1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/objtool.h>
4 #include <linux/percpu.h>
5 
6 #include <asm/debugreg.h>
7 #include <asm/mmu_context.h>
8 
9 #include "cpuid.h"
10 #include "evmcs.h"
11 #include "hyperv.h"
12 #include "mmu.h"
13 #include "nested.h"
14 #include "pmu.h"
15 #include "sgx.h"
16 #include "trace.h"
17 #include "vmx.h"
18 #include "x86.h"
19 
20 static bool __read_mostly enable_shadow_vmcs = 1;
21 module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
22 
23 static bool __read_mostly nested_early_check = 0;
24 module_param(nested_early_check, bool, S_IRUGO);
25 
26 #define CC KVM_NESTED_VMENTER_CONSISTENCY_CHECK
27 
28 /*
29  * Hyper-V requires all of these, so mark them as supported even though
30  * they are just treated the same as all-context.
31  */
32 #define VMX_VPID_EXTENT_SUPPORTED_MASK		\
33 	(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT |	\
34 	VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |	\
35 	VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT |	\
36 	VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
37 
38 #define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
39 
40 enum {
41 	VMX_VMREAD_BITMAP,
42 	VMX_VMWRITE_BITMAP,
43 	VMX_BITMAP_NR
44 };
45 static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
46 
47 #define vmx_vmread_bitmap                    (vmx_bitmap[VMX_VMREAD_BITMAP])
48 #define vmx_vmwrite_bitmap                   (vmx_bitmap[VMX_VMWRITE_BITMAP])
49 
50 struct shadow_vmcs_field {
51 	u16	encoding;
52 	u16	offset;
53 };
54 static struct shadow_vmcs_field shadow_read_only_fields[] = {
55 #define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
56 #include "vmcs_shadow_fields.h"
57 };
58 static int max_shadow_read_only_fields =
59 	ARRAY_SIZE(shadow_read_only_fields);
60 
61 static struct shadow_vmcs_field shadow_read_write_fields[] = {
62 #define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
63 #include "vmcs_shadow_fields.h"
64 };
65 static int max_shadow_read_write_fields =
66 	ARRAY_SIZE(shadow_read_write_fields);
67 
init_vmcs_shadow_fields(void)68 static void init_vmcs_shadow_fields(void)
69 {
70 	int i, j;
71 
72 	memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
73 	memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
74 
75 	for (i = j = 0; i < max_shadow_read_only_fields; i++) {
76 		struct shadow_vmcs_field entry = shadow_read_only_fields[i];
77 		u16 field = entry.encoding;
78 
79 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
80 		    (i + 1 == max_shadow_read_only_fields ||
81 		     shadow_read_only_fields[i + 1].encoding != field + 1))
82 			pr_err("Missing field from shadow_read_only_field %x\n",
83 			       field + 1);
84 
85 		clear_bit(field, vmx_vmread_bitmap);
86 		if (field & 1)
87 #ifdef CONFIG_X86_64
88 			continue;
89 #else
90 			entry.offset += sizeof(u32);
91 #endif
92 		shadow_read_only_fields[j++] = entry;
93 	}
94 	max_shadow_read_only_fields = j;
95 
96 	for (i = j = 0; i < max_shadow_read_write_fields; i++) {
97 		struct shadow_vmcs_field entry = shadow_read_write_fields[i];
98 		u16 field = entry.encoding;
99 
100 		if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
101 		    (i + 1 == max_shadow_read_write_fields ||
102 		     shadow_read_write_fields[i + 1].encoding != field + 1))
103 			pr_err("Missing field from shadow_read_write_field %x\n",
104 			       field + 1);
105 
106 		WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
107 			  field <= GUEST_TR_AR_BYTES,
108 			  "Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
109 
110 		/*
111 		 * PML and the preemption timer can be emulated, but the
112 		 * processor cannot vmwrite to fields that don't exist
113 		 * on bare metal.
114 		 */
115 		switch (field) {
116 		case GUEST_PML_INDEX:
117 			if (!cpu_has_vmx_pml())
118 				continue;
119 			break;
120 		case VMX_PREEMPTION_TIMER_VALUE:
121 			if (!cpu_has_vmx_preemption_timer())
122 				continue;
123 			break;
124 		case GUEST_INTR_STATUS:
125 			if (!cpu_has_vmx_apicv())
126 				continue;
127 			break;
128 		default:
129 			break;
130 		}
131 
132 		clear_bit(field, vmx_vmwrite_bitmap);
133 		clear_bit(field, vmx_vmread_bitmap);
134 		if (field & 1)
135 #ifdef CONFIG_X86_64
136 			continue;
137 #else
138 			entry.offset += sizeof(u32);
139 #endif
140 		shadow_read_write_fields[j++] = entry;
141 	}
142 	max_shadow_read_write_fields = j;
143 }
144 
145 /*
146  * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
147  * set the success or error code of an emulated VMX instruction (as specified
148  * by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
149  * instruction.
150  */
nested_vmx_succeed(struct kvm_vcpu * vcpu)151 static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
152 {
153 	vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
154 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
155 			    X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
156 	return kvm_skip_emulated_instruction(vcpu);
157 }
158 
nested_vmx_failInvalid(struct kvm_vcpu * vcpu)159 static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
160 {
161 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
162 			& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
163 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
164 			| X86_EFLAGS_CF);
165 	return kvm_skip_emulated_instruction(vcpu);
166 }
167 
nested_vmx_failValid(struct kvm_vcpu * vcpu,u32 vm_instruction_error)168 static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
169 				u32 vm_instruction_error)
170 {
171 	vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
172 			& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
173 			    X86_EFLAGS_SF | X86_EFLAGS_OF))
174 			| X86_EFLAGS_ZF);
175 	get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
176 	/*
177 	 * We don't need to force sync to shadow VMCS because
178 	 * VM_INSTRUCTION_ERROR is not shadowed. Enlightened VMCS 'shadows' all
179 	 * fields and thus must be synced.
180 	 */
181 	if (to_vmx(vcpu)->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
182 		to_vmx(vcpu)->nested.need_vmcs12_to_shadow_sync = true;
183 
184 	return kvm_skip_emulated_instruction(vcpu);
185 }
186 
nested_vmx_fail(struct kvm_vcpu * vcpu,u32 vm_instruction_error)187 static int nested_vmx_fail(struct kvm_vcpu *vcpu, u32 vm_instruction_error)
188 {
189 	struct vcpu_vmx *vmx = to_vmx(vcpu);
190 
191 	/*
192 	 * failValid writes the error number to the current VMCS, which
193 	 * can't be done if there isn't a current VMCS.
194 	 */
195 	if (vmx->nested.current_vmptr == INVALID_GPA &&
196 	    !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
197 		return nested_vmx_failInvalid(vcpu);
198 
199 	return nested_vmx_failValid(vcpu, vm_instruction_error);
200 }
201 
nested_vmx_abort(struct kvm_vcpu * vcpu,u32 indicator)202 static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
203 {
204 	/* TODO: not to reset guest simply here. */
205 	kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
206 	pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
207 }
208 
vmx_control_verify(u32 control,u32 low,u32 high)209 static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
210 {
211 	return fixed_bits_valid(control, low, high);
212 }
213 
vmx_control_msr(u32 low,u32 high)214 static inline u64 vmx_control_msr(u32 low, u32 high)
215 {
216 	return low | ((u64)high << 32);
217 }
218 
vmx_disable_shadow_vmcs(struct vcpu_vmx * vmx)219 static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
220 {
221 	secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
222 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
223 	vmx->nested.need_vmcs12_to_shadow_sync = false;
224 }
225 
nested_release_evmcs(struct kvm_vcpu * vcpu)226 static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
227 {
228 	struct vcpu_vmx *vmx = to_vmx(vcpu);
229 
230 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
231 		kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
232 		vmx->nested.hv_evmcs = NULL;
233 	}
234 
235 	vmx->nested.hv_evmcs_vmptr = EVMPTR_INVALID;
236 }
237 
vmx_sync_vmcs_host_state(struct vcpu_vmx * vmx,struct loaded_vmcs * prev)238 static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
239 				     struct loaded_vmcs *prev)
240 {
241 	struct vmcs_host_state *dest, *src;
242 
243 	if (unlikely(!vmx->guest_state_loaded))
244 		return;
245 
246 	src = &prev->host_state;
247 	dest = &vmx->loaded_vmcs->host_state;
248 
249 	vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
250 	dest->ldt_sel = src->ldt_sel;
251 #ifdef CONFIG_X86_64
252 	dest->ds_sel = src->ds_sel;
253 	dest->es_sel = src->es_sel;
254 #endif
255 }
256 
vmx_switch_vmcs(struct kvm_vcpu * vcpu,struct loaded_vmcs * vmcs)257 static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
258 {
259 	struct vcpu_vmx *vmx = to_vmx(vcpu);
260 	struct loaded_vmcs *prev;
261 	int cpu;
262 
263 	if (WARN_ON_ONCE(vmx->loaded_vmcs == vmcs))
264 		return;
265 
266 	cpu = get_cpu();
267 	prev = vmx->loaded_vmcs;
268 	vmx->loaded_vmcs = vmcs;
269 	vmx_vcpu_load_vmcs(vcpu, cpu, prev);
270 	vmx_sync_vmcs_host_state(vmx, prev);
271 	put_cpu();
272 
273 	vcpu->arch.regs_avail = ~VMX_REGS_LAZY_LOAD_SET;
274 
275 	/*
276 	 * All lazily updated registers will be reloaded from VMCS12 on both
277 	 * vmentry and vmexit.
278 	 */
279 	vcpu->arch.regs_dirty = 0;
280 }
281 
282 /*
283  * Free whatever needs to be freed from vmx->nested when L1 goes down, or
284  * just stops using VMX.
285  */
free_nested(struct kvm_vcpu * vcpu)286 static void free_nested(struct kvm_vcpu *vcpu)
287 {
288 	struct vcpu_vmx *vmx = to_vmx(vcpu);
289 
290 	if (WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01))
291 		vmx_switch_vmcs(vcpu, &vmx->vmcs01);
292 
293 	if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
294 		return;
295 
296 	kvm_clear_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
297 
298 	vmx->nested.vmxon = false;
299 	vmx->nested.smm.vmxon = false;
300 	vmx->nested.vmxon_ptr = INVALID_GPA;
301 	free_vpid(vmx->nested.vpid02);
302 	vmx->nested.posted_intr_nv = -1;
303 	vmx->nested.current_vmptr = INVALID_GPA;
304 	if (enable_shadow_vmcs) {
305 		vmx_disable_shadow_vmcs(vmx);
306 		vmcs_clear(vmx->vmcs01.shadow_vmcs);
307 		free_vmcs(vmx->vmcs01.shadow_vmcs);
308 		vmx->vmcs01.shadow_vmcs = NULL;
309 	}
310 	kfree(vmx->nested.cached_vmcs12);
311 	vmx->nested.cached_vmcs12 = NULL;
312 	kfree(vmx->nested.cached_shadow_vmcs12);
313 	vmx->nested.cached_shadow_vmcs12 = NULL;
314 	/* Unpin physical memory we referred to in the vmcs02 */
315 	if (vmx->nested.apic_access_page) {
316 		kvm_release_page_clean(vmx->nested.apic_access_page);
317 		vmx->nested.apic_access_page = NULL;
318 	}
319 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
320 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
321 	vmx->nested.pi_desc = NULL;
322 
323 	kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
324 
325 	nested_release_evmcs(vcpu);
326 
327 	free_loaded_vmcs(&vmx->nested.vmcs02);
328 }
329 
330 /*
331  * Ensure that the current vmcs of the logical processor is the
332  * vmcs01 of the vcpu before calling free_nested().
333  */
nested_vmx_free_vcpu(struct kvm_vcpu * vcpu)334 void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
335 {
336 	vcpu_load(vcpu);
337 	vmx_leave_nested(vcpu);
338 	vcpu_put(vcpu);
339 }
340 
341 #define EPTP_PA_MASK   GENMASK_ULL(51, 12)
342 
nested_ept_root_matches(hpa_t root_hpa,u64 root_eptp,u64 eptp)343 static bool nested_ept_root_matches(hpa_t root_hpa, u64 root_eptp, u64 eptp)
344 {
345 	return VALID_PAGE(root_hpa) &&
346 	       ((root_eptp & EPTP_PA_MASK) == (eptp & EPTP_PA_MASK));
347 }
348 
nested_ept_invalidate_addr(struct kvm_vcpu * vcpu,gpa_t eptp,gpa_t addr)349 static void nested_ept_invalidate_addr(struct kvm_vcpu *vcpu, gpa_t eptp,
350 				       gpa_t addr)
351 {
352 	uint i;
353 	struct kvm_mmu_root_info *cached_root;
354 
355 	WARN_ON_ONCE(!mmu_is_nested(vcpu));
356 
357 	for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
358 		cached_root = &vcpu->arch.mmu->prev_roots[i];
359 
360 		if (nested_ept_root_matches(cached_root->hpa, cached_root->pgd,
361 					    eptp))
362 			vcpu->arch.mmu->invlpg(vcpu, addr, cached_root->hpa);
363 	}
364 }
365 
nested_ept_inject_page_fault(struct kvm_vcpu * vcpu,struct x86_exception * fault)366 static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
367 		struct x86_exception *fault)
368 {
369 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
370 	struct vcpu_vmx *vmx = to_vmx(vcpu);
371 	u32 vm_exit_reason;
372 	unsigned long exit_qualification = vcpu->arch.exit_qualification;
373 
374 	if (vmx->nested.pml_full) {
375 		vm_exit_reason = EXIT_REASON_PML_FULL;
376 		vmx->nested.pml_full = false;
377 		exit_qualification &= INTR_INFO_UNBLOCK_NMI;
378 	} else {
379 		if (fault->error_code & PFERR_RSVD_MASK)
380 			vm_exit_reason = EXIT_REASON_EPT_MISCONFIG;
381 		else
382 			vm_exit_reason = EXIT_REASON_EPT_VIOLATION;
383 
384 		/*
385 		 * Although the caller (kvm_inject_emulated_page_fault) would
386 		 * have already synced the faulting address in the shadow EPT
387 		 * tables for the current EPTP12, we also need to sync it for
388 		 * any other cached EPTP02s based on the same EP4TA, since the
389 		 * TLB associates mappings to the EP4TA rather than the full EPTP.
390 		 */
391 		nested_ept_invalidate_addr(vcpu, vmcs12->ept_pointer,
392 					   fault->address);
393 	}
394 
395 	nested_vmx_vmexit(vcpu, vm_exit_reason, 0, exit_qualification);
396 	vmcs12->guest_physical_address = fault->address;
397 }
398 
nested_ept_new_eptp(struct kvm_vcpu * vcpu)399 static void nested_ept_new_eptp(struct kvm_vcpu *vcpu)
400 {
401 	struct vcpu_vmx *vmx = to_vmx(vcpu);
402 	bool execonly = vmx->nested.msrs.ept_caps & VMX_EPT_EXECUTE_ONLY_BIT;
403 	int ept_lpage_level = ept_caps_to_lpage_level(vmx->nested.msrs.ept_caps);
404 
405 	kvm_init_shadow_ept_mmu(vcpu, execonly, ept_lpage_level,
406 				nested_ept_ad_enabled(vcpu),
407 				nested_ept_get_eptp(vcpu));
408 }
409 
nested_ept_init_mmu_context(struct kvm_vcpu * vcpu)410 static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
411 {
412 	WARN_ON(mmu_is_nested(vcpu));
413 
414 	vcpu->arch.mmu = &vcpu->arch.guest_mmu;
415 	nested_ept_new_eptp(vcpu);
416 	vcpu->arch.mmu->get_guest_pgd     = nested_ept_get_eptp;
417 	vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
418 	vcpu->arch.mmu->get_pdptr         = kvm_pdptr_read;
419 
420 	vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
421 }
422 
nested_ept_uninit_mmu_context(struct kvm_vcpu * vcpu)423 static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
424 {
425 	vcpu->arch.mmu = &vcpu->arch.root_mmu;
426 	vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
427 }
428 
nested_vmx_is_page_fault_vmexit(struct vmcs12 * vmcs12,u16 error_code)429 static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
430 					    u16 error_code)
431 {
432 	bool inequality, bit;
433 
434 	bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
435 	inequality =
436 		(error_code & vmcs12->page_fault_error_code_mask) !=
437 		 vmcs12->page_fault_error_code_match;
438 	return inequality ^ bit;
439 }
440 
441 
442 /*
443  * KVM wants to inject page-faults which it got to the guest. This function
444  * checks whether in a nested guest, we need to inject them to L1 or L2.
445  */
nested_vmx_check_exception(struct kvm_vcpu * vcpu,unsigned long * exit_qual)446 static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
447 {
448 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
449 	unsigned int nr = vcpu->arch.exception.nr;
450 	bool has_payload = vcpu->arch.exception.has_payload;
451 	unsigned long payload = vcpu->arch.exception.payload;
452 
453 	if (nr == PF_VECTOR) {
454 		if (vcpu->arch.exception.nested_apf) {
455 			*exit_qual = vcpu->arch.apf.nested_apf_token;
456 			return 1;
457 		}
458 		if (nested_vmx_is_page_fault_vmexit(vmcs12,
459 						    vcpu->arch.exception.error_code)) {
460 			*exit_qual = has_payload ? payload : vcpu->arch.cr2;
461 			return 1;
462 		}
463 	} else if (vmcs12->exception_bitmap & (1u << nr)) {
464 		if (nr == DB_VECTOR) {
465 			if (!has_payload) {
466 				payload = vcpu->arch.dr6;
467 				payload &= ~DR6_BT;
468 				payload ^= DR6_ACTIVE_LOW;
469 			}
470 			*exit_qual = payload;
471 		} else
472 			*exit_qual = 0;
473 		return 1;
474 	}
475 
476 	return 0;
477 }
478 
nested_vmx_handle_page_fault_workaround(struct kvm_vcpu * vcpu,struct x86_exception * fault)479 static bool nested_vmx_handle_page_fault_workaround(struct kvm_vcpu *vcpu,
480 						    struct x86_exception *fault)
481 {
482 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
483 
484 	WARN_ON(!is_guest_mode(vcpu));
485 
486 	if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
487 	    !WARN_ON_ONCE(to_vmx(vcpu)->nested.nested_run_pending)) {
488 		vmcs12->vm_exit_intr_error_code = fault->error_code;
489 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
490 				  PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
491 				  INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
492 				  fault->address);
493 		return true;
494 	}
495 	return false;
496 }
497 
nested_vmx_check_io_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)498 static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
499 					       struct vmcs12 *vmcs12)
500 {
501 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
502 		return 0;
503 
504 	if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
505 	    CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
506 		return -EINVAL;
507 
508 	return 0;
509 }
510 
nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)511 static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
512 						struct vmcs12 *vmcs12)
513 {
514 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
515 		return 0;
516 
517 	if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
518 		return -EINVAL;
519 
520 	return 0;
521 }
522 
nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)523 static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
524 						struct vmcs12 *vmcs12)
525 {
526 	if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
527 		return 0;
528 
529 	if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
530 		return -EINVAL;
531 
532 	return 0;
533 }
534 
535 /*
536  * For x2APIC MSRs, ignore the vmcs01 bitmap.  L1 can enable x2APIC without L1
537  * itself utilizing x2APIC.  All MSRs were previously set to be intercepted,
538  * only the "disable intercept" case needs to be handled.
539  */
nested_vmx_disable_intercept_for_x2apic_msr(unsigned long * msr_bitmap_l1,unsigned long * msr_bitmap_l0,u32 msr,int type)540 static void nested_vmx_disable_intercept_for_x2apic_msr(unsigned long *msr_bitmap_l1,
541 							unsigned long *msr_bitmap_l0,
542 							u32 msr, int type)
543 {
544 	if (type & MSR_TYPE_R && !vmx_test_msr_bitmap_read(msr_bitmap_l1, msr))
545 		vmx_clear_msr_bitmap_read(msr_bitmap_l0, msr);
546 
547 	if (type & MSR_TYPE_W && !vmx_test_msr_bitmap_write(msr_bitmap_l1, msr))
548 		vmx_clear_msr_bitmap_write(msr_bitmap_l0, msr);
549 }
550 
enable_x2apic_msr_intercepts(unsigned long * msr_bitmap)551 static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
552 {
553 	int msr;
554 
555 	for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
556 		unsigned word = msr / BITS_PER_LONG;
557 
558 		msr_bitmap[word] = ~0;
559 		msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
560 	}
561 }
562 
563 #define BUILD_NVMX_MSR_INTERCEPT_HELPER(rw)					\
564 static inline									\
565 void nested_vmx_set_msr_##rw##_intercept(struct vcpu_vmx *vmx,			\
566 					 unsigned long *msr_bitmap_l1,		\
567 					 unsigned long *msr_bitmap_l0, u32 msr)	\
568 {										\
569 	if (vmx_test_msr_bitmap_##rw(vmx->vmcs01.msr_bitmap, msr) ||		\
570 	    vmx_test_msr_bitmap_##rw(msr_bitmap_l1, msr))			\
571 		vmx_set_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
572 	else									\
573 		vmx_clear_msr_bitmap_##rw(msr_bitmap_l0, msr);			\
574 }
575 BUILD_NVMX_MSR_INTERCEPT_HELPER(read)
BUILD_NVMX_MSR_INTERCEPT_HELPER(write)576 BUILD_NVMX_MSR_INTERCEPT_HELPER(write)
577 
578 static inline void nested_vmx_set_intercept_for_msr(struct vcpu_vmx *vmx,
579 						    unsigned long *msr_bitmap_l1,
580 						    unsigned long *msr_bitmap_l0,
581 						    u32 msr, int types)
582 {
583 	if (types & MSR_TYPE_R)
584 		nested_vmx_set_msr_read_intercept(vmx, msr_bitmap_l1,
585 						  msr_bitmap_l0, msr);
586 	if (types & MSR_TYPE_W)
587 		nested_vmx_set_msr_write_intercept(vmx, msr_bitmap_l1,
588 						   msr_bitmap_l0, msr);
589 }
590 
591 /*
592  * Merge L0's and L1's MSR bitmap, return false to indicate that
593  * we do not use the hardware.
594  */
nested_vmx_prepare_msr_bitmap(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)595 static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
596 						 struct vmcs12 *vmcs12)
597 {
598 	struct vcpu_vmx *vmx = to_vmx(vcpu);
599 	int msr;
600 	unsigned long *msr_bitmap_l1;
601 	unsigned long *msr_bitmap_l0 = vmx->nested.vmcs02.msr_bitmap;
602 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
603 	struct kvm_host_map *map = &vmx->nested.msr_bitmap_map;
604 
605 	/* Nothing to do if the MSR bitmap is not in use.  */
606 	if (!cpu_has_vmx_msr_bitmap() ||
607 	    !nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
608 		return false;
609 
610 	/*
611 	 * MSR bitmap update can be skipped when:
612 	 * - MSR bitmap for L1 hasn't changed.
613 	 * - Nested hypervisor (L1) is attempting to launch the same L2 as
614 	 *   before.
615 	 * - Nested hypervisor (L1) has enabled 'Enlightened MSR Bitmap' feature
616 	 *   and tells KVM (L0) there were no changes in MSR bitmap for L2.
617 	 */
618 	if (!vmx->nested.force_msr_bitmap_recalc && evmcs &&
619 	    evmcs->hv_enlightenments_control.msr_bitmap &&
620 	    evmcs->hv_clean_fields & HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP)
621 		return true;
622 
623 	if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
624 		return false;
625 
626 	msr_bitmap_l1 = (unsigned long *)map->hva;
627 
628 	/*
629 	 * To keep the control flow simple, pay eight 8-byte writes (sixteen
630 	 * 4-byte writes on 32-bit systems) up front to enable intercepts for
631 	 * the x2APIC MSR range and selectively toggle those relevant to L2.
632 	 */
633 	enable_x2apic_msr_intercepts(msr_bitmap_l0);
634 
635 	if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
636 		if (nested_cpu_has_apic_reg_virt(vmcs12)) {
637 			/*
638 			 * L0 need not intercept reads for MSRs between 0x800
639 			 * and 0x8ff, it just lets the processor take the value
640 			 * from the virtual-APIC page; take those 256 bits
641 			 * directly from the L1 bitmap.
642 			 */
643 			for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
644 				unsigned word = msr / BITS_PER_LONG;
645 
646 				msr_bitmap_l0[word] = msr_bitmap_l1[word];
647 			}
648 		}
649 
650 		nested_vmx_disable_intercept_for_x2apic_msr(
651 			msr_bitmap_l1, msr_bitmap_l0,
652 			X2APIC_MSR(APIC_TASKPRI),
653 			MSR_TYPE_R | MSR_TYPE_W);
654 
655 		if (nested_cpu_has_vid(vmcs12)) {
656 			nested_vmx_disable_intercept_for_x2apic_msr(
657 				msr_bitmap_l1, msr_bitmap_l0,
658 				X2APIC_MSR(APIC_EOI),
659 				MSR_TYPE_W);
660 			nested_vmx_disable_intercept_for_x2apic_msr(
661 				msr_bitmap_l1, msr_bitmap_l0,
662 				X2APIC_MSR(APIC_SELF_IPI),
663 				MSR_TYPE_W);
664 		}
665 	}
666 
667 	/*
668 	 * Always check vmcs01's bitmap to honor userspace MSR filters and any
669 	 * other runtime changes to vmcs01's bitmap, e.g. dynamic pass-through.
670 	 */
671 #ifdef CONFIG_X86_64
672 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
673 					 MSR_FS_BASE, MSR_TYPE_RW);
674 
675 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
676 					 MSR_GS_BASE, MSR_TYPE_RW);
677 
678 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
679 					 MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
680 #endif
681 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
682 					 MSR_IA32_SPEC_CTRL, MSR_TYPE_RW);
683 
684 	nested_vmx_set_intercept_for_msr(vmx, msr_bitmap_l1, msr_bitmap_l0,
685 					 MSR_IA32_PRED_CMD, MSR_TYPE_W);
686 
687 	kvm_vcpu_unmap(vcpu, &vmx->nested.msr_bitmap_map, false);
688 
689 	vmx->nested.force_msr_bitmap_recalc = false;
690 
691 	return true;
692 }
693 
nested_cache_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)694 static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
695 				       struct vmcs12 *vmcs12)
696 {
697 	struct vcpu_vmx *vmx = to_vmx(vcpu);
698 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
699 
700 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
701 	    vmcs12->vmcs_link_pointer == INVALID_GPA)
702 		return;
703 
704 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
705 	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
706 				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
707 		return;
708 
709 	kvm_read_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
710 			      VMCS12_SIZE);
711 }
712 
nested_flush_cached_shadow_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)713 static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
714 					      struct vmcs12 *vmcs12)
715 {
716 	struct vcpu_vmx *vmx = to_vmx(vcpu);
717 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
718 
719 	if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
720 	    vmcs12->vmcs_link_pointer == INVALID_GPA)
721 		return;
722 
723 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
724 	    kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
725 				      vmcs12->vmcs_link_pointer, VMCS12_SIZE))
726 		return;
727 
728 	kvm_write_guest_cached(vmx->vcpu.kvm, ghc, get_shadow_vmcs12(vcpu),
729 			       VMCS12_SIZE);
730 }
731 
732 /*
733  * In nested virtualization, check if L1 has set
734  * VM_EXIT_ACK_INTR_ON_EXIT
735  */
nested_exit_intr_ack_set(struct kvm_vcpu * vcpu)736 static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
737 {
738 	return get_vmcs12(vcpu)->vm_exit_controls &
739 		VM_EXIT_ACK_INTR_ON_EXIT;
740 }
741 
nested_vmx_check_apic_access_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)742 static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
743 					  struct vmcs12 *vmcs12)
744 {
745 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
746 	    CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
747 		return -EINVAL;
748 	else
749 		return 0;
750 }
751 
nested_vmx_check_apicv_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)752 static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
753 					   struct vmcs12 *vmcs12)
754 {
755 	if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
756 	    !nested_cpu_has_apic_reg_virt(vmcs12) &&
757 	    !nested_cpu_has_vid(vmcs12) &&
758 	    !nested_cpu_has_posted_intr(vmcs12))
759 		return 0;
760 
761 	/*
762 	 * If virtualize x2apic mode is enabled,
763 	 * virtualize apic access must be disabled.
764 	 */
765 	if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
766 	       nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
767 		return -EINVAL;
768 
769 	/*
770 	 * If virtual interrupt delivery is enabled,
771 	 * we must exit on external interrupts.
772 	 */
773 	if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
774 		return -EINVAL;
775 
776 	/*
777 	 * bits 15:8 should be zero in posted_intr_nv,
778 	 * the descriptor address has been already checked
779 	 * in nested_get_vmcs12_pages.
780 	 *
781 	 * bits 5:0 of posted_intr_desc_addr should be zero.
782 	 */
783 	if (nested_cpu_has_posted_intr(vmcs12) &&
784 	   (CC(!nested_cpu_has_vid(vmcs12)) ||
785 	    CC(!nested_exit_intr_ack_set(vcpu)) ||
786 	    CC((vmcs12->posted_intr_nv & 0xff00)) ||
787 	    CC(!kvm_vcpu_is_legal_aligned_gpa(vcpu, vmcs12->posted_intr_desc_addr, 64))))
788 		return -EINVAL;
789 
790 	/* tpr shadow is needed by all apicv features. */
791 	if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
792 		return -EINVAL;
793 
794 	return 0;
795 }
796 
nested_vmx_check_msr_switch(struct kvm_vcpu * vcpu,u32 count,u64 addr)797 static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
798 				       u32 count, u64 addr)
799 {
800 	if (count == 0)
801 		return 0;
802 
803 	if (!kvm_vcpu_is_legal_aligned_gpa(vcpu, addr, 16) ||
804 	    !kvm_vcpu_is_legal_gpa(vcpu, (addr + count * sizeof(struct vmx_msr_entry) - 1)))
805 		return -EINVAL;
806 
807 	return 0;
808 }
809 
nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)810 static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
811 						     struct vmcs12 *vmcs12)
812 {
813 	if (CC(nested_vmx_check_msr_switch(vcpu,
814 					   vmcs12->vm_exit_msr_load_count,
815 					   vmcs12->vm_exit_msr_load_addr)) ||
816 	    CC(nested_vmx_check_msr_switch(vcpu,
817 					   vmcs12->vm_exit_msr_store_count,
818 					   vmcs12->vm_exit_msr_store_addr)))
819 		return -EINVAL;
820 
821 	return 0;
822 }
823 
nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)824 static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
825                                                       struct vmcs12 *vmcs12)
826 {
827 	if (CC(nested_vmx_check_msr_switch(vcpu,
828 					   vmcs12->vm_entry_msr_load_count,
829 					   vmcs12->vm_entry_msr_load_addr)))
830                 return -EINVAL;
831 
832 	return 0;
833 }
834 
nested_vmx_check_pml_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)835 static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
836 					 struct vmcs12 *vmcs12)
837 {
838 	if (!nested_cpu_has_pml(vmcs12))
839 		return 0;
840 
841 	if (CC(!nested_cpu_has_ept(vmcs12)) ||
842 	    CC(!page_address_valid(vcpu, vmcs12->pml_address)))
843 		return -EINVAL;
844 
845 	return 0;
846 }
847 
nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)848 static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
849 							struct vmcs12 *vmcs12)
850 {
851 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
852 	       !nested_cpu_has_ept(vmcs12)))
853 		return -EINVAL;
854 	return 0;
855 }
856 
nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)857 static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
858 							 struct vmcs12 *vmcs12)
859 {
860 	if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
861 	       !nested_cpu_has_ept(vmcs12)))
862 		return -EINVAL;
863 	return 0;
864 }
865 
nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)866 static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
867 						 struct vmcs12 *vmcs12)
868 {
869 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
870 		return 0;
871 
872 	if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
873 	    CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
874 		return -EINVAL;
875 
876 	return 0;
877 }
878 
nested_vmx_msr_check_common(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)879 static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
880 				       struct vmx_msr_entry *e)
881 {
882 	/* x2APIC MSR accesses are not allowed */
883 	if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
884 		return -EINVAL;
885 	if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
886 	    CC(e->index == MSR_IA32_UCODE_REV))
887 		return -EINVAL;
888 	if (CC(e->reserved != 0))
889 		return -EINVAL;
890 	return 0;
891 }
892 
nested_vmx_load_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)893 static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
894 				     struct vmx_msr_entry *e)
895 {
896 	if (CC(e->index == MSR_FS_BASE) ||
897 	    CC(e->index == MSR_GS_BASE) ||
898 	    CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
899 	    nested_vmx_msr_check_common(vcpu, e))
900 		return -EINVAL;
901 	return 0;
902 }
903 
nested_vmx_store_msr_check(struct kvm_vcpu * vcpu,struct vmx_msr_entry * e)904 static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
905 				      struct vmx_msr_entry *e)
906 {
907 	if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
908 	    nested_vmx_msr_check_common(vcpu, e))
909 		return -EINVAL;
910 	return 0;
911 }
912 
nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu * vcpu)913 static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
914 {
915 	struct vcpu_vmx *vmx = to_vmx(vcpu);
916 	u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
917 				       vmx->nested.msrs.misc_high);
918 
919 	return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
920 }
921 
922 /*
923  * Load guest's/host's msr at nested entry/exit.
924  * return 0 for success, entry index for failure.
925  *
926  * One of the failure modes for MSR load/store is when a list exceeds the
927  * virtual hardware's capacity. To maintain compatibility with hardware inasmuch
928  * as possible, process all valid entries before failing rather than precheck
929  * for a capacity violation.
930  */
nested_vmx_load_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)931 static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
932 {
933 	u32 i;
934 	struct vmx_msr_entry e;
935 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
936 
937 	for (i = 0; i < count; i++) {
938 		if (unlikely(i >= max_msr_list_size))
939 			goto fail;
940 
941 		if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
942 					&e, sizeof(e))) {
943 			pr_debug_ratelimited(
944 				"%s cannot read MSR entry (%u, 0x%08llx)\n",
945 				__func__, i, gpa + i * sizeof(e));
946 			goto fail;
947 		}
948 		if (nested_vmx_load_msr_check(vcpu, &e)) {
949 			pr_debug_ratelimited(
950 				"%s check failed (%u, 0x%x, 0x%x)\n",
951 				__func__, i, e.index, e.reserved);
952 			goto fail;
953 		}
954 		if (kvm_set_msr(vcpu, e.index, e.value)) {
955 			pr_debug_ratelimited(
956 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
957 				__func__, i, e.index, e.value);
958 			goto fail;
959 		}
960 	}
961 	return 0;
962 fail:
963 	/* Note, max_msr_list_size is at most 4096, i.e. this can't wrap. */
964 	return i + 1;
965 }
966 
nested_vmx_get_vmexit_msr_value(struct kvm_vcpu * vcpu,u32 msr_index,u64 * data)967 static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
968 					    u32 msr_index,
969 					    u64 *data)
970 {
971 	struct vcpu_vmx *vmx = to_vmx(vcpu);
972 
973 	/*
974 	 * If the L0 hypervisor stored a more accurate value for the TSC that
975 	 * does not include the time taken for emulation of the L2->L1
976 	 * VM-exit in L0, use the more accurate value.
977 	 */
978 	if (msr_index == MSR_IA32_TSC) {
979 		int i = vmx_find_loadstore_msr_slot(&vmx->msr_autostore.guest,
980 						    MSR_IA32_TSC);
981 
982 		if (i >= 0) {
983 			u64 val = vmx->msr_autostore.guest.val[i].value;
984 
985 			*data = kvm_read_l1_tsc(vcpu, val);
986 			return true;
987 		}
988 	}
989 
990 	if (kvm_get_msr(vcpu, msr_index, data)) {
991 		pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
992 			msr_index);
993 		return false;
994 	}
995 	return true;
996 }
997 
read_and_check_msr_entry(struct kvm_vcpu * vcpu,u64 gpa,int i,struct vmx_msr_entry * e)998 static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
999 				     struct vmx_msr_entry *e)
1000 {
1001 	if (kvm_vcpu_read_guest(vcpu,
1002 				gpa + i * sizeof(*e),
1003 				e, 2 * sizeof(u32))) {
1004 		pr_debug_ratelimited(
1005 			"%s cannot read MSR entry (%u, 0x%08llx)\n",
1006 			__func__, i, gpa + i * sizeof(*e));
1007 		return false;
1008 	}
1009 	if (nested_vmx_store_msr_check(vcpu, e)) {
1010 		pr_debug_ratelimited(
1011 			"%s check failed (%u, 0x%x, 0x%x)\n",
1012 			__func__, i, e->index, e->reserved);
1013 		return false;
1014 	}
1015 	return true;
1016 }
1017 
nested_vmx_store_msr(struct kvm_vcpu * vcpu,u64 gpa,u32 count)1018 static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
1019 {
1020 	u64 data;
1021 	u32 i;
1022 	struct vmx_msr_entry e;
1023 	u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
1024 
1025 	for (i = 0; i < count; i++) {
1026 		if (unlikely(i >= max_msr_list_size))
1027 			return -EINVAL;
1028 
1029 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1030 			return -EINVAL;
1031 
1032 		if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
1033 			return -EINVAL;
1034 
1035 		if (kvm_vcpu_write_guest(vcpu,
1036 					 gpa + i * sizeof(e) +
1037 					     offsetof(struct vmx_msr_entry, value),
1038 					 &data, sizeof(data))) {
1039 			pr_debug_ratelimited(
1040 				"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
1041 				__func__, i, e.index, data);
1042 			return -EINVAL;
1043 		}
1044 	}
1045 	return 0;
1046 }
1047 
nested_msr_store_list_has_msr(struct kvm_vcpu * vcpu,u32 msr_index)1048 static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
1049 {
1050 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1051 	u32 count = vmcs12->vm_exit_msr_store_count;
1052 	u64 gpa = vmcs12->vm_exit_msr_store_addr;
1053 	struct vmx_msr_entry e;
1054 	u32 i;
1055 
1056 	for (i = 0; i < count; i++) {
1057 		if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
1058 			return false;
1059 
1060 		if (e.index == msr_index)
1061 			return true;
1062 	}
1063 	return false;
1064 }
1065 
prepare_vmx_msr_autostore_list(struct kvm_vcpu * vcpu,u32 msr_index)1066 static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
1067 					   u32 msr_index)
1068 {
1069 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1070 	struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
1071 	bool in_vmcs12_store_list;
1072 	int msr_autostore_slot;
1073 	bool in_autostore_list;
1074 	int last;
1075 
1076 	msr_autostore_slot = vmx_find_loadstore_msr_slot(autostore, msr_index);
1077 	in_autostore_list = msr_autostore_slot >= 0;
1078 	in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
1079 
1080 	if (in_vmcs12_store_list && !in_autostore_list) {
1081 		if (autostore->nr == MAX_NR_LOADSTORE_MSRS) {
1082 			/*
1083 			 * Emulated VMEntry does not fail here.  Instead a less
1084 			 * accurate value will be returned by
1085 			 * nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
1086 			 * instead of reading the value from the vmcs02 VMExit
1087 			 * MSR-store area.
1088 			 */
1089 			pr_warn_ratelimited(
1090 				"Not enough msr entries in msr_autostore.  Can't add msr %x\n",
1091 				msr_index);
1092 			return;
1093 		}
1094 		last = autostore->nr++;
1095 		autostore->val[last].index = msr_index;
1096 	} else if (!in_vmcs12_store_list && in_autostore_list) {
1097 		last = --autostore->nr;
1098 		autostore->val[msr_autostore_slot] = autostore->val[last];
1099 	}
1100 }
1101 
1102 /*
1103  * Load guest's/host's cr3 at nested entry/exit.  @nested_ept is true if we are
1104  * emulating VM-Entry into a guest with EPT enabled.  On failure, the expected
1105  * Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
1106  * @entry_failure_code.
1107  */
nested_vmx_load_cr3(struct kvm_vcpu * vcpu,unsigned long cr3,bool nested_ept,bool reload_pdptrs,enum vm_entry_failure_code * entry_failure_code)1108 static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3,
1109 			       bool nested_ept, bool reload_pdptrs,
1110 			       enum vm_entry_failure_code *entry_failure_code)
1111 {
1112 	if (CC(kvm_vcpu_is_illegal_gpa(vcpu, cr3))) {
1113 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
1114 		return -EINVAL;
1115 	}
1116 
1117 	/*
1118 	 * If PAE paging and EPT are both on, CR3 is not used by the CPU and
1119 	 * must not be dereferenced.
1120 	 */
1121 	if (reload_pdptrs && !nested_ept && is_pae_paging(vcpu) &&
1122 	    CC(!load_pdptrs(vcpu, cr3))) {
1123 		*entry_failure_code = ENTRY_FAIL_PDPTE;
1124 		return -EINVAL;
1125 	}
1126 
1127 	vcpu->arch.cr3 = cr3;
1128 	kvm_register_mark_dirty(vcpu, VCPU_EXREG_CR3);
1129 
1130 	/* Re-initialize the MMU, e.g. to pick up CR4 MMU role changes. */
1131 	kvm_init_mmu(vcpu);
1132 
1133 	if (!nested_ept)
1134 		kvm_mmu_new_pgd(vcpu, cr3);
1135 
1136 	return 0;
1137 }
1138 
1139 /*
1140  * Returns if KVM is able to config CPU to tag TLB entries
1141  * populated by L2 differently than TLB entries populated
1142  * by L1.
1143  *
1144  * If L0 uses EPT, L1 and L2 run with different EPTP because
1145  * guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
1146  * are tagged with different EPTP.
1147  *
1148  * If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
1149  * with different VPID (L1 entries are tagged with vmx->vpid
1150  * while L2 entries are tagged with vmx->nested.vpid02).
1151  */
nested_has_guest_tlb_tag(struct kvm_vcpu * vcpu)1152 static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
1153 {
1154 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1155 
1156 	return enable_ept ||
1157 	       (nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
1158 }
1159 
nested_vmx_transition_tlb_flush(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool is_vmenter)1160 static void nested_vmx_transition_tlb_flush(struct kvm_vcpu *vcpu,
1161 					    struct vmcs12 *vmcs12,
1162 					    bool is_vmenter)
1163 {
1164 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1165 
1166 	/*
1167 	 * If vmcs12 doesn't use VPID, L1 expects linear and combined mappings
1168 	 * for *all* contexts to be flushed on VM-Enter/VM-Exit, i.e. it's a
1169 	 * full TLB flush from the guest's perspective.  This is required even
1170 	 * if VPID is disabled in the host as KVM may need to synchronize the
1171 	 * MMU in response to the guest TLB flush.
1172 	 *
1173 	 * Note, using TLB_FLUSH_GUEST is correct even if nested EPT is in use.
1174 	 * EPT is a special snowflake, as guest-physical mappings aren't
1175 	 * flushed on VPID invalidations, including VM-Enter or VM-Exit with
1176 	 * VPID disabled.  As a result, KVM _never_ needs to sync nEPT
1177 	 * entries on VM-Enter because L1 can't rely on VM-Enter to flush
1178 	 * those mappings.
1179 	 */
1180 	if (!nested_cpu_has_vpid(vmcs12)) {
1181 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1182 		return;
1183 	}
1184 
1185 	/* L2 should never have a VPID if VPID is disabled. */
1186 	WARN_ON(!enable_vpid);
1187 
1188 	/*
1189 	 * VPID is enabled and in use by vmcs12.  If vpid12 is changing, then
1190 	 * emulate a guest TLB flush as KVM does not track vpid12 history nor
1191 	 * is the VPID incorporated into the MMU context.  I.e. KVM must assume
1192 	 * that the new vpid12 has never been used and thus represents a new
1193 	 * guest ASID that cannot have entries in the TLB.
1194 	 */
1195 	if (is_vmenter && vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
1196 		vmx->nested.last_vpid = vmcs12->virtual_processor_id;
1197 		kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
1198 		return;
1199 	}
1200 
1201 	/*
1202 	 * If VPID is enabled, used by vmc12, and vpid12 is not changing but
1203 	 * does not have a unique TLB tag (ASID), i.e. EPT is disabled and
1204 	 * KVM was unable to allocate a VPID for L2, flush the current context
1205 	 * as the effective ASID is common to both L1 and L2.
1206 	 */
1207 	if (!nested_has_guest_tlb_tag(vcpu))
1208 		kvm_make_request(KVM_REQ_TLB_FLUSH_CURRENT, vcpu);
1209 }
1210 
is_bitwise_subset(u64 superset,u64 subset,u64 mask)1211 static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
1212 {
1213 	superset &= mask;
1214 	subset &= mask;
1215 
1216 	return (superset | subset) == superset;
1217 }
1218 
vmx_restore_vmx_basic(struct vcpu_vmx * vmx,u64 data)1219 static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
1220 {
1221 	const u64 feature_and_reserved =
1222 		/* feature (except bit 48; see below) */
1223 		BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
1224 		/* reserved */
1225 		BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
1226 	u64 vmx_basic = vmcs_config.nested.basic;
1227 
1228 	if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
1229 		return -EINVAL;
1230 
1231 	/*
1232 	 * KVM does not emulate a version of VMX that constrains physical
1233 	 * addresses of VMX structures (e.g. VMCS) to 32-bits.
1234 	 */
1235 	if (data & BIT_ULL(48))
1236 		return -EINVAL;
1237 
1238 	if (vmx_basic_vmcs_revision_id(vmx_basic) !=
1239 	    vmx_basic_vmcs_revision_id(data))
1240 		return -EINVAL;
1241 
1242 	if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
1243 		return -EINVAL;
1244 
1245 	vmx->nested.msrs.basic = data;
1246 	return 0;
1247 }
1248 
vmx_get_control_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u32 ** low,u32 ** high)1249 static void vmx_get_control_msr(struct nested_vmx_msrs *msrs, u32 msr_index,
1250 				u32 **low, u32 **high)
1251 {
1252 	switch (msr_index) {
1253 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1254 		*low = &msrs->pinbased_ctls_low;
1255 		*high = &msrs->pinbased_ctls_high;
1256 		break;
1257 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1258 		*low = &msrs->procbased_ctls_low;
1259 		*high = &msrs->procbased_ctls_high;
1260 		break;
1261 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1262 		*low = &msrs->exit_ctls_low;
1263 		*high = &msrs->exit_ctls_high;
1264 		break;
1265 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1266 		*low = &msrs->entry_ctls_low;
1267 		*high = &msrs->entry_ctls_high;
1268 		break;
1269 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1270 		*low = &msrs->secondary_ctls_low;
1271 		*high = &msrs->secondary_ctls_high;
1272 		break;
1273 	default:
1274 		BUG();
1275 	}
1276 }
1277 
1278 static int
vmx_restore_control_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1279 vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1280 {
1281 	u32 *lowp, *highp;
1282 	u64 supported;
1283 
1284 	vmx_get_control_msr(&vmcs_config.nested, msr_index, &lowp, &highp);
1285 
1286 	supported = vmx_control_msr(*lowp, *highp);
1287 
1288 	/* Check must-be-1 bits are still 1. */
1289 	if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
1290 		return -EINVAL;
1291 
1292 	/* Check must-be-0 bits are still 0. */
1293 	if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
1294 		return -EINVAL;
1295 
1296 	vmx_get_control_msr(&vmx->nested.msrs, msr_index, &lowp, &highp);
1297 	*lowp = data;
1298 	*highp = data >> 32;
1299 	return 0;
1300 }
1301 
vmx_restore_vmx_misc(struct vcpu_vmx * vmx,u64 data)1302 static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
1303 {
1304 	const u64 feature_and_reserved_bits =
1305 		/* feature */
1306 		BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
1307 		BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
1308 		/* reserved */
1309 		GENMASK_ULL(13, 9) | BIT_ULL(31);
1310 	u64 vmx_misc = vmx_control_msr(vmcs_config.nested.misc_low,
1311 				       vmcs_config.nested.misc_high);
1312 
1313 	if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
1314 		return -EINVAL;
1315 
1316 	if ((vmx->nested.msrs.pinbased_ctls_high &
1317 	     PIN_BASED_VMX_PREEMPTION_TIMER) &&
1318 	    vmx_misc_preemption_timer_rate(data) !=
1319 	    vmx_misc_preemption_timer_rate(vmx_misc))
1320 		return -EINVAL;
1321 
1322 	if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
1323 		return -EINVAL;
1324 
1325 	if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
1326 		return -EINVAL;
1327 
1328 	if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
1329 		return -EINVAL;
1330 
1331 	vmx->nested.msrs.misc_low = data;
1332 	vmx->nested.msrs.misc_high = data >> 32;
1333 
1334 	return 0;
1335 }
1336 
vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx * vmx,u64 data)1337 static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
1338 {
1339 	u64 vmx_ept_vpid_cap = vmx_control_msr(vmcs_config.nested.ept_caps,
1340 					       vmcs_config.nested.vpid_caps);
1341 
1342 	/* Every bit is either reserved or a feature bit. */
1343 	if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
1344 		return -EINVAL;
1345 
1346 	vmx->nested.msrs.ept_caps = data;
1347 	vmx->nested.msrs.vpid_caps = data >> 32;
1348 	return 0;
1349 }
1350 
vmx_get_fixed0_msr(struct nested_vmx_msrs * msrs,u32 msr_index)1351 static u64 *vmx_get_fixed0_msr(struct nested_vmx_msrs *msrs, u32 msr_index)
1352 {
1353 	switch (msr_index) {
1354 	case MSR_IA32_VMX_CR0_FIXED0:
1355 		return &msrs->cr0_fixed0;
1356 	case MSR_IA32_VMX_CR4_FIXED0:
1357 		return &msrs->cr4_fixed0;
1358 	default:
1359 		BUG();
1360 	}
1361 }
1362 
vmx_restore_fixed0_msr(struct vcpu_vmx * vmx,u32 msr_index,u64 data)1363 static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
1364 {
1365 	const u64 *msr = vmx_get_fixed0_msr(&vmcs_config.nested, msr_index);
1366 
1367 	/*
1368 	 * 1 bits (which indicates bits which "must-be-1" during VMX operation)
1369 	 * must be 1 in the restored value.
1370 	 */
1371 	if (!is_bitwise_subset(data, *msr, -1ULL))
1372 		return -EINVAL;
1373 
1374 	*vmx_get_fixed0_msr(&vmx->nested.msrs, msr_index) = data;
1375 	return 0;
1376 }
1377 
1378 /*
1379  * Called when userspace is restoring VMX MSRs.
1380  *
1381  * Returns 0 on success, non-0 otherwise.
1382  */
vmx_set_vmx_msr(struct kvm_vcpu * vcpu,u32 msr_index,u64 data)1383 int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
1384 {
1385 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1386 
1387 	/*
1388 	 * Don't allow changes to the VMX capability MSRs while the vCPU
1389 	 * is in VMX operation.
1390 	 */
1391 	if (vmx->nested.vmxon)
1392 		return -EBUSY;
1393 
1394 	switch (msr_index) {
1395 	case MSR_IA32_VMX_BASIC:
1396 		return vmx_restore_vmx_basic(vmx, data);
1397 	case MSR_IA32_VMX_PINBASED_CTLS:
1398 	case MSR_IA32_VMX_PROCBASED_CTLS:
1399 	case MSR_IA32_VMX_EXIT_CTLS:
1400 	case MSR_IA32_VMX_ENTRY_CTLS:
1401 		/*
1402 		 * The "non-true" VMX capability MSRs are generated from the
1403 		 * "true" MSRs, so we do not support restoring them directly.
1404 		 *
1405 		 * If userspace wants to emulate VMX_BASIC[55]=0, userspace
1406 		 * should restore the "true" MSRs with the must-be-1 bits
1407 		 * set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
1408 		 * DEFAULT SETTINGS".
1409 		 */
1410 		return -EINVAL;
1411 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1412 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1413 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1414 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1415 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1416 		return vmx_restore_control_msr(vmx, msr_index, data);
1417 	case MSR_IA32_VMX_MISC:
1418 		return vmx_restore_vmx_misc(vmx, data);
1419 	case MSR_IA32_VMX_CR0_FIXED0:
1420 	case MSR_IA32_VMX_CR4_FIXED0:
1421 		return vmx_restore_fixed0_msr(vmx, msr_index, data);
1422 	case MSR_IA32_VMX_CR0_FIXED1:
1423 	case MSR_IA32_VMX_CR4_FIXED1:
1424 		/*
1425 		 * These MSRs are generated based on the vCPU's CPUID, so we
1426 		 * do not support restoring them directly.
1427 		 */
1428 		return -EINVAL;
1429 	case MSR_IA32_VMX_EPT_VPID_CAP:
1430 		return vmx_restore_vmx_ept_vpid_cap(vmx, data);
1431 	case MSR_IA32_VMX_VMCS_ENUM:
1432 		vmx->nested.msrs.vmcs_enum = data;
1433 		return 0;
1434 	case MSR_IA32_VMX_VMFUNC:
1435 		if (data & ~vmcs_config.nested.vmfunc_controls)
1436 			return -EINVAL;
1437 		vmx->nested.msrs.vmfunc_controls = data;
1438 		return 0;
1439 	default:
1440 		/*
1441 		 * The rest of the VMX capability MSRs do not support restore.
1442 		 */
1443 		return -EINVAL;
1444 	}
1445 }
1446 
1447 /* Returns 0 on success, non-0 otherwise. */
vmx_get_vmx_msr(struct nested_vmx_msrs * msrs,u32 msr_index,u64 * pdata)1448 int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
1449 {
1450 	switch (msr_index) {
1451 	case MSR_IA32_VMX_BASIC:
1452 		*pdata = msrs->basic;
1453 		break;
1454 	case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
1455 	case MSR_IA32_VMX_PINBASED_CTLS:
1456 		*pdata = vmx_control_msr(
1457 			msrs->pinbased_ctls_low,
1458 			msrs->pinbased_ctls_high);
1459 		if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
1460 			*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1461 		break;
1462 	case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
1463 	case MSR_IA32_VMX_PROCBASED_CTLS:
1464 		*pdata = vmx_control_msr(
1465 			msrs->procbased_ctls_low,
1466 			msrs->procbased_ctls_high);
1467 		if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
1468 			*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
1469 		break;
1470 	case MSR_IA32_VMX_TRUE_EXIT_CTLS:
1471 	case MSR_IA32_VMX_EXIT_CTLS:
1472 		*pdata = vmx_control_msr(
1473 			msrs->exit_ctls_low,
1474 			msrs->exit_ctls_high);
1475 		if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
1476 			*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
1477 		break;
1478 	case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
1479 	case MSR_IA32_VMX_ENTRY_CTLS:
1480 		*pdata = vmx_control_msr(
1481 			msrs->entry_ctls_low,
1482 			msrs->entry_ctls_high);
1483 		if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
1484 			*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
1485 		break;
1486 	case MSR_IA32_VMX_MISC:
1487 		*pdata = vmx_control_msr(
1488 			msrs->misc_low,
1489 			msrs->misc_high);
1490 		break;
1491 	case MSR_IA32_VMX_CR0_FIXED0:
1492 		*pdata = msrs->cr0_fixed0;
1493 		break;
1494 	case MSR_IA32_VMX_CR0_FIXED1:
1495 		*pdata = msrs->cr0_fixed1;
1496 		break;
1497 	case MSR_IA32_VMX_CR4_FIXED0:
1498 		*pdata = msrs->cr4_fixed0;
1499 		break;
1500 	case MSR_IA32_VMX_CR4_FIXED1:
1501 		*pdata = msrs->cr4_fixed1;
1502 		break;
1503 	case MSR_IA32_VMX_VMCS_ENUM:
1504 		*pdata = msrs->vmcs_enum;
1505 		break;
1506 	case MSR_IA32_VMX_PROCBASED_CTLS2:
1507 		*pdata = vmx_control_msr(
1508 			msrs->secondary_ctls_low,
1509 			msrs->secondary_ctls_high);
1510 		break;
1511 	case MSR_IA32_VMX_EPT_VPID_CAP:
1512 		*pdata = msrs->ept_caps |
1513 			((u64)msrs->vpid_caps << 32);
1514 		break;
1515 	case MSR_IA32_VMX_VMFUNC:
1516 		*pdata = msrs->vmfunc_controls;
1517 		break;
1518 	default:
1519 		return 1;
1520 	}
1521 
1522 	return 0;
1523 }
1524 
1525 /*
1526  * Copy the writable VMCS shadow fields back to the VMCS12, in case they have
1527  * been modified by the L1 guest.  Note, "writable" in this context means
1528  * "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
1529  * fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
1530  * VM-exit information fields (which are actually writable if the vCPU is
1531  * configured to support "VMWRITE to any supported field in the VMCS").
1532  */
copy_shadow_to_vmcs12(struct vcpu_vmx * vmx)1533 static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
1534 {
1535 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1536 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1537 	struct shadow_vmcs_field field;
1538 	unsigned long val;
1539 	int i;
1540 
1541 	if (WARN_ON(!shadow_vmcs))
1542 		return;
1543 
1544 	preempt_disable();
1545 
1546 	vmcs_load(shadow_vmcs);
1547 
1548 	for (i = 0; i < max_shadow_read_write_fields; i++) {
1549 		field = shadow_read_write_fields[i];
1550 		val = __vmcs_readl(field.encoding);
1551 		vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
1552 	}
1553 
1554 	vmcs_clear(shadow_vmcs);
1555 	vmcs_load(vmx->loaded_vmcs->vmcs);
1556 
1557 	preempt_enable();
1558 }
1559 
copy_vmcs12_to_shadow(struct vcpu_vmx * vmx)1560 static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
1561 {
1562 	const struct shadow_vmcs_field *fields[] = {
1563 		shadow_read_write_fields,
1564 		shadow_read_only_fields
1565 	};
1566 	const int max_fields[] = {
1567 		max_shadow_read_write_fields,
1568 		max_shadow_read_only_fields
1569 	};
1570 	struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
1571 	struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
1572 	struct shadow_vmcs_field field;
1573 	unsigned long val;
1574 	int i, q;
1575 
1576 	if (WARN_ON(!shadow_vmcs))
1577 		return;
1578 
1579 	vmcs_load(shadow_vmcs);
1580 
1581 	for (q = 0; q < ARRAY_SIZE(fields); q++) {
1582 		for (i = 0; i < max_fields[q]; i++) {
1583 			field = fields[q][i];
1584 			val = vmcs12_read_any(vmcs12, field.encoding,
1585 					      field.offset);
1586 			__vmcs_writel(field.encoding, val);
1587 		}
1588 	}
1589 
1590 	vmcs_clear(shadow_vmcs);
1591 	vmcs_load(vmx->loaded_vmcs->vmcs);
1592 }
1593 
copy_enlightened_to_vmcs12(struct vcpu_vmx * vmx,u32 hv_clean_fields)1594 static void copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx, u32 hv_clean_fields)
1595 {
1596 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1597 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1598 
1599 	/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
1600 	vmcs12->tpr_threshold = evmcs->tpr_threshold;
1601 	vmcs12->guest_rip = evmcs->guest_rip;
1602 
1603 	if (unlikely(!(hv_clean_fields &
1604 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
1605 		vmcs12->guest_rsp = evmcs->guest_rsp;
1606 		vmcs12->guest_rflags = evmcs->guest_rflags;
1607 		vmcs12->guest_interruptibility_info =
1608 			evmcs->guest_interruptibility_info;
1609 	}
1610 
1611 	if (unlikely(!(hv_clean_fields &
1612 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
1613 		vmcs12->cpu_based_vm_exec_control =
1614 			evmcs->cpu_based_vm_exec_control;
1615 	}
1616 
1617 	if (unlikely(!(hv_clean_fields &
1618 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
1619 		vmcs12->exception_bitmap = evmcs->exception_bitmap;
1620 	}
1621 
1622 	if (unlikely(!(hv_clean_fields &
1623 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
1624 		vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
1625 	}
1626 
1627 	if (unlikely(!(hv_clean_fields &
1628 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
1629 		vmcs12->vm_entry_intr_info_field =
1630 			evmcs->vm_entry_intr_info_field;
1631 		vmcs12->vm_entry_exception_error_code =
1632 			evmcs->vm_entry_exception_error_code;
1633 		vmcs12->vm_entry_instruction_len =
1634 			evmcs->vm_entry_instruction_len;
1635 	}
1636 
1637 	if (unlikely(!(hv_clean_fields &
1638 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
1639 		vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
1640 		vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
1641 		vmcs12->host_cr0 = evmcs->host_cr0;
1642 		vmcs12->host_cr3 = evmcs->host_cr3;
1643 		vmcs12->host_cr4 = evmcs->host_cr4;
1644 		vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
1645 		vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
1646 		vmcs12->host_rip = evmcs->host_rip;
1647 		vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
1648 		vmcs12->host_es_selector = evmcs->host_es_selector;
1649 		vmcs12->host_cs_selector = evmcs->host_cs_selector;
1650 		vmcs12->host_ss_selector = evmcs->host_ss_selector;
1651 		vmcs12->host_ds_selector = evmcs->host_ds_selector;
1652 		vmcs12->host_fs_selector = evmcs->host_fs_selector;
1653 		vmcs12->host_gs_selector = evmcs->host_gs_selector;
1654 		vmcs12->host_tr_selector = evmcs->host_tr_selector;
1655 	}
1656 
1657 	if (unlikely(!(hv_clean_fields &
1658 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
1659 		vmcs12->pin_based_vm_exec_control =
1660 			evmcs->pin_based_vm_exec_control;
1661 		vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
1662 		vmcs12->secondary_vm_exec_control =
1663 			evmcs->secondary_vm_exec_control;
1664 	}
1665 
1666 	if (unlikely(!(hv_clean_fields &
1667 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
1668 		vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
1669 		vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
1670 	}
1671 
1672 	if (unlikely(!(hv_clean_fields &
1673 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
1674 		vmcs12->msr_bitmap = evmcs->msr_bitmap;
1675 	}
1676 
1677 	if (unlikely(!(hv_clean_fields &
1678 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
1679 		vmcs12->guest_es_base = evmcs->guest_es_base;
1680 		vmcs12->guest_cs_base = evmcs->guest_cs_base;
1681 		vmcs12->guest_ss_base = evmcs->guest_ss_base;
1682 		vmcs12->guest_ds_base = evmcs->guest_ds_base;
1683 		vmcs12->guest_fs_base = evmcs->guest_fs_base;
1684 		vmcs12->guest_gs_base = evmcs->guest_gs_base;
1685 		vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
1686 		vmcs12->guest_tr_base = evmcs->guest_tr_base;
1687 		vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
1688 		vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
1689 		vmcs12->guest_es_limit = evmcs->guest_es_limit;
1690 		vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
1691 		vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
1692 		vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
1693 		vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
1694 		vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
1695 		vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
1696 		vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
1697 		vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
1698 		vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
1699 		vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
1700 		vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
1701 		vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
1702 		vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
1703 		vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
1704 		vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
1705 		vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
1706 		vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
1707 		vmcs12->guest_es_selector = evmcs->guest_es_selector;
1708 		vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
1709 		vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
1710 		vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
1711 		vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
1712 		vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
1713 		vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
1714 		vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
1715 	}
1716 
1717 	if (unlikely(!(hv_clean_fields &
1718 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
1719 		vmcs12->tsc_offset = evmcs->tsc_offset;
1720 		vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
1721 		vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
1722 	}
1723 
1724 	if (unlikely(!(hv_clean_fields &
1725 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
1726 		vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
1727 		vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
1728 		vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
1729 		vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
1730 		vmcs12->guest_cr0 = evmcs->guest_cr0;
1731 		vmcs12->guest_cr3 = evmcs->guest_cr3;
1732 		vmcs12->guest_cr4 = evmcs->guest_cr4;
1733 		vmcs12->guest_dr7 = evmcs->guest_dr7;
1734 	}
1735 
1736 	if (unlikely(!(hv_clean_fields &
1737 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
1738 		vmcs12->host_fs_base = evmcs->host_fs_base;
1739 		vmcs12->host_gs_base = evmcs->host_gs_base;
1740 		vmcs12->host_tr_base = evmcs->host_tr_base;
1741 		vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
1742 		vmcs12->host_idtr_base = evmcs->host_idtr_base;
1743 		vmcs12->host_rsp = evmcs->host_rsp;
1744 	}
1745 
1746 	if (unlikely(!(hv_clean_fields &
1747 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
1748 		vmcs12->ept_pointer = evmcs->ept_pointer;
1749 		vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
1750 	}
1751 
1752 	if (unlikely(!(hv_clean_fields &
1753 		       HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
1754 		vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
1755 		vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
1756 		vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
1757 		vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
1758 		vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
1759 		vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
1760 		vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
1761 		vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
1762 		vmcs12->guest_pending_dbg_exceptions =
1763 			evmcs->guest_pending_dbg_exceptions;
1764 		vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
1765 		vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
1766 		vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
1767 		vmcs12->guest_activity_state = evmcs->guest_activity_state;
1768 		vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
1769 	}
1770 
1771 	/*
1772 	 * Not used?
1773 	 * vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
1774 	 * vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
1775 	 * vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
1776 	 * vmcs12->page_fault_error_code_mask =
1777 	 *		evmcs->page_fault_error_code_mask;
1778 	 * vmcs12->page_fault_error_code_match =
1779 	 *		evmcs->page_fault_error_code_match;
1780 	 * vmcs12->cr3_target_count = evmcs->cr3_target_count;
1781 	 * vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
1782 	 * vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
1783 	 * vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
1784 	 */
1785 
1786 	/*
1787 	 * Read only fields:
1788 	 * vmcs12->guest_physical_address = evmcs->guest_physical_address;
1789 	 * vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
1790 	 * vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
1791 	 * vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
1792 	 * vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
1793 	 * vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
1794 	 * vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
1795 	 * vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
1796 	 * vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
1797 	 * vmcs12->exit_qualification = evmcs->exit_qualification;
1798 	 * vmcs12->guest_linear_address = evmcs->guest_linear_address;
1799 	 *
1800 	 * Not present in struct vmcs12:
1801 	 * vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
1802 	 * vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
1803 	 * vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
1804 	 * vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
1805 	 */
1806 
1807 	return;
1808 }
1809 
copy_vmcs12_to_enlightened(struct vcpu_vmx * vmx)1810 static void copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
1811 {
1812 	struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
1813 	struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
1814 
1815 	/*
1816 	 * Should not be changed by KVM:
1817 	 *
1818 	 * evmcs->host_es_selector = vmcs12->host_es_selector;
1819 	 * evmcs->host_cs_selector = vmcs12->host_cs_selector;
1820 	 * evmcs->host_ss_selector = vmcs12->host_ss_selector;
1821 	 * evmcs->host_ds_selector = vmcs12->host_ds_selector;
1822 	 * evmcs->host_fs_selector = vmcs12->host_fs_selector;
1823 	 * evmcs->host_gs_selector = vmcs12->host_gs_selector;
1824 	 * evmcs->host_tr_selector = vmcs12->host_tr_selector;
1825 	 * evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
1826 	 * evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
1827 	 * evmcs->host_cr0 = vmcs12->host_cr0;
1828 	 * evmcs->host_cr3 = vmcs12->host_cr3;
1829 	 * evmcs->host_cr4 = vmcs12->host_cr4;
1830 	 * evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
1831 	 * evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
1832 	 * evmcs->host_rip = vmcs12->host_rip;
1833 	 * evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
1834 	 * evmcs->host_fs_base = vmcs12->host_fs_base;
1835 	 * evmcs->host_gs_base = vmcs12->host_gs_base;
1836 	 * evmcs->host_tr_base = vmcs12->host_tr_base;
1837 	 * evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
1838 	 * evmcs->host_idtr_base = vmcs12->host_idtr_base;
1839 	 * evmcs->host_rsp = vmcs12->host_rsp;
1840 	 * sync_vmcs02_to_vmcs12() doesn't read these:
1841 	 * evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
1842 	 * evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
1843 	 * evmcs->msr_bitmap = vmcs12->msr_bitmap;
1844 	 * evmcs->ept_pointer = vmcs12->ept_pointer;
1845 	 * evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
1846 	 * evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
1847 	 * evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
1848 	 * evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
1849 	 * evmcs->tpr_threshold = vmcs12->tpr_threshold;
1850 	 * evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
1851 	 * evmcs->exception_bitmap = vmcs12->exception_bitmap;
1852 	 * evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
1853 	 * evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
1854 	 * evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
1855 	 * evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
1856 	 * evmcs->page_fault_error_code_mask =
1857 	 *		vmcs12->page_fault_error_code_mask;
1858 	 * evmcs->page_fault_error_code_match =
1859 	 *		vmcs12->page_fault_error_code_match;
1860 	 * evmcs->cr3_target_count = vmcs12->cr3_target_count;
1861 	 * evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
1862 	 * evmcs->tsc_offset = vmcs12->tsc_offset;
1863 	 * evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
1864 	 * evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
1865 	 * evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
1866 	 * evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
1867 	 * evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
1868 	 * evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
1869 	 * evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
1870 	 * evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
1871 	 *
1872 	 * Not present in struct vmcs12:
1873 	 * evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
1874 	 * evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
1875 	 * evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
1876 	 * evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
1877 	 */
1878 
1879 	evmcs->guest_es_selector = vmcs12->guest_es_selector;
1880 	evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
1881 	evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
1882 	evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
1883 	evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
1884 	evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
1885 	evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
1886 	evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
1887 
1888 	evmcs->guest_es_limit = vmcs12->guest_es_limit;
1889 	evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
1890 	evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
1891 	evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
1892 	evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
1893 	evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
1894 	evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
1895 	evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
1896 	evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
1897 	evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
1898 
1899 	evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
1900 	evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
1901 	evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
1902 	evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
1903 	evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
1904 	evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
1905 	evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
1906 	evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
1907 
1908 	evmcs->guest_es_base = vmcs12->guest_es_base;
1909 	evmcs->guest_cs_base = vmcs12->guest_cs_base;
1910 	evmcs->guest_ss_base = vmcs12->guest_ss_base;
1911 	evmcs->guest_ds_base = vmcs12->guest_ds_base;
1912 	evmcs->guest_fs_base = vmcs12->guest_fs_base;
1913 	evmcs->guest_gs_base = vmcs12->guest_gs_base;
1914 	evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
1915 	evmcs->guest_tr_base = vmcs12->guest_tr_base;
1916 	evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
1917 	evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
1918 
1919 	evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
1920 	evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
1921 
1922 	evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
1923 	evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
1924 	evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
1925 	evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
1926 
1927 	evmcs->guest_pending_dbg_exceptions =
1928 		vmcs12->guest_pending_dbg_exceptions;
1929 	evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
1930 	evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
1931 
1932 	evmcs->guest_activity_state = vmcs12->guest_activity_state;
1933 	evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
1934 
1935 	evmcs->guest_cr0 = vmcs12->guest_cr0;
1936 	evmcs->guest_cr3 = vmcs12->guest_cr3;
1937 	evmcs->guest_cr4 = vmcs12->guest_cr4;
1938 	evmcs->guest_dr7 = vmcs12->guest_dr7;
1939 
1940 	evmcs->guest_physical_address = vmcs12->guest_physical_address;
1941 
1942 	evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
1943 	evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
1944 	evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
1945 	evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
1946 	evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
1947 	evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
1948 	evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
1949 	evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
1950 
1951 	evmcs->exit_qualification = vmcs12->exit_qualification;
1952 
1953 	evmcs->guest_linear_address = vmcs12->guest_linear_address;
1954 	evmcs->guest_rsp = vmcs12->guest_rsp;
1955 	evmcs->guest_rflags = vmcs12->guest_rflags;
1956 
1957 	evmcs->guest_interruptibility_info =
1958 		vmcs12->guest_interruptibility_info;
1959 	evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
1960 	evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
1961 	evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
1962 	evmcs->vm_entry_exception_error_code =
1963 		vmcs12->vm_entry_exception_error_code;
1964 	evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
1965 
1966 	evmcs->guest_rip = vmcs12->guest_rip;
1967 
1968 	evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
1969 
1970 	return;
1971 }
1972 
1973 /*
1974  * This is an equivalent of the nested hypervisor executing the vmptrld
1975  * instruction.
1976  */
nested_vmx_handle_enlightened_vmptrld(struct kvm_vcpu * vcpu,bool from_launch)1977 static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
1978 	struct kvm_vcpu *vcpu, bool from_launch)
1979 {
1980 	struct vcpu_vmx *vmx = to_vmx(vcpu);
1981 	bool evmcs_gpa_changed = false;
1982 	u64 evmcs_gpa;
1983 
1984 	if (likely(!vmx->nested.enlightened_vmcs_enabled))
1985 		return EVMPTRLD_DISABLED;
1986 
1987 	if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa)) {
1988 		nested_release_evmcs(vcpu);
1989 		return EVMPTRLD_DISABLED;
1990 	}
1991 
1992 	if (unlikely(evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
1993 		vmx->nested.current_vmptr = INVALID_GPA;
1994 
1995 		nested_release_evmcs(vcpu);
1996 
1997 		if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
1998 				 &vmx->nested.hv_evmcs_map))
1999 			return EVMPTRLD_ERROR;
2000 
2001 		vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
2002 
2003 		/*
2004 		 * Currently, KVM only supports eVMCS version 1
2005 		 * (== KVM_EVMCS_VERSION) and thus we expect guest to set this
2006 		 * value to first u32 field of eVMCS which should specify eVMCS
2007 		 * VersionNumber.
2008 		 *
2009 		 * Guest should be aware of supported eVMCS versions by host by
2010 		 * examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
2011 		 * expected to set this CPUID leaf according to the value
2012 		 * returned in vmcs_version from nested_enable_evmcs().
2013 		 *
2014 		 * However, it turns out that Microsoft Hyper-V fails to comply
2015 		 * to their own invented interface: When Hyper-V use eVMCS, it
2016 		 * just sets first u32 field of eVMCS to revision_id specified
2017 		 * in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
2018 		 * which is one of the supported versions specified in
2019 		 * CPUID.0x4000000A.EAX[0:15].
2020 		 *
2021 		 * To overcome Hyper-V bug, we accept here either a supported
2022 		 * eVMCS version or VMCS12 revision_id as valid values for first
2023 		 * u32 field of eVMCS.
2024 		 */
2025 		if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
2026 		    (vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
2027 			nested_release_evmcs(vcpu);
2028 			return EVMPTRLD_VMFAIL;
2029 		}
2030 
2031 		vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
2032 
2033 		evmcs_gpa_changed = true;
2034 		/*
2035 		 * Unlike normal vmcs12, enlightened vmcs12 is not fully
2036 		 * reloaded from guest's memory (read only fields, fields not
2037 		 * present in struct hv_enlightened_vmcs, ...). Make sure there
2038 		 * are no leftovers.
2039 		 */
2040 		if (from_launch) {
2041 			struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2042 			memset(vmcs12, 0, sizeof(*vmcs12));
2043 			vmcs12->hdr.revision_id = VMCS12_REVISION;
2044 		}
2045 
2046 	}
2047 
2048 	/*
2049 	 * Clean fields data can't be used on VMLAUNCH and when we switch
2050 	 * between different L2 guests as KVM keeps a single VMCS12 per L1.
2051 	 */
2052 	if (from_launch || evmcs_gpa_changed) {
2053 		vmx->nested.hv_evmcs->hv_clean_fields &=
2054 			~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2055 
2056 		vmx->nested.force_msr_bitmap_recalc = true;
2057 	}
2058 
2059 	return EVMPTRLD_SUCCEEDED;
2060 }
2061 
nested_sync_vmcs12_to_shadow(struct kvm_vcpu * vcpu)2062 void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
2063 {
2064 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2065 
2066 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2067 		copy_vmcs12_to_enlightened(vmx);
2068 	else
2069 		copy_vmcs12_to_shadow(vmx);
2070 
2071 	vmx->nested.need_vmcs12_to_shadow_sync = false;
2072 }
2073 
vmx_preemption_timer_fn(struct hrtimer * timer)2074 static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
2075 {
2076 	struct vcpu_vmx *vmx =
2077 		container_of(timer, struct vcpu_vmx, nested.preemption_timer);
2078 
2079 	vmx->nested.preemption_timer_expired = true;
2080 	kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
2081 	kvm_vcpu_kick(&vmx->vcpu);
2082 
2083 	return HRTIMER_NORESTART;
2084 }
2085 
vmx_calc_preemption_timer_value(struct kvm_vcpu * vcpu)2086 static u64 vmx_calc_preemption_timer_value(struct kvm_vcpu *vcpu)
2087 {
2088 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2089 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2090 
2091 	u64 l1_scaled_tsc = kvm_read_l1_tsc(vcpu, rdtsc()) >>
2092 			    VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2093 
2094 	if (!vmx->nested.has_preemption_timer_deadline) {
2095 		vmx->nested.preemption_timer_deadline =
2096 			vmcs12->vmx_preemption_timer_value + l1_scaled_tsc;
2097 		vmx->nested.has_preemption_timer_deadline = true;
2098 	}
2099 	return vmx->nested.preemption_timer_deadline - l1_scaled_tsc;
2100 }
2101 
vmx_start_preemption_timer(struct kvm_vcpu * vcpu,u64 preemption_timeout)2102 static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu,
2103 					u64 preemption_timeout)
2104 {
2105 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2106 
2107 	/*
2108 	 * A timer value of zero is architecturally guaranteed to cause
2109 	 * a VMExit prior to executing any instructions in the guest.
2110 	 */
2111 	if (preemption_timeout == 0) {
2112 		vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
2113 		return;
2114 	}
2115 
2116 	if (vcpu->arch.virtual_tsc_khz == 0)
2117 		return;
2118 
2119 	preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
2120 	preemption_timeout *= 1000000;
2121 	do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
2122 	hrtimer_start(&vmx->nested.preemption_timer,
2123 		      ktime_add_ns(ktime_get(), preemption_timeout),
2124 		      HRTIMER_MODE_ABS_PINNED);
2125 }
2126 
nested_vmx_calc_efer(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2127 static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2128 {
2129 	if (vmx->nested.nested_run_pending &&
2130 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
2131 		return vmcs12->guest_ia32_efer;
2132 	else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
2133 		return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
2134 	else
2135 		return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
2136 }
2137 
prepare_vmcs02_constant_state(struct vcpu_vmx * vmx)2138 static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
2139 {
2140 	/*
2141 	 * If vmcs02 hasn't been initialized, set the constant vmcs02 state
2142 	 * according to L0's settings (vmcs12 is irrelevant here).  Host
2143 	 * fields that come from L0 and are not constant, e.g. HOST_CR3,
2144 	 * will be set as needed prior to VMLAUNCH/VMRESUME.
2145 	 */
2146 	if (vmx->nested.vmcs02_initialized)
2147 		return;
2148 	vmx->nested.vmcs02_initialized = true;
2149 
2150 	/*
2151 	 * We don't care what the EPTP value is we just need to guarantee
2152 	 * it's valid so we don't get a false positive when doing early
2153 	 * consistency checks.
2154 	 */
2155 	if (enable_ept && nested_early_check)
2156 		vmcs_write64(EPT_POINTER,
2157 			     construct_eptp(&vmx->vcpu, 0, PT64_ROOT_4LEVEL));
2158 
2159 	/* All VMFUNCs are currently emulated through L0 vmexits.  */
2160 	if (cpu_has_vmx_vmfunc())
2161 		vmcs_write64(VM_FUNCTION_CONTROL, 0);
2162 
2163 	if (cpu_has_vmx_posted_intr())
2164 		vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
2165 
2166 	if (cpu_has_vmx_msr_bitmap())
2167 		vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
2168 
2169 	/*
2170 	 * PML is emulated for L2, but never enabled in hardware as the MMU
2171 	 * handles A/D emulation.  Disabling PML for L2 also avoids having to
2172 	 * deal with filtering out L2 GPAs from the buffer.
2173 	 */
2174 	if (enable_pml) {
2175 		vmcs_write64(PML_ADDRESS, 0);
2176 		vmcs_write16(GUEST_PML_INDEX, -1);
2177 	}
2178 
2179 	if (cpu_has_vmx_encls_vmexit())
2180 		vmcs_write64(ENCLS_EXITING_BITMAP, INVALID_GPA);
2181 
2182 	/*
2183 	 * Set the MSR load/store lists to match L0's settings.  Only the
2184 	 * addresses are constant (for vmcs02), the counts can change based
2185 	 * on L2's behavior, e.g. switching to/from long mode.
2186 	 */
2187 	vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
2188 	vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
2189 	vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
2190 
2191 	vmx_set_constant_host_state(vmx);
2192 }
2193 
prepare_vmcs02_early_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2194 static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
2195 				      struct vmcs12 *vmcs12)
2196 {
2197 	prepare_vmcs02_constant_state(vmx);
2198 
2199 	vmcs_write64(VMCS_LINK_POINTER, INVALID_GPA);
2200 
2201 	if (enable_vpid) {
2202 		if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
2203 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
2204 		else
2205 			vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
2206 	}
2207 }
2208 
prepare_vmcs02_early(struct vcpu_vmx * vmx,struct loaded_vmcs * vmcs01,struct vmcs12 * vmcs12)2209 static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct loaded_vmcs *vmcs01,
2210 				 struct vmcs12 *vmcs12)
2211 {
2212 	u32 exec_control;
2213 	u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
2214 
2215 	if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2216 		prepare_vmcs02_early_rare(vmx, vmcs12);
2217 
2218 	/*
2219 	 * PIN CONTROLS
2220 	 */
2221 	exec_control = __pin_controls_get(vmcs01);
2222 	exec_control |= (vmcs12->pin_based_vm_exec_control &
2223 			 ~PIN_BASED_VMX_PREEMPTION_TIMER);
2224 
2225 	/* Posted interrupts setting is only taken from vmcs12.  */
2226 	vmx->nested.pi_pending = false;
2227 	if (nested_cpu_has_posted_intr(vmcs12))
2228 		vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
2229 	else
2230 		exec_control &= ~PIN_BASED_POSTED_INTR;
2231 	pin_controls_set(vmx, exec_control);
2232 
2233 	/*
2234 	 * EXEC CONTROLS
2235 	 */
2236 	exec_control = __exec_controls_get(vmcs01); /* L0's desires */
2237 	exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
2238 	exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
2239 	exec_control &= ~CPU_BASED_TPR_SHADOW;
2240 	exec_control |= vmcs12->cpu_based_vm_exec_control;
2241 
2242 	vmx->nested.l1_tpr_threshold = -1;
2243 	if (exec_control & CPU_BASED_TPR_SHADOW)
2244 		vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
2245 #ifdef CONFIG_X86_64
2246 	else
2247 		exec_control |= CPU_BASED_CR8_LOAD_EXITING |
2248 				CPU_BASED_CR8_STORE_EXITING;
2249 #endif
2250 
2251 	/*
2252 	 * A vmexit (to either L1 hypervisor or L0 userspace) is always needed
2253 	 * for I/O port accesses.
2254 	 */
2255 	exec_control |= CPU_BASED_UNCOND_IO_EXITING;
2256 	exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
2257 
2258 	/*
2259 	 * This bit will be computed in nested_get_vmcs12_pages, because
2260 	 * we do not have access to L1's MSR bitmap yet.  For now, keep
2261 	 * the same bit as before, hoping to avoid multiple VMWRITEs that
2262 	 * only set/clear this bit.
2263 	 */
2264 	exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
2265 	exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
2266 
2267 	exec_controls_set(vmx, exec_control);
2268 
2269 	/*
2270 	 * SECONDARY EXEC CONTROLS
2271 	 */
2272 	if (cpu_has_secondary_exec_ctrls()) {
2273 		exec_control = __secondary_exec_controls_get(vmcs01);
2274 
2275 		/* Take the following fields only from vmcs12 */
2276 		exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2277 				  SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2278 				  SECONDARY_EXEC_ENABLE_INVPCID |
2279 				  SECONDARY_EXEC_ENABLE_RDTSCP |
2280 				  SECONDARY_EXEC_XSAVES |
2281 				  SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
2282 				  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2283 				  SECONDARY_EXEC_APIC_REGISTER_VIRT |
2284 				  SECONDARY_EXEC_ENABLE_VMFUNC |
2285 				  SECONDARY_EXEC_DESC);
2286 
2287 		if (nested_cpu_has(vmcs12,
2288 				   CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
2289 			exec_control |= vmcs12->secondary_vm_exec_control;
2290 
2291 		/* PML is emulated and never enabled in hardware for L2. */
2292 		exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
2293 
2294 		/* VMCS shadowing for L2 is emulated for now */
2295 		exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
2296 
2297 		/*
2298 		 * Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
2299 		 * will not have to rewrite the controls just for this bit.
2300 		 */
2301 		if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
2302 		    (vmcs12->guest_cr4 & X86_CR4_UMIP))
2303 			exec_control |= SECONDARY_EXEC_DESC;
2304 
2305 		if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
2306 			vmcs_write16(GUEST_INTR_STATUS,
2307 				vmcs12->guest_intr_status);
2308 
2309 		if (!nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
2310 		    exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
2311 
2312 		if (exec_control & SECONDARY_EXEC_ENCLS_EXITING)
2313 			vmx_write_encls_bitmap(&vmx->vcpu, vmcs12);
2314 
2315 		secondary_exec_controls_set(vmx, exec_control);
2316 	}
2317 
2318 	/*
2319 	 * ENTRY CONTROLS
2320 	 *
2321 	 * vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
2322 	 * are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
2323 	 * on the related bits (if supported by the CPU) in the hope that
2324 	 * we can avoid VMWrites during vmx_set_efer().
2325 	 */
2326 	exec_control = __vm_entry_controls_get(vmcs01);
2327 	exec_control |= vmcs12->vm_entry_controls;
2328 	exec_control &= ~(VM_ENTRY_IA32E_MODE | VM_ENTRY_LOAD_IA32_EFER);
2329 	if (cpu_has_load_ia32_efer()) {
2330 		if (guest_efer & EFER_LMA)
2331 			exec_control |= VM_ENTRY_IA32E_MODE;
2332 		if (guest_efer != host_efer)
2333 			exec_control |= VM_ENTRY_LOAD_IA32_EFER;
2334 	}
2335 	vm_entry_controls_set(vmx, exec_control);
2336 
2337 	/*
2338 	 * EXIT CONTROLS
2339 	 *
2340 	 * L2->L1 exit controls are emulated - the hardware exit is to L0 so
2341 	 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
2342 	 * bits may be modified by vmx_set_efer() in prepare_vmcs02().
2343 	 */
2344 	exec_control = __vm_exit_controls_get(vmcs01);
2345 	if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
2346 		exec_control |= VM_EXIT_LOAD_IA32_EFER;
2347 	else
2348 		exec_control &= ~VM_EXIT_LOAD_IA32_EFER;
2349 	vm_exit_controls_set(vmx, exec_control);
2350 
2351 	/*
2352 	 * Interrupt/Exception Fields
2353 	 */
2354 	if (vmx->nested.nested_run_pending) {
2355 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
2356 			     vmcs12->vm_entry_intr_info_field);
2357 		vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
2358 			     vmcs12->vm_entry_exception_error_code);
2359 		vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2360 			     vmcs12->vm_entry_instruction_len);
2361 		vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
2362 			     vmcs12->guest_interruptibility_info);
2363 		vmx->loaded_vmcs->nmi_known_unmasked =
2364 			!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
2365 	} else {
2366 		vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
2367 	}
2368 }
2369 
prepare_vmcs02_rare(struct vcpu_vmx * vmx,struct vmcs12 * vmcs12)2370 static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
2371 {
2372 	struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
2373 
2374 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2375 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
2376 		vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
2377 		vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
2378 		vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
2379 		vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
2380 		vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
2381 		vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
2382 		vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
2383 		vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
2384 		vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
2385 		vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
2386 		vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
2387 		vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
2388 		vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
2389 		vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
2390 		vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
2391 		vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
2392 		vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
2393 		vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
2394 		vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
2395 		vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
2396 		vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
2397 		vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
2398 		vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
2399 		vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
2400 		vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
2401 		vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
2402 		vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
2403 		vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
2404 		vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
2405 		vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
2406 		vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
2407 		vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
2408 		vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
2409 		vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
2410 		vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
2411 		vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
2412 
2413 		vmx->segment_cache.bitmask = 0;
2414 	}
2415 
2416 	if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
2417 			   HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
2418 		vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
2419 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
2420 			    vmcs12->guest_pending_dbg_exceptions);
2421 		vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
2422 		vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
2423 
2424 		/*
2425 		 * L1 may access the L2's PDPTR, so save them to construct
2426 		 * vmcs12
2427 		 */
2428 		if (enable_ept) {
2429 			vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2430 			vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2431 			vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2432 			vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2433 		}
2434 
2435 		if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
2436 		    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
2437 			vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
2438 	}
2439 
2440 	if (nested_cpu_has_xsaves(vmcs12))
2441 		vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
2442 
2443 	/*
2444 	 * Whether page-faults are trapped is determined by a combination of
2445 	 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.  If L0
2446 	 * doesn't care about page faults then we should set all of these to
2447 	 * L1's desires. However, if L0 does care about (some) page faults, it
2448 	 * is not easy (if at all possible?) to merge L0 and L1's desires, we
2449 	 * simply ask to exit on each and every L2 page fault. This is done by
2450 	 * setting MASK=MATCH=0 and (see below) EB.PF=1.
2451 	 * Note that below we don't need special code to set EB.PF beyond the
2452 	 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
2453 	 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
2454 	 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
2455 	 */
2456 	if (vmx_need_pf_intercept(&vmx->vcpu)) {
2457 		/*
2458 		 * TODO: if both L0 and L1 need the same MASK and MATCH,
2459 		 * go ahead and use it?
2460 		 */
2461 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
2462 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
2463 	} else {
2464 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, vmcs12->page_fault_error_code_mask);
2465 		vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, vmcs12->page_fault_error_code_match);
2466 	}
2467 
2468 	if (cpu_has_vmx_apicv()) {
2469 		vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
2470 		vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
2471 		vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
2472 		vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
2473 	}
2474 
2475 	/*
2476 	 * Make sure the msr_autostore list is up to date before we set the
2477 	 * count in the vmcs02.
2478 	 */
2479 	prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
2480 
2481 	vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
2482 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
2483 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
2484 
2485 	set_cr4_guest_host_mask(vmx);
2486 }
2487 
2488 /*
2489  * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
2490  * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
2491  * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
2492  * guest in a way that will both be appropriate to L1's requests, and our
2493  * needs. In addition to modifying the active vmcs (which is vmcs02), this
2494  * function also has additional necessary side-effects, like setting various
2495  * vcpu->arch fields.
2496  * Returns 0 on success, 1 on failure. Invalid state exit qualification code
2497  * is assigned to entry_failure_code on failure.
2498  */
prepare_vmcs02(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,bool from_vmentry,enum vm_entry_failure_code * entry_failure_code)2499 static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
2500 			  bool from_vmentry,
2501 			  enum vm_entry_failure_code *entry_failure_code)
2502 {
2503 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2504 	bool load_guest_pdptrs_vmcs12 = false;
2505 
2506 	if (vmx->nested.dirty_vmcs12 || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
2507 		prepare_vmcs02_rare(vmx, vmcs12);
2508 		vmx->nested.dirty_vmcs12 = false;
2509 
2510 		load_guest_pdptrs_vmcs12 = !evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) ||
2511 			!(vmx->nested.hv_evmcs->hv_clean_fields &
2512 			  HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
2513 	}
2514 
2515 	if (vmx->nested.nested_run_pending &&
2516 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
2517 		kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
2518 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
2519 	} else {
2520 		kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
2521 		vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
2522 	}
2523 	if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
2524 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
2525 		vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
2526 	vmx_set_rflags(vcpu, vmcs12->guest_rflags);
2527 
2528 	/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
2529 	 * bitwise-or of what L1 wants to trap for L2, and what we want to
2530 	 * trap. Note that CR0.TS also needs updating - we do this later.
2531 	 */
2532 	vmx_update_exception_bitmap(vcpu);
2533 	vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
2534 	vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
2535 
2536 	if (vmx->nested.nested_run_pending &&
2537 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
2538 		vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
2539 		vcpu->arch.pat = vmcs12->guest_ia32_pat;
2540 	} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2541 		vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
2542 	}
2543 
2544 	vcpu->arch.tsc_offset = kvm_calc_nested_tsc_offset(
2545 			vcpu->arch.l1_tsc_offset,
2546 			vmx_get_l2_tsc_offset(vcpu),
2547 			vmx_get_l2_tsc_multiplier(vcpu));
2548 
2549 	vcpu->arch.tsc_scaling_ratio = kvm_calc_nested_tsc_multiplier(
2550 			vcpu->arch.l1_tsc_scaling_ratio,
2551 			vmx_get_l2_tsc_multiplier(vcpu));
2552 
2553 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
2554 	if (kvm_has_tsc_control)
2555 		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
2556 
2557 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, true);
2558 
2559 	if (nested_cpu_has_ept(vmcs12))
2560 		nested_ept_init_mmu_context(vcpu);
2561 
2562 	/*
2563 	 * This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
2564 	 * bits which we consider mandatory enabled.
2565 	 * The CR0_READ_SHADOW is what L2 should have expected to read given
2566 	 * the specifications by L1; It's not enough to take
2567 	 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
2568 	 * have more bits than L1 expected.
2569 	 */
2570 	vmx_set_cr0(vcpu, vmcs12->guest_cr0);
2571 	vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2572 
2573 	vmx_set_cr4(vcpu, vmcs12->guest_cr4);
2574 	vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
2575 
2576 	vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
2577 	/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
2578 	vmx_set_efer(vcpu, vcpu->arch.efer);
2579 
2580 	/*
2581 	 * Guest state is invalid and unrestricted guest is disabled,
2582 	 * which means L1 attempted VMEntry to L2 with invalid state.
2583 	 * Fail the VMEntry.
2584 	 *
2585 	 * However when force loading the guest state (SMM exit or
2586 	 * loading nested state after migration, it is possible to
2587 	 * have invalid guest state now, which will be later fixed by
2588 	 * restoring L2 register state
2589 	 */
2590 	if (CC(from_vmentry && !vmx_guest_state_valid(vcpu))) {
2591 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2592 		return -EINVAL;
2593 	}
2594 
2595 	/* Shadow page tables on either EPT or shadow page tables. */
2596 	if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
2597 				from_vmentry, entry_failure_code))
2598 		return -EINVAL;
2599 
2600 	/*
2601 	 * Immediately write vmcs02.GUEST_CR3.  It will be propagated to vmcs12
2602 	 * on nested VM-Exit, which can occur without actually running L2 and
2603 	 * thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
2604 	 * vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
2605 	 * transition to HLT instead of running L2.
2606 	 */
2607 	if (enable_ept)
2608 		vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
2609 
2610 	/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
2611 	if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
2612 	    is_pae_paging(vcpu)) {
2613 		vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
2614 		vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
2615 		vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
2616 		vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
2617 	}
2618 
2619 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2620 	    intel_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)) &&
2621 	    WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
2622 				     vmcs12->guest_ia32_perf_global_ctrl))) {
2623 		*entry_failure_code = ENTRY_FAIL_DEFAULT;
2624 		return -EINVAL;
2625 	}
2626 
2627 	kvm_rsp_write(vcpu, vmcs12->guest_rsp);
2628 	kvm_rip_write(vcpu, vmcs12->guest_rip);
2629 
2630 	/*
2631 	 * It was observed that genuine Hyper-V running in L1 doesn't reset
2632 	 * 'hv_clean_fields' by itself, it only sets the corresponding dirty
2633 	 * bits when it changes a field in eVMCS. Mark all fields as clean
2634 	 * here.
2635 	 */
2636 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
2637 		vmx->nested.hv_evmcs->hv_clean_fields |=
2638 			HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
2639 
2640 	return 0;
2641 }
2642 
nested_vmx_check_nmi_controls(struct vmcs12 * vmcs12)2643 static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
2644 {
2645 	if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
2646 	       nested_cpu_has_virtual_nmis(vmcs12)))
2647 		return -EINVAL;
2648 
2649 	if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
2650 	       nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
2651 		return -EINVAL;
2652 
2653 	return 0;
2654 }
2655 
nested_vmx_check_eptp(struct kvm_vcpu * vcpu,u64 new_eptp)2656 static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
2657 {
2658 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2659 
2660 	/* Check for memory type validity */
2661 	switch (new_eptp & VMX_EPTP_MT_MASK) {
2662 	case VMX_EPTP_MT_UC:
2663 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
2664 			return false;
2665 		break;
2666 	case VMX_EPTP_MT_WB:
2667 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
2668 			return false;
2669 		break;
2670 	default:
2671 		return false;
2672 	}
2673 
2674 	/* Page-walk levels validity. */
2675 	switch (new_eptp & VMX_EPTP_PWL_MASK) {
2676 	case VMX_EPTP_PWL_5:
2677 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
2678 			return false;
2679 		break;
2680 	case VMX_EPTP_PWL_4:
2681 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
2682 			return false;
2683 		break;
2684 	default:
2685 		return false;
2686 	}
2687 
2688 	/* Reserved bits should not be set */
2689 	if (CC(kvm_vcpu_is_illegal_gpa(vcpu, new_eptp) || ((new_eptp >> 7) & 0x1f)))
2690 		return false;
2691 
2692 	/* AD, if set, should be supported */
2693 	if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
2694 		if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
2695 			return false;
2696 	}
2697 
2698 	return true;
2699 }
2700 
2701 /*
2702  * Checks related to VM-Execution Control Fields
2703  */
nested_check_vm_execution_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2704 static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
2705                                               struct vmcs12 *vmcs12)
2706 {
2707 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2708 
2709 	if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
2710 				   vmx->nested.msrs.pinbased_ctls_low,
2711 				   vmx->nested.msrs.pinbased_ctls_high)) ||
2712 	    CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
2713 				   vmx->nested.msrs.procbased_ctls_low,
2714 				   vmx->nested.msrs.procbased_ctls_high)))
2715 		return -EINVAL;
2716 
2717 	if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
2718 	    CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
2719 				   vmx->nested.msrs.secondary_ctls_low,
2720 				   vmx->nested.msrs.secondary_ctls_high)))
2721 		return -EINVAL;
2722 
2723 	if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
2724 	    nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
2725 	    nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
2726 	    nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
2727 	    nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
2728 	    nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
2729 	    nested_vmx_check_nmi_controls(vmcs12) ||
2730 	    nested_vmx_check_pml_controls(vcpu, vmcs12) ||
2731 	    nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
2732 	    nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
2733 	    nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
2734 	    CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
2735 		return -EINVAL;
2736 
2737 	if (!nested_cpu_has_preemption_timer(vmcs12) &&
2738 	    nested_cpu_has_save_preemption_timer(vmcs12))
2739 		return -EINVAL;
2740 
2741 	if (nested_cpu_has_ept(vmcs12) &&
2742 	    CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
2743 		return -EINVAL;
2744 
2745 	if (nested_cpu_has_vmfunc(vmcs12)) {
2746 		if (CC(vmcs12->vm_function_control &
2747 		       ~vmx->nested.msrs.vmfunc_controls))
2748 			return -EINVAL;
2749 
2750 		if (nested_cpu_has_eptp_switching(vmcs12)) {
2751 			if (CC(!nested_cpu_has_ept(vmcs12)) ||
2752 			    CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
2753 				return -EINVAL;
2754 		}
2755 	}
2756 
2757 	return 0;
2758 }
2759 
2760 /*
2761  * Checks related to VM-Exit Control Fields
2762  */
nested_check_vm_exit_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2763 static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
2764                                          struct vmcs12 *vmcs12)
2765 {
2766 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2767 
2768 	if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
2769 				    vmx->nested.msrs.exit_ctls_low,
2770 				    vmx->nested.msrs.exit_ctls_high)) ||
2771 	    CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
2772 		return -EINVAL;
2773 
2774 	return 0;
2775 }
2776 
2777 /*
2778  * Checks related to VM-Entry Control Fields
2779  */
nested_check_vm_entry_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2780 static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
2781 					  struct vmcs12 *vmcs12)
2782 {
2783 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2784 
2785 	if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
2786 				    vmx->nested.msrs.entry_ctls_low,
2787 				    vmx->nested.msrs.entry_ctls_high)))
2788 		return -EINVAL;
2789 
2790 	/*
2791 	 * From the Intel SDM, volume 3:
2792 	 * Fields relevant to VM-entry event injection must be set properly.
2793 	 * These fields are the VM-entry interruption-information field, the
2794 	 * VM-entry exception error code, and the VM-entry instruction length.
2795 	 */
2796 	if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
2797 		u32 intr_info = vmcs12->vm_entry_intr_info_field;
2798 		u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
2799 		u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
2800 		bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
2801 		bool should_have_error_code;
2802 		bool urg = nested_cpu_has2(vmcs12,
2803 					   SECONDARY_EXEC_UNRESTRICTED_GUEST);
2804 		bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
2805 
2806 		/* VM-entry interruption-info field: interruption type */
2807 		if (CC(intr_type == INTR_TYPE_RESERVED) ||
2808 		    CC(intr_type == INTR_TYPE_OTHER_EVENT &&
2809 		       !nested_cpu_supports_monitor_trap_flag(vcpu)))
2810 			return -EINVAL;
2811 
2812 		/* VM-entry interruption-info field: vector */
2813 		if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
2814 		    CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
2815 		    CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
2816 			return -EINVAL;
2817 
2818 		/* VM-entry interruption-info field: deliver error code */
2819 		should_have_error_code =
2820 			intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
2821 			x86_exception_has_error_code(vector);
2822 		if (CC(has_error_code != should_have_error_code))
2823 			return -EINVAL;
2824 
2825 		/* VM-entry exception error code */
2826 		if (CC(has_error_code &&
2827 		       vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
2828 			return -EINVAL;
2829 
2830 		/* VM-entry interruption-info field: reserved bits */
2831 		if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
2832 			return -EINVAL;
2833 
2834 		/* VM-entry instruction length */
2835 		switch (intr_type) {
2836 		case INTR_TYPE_SOFT_EXCEPTION:
2837 		case INTR_TYPE_SOFT_INTR:
2838 		case INTR_TYPE_PRIV_SW_EXCEPTION:
2839 			if (CC(vmcs12->vm_entry_instruction_len > 15) ||
2840 			    CC(vmcs12->vm_entry_instruction_len == 0 &&
2841 			    CC(!nested_cpu_has_zero_length_injection(vcpu))))
2842 				return -EINVAL;
2843 		}
2844 	}
2845 
2846 	if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
2847 		return -EINVAL;
2848 
2849 	return 0;
2850 }
2851 
nested_vmx_check_controls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2852 static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
2853 				     struct vmcs12 *vmcs12)
2854 {
2855 	if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
2856 	    nested_check_vm_exit_controls(vcpu, vmcs12) ||
2857 	    nested_check_vm_entry_controls(vcpu, vmcs12))
2858 		return -EINVAL;
2859 
2860 	if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
2861 		return nested_evmcs_check_controls(vmcs12);
2862 
2863 	return 0;
2864 }
2865 
nested_vmx_check_address_space_size(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2866 static int nested_vmx_check_address_space_size(struct kvm_vcpu *vcpu,
2867 				       struct vmcs12 *vmcs12)
2868 {
2869 #ifdef CONFIG_X86_64
2870 	if (CC(!!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) !=
2871 		!!(vcpu->arch.efer & EFER_LMA)))
2872 		return -EINVAL;
2873 #endif
2874 	return 0;
2875 }
2876 
nested_vmx_check_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2877 static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
2878 				       struct vmcs12 *vmcs12)
2879 {
2880 	bool ia32e;
2881 
2882 	if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
2883 	    CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
2884 	    CC(kvm_vcpu_is_illegal_gpa(vcpu, vmcs12->host_cr3)))
2885 		return -EINVAL;
2886 
2887 	if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
2888 	    CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
2889 		return -EINVAL;
2890 
2891 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
2892 	    CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
2893 		return -EINVAL;
2894 
2895 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
2896 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
2897 					   vmcs12->host_ia32_perf_global_ctrl)))
2898 		return -EINVAL;
2899 
2900 #ifdef CONFIG_X86_64
2901 	ia32e = !!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE);
2902 #else
2903 	ia32e = false;
2904 #endif
2905 
2906 	if (ia32e) {
2907 		if (CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
2908 			return -EINVAL;
2909 	} else {
2910 		if (CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
2911 		    CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
2912 		    CC((vmcs12->host_rip) >> 32))
2913 			return -EINVAL;
2914 	}
2915 
2916 	if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2917 	    CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2918 	    CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2919 	    CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2920 	    CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2921 	    CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2922 	    CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
2923 	    CC(vmcs12->host_cs_selector == 0) ||
2924 	    CC(vmcs12->host_tr_selector == 0) ||
2925 	    CC(vmcs12->host_ss_selector == 0 && !ia32e))
2926 		return -EINVAL;
2927 
2928 	if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
2929 	    CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
2930 	    CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
2931 	    CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
2932 	    CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
2933 	    CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
2934 		return -EINVAL;
2935 
2936 	/*
2937 	 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
2938 	 * IA32_EFER MSR must be 0 in the field for that register. In addition,
2939 	 * the values of the LMA and LME bits in the field must each be that of
2940 	 * the host address-space size VM-exit control.
2941 	 */
2942 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
2943 		if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
2944 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
2945 		    CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
2946 			return -EINVAL;
2947 	}
2948 
2949 	return 0;
2950 }
2951 
nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)2952 static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
2953 					  struct vmcs12 *vmcs12)
2954 {
2955 	struct vcpu_vmx *vmx = to_vmx(vcpu);
2956 	struct gfn_to_hva_cache *ghc = &vmx->nested.shadow_vmcs12_cache;
2957 	struct vmcs_hdr hdr;
2958 
2959 	if (vmcs12->vmcs_link_pointer == INVALID_GPA)
2960 		return 0;
2961 
2962 	if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
2963 		return -EINVAL;
2964 
2965 	if (ghc->gpa != vmcs12->vmcs_link_pointer &&
2966 	    CC(kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc,
2967 					 vmcs12->vmcs_link_pointer, VMCS12_SIZE)))
2968                 return -EINVAL;
2969 
2970 	if (CC(kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
2971 					    offsetof(struct vmcs12, hdr),
2972 					    sizeof(hdr))))
2973 		return -EINVAL;
2974 
2975 	if (CC(hdr.revision_id != VMCS12_REVISION) ||
2976 	    CC(hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
2977 		return -EINVAL;
2978 
2979 	return 0;
2980 }
2981 
2982 /*
2983  * Checks related to Guest Non-register State
2984  */
nested_check_guest_non_reg_state(struct vmcs12 * vmcs12)2985 static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
2986 {
2987 	if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
2988 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT &&
2989 	       vmcs12->guest_activity_state != GUEST_ACTIVITY_WAIT_SIPI))
2990 		return -EINVAL;
2991 
2992 	return 0;
2993 }
2994 
nested_vmx_check_guest_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,enum vm_entry_failure_code * entry_failure_code)2995 static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
2996 					struct vmcs12 *vmcs12,
2997 					enum vm_entry_failure_code *entry_failure_code)
2998 {
2999 	bool ia32e;
3000 
3001 	*entry_failure_code = ENTRY_FAIL_DEFAULT;
3002 
3003 	if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
3004 	    CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
3005 		return -EINVAL;
3006 
3007 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
3008 	    CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
3009 		return -EINVAL;
3010 
3011 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
3012 	    CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
3013 		return -EINVAL;
3014 
3015 	if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
3016 		*entry_failure_code = ENTRY_FAIL_VMCS_LINK_PTR;
3017 		return -EINVAL;
3018 	}
3019 
3020 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
3021 	    CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
3022 					   vmcs12->guest_ia32_perf_global_ctrl)))
3023 		return -EINVAL;
3024 
3025 	/*
3026 	 * If the load IA32_EFER VM-entry control is 1, the following checks
3027 	 * are performed on the field for the IA32_EFER MSR:
3028 	 * - Bits reserved in the IA32_EFER MSR must be 0.
3029 	 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
3030 	 *   the IA-32e mode guest VM-exit control. It must also be identical
3031 	 *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
3032 	 *   CR0.PG) is 1.
3033 	 */
3034 	if (to_vmx(vcpu)->nested.nested_run_pending &&
3035 	    (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
3036 		ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
3037 		if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
3038 		    CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
3039 		    CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
3040 		     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
3041 			return -EINVAL;
3042 	}
3043 
3044 	if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
3045 	    (CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
3046 	     CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
3047 		return -EINVAL;
3048 
3049 	if (nested_check_guest_non_reg_state(vmcs12))
3050 		return -EINVAL;
3051 
3052 	return 0;
3053 }
3054 
nested_vmx_check_vmentry_hw(struct kvm_vcpu * vcpu)3055 static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
3056 {
3057 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3058 	unsigned long cr3, cr4;
3059 	bool vm_fail;
3060 
3061 	if (!nested_early_check)
3062 		return 0;
3063 
3064 	if (vmx->msr_autoload.host.nr)
3065 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
3066 	if (vmx->msr_autoload.guest.nr)
3067 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
3068 
3069 	preempt_disable();
3070 
3071 	vmx_prepare_switch_to_guest(vcpu);
3072 
3073 	/*
3074 	 * Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
3075 	 * which is reserved to '1' by hardware.  GUEST_RFLAGS is guaranteed to
3076 	 * be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
3077 	 * there is no need to preserve other bits or save/restore the field.
3078 	 */
3079 	vmcs_writel(GUEST_RFLAGS, 0);
3080 
3081 	cr3 = __get_current_cr3_fast();
3082 	if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
3083 		vmcs_writel(HOST_CR3, cr3);
3084 		vmx->loaded_vmcs->host_state.cr3 = cr3;
3085 	}
3086 
3087 	cr4 = cr4_read_shadow();
3088 	if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
3089 		vmcs_writel(HOST_CR4, cr4);
3090 		vmx->loaded_vmcs->host_state.cr4 = cr4;
3091 	}
3092 
3093 	vm_fail = __vmx_vcpu_run(vmx, (unsigned long *)&vcpu->arch.regs,
3094 				 __vmx_vcpu_run_flags(vmx));
3095 
3096 	if (vmx->msr_autoload.host.nr)
3097 		vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
3098 	if (vmx->msr_autoload.guest.nr)
3099 		vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
3100 
3101 	if (vm_fail) {
3102 		u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
3103 
3104 		preempt_enable();
3105 
3106 		trace_kvm_nested_vmenter_failed(
3107 			"early hardware check VM-instruction error: ", error);
3108 		WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3109 		return 1;
3110 	}
3111 
3112 	/*
3113 	 * VMExit clears RFLAGS.IF and DR7, even on a consistency check.
3114 	 */
3115 	if (hw_breakpoint_active())
3116 		set_debugreg(__this_cpu_read(cpu_dr7), 7);
3117 	local_irq_enable();
3118 	preempt_enable();
3119 
3120 	/*
3121 	 * A non-failing VMEntry means we somehow entered guest mode with
3122 	 * an illegal RIP, and that's just the tip of the iceberg.  There
3123 	 * is no telling what memory has been modified or what state has
3124 	 * been exposed to unknown code.  Hitting this all but guarantees
3125 	 * a (very critical) hardware issue.
3126 	 */
3127 	WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
3128 		VMX_EXIT_REASONS_FAILED_VMENTRY));
3129 
3130 	return 0;
3131 }
3132 
nested_get_evmcs_page(struct kvm_vcpu * vcpu)3133 static bool nested_get_evmcs_page(struct kvm_vcpu *vcpu)
3134 {
3135 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3136 
3137 	/*
3138 	 * hv_evmcs may end up being not mapped after migration (when
3139 	 * L2 was running), map it here to make sure vmcs12 changes are
3140 	 * properly reflected.
3141 	 */
3142 	if (vmx->nested.enlightened_vmcs_enabled &&
3143 	    vmx->nested.hv_evmcs_vmptr == EVMPTR_MAP_PENDING) {
3144 		enum nested_evmptrld_status evmptrld_status =
3145 			nested_vmx_handle_enlightened_vmptrld(vcpu, false);
3146 
3147 		if (evmptrld_status == EVMPTRLD_VMFAIL ||
3148 		    evmptrld_status == EVMPTRLD_ERROR)
3149 			return false;
3150 
3151 		/*
3152 		 * Post migration VMCS12 always provides the most actual
3153 		 * information, copy it to eVMCS upon entry.
3154 		 */
3155 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3156 	}
3157 
3158 	return true;
3159 }
3160 
nested_get_vmcs12_pages(struct kvm_vcpu * vcpu)3161 static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
3162 {
3163 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3164 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3165 	struct kvm_host_map *map;
3166 	struct page *page;
3167 	u64 hpa;
3168 
3169 	if (!vcpu->arch.pdptrs_from_userspace &&
3170 	    !nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
3171 		/*
3172 		 * Reload the guest's PDPTRs since after a migration
3173 		 * the guest CR3 might be restored prior to setting the nested
3174 		 * state which can lead to a load of wrong PDPTRs.
3175 		 */
3176 		if (CC(!load_pdptrs(vcpu, vcpu->arch.cr3)))
3177 			return false;
3178 	}
3179 
3180 
3181 	if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3182 		/*
3183 		 * Translate L1 physical address to host physical
3184 		 * address for vmcs02. Keep the page pinned, so this
3185 		 * physical address remains valid. We keep a reference
3186 		 * to it so we can release it later.
3187 		 */
3188 		if (vmx->nested.apic_access_page) { /* shouldn't happen */
3189 			kvm_release_page_clean(vmx->nested.apic_access_page);
3190 			vmx->nested.apic_access_page = NULL;
3191 		}
3192 		page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
3193 		if (!is_error_page(page)) {
3194 			vmx->nested.apic_access_page = page;
3195 			hpa = page_to_phys(vmx->nested.apic_access_page);
3196 			vmcs_write64(APIC_ACCESS_ADDR, hpa);
3197 		} else {
3198 			pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
3199 					     __func__);
3200 			vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3201 			vcpu->run->internal.suberror =
3202 				KVM_INTERNAL_ERROR_EMULATION;
3203 			vcpu->run->internal.ndata = 0;
3204 			return false;
3205 		}
3206 	}
3207 
3208 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3209 		map = &vmx->nested.virtual_apic_map;
3210 
3211 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
3212 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
3213 		} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
3214 		           nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
3215 			   !nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
3216 			/*
3217 			 * The processor will never use the TPR shadow, simply
3218 			 * clear the bit from the execution control.  Such a
3219 			 * configuration is useless, but it happens in tests.
3220 			 * For any other configuration, failing the vm entry is
3221 			 * _not_ what the processor does but it's basically the
3222 			 * only possibility we have.
3223 			 */
3224 			exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
3225 		} else {
3226 			/*
3227 			 * Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
3228 			 * force VM-Entry to fail.
3229 			 */
3230 			vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, INVALID_GPA);
3231 		}
3232 	}
3233 
3234 	if (nested_cpu_has_posted_intr(vmcs12)) {
3235 		map = &vmx->nested.pi_desc_map;
3236 
3237 		if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
3238 			vmx->nested.pi_desc =
3239 				(struct pi_desc *)(((void *)map->hva) +
3240 				offset_in_page(vmcs12->posted_intr_desc_addr));
3241 			vmcs_write64(POSTED_INTR_DESC_ADDR,
3242 				     pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
3243 		} else {
3244 			/*
3245 			 * Defer the KVM_INTERNAL_EXIT until KVM tries to
3246 			 * access the contents of the VMCS12 posted interrupt
3247 			 * descriptor. (Note that KVM may do this when it
3248 			 * should not, per the architectural specification.)
3249 			 */
3250 			vmx->nested.pi_desc = NULL;
3251 			pin_controls_clearbit(vmx, PIN_BASED_POSTED_INTR);
3252 		}
3253 	}
3254 	if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
3255 		exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3256 	else
3257 		exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
3258 
3259 	return true;
3260 }
3261 
vmx_get_nested_state_pages(struct kvm_vcpu * vcpu)3262 static bool vmx_get_nested_state_pages(struct kvm_vcpu *vcpu)
3263 {
3264 	if (!nested_get_evmcs_page(vcpu)) {
3265 		pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
3266 				     __func__);
3267 		vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
3268 		vcpu->run->internal.suberror =
3269 			KVM_INTERNAL_ERROR_EMULATION;
3270 		vcpu->run->internal.ndata = 0;
3271 
3272 		return false;
3273 	}
3274 
3275 	if (is_guest_mode(vcpu) && !nested_get_vmcs12_pages(vcpu))
3276 		return false;
3277 
3278 	return true;
3279 }
3280 
nested_vmx_write_pml_buffer(struct kvm_vcpu * vcpu,gpa_t gpa)3281 static int nested_vmx_write_pml_buffer(struct kvm_vcpu *vcpu, gpa_t gpa)
3282 {
3283 	struct vmcs12 *vmcs12;
3284 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3285 	gpa_t dst;
3286 
3287 	if (WARN_ON_ONCE(!is_guest_mode(vcpu)))
3288 		return 0;
3289 
3290 	if (WARN_ON_ONCE(vmx->nested.pml_full))
3291 		return 1;
3292 
3293 	/*
3294 	 * Check if PML is enabled for the nested guest. Whether eptp bit 6 is
3295 	 * set is already checked as part of A/D emulation.
3296 	 */
3297 	vmcs12 = get_vmcs12(vcpu);
3298 	if (!nested_cpu_has_pml(vmcs12))
3299 		return 0;
3300 
3301 	if (vmcs12->guest_pml_index >= PML_ENTITY_NUM) {
3302 		vmx->nested.pml_full = true;
3303 		return 1;
3304 	}
3305 
3306 	gpa &= ~0xFFFull;
3307 	dst = vmcs12->pml_address + sizeof(u64) * vmcs12->guest_pml_index;
3308 
3309 	if (kvm_write_guest_page(vcpu->kvm, gpa_to_gfn(dst), &gpa,
3310 				 offset_in_page(dst), sizeof(gpa)))
3311 		return 0;
3312 
3313 	vmcs12->guest_pml_index--;
3314 
3315 	return 0;
3316 }
3317 
3318 /*
3319  * Intel's VMX Instruction Reference specifies a common set of prerequisites
3320  * for running VMX instructions (except VMXON, whose prerequisites are
3321  * slightly different). It also specifies what exception to inject otherwise.
3322  * Note that many of these exceptions have priority over VM exits, so they
3323  * don't have to be checked again here.
3324  */
nested_vmx_check_permission(struct kvm_vcpu * vcpu)3325 static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
3326 {
3327 	if (!to_vmx(vcpu)->nested.vmxon) {
3328 		kvm_queue_exception(vcpu, UD_VECTOR);
3329 		return 0;
3330 	}
3331 
3332 	if (vmx_get_cpl(vcpu)) {
3333 		kvm_inject_gp(vcpu, 0);
3334 		return 0;
3335 	}
3336 
3337 	return 1;
3338 }
3339 
vmx_has_apicv_interrupt(struct kvm_vcpu * vcpu)3340 static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
3341 {
3342 	u8 rvi = vmx_get_rvi();
3343 	u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
3344 
3345 	return ((rvi & 0xf0) > (vppr & 0xf0));
3346 }
3347 
3348 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
3349 				   struct vmcs12 *vmcs12);
3350 
3351 /*
3352  * If from_vmentry is false, this is being called from state restore (either RSM
3353  * or KVM_SET_NESTED_STATE).  Otherwise it's called from vmlaunch/vmresume.
3354  *
3355  * Returns:
3356  *	NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
3357  *	NVMX_VMENTRY_VMFAIL:  Consistency check VMFail
3358  *	NVMX_VMENTRY_VMEXIT:  Consistency check VMExit
3359  *	NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
3360  */
nested_vmx_enter_non_root_mode(struct kvm_vcpu * vcpu,bool from_vmentry)3361 enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
3362 							bool from_vmentry)
3363 {
3364 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3365 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3366 	enum vm_entry_failure_code entry_failure_code;
3367 	bool evaluate_pending_interrupts;
3368 	union vmx_exit_reason exit_reason = {
3369 		.basic = EXIT_REASON_INVALID_STATE,
3370 		.failed_vmentry = 1,
3371 	};
3372 	u32 failed_index;
3373 
3374 	kvm_service_local_tlb_flush_requests(vcpu);
3375 
3376 	evaluate_pending_interrupts = exec_controls_get(vmx) &
3377 		(CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
3378 	if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
3379 		evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
3380 
3381 	if (!vmx->nested.nested_run_pending ||
3382 	    !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
3383 		vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
3384 	if (kvm_mpx_supported() &&
3385 	    (!vmx->nested.nested_run_pending ||
3386 	     !(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
3387 		vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
3388 
3389 	/*
3390 	 * Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
3391 	 * nested early checks are disabled.  In the event of a "late" VM-Fail,
3392 	 * i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
3393 	 * software model to the pre-VMEntry host state.  When EPT is disabled,
3394 	 * GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
3395 	 * nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3.  Stuffing
3396 	 * vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
3397 	 * the correct value.  Smashing vmcs01.GUEST_CR3 is safe because nested
3398 	 * VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
3399 	 * guaranteed to be overwritten with a shadow CR3 prior to re-entering
3400 	 * L1.  Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
3401 	 * KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
3402 	 * pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
3403 	 * path would need to manually save/restore vmcs01.GUEST_CR3.
3404 	 */
3405 	if (!enable_ept && !nested_early_check)
3406 		vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
3407 
3408 	vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
3409 
3410 	prepare_vmcs02_early(vmx, &vmx->vmcs01, vmcs12);
3411 
3412 	if (from_vmentry) {
3413 		if (unlikely(!nested_get_vmcs12_pages(vcpu))) {
3414 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3415 			return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
3416 		}
3417 
3418 		if (nested_vmx_check_vmentry_hw(vcpu)) {
3419 			vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3420 			return NVMX_VMENTRY_VMFAIL;
3421 		}
3422 
3423 		if (nested_vmx_check_guest_state(vcpu, vmcs12,
3424 						 &entry_failure_code)) {
3425 			exit_reason.basic = EXIT_REASON_INVALID_STATE;
3426 			vmcs12->exit_qualification = entry_failure_code;
3427 			goto vmentry_fail_vmexit;
3428 		}
3429 	}
3430 
3431 	enter_guest_mode(vcpu);
3432 
3433 	if (prepare_vmcs02(vcpu, vmcs12, from_vmentry, &entry_failure_code)) {
3434 		exit_reason.basic = EXIT_REASON_INVALID_STATE;
3435 		vmcs12->exit_qualification = entry_failure_code;
3436 		goto vmentry_fail_vmexit_guest_mode;
3437 	}
3438 
3439 	if (from_vmentry) {
3440 		failed_index = nested_vmx_load_msr(vcpu,
3441 						   vmcs12->vm_entry_msr_load_addr,
3442 						   vmcs12->vm_entry_msr_load_count);
3443 		if (failed_index) {
3444 			exit_reason.basic = EXIT_REASON_MSR_LOAD_FAIL;
3445 			vmcs12->exit_qualification = failed_index;
3446 			goto vmentry_fail_vmexit_guest_mode;
3447 		}
3448 	} else {
3449 		/*
3450 		 * The MMU is not initialized to point at the right entities yet and
3451 		 * "get pages" would need to read data from the guest (i.e. we will
3452 		 * need to perform gpa to hpa translation). Request a call
3453 		 * to nested_get_vmcs12_pages before the next VM-entry.  The MSRs
3454 		 * have already been set at vmentry time and should not be reset.
3455 		 */
3456 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
3457 	}
3458 
3459 	/*
3460 	 * If L1 had a pending IRQ/NMI until it executed
3461 	 * VMLAUNCH/VMRESUME which wasn't delivered because it was
3462 	 * disallowed (e.g. interrupts disabled), L0 needs to
3463 	 * evaluate if this pending event should cause an exit from L2
3464 	 * to L1 or delivered directly to L2 (e.g. In case L1 don't
3465 	 * intercept EXTERNAL_INTERRUPT).
3466 	 *
3467 	 * Usually this would be handled by the processor noticing an
3468 	 * IRQ/NMI window request, or checking RVI during evaluation of
3469 	 * pending virtual interrupts.  However, this setting was done
3470 	 * on VMCS01 and now VMCS02 is active instead. Thus, we force L0
3471 	 * to perform pending event evaluation by requesting a KVM_REQ_EVENT.
3472 	 */
3473 	if (unlikely(evaluate_pending_interrupts))
3474 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3475 
3476 	/*
3477 	 * Do not start the preemption timer hrtimer until after we know
3478 	 * we are successful, so that only nested_vmx_vmexit needs to cancel
3479 	 * the timer.
3480 	 */
3481 	vmx->nested.preemption_timer_expired = false;
3482 	if (nested_cpu_has_preemption_timer(vmcs12)) {
3483 		u64 timer_value = vmx_calc_preemption_timer_value(vcpu);
3484 		vmx_start_preemption_timer(vcpu, timer_value);
3485 	}
3486 
3487 	/*
3488 	 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
3489 	 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
3490 	 * returned as far as L1 is concerned. It will only return (and set
3491 	 * the success flag) when L2 exits (see nested_vmx_vmexit()).
3492 	 */
3493 	return NVMX_VMENTRY_SUCCESS;
3494 
3495 	/*
3496 	 * A failed consistency check that leads to a VMExit during L1's
3497 	 * VMEnter to L2 is a variation of a normal VMexit, as explained in
3498 	 * 26.7 "VM-entry failures during or after loading guest state".
3499 	 */
3500 vmentry_fail_vmexit_guest_mode:
3501 	if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
3502 		vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
3503 	leave_guest_mode(vcpu);
3504 
3505 vmentry_fail_vmexit:
3506 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
3507 
3508 	if (!from_vmentry)
3509 		return NVMX_VMENTRY_VMEXIT;
3510 
3511 	load_vmcs12_host_state(vcpu, vmcs12);
3512 	vmcs12->vm_exit_reason = exit_reason.full;
3513 	if (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
3514 		vmx->nested.need_vmcs12_to_shadow_sync = true;
3515 	return NVMX_VMENTRY_VMEXIT;
3516 }
3517 
3518 /*
3519  * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
3520  * for running an L2 nested guest.
3521  */
nested_vmx_run(struct kvm_vcpu * vcpu,bool launch)3522 static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
3523 {
3524 	struct vmcs12 *vmcs12;
3525 	enum nvmx_vmentry_status status;
3526 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3527 	u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
3528 	enum nested_evmptrld_status evmptrld_status;
3529 
3530 	if (!nested_vmx_check_permission(vcpu))
3531 		return 1;
3532 
3533 	evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
3534 	if (evmptrld_status == EVMPTRLD_ERROR) {
3535 		kvm_queue_exception(vcpu, UD_VECTOR);
3536 		return 1;
3537 	}
3538 
3539 	kvm_pmu_trigger_event(vcpu, PERF_COUNT_HW_BRANCH_INSTRUCTIONS);
3540 
3541 	if (CC(evmptrld_status == EVMPTRLD_VMFAIL))
3542 		return nested_vmx_failInvalid(vcpu);
3543 
3544 	if (CC(!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr) &&
3545 	       vmx->nested.current_vmptr == INVALID_GPA))
3546 		return nested_vmx_failInvalid(vcpu);
3547 
3548 	vmcs12 = get_vmcs12(vcpu);
3549 
3550 	/*
3551 	 * Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
3552 	 * that there *is* a valid VMCS pointer, RFLAGS.CF is set
3553 	 * rather than RFLAGS.ZF, and no error number is stored to the
3554 	 * VM-instruction error field.
3555 	 */
3556 	if (CC(vmcs12->hdr.shadow_vmcs))
3557 		return nested_vmx_failInvalid(vcpu);
3558 
3559 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
3560 		copy_enlightened_to_vmcs12(vmx, vmx->nested.hv_evmcs->hv_clean_fields);
3561 		/* Enlightened VMCS doesn't have launch state */
3562 		vmcs12->launch_state = !launch;
3563 	} else if (enable_shadow_vmcs) {
3564 		copy_shadow_to_vmcs12(vmx);
3565 	}
3566 
3567 	/*
3568 	 * The nested entry process starts with enforcing various prerequisites
3569 	 * on vmcs12 as required by the Intel SDM, and act appropriately when
3570 	 * they fail: As the SDM explains, some conditions should cause the
3571 	 * instruction to fail, while others will cause the instruction to seem
3572 	 * to succeed, but return an EXIT_REASON_INVALID_STATE.
3573 	 * To speed up the normal (success) code path, we should avoid checking
3574 	 * for misconfigurations which will anyway be caught by the processor
3575 	 * when using the merged vmcs02.
3576 	 */
3577 	if (CC(interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS))
3578 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
3579 
3580 	if (CC(vmcs12->launch_state == launch))
3581 		return nested_vmx_fail(vcpu,
3582 			launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
3583 			       : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
3584 
3585 	if (nested_vmx_check_controls(vcpu, vmcs12))
3586 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3587 
3588 	if (nested_vmx_check_address_space_size(vcpu, vmcs12))
3589 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3590 
3591 	if (nested_vmx_check_host_state(vcpu, vmcs12))
3592 		return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
3593 
3594 	/*
3595 	 * We're finally done with prerequisite checking, and can start with
3596 	 * the nested entry.
3597 	 */
3598 	vmx->nested.nested_run_pending = 1;
3599 	vmx->nested.has_preemption_timer_deadline = false;
3600 	status = nested_vmx_enter_non_root_mode(vcpu, true);
3601 	if (unlikely(status != NVMX_VMENTRY_SUCCESS))
3602 		goto vmentry_failed;
3603 
3604 	/* Emulate processing of posted interrupts on VM-Enter. */
3605 	if (nested_cpu_has_posted_intr(vmcs12) &&
3606 	    kvm_apic_has_interrupt(vcpu) == vmx->nested.posted_intr_nv) {
3607 		vmx->nested.pi_pending = true;
3608 		kvm_make_request(KVM_REQ_EVENT, vcpu);
3609 		kvm_apic_clear_irr(vcpu, vmx->nested.posted_intr_nv);
3610 	}
3611 
3612 	/* Hide L1D cache contents from the nested guest.  */
3613 	vmx->vcpu.arch.l1tf_flush_l1d = true;
3614 
3615 	/*
3616 	 * Must happen outside of nested_vmx_enter_non_root_mode() as it will
3617 	 * also be used as part of restoring nVMX state for
3618 	 * snapshot restore (migration).
3619 	 *
3620 	 * In this flow, it is assumed that vmcs12 cache was
3621 	 * transferred as part of captured nVMX state and should
3622 	 * therefore not be read from guest memory (which may not
3623 	 * exist on destination host yet).
3624 	 */
3625 	nested_cache_shadow_vmcs12(vcpu, vmcs12);
3626 
3627 	switch (vmcs12->guest_activity_state) {
3628 	case GUEST_ACTIVITY_HLT:
3629 		/*
3630 		 * If we're entering a halted L2 vcpu and the L2 vcpu won't be
3631 		 * awakened by event injection or by an NMI-window VM-exit or
3632 		 * by an interrupt-window VM-exit, halt the vcpu.
3633 		 */
3634 		if (!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
3635 		    !nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING) &&
3636 		    !(nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING) &&
3637 		      (vmcs12->guest_rflags & X86_EFLAGS_IF))) {
3638 			vmx->nested.nested_run_pending = 0;
3639 			return kvm_emulate_halt_noskip(vcpu);
3640 		}
3641 		break;
3642 	case GUEST_ACTIVITY_WAIT_SIPI:
3643 		vmx->nested.nested_run_pending = 0;
3644 		vcpu->arch.mp_state = KVM_MP_STATE_INIT_RECEIVED;
3645 		break;
3646 	default:
3647 		break;
3648 	}
3649 
3650 	return 1;
3651 
3652 vmentry_failed:
3653 	vmx->nested.nested_run_pending = 0;
3654 	if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
3655 		return 0;
3656 	if (status == NVMX_VMENTRY_VMEXIT)
3657 		return 1;
3658 	WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
3659 	return nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
3660 }
3661 
3662 /*
3663  * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
3664  * because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
3665  * This function returns the new value we should put in vmcs12.guest_cr0.
3666  * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
3667  *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
3668  *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
3669  *     didn't trap the bit, because if L1 did, so would L0).
3670  *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
3671  *     been modified by L2, and L1 knows it. So just leave the old value of
3672  *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
3673  *     isn't relevant, because if L0 traps this bit it can set it to anything.
3674  *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
3675  *     changed these bits, and therefore they need to be updated, but L0
3676  *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
3677  *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
3678  */
3679 static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3680 vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3681 {
3682 	return
3683 	/*1*/	(vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
3684 	/*2*/	(vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
3685 	/*3*/	(vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
3686 			vcpu->arch.cr0_guest_owned_bits));
3687 }
3688 
3689 static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)3690 vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
3691 {
3692 	return
3693 	/*1*/	(vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
3694 	/*2*/	(vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
3695 	/*3*/	(vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
3696 			vcpu->arch.cr4_guest_owned_bits));
3697 }
3698 
vmcs12_save_pending_event(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info)3699 static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
3700 				      struct vmcs12 *vmcs12,
3701 				      u32 vm_exit_reason, u32 exit_intr_info)
3702 {
3703 	u32 idt_vectoring;
3704 	unsigned int nr;
3705 
3706 	/*
3707 	 * Per the SDM, VM-Exits due to double and triple faults are never
3708 	 * considered to occur during event delivery, even if the double/triple
3709 	 * fault is the result of an escalating vectoring issue.
3710 	 *
3711 	 * Note, the SDM qualifies the double fault behavior with "The original
3712 	 * event results in a double-fault exception".  It's unclear why the
3713 	 * qualification exists since exits due to double fault can occur only
3714 	 * while vectoring a different exception (injected events are never
3715 	 * subject to interception), i.e. there's _always_ an original event.
3716 	 *
3717 	 * The SDM also uses NMI as a confusing example for the "original event
3718 	 * causes the VM exit directly" clause.  NMI isn't special in any way,
3719 	 * the same rule applies to all events that cause an exit directly.
3720 	 * NMI is an odd choice for the example because NMIs can only occur on
3721 	 * instruction boundaries, i.e. they _can't_ occur during vectoring.
3722 	 */
3723 	if ((u16)vm_exit_reason == EXIT_REASON_TRIPLE_FAULT ||
3724 	    ((u16)vm_exit_reason == EXIT_REASON_EXCEPTION_NMI &&
3725 	     is_double_fault(exit_intr_info))) {
3726 		vmcs12->idt_vectoring_info_field = 0;
3727 	} else if (vcpu->arch.exception.injected) {
3728 		nr = vcpu->arch.exception.nr;
3729 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3730 
3731 		if (kvm_exception_is_soft(nr)) {
3732 			vmcs12->vm_exit_instruction_len =
3733 				vcpu->arch.event_exit_inst_len;
3734 			idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
3735 		} else
3736 			idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
3737 
3738 		if (vcpu->arch.exception.has_error_code) {
3739 			idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
3740 			vmcs12->idt_vectoring_error_code =
3741 				vcpu->arch.exception.error_code;
3742 		}
3743 
3744 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3745 	} else if (vcpu->arch.nmi_injected) {
3746 		vmcs12->idt_vectoring_info_field =
3747 			INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
3748 	} else if (vcpu->arch.interrupt.injected) {
3749 		nr = vcpu->arch.interrupt.nr;
3750 		idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
3751 
3752 		if (vcpu->arch.interrupt.soft) {
3753 			idt_vectoring |= INTR_TYPE_SOFT_INTR;
3754 			vmcs12->vm_entry_instruction_len =
3755 				vcpu->arch.event_exit_inst_len;
3756 		} else
3757 			idt_vectoring |= INTR_TYPE_EXT_INTR;
3758 
3759 		vmcs12->idt_vectoring_info_field = idt_vectoring;
3760 	} else {
3761 		vmcs12->idt_vectoring_info_field = 0;
3762 	}
3763 }
3764 
3765 
nested_mark_vmcs12_pages_dirty(struct kvm_vcpu * vcpu)3766 void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
3767 {
3768 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3769 	gfn_t gfn;
3770 
3771 	/*
3772 	 * Don't need to mark the APIC access page dirty; it is never
3773 	 * written to by the CPU during APIC virtualization.
3774 	 */
3775 
3776 	if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
3777 		gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
3778 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3779 	}
3780 
3781 	if (nested_cpu_has_posted_intr(vmcs12)) {
3782 		gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
3783 		kvm_vcpu_mark_page_dirty(vcpu, gfn);
3784 	}
3785 }
3786 
vmx_complete_nested_posted_interrupt(struct kvm_vcpu * vcpu)3787 static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
3788 {
3789 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3790 	int max_irr;
3791 	void *vapic_page;
3792 	u16 status;
3793 
3794 	if (!vmx->nested.pi_pending)
3795 		return 0;
3796 
3797 	if (!vmx->nested.pi_desc)
3798 		goto mmio_needed;
3799 
3800 	vmx->nested.pi_pending = false;
3801 
3802 	if (!pi_test_and_clear_on(vmx->nested.pi_desc))
3803 		return 0;
3804 
3805 	max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
3806 	if (max_irr != 256) {
3807 		vapic_page = vmx->nested.virtual_apic_map.hva;
3808 		if (!vapic_page)
3809 			goto mmio_needed;
3810 
3811 		__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
3812 			vapic_page, &max_irr);
3813 		status = vmcs_read16(GUEST_INTR_STATUS);
3814 		if ((u8)max_irr > ((u8)status & 0xff)) {
3815 			status &= ~0xff;
3816 			status |= (u8)max_irr;
3817 			vmcs_write16(GUEST_INTR_STATUS, status);
3818 		}
3819 	}
3820 
3821 	nested_mark_vmcs12_pages_dirty(vcpu);
3822 	return 0;
3823 
3824 mmio_needed:
3825 	kvm_handle_memory_failure(vcpu, X86EMUL_IO_NEEDED, NULL);
3826 	return -ENXIO;
3827 }
3828 
nested_vmx_inject_exception_vmexit(struct kvm_vcpu * vcpu,unsigned long exit_qual)3829 static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
3830 					       unsigned long exit_qual)
3831 {
3832 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
3833 	unsigned int nr = vcpu->arch.exception.nr;
3834 	u32 intr_info = nr | INTR_INFO_VALID_MASK;
3835 
3836 	if (vcpu->arch.exception.has_error_code) {
3837 		vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
3838 		intr_info |= INTR_INFO_DELIVER_CODE_MASK;
3839 	}
3840 
3841 	if (kvm_exception_is_soft(nr))
3842 		intr_info |= INTR_TYPE_SOFT_EXCEPTION;
3843 	else
3844 		intr_info |= INTR_TYPE_HARD_EXCEPTION;
3845 
3846 	if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
3847 	    vmx_get_nmi_mask(vcpu))
3848 		intr_info |= INTR_INFO_UNBLOCK_NMI;
3849 
3850 	nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
3851 }
3852 
3853 /*
3854  * Returns true if a debug trap is pending delivery.
3855  *
3856  * In KVM, debug traps bear an exception payload. As such, the class of a #DB
3857  * exception may be inferred from the presence of an exception payload.
3858  */
vmx_pending_dbg_trap(struct kvm_vcpu * vcpu)3859 static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
3860 {
3861 	return vcpu->arch.exception.pending &&
3862 			vcpu->arch.exception.nr == DB_VECTOR &&
3863 			vcpu->arch.exception.payload;
3864 }
3865 
3866 /*
3867  * Certain VM-exits set the 'pending debug exceptions' field to indicate a
3868  * recognized #DB (data or single-step) that has yet to be delivered. Since KVM
3869  * represents these debug traps with a payload that is said to be compatible
3870  * with the 'pending debug exceptions' field, write the payload to the VMCS
3871  * field if a VM-exit is delivered before the debug trap.
3872  */
nested_vmx_update_pending_dbg(struct kvm_vcpu * vcpu)3873 static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
3874 {
3875 	if (vmx_pending_dbg_trap(vcpu))
3876 		vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
3877 			    vcpu->arch.exception.payload);
3878 }
3879 
nested_vmx_preemption_timer_pending(struct kvm_vcpu * vcpu)3880 static bool nested_vmx_preemption_timer_pending(struct kvm_vcpu *vcpu)
3881 {
3882 	return nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
3883 	       to_vmx(vcpu)->nested.preemption_timer_expired;
3884 }
3885 
vmx_check_nested_events(struct kvm_vcpu * vcpu)3886 static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
3887 {
3888 	struct vcpu_vmx *vmx = to_vmx(vcpu);
3889 	unsigned long exit_qual;
3890 	bool block_nested_events =
3891 	    vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
3892 	bool mtf_pending = vmx->nested.mtf_pending;
3893 	struct kvm_lapic *apic = vcpu->arch.apic;
3894 
3895 	/*
3896 	 * Clear the MTF state. If a higher priority VM-exit is delivered first,
3897 	 * this state is discarded.
3898 	 */
3899 	if (!block_nested_events)
3900 		vmx->nested.mtf_pending = false;
3901 
3902 	if (lapic_in_kernel(vcpu) &&
3903 		test_bit(KVM_APIC_INIT, &apic->pending_events)) {
3904 		if (block_nested_events)
3905 			return -EBUSY;
3906 		nested_vmx_update_pending_dbg(vcpu);
3907 		clear_bit(KVM_APIC_INIT, &apic->pending_events);
3908 		if (vcpu->arch.mp_state != KVM_MP_STATE_INIT_RECEIVED)
3909 			nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
3910 		return 0;
3911 	}
3912 
3913 	if (lapic_in_kernel(vcpu) &&
3914 	    test_bit(KVM_APIC_SIPI, &apic->pending_events)) {
3915 		if (block_nested_events)
3916 			return -EBUSY;
3917 
3918 		clear_bit(KVM_APIC_SIPI, &apic->pending_events);
3919 		if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
3920 			nested_vmx_vmexit(vcpu, EXIT_REASON_SIPI_SIGNAL, 0,
3921 						apic->sipi_vector & 0xFFUL);
3922 		return 0;
3923 	}
3924 
3925 	/*
3926 	 * Process any exceptions that are not debug traps before MTF.
3927 	 *
3928 	 * Note that only a pending nested run can block a pending exception.
3929 	 * Otherwise an injected NMI/interrupt should either be
3930 	 * lost or delivered to the nested hypervisor in the IDT_VECTORING_INFO,
3931 	 * while delivering the pending exception.
3932 	 */
3933 
3934 	if (vcpu->arch.exception.pending && !vmx_pending_dbg_trap(vcpu)) {
3935 		if (vmx->nested.nested_run_pending)
3936 			return -EBUSY;
3937 		if (!nested_vmx_check_exception(vcpu, &exit_qual))
3938 			goto no_vmexit;
3939 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3940 		return 0;
3941 	}
3942 
3943 	if (mtf_pending) {
3944 		if (block_nested_events)
3945 			return -EBUSY;
3946 		nested_vmx_update_pending_dbg(vcpu);
3947 		nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
3948 		return 0;
3949 	}
3950 
3951 	if (vcpu->arch.exception.pending) {
3952 		if (vmx->nested.nested_run_pending)
3953 			return -EBUSY;
3954 		if (!nested_vmx_check_exception(vcpu, &exit_qual))
3955 			goto no_vmexit;
3956 		nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
3957 		return 0;
3958 	}
3959 
3960 	if (nested_vmx_preemption_timer_pending(vcpu)) {
3961 		if (block_nested_events)
3962 			return -EBUSY;
3963 		nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
3964 		return 0;
3965 	}
3966 
3967 	if (vcpu->arch.smi_pending && !is_smm(vcpu)) {
3968 		if (block_nested_events)
3969 			return -EBUSY;
3970 		goto no_vmexit;
3971 	}
3972 
3973 	if (vcpu->arch.nmi_pending && !vmx_nmi_blocked(vcpu)) {
3974 		if (block_nested_events)
3975 			return -EBUSY;
3976 		if (!nested_exit_on_nmi(vcpu))
3977 			goto no_vmexit;
3978 
3979 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
3980 				  NMI_VECTOR | INTR_TYPE_NMI_INTR |
3981 				  INTR_INFO_VALID_MASK, 0);
3982 		/*
3983 		 * The NMI-triggered VM exit counts as injection:
3984 		 * clear this one and block further NMIs.
3985 		 */
3986 		vcpu->arch.nmi_pending = 0;
3987 		vmx_set_nmi_mask(vcpu, true);
3988 		return 0;
3989 	}
3990 
3991 	if (kvm_cpu_has_interrupt(vcpu) && !vmx_interrupt_blocked(vcpu)) {
3992 		if (block_nested_events)
3993 			return -EBUSY;
3994 		if (!nested_exit_on_intr(vcpu))
3995 			goto no_vmexit;
3996 		nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
3997 		return 0;
3998 	}
3999 
4000 no_vmexit:
4001 	return vmx_complete_nested_posted_interrupt(vcpu);
4002 }
4003 
vmx_get_preemption_timer_value(struct kvm_vcpu * vcpu)4004 static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
4005 {
4006 	ktime_t remaining =
4007 		hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
4008 	u64 value;
4009 
4010 	if (ktime_to_ns(remaining) <= 0)
4011 		return 0;
4012 
4013 	value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
4014 	do_div(value, 1000000);
4015 	return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
4016 }
4017 
is_vmcs12_ext_field(unsigned long field)4018 static bool is_vmcs12_ext_field(unsigned long field)
4019 {
4020 	switch (field) {
4021 	case GUEST_ES_SELECTOR:
4022 	case GUEST_CS_SELECTOR:
4023 	case GUEST_SS_SELECTOR:
4024 	case GUEST_DS_SELECTOR:
4025 	case GUEST_FS_SELECTOR:
4026 	case GUEST_GS_SELECTOR:
4027 	case GUEST_LDTR_SELECTOR:
4028 	case GUEST_TR_SELECTOR:
4029 	case GUEST_ES_LIMIT:
4030 	case GUEST_CS_LIMIT:
4031 	case GUEST_SS_LIMIT:
4032 	case GUEST_DS_LIMIT:
4033 	case GUEST_FS_LIMIT:
4034 	case GUEST_GS_LIMIT:
4035 	case GUEST_LDTR_LIMIT:
4036 	case GUEST_TR_LIMIT:
4037 	case GUEST_GDTR_LIMIT:
4038 	case GUEST_IDTR_LIMIT:
4039 	case GUEST_ES_AR_BYTES:
4040 	case GUEST_DS_AR_BYTES:
4041 	case GUEST_FS_AR_BYTES:
4042 	case GUEST_GS_AR_BYTES:
4043 	case GUEST_LDTR_AR_BYTES:
4044 	case GUEST_TR_AR_BYTES:
4045 	case GUEST_ES_BASE:
4046 	case GUEST_CS_BASE:
4047 	case GUEST_SS_BASE:
4048 	case GUEST_DS_BASE:
4049 	case GUEST_FS_BASE:
4050 	case GUEST_GS_BASE:
4051 	case GUEST_LDTR_BASE:
4052 	case GUEST_TR_BASE:
4053 	case GUEST_GDTR_BASE:
4054 	case GUEST_IDTR_BASE:
4055 	case GUEST_PENDING_DBG_EXCEPTIONS:
4056 	case GUEST_BNDCFGS:
4057 		return true;
4058 	default:
4059 		break;
4060 	}
4061 
4062 	return false;
4063 }
4064 
sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4065 static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4066 				       struct vmcs12 *vmcs12)
4067 {
4068 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4069 
4070 	vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
4071 	vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
4072 	vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
4073 	vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
4074 	vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
4075 	vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
4076 	vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
4077 	vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
4078 	vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
4079 	vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
4080 	vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
4081 	vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
4082 	vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
4083 	vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
4084 	vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
4085 	vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
4086 	vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
4087 	vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
4088 	vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
4089 	vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
4090 	vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
4091 	vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
4092 	vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
4093 	vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
4094 	vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
4095 	vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
4096 	vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
4097 	vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
4098 	vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
4099 	vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
4100 	vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
4101 	vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
4102 	vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
4103 	vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
4104 	vmcs12->guest_pending_dbg_exceptions =
4105 		vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
4106 	if (kvm_mpx_supported())
4107 		vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
4108 
4109 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
4110 }
4111 
copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4112 static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
4113 				       struct vmcs12 *vmcs12)
4114 {
4115 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4116 	int cpu;
4117 
4118 	if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
4119 		return;
4120 
4121 
4122 	WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
4123 
4124 	cpu = get_cpu();
4125 	vmx->loaded_vmcs = &vmx->nested.vmcs02;
4126 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->vmcs01);
4127 
4128 	sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4129 
4130 	vmx->loaded_vmcs = &vmx->vmcs01;
4131 	vmx_vcpu_load_vmcs(vcpu, cpu, &vmx->nested.vmcs02);
4132 	put_cpu();
4133 }
4134 
4135 /*
4136  * Update the guest state fields of vmcs12 to reflect changes that
4137  * occurred while L2 was running. (The "IA-32e mode guest" bit of the
4138  * VM-entry controls is also updated, since this is really a guest
4139  * state bit.)
4140  */
sync_vmcs02_to_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4141 static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
4142 {
4143 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4144 
4145 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
4146 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
4147 
4148 	vmx->nested.need_sync_vmcs02_to_vmcs12_rare =
4149 		!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr);
4150 
4151 	vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
4152 	vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
4153 
4154 	vmcs12->guest_rsp = kvm_rsp_read(vcpu);
4155 	vmcs12->guest_rip = kvm_rip_read(vcpu);
4156 	vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
4157 
4158 	vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
4159 	vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
4160 
4161 	vmcs12->guest_interruptibility_info =
4162 		vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
4163 
4164 	if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
4165 		vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
4166 	else if (vcpu->arch.mp_state == KVM_MP_STATE_INIT_RECEIVED)
4167 		vmcs12->guest_activity_state = GUEST_ACTIVITY_WAIT_SIPI;
4168 	else
4169 		vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4170 
4171 	if (nested_cpu_has_preemption_timer(vmcs12) &&
4172 	    vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER &&
4173 	    !vmx->nested.nested_run_pending)
4174 		vmcs12->vmx_preemption_timer_value =
4175 			vmx_get_preemption_timer_value(vcpu);
4176 
4177 	/*
4178 	 * In some cases (usually, nested EPT), L2 is allowed to change its
4179 	 * own CR3 without exiting. If it has changed it, we must keep it.
4180 	 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
4181 	 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
4182 	 *
4183 	 * Additionally, restore L2's PDPTR to vmcs12.
4184 	 */
4185 	if (enable_ept) {
4186 		vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
4187 		if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
4188 			vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
4189 			vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
4190 			vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
4191 			vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
4192 		}
4193 	}
4194 
4195 	vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
4196 
4197 	if (nested_cpu_has_vid(vmcs12))
4198 		vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
4199 
4200 	vmcs12->vm_entry_controls =
4201 		(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
4202 		(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
4203 
4204 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
4205 		kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
4206 
4207 	if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
4208 		vmcs12->guest_ia32_efer = vcpu->arch.efer;
4209 }
4210 
4211 /*
4212  * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
4213  * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
4214  * and this function updates it to reflect the changes to the guest state while
4215  * L2 was running (and perhaps made some exits which were handled directly by L0
4216  * without going back to L1), and to reflect the exit reason.
4217  * Note that we do not have to copy here all VMCS fields, just those that
4218  * could have changed by the L2 guest or the exit - i.e., the guest-state and
4219  * exit-information fields only. Other fields are modified by L1 with VMWRITE,
4220  * which already writes to vmcs12 directly.
4221  */
prepare_vmcs12(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4222 static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
4223 			   u32 vm_exit_reason, u32 exit_intr_info,
4224 			   unsigned long exit_qualification)
4225 {
4226 	/* update exit information fields: */
4227 	vmcs12->vm_exit_reason = vm_exit_reason;
4228 	if (to_vmx(vcpu)->exit_reason.enclave_mode)
4229 		vmcs12->vm_exit_reason |= VMX_EXIT_REASONS_SGX_ENCLAVE_MODE;
4230 	vmcs12->exit_qualification = exit_qualification;
4231 
4232 	/*
4233 	 * On VM-Exit due to a failed VM-Entry, the VMCS isn't marked launched
4234 	 * and only EXIT_REASON and EXIT_QUALIFICATION are updated, all other
4235 	 * exit info fields are unmodified.
4236 	 */
4237 	if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
4238 		vmcs12->launch_state = 1;
4239 
4240 		/* vm_entry_intr_info_field is cleared on exit. Emulate this
4241 		 * instead of reading the real value. */
4242 		vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
4243 
4244 		/*
4245 		 * Transfer the event that L0 or L1 may wanted to inject into
4246 		 * L2 to IDT_VECTORING_INFO_FIELD.
4247 		 */
4248 		vmcs12_save_pending_event(vcpu, vmcs12,
4249 					  vm_exit_reason, exit_intr_info);
4250 
4251 		vmcs12->vm_exit_intr_info = exit_intr_info;
4252 		vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4253 		vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
4254 
4255 		/*
4256 		 * According to spec, there's no need to store the guest's
4257 		 * MSRs if the exit is due to a VM-entry failure that occurs
4258 		 * during or after loading the guest state. Since this exit
4259 		 * does not fall in that category, we need to save the MSRs.
4260 		 */
4261 		if (nested_vmx_store_msr(vcpu,
4262 					 vmcs12->vm_exit_msr_store_addr,
4263 					 vmcs12->vm_exit_msr_store_count))
4264 			nested_vmx_abort(vcpu,
4265 					 VMX_ABORT_SAVE_GUEST_MSR_FAIL);
4266 	}
4267 
4268 	/*
4269 	 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
4270 	 * preserved above and would only end up incorrectly in L1.
4271 	 */
4272 	vcpu->arch.nmi_injected = false;
4273 	kvm_clear_exception_queue(vcpu);
4274 	kvm_clear_interrupt_queue(vcpu);
4275 }
4276 
4277 /*
4278  * A part of what we need to when the nested L2 guest exits and we want to
4279  * run its L1 parent, is to reset L1's guest state to the host state specified
4280  * in vmcs12.
4281  * This function is to be called not only on normal nested exit, but also on
4282  * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
4283  * Failures During or After Loading Guest State").
4284  * This function should be called when the active VMCS is L1's (vmcs01).
4285  */
load_vmcs12_host_state(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)4286 static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
4287 				   struct vmcs12 *vmcs12)
4288 {
4289 	enum vm_entry_failure_code ignored;
4290 	struct kvm_segment seg;
4291 
4292 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
4293 		vcpu->arch.efer = vmcs12->host_ia32_efer;
4294 	else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4295 		vcpu->arch.efer |= (EFER_LMA | EFER_LME);
4296 	else
4297 		vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
4298 	vmx_set_efer(vcpu, vcpu->arch.efer);
4299 
4300 	kvm_rsp_write(vcpu, vmcs12->host_rsp);
4301 	kvm_rip_write(vcpu, vmcs12->host_rip);
4302 	vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4303 	vmx_set_interrupt_shadow(vcpu, 0);
4304 
4305 	/*
4306 	 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
4307 	 * actually changed, because vmx_set_cr0 refers to efer set above.
4308 	 *
4309 	 * CR0_GUEST_HOST_MASK is already set in the original vmcs01
4310 	 * (KVM doesn't change it);
4311 	 */
4312 	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4313 	vmx_set_cr0(vcpu, vmcs12->host_cr0);
4314 
4315 	/* Same as above - no reason to call set_cr4_guest_host_mask().  */
4316 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4317 	vmx_set_cr4(vcpu, vmcs12->host_cr4);
4318 
4319 	nested_ept_uninit_mmu_context(vcpu);
4320 
4321 	/*
4322 	 * Only PDPTE load can fail as the value of cr3 was checked on entry and
4323 	 * couldn't have changed.
4324 	 */
4325 	if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, true, &ignored))
4326 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
4327 
4328 	nested_vmx_transition_tlb_flush(vcpu, vmcs12, false);
4329 
4330 	vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
4331 	vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
4332 	vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
4333 	vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
4334 	vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4335 	vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
4336 	vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
4337 
4338 	/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1.  */
4339 	if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
4340 		vmcs_write64(GUEST_BNDCFGS, 0);
4341 
4342 	if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4343 		vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
4344 		vcpu->arch.pat = vmcs12->host_ia32_pat;
4345 	}
4346 	if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
4347 	    intel_pmu_has_perf_global_ctrl(vcpu_to_pmu(vcpu)))
4348 		WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
4349 					 vmcs12->host_ia32_perf_global_ctrl));
4350 
4351 	/* Set L1 segment info according to Intel SDM
4352 	    27.5.2 Loading Host Segment and Descriptor-Table Registers */
4353 	seg = (struct kvm_segment) {
4354 		.base = 0,
4355 		.limit = 0xFFFFFFFF,
4356 		.selector = vmcs12->host_cs_selector,
4357 		.type = 11,
4358 		.present = 1,
4359 		.s = 1,
4360 		.g = 1
4361 	};
4362 	if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4363 		seg.l = 1;
4364 	else
4365 		seg.db = 1;
4366 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
4367 	seg = (struct kvm_segment) {
4368 		.base = 0,
4369 		.limit = 0xFFFFFFFF,
4370 		.type = 3,
4371 		.present = 1,
4372 		.s = 1,
4373 		.db = 1,
4374 		.g = 1
4375 	};
4376 	seg.selector = vmcs12->host_ds_selector;
4377 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
4378 	seg.selector = vmcs12->host_es_selector;
4379 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
4380 	seg.selector = vmcs12->host_ss_selector;
4381 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
4382 	seg.selector = vmcs12->host_fs_selector;
4383 	seg.base = vmcs12->host_fs_base;
4384 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
4385 	seg.selector = vmcs12->host_gs_selector;
4386 	seg.base = vmcs12->host_gs_base;
4387 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
4388 	seg = (struct kvm_segment) {
4389 		.base = vmcs12->host_tr_base,
4390 		.limit = 0x67,
4391 		.selector = vmcs12->host_tr_selector,
4392 		.type = 11,
4393 		.present = 1
4394 	};
4395 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
4396 
4397 	memset(&seg, 0, sizeof(seg));
4398 	seg.unusable = 1;
4399 	__vmx_set_segment(vcpu, &seg, VCPU_SREG_LDTR);
4400 
4401 	kvm_set_dr(vcpu, 7, 0x400);
4402 	vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4403 
4404 	if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
4405 				vmcs12->vm_exit_msr_load_count))
4406 		nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4407 
4408 	to_vmx(vcpu)->emulation_required = vmx_emulation_required(vcpu);
4409 }
4410 
nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx * vmx)4411 static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
4412 {
4413 	struct vmx_uret_msr *efer_msr;
4414 	unsigned int i;
4415 
4416 	if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
4417 		return vmcs_read64(GUEST_IA32_EFER);
4418 
4419 	if (cpu_has_load_ia32_efer())
4420 		return host_efer;
4421 
4422 	for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
4423 		if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
4424 			return vmx->msr_autoload.guest.val[i].value;
4425 	}
4426 
4427 	efer_msr = vmx_find_uret_msr(vmx, MSR_EFER);
4428 	if (efer_msr)
4429 		return efer_msr->data;
4430 
4431 	return host_efer;
4432 }
4433 
nested_vmx_restore_host_state(struct kvm_vcpu * vcpu)4434 static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
4435 {
4436 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4437 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4438 	struct vmx_msr_entry g, h;
4439 	gpa_t gpa;
4440 	u32 i, j;
4441 
4442 	vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
4443 
4444 	if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
4445 		/*
4446 		 * L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
4447 		 * as vmcs01.GUEST_DR7 contains a userspace defined value
4448 		 * and vcpu->arch.dr7 is not squirreled away before the
4449 		 * nested VMENTER (not worth adding a variable in nested_vmx).
4450 		 */
4451 		if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
4452 			kvm_set_dr(vcpu, 7, DR7_FIXED_1);
4453 		else
4454 			WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
4455 	}
4456 
4457 	/*
4458 	 * Note that calling vmx_set_{efer,cr0,cr4} is important as they
4459 	 * handle a variety of side effects to KVM's software model.
4460 	 */
4461 	vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
4462 
4463 	vcpu->arch.cr0_guest_owned_bits = KVM_POSSIBLE_CR0_GUEST_BITS;
4464 	vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
4465 
4466 	vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
4467 	vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
4468 
4469 	nested_ept_uninit_mmu_context(vcpu);
4470 	vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
4471 	kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
4472 
4473 	/*
4474 	 * Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
4475 	 * from vmcs01 (if necessary).  The PDPTRs are not loaded on
4476 	 * VMFail, like everything else we just need to ensure our
4477 	 * software model is up-to-date.
4478 	 */
4479 	if (enable_ept && is_pae_paging(vcpu))
4480 		ept_save_pdptrs(vcpu);
4481 
4482 	kvm_mmu_reset_context(vcpu);
4483 
4484 	/*
4485 	 * This nasty bit of open coding is a compromise between blindly
4486 	 * loading L1's MSRs using the exit load lists (incorrect emulation
4487 	 * of VMFail), leaving the nested VM's MSRs in the software model
4488 	 * (incorrect behavior) and snapshotting the modified MSRs (too
4489 	 * expensive since the lists are unbound by hardware).  For each
4490 	 * MSR that was (prematurely) loaded from the nested VMEntry load
4491 	 * list, reload it from the exit load list if it exists and differs
4492 	 * from the guest value.  The intent is to stuff host state as
4493 	 * silently as possible, not to fully process the exit load list.
4494 	 */
4495 	for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
4496 		gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
4497 		if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
4498 			pr_debug_ratelimited(
4499 				"%s read MSR index failed (%u, 0x%08llx)\n",
4500 				__func__, i, gpa);
4501 			goto vmabort;
4502 		}
4503 
4504 		for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
4505 			gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
4506 			if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
4507 				pr_debug_ratelimited(
4508 					"%s read MSR failed (%u, 0x%08llx)\n",
4509 					__func__, j, gpa);
4510 				goto vmabort;
4511 			}
4512 			if (h.index != g.index)
4513 				continue;
4514 			if (h.value == g.value)
4515 				break;
4516 
4517 			if (nested_vmx_load_msr_check(vcpu, &h)) {
4518 				pr_debug_ratelimited(
4519 					"%s check failed (%u, 0x%x, 0x%x)\n",
4520 					__func__, j, h.index, h.reserved);
4521 				goto vmabort;
4522 			}
4523 
4524 			if (kvm_set_msr(vcpu, h.index, h.value)) {
4525 				pr_debug_ratelimited(
4526 					"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
4527 					__func__, j, h.index, h.value);
4528 				goto vmabort;
4529 			}
4530 		}
4531 	}
4532 
4533 	return;
4534 
4535 vmabort:
4536 	nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4537 }
4538 
4539 /*
4540  * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
4541  * and modify vmcs12 to make it see what it would expect to see there if
4542  * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
4543  */
nested_vmx_vmexit(struct kvm_vcpu * vcpu,u32 vm_exit_reason,u32 exit_intr_info,unsigned long exit_qualification)4544 void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 vm_exit_reason,
4545 		       u32 exit_intr_info, unsigned long exit_qualification)
4546 {
4547 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4548 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4549 
4550 	/* trying to cancel vmlaunch/vmresume is a bug */
4551 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
4552 
4553 	if (kvm_check_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu)) {
4554 		/*
4555 		 * KVM_REQ_GET_NESTED_STATE_PAGES is also used to map
4556 		 * Enlightened VMCS after migration and we still need to
4557 		 * do that when something is forcing L2->L1 exit prior to
4558 		 * the first L2 run.
4559 		 */
4560 		(void)nested_get_evmcs_page(vcpu);
4561 	}
4562 
4563 	/* Service pending TLB flush requests for L2 before switching to L1. */
4564 	kvm_service_local_tlb_flush_requests(vcpu);
4565 
4566 	/*
4567 	 * VCPU_EXREG_PDPTR will be clobbered in arch/x86/kvm/vmx/vmx.h between
4568 	 * now and the new vmentry.  Ensure that the VMCS02 PDPTR fields are
4569 	 * up-to-date before switching to L1.
4570 	 */
4571 	if (enable_ept && is_pae_paging(vcpu))
4572 		vmx_ept_load_pdptrs(vcpu);
4573 
4574 	leave_guest_mode(vcpu);
4575 
4576 	if (nested_cpu_has_preemption_timer(vmcs12))
4577 		hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
4578 
4579 	if (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETTING)) {
4580 		vcpu->arch.tsc_offset = vcpu->arch.l1_tsc_offset;
4581 		if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_TSC_SCALING))
4582 			vcpu->arch.tsc_scaling_ratio = vcpu->arch.l1_tsc_scaling_ratio;
4583 	}
4584 
4585 	if (likely(!vmx->fail)) {
4586 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
4587 
4588 		if (vm_exit_reason != -1)
4589 			prepare_vmcs12(vcpu, vmcs12, vm_exit_reason,
4590 				       exit_intr_info, exit_qualification);
4591 
4592 		/*
4593 		 * Must happen outside of sync_vmcs02_to_vmcs12() as it will
4594 		 * also be used to capture vmcs12 cache as part of
4595 		 * capturing nVMX state for snapshot (migration).
4596 		 *
4597 		 * Otherwise, this flush will dirty guest memory at a
4598 		 * point it is already assumed by user-space to be
4599 		 * immutable.
4600 		 */
4601 		nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
4602 	} else {
4603 		/*
4604 		 * The only expected VM-instruction error is "VM entry with
4605 		 * invalid control field(s)." Anything else indicates a
4606 		 * problem with L0.  And we should never get here with a
4607 		 * VMFail of any type if early consistency checks are enabled.
4608 		 */
4609 		WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
4610 			     VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4611 		WARN_ON_ONCE(nested_early_check);
4612 	}
4613 
4614 	vmx_switch_vmcs(vcpu, &vmx->vmcs01);
4615 
4616 	/* Update any VMCS fields that might have changed while L2 ran */
4617 	vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
4618 	vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
4619 	vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
4620 	if (kvm_has_tsc_control)
4621 		vmcs_write64(TSC_MULTIPLIER, vcpu->arch.tsc_scaling_ratio);
4622 
4623 	if (vmx->nested.l1_tpr_threshold != -1)
4624 		vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
4625 
4626 	if (vmx->nested.change_vmcs01_virtual_apic_mode) {
4627 		vmx->nested.change_vmcs01_virtual_apic_mode = false;
4628 		vmx_set_virtual_apic_mode(vcpu);
4629 	}
4630 
4631 	if (vmx->nested.update_vmcs01_cpu_dirty_logging) {
4632 		vmx->nested.update_vmcs01_cpu_dirty_logging = false;
4633 		vmx_update_cpu_dirty_logging(vcpu);
4634 	}
4635 
4636 	/* Unpin physical memory we referred to in vmcs02 */
4637 	if (vmx->nested.apic_access_page) {
4638 		kvm_release_page_clean(vmx->nested.apic_access_page);
4639 		vmx->nested.apic_access_page = NULL;
4640 	}
4641 	kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
4642 	kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
4643 	vmx->nested.pi_desc = NULL;
4644 
4645 	if (vmx->nested.reload_vmcs01_apic_access_page) {
4646 		vmx->nested.reload_vmcs01_apic_access_page = false;
4647 		kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
4648 	}
4649 
4650 	if (vmx->nested.update_vmcs01_apicv_status) {
4651 		vmx->nested.update_vmcs01_apicv_status = false;
4652 		kvm_make_request(KVM_REQ_APICV_UPDATE, vcpu);
4653 	}
4654 
4655 	if ((vm_exit_reason != -1) &&
4656 	    (enable_shadow_vmcs || evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)))
4657 		vmx->nested.need_vmcs12_to_shadow_sync = true;
4658 
4659 	/* in case we halted in L2 */
4660 	vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4661 
4662 	if (likely(!vmx->fail)) {
4663 		if ((u16)vm_exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
4664 		    nested_exit_intr_ack_set(vcpu)) {
4665 			int irq = kvm_cpu_get_interrupt(vcpu);
4666 			WARN_ON(irq < 0);
4667 			vmcs12->vm_exit_intr_info = irq |
4668 				INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
4669 		}
4670 
4671 		if (vm_exit_reason != -1)
4672 			trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
4673 						       vmcs12->exit_qualification,
4674 						       vmcs12->idt_vectoring_info_field,
4675 						       vmcs12->vm_exit_intr_info,
4676 						       vmcs12->vm_exit_intr_error_code,
4677 						       KVM_ISA_VMX);
4678 
4679 		load_vmcs12_host_state(vcpu, vmcs12);
4680 
4681 		return;
4682 	}
4683 
4684 	/*
4685 	 * After an early L2 VM-entry failure, we're now back
4686 	 * in L1 which thinks it just finished a VMLAUNCH or
4687 	 * VMRESUME instruction, so we need to set the failure
4688 	 * flag and the VM-instruction error field of the VMCS
4689 	 * accordingly, and skip the emulated instruction.
4690 	 */
4691 	(void)nested_vmx_fail(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
4692 
4693 	/*
4694 	 * Restore L1's host state to KVM's software model.  We're here
4695 	 * because a consistency check was caught by hardware, which
4696 	 * means some amount of guest state has been propagated to KVM's
4697 	 * model and needs to be unwound to the host's state.
4698 	 */
4699 	nested_vmx_restore_host_state(vcpu);
4700 
4701 	vmx->fail = 0;
4702 }
4703 
nested_vmx_triple_fault(struct kvm_vcpu * vcpu)4704 static void nested_vmx_triple_fault(struct kvm_vcpu *vcpu)
4705 {
4706 	nested_vmx_vmexit(vcpu, EXIT_REASON_TRIPLE_FAULT, 0, 0);
4707 }
4708 
4709 /*
4710  * Decode the memory-address operand of a vmx instruction, as recorded on an
4711  * exit caused by such an instruction (run by a guest hypervisor).
4712  * On success, returns 0. When the operand is invalid, returns 1 and throws
4713  * #UD, #GP, or #SS.
4714  */
get_vmx_mem_address(struct kvm_vcpu * vcpu,unsigned long exit_qualification,u32 vmx_instruction_info,bool wr,int len,gva_t * ret)4715 int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
4716 			u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
4717 {
4718 	gva_t off;
4719 	bool exn;
4720 	struct kvm_segment s;
4721 
4722 	/*
4723 	 * According to Vol. 3B, "Information for VM Exits Due to Instruction
4724 	 * Execution", on an exit, vmx_instruction_info holds most of the
4725 	 * addressing components of the operand. Only the displacement part
4726 	 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
4727 	 * For how an actual address is calculated from all these components,
4728 	 * refer to Vol. 1, "Operand Addressing".
4729 	 */
4730 	int  scaling = vmx_instruction_info & 3;
4731 	int  addr_size = (vmx_instruction_info >> 7) & 7;
4732 	bool is_reg = vmx_instruction_info & (1u << 10);
4733 	int  seg_reg = (vmx_instruction_info >> 15) & 7;
4734 	int  index_reg = (vmx_instruction_info >> 18) & 0xf;
4735 	bool index_is_valid = !(vmx_instruction_info & (1u << 22));
4736 	int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
4737 	bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
4738 
4739 	if (is_reg) {
4740 		kvm_queue_exception(vcpu, UD_VECTOR);
4741 		return 1;
4742 	}
4743 
4744 	/* Addr = segment_base + offset */
4745 	/* offset = base + [index * scale] + displacement */
4746 	off = exit_qualification; /* holds the displacement */
4747 	if (addr_size == 1)
4748 		off = (gva_t)sign_extend64(off, 31);
4749 	else if (addr_size == 0)
4750 		off = (gva_t)sign_extend64(off, 15);
4751 	if (base_is_valid)
4752 		off += kvm_register_read(vcpu, base_reg);
4753 	if (index_is_valid)
4754 		off += kvm_register_read(vcpu, index_reg) << scaling;
4755 	vmx_get_segment(vcpu, &s, seg_reg);
4756 
4757 	/*
4758 	 * The effective address, i.e. @off, of a memory operand is truncated
4759 	 * based on the address size of the instruction.  Note that this is
4760 	 * the *effective address*, i.e. the address prior to accounting for
4761 	 * the segment's base.
4762 	 */
4763 	if (addr_size == 1) /* 32 bit */
4764 		off &= 0xffffffff;
4765 	else if (addr_size == 0) /* 16 bit */
4766 		off &= 0xffff;
4767 
4768 	/* Checks for #GP/#SS exceptions. */
4769 	exn = false;
4770 	if (is_long_mode(vcpu)) {
4771 		/*
4772 		 * The virtual/linear address is never truncated in 64-bit
4773 		 * mode, e.g. a 32-bit address size can yield a 64-bit virtual
4774 		 * address when using FS/GS with a non-zero base.
4775 		 */
4776 		if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
4777 			*ret = s.base + off;
4778 		else
4779 			*ret = off;
4780 
4781 		/* Long mode: #GP(0)/#SS(0) if the memory address is in a
4782 		 * non-canonical form. This is the only check on the memory
4783 		 * destination for long mode!
4784 		 */
4785 		exn = is_noncanonical_address(*ret, vcpu);
4786 	} else {
4787 		/*
4788 		 * When not in long mode, the virtual/linear address is
4789 		 * unconditionally truncated to 32 bits regardless of the
4790 		 * address size.
4791 		 */
4792 		*ret = (s.base + off) & 0xffffffff;
4793 
4794 		/* Protected mode: apply checks for segment validity in the
4795 		 * following order:
4796 		 * - segment type check (#GP(0) may be thrown)
4797 		 * - usability check (#GP(0)/#SS(0))
4798 		 * - limit check (#GP(0)/#SS(0))
4799 		 */
4800 		if (wr)
4801 			/* #GP(0) if the destination operand is located in a
4802 			 * read-only data segment or any code segment.
4803 			 */
4804 			exn = ((s.type & 0xa) == 0 || (s.type & 8));
4805 		else
4806 			/* #GP(0) if the source operand is located in an
4807 			 * execute-only code segment
4808 			 */
4809 			exn = ((s.type & 0xa) == 8);
4810 		if (exn) {
4811 			kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
4812 			return 1;
4813 		}
4814 		/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
4815 		 */
4816 		exn = (s.unusable != 0);
4817 
4818 		/*
4819 		 * Protected mode: #GP(0)/#SS(0) if the memory operand is
4820 		 * outside the segment limit.  All CPUs that support VMX ignore
4821 		 * limit checks for flat segments, i.e. segments with base==0,
4822 		 * limit==0xffffffff and of type expand-up data or code.
4823 		 */
4824 		if (!(s.base == 0 && s.limit == 0xffffffff &&
4825 		     ((s.type & 8) || !(s.type & 4))))
4826 			exn = exn || ((u64)off + len - 1 > s.limit);
4827 	}
4828 	if (exn) {
4829 		kvm_queue_exception_e(vcpu,
4830 				      seg_reg == VCPU_SREG_SS ?
4831 						SS_VECTOR : GP_VECTOR,
4832 				      0);
4833 		return 1;
4834 	}
4835 
4836 	return 0;
4837 }
4838 
nested_vmx_pmu_refresh(struct kvm_vcpu * vcpu,bool vcpu_has_perf_global_ctrl)4839 void nested_vmx_pmu_refresh(struct kvm_vcpu *vcpu,
4840 			    bool vcpu_has_perf_global_ctrl)
4841 {
4842 	struct vcpu_vmx *vmx;
4843 
4844 	if (!nested_vmx_allowed(vcpu))
4845 		return;
4846 
4847 	vmx = to_vmx(vcpu);
4848 	if (vcpu_has_perf_global_ctrl) {
4849 		vmx->nested.msrs.entry_ctls_high |=
4850 				VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4851 		vmx->nested.msrs.exit_ctls_high |=
4852 				VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4853 	} else {
4854 		vmx->nested.msrs.entry_ctls_high &=
4855 				~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
4856 		vmx->nested.msrs.exit_ctls_high &=
4857 				~VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
4858 	}
4859 }
4860 
nested_vmx_get_vmptr(struct kvm_vcpu * vcpu,gpa_t * vmpointer,int * ret)4861 static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer,
4862 				int *ret)
4863 {
4864 	gva_t gva;
4865 	struct x86_exception e;
4866 	int r;
4867 
4868 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
4869 				vmcs_read32(VMX_INSTRUCTION_INFO), false,
4870 				sizeof(*vmpointer), &gva)) {
4871 		*ret = 1;
4872 		return -EINVAL;
4873 	}
4874 
4875 	r = kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e);
4876 	if (r != X86EMUL_CONTINUE) {
4877 		*ret = kvm_handle_memory_failure(vcpu, r, &e);
4878 		return -EINVAL;
4879 	}
4880 
4881 	return 0;
4882 }
4883 
4884 /*
4885  * Allocate a shadow VMCS and associate it with the currently loaded
4886  * VMCS, unless such a shadow VMCS already exists. The newly allocated
4887  * VMCS is also VMCLEARed, so that it is ready for use.
4888  */
alloc_shadow_vmcs(struct kvm_vcpu * vcpu)4889 static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
4890 {
4891 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4892 	struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
4893 
4894 	/*
4895 	 * KVM allocates a shadow VMCS only when L1 executes VMXON and frees it
4896 	 * when L1 executes VMXOFF or the vCPU is forced out of nested
4897 	 * operation.  VMXON faults if the CPU is already post-VMXON, so it
4898 	 * should be impossible to already have an allocated shadow VMCS.  KVM
4899 	 * doesn't support virtualization of VMCS shadowing, so vmcs01 should
4900 	 * always be the loaded VMCS.
4901 	 */
4902 	if (WARN_ON(loaded_vmcs != &vmx->vmcs01 || loaded_vmcs->shadow_vmcs))
4903 		return loaded_vmcs->shadow_vmcs;
4904 
4905 	loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
4906 	if (loaded_vmcs->shadow_vmcs)
4907 		vmcs_clear(loaded_vmcs->shadow_vmcs);
4908 
4909 	return loaded_vmcs->shadow_vmcs;
4910 }
4911 
enter_vmx_operation(struct kvm_vcpu * vcpu)4912 static int enter_vmx_operation(struct kvm_vcpu *vcpu)
4913 {
4914 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4915 	int r;
4916 
4917 	r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
4918 	if (r < 0)
4919 		goto out_vmcs02;
4920 
4921 	vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4922 	if (!vmx->nested.cached_vmcs12)
4923 		goto out_cached_vmcs12;
4924 
4925 	vmx->nested.shadow_vmcs12_cache.gpa = INVALID_GPA;
4926 	vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
4927 	if (!vmx->nested.cached_shadow_vmcs12)
4928 		goto out_cached_shadow_vmcs12;
4929 
4930 	if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
4931 		goto out_shadow_vmcs;
4932 
4933 	hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
4934 		     HRTIMER_MODE_ABS_PINNED);
4935 	vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
4936 
4937 	vmx->nested.vpid02 = allocate_vpid();
4938 
4939 	vmx->nested.vmcs02_initialized = false;
4940 	vmx->nested.vmxon = true;
4941 
4942 	if (vmx_pt_mode_is_host_guest()) {
4943 		vmx->pt_desc.guest.ctl = 0;
4944 		pt_update_intercept_for_msr(vcpu);
4945 	}
4946 
4947 	return 0;
4948 
4949 out_shadow_vmcs:
4950 	kfree(vmx->nested.cached_shadow_vmcs12);
4951 
4952 out_cached_shadow_vmcs12:
4953 	kfree(vmx->nested.cached_vmcs12);
4954 
4955 out_cached_vmcs12:
4956 	free_loaded_vmcs(&vmx->nested.vmcs02);
4957 
4958 out_vmcs02:
4959 	return -ENOMEM;
4960 }
4961 
4962 /* Emulate the VMXON instruction. */
handle_vmon(struct kvm_vcpu * vcpu)4963 static int handle_vmon(struct kvm_vcpu *vcpu)
4964 {
4965 	int ret;
4966 	gpa_t vmptr;
4967 	uint32_t revision;
4968 	struct vcpu_vmx *vmx = to_vmx(vcpu);
4969 	const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
4970 		| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
4971 
4972 	/*
4973 	 * Note, KVM cannot rely on hardware to perform the CR0/CR4 #UD checks
4974 	 * that have higher priority than VM-Exit (see Intel SDM's pseudocode
4975 	 * for VMXON), as KVM must load valid CR0/CR4 values into hardware while
4976 	 * running the guest, i.e. KVM needs to check the _guest_ values.
4977 	 *
4978 	 * Rely on hardware for the other two pre-VM-Exit checks, !VM86 and
4979 	 * !COMPATIBILITY modes.  KVM may run the guest in VM86 to emulate Real
4980 	 * Mode, but KVM will never take the guest out of those modes.
4981 	 */
4982 	if (!nested_host_cr0_valid(vcpu, kvm_read_cr0(vcpu)) ||
4983 	    !nested_host_cr4_valid(vcpu, kvm_read_cr4(vcpu))) {
4984 		kvm_queue_exception(vcpu, UD_VECTOR);
4985 		return 1;
4986 	}
4987 
4988 	/*
4989 	 * CPL=0 and all other checks that are lower priority than VM-Exit must
4990 	 * be checked manually.
4991 	 */
4992 	if (vmx_get_cpl(vcpu)) {
4993 		kvm_inject_gp(vcpu, 0);
4994 		return 1;
4995 	}
4996 
4997 	if (vmx->nested.vmxon)
4998 		return nested_vmx_fail(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
4999 
5000 	if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
5001 			!= VMXON_NEEDED_FEATURES) {
5002 		kvm_inject_gp(vcpu, 0);
5003 		return 1;
5004 	}
5005 
5006 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &ret))
5007 		return ret;
5008 
5009 	/*
5010 	 * SDM 3: 24.11.5
5011 	 * The first 4 bytes of VMXON region contain the supported
5012 	 * VMCS revision identifier
5013 	 *
5014 	 * Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
5015 	 * which replaces physical address width with 32
5016 	 */
5017 	if (!page_address_valid(vcpu, vmptr))
5018 		return nested_vmx_failInvalid(vcpu);
5019 
5020 	if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
5021 	    revision != VMCS12_REVISION)
5022 		return nested_vmx_failInvalid(vcpu);
5023 
5024 	vmx->nested.vmxon_ptr = vmptr;
5025 	ret = enter_vmx_operation(vcpu);
5026 	if (ret)
5027 		return ret;
5028 
5029 	return nested_vmx_succeed(vcpu);
5030 }
5031 
nested_release_vmcs12(struct kvm_vcpu * vcpu)5032 static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
5033 {
5034 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5035 
5036 	if (vmx->nested.current_vmptr == INVALID_GPA)
5037 		return;
5038 
5039 	copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
5040 
5041 	if (enable_shadow_vmcs) {
5042 		/* copy to memory all shadowed fields in case
5043 		   they were modified */
5044 		copy_shadow_to_vmcs12(vmx);
5045 		vmx_disable_shadow_vmcs(vmx);
5046 	}
5047 	vmx->nested.posted_intr_nv = -1;
5048 
5049 	/* Flush VMCS12 to guest memory */
5050 	kvm_vcpu_write_guest_page(vcpu,
5051 				  vmx->nested.current_vmptr >> PAGE_SHIFT,
5052 				  vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
5053 
5054 	kvm_mmu_free_roots(vcpu->kvm, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
5055 
5056 	vmx->nested.current_vmptr = INVALID_GPA;
5057 }
5058 
5059 /* Emulate the VMXOFF instruction */
handle_vmoff(struct kvm_vcpu * vcpu)5060 static int handle_vmoff(struct kvm_vcpu *vcpu)
5061 {
5062 	if (!nested_vmx_check_permission(vcpu))
5063 		return 1;
5064 
5065 	free_nested(vcpu);
5066 
5067 	/* Process a latched INIT during time CPU was in VMX operation */
5068 	kvm_make_request(KVM_REQ_EVENT, vcpu);
5069 
5070 	return nested_vmx_succeed(vcpu);
5071 }
5072 
5073 /* Emulate the VMCLEAR instruction */
handle_vmclear(struct kvm_vcpu * vcpu)5074 static int handle_vmclear(struct kvm_vcpu *vcpu)
5075 {
5076 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5077 	u32 zero = 0;
5078 	gpa_t vmptr;
5079 	u64 evmcs_gpa;
5080 	int r;
5081 
5082 	if (!nested_vmx_check_permission(vcpu))
5083 		return 1;
5084 
5085 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5086 		return r;
5087 
5088 	if (!page_address_valid(vcpu, vmptr))
5089 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5090 
5091 	if (vmptr == vmx->nested.vmxon_ptr)
5092 		return nested_vmx_fail(vcpu, VMXERR_VMCLEAR_VMXON_POINTER);
5093 
5094 	/*
5095 	 * When Enlightened VMEntry is enabled on the calling CPU we treat
5096 	 * memory area pointer by vmptr as Enlightened VMCS (as there's no good
5097 	 * way to distinguish it from VMCS12) and we must not corrupt it by
5098 	 * writing to the non-existent 'launch_state' field. The area doesn't
5099 	 * have to be the currently active EVMCS on the calling CPU and there's
5100 	 * nothing KVM has to do to transition it from 'active' to 'non-active'
5101 	 * state. It is possible that the area will stay mapped as
5102 	 * vmx->nested.hv_evmcs but this shouldn't be a problem.
5103 	 */
5104 	if (likely(!vmx->nested.enlightened_vmcs_enabled ||
5105 		   !nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
5106 		if (vmptr == vmx->nested.current_vmptr)
5107 			nested_release_vmcs12(vcpu);
5108 
5109 		kvm_vcpu_write_guest(vcpu,
5110 				     vmptr + offsetof(struct vmcs12,
5111 						      launch_state),
5112 				     &zero, sizeof(zero));
5113 	} else if (vmx->nested.hv_evmcs && vmptr == vmx->nested.hv_evmcs_vmptr) {
5114 		nested_release_evmcs(vcpu);
5115 	}
5116 
5117 	return nested_vmx_succeed(vcpu);
5118 }
5119 
5120 /* Emulate the VMLAUNCH instruction */
handle_vmlaunch(struct kvm_vcpu * vcpu)5121 static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5122 {
5123 	return nested_vmx_run(vcpu, true);
5124 }
5125 
5126 /* Emulate the VMRESUME instruction */
handle_vmresume(struct kvm_vcpu * vcpu)5127 static int handle_vmresume(struct kvm_vcpu *vcpu)
5128 {
5129 
5130 	return nested_vmx_run(vcpu, false);
5131 }
5132 
handle_vmread(struct kvm_vcpu * vcpu)5133 static int handle_vmread(struct kvm_vcpu *vcpu)
5134 {
5135 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5136 						    : get_vmcs12(vcpu);
5137 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5138 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5139 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5140 	struct x86_exception e;
5141 	unsigned long field;
5142 	u64 value;
5143 	gva_t gva = 0;
5144 	short offset;
5145 	int len, r;
5146 
5147 	if (!nested_vmx_check_permission(vcpu))
5148 		return 1;
5149 
5150 	/* Decode instruction info and find the field to read */
5151 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5152 
5153 	if (!evmptr_is_valid(vmx->nested.hv_evmcs_vmptr)) {
5154 		/*
5155 		 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5156 		 * any VMREAD sets the ALU flags for VMfailInvalid.
5157 		 */
5158 		if (vmx->nested.current_vmptr == INVALID_GPA ||
5159 		    (is_guest_mode(vcpu) &&
5160 		     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5161 			return nested_vmx_failInvalid(vcpu);
5162 
5163 		offset = get_vmcs12_field_offset(field);
5164 		if (offset < 0)
5165 			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5166 
5167 		if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
5168 			copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5169 
5170 		/* Read the field, zero-extended to a u64 value */
5171 		value = vmcs12_read_any(vmcs12, field, offset);
5172 	} else {
5173 		/*
5174 		 * Hyper-V TLFS (as of 6.0b) explicitly states, that while an
5175 		 * enlightened VMCS is active VMREAD/VMWRITE instructions are
5176 		 * unsupported. Unfortunately, certain versions of Windows 11
5177 		 * don't comply with this requirement which is not enforced in
5178 		 * genuine Hyper-V. Allow VMREAD from an enlightened VMCS as a
5179 		 * workaround, as misbehaving guests will panic on VM-Fail.
5180 		 * Note, enlightened VMCS is incompatible with shadow VMCS so
5181 		 * all VMREADs from L2 should go to L1.
5182 		 */
5183 		if (WARN_ON_ONCE(is_guest_mode(vcpu)))
5184 			return nested_vmx_failInvalid(vcpu);
5185 
5186 		offset = evmcs_field_offset(field, NULL);
5187 		if (offset < 0)
5188 			return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5189 
5190 		/* Read the field, zero-extended to a u64 value */
5191 		value = evmcs_read_any(vmx->nested.hv_evmcs, field, offset);
5192 	}
5193 
5194 	/*
5195 	 * Now copy part of this value to register or memory, as requested.
5196 	 * Note that the number of bits actually copied is 32 or 64 depending
5197 	 * on the guest's mode (32 or 64 bit), not on the given field's length.
5198 	 */
5199 	if (instr_info & BIT(10)) {
5200 		kvm_register_write(vcpu, (((instr_info) >> 3) & 0xf), value);
5201 	} else {
5202 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5203 		if (get_vmx_mem_address(vcpu, exit_qualification,
5204 					instr_info, true, len, &gva))
5205 			return 1;
5206 		/* _system ok, nested_vmx_check_permission has verified cpl=0 */
5207 		r = kvm_write_guest_virt_system(vcpu, gva, &value, len, &e);
5208 		if (r != X86EMUL_CONTINUE)
5209 			return kvm_handle_memory_failure(vcpu, r, &e);
5210 	}
5211 
5212 	return nested_vmx_succeed(vcpu);
5213 }
5214 
is_shadow_field_rw(unsigned long field)5215 static bool is_shadow_field_rw(unsigned long field)
5216 {
5217 	switch (field) {
5218 #define SHADOW_FIELD_RW(x, y) case x:
5219 #include "vmcs_shadow_fields.h"
5220 		return true;
5221 	default:
5222 		break;
5223 	}
5224 	return false;
5225 }
5226 
is_shadow_field_ro(unsigned long field)5227 static bool is_shadow_field_ro(unsigned long field)
5228 {
5229 	switch (field) {
5230 #define SHADOW_FIELD_RO(x, y) case x:
5231 #include "vmcs_shadow_fields.h"
5232 		return true;
5233 	default:
5234 		break;
5235 	}
5236 	return false;
5237 }
5238 
handle_vmwrite(struct kvm_vcpu * vcpu)5239 static int handle_vmwrite(struct kvm_vcpu *vcpu)
5240 {
5241 	struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
5242 						    : get_vmcs12(vcpu);
5243 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5244 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5245 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5246 	struct x86_exception e;
5247 	unsigned long field;
5248 	short offset;
5249 	gva_t gva;
5250 	int len, r;
5251 
5252 	/*
5253 	 * The value to write might be 32 or 64 bits, depending on L1's long
5254 	 * mode, and eventually we need to write that into a field of several
5255 	 * possible lengths. The code below first zero-extends the value to 64
5256 	 * bit (value), and then copies only the appropriate number of
5257 	 * bits into the vmcs12 field.
5258 	 */
5259 	u64 value = 0;
5260 
5261 	if (!nested_vmx_check_permission(vcpu))
5262 		return 1;
5263 
5264 	/*
5265 	 * In VMX non-root operation, when the VMCS-link pointer is INVALID_GPA,
5266 	 * any VMWRITE sets the ALU flags for VMfailInvalid.
5267 	 */
5268 	if (vmx->nested.current_vmptr == INVALID_GPA ||
5269 	    (is_guest_mode(vcpu) &&
5270 	     get_vmcs12(vcpu)->vmcs_link_pointer == INVALID_GPA))
5271 		return nested_vmx_failInvalid(vcpu);
5272 
5273 	if (instr_info & BIT(10))
5274 		value = kvm_register_read(vcpu, (((instr_info) >> 3) & 0xf));
5275 	else {
5276 		len = is_64_bit_mode(vcpu) ? 8 : 4;
5277 		if (get_vmx_mem_address(vcpu, exit_qualification,
5278 					instr_info, false, len, &gva))
5279 			return 1;
5280 		r = kvm_read_guest_virt(vcpu, gva, &value, len, &e);
5281 		if (r != X86EMUL_CONTINUE)
5282 			return kvm_handle_memory_failure(vcpu, r, &e);
5283 	}
5284 
5285 	field = kvm_register_read(vcpu, (((instr_info) >> 28) & 0xf));
5286 
5287 	offset = get_vmcs12_field_offset(field);
5288 	if (offset < 0)
5289 		return nested_vmx_fail(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
5290 
5291 	/*
5292 	 * If the vCPU supports "VMWRITE to any supported field in the
5293 	 * VMCS," then the "read-only" fields are actually read/write.
5294 	 */
5295 	if (vmcs_field_readonly(field) &&
5296 	    !nested_cpu_has_vmwrite_any_field(vcpu))
5297 		return nested_vmx_fail(vcpu, VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
5298 
5299 	/*
5300 	 * Ensure vmcs12 is up-to-date before any VMWRITE that dirties
5301 	 * vmcs12, else we may crush a field or consume a stale value.
5302 	 */
5303 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
5304 		copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
5305 
5306 	/*
5307 	 * Some Intel CPUs intentionally drop the reserved bits of the AR byte
5308 	 * fields on VMWRITE.  Emulate this behavior to ensure consistent KVM
5309 	 * behavior regardless of the underlying hardware, e.g. if an AR_BYTE
5310 	 * field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
5311 	 * from L1 will return a different value than VMREAD from L2 (L1 sees
5312 	 * the stripped down value, L2 sees the full value as stored by KVM).
5313 	 */
5314 	if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
5315 		value &= 0x1f0ff;
5316 
5317 	vmcs12_write_any(vmcs12, field, offset, value);
5318 
5319 	/*
5320 	 * Do not track vmcs12 dirty-state if in guest-mode as we actually
5321 	 * dirty shadow vmcs12 instead of vmcs12.  Fields that can be updated
5322 	 * by L1 without a vmexit are always updated in the vmcs02, i.e. don't
5323 	 * "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
5324 	 */
5325 	if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
5326 		/*
5327 		 * L1 can read these fields without exiting, ensure the
5328 		 * shadow VMCS is up-to-date.
5329 		 */
5330 		if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
5331 			preempt_disable();
5332 			vmcs_load(vmx->vmcs01.shadow_vmcs);
5333 
5334 			__vmcs_writel(field, value);
5335 
5336 			vmcs_clear(vmx->vmcs01.shadow_vmcs);
5337 			vmcs_load(vmx->loaded_vmcs->vmcs);
5338 			preempt_enable();
5339 		}
5340 		vmx->nested.dirty_vmcs12 = true;
5341 	}
5342 
5343 	return nested_vmx_succeed(vcpu);
5344 }
5345 
set_current_vmptr(struct vcpu_vmx * vmx,gpa_t vmptr)5346 static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
5347 {
5348 	vmx->nested.current_vmptr = vmptr;
5349 	if (enable_shadow_vmcs) {
5350 		secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
5351 		vmcs_write64(VMCS_LINK_POINTER,
5352 			     __pa(vmx->vmcs01.shadow_vmcs));
5353 		vmx->nested.need_vmcs12_to_shadow_sync = true;
5354 	}
5355 	vmx->nested.dirty_vmcs12 = true;
5356 	vmx->nested.force_msr_bitmap_recalc = true;
5357 }
5358 
5359 /* Emulate the VMPTRLD instruction */
handle_vmptrld(struct kvm_vcpu * vcpu)5360 static int handle_vmptrld(struct kvm_vcpu *vcpu)
5361 {
5362 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5363 	gpa_t vmptr;
5364 	int r;
5365 
5366 	if (!nested_vmx_check_permission(vcpu))
5367 		return 1;
5368 
5369 	if (nested_vmx_get_vmptr(vcpu, &vmptr, &r))
5370 		return r;
5371 
5372 	if (!page_address_valid(vcpu, vmptr))
5373 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
5374 
5375 	if (vmptr == vmx->nested.vmxon_ptr)
5376 		return nested_vmx_fail(vcpu, VMXERR_VMPTRLD_VMXON_POINTER);
5377 
5378 	/* Forbid normal VMPTRLD if Enlightened version was used */
5379 	if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
5380 		return 1;
5381 
5382 	if (vmx->nested.current_vmptr != vmptr) {
5383 		struct gfn_to_hva_cache *ghc = &vmx->nested.vmcs12_cache;
5384 		struct vmcs_hdr hdr;
5385 
5386 		if (kvm_gfn_to_hva_cache_init(vcpu->kvm, ghc, vmptr, VMCS12_SIZE)) {
5387 			/*
5388 			 * Reads from an unbacked page return all 1s,
5389 			 * which means that the 32 bits located at the
5390 			 * given physical address won't match the required
5391 			 * VMCS12_REVISION identifier.
5392 			 */
5393 			return nested_vmx_fail(vcpu,
5394 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5395 		}
5396 
5397 		if (kvm_read_guest_offset_cached(vcpu->kvm, ghc, &hdr,
5398 						 offsetof(struct vmcs12, hdr),
5399 						 sizeof(hdr))) {
5400 			return nested_vmx_fail(vcpu,
5401 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5402 		}
5403 
5404 		if (hdr.revision_id != VMCS12_REVISION ||
5405 		    (hdr.shadow_vmcs &&
5406 		     !nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
5407 			return nested_vmx_fail(vcpu,
5408 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5409 		}
5410 
5411 		nested_release_vmcs12(vcpu);
5412 
5413 		/*
5414 		 * Load VMCS12 from guest memory since it is not already
5415 		 * cached.
5416 		 */
5417 		if (kvm_read_guest_cached(vcpu->kvm, ghc, vmx->nested.cached_vmcs12,
5418 					  VMCS12_SIZE)) {
5419 			return nested_vmx_fail(vcpu,
5420 				VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
5421 		}
5422 
5423 		set_current_vmptr(vmx, vmptr);
5424 	}
5425 
5426 	return nested_vmx_succeed(vcpu);
5427 }
5428 
5429 /* Emulate the VMPTRST instruction */
handle_vmptrst(struct kvm_vcpu * vcpu)5430 static int handle_vmptrst(struct kvm_vcpu *vcpu)
5431 {
5432 	unsigned long exit_qual = vmx_get_exit_qual(vcpu);
5433 	u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5434 	gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
5435 	struct x86_exception e;
5436 	gva_t gva;
5437 	int r;
5438 
5439 	if (!nested_vmx_check_permission(vcpu))
5440 		return 1;
5441 
5442 	if (unlikely(evmptr_is_valid(to_vmx(vcpu)->nested.hv_evmcs_vmptr)))
5443 		return 1;
5444 
5445 	if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
5446 				true, sizeof(gpa_t), &gva))
5447 		return 1;
5448 	/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
5449 	r = kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
5450 					sizeof(gpa_t), &e);
5451 	if (r != X86EMUL_CONTINUE)
5452 		return kvm_handle_memory_failure(vcpu, r, &e);
5453 
5454 	return nested_vmx_succeed(vcpu);
5455 }
5456 
5457 /* Emulate the INVEPT instruction */
handle_invept(struct kvm_vcpu * vcpu)5458 static int handle_invept(struct kvm_vcpu *vcpu)
5459 {
5460 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5461 	u32 vmx_instruction_info, types;
5462 	unsigned long type, roots_to_free;
5463 	struct kvm_mmu *mmu;
5464 	gva_t gva;
5465 	struct x86_exception e;
5466 	struct {
5467 		u64 eptp, gpa;
5468 	} operand;
5469 	int i, r, gpr_index;
5470 
5471 	if (!(vmx->nested.msrs.secondary_ctls_high &
5472 	      SECONDARY_EXEC_ENABLE_EPT) ||
5473 	    !(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
5474 		kvm_queue_exception(vcpu, UD_VECTOR);
5475 		return 1;
5476 	}
5477 
5478 	if (!nested_vmx_check_permission(vcpu))
5479 		return 1;
5480 
5481 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5482 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5483 	type = kvm_register_read(vcpu, gpr_index);
5484 
5485 	types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
5486 
5487 	if (type >= 32 || !(types & (1 << type)))
5488 		return nested_vmx_fail(vcpu, VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5489 
5490 	/* According to the Intel VMX instruction reference, the memory
5491 	 * operand is read even if it isn't needed (e.g., for type==global)
5492 	 */
5493 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5494 			vmx_instruction_info, false, sizeof(operand), &gva))
5495 		return 1;
5496 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5497 	if (r != X86EMUL_CONTINUE)
5498 		return kvm_handle_memory_failure(vcpu, r, &e);
5499 
5500 	/*
5501 	 * Nested EPT roots are always held through guest_mmu,
5502 	 * not root_mmu.
5503 	 */
5504 	mmu = &vcpu->arch.guest_mmu;
5505 
5506 	switch (type) {
5507 	case VMX_EPT_EXTENT_CONTEXT:
5508 		if (!nested_vmx_check_eptp(vcpu, operand.eptp))
5509 			return nested_vmx_fail(vcpu,
5510 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5511 
5512 		roots_to_free = 0;
5513 		if (nested_ept_root_matches(mmu->root.hpa, mmu->root.pgd,
5514 					    operand.eptp))
5515 			roots_to_free |= KVM_MMU_ROOT_CURRENT;
5516 
5517 		for (i = 0; i < KVM_MMU_NUM_PREV_ROOTS; i++) {
5518 			if (nested_ept_root_matches(mmu->prev_roots[i].hpa,
5519 						    mmu->prev_roots[i].pgd,
5520 						    operand.eptp))
5521 				roots_to_free |= KVM_MMU_ROOT_PREVIOUS(i);
5522 		}
5523 		break;
5524 	case VMX_EPT_EXTENT_GLOBAL:
5525 		roots_to_free = KVM_MMU_ROOTS_ALL;
5526 		break;
5527 	default:
5528 		BUG();
5529 		break;
5530 	}
5531 
5532 	if (roots_to_free)
5533 		kvm_mmu_free_roots(vcpu->kvm, mmu, roots_to_free);
5534 
5535 	return nested_vmx_succeed(vcpu);
5536 }
5537 
handle_invvpid(struct kvm_vcpu * vcpu)5538 static int handle_invvpid(struct kvm_vcpu *vcpu)
5539 {
5540 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5541 	u32 vmx_instruction_info;
5542 	unsigned long type, types;
5543 	gva_t gva;
5544 	struct x86_exception e;
5545 	struct {
5546 		u64 vpid;
5547 		u64 gla;
5548 	} operand;
5549 	u16 vpid02;
5550 	int r, gpr_index;
5551 
5552 	if (!(vmx->nested.msrs.secondary_ctls_high &
5553 	      SECONDARY_EXEC_ENABLE_VPID) ||
5554 			!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
5555 		kvm_queue_exception(vcpu, UD_VECTOR);
5556 		return 1;
5557 	}
5558 
5559 	if (!nested_vmx_check_permission(vcpu))
5560 		return 1;
5561 
5562 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5563 	gpr_index = vmx_get_instr_info_reg2(vmx_instruction_info);
5564 	type = kvm_register_read(vcpu, gpr_index);
5565 
5566 	types = (vmx->nested.msrs.vpid_caps &
5567 			VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
5568 
5569 	if (type >= 32 || !(types & (1 << type)))
5570 		return nested_vmx_fail(vcpu,
5571 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5572 
5573 	/* according to the intel vmx instruction reference, the memory
5574 	 * operand is read even if it isn't needed (e.g., for type==global)
5575 	 */
5576 	if (get_vmx_mem_address(vcpu, vmx_get_exit_qual(vcpu),
5577 			vmx_instruction_info, false, sizeof(operand), &gva))
5578 		return 1;
5579 	r = kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e);
5580 	if (r != X86EMUL_CONTINUE)
5581 		return kvm_handle_memory_failure(vcpu, r, &e);
5582 
5583 	if (operand.vpid >> 16)
5584 		return nested_vmx_fail(vcpu,
5585 			VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5586 
5587 	vpid02 = nested_get_vpid02(vcpu);
5588 	switch (type) {
5589 	case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
5590 		if (!operand.vpid ||
5591 		    is_noncanonical_address(operand.gla, vcpu))
5592 			return nested_vmx_fail(vcpu,
5593 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5594 		vpid_sync_vcpu_addr(vpid02, operand.gla);
5595 		break;
5596 	case VMX_VPID_EXTENT_SINGLE_CONTEXT:
5597 	case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
5598 		if (!operand.vpid)
5599 			return nested_vmx_fail(vcpu,
5600 				VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
5601 		vpid_sync_context(vpid02);
5602 		break;
5603 	case VMX_VPID_EXTENT_ALL_CONTEXT:
5604 		vpid_sync_context(vpid02);
5605 		break;
5606 	default:
5607 		WARN_ON_ONCE(1);
5608 		return kvm_skip_emulated_instruction(vcpu);
5609 	}
5610 
5611 	/*
5612 	 * Sync the shadow page tables if EPT is disabled, L1 is invalidating
5613 	 * linear mappings for L2 (tagged with L2's VPID).  Free all guest
5614 	 * roots as VPIDs are not tracked in the MMU role.
5615 	 *
5616 	 * Note, this operates on root_mmu, not guest_mmu, as L1 and L2 share
5617 	 * an MMU when EPT is disabled.
5618 	 *
5619 	 * TODO: sync only the affected SPTEs for INVDIVIDUAL_ADDR.
5620 	 */
5621 	if (!enable_ept)
5622 		kvm_mmu_free_guest_mode_roots(vcpu->kvm, &vcpu->arch.root_mmu);
5623 
5624 	return nested_vmx_succeed(vcpu);
5625 }
5626 
nested_vmx_eptp_switching(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5627 static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
5628 				     struct vmcs12 *vmcs12)
5629 {
5630 	u32 index = kvm_rcx_read(vcpu);
5631 	u64 new_eptp;
5632 
5633 	if (WARN_ON_ONCE(!nested_cpu_has_ept(vmcs12)))
5634 		return 1;
5635 	if (index >= VMFUNC_EPTP_ENTRIES)
5636 		return 1;
5637 
5638 	if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
5639 				     &new_eptp, index * 8, 8))
5640 		return 1;
5641 
5642 	/*
5643 	 * If the (L2) guest does a vmfunc to the currently
5644 	 * active ept pointer, we don't have to do anything else
5645 	 */
5646 	if (vmcs12->ept_pointer != new_eptp) {
5647 		if (!nested_vmx_check_eptp(vcpu, new_eptp))
5648 			return 1;
5649 
5650 		vmcs12->ept_pointer = new_eptp;
5651 		nested_ept_new_eptp(vcpu);
5652 
5653 		if (!nested_cpu_has_vpid(vmcs12))
5654 			kvm_make_request(KVM_REQ_TLB_FLUSH_GUEST, vcpu);
5655 	}
5656 
5657 	return 0;
5658 }
5659 
handle_vmfunc(struct kvm_vcpu * vcpu)5660 static int handle_vmfunc(struct kvm_vcpu *vcpu)
5661 {
5662 	struct vcpu_vmx *vmx = to_vmx(vcpu);
5663 	struct vmcs12 *vmcs12;
5664 	u32 function = kvm_rax_read(vcpu);
5665 
5666 	/*
5667 	 * VMFUNC is only supported for nested guests, but we always enable the
5668 	 * secondary control for simplicity; for non-nested mode, fake that we
5669 	 * didn't by injecting #UD.
5670 	 */
5671 	if (!is_guest_mode(vcpu)) {
5672 		kvm_queue_exception(vcpu, UD_VECTOR);
5673 		return 1;
5674 	}
5675 
5676 	vmcs12 = get_vmcs12(vcpu);
5677 
5678 	/*
5679 	 * #UD on out-of-bounds function has priority over VM-Exit, and VMFUNC
5680 	 * is enabled in vmcs02 if and only if it's enabled in vmcs12.
5681 	 */
5682 	if (WARN_ON_ONCE((function > 63) || !nested_cpu_has_vmfunc(vmcs12))) {
5683 		kvm_queue_exception(vcpu, UD_VECTOR);
5684 		return 1;
5685 	}
5686 
5687 	if (!(vmcs12->vm_function_control & BIT_ULL(function)))
5688 		goto fail;
5689 
5690 	switch (function) {
5691 	case 0:
5692 		if (nested_vmx_eptp_switching(vcpu, vmcs12))
5693 			goto fail;
5694 		break;
5695 	default:
5696 		goto fail;
5697 	}
5698 	return kvm_skip_emulated_instruction(vcpu);
5699 
5700 fail:
5701 	/*
5702 	 * This is effectively a reflected VM-Exit, as opposed to a synthesized
5703 	 * nested VM-Exit.  Pass the original exit reason, i.e. don't hardcode
5704 	 * EXIT_REASON_VMFUNC as the exit reason.
5705 	 */
5706 	nested_vmx_vmexit(vcpu, vmx->exit_reason.full,
5707 			  vmx_get_intr_info(vcpu),
5708 			  vmx_get_exit_qual(vcpu));
5709 	return 1;
5710 }
5711 
5712 /*
5713  * Return true if an IO instruction with the specified port and size should cause
5714  * a VM-exit into L1.
5715  */
nested_vmx_check_io_bitmaps(struct kvm_vcpu * vcpu,unsigned int port,int size)5716 bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
5717 				 int size)
5718 {
5719 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5720 	gpa_t bitmap, last_bitmap;
5721 	u8 b;
5722 
5723 	last_bitmap = INVALID_GPA;
5724 	b = -1;
5725 
5726 	while (size > 0) {
5727 		if (port < 0x8000)
5728 			bitmap = vmcs12->io_bitmap_a;
5729 		else if (port < 0x10000)
5730 			bitmap = vmcs12->io_bitmap_b;
5731 		else
5732 			return true;
5733 		bitmap += (port & 0x7fff) / 8;
5734 
5735 		if (last_bitmap != bitmap)
5736 			if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
5737 				return true;
5738 		if (b & (1 << (port & 7)))
5739 			return true;
5740 
5741 		port++;
5742 		size--;
5743 		last_bitmap = bitmap;
5744 	}
5745 
5746 	return false;
5747 }
5748 
nested_vmx_exit_handled_io(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5749 static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
5750 				       struct vmcs12 *vmcs12)
5751 {
5752 	unsigned long exit_qualification;
5753 	unsigned short port;
5754 	int size;
5755 
5756 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
5757 		return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
5758 
5759 	exit_qualification = vmx_get_exit_qual(vcpu);
5760 
5761 	port = exit_qualification >> 16;
5762 	size = (exit_qualification & 7) + 1;
5763 
5764 	return nested_vmx_check_io_bitmaps(vcpu, port, size);
5765 }
5766 
5767 /*
5768  * Return 1 if we should exit from L2 to L1 to handle an MSR access,
5769  * rather than handle it ourselves in L0. I.e., check whether L1 expressed
5770  * disinterest in the current event (read or write a specific MSR) by using an
5771  * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
5772  */
nested_vmx_exit_handled_msr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,union vmx_exit_reason exit_reason)5773 static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
5774 					struct vmcs12 *vmcs12,
5775 					union vmx_exit_reason exit_reason)
5776 {
5777 	u32 msr_index = kvm_rcx_read(vcpu);
5778 	gpa_t bitmap;
5779 
5780 	if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
5781 		return true;
5782 
5783 	/*
5784 	 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
5785 	 * for the four combinations of read/write and low/high MSR numbers.
5786 	 * First we need to figure out which of the four to use:
5787 	 */
5788 	bitmap = vmcs12->msr_bitmap;
5789 	if (exit_reason.basic == EXIT_REASON_MSR_WRITE)
5790 		bitmap += 2048;
5791 	if (msr_index >= 0xc0000000) {
5792 		msr_index -= 0xc0000000;
5793 		bitmap += 1024;
5794 	}
5795 
5796 	/* Then read the msr_index'th bit from this bitmap: */
5797 	if (msr_index < 1024*8) {
5798 		unsigned char b;
5799 		if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
5800 			return true;
5801 		return 1 & (b >> (msr_index & 7));
5802 	} else
5803 		return true; /* let L1 handle the wrong parameter */
5804 }
5805 
5806 /*
5807  * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
5808  * rather than handle it ourselves in L0. I.e., check if L1 wanted to
5809  * intercept (via guest_host_mask etc.) the current event.
5810  */
nested_vmx_exit_handled_cr(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5811 static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
5812 	struct vmcs12 *vmcs12)
5813 {
5814 	unsigned long exit_qualification = vmx_get_exit_qual(vcpu);
5815 	int cr = exit_qualification & 15;
5816 	int reg;
5817 	unsigned long val;
5818 
5819 	switch ((exit_qualification >> 4) & 3) {
5820 	case 0: /* mov to cr */
5821 		reg = (exit_qualification >> 8) & 15;
5822 		val = kvm_register_read(vcpu, reg);
5823 		switch (cr) {
5824 		case 0:
5825 			if (vmcs12->cr0_guest_host_mask &
5826 			    (val ^ vmcs12->cr0_read_shadow))
5827 				return true;
5828 			break;
5829 		case 3:
5830 			if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
5831 				return true;
5832 			break;
5833 		case 4:
5834 			if (vmcs12->cr4_guest_host_mask &
5835 			    (vmcs12->cr4_read_shadow ^ val))
5836 				return true;
5837 			break;
5838 		case 8:
5839 			if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
5840 				return true;
5841 			break;
5842 		}
5843 		break;
5844 	case 2: /* clts */
5845 		if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
5846 		    (vmcs12->cr0_read_shadow & X86_CR0_TS))
5847 			return true;
5848 		break;
5849 	case 1: /* mov from cr */
5850 		switch (cr) {
5851 		case 3:
5852 			if (vmcs12->cpu_based_vm_exec_control &
5853 			    CPU_BASED_CR3_STORE_EXITING)
5854 				return true;
5855 			break;
5856 		case 8:
5857 			if (vmcs12->cpu_based_vm_exec_control &
5858 			    CPU_BASED_CR8_STORE_EXITING)
5859 				return true;
5860 			break;
5861 		}
5862 		break;
5863 	case 3: /* lmsw */
5864 		/*
5865 		 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
5866 		 * cr0. Other attempted changes are ignored, with no exit.
5867 		 */
5868 		val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
5869 		if (vmcs12->cr0_guest_host_mask & 0xe &
5870 		    (val ^ vmcs12->cr0_read_shadow))
5871 			return true;
5872 		if ((vmcs12->cr0_guest_host_mask & 0x1) &&
5873 		    !(vmcs12->cr0_read_shadow & 0x1) &&
5874 		    (val & 0x1))
5875 			return true;
5876 		break;
5877 	}
5878 	return false;
5879 }
5880 
nested_vmx_exit_handled_encls(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12)5881 static bool nested_vmx_exit_handled_encls(struct kvm_vcpu *vcpu,
5882 					  struct vmcs12 *vmcs12)
5883 {
5884 	u32 encls_leaf;
5885 
5886 	if (!guest_cpuid_has(vcpu, X86_FEATURE_SGX) ||
5887 	    !nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENCLS_EXITING))
5888 		return false;
5889 
5890 	encls_leaf = kvm_rax_read(vcpu);
5891 	if (encls_leaf > 62)
5892 		encls_leaf = 63;
5893 	return vmcs12->encls_exiting_bitmap & BIT_ULL(encls_leaf);
5894 }
5895 
nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu * vcpu,struct vmcs12 * vmcs12,gpa_t bitmap)5896 static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
5897 	struct vmcs12 *vmcs12, gpa_t bitmap)
5898 {
5899 	u32 vmx_instruction_info;
5900 	unsigned long field;
5901 	u8 b;
5902 
5903 	if (!nested_cpu_has_shadow_vmcs(vmcs12))
5904 		return true;
5905 
5906 	/* Decode instruction info and find the field to access */
5907 	vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
5908 	field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
5909 
5910 	/* Out-of-range fields always cause a VM exit from L2 to L1 */
5911 	if (field >> 15)
5912 		return true;
5913 
5914 	if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
5915 		return true;
5916 
5917 	return 1 & (b >> (field & 7));
5918 }
5919 
nested_vmx_exit_handled_mtf(struct vmcs12 * vmcs12)5920 static bool nested_vmx_exit_handled_mtf(struct vmcs12 *vmcs12)
5921 {
5922 	u32 entry_intr_info = vmcs12->vm_entry_intr_info_field;
5923 
5924 	if (nested_cpu_has_mtf(vmcs12))
5925 		return true;
5926 
5927 	/*
5928 	 * An MTF VM-exit may be injected into the guest by setting the
5929 	 * interruption-type to 7 (other event) and the vector field to 0. Such
5930 	 * is the case regardless of the 'monitor trap flag' VM-execution
5931 	 * control.
5932 	 */
5933 	return entry_intr_info == (INTR_INFO_VALID_MASK
5934 				   | INTR_TYPE_OTHER_EVENT);
5935 }
5936 
5937 /*
5938  * Return true if L0 wants to handle an exit from L2 regardless of whether or not
5939  * L1 wants the exit.  Only call this when in is_guest_mode (L2).
5940  */
nested_vmx_l0_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)5941 static bool nested_vmx_l0_wants_exit(struct kvm_vcpu *vcpu,
5942 				     union vmx_exit_reason exit_reason)
5943 {
5944 	u32 intr_info;
5945 
5946 	switch ((u16)exit_reason.basic) {
5947 	case EXIT_REASON_EXCEPTION_NMI:
5948 		intr_info = vmx_get_intr_info(vcpu);
5949 		if (is_nmi(intr_info))
5950 			return true;
5951 		else if (is_page_fault(intr_info))
5952 			return vcpu->arch.apf.host_apf_flags ||
5953 			       vmx_need_pf_intercept(vcpu);
5954 		else if (is_debug(intr_info) &&
5955 			 vcpu->guest_debug &
5956 			 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5957 			return true;
5958 		else if (is_breakpoint(intr_info) &&
5959 			 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
5960 			return true;
5961 		else if (is_alignment_check(intr_info) &&
5962 			 !vmx_guest_inject_ac(vcpu))
5963 			return true;
5964 		return false;
5965 	case EXIT_REASON_EXTERNAL_INTERRUPT:
5966 		return true;
5967 	case EXIT_REASON_MCE_DURING_VMENTRY:
5968 		return true;
5969 	case EXIT_REASON_EPT_VIOLATION:
5970 		/*
5971 		 * L0 always deals with the EPT violation. If nested EPT is
5972 		 * used, and the nested mmu code discovers that the address is
5973 		 * missing in the guest EPT table (EPT12), the EPT violation
5974 		 * will be injected with nested_ept_inject_page_fault()
5975 		 */
5976 		return true;
5977 	case EXIT_REASON_EPT_MISCONFIG:
5978 		/*
5979 		 * L2 never uses directly L1's EPT, but rather L0's own EPT
5980 		 * table (shadow on EPT) or a merged EPT table that L0 built
5981 		 * (EPT on EPT). So any problems with the structure of the
5982 		 * table is L0's fault.
5983 		 */
5984 		return true;
5985 	case EXIT_REASON_PREEMPTION_TIMER:
5986 		return true;
5987 	case EXIT_REASON_PML_FULL:
5988 		/*
5989 		 * PML is emulated for an L1 VMM and should never be enabled in
5990 		 * vmcs02, always "handle" PML_FULL by exiting to userspace.
5991 		 */
5992 		return true;
5993 	case EXIT_REASON_VMFUNC:
5994 		/* VM functions are emulated through L2->L0 vmexits. */
5995 		return true;
5996 	case EXIT_REASON_BUS_LOCK:
5997 		/*
5998 		 * At present, bus lock VM exit is never exposed to L1.
5999 		 * Handle L2's bus locks in L0 directly.
6000 		 */
6001 		return true;
6002 	default:
6003 		break;
6004 	}
6005 	return false;
6006 }
6007 
6008 /*
6009  * Return 1 if L1 wants to intercept an exit from L2.  Only call this when in
6010  * is_guest_mode (L2).
6011  */
nested_vmx_l1_wants_exit(struct kvm_vcpu * vcpu,union vmx_exit_reason exit_reason)6012 static bool nested_vmx_l1_wants_exit(struct kvm_vcpu *vcpu,
6013 				     union vmx_exit_reason exit_reason)
6014 {
6015 	struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6016 	u32 intr_info;
6017 
6018 	switch ((u16)exit_reason.basic) {
6019 	case EXIT_REASON_EXCEPTION_NMI:
6020 		intr_info = vmx_get_intr_info(vcpu);
6021 		if (is_nmi(intr_info))
6022 			return true;
6023 		else if (is_page_fault(intr_info))
6024 			return true;
6025 		return vmcs12->exception_bitmap &
6026 				(1u << (intr_info & INTR_INFO_VECTOR_MASK));
6027 	case EXIT_REASON_EXTERNAL_INTERRUPT:
6028 		return nested_exit_on_intr(vcpu);
6029 	case EXIT_REASON_TRIPLE_FAULT:
6030 		return true;
6031 	case EXIT_REASON_INTERRUPT_WINDOW:
6032 		return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
6033 	case EXIT_REASON_NMI_WINDOW:
6034 		return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
6035 	case EXIT_REASON_TASK_SWITCH:
6036 		return true;
6037 	case EXIT_REASON_CPUID:
6038 		return true;
6039 	case EXIT_REASON_HLT:
6040 		return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6041 	case EXIT_REASON_INVD:
6042 		return true;
6043 	case EXIT_REASON_INVLPG:
6044 		return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6045 	case EXIT_REASON_RDPMC:
6046 		return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6047 	case EXIT_REASON_RDRAND:
6048 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
6049 	case EXIT_REASON_RDSEED:
6050 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
6051 	case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
6052 		return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6053 	case EXIT_REASON_VMREAD:
6054 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6055 			vmcs12->vmread_bitmap);
6056 	case EXIT_REASON_VMWRITE:
6057 		return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
6058 			vmcs12->vmwrite_bitmap);
6059 	case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6060 	case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6061 	case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
6062 	case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6063 	case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
6064 		/*
6065 		 * VMX instructions trap unconditionally. This allows L1 to
6066 		 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6067 		 */
6068 		return true;
6069 	case EXIT_REASON_CR_ACCESS:
6070 		return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6071 	case EXIT_REASON_DR_ACCESS:
6072 		return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6073 	case EXIT_REASON_IO_INSTRUCTION:
6074 		return nested_vmx_exit_handled_io(vcpu, vmcs12);
6075 	case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
6076 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
6077 	case EXIT_REASON_MSR_READ:
6078 	case EXIT_REASON_MSR_WRITE:
6079 		return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6080 	case EXIT_REASON_INVALID_STATE:
6081 		return true;
6082 	case EXIT_REASON_MWAIT_INSTRUCTION:
6083 		return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6084 	case EXIT_REASON_MONITOR_TRAP_FLAG:
6085 		return nested_vmx_exit_handled_mtf(vmcs12);
6086 	case EXIT_REASON_MONITOR_INSTRUCTION:
6087 		return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6088 	case EXIT_REASON_PAUSE_INSTRUCTION:
6089 		return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6090 			nested_cpu_has2(vmcs12,
6091 				SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6092 	case EXIT_REASON_MCE_DURING_VMENTRY:
6093 		return true;
6094 	case EXIT_REASON_TPR_BELOW_THRESHOLD:
6095 		return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
6096 	case EXIT_REASON_APIC_ACCESS:
6097 	case EXIT_REASON_APIC_WRITE:
6098 	case EXIT_REASON_EOI_INDUCED:
6099 		/*
6100 		 * The controls for "virtualize APIC accesses," "APIC-
6101 		 * register virtualization," and "virtual-interrupt
6102 		 * delivery" only come from vmcs12.
6103 		 */
6104 		return true;
6105 	case EXIT_REASON_INVPCID:
6106 		return
6107 			nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
6108 			nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6109 	case EXIT_REASON_WBINVD:
6110 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6111 	case EXIT_REASON_XSETBV:
6112 		return true;
6113 	case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
6114 		/*
6115 		 * This should never happen, since it is not possible to
6116 		 * set XSS to a non-zero value---neither in L1 nor in L2.
6117 		 * If if it were, XSS would have to be checked against
6118 		 * the XSS exit bitmap in vmcs12.
6119 		 */
6120 		return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
6121 	case EXIT_REASON_UMWAIT:
6122 	case EXIT_REASON_TPAUSE:
6123 		return nested_cpu_has2(vmcs12,
6124 			SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
6125 	case EXIT_REASON_ENCLS:
6126 		return nested_vmx_exit_handled_encls(vcpu, vmcs12);
6127 	default:
6128 		return true;
6129 	}
6130 }
6131 
6132 /*
6133  * Conditionally reflect a VM-Exit into L1.  Returns %true if the VM-Exit was
6134  * reflected into L1.
6135  */
nested_vmx_reflect_vmexit(struct kvm_vcpu * vcpu)6136 bool nested_vmx_reflect_vmexit(struct kvm_vcpu *vcpu)
6137 {
6138 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6139 	union vmx_exit_reason exit_reason = vmx->exit_reason;
6140 	unsigned long exit_qual;
6141 	u32 exit_intr_info;
6142 
6143 	WARN_ON_ONCE(vmx->nested.nested_run_pending);
6144 
6145 	/*
6146 	 * Late nested VM-Fail shares the same flow as nested VM-Exit since KVM
6147 	 * has already loaded L2's state.
6148 	 */
6149 	if (unlikely(vmx->fail)) {
6150 		trace_kvm_nested_vmenter_failed(
6151 			"hardware VM-instruction error: ",
6152 			vmcs_read32(VM_INSTRUCTION_ERROR));
6153 		exit_intr_info = 0;
6154 		exit_qual = 0;
6155 		goto reflect_vmexit;
6156 	}
6157 
6158 	trace_kvm_nested_vmexit(vcpu, KVM_ISA_VMX);
6159 
6160 	/* If L0 (KVM) wants the exit, it trumps L1's desires. */
6161 	if (nested_vmx_l0_wants_exit(vcpu, exit_reason))
6162 		return false;
6163 
6164 	/* If L1 doesn't want the exit, handle it in L0. */
6165 	if (!nested_vmx_l1_wants_exit(vcpu, exit_reason))
6166 		return false;
6167 
6168 	/*
6169 	 * vmcs.VM_EXIT_INTR_INFO is only valid for EXCEPTION_NMI exits.  For
6170 	 * EXTERNAL_INTERRUPT, the value for vmcs12->vm_exit_intr_info would
6171 	 * need to be synthesized by querying the in-kernel LAPIC, but external
6172 	 * interrupts are never reflected to L1 so it's a non-issue.
6173 	 */
6174 	exit_intr_info = vmx_get_intr_info(vcpu);
6175 	if (is_exception_with_error_code(exit_intr_info)) {
6176 		struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6177 
6178 		vmcs12->vm_exit_intr_error_code =
6179 			vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
6180 	}
6181 	exit_qual = vmx_get_exit_qual(vcpu);
6182 
6183 reflect_vmexit:
6184 	nested_vmx_vmexit(vcpu, exit_reason.full, exit_intr_info, exit_qual);
6185 	return true;
6186 }
6187 
vmx_get_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,u32 user_data_size)6188 static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
6189 				struct kvm_nested_state __user *user_kvm_nested_state,
6190 				u32 user_data_size)
6191 {
6192 	struct vcpu_vmx *vmx;
6193 	struct vmcs12 *vmcs12;
6194 	struct kvm_nested_state kvm_state = {
6195 		.flags = 0,
6196 		.format = KVM_STATE_NESTED_FORMAT_VMX,
6197 		.size = sizeof(kvm_state),
6198 		.hdr.vmx.flags = 0,
6199 		.hdr.vmx.vmxon_pa = INVALID_GPA,
6200 		.hdr.vmx.vmcs12_pa = INVALID_GPA,
6201 		.hdr.vmx.preemption_timer_deadline = 0,
6202 	};
6203 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6204 		&user_kvm_nested_state->data.vmx[0];
6205 
6206 	if (!vcpu)
6207 		return kvm_state.size + sizeof(*user_vmx_nested_state);
6208 
6209 	vmx = to_vmx(vcpu);
6210 	vmcs12 = get_vmcs12(vcpu);
6211 
6212 	if (nested_vmx_allowed(vcpu) &&
6213 	    (vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
6214 		kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
6215 		kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
6216 
6217 		if (vmx_has_valid_vmcs12(vcpu)) {
6218 			kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
6219 
6220 			/* 'hv_evmcs_vmptr' can also be EVMPTR_MAP_PENDING here */
6221 			if (vmx->nested.hv_evmcs_vmptr != EVMPTR_INVALID)
6222 				kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
6223 
6224 			if (is_guest_mode(vcpu) &&
6225 			    nested_cpu_has_shadow_vmcs(vmcs12) &&
6226 			    vmcs12->vmcs_link_pointer != INVALID_GPA)
6227 				kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
6228 		}
6229 
6230 		if (vmx->nested.smm.vmxon)
6231 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
6232 
6233 		if (vmx->nested.smm.guest_mode)
6234 			kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
6235 
6236 		if (is_guest_mode(vcpu)) {
6237 			kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
6238 
6239 			if (vmx->nested.nested_run_pending)
6240 				kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
6241 
6242 			if (vmx->nested.mtf_pending)
6243 				kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
6244 
6245 			if (nested_cpu_has_preemption_timer(vmcs12) &&
6246 			    vmx->nested.has_preemption_timer_deadline) {
6247 				kvm_state.hdr.vmx.flags |=
6248 					KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE;
6249 				kvm_state.hdr.vmx.preemption_timer_deadline =
6250 					vmx->nested.preemption_timer_deadline;
6251 			}
6252 		}
6253 	}
6254 
6255 	if (user_data_size < kvm_state.size)
6256 		goto out;
6257 
6258 	if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
6259 		return -EFAULT;
6260 
6261 	if (!vmx_has_valid_vmcs12(vcpu))
6262 		goto out;
6263 
6264 	/*
6265 	 * When running L2, the authoritative vmcs12 state is in the
6266 	 * vmcs02. When running L1, the authoritative vmcs12 state is
6267 	 * in the shadow or enlightened vmcs linked to vmcs01, unless
6268 	 * need_vmcs12_to_shadow_sync is set, in which case, the authoritative
6269 	 * vmcs12 state is in the vmcs12 already.
6270 	 */
6271 	if (is_guest_mode(vcpu)) {
6272 		sync_vmcs02_to_vmcs12(vcpu, vmcs12);
6273 		sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
6274 	} else  {
6275 		copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
6276 		if (!vmx->nested.need_vmcs12_to_shadow_sync) {
6277 			if (evmptr_is_valid(vmx->nested.hv_evmcs_vmptr))
6278 				/*
6279 				 * L1 hypervisor is not obliged to keep eVMCS
6280 				 * clean fields data always up-to-date while
6281 				 * not in guest mode, 'hv_clean_fields' is only
6282 				 * supposed to be actual upon vmentry so we need
6283 				 * to ignore it here and do full copy.
6284 				 */
6285 				copy_enlightened_to_vmcs12(vmx, 0);
6286 			else if (enable_shadow_vmcs)
6287 				copy_shadow_to_vmcs12(vmx);
6288 		}
6289 	}
6290 
6291 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
6292 	BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
6293 
6294 	/*
6295 	 * Copy over the full allocated size of vmcs12 rather than just the size
6296 	 * of the struct.
6297 	 */
6298 	if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
6299 		return -EFAULT;
6300 
6301 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6302 	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6303 		if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
6304 				 get_shadow_vmcs12(vcpu), VMCS12_SIZE))
6305 			return -EFAULT;
6306 	}
6307 out:
6308 	return kvm_state.size;
6309 }
6310 
6311 /*
6312  * Forcibly leave nested mode in order to be able to reset the VCPU later on.
6313  */
vmx_leave_nested(struct kvm_vcpu * vcpu)6314 void vmx_leave_nested(struct kvm_vcpu *vcpu)
6315 {
6316 	if (is_guest_mode(vcpu)) {
6317 		to_vmx(vcpu)->nested.nested_run_pending = 0;
6318 		nested_vmx_vmexit(vcpu, -1, 0, 0);
6319 	}
6320 	free_nested(vcpu);
6321 }
6322 
vmx_set_nested_state(struct kvm_vcpu * vcpu,struct kvm_nested_state __user * user_kvm_nested_state,struct kvm_nested_state * kvm_state)6323 static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
6324 				struct kvm_nested_state __user *user_kvm_nested_state,
6325 				struct kvm_nested_state *kvm_state)
6326 {
6327 	struct vcpu_vmx *vmx = to_vmx(vcpu);
6328 	struct vmcs12 *vmcs12;
6329 	enum vm_entry_failure_code ignored;
6330 	struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
6331 		&user_kvm_nested_state->data.vmx[0];
6332 	int ret;
6333 
6334 	if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
6335 		return -EINVAL;
6336 
6337 	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA) {
6338 		if (kvm_state->hdr.vmx.smm.flags)
6339 			return -EINVAL;
6340 
6341 		if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA)
6342 			return -EINVAL;
6343 
6344 		/*
6345 		 * KVM_STATE_NESTED_EVMCS used to signal that KVM should
6346 		 * enable eVMCS capability on vCPU. However, since then
6347 		 * code was changed such that flag signals vmcs12 should
6348 		 * be copied into eVMCS in guest memory.
6349 		 *
6350 		 * To preserve backwards compatability, allow user
6351 		 * to set this flag even when there is no VMXON region.
6352 		 */
6353 		if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
6354 			return -EINVAL;
6355 	} else {
6356 		if (!nested_vmx_allowed(vcpu))
6357 			return -EINVAL;
6358 
6359 		if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
6360 			return -EINVAL;
6361 	}
6362 
6363 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6364 	    (kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6365 		return -EINVAL;
6366 
6367 	if (kvm_state->hdr.vmx.smm.flags &
6368 	    ~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
6369 		return -EINVAL;
6370 
6371 	if (kvm_state->hdr.vmx.flags & ~KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE)
6372 		return -EINVAL;
6373 
6374 	/*
6375 	 * SMM temporarily disables VMX, so we cannot be in guest mode,
6376 	 * nor can VMLAUNCH/VMRESUME be pending.  Outside SMM, SMM flags
6377 	 * must be zero.
6378 	 */
6379 	if (is_smm(vcpu) ?
6380 		(kvm_state->flags &
6381 		 (KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
6382 		: kvm_state->hdr.vmx.smm.flags)
6383 		return -EINVAL;
6384 
6385 	if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
6386 	    !(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
6387 		return -EINVAL;
6388 
6389 	if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
6390 		(!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
6391 			return -EINVAL;
6392 
6393 	vmx_leave_nested(vcpu);
6394 
6395 	if (kvm_state->hdr.vmx.vmxon_pa == INVALID_GPA)
6396 		return 0;
6397 
6398 	vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
6399 	ret = enter_vmx_operation(vcpu);
6400 	if (ret)
6401 		return ret;
6402 
6403 	/* Empty 'VMXON' state is permitted if no VMCS loaded */
6404 	if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12)) {
6405 		/* See vmx_has_valid_vmcs12.  */
6406 		if ((kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE) ||
6407 		    (kvm_state->flags & KVM_STATE_NESTED_EVMCS) ||
6408 		    (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA))
6409 			return -EINVAL;
6410 		else
6411 			return 0;
6412 	}
6413 
6414 	if (kvm_state->hdr.vmx.vmcs12_pa != INVALID_GPA) {
6415 		if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
6416 		    !page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
6417 			return -EINVAL;
6418 
6419 		set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
6420 	} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
6421 		/*
6422 		 * nested_vmx_handle_enlightened_vmptrld() cannot be called
6423 		 * directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
6424 		 * restored yet. EVMCS will be mapped from
6425 		 * nested_get_vmcs12_pages().
6426 		 */
6427 		vmx->nested.hv_evmcs_vmptr = EVMPTR_MAP_PENDING;
6428 		kvm_make_request(KVM_REQ_GET_NESTED_STATE_PAGES, vcpu);
6429 	} else {
6430 		return -EINVAL;
6431 	}
6432 
6433 	if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
6434 		vmx->nested.smm.vmxon = true;
6435 		vmx->nested.vmxon = false;
6436 
6437 		if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
6438 			vmx->nested.smm.guest_mode = true;
6439 	}
6440 
6441 	vmcs12 = get_vmcs12(vcpu);
6442 	if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
6443 		return -EFAULT;
6444 
6445 	if (vmcs12->hdr.revision_id != VMCS12_REVISION)
6446 		return -EINVAL;
6447 
6448 	if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
6449 		return 0;
6450 
6451 	vmx->nested.nested_run_pending =
6452 		!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
6453 
6454 	vmx->nested.mtf_pending =
6455 		!!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
6456 
6457 	ret = -EINVAL;
6458 	if (nested_cpu_has_shadow_vmcs(vmcs12) &&
6459 	    vmcs12->vmcs_link_pointer != INVALID_GPA) {
6460 		struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
6461 
6462 		if (kvm_state->size <
6463 		    sizeof(*kvm_state) +
6464 		    sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
6465 			goto error_guest_mode;
6466 
6467 		if (copy_from_user(shadow_vmcs12,
6468 				   user_vmx_nested_state->shadow_vmcs12,
6469 				   sizeof(*shadow_vmcs12))) {
6470 			ret = -EFAULT;
6471 			goto error_guest_mode;
6472 		}
6473 
6474 		if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
6475 		    !shadow_vmcs12->hdr.shadow_vmcs)
6476 			goto error_guest_mode;
6477 	}
6478 
6479 	vmx->nested.has_preemption_timer_deadline = false;
6480 	if (kvm_state->hdr.vmx.flags & KVM_STATE_VMX_PREEMPTION_TIMER_DEADLINE) {
6481 		vmx->nested.has_preemption_timer_deadline = true;
6482 		vmx->nested.preemption_timer_deadline =
6483 			kvm_state->hdr.vmx.preemption_timer_deadline;
6484 	}
6485 
6486 	if (nested_vmx_check_controls(vcpu, vmcs12) ||
6487 	    nested_vmx_check_host_state(vcpu, vmcs12) ||
6488 	    nested_vmx_check_guest_state(vcpu, vmcs12, &ignored))
6489 		goto error_guest_mode;
6490 
6491 	vmx->nested.dirty_vmcs12 = true;
6492 	vmx->nested.force_msr_bitmap_recalc = true;
6493 	ret = nested_vmx_enter_non_root_mode(vcpu, false);
6494 	if (ret)
6495 		goto error_guest_mode;
6496 
6497 	return 0;
6498 
6499 error_guest_mode:
6500 	vmx->nested.nested_run_pending = 0;
6501 	return ret;
6502 }
6503 
nested_vmx_set_vmcs_shadowing_bitmap(void)6504 void nested_vmx_set_vmcs_shadowing_bitmap(void)
6505 {
6506 	if (enable_shadow_vmcs) {
6507 		vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
6508 		vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
6509 	}
6510 }
6511 
6512 /*
6513  * Indexing into the vmcs12 uses the VMCS encoding rotated left by 6.  Undo
6514  * that madness to get the encoding for comparison.
6515  */
6516 #define VMCS12_IDX_TO_ENC(idx) ((u16)(((u16)(idx) >> 6) | ((u16)(idx) << 10)))
6517 
nested_vmx_calc_vmcs_enum_msr(void)6518 static u64 nested_vmx_calc_vmcs_enum_msr(void)
6519 {
6520 	/*
6521 	 * Note these are the so called "index" of the VMCS field encoding, not
6522 	 * the index into vmcs12.
6523 	 */
6524 	unsigned int max_idx, idx;
6525 	int i;
6526 
6527 	/*
6528 	 * For better or worse, KVM allows VMREAD/VMWRITE to all fields in
6529 	 * vmcs12, regardless of whether or not the associated feature is
6530 	 * exposed to L1.  Simply find the field with the highest index.
6531 	 */
6532 	max_idx = 0;
6533 	for (i = 0; i < nr_vmcs12_fields; i++) {
6534 		/* The vmcs12 table is very, very sparsely populated. */
6535 		if (!vmcs12_field_offsets[i])
6536 			continue;
6537 
6538 		idx = vmcs_field_index(VMCS12_IDX_TO_ENC(i));
6539 		if (idx > max_idx)
6540 			max_idx = idx;
6541 	}
6542 
6543 	return (u64)max_idx << VMCS_FIELD_INDEX_SHIFT;
6544 }
6545 
6546 /*
6547  * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
6548  * returned for the various VMX controls MSRs when nested VMX is enabled.
6549  * The same values should also be used to verify that vmcs12 control fields are
6550  * valid during nested entry from L1 to L2.
6551  * Each of these control msrs has a low and high 32-bit half: A low bit is on
6552  * if the corresponding bit in the (32-bit) control field *must* be on, and a
6553  * bit in the high half is on if the corresponding bit in the control field
6554  * may be on. See also vmx_control_verify().
6555  */
nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs * msrs,u32 ept_caps)6556 void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
6557 {
6558 	/*
6559 	 * Note that as a general rule, the high half of the MSRs (bits in
6560 	 * the control fields which may be 1) should be initialized by the
6561 	 * intersection of the underlying hardware's MSR (i.e., features which
6562 	 * can be supported) and the list of features we want to expose -
6563 	 * because they are known to be properly supported in our code.
6564 	 * Also, usually, the low half of the MSRs (bits which must be 1) can
6565 	 * be set to 0, meaning that L1 may turn off any of these bits. The
6566 	 * reason is that if one of these bits is necessary, it will appear
6567 	 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
6568 	 * fields of vmcs01 and vmcs02, will turn these bits off - and
6569 	 * nested_vmx_l1_wants_exit() will not pass related exits to L1.
6570 	 * These rules have exceptions below.
6571 	 */
6572 
6573 	/* pin-based controls */
6574 	rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
6575 		msrs->pinbased_ctls_low,
6576 		msrs->pinbased_ctls_high);
6577 	msrs->pinbased_ctls_low |=
6578 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6579 	msrs->pinbased_ctls_high &=
6580 		PIN_BASED_EXT_INTR_MASK |
6581 		PIN_BASED_NMI_EXITING |
6582 		PIN_BASED_VIRTUAL_NMIS |
6583 		(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
6584 	msrs->pinbased_ctls_high |=
6585 		PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6586 		PIN_BASED_VMX_PREEMPTION_TIMER;
6587 
6588 	/* exit controls */
6589 	rdmsr(MSR_IA32_VMX_EXIT_CTLS,
6590 		msrs->exit_ctls_low,
6591 		msrs->exit_ctls_high);
6592 	msrs->exit_ctls_low =
6593 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
6594 
6595 	msrs->exit_ctls_high &=
6596 #ifdef CONFIG_X86_64
6597 		VM_EXIT_HOST_ADDR_SPACE_SIZE |
6598 #endif
6599 		VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT |
6600 		VM_EXIT_CLEAR_BNDCFGS | VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
6601 	msrs->exit_ctls_high |=
6602 		VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
6603 		VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
6604 		VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
6605 
6606 	/* We support free control of debug control saving. */
6607 	msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
6608 
6609 	/* entry controls */
6610 	rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
6611 		msrs->entry_ctls_low,
6612 		msrs->entry_ctls_high);
6613 	msrs->entry_ctls_low =
6614 		VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
6615 	msrs->entry_ctls_high &=
6616 #ifdef CONFIG_X86_64
6617 		VM_ENTRY_IA32E_MODE |
6618 #endif
6619 		VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS |
6620 		VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
6621 	msrs->entry_ctls_high |=
6622 		(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
6623 
6624 	/* We support free control of debug control loading. */
6625 	msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
6626 
6627 	/* cpu-based controls */
6628 	rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
6629 		msrs->procbased_ctls_low,
6630 		msrs->procbased_ctls_high);
6631 	msrs->procbased_ctls_low =
6632 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
6633 	msrs->procbased_ctls_high &=
6634 		CPU_BASED_INTR_WINDOW_EXITING |
6635 		CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
6636 		CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
6637 		CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
6638 		CPU_BASED_CR3_STORE_EXITING |
6639 #ifdef CONFIG_X86_64
6640 		CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
6641 #endif
6642 		CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
6643 		CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
6644 		CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
6645 		CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
6646 		CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
6647 	/*
6648 	 * We can allow some features even when not supported by the
6649 	 * hardware. For example, L1 can specify an MSR bitmap - and we
6650 	 * can use it to avoid exits to L1 - even when L0 runs L2
6651 	 * without MSR bitmaps.
6652 	 */
6653 	msrs->procbased_ctls_high |=
6654 		CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
6655 		CPU_BASED_USE_MSR_BITMAPS;
6656 
6657 	/* We support free control of CR3 access interception. */
6658 	msrs->procbased_ctls_low &=
6659 		~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
6660 
6661 	/*
6662 	 * secondary cpu-based controls.  Do not include those that
6663 	 * depend on CPUID bits, they are added later by
6664 	 * vmx_vcpu_after_set_cpuid.
6665 	 */
6666 	if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
6667 		rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
6668 		      msrs->secondary_ctls_low,
6669 		      msrs->secondary_ctls_high);
6670 
6671 	msrs->secondary_ctls_low = 0;
6672 	msrs->secondary_ctls_high &=
6673 		SECONDARY_EXEC_DESC |
6674 		SECONDARY_EXEC_ENABLE_RDTSCP |
6675 		SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
6676 		SECONDARY_EXEC_WBINVD_EXITING |
6677 		SECONDARY_EXEC_APIC_REGISTER_VIRT |
6678 		SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
6679 		SECONDARY_EXEC_RDRAND_EXITING |
6680 		SECONDARY_EXEC_ENABLE_INVPCID |
6681 		SECONDARY_EXEC_RDSEED_EXITING |
6682 		SECONDARY_EXEC_XSAVES |
6683 		SECONDARY_EXEC_TSC_SCALING;
6684 
6685 	/*
6686 	 * We can emulate "VMCS shadowing," even if the hardware
6687 	 * doesn't support it.
6688 	 */
6689 	msrs->secondary_ctls_high |=
6690 		SECONDARY_EXEC_SHADOW_VMCS;
6691 
6692 	if (enable_ept) {
6693 		/* nested EPT: emulate EPT also to L1 */
6694 		msrs->secondary_ctls_high |=
6695 			SECONDARY_EXEC_ENABLE_EPT;
6696 		msrs->ept_caps =
6697 			VMX_EPT_PAGE_WALK_4_BIT |
6698 			VMX_EPT_PAGE_WALK_5_BIT |
6699 			VMX_EPTP_WB_BIT |
6700 			VMX_EPT_INVEPT_BIT |
6701 			VMX_EPT_EXECUTE_ONLY_BIT;
6702 
6703 		msrs->ept_caps &= ept_caps;
6704 		msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
6705 			VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
6706 			VMX_EPT_1GB_PAGE_BIT;
6707 		if (enable_ept_ad_bits) {
6708 			msrs->secondary_ctls_high |=
6709 				SECONDARY_EXEC_ENABLE_PML;
6710 			msrs->ept_caps |= VMX_EPT_AD_BIT;
6711 		}
6712 	}
6713 
6714 	if (cpu_has_vmx_vmfunc()) {
6715 		msrs->secondary_ctls_high |=
6716 			SECONDARY_EXEC_ENABLE_VMFUNC;
6717 		/*
6718 		 * Advertise EPTP switching unconditionally
6719 		 * since we emulate it
6720 		 */
6721 		if (enable_ept)
6722 			msrs->vmfunc_controls =
6723 				VMX_VMFUNC_EPTP_SWITCHING;
6724 	}
6725 
6726 	/*
6727 	 * Old versions of KVM use the single-context version without
6728 	 * checking for support, so declare that it is supported even
6729 	 * though it is treated as global context.  The alternative is
6730 	 * not failing the single-context invvpid, and it is worse.
6731 	 */
6732 	if (enable_vpid) {
6733 		msrs->secondary_ctls_high |=
6734 			SECONDARY_EXEC_ENABLE_VPID;
6735 		msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
6736 			VMX_VPID_EXTENT_SUPPORTED_MASK;
6737 	}
6738 
6739 	if (enable_unrestricted_guest)
6740 		msrs->secondary_ctls_high |=
6741 			SECONDARY_EXEC_UNRESTRICTED_GUEST;
6742 
6743 	if (flexpriority_enabled)
6744 		msrs->secondary_ctls_high |=
6745 			SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6746 
6747 	if (enable_sgx)
6748 		msrs->secondary_ctls_high |= SECONDARY_EXEC_ENCLS_EXITING;
6749 
6750 	/* miscellaneous data */
6751 	rdmsr(MSR_IA32_VMX_MISC,
6752 		msrs->misc_low,
6753 		msrs->misc_high);
6754 	msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
6755 	msrs->misc_low |=
6756 		MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
6757 		VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
6758 		VMX_MISC_ACTIVITY_HLT |
6759 		VMX_MISC_ACTIVITY_WAIT_SIPI;
6760 	msrs->misc_high = 0;
6761 
6762 	/*
6763 	 * This MSR reports some information about VMX support. We
6764 	 * should return information about the VMX we emulate for the
6765 	 * guest, and the VMCS structure we give it - not about the
6766 	 * VMX support of the underlying hardware.
6767 	 */
6768 	msrs->basic =
6769 		VMCS12_REVISION |
6770 		VMX_BASIC_TRUE_CTLS |
6771 		((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
6772 		(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
6773 
6774 	if (cpu_has_vmx_basic_inout())
6775 		msrs->basic |= VMX_BASIC_INOUT;
6776 
6777 	/*
6778 	 * These MSRs specify bits which the guest must keep fixed on
6779 	 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
6780 	 * We picked the standard core2 setting.
6781 	 */
6782 #define VMXON_CR0_ALWAYSON     (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
6783 #define VMXON_CR4_ALWAYSON     X86_CR4_VMXE
6784 	msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
6785 	msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
6786 
6787 	/* These MSRs specify bits which the guest must keep fixed off. */
6788 	rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
6789 	rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
6790 
6791 	if (vmx_umip_emulated())
6792 		msrs->cr4_fixed1 |= X86_CR4_UMIP;
6793 
6794 	msrs->vmcs_enum = nested_vmx_calc_vmcs_enum_msr();
6795 }
6796 
nested_vmx_hardware_unsetup(void)6797 void nested_vmx_hardware_unsetup(void)
6798 {
6799 	int i;
6800 
6801 	if (enable_shadow_vmcs) {
6802 		for (i = 0; i < VMX_BITMAP_NR; i++)
6803 			free_page((unsigned long)vmx_bitmap[i]);
6804 	}
6805 }
6806 
nested_vmx_hardware_setup(int (* exit_handlers[])(struct kvm_vcpu *))6807 __init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
6808 {
6809 	int i;
6810 
6811 	if (!cpu_has_vmx_shadow_vmcs())
6812 		enable_shadow_vmcs = 0;
6813 	if (enable_shadow_vmcs) {
6814 		for (i = 0; i < VMX_BITMAP_NR; i++) {
6815 			/*
6816 			 * The vmx_bitmap is not tied to a VM and so should
6817 			 * not be charged to a memcg.
6818 			 */
6819 			vmx_bitmap[i] = (unsigned long *)
6820 				__get_free_page(GFP_KERNEL);
6821 			if (!vmx_bitmap[i]) {
6822 				nested_vmx_hardware_unsetup();
6823 				return -ENOMEM;
6824 			}
6825 		}
6826 
6827 		init_vmcs_shadow_fields();
6828 	}
6829 
6830 	exit_handlers[EXIT_REASON_VMCLEAR]	= handle_vmclear;
6831 	exit_handlers[EXIT_REASON_VMLAUNCH]	= handle_vmlaunch;
6832 	exit_handlers[EXIT_REASON_VMPTRLD]	= handle_vmptrld;
6833 	exit_handlers[EXIT_REASON_VMPTRST]	= handle_vmptrst;
6834 	exit_handlers[EXIT_REASON_VMREAD]	= handle_vmread;
6835 	exit_handlers[EXIT_REASON_VMRESUME]	= handle_vmresume;
6836 	exit_handlers[EXIT_REASON_VMWRITE]	= handle_vmwrite;
6837 	exit_handlers[EXIT_REASON_VMOFF]	= handle_vmoff;
6838 	exit_handlers[EXIT_REASON_VMON]		= handle_vmon;
6839 	exit_handlers[EXIT_REASON_INVEPT]	= handle_invept;
6840 	exit_handlers[EXIT_REASON_INVVPID]	= handle_invvpid;
6841 	exit_handlers[EXIT_REASON_VMFUNC]	= handle_vmfunc;
6842 
6843 	return 0;
6844 }
6845 
6846 struct kvm_x86_nested_ops vmx_nested_ops = {
6847 	.leave_nested = vmx_leave_nested,
6848 	.check_events = vmx_check_nested_events,
6849 	.handle_page_fault_workaround = nested_vmx_handle_page_fault_workaround,
6850 	.hv_timer_pending = nested_vmx_preemption_timer_pending,
6851 	.triple_fault = nested_vmx_triple_fault,
6852 	.get_state = vmx_get_nested_state,
6853 	.set_state = vmx_set_nested_state,
6854 	.get_nested_state_pages = vmx_get_nested_state_pages,
6855 	.write_log_dirty = nested_vmx_write_pml_buffer,
6856 	.enable_evmcs = nested_enable_evmcs,
6857 	.get_evmcs_version = nested_get_evmcs_version,
6858 };
6859