev)10299 int init_dummy_netdev(struct net_device *dev)
10300 {
10301 /* Clear everything. Note we don't initialize spinlocks
10302 * are they aren't supposed to be taken by any of the
10303 * NAPI code and this dummy netdev is supposed to be
10304 * only ever used for NAPI polls
10305 */
10306 memset(dev, 0, sizeof(struct net_device));
10307
10308 /* make sure we BUG if trying to hit standard
10309 * register/unregister code path
10310 */
10311 dev->reg_state = NETREG_DUMMY;
10312
10313 /* NAPI wants this */
10314 INIT_LIST_HEAD(&dev->napi_list);
10315
10316 /* a dummy interface is started by default */
10317 set_bit(__LINK_STATE_PRESENT, &dev->state);
10318 set_bit(__LINK_STATE_START, &dev->state);
10319
10320 /* napi_busy_loop stats accounting wants this */
10321 dev_net_set(dev, &init_net);
10322
10323 /* Note : We dont allocate pcpu_refcnt for dummy devices,
10324 * because users of this 'device' dont need to change
10325 * its refcount.
10326 */
10327
10328 return 0;
10329 }
10330 EXPORT_SYMBOL_GPL(init_dummy_netdev);
10331
10332
10333 /**
10334 * register_netdev - register a network device
10335 * @dev: device to register
10336 *
10337 * Take a completed network device structure and add it to the kernel
10338 * interfaces. A %NETDEV_REGISTER message is sent to the netdev notifier
10339 * chain. 0 is returned on success. A negative errno code is returned
10340 * on a failure to set up the device, or if the name is a duplicate.
10341 *
10342 * This is a wrapper around register_netdevice that takes the rtnl semaphore
10343 * and expands the device name if you passed a format string to
10344 * alloc_netdev.
10345 */
register_netdev(struct net_device * dev)10346 int register_netdev(struct net_device *dev)
10347 {
10348 int err;
10349
10350 if (rtnl_lock_killable())
10351 return -EINTR;
10352 err = register_netdevice(dev);
10353 rtnl_unlock();
10354 return err;
10355 }
10356 EXPORT_SYMBOL(register_netdev);
10357
netdev_refcnt_read(const struct net_device * dev)10358 int netdev_refcnt_read(const struct net_device *dev)
10359 {
10360 #ifdef CONFIG_PCPU_DEV_REFCNT
10361 int i, refcnt = 0;
10362
10363 for_each_possible_cpu(i)
10364 refcnt += *per_cpu_ptr(dev->pcpu_refcnt, i);
10365 return refcnt;
10366 #else
10367 return refcount_read(&dev->dev_refcnt);
10368 #endif
10369 }
10370 EXPORT_SYMBOL(netdev_refcnt_read);
10371
10372 int netdev_unregister_timeout_secs __read_mostly = 10;
10373
10374 #define WAIT_REFS_MIN_MSECS 1
10375 #define WAIT_REFS_MAX_MSECS 250
10376 /**
10377 * netdev_wait_allrefs_any - wait until all references are gone.
10378 * @list: list of net_devices to wait on
10379 *
10380 * This is called when unregistering network devices.
10381 *
10382 * Any protocol or device that holds a reference should register
10383 * for netdevice notification, and cleanup and put back the
10384 * reference if they receive an UNREGISTER event.
10385 * We can get stuck here if buggy protocols don't correctly
10386 * call dev_put.
10387 */
netdev_wait_allrefs_any(struct list_head * list)10388 static struct net_device *netdev_wait_allrefs_any(struct list_head *list)
10389 {
10390 unsigned long rebroadcast_time, warning_time;
10391 struct net_device *dev;
10392 int wait = 0;
10393
10394 rebroadcast_time = warning_time = jiffies;
10395
10396 list_for_each_entry(dev, list, todo_list)
10397 if (netdev_refcnt_read(dev) == 1)
10398 return dev;
10399
10400 while (true) {
10401 if (time_after(jiffies, rebroadcast_time + 1 * HZ)) {
10402 rtnl_lock();
10403
10404 /* Rebroadcast unregister notification */
10405 list_for_each_entry(dev, list, todo_list)
10406 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
10407
10408 __rtnl_unlock();
10409 rcu_barrier();
10410 rtnl_lock();
10411
10412 list_for_each_entry(dev, list, todo_list)
10413 if (test_bit(__LINK_STATE_LINKWATCH_PENDING,
10414 &dev->state)) {
10415 /* We must not have linkwatch events
10416 * pending on unregister. If this
10417 * happens, we simply run the queue
10418 * unscheduled, resulting in a noop
10419 * for this device.
10420 */
10421 linkwatch_run_queue();
10422 break;
10423 }
10424
10425 __rtnl_unlock();
10426
10427 rebroadcast_time = jiffies;
10428 }
10429
10430 if (!wait) {
10431 rcu_barrier();
10432 wait = WAIT_REFS_MIN_MSECS;
10433 } else {
10434 msleep(wait);
10435 wait = min(wait << 1, WAIT_REFS_MAX_MSECS);
10436 }
10437
10438 list_for_each_entry(dev, list, todo_list)
10439 if (netdev_refcnt_read(dev) == 1)
10440 return dev;
10441
10442 if (time_after(jiffies, warning_time +
10443 READ_ONCE(netdev_unregister_timeout_secs) * HZ)) {
10444 list_for_each_entry(dev, list, todo_list) {
10445 pr_emerg("unregister_netdevice: waiting for %s to become free. Usage count = %d\n",
10446 dev->name, netdev_refcnt_read(dev));
10447 ref_tracker_dir_print(&dev->refcnt_tracker, 10);
10448 }
10449
10450 warning_time = jiffies;
10451 }
10452 }
10453 }
10454
10455 /* The sequence is:
10456 *
10457 * rtnl_lock();
10458 * ...
10459 * register_netdevice(x1);
10460 * register_netdevice(x2);
10461 * ...
10462 * unregister_netdevice(y1);
10463 * unregister_netdevice(y2);
10464 * ...
10465 * rtnl_unlock();
10466 * free_netdev(y1);
10467 * free_netdev(y2);
10468 *
10469 * We are invoked by rtnl_unlock().
10470 * This allows us to deal with problems:
10471 * 1) We can delete sysfs objects which invoke hotplug
10472 * without deadlocking with linkwatch via keventd.
10473 * 2) Since we run with the RTNL semaphore not held, we can sleep
10474 * safely in order to wait for the netdev refcnt to drop to zero.
10475 *
10476 * We must not return until all unregister events added during
10477 * the interval the lock was held have been completed.
10478 */
netdev_run_todo(void)10479 void netdev_run_todo(void)
10480 {
10481 struct net_device *dev, *tmp;
10482 struct list_head list;
10483 #ifdef CONFIG_LOCKDEP
10484 struct list_head unlink_list;
10485
10486 list_replace_init(&net_unlink_list, &unlink_list);
10487
10488 while (!list_empty(&unlink_list)) {
10489 struct net_device *dev = list_first_entry(&unlink_list,
10490 struct net_device,
10491 unlink_list);
10492 list_del_init(&dev->unlink_list);
10493 dev->nested_level = dev->lower_level - 1;
10494 }
10495 #endif
10496
10497 /* Snapshot list, allow later requests */
10498 list_replace_init(&net_todo_list, &list);
10499
10500 __rtnl_unlock();
10501
10502 /* Wait for rcu callbacks to finish before next phase */
10503 if (!list_empty(&list))
10504 rcu_barrier();
10505
10506 list_for_each_entry_safe(dev, tmp, &list, todo_list) {
10507 if (unlikely(dev->reg_state != NETREG_UNREGISTERING)) {
10508 netdev_WARN(dev, "run_todo but not unregistering\n");
10509 list_del(&dev->todo_list);
10510 continue;
10511 }
10512
10513 write_lock(&dev_base_lock);
10514 dev->reg_state = NETREG_UNREGISTERED;
10515 write_unlock(&dev_base_lock);
10516 linkwatch_forget_dev(dev);
10517 }
10518
10519 while (!list_empty(&list)) {
10520 dev = netdev_wait_allrefs_any(&list);
10521 list_del(&dev->todo_list);
10522
10523 /* paranoia */
10524 BUG_ON(netdev_refcnt_read(dev) != 1);
10525 BUG_ON(!list_empty(&dev->ptype_all));
10526 BUG_ON(!list_empty(&dev->ptype_specific));
10527 WARN_ON(rcu_access_pointer(dev->ip_ptr));
10528 WARN_ON(rcu_access_pointer(dev->ip6_ptr));
10529
10530 netdev_do_free_pcpu_stats(dev);
10531 if (dev->priv_destructor)
10532 dev->priv_destructor(dev);
10533 if (dev->needs_free_netdev)
10534 free_netdev(dev);
10535
10536 if (atomic_dec_and_test(&dev_net(dev)->dev_unreg_count))
10537 wake_up(&netdev_unregistering_wq);
10538
10539 /* Free network device */
10540 kobject_put(&dev->dev.kobj);
10541 }
10542 }
10543
10544 /* Convert net_device_stats to rtnl_link_stats64. rtnl_link_stats64 has
10545 * all the same fields in the same order as net_device_stats, with only
10546 * the type differing, but rtnl_link_stats64 may have additional fields
10547 * at the end for newer counters.
10548 */
netdev_stats_to_stats64(struct rtnl_link_stats64 * stats64,const struct net_device_stats * netdev_stats)10549 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
10550 const struct net_device_stats *netdev_stats)
10551 {
10552 size_t i, n = sizeof(*netdev_stats) / sizeof(atomic_long_t);
10553 const atomic_long_t *src = (atomic_long_t *)netdev_stats;
10554 u64 *dst = (u64 *)stats64;
10555
10556 BUILD_BUG_ON(n > sizeof(*stats64) / sizeof(u64));
10557 for (i = 0; i < n; i++)
10558 dst[i] = (unsigned long)atomic_long_read(&src[i]);
10559 /* zero out counters that only exist in rtnl_link_stats64 */
10560 memset((char *)stats64 + n * sizeof(u64), 0,
10561 sizeof(*stats64) - n * sizeof(u64));
10562 }
10563 EXPORT_SYMBOL(netdev_stats_to_stats64);
10564
netdev_core_stats_alloc(struct net_device * dev)10565 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev)
10566 {
10567 struct net_device_core_stats __percpu *p;
10568
10569 p = alloc_percpu_gfp(struct net_device_core_stats,
10570 GFP_ATOMIC | __GFP_NOWARN);
10571
10572 if (p && cmpxchg(&dev->core_stats, NULL, p))
10573 free_percpu(p);
10574
10575 /* This READ_ONCE() pairs with the cmpxchg() above */
10576 return READ_ONCE(dev->core_stats);
10577 }
10578 EXPORT_SYMBOL(netdev_core_stats_alloc);
10579
10580 /**
10581 * dev_get_stats - get network device statistics
10582 * @dev: device to get statistics from
10583 * @storage: place to store stats
10584 *
10585 * Get network statistics from device. Return @storage.
10586 * The device driver may provide its own method by setting
10587 * dev->netdev_ops->get_stats64 or dev->netdev_ops->get_stats;
10588 * otherwise the internal statistics structure is used.
10589 */
dev_get_stats(struct net_device * dev,struct rtnl_link_stats64 * storage)10590 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
10591 struct rtnl_link_stats64 *storage)
10592 {
10593 const struct net_device_ops *ops = dev->netdev_ops;
10594 const struct net_device_core_stats __percpu *p;
10595
10596 if (ops->ndo_get_stats64) {
10597 memset(storage, 0, sizeof(*storage));
10598 ops->ndo_get_stats64(dev, storage);
10599 } else if (ops->ndo_get_stats) {
10600 netdev_stats_to_stats64(storage, ops->ndo_get_stats(dev));
10601 } else {
10602 netdev_stats_to_stats64(storage, &dev->stats);
10603 }
10604
10605 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
10606 p = READ_ONCE(dev->core_stats);
10607 if (p) {
10608 const struct net_device_core_stats *core_stats;
10609 int i;
10610
10611 for_each_possible_cpu(i) {
10612 core_stats = per_cpu_ptr(p, i);
10613 storage->rx_dropped += READ_ONCE(core_stats->rx_dropped);
10614 storage->tx_dropped += READ_ONCE(core_stats->tx_dropped);
10615 storage->rx_nohandler += READ_ONCE(core_stats->rx_nohandler);
10616 storage->rx_otherhost_dropped += READ_ONCE(core_stats->rx_otherhost_dropped);
10617 }
10618 }
10619 return storage;
10620 }
10621 EXPORT_SYMBOL(dev_get_stats);
10622
10623 /**
10624 * dev_fetch_sw_netstats - get per-cpu network device statistics
10625 * @s: place to store stats
10626 * @netstats: per-cpu network stats to read from
10627 *
10628 * Read per-cpu network statistics and populate the related fields in @s.
10629 */
dev_fetch_sw_netstats(struct rtnl_link_stats64 * s,const struct pcpu_sw_netstats __percpu * netstats)10630 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
10631 const struct pcpu_sw_netstats __percpu *netstats)
10632 {
10633 int cpu;
10634
10635 for_each_possible_cpu(cpu) {
10636 u64 rx_packets, rx_bytes, tx_packets, tx_bytes;
10637 const struct pcpu_sw_netstats *stats;
10638 unsigned int start;
10639
10640 stats = per_cpu_ptr(netstats, cpu);
10641 do {
10642 start = u64_stats_fetch_begin(&stats->syncp);
10643 rx_packets = u64_stats_read(&stats->rx_packets);
10644 rx_bytes = u64_stats_read(&stats->rx_bytes);
10645 tx_packets = u64_stats_read(&stats->tx_packets);
10646 tx_bytes = u64_stats_read(&stats->tx_bytes);
10647 } while (u64_stats_fetch_retry(&stats->syncp, start));
10648
10649 s->rx_packets += rx_packets;
10650 s->rx_bytes += rx_bytes;
10651 s->tx_packets += tx_packets;
10652 s->tx_bytes += tx_bytes;
10653 }
10654 }
10655 EXPORT_SYMBOL_GPL(dev_fetch_sw_netstats);
10656
10657 /**
10658 * dev_get_tstats64 - ndo_get_stats64 implementation
10659 * @dev: device to get statistics from
10660 * @s: place to store stats
10661 *
10662 * Populate @s from dev->stats and dev->tstats. Can be used as
10663 * ndo_get_stats64() callback.
10664 */
dev_get_tstats64(struct net_device * dev,struct rtnl_link_stats64 * s)10665 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s)
10666 {
10667 netdev_stats_to_stats64(s, &dev->stats);
10668 dev_fetch_sw_netstats(s, dev->tstats);
10669 }
10670 EXPORT_SYMBOL_GPL(dev_get_tstats64);
10671
dev_ingress_queue_create(struct net_device * dev)10672 struct netdev_queue *dev_ingress_queue_create(struct net_device *dev)
10673 {
10674 struct netdev_queue *queue = dev_ingress_queue(dev);
10675
10676 #ifdef CONFIG_NET_CLS_ACT
10677 if (queue)
10678 return queue;
10679 queue = kzalloc(sizeof(*queue), GFP_KERNEL);
10680 if (!queue)
10681 return NULL;
10682 netdev_init_one_queue(dev, queue, NULL);
10683 RCU_INIT_POINTER(queue->qdisc, &noop_qdisc);
10684 RCU_INIT_POINTER(queue->qdisc_sleeping, &noop_qdisc);
10685 rcu_assign_pointer(dev->ingress_queue, queue);
10686 #endif
10687 return queue;
10688 }
10689
10690 static const struct ethtool_ops default_ethtool_ops;
10691
netdev_set_default_ethtool_ops(struct net_device * dev,const struct ethtool_ops * ops)10692 void netdev_set_default_ethtool_ops(struct net_device *dev,
10693 const struct ethtool_ops *ops)
10694 {
10695 if (dev->ethtool_ops == &default_ethtool_ops)
10696 dev->ethtool_ops = ops;
10697 }
10698 EXPORT_SYMBOL_GPL(netdev_set_default_ethtool_ops);
10699
10700 /**
10701 * netdev_sw_irq_coalesce_default_on() - enable SW IRQ coalescing by default
10702 * @dev: netdev to enable the IRQ coalescing on
10703 *
10704 * Sets a conservative default for SW IRQ coalescing. Users can use
10705 * sysfs attributes to override the default values.
10706 */
netdev_sw_irq_coalesce_default_on(struct net_device * dev)10707 void netdev_sw_irq_coalesce_default_on(struct net_device *dev)
10708 {
10709 WARN_ON(dev->reg_state == NETREG_REGISTERED);
10710
10711 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
10712 dev->gro_flush_timeout = 20000;
10713 dev->napi_defer_hard_irqs = 1;
10714 }
10715 }
10716 EXPORT_SYMBOL_GPL(netdev_sw_irq_coalesce_default_on);
10717
netdev_freemem(struct net_device * dev)10718 void netdev_freemem(struct net_device *dev)
10719 {
10720 char *addr = (char *)dev - dev->padded;
10721
10722 kvfree(addr);
10723 }
10724
10725 /**
10726 * alloc_netdev_mqs - allocate network device
10727 * @sizeof_priv: size of private data to allocate space for
10728 * @name: device name format string
10729 * @name_assign_type: origin of device name
10730 * @setup: callback to initialize device
10731 * @txqs: the number of TX subqueues to allocate
10732 * @rxqs: the number of RX subqueues to allocate
10733 *
10734 * Allocates a struct net_device with private data area for driver use
10735 * and performs basic initialization. Also allocates subqueue structs
10736 * for each queue on the device.
10737 */
alloc_netdev_mqs(int sizeof_priv,const char * name,unsigned char name_assign_type,void (* setup)(struct net_device *),unsigned int txqs,unsigned int rxqs)10738 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
10739 unsigned char name_assign_type,
10740 void (*setup)(struct net_device *),
10741 unsigned int txqs, unsigned int rxqs)
10742 {
10743 struct net_device *dev;
10744 unsigned int alloc_size;
10745 struct net_device *p;
10746
10747 BUG_ON(strlen(name) >= sizeof(dev->name));
10748
10749 if (txqs < 1) {
10750 pr_err("alloc_netdev: Unable to allocate device with zero queues\n");
10751 return NULL;
10752 }
10753
10754 if (rxqs < 1) {
10755 pr_err("alloc_netdev: Unable to allocate device with zero RX queues\n");
10756 return NULL;
10757 }
10758
10759 alloc_size = sizeof(struct net_device);
10760 if (sizeof_priv) {
10761 /* ensure 32-byte alignment of private area */
10762 alloc_size = ALIGN(alloc_size, NETDEV_ALIGN);
10763 alloc_size += sizeof_priv;
10764 }
10765 /* ensure 32-byte alignment of whole construct */
10766 alloc_size += NETDEV_ALIGN - 1;
10767
10768 p = kvzalloc(alloc_size, GFP_KERNEL_ACCOUNT | __GFP_RETRY_MAYFAIL);
10769 if (!p)
10770 return NULL;
10771
10772 dev = PTR_ALIGN(p, NETDEV_ALIGN);
10773 dev->padded = (char *)dev - (char *)p;
10774
10775 ref_tracker_dir_init(&dev->refcnt_tracker, 128, name);
10776 #ifdef CONFIG_PCPU_DEV_REFCNT
10777 dev->pcpu_refcnt = alloc_percpu(int);
10778 if (!dev->pcpu_refcnt)
10779 goto free_dev;
10780 __dev_hold(dev);
10781 #else
10782 refcount_set(&dev->dev_refcnt, 1);
10783 #endif
10784
10785 if (dev_addr_init(dev))
10786 goto free_pcpu;
10787
10788 dev_mc_init(dev);
10789 dev_uc_init(dev);
10790
10791 dev_net_set(dev, &init_net);
10792
10793 dev->gso_max_size = GSO_LEGACY_MAX_SIZE;
10794 dev->xdp_zc_max_segs = 1;
10795 dev->gso_max_segs = GSO_MAX_SEGS;
10796 dev->gro_max_size = GRO_LEGACY_MAX_SIZE;
10797 dev->gso_ipv4_max_size = GSO_LEGACY_MAX_SIZE;
10798 dev->gro_ipv4_max_size = GRO_LEGACY_MAX_SIZE;
10799 dev->tso_max_size = TSO_LEGACY_MAX_SIZE;
10800 dev->tso_max_segs = TSO_MAX_SEGS;
10801 dev->upper_level = 1;
10802 dev->lower_level = 1;
10803 #ifdef CONFIG_LOCKDEP
10804 dev->nested_level = 0;
10805 INIT_LIST_HEAD(&dev->unlink_list);
10806 #endif
10807
10808 INIT_LIST_HEAD(&dev->napi_list);
10809 INIT_LIST_HEAD(&dev->unreg_list);
10810 INIT_LIST_HEAD(&dev->close_list);
10811 INIT_LIST_HEAD(&dev->link_watch_list);
10812 INIT_LIST_HEAD(&dev->adj_list.upper);
10813 INIT_LIST_HEAD(&dev->adj_list.lower);
10814 INIT_LIST_HEAD(&dev->ptype_all);
10815 INIT_LIST_HEAD(&dev->ptype_specific);
10816 INIT_LIST_HEAD(&dev->net_notifier_list);
10817 #ifdef CONFIG_NET_SCHED
10818 hash_init(dev->qdisc_hash);
10819 #endif
10820 dev->priv_flags = IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM;
10821 setup(dev);
10822
10823 if (!dev->tx_queue_len) {
10824 dev->priv_flags |= IFF_NO_QUEUE;
10825 dev->tx_queue_len = DEFAULT_TX_QUEUE_LEN;
10826 }
10827
10828 dev->num_tx_queues = txqs;
10829 dev->real_num_tx_queues = txqs;
10830 if (netif_alloc_netdev_queues(dev))
10831 goto free_all;
10832
10833 dev->num_rx_queues = rxqs;
10834 dev->real_num_rx_queues = rxqs;
10835 if (netif_alloc_rx_queues(dev))
10836 goto free_all;
10837
10838 strcpy(dev->name, name);
10839 dev->name_assign_type = name_assign_type;
10840 dev->group = INIT_NETDEV_GROUP;
10841 if (!dev->ethtool_ops)
10842 dev->ethtool_ops = &default_ethtool_ops;
10843
10844 nf_hook_netdev_init(dev);
10845
10846 return dev;
10847
10848 free_all:
10849 free_netdev(dev);
10850 return NULL;
10851
10852 free_pcpu:
10853 #ifdef CONFIG_PCPU_DEV_REFCNT
10854 free_percpu(dev->pcpu_refcnt);
10855 free_dev:
10856 #endif
10857 netdev_freemem(dev);
10858 return NULL;
10859 }
10860 EXPORT_SYMBOL(alloc_netdev_mqs);
10861
10862 /**
10863 * free_netdev - free network device
10864 * @dev: device
10865 *
10866 * This function does the last stage of destroying an allocated device
10867 * interface. The reference to the device object is released. If this
10868 * is the last reference then it will be freed.Must be called in process
10869 * context.
10870 */
free_netdev(struct net_device * dev)10871 void free_netdev(struct net_device *dev)
10872 {
10873 struct napi_struct *p, *n;
10874
10875 might_sleep();
10876
10877 /* When called immediately after register_netdevice() failed the unwind
10878 * handling may still be dismantling the device. Handle that case by
10879 * deferring the free.
10880 */
10881 if (dev->reg_state == NETREG_UNREGISTERING) {
10882 ASSERT_RTNL();
10883 dev->needs_free_netdev = true;
10884 return;
10885 }
10886
10887 netif_free_tx_queues(dev);
10888 netif_free_rx_queues(dev);
10889
10890 kfree(rcu_dereference_protected(dev->ingress_queue, 1));
10891
10892 /* Flush device addresses */
10893 dev_addr_flush(dev);
10894
10895 list_for_each_entry_safe(p, n, &dev->napi_list, dev_list)
10896 netif_napi_del(p);
10897
10898 ref_tracker_dir_exit(&dev->refcnt_tracker);
10899 #ifdef CONFIG_PCPU_DEV_REFCNT
10900 free_percpu(dev->pcpu_refcnt);
10901 dev->pcpu_refcnt = NULL;
10902 #endif
10903 free_percpu(dev->core_stats);
10904 dev->core_stats = NULL;
10905 free_percpu(dev->xdp_bulkq);
10906 dev->xdp_bulkq = NULL;
10907
10908 /* Compatibility with error handling in drivers */
10909 if (dev->reg_state == NETREG_UNINITIALIZED) {
10910 netdev_freemem(dev);
10911 return;
10912 }
10913
10914 BUG_ON(dev->reg_state != NETREG_UNREGISTERED);
10915 dev->reg_state = NETREG_RELEASED;
10916
10917 /* will free via device release */
10918 put_device(&dev->dev);
10919 }
10920 EXPORT_SYMBOL(free_netdev);
10921
10922 /**
10923 * synchronize_net - Synchronize with packet receive processing
10924 *
10925 * Wait for packets currently being received to be done.
10926 * Does not block later packets from starting.
10927 */
synchronize_net(void)10928 void synchronize_net(void)
10929 {
10930 might_sleep();
10931 if (rtnl_is_locked())
10932 synchronize_rcu_expedited();
10933 else
10934 synchronize_rcu();
10935 }
10936 EXPORT_SYMBOL(synchronize_net);
10937
10938 /**
10939 * unregister_netdevice_queue - remove device from the kernel
10940 * @dev: device
10941 * @head: list
10942 *
10943 * This function shuts down a device interface and removes it
10944 * from the kernel tables.
10945 * If head not NULL, device is queued to be unregistered later.
10946 *
10947 * Callers must hold the rtnl semaphore. You may want
10948 * unregister_netdev() instead of this.
10949 */
10950
unregister_netdevice_queue(struct net_device * dev,struct list_head * head)10951 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head)
10952 {
10953 ASSERT_RTNL();
10954
10955 if (head) {
10956 list_move_tail(&dev->unreg_list, head);
10957 } else {
10958 LIST_HEAD(single);
10959
10960 list_add(&dev->unreg_list, &single);
10961 unregister_netdevice_many(&single);
10962 }
10963 }
10964 EXPORT_SYMBOL(unregister_netdevice_queue);
10965
unregister_netdevice_many_notify(struct list_head * head,u32 portid,const struct nlmsghdr * nlh)10966 void unregister_netdevice_many_notify(struct list_head *head,
10967 u32 portid, const struct nlmsghdr *nlh)
10968 {
10969 struct net_device *dev, *tmp;
10970 LIST_HEAD(close_head);
10971
10972 BUG_ON(dev_boot_phase);
10973 ASSERT_RTNL();
10974
10975 if (list_empty(head))
10976 return;
10977
10978 list_for_each_entry_safe(dev, tmp, head, unreg_list) {
10979 /* Some devices call without registering
10980 * for initialization unwind. Remove those
10981 * devices and proceed with the remaining.
10982 */
10983 if (dev->reg_state == NETREG_UNINITIALIZED) {
10984 pr_debug("unregister_netdevice: device %s/%p never was registered\n",
10985 dev->name, dev);
10986
10987 WARN_ON(1);
10988 list_del(&dev->unreg_list);
10989 continue;
10990 }
10991 dev->dismantle = true;
10992 BUG_ON(dev->reg_state != NETREG_REGISTERED);
10993 }
10994
10995 /* If device is running, close it first. */
10996 list_for_each_entry(dev, head, unreg_list)
10997 list_add_tail(&dev->close_list, &close_head);
10998 dev_close_many(&close_head, true);
10999
11000 list_for_each_entry(dev, head, unreg_list) {
11001 /* And unlink it from device chain. */
11002 write_lock(&dev_base_lock);
11003 unlist_netdevice(dev, false);
11004 dev->reg_state = NETREG_UNREGISTERING;
11005 write_unlock(&dev_base_lock);
11006 }
11007 flush_all_backlogs();
11008
11009 synchronize_net();
11010
11011 list_for_each_entry(dev, head, unreg_list) {
11012 struct sk_buff *skb = NULL;
11013
11014 /* Shutdown queueing discipline. */
11015 dev_shutdown(dev);
11016 dev_tcx_uninstall(dev);
11017 dev_xdp_uninstall(dev);
11018 bpf_dev_bound_netdev_unregister(dev);
11019
11020 netdev_offload_xstats_disable_all(dev);
11021
11022 /* Notify protocols, that we are about to destroy
11023 * this device. They should clean all the things.
11024 */
11025 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11026
11027 if (!dev->rtnl_link_ops ||
11028 dev->rtnl_link_state == RTNL_LINK_INITIALIZED)
11029 skb = rtmsg_ifinfo_build_skb(RTM_DELLINK, dev, ~0U, 0,
11030 GFP_KERNEL, NULL, 0,
11031 portid, nlh);
11032
11033 /*
11034 * Flush the unicast and multicast chains
11035 */
11036 dev_uc_flush(dev);
11037 dev_mc_flush(dev);
11038
11039 netdev_name_node_alt_flush(dev);
11040 netdev_name_node_free(dev->name_node);
11041
11042 call_netdevice_notifiers(NETDEV_PRE_UNINIT, dev);
11043
11044 if (dev->netdev_ops->ndo_uninit)
11045 dev->netdev_ops->ndo_uninit(dev);
11046
11047 if (skb)
11048 rtmsg_ifinfo_send(skb, dev, GFP_KERNEL, portid, nlh);
11049
11050 /* Notifier chain MUST detach us all upper devices. */
11051 WARN_ON(netdev_has_any_upper_dev(dev));
11052 WARN_ON(netdev_has_any_lower_dev(dev));
11053
11054 /* Remove entries from kobject tree */
11055 netdev_unregister_kobject(dev);
11056 #ifdef CONFIG_XPS
11057 /* Remove XPS queueing entries */
11058 netif_reset_xps_queues_gt(dev, 0);
11059 #endif
11060 }
11061
11062 synchronize_net();
11063
11064 list_for_each_entry(dev, head, unreg_list) {
11065 netdev_put(dev, &dev->dev_registered_tracker);
11066 net_set_todo(dev);
11067 }
11068
11069 list_del(head);
11070 }
11071
11072 /**
11073 * unregister_netdevice_many - unregister many devices
11074 * @head: list of devices
11075 *
11076 * Note: As most callers use a stack allocated list_head,
11077 * we force a list_del() to make sure stack wont be corrupted later.
11078 */
unregister_netdevice_many(struct list_head * head)11079 void unregister_netdevice_many(struct list_head *head)
11080 {
11081 unregister_netdevice_many_notify(head, 0, NULL);
11082 }
11083 EXPORT_SYMBOL(unregister_netdevice_many);
11084
11085 /**
11086 * unregister_netdev - remove device from the kernel
11087 * @dev: device
11088 *
11089 * This function shuts down a device interface and removes it
11090 * from the kernel tables.
11091 *
11092 * This is just a wrapper for unregister_netdevice that takes
11093 * the rtnl semaphore. In general you want to use this and not
11094 * unregister_netdevice.
11095 */
unregister_netdev(struct net_device * dev)11096 void unregister_netdev(struct net_device *dev)
11097 {
11098 rtnl_lock();
11099 unregister_netdevice(dev);
11100 rtnl_unlock();
11101 }
11102 EXPORT_SYMBOL(unregister_netdev);
11103
11104 /**
11105 * __dev_change_net_namespace - move device to different nethost namespace
11106 * @dev: device
11107 * @net: network namespace
11108 * @pat: If not NULL name pattern to try if the current device name
11109 * is already taken in the destination network namespace.
11110 * @new_ifindex: If not zero, specifies device index in the target
11111 * namespace.
11112 *
11113 * This function shuts down a device interface and moves it
11114 * to a new network namespace. On success 0 is returned, on
11115 * a failure a netagive errno code is returned.
11116 *
11117 * Callers must hold the rtnl semaphore.
11118 */
11119
__dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat,int new_ifindex)11120 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
11121 const char *pat, int new_ifindex)
11122 {
11123 struct netdev_name_node *name_node;
11124 struct net *net_old = dev_net(dev);
11125 char new_name[IFNAMSIZ] = {};
11126 int err, new_nsid;
11127
11128 ASSERT_RTNL();
11129
11130 /* Don't allow namespace local devices to be moved. */
11131 err = -EINVAL;
11132 if (dev->features & NETIF_F_NETNS_LOCAL)
11133 goto out;
11134
11135 /* Ensure the device has been registrered */
11136 if (dev->reg_state != NETREG_REGISTERED)
11137 goto out;
11138
11139 /* Get out if there is nothing todo */
11140 err = 0;
11141 if (net_eq(net_old, net))
11142 goto out;
11143
11144 /* Pick the destination device name, and ensure
11145 * we can use it in the destination network namespace.
11146 */
11147 err = -EEXIST;
11148 if (netdev_name_in_use(net, dev->name)) {
11149 /* We get here if we can't use the current device name */
11150 if (!pat)
11151 goto out;
11152 err = dev_prep_valid_name(net, dev, pat, new_name);
11153 if (err < 0)
11154 goto out;
11155 }
11156 /* Check that none of the altnames conflicts. */
11157 err = -EEXIST;
11158 netdev_for_each_altname(dev, name_node)
11159 if (netdev_name_in_use(net, name_node->name))
11160 goto out;
11161
11162 /* Check that new_ifindex isn't used yet. */
11163 if (new_ifindex) {
11164 err = dev_index_reserve(net, new_ifindex);
11165 if (err < 0)
11166 goto out;
11167 } else {
11168 /* If there is an ifindex conflict assign a new one */
11169 err = dev_index_reserve(net, dev->ifindex);
11170 if (err == -EBUSY)
11171 err = dev_index_reserve(net, 0);
11172 if (err < 0)
11173 goto out;
11174 new_ifindex = err;
11175 }
11176
11177 /*
11178 * And now a mini version of register_netdevice unregister_netdevice.
11179 */
11180
11181 /* If device is running close it first. */
11182 dev_close(dev);
11183
11184 /* And unlink it from device chain */
11185 unlist_netdevice(dev, true);
11186
11187 synchronize_net();
11188
11189 /* Shutdown queueing discipline. */
11190 dev_shutdown(dev);
11191
11192 /* Notify protocols, that we are about to destroy
11193 * this device. They should clean all the things.
11194 *
11195 * Note that dev->reg_state stays at NETREG_REGISTERED.
11196 * This is wanted because this way 8021q and macvlan know
11197 * the device is just moving and can keep their slaves up.
11198 */
11199 call_netdevice_notifiers(NETDEV_UNREGISTER, dev);
11200 rcu_barrier();
11201
11202 new_nsid = peernet2id_alloc(dev_net(dev), net, GFP_KERNEL);
11203
11204 rtmsg_ifinfo_newnet(RTM_DELLINK, dev, ~0U, GFP_KERNEL, &new_nsid,
11205 new_ifindex);
11206
11207 /*
11208 * Flush the unicast and multicast chains
11209 */
11210 dev_uc_flush(dev);
11211 dev_mc_flush(dev);
11212
11213 /* Send a netdev-removed uevent to the old namespace */
11214 kobject_uevent(&dev->dev.kobj, KOBJ_REMOVE);
11215 netdev_adjacent_del_links(dev);
11216
11217 /* Move per-net netdevice notifiers that are following the netdevice */
11218 move_netdevice_notifiers_dev_net(dev, net);
11219
11220 /* Actually switch the network namespace */
11221 dev_net_set(dev, net);
11222 dev->ifindex = new_ifindex;
11223
11224 /* Send a netdev-add uevent to the new namespace */
11225 kobject_uevent(&dev->dev.kobj, KOBJ_ADD);
11226 netdev_adjacent_add_links(dev);
11227
11228 if (new_name[0]) /* Rename the netdev to prepared name */
11229 strscpy(dev->name, new_name, IFNAMSIZ);
11230
11231 /* Fixup kobjects */
11232 err = device_rename(&dev->dev, dev->name);
11233 WARN_ON(err);
11234
11235 /* Adapt owner in case owning user namespace of target network
11236 * namespace is different from the original one.
11237 */
11238 err = netdev_change_owner(dev, net_old, net);
11239 WARN_ON(err);
11240
11241 /* Add the device back in the hashes */
11242 list_netdevice(dev);
11243
11244 /* Notify protocols, that a new device appeared. */
11245 call_netdevice_notifiers(NETDEV_REGISTER, dev);
11246
11247 /*
11248 * Prevent userspace races by waiting until the network
11249 * device is fully setup before sending notifications.
11250 */
11251 rtmsg_ifinfo(RTM_NEWLINK, dev, ~0U, GFP_KERNEL, 0, NULL);
11252
11253 synchronize_net();
11254 err = 0;
11255 out:
11256 return err;
11257 }
11258 EXPORT_SYMBOL_GPL(__dev_change_net_namespace);
11259
dev_cpu_dead(unsigned int oldcpu)11260 static int dev_cpu_dead(unsigned int oldcpu)
11261 {
11262 struct sk_buff **list_skb;
11263 struct sk_buff *skb;
11264 unsigned int cpu;
11265 struct softnet_data *sd, *oldsd, *remsd = NULL;
11266
11267 local_irq_disable();
11268 cpu = smp_processor_id();
11269 sd = &per_cpu(softnet_data, cpu);
11270 oldsd = &per_cpu(softnet_data, oldcpu);
11271
11272 /* Find end of our completion_queue. */
11273 list_skb = &sd->completion_queue;
11274 while (*list_skb)
11275 list_skb = &(*list_skb)->next;
11276 /* Append completion queue from offline CPU. */
11277 *list_skb = oldsd->completion_queue;
11278 oldsd->completion_queue = NULL;
11279
11280 /* Append output queue from offline CPU. */
11281 if (oldsd->output_queue) {
11282 *sd->output_queue_tailp = oldsd->output_queue;
11283 sd->output_queue_tailp = oldsd->output_queue_tailp;
11284 oldsd->output_queue = NULL;
11285 oldsd->output_queue_tailp = &oldsd->output_queue;
11286 }
11287 /* Append NAPI poll list from offline CPU, with one exception :
11288 * process_backlog() must be called by cpu owning percpu backlog.
11289 * We properly handle process_queue & input_pkt_queue later.
11290 */
11291 while (!list_empty(&oldsd->poll_list)) {
11292 struct napi_struct *napi = list_first_entry(&oldsd->poll_list,
11293 struct napi_struct,
11294 poll_list);
11295
11296 list_del_init(&napi->poll_list);
11297 if (napi->poll == process_backlog)
11298 napi->state = 0;
11299 else
11300 ____napi_schedule(sd, napi);
11301 }
11302
11303 raise_softirq_irqoff(NET_TX_SOFTIRQ);
11304 local_irq_enable();
11305
11306 #ifdef CONFIG_RPS
11307 remsd = oldsd->rps_ipi_list;
11308 oldsd->rps_ipi_list = NULL;
11309 #endif
11310 /* send out pending IPI's on offline CPU */
11311 net_rps_send_ipi(remsd);
11312
11313 /* Process offline CPU's input_pkt_queue */
11314 while ((skb = __skb_dequeue(&oldsd->process_queue))) {
11315 netif_rx(skb);
11316 input_queue_head_incr(oldsd);
11317 }
11318 while ((skb = skb_dequeue(&oldsd->input_pkt_queue))) {
11319 netif_rx(skb);
11320 input_queue_head_incr(oldsd);
11321 }
11322
11323 return 0;
11324 }
11325
11326 /**
11327 * netdev_increment_features - increment feature set by one
11328 * @all: current feature set
11329 * @one: new feature set
11330 * @mask: mask feature set
11331 *
11332 * Computes a new feature set after adding a device with feature set
11333 * @one to the master device with current feature set @all. Will not
11334 * enable anything that is off in @mask. Returns the new feature set.
11335 */
netdev_increment_features(netdev_features_t all,netdev_features_t one,netdev_features_t mask)11336 netdev_features_t netdev_increment_features(netdev_features_t all,
11337 netdev_features_t one, netdev_features_t mask)
11338 {
11339 if (mask & NETIF_F_HW_CSUM)
11340 mask |= NETIF_F_CSUM_MASK;
11341 mask |= NETIF_F_VLAN_CHALLENGED;
11342
11343 all |= one & (NETIF_F_ONE_FOR_ALL | NETIF_F_CSUM_MASK) & mask;
11344 all &= one | ~NETIF_F_ALL_FOR_ALL;
11345
11346 /* If one device supports hw checksumming, set for all. */
11347 if (all & NETIF_F_HW_CSUM)
11348 all &= ~(NETIF_F_CSUM_MASK & ~NETIF_F_HW_CSUM);
11349
11350 return all;
11351 }
11352 EXPORT_SYMBOL(netdev_increment_features);
11353
netdev_create_hash(void)11354 static struct hlist_head * __net_init netdev_create_hash(void)
11355 {
11356 int i;
11357 struct hlist_head *hash;
11358
11359 hash = kmalloc_array(NETDEV_HASHENTRIES, sizeof(*hash), GFP_KERNEL);
11360 if (hash != NULL)
11361 for (i = 0; i < NETDEV_HASHENTRIES; i++)
11362 INIT_HLIST_HEAD(&hash[i]);
11363
11364 return hash;
11365 }
11366
11367 /* Initialize per network namespace state */
netdev_init(struct net * net)11368 static int __net_init netdev_init(struct net *net)
11369 {
11370 BUILD_BUG_ON(GRO_HASH_BUCKETS >
11371 8 * sizeof_field(struct napi_struct, gro_bitmask));
11372
11373 INIT_LIST_HEAD(&net->dev_base_head);
11374
11375 net->dev_name_head = netdev_create_hash();
11376 if (net->dev_name_head == NULL)
11377 goto err_name;
11378
11379 net->dev_index_head = netdev_create_hash();
11380 if (net->dev_index_head == NULL)
11381 goto err_idx;
11382
11383 xa_init_flags(&net->dev_by_index, XA_FLAGS_ALLOC1);
11384
11385 RAW_INIT_NOTIFIER_HEAD(&net->netdev_chain);
11386
11387 return 0;
11388
11389 err_idx:
11390 kfree(net->dev_name_head);
11391 err_name:
11392 return -ENOMEM;
11393 }
11394
11395 /**
11396 * netdev_drivername - network driver for the device
11397 * @dev: network device
11398 *
11399 * Determine network driver for device.
11400 */
netdev_drivername(const struct net_device * dev)11401 const char *netdev_drivername(const struct net_device *dev)
11402 {
11403 const struct device_driver *driver;
11404 const struct device *parent;
11405 const char *empty = "";
11406
11407 parent = dev->dev.parent;
11408 if (!parent)
11409 return empty;
11410
11411 driver = parent->driver;
11412 if (driver && driver->name)
11413 return driver->name;
11414 return empty;
11415 }
11416
__netdev_printk(const char * level,const struct net_device * dev,struct va_format * vaf)11417 static void __netdev_printk(const char *level, const struct net_device *dev,
11418 struct va_format *vaf)
11419 {
11420 if (dev && dev->dev.parent) {
11421 dev_printk_emit(level[1] - '0',
11422 dev->dev.parent,
11423 "%s %s %s%s: %pV",
11424 dev_driver_string(dev->dev.parent),
11425 dev_name(dev->dev.parent),
11426 netdev_name(dev), netdev_reg_state(dev),
11427 vaf);
11428 } else if (dev) {
11429 printk("%s%s%s: %pV",
11430 level, netdev_name(dev), netdev_reg_state(dev), vaf);
11431 } else {
11432 printk("%s(NULL net_device): %pV", level, vaf);
11433 }
11434 }
11435
netdev_printk(const char * level,const struct net_device * dev,const char * format,...)11436 void netdev_printk(const char *level, const struct net_device *dev,
11437 const char *format, ...)
11438 {
11439 struct va_format vaf;
11440 va_list args;
11441
11442 va_start(args, format);
11443
11444 vaf.fmt = format;
11445 vaf.va = &args;
11446
11447 __netdev_printk(level, dev, &vaf);
11448
11449 va_end(args);
11450 }
11451 EXPORT_SYMBOL(netdev_printk);
11452
11453 #define define_netdev_printk_level(func, level) \
11454 void func(const struct net_device *dev, const char *fmt, ...) \
11455 { \
11456 struct va_format vaf; \
11457 va_list args; \
11458 \
11459 va_start(args, fmt); \
11460 \
11461 vaf.fmt = fmt; \
11462 vaf.va = &args; \
11463 \
11464 __netdev_printk(level, dev, &vaf); \
11465 \
11466 va_end(args); \
11467 } \
11468 EXPORT_SYMBOL(func);
11469
11470 define_netdev_printk_level(netdev_emerg, KERN_EMERG);
11471 define_netdev_printk_level(netdev_alert, KERN_ALERT);
11472 define_netdev_printk_level(netdev_crit, KERN_CRIT);
11473 define_netdev_printk_level(netdev_err, KERN_ERR);
11474 define_netdev_printk_level(netdev_warn, KERN_WARNING);
11475 define_netdev_printk_level(netdev_notice, KERN_NOTICE);
11476 define_netdev_printk_level(netdev_info, KERN_INFO);
11477
netdev_exit(struct net * net)11478 static void __net_exit netdev_exit(struct net *net)
11479 {
11480 kfree(net->dev_name_head);
11481 kfree(net->dev_index_head);
11482 xa_destroy(&net->dev_by_index);
11483 if (net != &init_net)
11484 WARN_ON_ONCE(!list_empty(&net->dev_base_head));
11485 }
11486
11487 static struct pernet_operations __net_initdata netdev_net_ops = {
11488 .init = netdev_init,
11489 .exit = netdev_exit,
11490 };
11491
default_device_exit_net(struct net * net)11492 static void __net_exit default_device_exit_net(struct net *net)
11493 {
11494 struct netdev_name_node *name_node, *tmp;
11495 struct net_device *dev, *aux;
11496 /*
11497 * Push all migratable network devices back to the
11498 * initial network namespace
11499 */
11500 ASSERT_RTNL();
11501 for_each_netdev_safe(net, dev, aux) {
11502 int err;
11503 char fb_name[IFNAMSIZ];
11504
11505 /* Ignore unmoveable devices (i.e. loopback) */
11506 if (dev->features & NETIF_F_NETNS_LOCAL)
11507 continue;
11508
11509 /* Leave virtual devices for the generic cleanup */
11510 if (dev->rtnl_link_ops && !dev->rtnl_link_ops->netns_refund)
11511 continue;
11512
11513 /* Push remaining network devices to init_net */
11514 snprintf(fb_name, IFNAMSIZ, "dev%d", dev->ifindex);
11515 if (netdev_name_in_use(&init_net, fb_name))
11516 snprintf(fb_name, IFNAMSIZ, "dev%%d");
11517
11518 netdev_for_each_altname_safe(dev, name_node, tmp)
11519 if (netdev_name_in_use(&init_net, name_node->name)) {
11520 netdev_name_node_del(name_node);
11521 synchronize_rcu();
11522 __netdev_name_node_alt_destroy(name_node);
11523 }
11524
11525 err = dev_change_net_namespace(dev, &init_net, fb_name);
11526 if (err) {
11527 pr_emerg("%s: failed to move %s to init_net: %d\n",
11528 __func__, dev->name, err);
11529 BUG();
11530 }
11531 }
11532 }
11533
default_device_exit_batch(struct list_head * net_list)11534 static void __net_exit default_device_exit_batch(struct list_head *net_list)
11535 {
11536 /* At exit all network devices most be removed from a network
11537 * namespace. Do this in the reverse order of registration.
11538 * Do this across as many network namespaces as possible to
11539 * improve batching efficiency.
11540 */
11541 struct net_device *dev;
11542 struct net *net;
11543 LIST_HEAD(dev_kill_list);
11544
11545 rtnl_lock();
11546 list_for_each_entry(net, net_list, exit_list) {
11547 default_device_exit_net(net);
11548 cond_resched();
11549 }
11550
11551 list_for_each_entry(net, net_list, exit_list) {
11552 for_each_netdev_reverse(net, dev) {
11553 if (dev->rtnl_link_ops && dev->rtnl_link_ops->dellink)
11554 dev->rtnl_link_ops->dellink(dev, &dev_kill_list);
11555 else
11556 unregister_netdevice_queue(dev, &dev_kill_list);
11557 }
11558 }
11559 unregister_netdevice_many(&dev_kill_list);
11560 rtnl_unlock();
11561 }
11562
11563 static struct pernet_operations __net_initdata default_device_ops = {
11564 .exit_batch = default_device_exit_batch,
11565 };
11566
11567 /*
11568 * Initialize the DEV module. At boot time this walks the device list and
11569 * unhooks any devices that fail to initialise (normally hardware not
11570 * present) and leaves us with a valid list of present and active devices.
11571 *
11572 */
11573
11574 /*
11575 * This is called single threaded during boot, so no need
11576 * to take the rtnl semaphore.
11577 */
net_dev_init(void)11578 static int __init net_dev_init(void)
11579 {
11580 int i, rc = -ENOMEM;
11581
11582 BUG_ON(!dev_boot_phase);
11583
11584 if (dev_proc_init())
11585 goto out;
11586
11587 if (netdev_kobject_init())
11588 goto out;
11589
11590 INIT_LIST_HEAD(&ptype_all);
11591 for (i = 0; i < PTYPE_HASH_SIZE; i++)
11592 INIT_LIST_HEAD(&ptype_base[i]);
11593
11594 if (register_pernet_subsys(&netdev_net_ops))
11595 goto out;
11596
11597 /*
11598 * Initialise the packet receive queues.
11599 */
11600
11601 for_each_possible_cpu(i) {
11602 struct work_struct *flush = per_cpu_ptr(&flush_works, i);
11603 struct softnet_data *sd = &per_cpu(softnet_data, i);
11604
11605 INIT_WORK(flush, flush_backlog);
11606
11607 skb_queue_head_init(&sd->input_pkt_queue);
11608 skb_queue_head_init(&sd->process_queue);
11609 #ifdef CONFIG_XFRM_OFFLOAD
11610 skb_queue_head_init(&sd->xfrm_backlog);
11611 #endif
11612 INIT_LIST_HEAD(&sd->poll_list);
11613 sd->output_queue_tailp = &sd->output_queue;
11614 #ifdef CONFIG_RPS
11615 INIT_CSD(&sd->csd, rps_trigger_softirq, sd);
11616 sd->cpu = i;
11617 #endif
11618 INIT_CSD(&sd->defer_csd, trigger_rx_softirq, sd);
11619 spin_lock_init(&sd->defer_lock);
11620
11621 init_gro_hash(&sd->backlog);
11622 sd->backlog.poll = process_backlog;
11623 sd->backlog.weight = weight_p;
11624 }
11625
11626 dev_boot_phase = 0;
11627
11628 /* The loopback device is special if any other network devices
11629 * is present in a network namespace the loopback device must
11630 * be present. Since we now dynamically allocate and free the
11631 * loopback device ensure this invariant is maintained by
11632 * keeping the loopback device as the first device on the
11633 * list of network devices. Ensuring the loopback devices
11634 * is the first device that appears and the last network device
11635 * that disappears.
11636 */
11637 if (register_pernet_device(&loopback_net_ops))
11638 goto out;
11639
11640 if (register_pernet_device(&default_device_ops))
11641 goto out;
11642
11643 open_softirq(NET_TX_SOFTIRQ, net_tx_action);
11644 open_softirq(NET_RX_SOFTIRQ, net_rx_action);
11645
11646 rc = cpuhp_setup_state_nocalls(CPUHP_NET_DEV_DEAD, "net/dev:dead",
11647 NULL, dev_cpu_dead);
11648 WARN_ON(rc < 0);
11649 rc = 0;
11650 out:
11651 return rc;
11652 }
11653
11654 subsys_initcall(net_dev_init);
11655