1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3  * INET		An implementation of the TCP/IP protocol suite for the LINUX
4  *		operating system.  INET is implemented using the  BSD Socket
5  *		interface as the means of communication with the user level.
6  *
7  *		Definitions for the Interfaces handler.
8  *
9  * Version:	@(#)dev.h	1.0.10	08/12/93
10  *
11  * Authors:	Ross Biro
12  *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13  *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14  *		Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15  *		Alan Cox, <alan@lxorguk.ukuu.org.uk>
16  *		Bjorn Ekwall. <bj0rn@blox.se>
17  *              Pekka Riikonen <priikone@poseidon.pspt.fi>
18  *
19  *		Moved to /usr/include/linux for NET3
20  */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23 
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32 
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37 
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44 
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54 
55 struct netpoll_info;
56 struct device;
57 struct ethtool_ops;
58 struct phy_device;
59 struct dsa_port;
60 struct ip_tunnel_parm;
61 struct macsec_context;
62 struct macsec_ops;
63 struct netdev_name_node;
64 struct sd_flow_limit;
65 struct sfp_bus;
66 /* 802.11 specific */
67 struct wireless_dev;
68 /* 802.15.4 specific */
69 struct wpan_dev;
70 struct mpls_dev;
71 /* UDP Tunnel offloads */
72 struct udp_tunnel_info;
73 struct udp_tunnel_nic_info;
74 struct udp_tunnel_nic;
75 struct bpf_prog;
76 struct xdp_buff;
77 
78 void synchronize_net(void);
79 void netdev_set_default_ethtool_ops(struct net_device *dev,
80 				    const struct ethtool_ops *ops);
81 
82 /* Backlog congestion levels */
83 #define NET_RX_SUCCESS		0	/* keep 'em coming, baby */
84 #define NET_RX_DROP		1	/* packet dropped */
85 
86 #define MAX_NEST_DEV 8
87 
88 /*
89  * Transmit return codes: transmit return codes originate from three different
90  * namespaces:
91  *
92  * - qdisc return codes
93  * - driver transmit return codes
94  * - errno values
95  *
96  * Drivers are allowed to return any one of those in their hard_start_xmit()
97  * function. Real network devices commonly used with qdiscs should only return
98  * the driver transmit return codes though - when qdiscs are used, the actual
99  * transmission happens asynchronously, so the value is not propagated to
100  * higher layers. Virtual network devices transmit synchronously; in this case
101  * the driver transmit return codes are consumed by dev_queue_xmit(), and all
102  * others are propagated to higher layers.
103  */
104 
105 /* qdisc ->enqueue() return codes. */
106 #define NET_XMIT_SUCCESS	0x00
107 #define NET_XMIT_DROP		0x01	/* skb dropped			*/
108 #define NET_XMIT_CN		0x02	/* congestion notification	*/
109 #define NET_XMIT_MASK		0x0f	/* qdisc flags in net/sch_generic.h */
110 
111 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
112  * indicates that the device will soon be dropping packets, or already drops
113  * some packets of the same priority; prompting us to send less aggressively. */
114 #define net_xmit_eval(e)	((e) == NET_XMIT_CN ? 0 : (e))
115 #define net_xmit_errno(e)	((e) != NET_XMIT_CN ? -ENOBUFS : 0)
116 
117 /* Driver transmit return codes */
118 #define NETDEV_TX_MASK		0xf0
119 
120 enum netdev_tx {
121 	__NETDEV_TX_MIN	 = INT_MIN,	/* make sure enum is signed */
122 	NETDEV_TX_OK	 = 0x00,	/* driver took care of packet */
123 	NETDEV_TX_BUSY	 = 0x10,	/* driver tx path was busy*/
124 };
125 typedef enum netdev_tx netdev_tx_t;
126 
127 /*
128  * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
129  * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
130  */
dev_xmit_complete(int rc)131 static inline bool dev_xmit_complete(int rc)
132 {
133 	/*
134 	 * Positive cases with an skb consumed by a driver:
135 	 * - successful transmission (rc == NETDEV_TX_OK)
136 	 * - error while transmitting (rc < 0)
137 	 * - error while queueing to a different device (rc & NET_XMIT_MASK)
138 	 */
139 	if (likely(rc < NET_XMIT_MASK))
140 		return true;
141 
142 	return false;
143 }
144 
145 /*
146  *	Compute the worst-case header length according to the protocols
147  *	used.
148  */
149 
150 #if defined(CONFIG_HYPERV_NET)
151 # define LL_MAX_HEADER 128
152 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
153 # if defined(CONFIG_MAC80211_MESH)
154 #  define LL_MAX_HEADER 128
155 # else
156 #  define LL_MAX_HEADER 96
157 # endif
158 #else
159 # define LL_MAX_HEADER 32
160 #endif
161 
162 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
163     !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
164 #define MAX_HEADER LL_MAX_HEADER
165 #else
166 #define MAX_HEADER (LL_MAX_HEADER + 48)
167 #endif
168 
169 /*
170  *	Old network device statistics. Fields are native words
171  *	(unsigned long) so they can be read and written atomically.
172  */
173 
174 #define NET_DEV_STAT(FIELD)			\
175 	union {					\
176 		unsigned long FIELD;		\
177 		atomic_long_t __##FIELD;	\
178 	}
179 
180 struct net_device_stats {
181 	NET_DEV_STAT(rx_packets);
182 	NET_DEV_STAT(tx_packets);
183 	NET_DEV_STAT(rx_bytes);
184 	NET_DEV_STAT(tx_bytes);
185 	NET_DEV_STAT(rx_errors);
186 	NET_DEV_STAT(tx_errors);
187 	NET_DEV_STAT(rx_dropped);
188 	NET_DEV_STAT(tx_dropped);
189 	NET_DEV_STAT(multicast);
190 	NET_DEV_STAT(collisions);
191 	NET_DEV_STAT(rx_length_errors);
192 	NET_DEV_STAT(rx_over_errors);
193 	NET_DEV_STAT(rx_crc_errors);
194 	NET_DEV_STAT(rx_frame_errors);
195 	NET_DEV_STAT(rx_fifo_errors);
196 	NET_DEV_STAT(rx_missed_errors);
197 	NET_DEV_STAT(tx_aborted_errors);
198 	NET_DEV_STAT(tx_carrier_errors);
199 	NET_DEV_STAT(tx_fifo_errors);
200 	NET_DEV_STAT(tx_heartbeat_errors);
201 	NET_DEV_STAT(tx_window_errors);
202 	NET_DEV_STAT(rx_compressed);
203 	NET_DEV_STAT(tx_compressed);
204 };
205 #undef NET_DEV_STAT
206 
207 /* per-cpu stats, allocated on demand.
208  * Try to fit them in a single cache line, for dev_get_stats() sake.
209  */
210 struct net_device_core_stats {
211 	unsigned long	rx_dropped;
212 	unsigned long	tx_dropped;
213 	unsigned long	rx_nohandler;
214 	unsigned long	rx_otherhost_dropped;
215 } __aligned(4 * sizeof(unsigned long));
216 
217 #include <linux/cache.h>
218 #include <linux/skbuff.h>
219 
220 #ifdef CONFIG_RPS
221 #include <linux/static_key.h>
222 extern struct static_key_false rps_needed;
223 extern struct static_key_false rfs_needed;
224 #endif
225 
226 struct neighbour;
227 struct neigh_parms;
228 struct sk_buff;
229 
230 struct netdev_hw_addr {
231 	struct list_head	list;
232 	struct rb_node		node;
233 	unsigned char		addr[MAX_ADDR_LEN];
234 	unsigned char		type;
235 #define NETDEV_HW_ADDR_T_LAN		1
236 #define NETDEV_HW_ADDR_T_SAN		2
237 #define NETDEV_HW_ADDR_T_UNICAST	3
238 #define NETDEV_HW_ADDR_T_MULTICAST	4
239 	bool			global_use;
240 	int			sync_cnt;
241 	int			refcount;
242 	int			synced;
243 	struct rcu_head		rcu_head;
244 };
245 
246 struct netdev_hw_addr_list {
247 	struct list_head	list;
248 	int			count;
249 
250 	/* Auxiliary tree for faster lookup on addition and deletion */
251 	struct rb_root		tree;
252 };
253 
254 #define netdev_hw_addr_list_count(l) ((l)->count)
255 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
256 #define netdev_hw_addr_list_for_each(ha, l) \
257 	list_for_each_entry(ha, &(l)->list, list)
258 
259 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
260 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
261 #define netdev_for_each_uc_addr(ha, dev) \
262 	netdev_hw_addr_list_for_each(ha, &(dev)->uc)
263 #define netdev_for_each_synced_uc_addr(_ha, _dev) \
264 	netdev_for_each_uc_addr((_ha), (_dev)) \
265 		if ((_ha)->sync_cnt)
266 
267 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
268 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
269 #define netdev_for_each_mc_addr(ha, dev) \
270 	netdev_hw_addr_list_for_each(ha, &(dev)->mc)
271 #define netdev_for_each_synced_mc_addr(_ha, _dev) \
272 	netdev_for_each_mc_addr((_ha), (_dev)) \
273 		if ((_ha)->sync_cnt)
274 
275 struct hh_cache {
276 	unsigned int	hh_len;
277 	seqlock_t	hh_lock;
278 
279 	/* cached hardware header; allow for machine alignment needs.        */
280 #define HH_DATA_MOD	16
281 #define HH_DATA_OFF(__len) \
282 	(HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
283 #define HH_DATA_ALIGN(__len) \
284 	(((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
285 	unsigned long	hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
286 };
287 
288 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
289  * Alternative is:
290  *   dev->hard_header_len ? (dev->hard_header_len +
291  *                           (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
292  *
293  * We could use other alignment values, but we must maintain the
294  * relationship HH alignment <= LL alignment.
295  */
296 #define LL_RESERVED_SPACE(dev) \
297 	((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
298 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
299 	((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
300 
301 struct header_ops {
302 	int	(*create) (struct sk_buff *skb, struct net_device *dev,
303 			   unsigned short type, const void *daddr,
304 			   const void *saddr, unsigned int len);
305 	int	(*parse)(const struct sk_buff *skb, unsigned char *haddr);
306 	int	(*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
307 	void	(*cache_update)(struct hh_cache *hh,
308 				const struct net_device *dev,
309 				const unsigned char *haddr);
310 	bool	(*validate)(const char *ll_header, unsigned int len);
311 	__be16	(*parse_protocol)(const struct sk_buff *skb);
312 };
313 
314 /* These flag bits are private to the generic network queueing
315  * layer; they may not be explicitly referenced by any other
316  * code.
317  */
318 
319 enum netdev_state_t {
320 	__LINK_STATE_START,
321 	__LINK_STATE_PRESENT,
322 	__LINK_STATE_NOCARRIER,
323 	__LINK_STATE_LINKWATCH_PENDING,
324 	__LINK_STATE_DORMANT,
325 	__LINK_STATE_TESTING,
326 };
327 
328 struct gro_list {
329 	struct list_head	list;
330 	int			count;
331 };
332 
333 /*
334  * size of gro hash buckets, must less than bit number of
335  * napi_struct::gro_bitmask
336  */
337 #define GRO_HASH_BUCKETS	8
338 
339 /*
340  * Structure for NAPI scheduling similar to tasklet but with weighting
341  */
342 struct napi_struct {
343 	/* The poll_list must only be managed by the entity which
344 	 * changes the state of the NAPI_STATE_SCHED bit.  This means
345 	 * whoever atomically sets that bit can add this napi_struct
346 	 * to the per-CPU poll_list, and whoever clears that bit
347 	 * can remove from the list right before clearing the bit.
348 	 */
349 	struct list_head	poll_list;
350 
351 	unsigned long		state;
352 	int			weight;
353 	int			defer_hard_irqs_count;
354 	unsigned long		gro_bitmask;
355 	int			(*poll)(struct napi_struct *, int);
356 #ifdef CONFIG_NETPOLL
357 	int			poll_owner;
358 #endif
359 	struct net_device	*dev;
360 	struct gro_list		gro_hash[GRO_HASH_BUCKETS];
361 	struct sk_buff		*skb;
362 	struct list_head	rx_list; /* Pending GRO_NORMAL skbs */
363 	int			rx_count; /* length of rx_list */
364 	struct hrtimer		timer;
365 	struct list_head	dev_list;
366 	struct hlist_node	napi_hash_node;
367 	unsigned int		napi_id;
368 	struct task_struct	*thread;
369 };
370 
371 enum {
372 	NAPI_STATE_SCHED,		/* Poll is scheduled */
373 	NAPI_STATE_MISSED,		/* reschedule a napi */
374 	NAPI_STATE_DISABLE,		/* Disable pending */
375 	NAPI_STATE_NPSVC,		/* Netpoll - don't dequeue from poll_list */
376 	NAPI_STATE_LISTED,		/* NAPI added to system lists */
377 	NAPI_STATE_NO_BUSY_POLL,	/* Do not add in napi_hash, no busy polling */
378 	NAPI_STATE_IN_BUSY_POLL,	/* sk_busy_loop() owns this NAPI */
379 	NAPI_STATE_PREFER_BUSY_POLL,	/* prefer busy-polling over softirq processing*/
380 	NAPI_STATE_THREADED,		/* The poll is performed inside its own thread*/
381 	NAPI_STATE_SCHED_THREADED,	/* Napi is currently scheduled in threaded mode */
382 };
383 
384 enum {
385 	NAPIF_STATE_SCHED		= BIT(NAPI_STATE_SCHED),
386 	NAPIF_STATE_MISSED		= BIT(NAPI_STATE_MISSED),
387 	NAPIF_STATE_DISABLE		= BIT(NAPI_STATE_DISABLE),
388 	NAPIF_STATE_NPSVC		= BIT(NAPI_STATE_NPSVC),
389 	NAPIF_STATE_LISTED		= BIT(NAPI_STATE_LISTED),
390 	NAPIF_STATE_NO_BUSY_POLL	= BIT(NAPI_STATE_NO_BUSY_POLL),
391 	NAPIF_STATE_IN_BUSY_POLL	= BIT(NAPI_STATE_IN_BUSY_POLL),
392 	NAPIF_STATE_PREFER_BUSY_POLL	= BIT(NAPI_STATE_PREFER_BUSY_POLL),
393 	NAPIF_STATE_THREADED		= BIT(NAPI_STATE_THREADED),
394 	NAPIF_STATE_SCHED_THREADED	= BIT(NAPI_STATE_SCHED_THREADED),
395 };
396 
397 enum gro_result {
398 	GRO_MERGED,
399 	GRO_MERGED_FREE,
400 	GRO_HELD,
401 	GRO_NORMAL,
402 	GRO_CONSUMED,
403 };
404 typedef enum gro_result gro_result_t;
405 
406 /*
407  * enum rx_handler_result - Possible return values for rx_handlers.
408  * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
409  * further.
410  * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
411  * case skb->dev was changed by rx_handler.
412  * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
413  * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
414  *
415  * rx_handlers are functions called from inside __netif_receive_skb(), to do
416  * special processing of the skb, prior to delivery to protocol handlers.
417  *
418  * Currently, a net_device can only have a single rx_handler registered. Trying
419  * to register a second rx_handler will return -EBUSY.
420  *
421  * To register a rx_handler on a net_device, use netdev_rx_handler_register().
422  * To unregister a rx_handler on a net_device, use
423  * netdev_rx_handler_unregister().
424  *
425  * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
426  * do with the skb.
427  *
428  * If the rx_handler consumed the skb in some way, it should return
429  * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
430  * the skb to be delivered in some other way.
431  *
432  * If the rx_handler changed skb->dev, to divert the skb to another
433  * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
434  * new device will be called if it exists.
435  *
436  * If the rx_handler decides the skb should be ignored, it should return
437  * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
438  * are registered on exact device (ptype->dev == skb->dev).
439  *
440  * If the rx_handler didn't change skb->dev, but wants the skb to be normally
441  * delivered, it should return RX_HANDLER_PASS.
442  *
443  * A device without a registered rx_handler will behave as if rx_handler
444  * returned RX_HANDLER_PASS.
445  */
446 
447 enum rx_handler_result {
448 	RX_HANDLER_CONSUMED,
449 	RX_HANDLER_ANOTHER,
450 	RX_HANDLER_EXACT,
451 	RX_HANDLER_PASS,
452 };
453 typedef enum rx_handler_result rx_handler_result_t;
454 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
455 
456 void __napi_schedule(struct napi_struct *n);
457 void __napi_schedule_irqoff(struct napi_struct *n);
458 
napi_disable_pending(struct napi_struct * n)459 static inline bool napi_disable_pending(struct napi_struct *n)
460 {
461 	return test_bit(NAPI_STATE_DISABLE, &n->state);
462 }
463 
napi_prefer_busy_poll(struct napi_struct * n)464 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
465 {
466 	return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
467 }
468 
469 bool napi_schedule_prep(struct napi_struct *n);
470 
471 /**
472  *	napi_schedule - schedule NAPI poll
473  *	@n: NAPI context
474  *
475  * Schedule NAPI poll routine to be called if it is not already
476  * running.
477  */
napi_schedule(struct napi_struct * n)478 static inline void napi_schedule(struct napi_struct *n)
479 {
480 	if (napi_schedule_prep(n))
481 		__napi_schedule(n);
482 }
483 
484 /**
485  *	napi_schedule_irqoff - schedule NAPI poll
486  *	@n: NAPI context
487  *
488  * Variant of napi_schedule(), assuming hard irqs are masked.
489  */
napi_schedule_irqoff(struct napi_struct * n)490 static inline void napi_schedule_irqoff(struct napi_struct *n)
491 {
492 	if (napi_schedule_prep(n))
493 		__napi_schedule_irqoff(n);
494 }
495 
496 /* Try to reschedule poll. Called by dev->poll() after napi_complete().  */
napi_reschedule(struct napi_struct * napi)497 static inline bool napi_reschedule(struct napi_struct *napi)
498 {
499 	if (napi_schedule_prep(napi)) {
500 		__napi_schedule(napi);
501 		return true;
502 	}
503 	return false;
504 }
505 
506 bool napi_complete_done(struct napi_struct *n, int work_done);
507 /**
508  *	napi_complete - NAPI processing complete
509  *	@n: NAPI context
510  *
511  * Mark NAPI processing as complete.
512  * Consider using napi_complete_done() instead.
513  * Return false if device should avoid rearming interrupts.
514  */
napi_complete(struct napi_struct * n)515 static inline bool napi_complete(struct napi_struct *n)
516 {
517 	return napi_complete_done(n, 0);
518 }
519 
520 int dev_set_threaded(struct net_device *dev, bool threaded);
521 
522 /**
523  *	napi_disable - prevent NAPI from scheduling
524  *	@n: NAPI context
525  *
526  * Stop NAPI from being scheduled on this context.
527  * Waits till any outstanding processing completes.
528  */
529 void napi_disable(struct napi_struct *n);
530 
531 void napi_enable(struct napi_struct *n);
532 
533 /**
534  *	napi_synchronize - wait until NAPI is not running
535  *	@n: NAPI context
536  *
537  * Wait until NAPI is done being scheduled on this context.
538  * Waits till any outstanding processing completes but
539  * does not disable future activations.
540  */
napi_synchronize(const struct napi_struct * n)541 static inline void napi_synchronize(const struct napi_struct *n)
542 {
543 	if (IS_ENABLED(CONFIG_SMP))
544 		while (test_bit(NAPI_STATE_SCHED, &n->state))
545 			msleep(1);
546 	else
547 		barrier();
548 }
549 
550 /**
551  *	napi_if_scheduled_mark_missed - if napi is running, set the
552  *	NAPIF_STATE_MISSED
553  *	@n: NAPI context
554  *
555  * If napi is running, set the NAPIF_STATE_MISSED, and return true if
556  * NAPI is scheduled.
557  **/
napi_if_scheduled_mark_missed(struct napi_struct * n)558 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
559 {
560 	unsigned long val, new;
561 
562 	val = READ_ONCE(n->state);
563 	do {
564 		if (val & NAPIF_STATE_DISABLE)
565 			return true;
566 
567 		if (!(val & NAPIF_STATE_SCHED))
568 			return false;
569 
570 		new = val | NAPIF_STATE_MISSED;
571 	} while (!try_cmpxchg(&n->state, &val, new));
572 
573 	return true;
574 }
575 
576 enum netdev_queue_state_t {
577 	__QUEUE_STATE_DRV_XOFF,
578 	__QUEUE_STATE_STACK_XOFF,
579 	__QUEUE_STATE_FROZEN,
580 };
581 
582 #define QUEUE_STATE_DRV_XOFF	(1 << __QUEUE_STATE_DRV_XOFF)
583 #define QUEUE_STATE_STACK_XOFF	(1 << __QUEUE_STATE_STACK_XOFF)
584 #define QUEUE_STATE_FROZEN	(1 << __QUEUE_STATE_FROZEN)
585 
586 #define QUEUE_STATE_ANY_XOFF	(QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
587 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
588 					QUEUE_STATE_FROZEN)
589 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
590 					QUEUE_STATE_FROZEN)
591 
592 /*
593  * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue.  The
594  * netif_tx_* functions below are used to manipulate this flag.  The
595  * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
596  * queue independently.  The netif_xmit_*stopped functions below are called
597  * to check if the queue has been stopped by the driver or stack (either
598  * of the XOFF bits are set in the state).  Drivers should not need to call
599  * netif_xmit*stopped functions, they should only be using netif_tx_*.
600  */
601 
602 struct netdev_queue {
603 /*
604  * read-mostly part
605  */
606 	struct net_device	*dev;
607 	netdevice_tracker	dev_tracker;
608 
609 	struct Qdisc __rcu	*qdisc;
610 	struct Qdisc		*qdisc_sleeping;
611 #ifdef CONFIG_SYSFS
612 	struct kobject		kobj;
613 #endif
614 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
615 	int			numa_node;
616 #endif
617 	unsigned long		tx_maxrate;
618 	/*
619 	 * Number of TX timeouts for this queue
620 	 * (/sys/class/net/DEV/Q/trans_timeout)
621 	 */
622 	atomic_long_t		trans_timeout;
623 
624 	/* Subordinate device that the queue has been assigned to */
625 	struct net_device	*sb_dev;
626 #ifdef CONFIG_XDP_SOCKETS
627 	struct xsk_buff_pool    *pool;
628 #endif
629 /*
630  * write-mostly part
631  */
632 	spinlock_t		_xmit_lock ____cacheline_aligned_in_smp;
633 	int			xmit_lock_owner;
634 	/*
635 	 * Time (in jiffies) of last Tx
636 	 */
637 	unsigned long		trans_start;
638 
639 	unsigned long		state;
640 
641 #ifdef CONFIG_BQL
642 	struct dql		dql;
643 #endif
644 } ____cacheline_aligned_in_smp;
645 
646 extern int sysctl_fb_tunnels_only_for_init_net;
647 extern int sysctl_devconf_inherit_init_net;
648 
649 /*
650  * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
651  *                                     == 1 : For initns only
652  *                                     == 2 : For none.
653  */
net_has_fallback_tunnels(const struct net * net)654 static inline bool net_has_fallback_tunnels(const struct net *net)
655 {
656 #if IS_ENABLED(CONFIG_SYSCTL)
657 	int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
658 
659 	return !fb_tunnels_only_for_init_net ||
660 		(net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
661 #else
662 	return true;
663 #endif
664 }
665 
net_inherit_devconf(void)666 static inline int net_inherit_devconf(void)
667 {
668 #if IS_ENABLED(CONFIG_SYSCTL)
669 	return READ_ONCE(sysctl_devconf_inherit_init_net);
670 #else
671 	return 0;
672 #endif
673 }
674 
netdev_queue_numa_node_read(const struct netdev_queue * q)675 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
676 {
677 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
678 	return q->numa_node;
679 #else
680 	return NUMA_NO_NODE;
681 #endif
682 }
683 
netdev_queue_numa_node_write(struct netdev_queue * q,int node)684 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
685 {
686 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
687 	q->numa_node = node;
688 #endif
689 }
690 
691 #ifdef CONFIG_RPS
692 /*
693  * This structure holds an RPS map which can be of variable length.  The
694  * map is an array of CPUs.
695  */
696 struct rps_map {
697 	unsigned int len;
698 	struct rcu_head rcu;
699 	u16 cpus[];
700 };
701 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
702 
703 /*
704  * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
705  * tail pointer for that CPU's input queue at the time of last enqueue, and
706  * a hardware filter index.
707  */
708 struct rps_dev_flow {
709 	u16 cpu;
710 	u16 filter;
711 	unsigned int last_qtail;
712 };
713 #define RPS_NO_FILTER 0xffff
714 
715 /*
716  * The rps_dev_flow_table structure contains a table of flow mappings.
717  */
718 struct rps_dev_flow_table {
719 	unsigned int mask;
720 	struct rcu_head rcu;
721 	struct rps_dev_flow flows[];
722 };
723 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
724     ((_num) * sizeof(struct rps_dev_flow)))
725 
726 /*
727  * The rps_sock_flow_table contains mappings of flows to the last CPU
728  * on which they were processed by the application (set in recvmsg).
729  * Each entry is a 32bit value. Upper part is the high-order bits
730  * of flow hash, lower part is CPU number.
731  * rps_cpu_mask is used to partition the space, depending on number of
732  * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
733  * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
734  * meaning we use 32-6=26 bits for the hash.
735  */
736 struct rps_sock_flow_table {
737 	u32	mask;
738 
739 	u32	ents[] ____cacheline_aligned_in_smp;
740 };
741 #define	RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
742 
743 #define RPS_NO_CPU 0xffff
744 
745 extern u32 rps_cpu_mask;
746 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
747 
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)748 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
749 					u32 hash)
750 {
751 	if (table && hash) {
752 		unsigned int index = hash & table->mask;
753 		u32 val = hash & ~rps_cpu_mask;
754 
755 		/* We only give a hint, preemption can change CPU under us */
756 		val |= raw_smp_processor_id();
757 
758 		if (table->ents[index] != val)
759 			table->ents[index] = val;
760 	}
761 }
762 
763 #ifdef CONFIG_RFS_ACCEL
764 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
765 			 u16 filter_id);
766 #endif
767 #endif /* CONFIG_RPS */
768 
769 /* This structure contains an instance of an RX queue. */
770 struct netdev_rx_queue {
771 	struct xdp_rxq_info		xdp_rxq;
772 #ifdef CONFIG_RPS
773 	struct rps_map __rcu		*rps_map;
774 	struct rps_dev_flow_table __rcu	*rps_flow_table;
775 #endif
776 	struct kobject			kobj;
777 	struct net_device		*dev;
778 	netdevice_tracker		dev_tracker;
779 
780 #ifdef CONFIG_XDP_SOCKETS
781 	struct xsk_buff_pool            *pool;
782 #endif
783 } ____cacheline_aligned_in_smp;
784 
785 /*
786  * RX queue sysfs structures and functions.
787  */
788 struct rx_queue_attribute {
789 	struct attribute attr;
790 	ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
791 	ssize_t (*store)(struct netdev_rx_queue *queue,
792 			 const char *buf, size_t len);
793 };
794 
795 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
796 enum xps_map_type {
797 	XPS_CPUS = 0,
798 	XPS_RXQS,
799 	XPS_MAPS_MAX,
800 };
801 
802 #ifdef CONFIG_XPS
803 /*
804  * This structure holds an XPS map which can be of variable length.  The
805  * map is an array of queues.
806  */
807 struct xps_map {
808 	unsigned int len;
809 	unsigned int alloc_len;
810 	struct rcu_head rcu;
811 	u16 queues[];
812 };
813 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
814 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
815        - sizeof(struct xps_map)) / sizeof(u16))
816 
817 /*
818  * This structure holds all XPS maps for device.  Maps are indexed by CPU.
819  *
820  * We keep track of the number of cpus/rxqs used when the struct is allocated,
821  * in nr_ids. This will help not accessing out-of-bound memory.
822  *
823  * We keep track of the number of traffic classes used when the struct is
824  * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
825  * not crossing its upper bound, as the original dev->num_tc can be updated in
826  * the meantime.
827  */
828 struct xps_dev_maps {
829 	struct rcu_head rcu;
830 	unsigned int nr_ids;
831 	s16 num_tc;
832 	struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
833 };
834 
835 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) +	\
836 	(nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
837 
838 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
839 	(_rxqs * (_tcs) * sizeof(struct xps_map *)))
840 
841 #endif /* CONFIG_XPS */
842 
843 #define TC_MAX_QUEUE	16
844 #define TC_BITMASK	15
845 /* HW offloaded queuing disciplines txq count and offset maps */
846 struct netdev_tc_txq {
847 	u16 count;
848 	u16 offset;
849 };
850 
851 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
852 /*
853  * This structure is to hold information about the device
854  * configured to run FCoE protocol stack.
855  */
856 struct netdev_fcoe_hbainfo {
857 	char	manufacturer[64];
858 	char	serial_number[64];
859 	char	hardware_version[64];
860 	char	driver_version[64];
861 	char	optionrom_version[64];
862 	char	firmware_version[64];
863 	char	model[256];
864 	char	model_description[256];
865 };
866 #endif
867 
868 #define MAX_PHYS_ITEM_ID_LEN 32
869 
870 /* This structure holds a unique identifier to identify some
871  * physical item (port for example) used by a netdevice.
872  */
873 struct netdev_phys_item_id {
874 	unsigned char id[MAX_PHYS_ITEM_ID_LEN];
875 	unsigned char id_len;
876 };
877 
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)878 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
879 					    struct netdev_phys_item_id *b)
880 {
881 	return a->id_len == b->id_len &&
882 	       memcmp(a->id, b->id, a->id_len) == 0;
883 }
884 
885 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
886 				       struct sk_buff *skb,
887 				       struct net_device *sb_dev);
888 
889 enum net_device_path_type {
890 	DEV_PATH_ETHERNET = 0,
891 	DEV_PATH_VLAN,
892 	DEV_PATH_BRIDGE,
893 	DEV_PATH_PPPOE,
894 	DEV_PATH_DSA,
895 	DEV_PATH_MTK_WDMA,
896 };
897 
898 struct net_device_path {
899 	enum net_device_path_type	type;
900 	const struct net_device		*dev;
901 	union {
902 		struct {
903 			u16		id;
904 			__be16		proto;
905 			u8		h_dest[ETH_ALEN];
906 		} encap;
907 		struct {
908 			enum {
909 				DEV_PATH_BR_VLAN_KEEP,
910 				DEV_PATH_BR_VLAN_TAG,
911 				DEV_PATH_BR_VLAN_UNTAG,
912 				DEV_PATH_BR_VLAN_UNTAG_HW,
913 			}		vlan_mode;
914 			u16		vlan_id;
915 			__be16		vlan_proto;
916 		} bridge;
917 		struct {
918 			int port;
919 			u16 proto;
920 		} dsa;
921 		struct {
922 			u8 wdma_idx;
923 			u8 queue;
924 			u16 wcid;
925 			u8 bss;
926 		} mtk_wdma;
927 	};
928 };
929 
930 #define NET_DEVICE_PATH_STACK_MAX	5
931 #define NET_DEVICE_PATH_VLAN_MAX	2
932 
933 struct net_device_path_stack {
934 	int			num_paths;
935 	struct net_device_path	path[NET_DEVICE_PATH_STACK_MAX];
936 };
937 
938 struct net_device_path_ctx {
939 	const struct net_device *dev;
940 	u8			daddr[ETH_ALEN];
941 
942 	int			num_vlans;
943 	struct {
944 		u16		id;
945 		__be16		proto;
946 	} vlan[NET_DEVICE_PATH_VLAN_MAX];
947 };
948 
949 enum tc_setup_type {
950 	TC_QUERY_CAPS,
951 	TC_SETUP_QDISC_MQPRIO,
952 	TC_SETUP_CLSU32,
953 	TC_SETUP_CLSFLOWER,
954 	TC_SETUP_CLSMATCHALL,
955 	TC_SETUP_CLSBPF,
956 	TC_SETUP_BLOCK,
957 	TC_SETUP_QDISC_CBS,
958 	TC_SETUP_QDISC_RED,
959 	TC_SETUP_QDISC_PRIO,
960 	TC_SETUP_QDISC_MQ,
961 	TC_SETUP_QDISC_ETF,
962 	TC_SETUP_ROOT_QDISC,
963 	TC_SETUP_QDISC_GRED,
964 	TC_SETUP_QDISC_TAPRIO,
965 	TC_SETUP_FT,
966 	TC_SETUP_QDISC_ETS,
967 	TC_SETUP_QDISC_TBF,
968 	TC_SETUP_QDISC_FIFO,
969 	TC_SETUP_QDISC_HTB,
970 	TC_SETUP_ACT,
971 };
972 
973 /* These structures hold the attributes of bpf state that are being passed
974  * to the netdevice through the bpf op.
975  */
976 enum bpf_netdev_command {
977 	/* Set or clear a bpf program used in the earliest stages of packet
978 	 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
979 	 * is responsible for calling bpf_prog_put on any old progs that are
980 	 * stored. In case of error, the callee need not release the new prog
981 	 * reference, but on success it takes ownership and must bpf_prog_put
982 	 * when it is no longer used.
983 	 */
984 	XDP_SETUP_PROG,
985 	XDP_SETUP_PROG_HW,
986 	/* BPF program for offload callbacks, invoked at program load time. */
987 	BPF_OFFLOAD_MAP_ALLOC,
988 	BPF_OFFLOAD_MAP_FREE,
989 	XDP_SETUP_XSK_POOL,
990 };
991 
992 struct bpf_prog_offload_ops;
993 struct netlink_ext_ack;
994 struct xdp_umem;
995 struct xdp_dev_bulk_queue;
996 struct bpf_xdp_link;
997 
998 enum bpf_xdp_mode {
999 	XDP_MODE_SKB = 0,
1000 	XDP_MODE_DRV = 1,
1001 	XDP_MODE_HW = 2,
1002 	__MAX_XDP_MODE
1003 };
1004 
1005 struct bpf_xdp_entity {
1006 	struct bpf_prog *prog;
1007 	struct bpf_xdp_link *link;
1008 };
1009 
1010 struct netdev_bpf {
1011 	enum bpf_netdev_command command;
1012 	union {
1013 		/* XDP_SETUP_PROG */
1014 		struct {
1015 			u32 flags;
1016 			struct bpf_prog *prog;
1017 			struct netlink_ext_ack *extack;
1018 		};
1019 		/* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1020 		struct {
1021 			struct bpf_offloaded_map *offmap;
1022 		};
1023 		/* XDP_SETUP_XSK_POOL */
1024 		struct {
1025 			struct xsk_buff_pool *pool;
1026 			u16 queue_id;
1027 		} xsk;
1028 	};
1029 };
1030 
1031 /* Flags for ndo_xsk_wakeup. */
1032 #define XDP_WAKEUP_RX (1 << 0)
1033 #define XDP_WAKEUP_TX (1 << 1)
1034 
1035 #ifdef CONFIG_XFRM_OFFLOAD
1036 struct xfrmdev_ops {
1037 	int	(*xdo_dev_state_add) (struct xfrm_state *x);
1038 	void	(*xdo_dev_state_delete) (struct xfrm_state *x);
1039 	void	(*xdo_dev_state_free) (struct xfrm_state *x);
1040 	bool	(*xdo_dev_offload_ok) (struct sk_buff *skb,
1041 				       struct xfrm_state *x);
1042 	void	(*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1043 };
1044 #endif
1045 
1046 struct dev_ifalias {
1047 	struct rcu_head rcuhead;
1048 	char ifalias[];
1049 };
1050 
1051 struct devlink;
1052 struct tlsdev_ops;
1053 
1054 struct netdev_net_notifier {
1055 	struct list_head list;
1056 	struct notifier_block *nb;
1057 };
1058 
1059 /*
1060  * This structure defines the management hooks for network devices.
1061  * The following hooks can be defined; unless noted otherwise, they are
1062  * optional and can be filled with a null pointer.
1063  *
1064  * int (*ndo_init)(struct net_device *dev);
1065  *     This function is called once when a network device is registered.
1066  *     The network device can use this for any late stage initialization
1067  *     or semantic validation. It can fail with an error code which will
1068  *     be propagated back to register_netdev.
1069  *
1070  * void (*ndo_uninit)(struct net_device *dev);
1071  *     This function is called when device is unregistered or when registration
1072  *     fails. It is not called if init fails.
1073  *
1074  * int (*ndo_open)(struct net_device *dev);
1075  *     This function is called when a network device transitions to the up
1076  *     state.
1077  *
1078  * int (*ndo_stop)(struct net_device *dev);
1079  *     This function is called when a network device transitions to the down
1080  *     state.
1081  *
1082  * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1083  *                               struct net_device *dev);
1084  *	Called when a packet needs to be transmitted.
1085  *	Returns NETDEV_TX_OK.  Can return NETDEV_TX_BUSY, but you should stop
1086  *	the queue before that can happen; it's for obsolete devices and weird
1087  *	corner cases, but the stack really does a non-trivial amount
1088  *	of useless work if you return NETDEV_TX_BUSY.
1089  *	Required; cannot be NULL.
1090  *
1091  * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1092  *					   struct net_device *dev
1093  *					   netdev_features_t features);
1094  *	Called by core transmit path to determine if device is capable of
1095  *	performing offload operations on a given packet. This is to give
1096  *	the device an opportunity to implement any restrictions that cannot
1097  *	be otherwise expressed by feature flags. The check is called with
1098  *	the set of features that the stack has calculated and it returns
1099  *	those the driver believes to be appropriate.
1100  *
1101  * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1102  *                         struct net_device *sb_dev);
1103  *	Called to decide which queue to use when device supports multiple
1104  *	transmit queues.
1105  *
1106  * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1107  *	This function is called to allow device receiver to make
1108  *	changes to configuration when multicast or promiscuous is enabled.
1109  *
1110  * void (*ndo_set_rx_mode)(struct net_device *dev);
1111  *	This function is called device changes address list filtering.
1112  *	If driver handles unicast address filtering, it should set
1113  *	IFF_UNICAST_FLT in its priv_flags.
1114  *
1115  * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1116  *	This function  is called when the Media Access Control address
1117  *	needs to be changed. If this interface is not defined, the
1118  *	MAC address can not be changed.
1119  *
1120  * int (*ndo_validate_addr)(struct net_device *dev);
1121  *	Test if Media Access Control address is valid for the device.
1122  *
1123  * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1124  *	Old-style ioctl entry point. This is used internally by the
1125  *	appletalk and ieee802154 subsystems but is no longer called by
1126  *	the device ioctl handler.
1127  *
1128  * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1129  *	Used by the bonding driver for its device specific ioctls:
1130  *	SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1131  *	SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1132  *
1133  * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1134  *	Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1135  *	SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1136  *
1137  * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1138  *	Used to set network devices bus interface parameters. This interface
1139  *	is retained for legacy reasons; new devices should use the bus
1140  *	interface (PCI) for low level management.
1141  *
1142  * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1143  *	Called when a user wants to change the Maximum Transfer Unit
1144  *	of a device.
1145  *
1146  * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1147  *	Callback used when the transmitter has not made any progress
1148  *	for dev->watchdog ticks.
1149  *
1150  * void (*ndo_get_stats64)(struct net_device *dev,
1151  *                         struct rtnl_link_stats64 *storage);
1152  * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1153  *	Called when a user wants to get the network device usage
1154  *	statistics. Drivers must do one of the following:
1155  *	1. Define @ndo_get_stats64 to fill in a zero-initialised
1156  *	   rtnl_link_stats64 structure passed by the caller.
1157  *	2. Define @ndo_get_stats to update a net_device_stats structure
1158  *	   (which should normally be dev->stats) and return a pointer to
1159  *	   it. The structure may be changed asynchronously only if each
1160  *	   field is written atomically.
1161  *	3. Update dev->stats asynchronously and atomically, and define
1162  *	   neither operation.
1163  *
1164  * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1165  *	Return true if this device supports offload stats of this attr_id.
1166  *
1167  * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1168  *	void *attr_data)
1169  *	Get statistics for offload operations by attr_id. Write it into the
1170  *	attr_data pointer.
1171  *
1172  * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1173  *	If device supports VLAN filtering this function is called when a
1174  *	VLAN id is registered.
1175  *
1176  * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1177  *	If device supports VLAN filtering this function is called when a
1178  *	VLAN id is unregistered.
1179  *
1180  * void (*ndo_poll_controller)(struct net_device *dev);
1181  *
1182  *	SR-IOV management functions.
1183  * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1184  * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1185  *			  u8 qos, __be16 proto);
1186  * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1187  *			  int max_tx_rate);
1188  * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1189  * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1190  * int (*ndo_get_vf_config)(struct net_device *dev,
1191  *			    int vf, struct ifla_vf_info *ivf);
1192  * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1193  * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1194  *			  struct nlattr *port[]);
1195  *
1196  *      Enable or disable the VF ability to query its RSS Redirection Table and
1197  *      Hash Key. This is needed since on some devices VF share this information
1198  *      with PF and querying it may introduce a theoretical security risk.
1199  * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1200  * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1201  * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1202  *		       void *type_data);
1203  *	Called to setup any 'tc' scheduler, classifier or action on @dev.
1204  *	This is always called from the stack with the rtnl lock held and netif
1205  *	tx queues stopped. This allows the netdevice to perform queue
1206  *	management safely.
1207  *
1208  *	Fiber Channel over Ethernet (FCoE) offload functions.
1209  * int (*ndo_fcoe_enable)(struct net_device *dev);
1210  *	Called when the FCoE protocol stack wants to start using LLD for FCoE
1211  *	so the underlying device can perform whatever needed configuration or
1212  *	initialization to support acceleration of FCoE traffic.
1213  *
1214  * int (*ndo_fcoe_disable)(struct net_device *dev);
1215  *	Called when the FCoE protocol stack wants to stop using LLD for FCoE
1216  *	so the underlying device can perform whatever needed clean-ups to
1217  *	stop supporting acceleration of FCoE traffic.
1218  *
1219  * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1220  *			     struct scatterlist *sgl, unsigned int sgc);
1221  *	Called when the FCoE Initiator wants to initialize an I/O that
1222  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1223  *	perform necessary setup and returns 1 to indicate the device is set up
1224  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1225  *
1226  * int (*ndo_fcoe_ddp_done)(struct net_device *dev,  u16 xid);
1227  *	Called when the FCoE Initiator/Target is done with the DDPed I/O as
1228  *	indicated by the FC exchange id 'xid', so the underlying device can
1229  *	clean up and reuse resources for later DDP requests.
1230  *
1231  * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1232  *			      struct scatterlist *sgl, unsigned int sgc);
1233  *	Called when the FCoE Target wants to initialize an I/O that
1234  *	is a possible candidate for Direct Data Placement (DDP). The LLD can
1235  *	perform necessary setup and returns 1 to indicate the device is set up
1236  *	successfully to perform DDP on this I/O, otherwise this returns 0.
1237  *
1238  * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1239  *			       struct netdev_fcoe_hbainfo *hbainfo);
1240  *	Called when the FCoE Protocol stack wants information on the underlying
1241  *	device. This information is utilized by the FCoE protocol stack to
1242  *	register attributes with Fiber Channel management service as per the
1243  *	FC-GS Fabric Device Management Information(FDMI) specification.
1244  *
1245  * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1246  *	Called when the underlying device wants to override default World Wide
1247  *	Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1248  *	World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1249  *	protocol stack to use.
1250  *
1251  *	RFS acceleration.
1252  * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1253  *			    u16 rxq_index, u32 flow_id);
1254  *	Set hardware filter for RFS.  rxq_index is the target queue index;
1255  *	flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1256  *	Return the filter ID on success, or a negative error code.
1257  *
1258  *	Slave management functions (for bridge, bonding, etc).
1259  * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1260  *	Called to make another netdev an underling.
1261  *
1262  * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1263  *	Called to release previously enslaved netdev.
1264  *
1265  * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1266  *					    struct sk_buff *skb,
1267  *					    bool all_slaves);
1268  *	Get the xmit slave of master device. If all_slaves is true, function
1269  *	assume all the slaves can transmit.
1270  *
1271  *      Feature/offload setting functions.
1272  * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1273  *		netdev_features_t features);
1274  *	Adjusts the requested feature flags according to device-specific
1275  *	constraints, and returns the resulting flags. Must not modify
1276  *	the device state.
1277  *
1278  * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1279  *	Called to update device configuration to new features. Passed
1280  *	feature set might be less than what was returned by ndo_fix_features()).
1281  *	Must return >0 or -errno if it changed dev->features itself.
1282  *
1283  * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1284  *		      struct net_device *dev,
1285  *		      const unsigned char *addr, u16 vid, u16 flags,
1286  *		      struct netlink_ext_ack *extack);
1287  *	Adds an FDB entry to dev for addr.
1288  * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1289  *		      struct net_device *dev,
1290  *		      const unsigned char *addr, u16 vid)
1291  *	Deletes the FDB entry from dev coresponding to addr.
1292  * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1293  *			   struct net_device *dev,
1294  *			   u16 vid,
1295  *			   struct netlink_ext_ack *extack);
1296  * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1297  *		       struct net_device *dev, struct net_device *filter_dev,
1298  *		       int *idx)
1299  *	Used to add FDB entries to dump requests. Implementers should add
1300  *	entries to skb and update idx with the number of entries.
1301  *
1302  * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1303  *			     u16 flags, struct netlink_ext_ack *extack)
1304  * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1305  *			     struct net_device *dev, u32 filter_mask,
1306  *			     int nlflags)
1307  * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1308  *			     u16 flags);
1309  *
1310  * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1311  *	Called to change device carrier. Soft-devices (like dummy, team, etc)
1312  *	which do not represent real hardware may define this to allow their
1313  *	userspace components to manage their virtual carrier state. Devices
1314  *	that determine carrier state from physical hardware properties (eg
1315  *	network cables) or protocol-dependent mechanisms (eg
1316  *	USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1317  *
1318  * int (*ndo_get_phys_port_id)(struct net_device *dev,
1319  *			       struct netdev_phys_item_id *ppid);
1320  *	Called to get ID of physical port of this device. If driver does
1321  *	not implement this, it is assumed that the hw is not able to have
1322  *	multiple net devices on single physical port.
1323  *
1324  * int (*ndo_get_port_parent_id)(struct net_device *dev,
1325  *				 struct netdev_phys_item_id *ppid)
1326  *	Called to get the parent ID of the physical port of this device.
1327  *
1328  * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1329  *				 struct net_device *dev)
1330  *	Called by upper layer devices to accelerate switching or other
1331  *	station functionality into hardware. 'pdev is the lowerdev
1332  *	to use for the offload and 'dev' is the net device that will
1333  *	back the offload. Returns a pointer to the private structure
1334  *	the upper layer will maintain.
1335  * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1336  *	Called by upper layer device to delete the station created
1337  *	by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1338  *	the station and priv is the structure returned by the add
1339  *	operation.
1340  * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1341  *			     int queue_index, u32 maxrate);
1342  *	Called when a user wants to set a max-rate limitation of specific
1343  *	TX queue.
1344  * int (*ndo_get_iflink)(const struct net_device *dev);
1345  *	Called to get the iflink value of this device.
1346  * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1347  *	This function is used to get egress tunnel information for given skb.
1348  *	This is useful for retrieving outer tunnel header parameters while
1349  *	sampling packet.
1350  * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1351  *	This function is used to specify the headroom that the skb must
1352  *	consider when allocation skb during packet reception. Setting
1353  *	appropriate rx headroom value allows avoiding skb head copy on
1354  *	forward. Setting a negative value resets the rx headroom to the
1355  *	default value.
1356  * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1357  *	This function is used to set or query state related to XDP on the
1358  *	netdevice and manage BPF offload. See definition of
1359  *	enum bpf_netdev_command for details.
1360  * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1361  *			u32 flags);
1362  *	This function is used to submit @n XDP packets for transmit on a
1363  *	netdevice. Returns number of frames successfully transmitted, frames
1364  *	that got dropped are freed/returned via xdp_return_frame().
1365  *	Returns negative number, means general error invoking ndo, meaning
1366  *	no frames were xmit'ed and core-caller will free all frames.
1367  * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1368  *					        struct xdp_buff *xdp);
1369  *      Get the xmit slave of master device based on the xdp_buff.
1370  * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1371  *      This function is used to wake up the softirq, ksoftirqd or kthread
1372  *	responsible for sending and/or receiving packets on a specific
1373  *	queue id bound to an AF_XDP socket. The flags field specifies if
1374  *	only RX, only Tx, or both should be woken up using the flags
1375  *	XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1376  * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1377  *	Get devlink port instance associated with a given netdev.
1378  *	Called with a reference on the netdevice and devlink locks only,
1379  *	rtnl_lock is not held.
1380  * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1381  *			 int cmd);
1382  *	Add, change, delete or get information on an IPv4 tunnel.
1383  * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1384  *	If a device is paired with a peer device, return the peer instance.
1385  *	The caller must be under RCU read context.
1386  * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1387  *     Get the forwarding path to reach the real device from the HW destination address
1388  * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1389  *			     const struct skb_shared_hwtstamps *hwtstamps,
1390  *			     bool cycles);
1391  *	Get hardware timestamp based on normal/adjustable time or free running
1392  *	cycle counter. This function is required if physical clock supports a
1393  *	free running cycle counter.
1394  */
1395 struct net_device_ops {
1396 	int			(*ndo_init)(struct net_device *dev);
1397 	void			(*ndo_uninit)(struct net_device *dev);
1398 	int			(*ndo_open)(struct net_device *dev);
1399 	int			(*ndo_stop)(struct net_device *dev);
1400 	netdev_tx_t		(*ndo_start_xmit)(struct sk_buff *skb,
1401 						  struct net_device *dev);
1402 	netdev_features_t	(*ndo_features_check)(struct sk_buff *skb,
1403 						      struct net_device *dev,
1404 						      netdev_features_t features);
1405 	u16			(*ndo_select_queue)(struct net_device *dev,
1406 						    struct sk_buff *skb,
1407 						    struct net_device *sb_dev);
1408 	void			(*ndo_change_rx_flags)(struct net_device *dev,
1409 						       int flags);
1410 	void			(*ndo_set_rx_mode)(struct net_device *dev);
1411 	int			(*ndo_set_mac_address)(struct net_device *dev,
1412 						       void *addr);
1413 	int			(*ndo_validate_addr)(struct net_device *dev);
1414 	int			(*ndo_do_ioctl)(struct net_device *dev,
1415 					        struct ifreq *ifr, int cmd);
1416 	int			(*ndo_eth_ioctl)(struct net_device *dev,
1417 						 struct ifreq *ifr, int cmd);
1418 	int			(*ndo_siocbond)(struct net_device *dev,
1419 						struct ifreq *ifr, int cmd);
1420 	int			(*ndo_siocwandev)(struct net_device *dev,
1421 						  struct if_settings *ifs);
1422 	int			(*ndo_siocdevprivate)(struct net_device *dev,
1423 						      struct ifreq *ifr,
1424 						      void __user *data, int cmd);
1425 	int			(*ndo_set_config)(struct net_device *dev,
1426 					          struct ifmap *map);
1427 	int			(*ndo_change_mtu)(struct net_device *dev,
1428 						  int new_mtu);
1429 	int			(*ndo_neigh_setup)(struct net_device *dev,
1430 						   struct neigh_parms *);
1431 	void			(*ndo_tx_timeout) (struct net_device *dev,
1432 						   unsigned int txqueue);
1433 
1434 	void			(*ndo_get_stats64)(struct net_device *dev,
1435 						   struct rtnl_link_stats64 *storage);
1436 	bool			(*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1437 	int			(*ndo_get_offload_stats)(int attr_id,
1438 							 const struct net_device *dev,
1439 							 void *attr_data);
1440 	struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1441 
1442 	int			(*ndo_vlan_rx_add_vid)(struct net_device *dev,
1443 						       __be16 proto, u16 vid);
1444 	int			(*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1445 						        __be16 proto, u16 vid);
1446 #ifdef CONFIG_NET_POLL_CONTROLLER
1447 	void                    (*ndo_poll_controller)(struct net_device *dev);
1448 	int			(*ndo_netpoll_setup)(struct net_device *dev,
1449 						     struct netpoll_info *info);
1450 	void			(*ndo_netpoll_cleanup)(struct net_device *dev);
1451 #endif
1452 	int			(*ndo_set_vf_mac)(struct net_device *dev,
1453 						  int queue, u8 *mac);
1454 	int			(*ndo_set_vf_vlan)(struct net_device *dev,
1455 						   int queue, u16 vlan,
1456 						   u8 qos, __be16 proto);
1457 	int			(*ndo_set_vf_rate)(struct net_device *dev,
1458 						   int vf, int min_tx_rate,
1459 						   int max_tx_rate);
1460 	int			(*ndo_set_vf_spoofchk)(struct net_device *dev,
1461 						       int vf, bool setting);
1462 	int			(*ndo_set_vf_trust)(struct net_device *dev,
1463 						    int vf, bool setting);
1464 	int			(*ndo_get_vf_config)(struct net_device *dev,
1465 						     int vf,
1466 						     struct ifla_vf_info *ivf);
1467 	int			(*ndo_set_vf_link_state)(struct net_device *dev,
1468 							 int vf, int link_state);
1469 	int			(*ndo_get_vf_stats)(struct net_device *dev,
1470 						    int vf,
1471 						    struct ifla_vf_stats
1472 						    *vf_stats);
1473 	int			(*ndo_set_vf_port)(struct net_device *dev,
1474 						   int vf,
1475 						   struct nlattr *port[]);
1476 	int			(*ndo_get_vf_port)(struct net_device *dev,
1477 						   int vf, struct sk_buff *skb);
1478 	int			(*ndo_get_vf_guid)(struct net_device *dev,
1479 						   int vf,
1480 						   struct ifla_vf_guid *node_guid,
1481 						   struct ifla_vf_guid *port_guid);
1482 	int			(*ndo_set_vf_guid)(struct net_device *dev,
1483 						   int vf, u64 guid,
1484 						   int guid_type);
1485 	int			(*ndo_set_vf_rss_query_en)(
1486 						   struct net_device *dev,
1487 						   int vf, bool setting);
1488 	int			(*ndo_setup_tc)(struct net_device *dev,
1489 						enum tc_setup_type type,
1490 						void *type_data);
1491 #if IS_ENABLED(CONFIG_FCOE)
1492 	int			(*ndo_fcoe_enable)(struct net_device *dev);
1493 	int			(*ndo_fcoe_disable)(struct net_device *dev);
1494 	int			(*ndo_fcoe_ddp_setup)(struct net_device *dev,
1495 						      u16 xid,
1496 						      struct scatterlist *sgl,
1497 						      unsigned int sgc);
1498 	int			(*ndo_fcoe_ddp_done)(struct net_device *dev,
1499 						     u16 xid);
1500 	int			(*ndo_fcoe_ddp_target)(struct net_device *dev,
1501 						       u16 xid,
1502 						       struct scatterlist *sgl,
1503 						       unsigned int sgc);
1504 	int			(*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1505 							struct netdev_fcoe_hbainfo *hbainfo);
1506 #endif
1507 
1508 #if IS_ENABLED(CONFIG_LIBFCOE)
1509 #define NETDEV_FCOE_WWNN 0
1510 #define NETDEV_FCOE_WWPN 1
1511 	int			(*ndo_fcoe_get_wwn)(struct net_device *dev,
1512 						    u64 *wwn, int type);
1513 #endif
1514 
1515 #ifdef CONFIG_RFS_ACCEL
1516 	int			(*ndo_rx_flow_steer)(struct net_device *dev,
1517 						     const struct sk_buff *skb,
1518 						     u16 rxq_index,
1519 						     u32 flow_id);
1520 #endif
1521 	int			(*ndo_add_slave)(struct net_device *dev,
1522 						 struct net_device *slave_dev,
1523 						 struct netlink_ext_ack *extack);
1524 	int			(*ndo_del_slave)(struct net_device *dev,
1525 						 struct net_device *slave_dev);
1526 	struct net_device*	(*ndo_get_xmit_slave)(struct net_device *dev,
1527 						      struct sk_buff *skb,
1528 						      bool all_slaves);
1529 	struct net_device*	(*ndo_sk_get_lower_dev)(struct net_device *dev,
1530 							struct sock *sk);
1531 	netdev_features_t	(*ndo_fix_features)(struct net_device *dev,
1532 						    netdev_features_t features);
1533 	int			(*ndo_set_features)(struct net_device *dev,
1534 						    netdev_features_t features);
1535 	int			(*ndo_neigh_construct)(struct net_device *dev,
1536 						       struct neighbour *n);
1537 	void			(*ndo_neigh_destroy)(struct net_device *dev,
1538 						     struct neighbour *n);
1539 
1540 	int			(*ndo_fdb_add)(struct ndmsg *ndm,
1541 					       struct nlattr *tb[],
1542 					       struct net_device *dev,
1543 					       const unsigned char *addr,
1544 					       u16 vid,
1545 					       u16 flags,
1546 					       struct netlink_ext_ack *extack);
1547 	int			(*ndo_fdb_del)(struct ndmsg *ndm,
1548 					       struct nlattr *tb[],
1549 					       struct net_device *dev,
1550 					       const unsigned char *addr,
1551 					       u16 vid, struct netlink_ext_ack *extack);
1552 	int			(*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1553 						    struct nlattr *tb[],
1554 						    struct net_device *dev,
1555 						    u16 vid,
1556 						    struct netlink_ext_ack *extack);
1557 	int			(*ndo_fdb_dump)(struct sk_buff *skb,
1558 						struct netlink_callback *cb,
1559 						struct net_device *dev,
1560 						struct net_device *filter_dev,
1561 						int *idx);
1562 	int			(*ndo_fdb_get)(struct sk_buff *skb,
1563 					       struct nlattr *tb[],
1564 					       struct net_device *dev,
1565 					       const unsigned char *addr,
1566 					       u16 vid, u32 portid, u32 seq,
1567 					       struct netlink_ext_ack *extack);
1568 	int			(*ndo_bridge_setlink)(struct net_device *dev,
1569 						      struct nlmsghdr *nlh,
1570 						      u16 flags,
1571 						      struct netlink_ext_ack *extack);
1572 	int			(*ndo_bridge_getlink)(struct sk_buff *skb,
1573 						      u32 pid, u32 seq,
1574 						      struct net_device *dev,
1575 						      u32 filter_mask,
1576 						      int nlflags);
1577 	int			(*ndo_bridge_dellink)(struct net_device *dev,
1578 						      struct nlmsghdr *nlh,
1579 						      u16 flags);
1580 	int			(*ndo_change_carrier)(struct net_device *dev,
1581 						      bool new_carrier);
1582 	int			(*ndo_get_phys_port_id)(struct net_device *dev,
1583 							struct netdev_phys_item_id *ppid);
1584 	int			(*ndo_get_port_parent_id)(struct net_device *dev,
1585 							  struct netdev_phys_item_id *ppid);
1586 	int			(*ndo_get_phys_port_name)(struct net_device *dev,
1587 							  char *name, size_t len);
1588 	void*			(*ndo_dfwd_add_station)(struct net_device *pdev,
1589 							struct net_device *dev);
1590 	void			(*ndo_dfwd_del_station)(struct net_device *pdev,
1591 							void *priv);
1592 
1593 	int			(*ndo_set_tx_maxrate)(struct net_device *dev,
1594 						      int queue_index,
1595 						      u32 maxrate);
1596 	int			(*ndo_get_iflink)(const struct net_device *dev);
1597 	int			(*ndo_fill_metadata_dst)(struct net_device *dev,
1598 						       struct sk_buff *skb);
1599 	void			(*ndo_set_rx_headroom)(struct net_device *dev,
1600 						       int needed_headroom);
1601 	int			(*ndo_bpf)(struct net_device *dev,
1602 					   struct netdev_bpf *bpf);
1603 	int			(*ndo_xdp_xmit)(struct net_device *dev, int n,
1604 						struct xdp_frame **xdp,
1605 						u32 flags);
1606 	struct net_device *	(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1607 							  struct xdp_buff *xdp);
1608 	int			(*ndo_xsk_wakeup)(struct net_device *dev,
1609 						  u32 queue_id, u32 flags);
1610 	struct devlink_port *	(*ndo_get_devlink_port)(struct net_device *dev);
1611 	int			(*ndo_tunnel_ctl)(struct net_device *dev,
1612 						  struct ip_tunnel_parm *p, int cmd);
1613 	struct net_device *	(*ndo_get_peer_dev)(struct net_device *dev);
1614 	int                     (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1615                                                          struct net_device_path *path);
1616 	ktime_t			(*ndo_get_tstamp)(struct net_device *dev,
1617 						  const struct skb_shared_hwtstamps *hwtstamps,
1618 						  bool cycles);
1619 };
1620 
1621 /**
1622  * enum netdev_priv_flags - &struct net_device priv_flags
1623  *
1624  * These are the &struct net_device, they are only set internally
1625  * by drivers and used in the kernel. These flags are invisible to
1626  * userspace; this means that the order of these flags can change
1627  * during any kernel release.
1628  *
1629  * You should have a pretty good reason to be extending these flags.
1630  *
1631  * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1632  * @IFF_EBRIDGE: Ethernet bridging device
1633  * @IFF_BONDING: bonding master or slave
1634  * @IFF_ISATAP: ISATAP interface (RFC4214)
1635  * @IFF_WAN_HDLC: WAN HDLC device
1636  * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1637  *	release skb->dst
1638  * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1639  * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1640  * @IFF_MACVLAN_PORT: device used as macvlan port
1641  * @IFF_BRIDGE_PORT: device used as bridge port
1642  * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1643  * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1644  * @IFF_UNICAST_FLT: Supports unicast filtering
1645  * @IFF_TEAM_PORT: device used as team port
1646  * @IFF_SUPP_NOFCS: device supports sending custom FCS
1647  * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1648  *	change when it's running
1649  * @IFF_MACVLAN: Macvlan device
1650  * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1651  *	underlying stacked devices
1652  * @IFF_L3MDEV_MASTER: device is an L3 master device
1653  * @IFF_NO_QUEUE: device can run without qdisc attached
1654  * @IFF_OPENVSWITCH: device is a Open vSwitch master
1655  * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1656  * @IFF_TEAM: device is a team device
1657  * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1658  * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1659  *	entity (i.e. the master device for bridged veth)
1660  * @IFF_MACSEC: device is a MACsec device
1661  * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1662  * @IFF_FAILOVER: device is a failover master device
1663  * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1664  * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1665  * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1666  * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1667  *	skb_headlen(skb) == 0 (data starts from frag0)
1668  * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1669  */
1670 enum netdev_priv_flags {
1671 	IFF_802_1Q_VLAN			= 1<<0,
1672 	IFF_EBRIDGE			= 1<<1,
1673 	IFF_BONDING			= 1<<2,
1674 	IFF_ISATAP			= 1<<3,
1675 	IFF_WAN_HDLC			= 1<<4,
1676 	IFF_XMIT_DST_RELEASE		= 1<<5,
1677 	IFF_DONT_BRIDGE			= 1<<6,
1678 	IFF_DISABLE_NETPOLL		= 1<<7,
1679 	IFF_MACVLAN_PORT		= 1<<8,
1680 	IFF_BRIDGE_PORT			= 1<<9,
1681 	IFF_OVS_DATAPATH		= 1<<10,
1682 	IFF_TX_SKB_SHARING		= 1<<11,
1683 	IFF_UNICAST_FLT			= 1<<12,
1684 	IFF_TEAM_PORT			= 1<<13,
1685 	IFF_SUPP_NOFCS			= 1<<14,
1686 	IFF_LIVE_ADDR_CHANGE		= 1<<15,
1687 	IFF_MACVLAN			= 1<<16,
1688 	IFF_XMIT_DST_RELEASE_PERM	= 1<<17,
1689 	IFF_L3MDEV_MASTER		= 1<<18,
1690 	IFF_NO_QUEUE			= 1<<19,
1691 	IFF_OPENVSWITCH			= 1<<20,
1692 	IFF_L3MDEV_SLAVE		= 1<<21,
1693 	IFF_TEAM			= 1<<22,
1694 	IFF_RXFH_CONFIGURED		= 1<<23,
1695 	IFF_PHONY_HEADROOM		= 1<<24,
1696 	IFF_MACSEC			= 1<<25,
1697 	IFF_NO_RX_HANDLER		= 1<<26,
1698 	IFF_FAILOVER			= 1<<27,
1699 	IFF_FAILOVER_SLAVE		= 1<<28,
1700 	IFF_L3MDEV_RX_HANDLER		= 1<<29,
1701 	IFF_LIVE_RENAME_OK		= 1<<30,
1702 	IFF_TX_SKB_NO_LINEAR		= BIT_ULL(31),
1703 	IFF_CHANGE_PROTO_DOWN		= BIT_ULL(32),
1704 };
1705 
1706 #define IFF_802_1Q_VLAN			IFF_802_1Q_VLAN
1707 #define IFF_EBRIDGE			IFF_EBRIDGE
1708 #define IFF_BONDING			IFF_BONDING
1709 #define IFF_ISATAP			IFF_ISATAP
1710 #define IFF_WAN_HDLC			IFF_WAN_HDLC
1711 #define IFF_XMIT_DST_RELEASE		IFF_XMIT_DST_RELEASE
1712 #define IFF_DONT_BRIDGE			IFF_DONT_BRIDGE
1713 #define IFF_DISABLE_NETPOLL		IFF_DISABLE_NETPOLL
1714 #define IFF_MACVLAN_PORT		IFF_MACVLAN_PORT
1715 #define IFF_BRIDGE_PORT			IFF_BRIDGE_PORT
1716 #define IFF_OVS_DATAPATH		IFF_OVS_DATAPATH
1717 #define IFF_TX_SKB_SHARING		IFF_TX_SKB_SHARING
1718 #define IFF_UNICAST_FLT			IFF_UNICAST_FLT
1719 #define IFF_TEAM_PORT			IFF_TEAM_PORT
1720 #define IFF_SUPP_NOFCS			IFF_SUPP_NOFCS
1721 #define IFF_LIVE_ADDR_CHANGE		IFF_LIVE_ADDR_CHANGE
1722 #define IFF_MACVLAN			IFF_MACVLAN
1723 #define IFF_XMIT_DST_RELEASE_PERM	IFF_XMIT_DST_RELEASE_PERM
1724 #define IFF_L3MDEV_MASTER		IFF_L3MDEV_MASTER
1725 #define IFF_NO_QUEUE			IFF_NO_QUEUE
1726 #define IFF_OPENVSWITCH			IFF_OPENVSWITCH
1727 #define IFF_L3MDEV_SLAVE		IFF_L3MDEV_SLAVE
1728 #define IFF_TEAM			IFF_TEAM
1729 #define IFF_RXFH_CONFIGURED		IFF_RXFH_CONFIGURED
1730 #define IFF_PHONY_HEADROOM		IFF_PHONY_HEADROOM
1731 #define IFF_MACSEC			IFF_MACSEC
1732 #define IFF_NO_RX_HANDLER		IFF_NO_RX_HANDLER
1733 #define IFF_FAILOVER			IFF_FAILOVER
1734 #define IFF_FAILOVER_SLAVE		IFF_FAILOVER_SLAVE
1735 #define IFF_L3MDEV_RX_HANDLER		IFF_L3MDEV_RX_HANDLER
1736 #define IFF_LIVE_RENAME_OK		IFF_LIVE_RENAME_OK
1737 #define IFF_TX_SKB_NO_LINEAR		IFF_TX_SKB_NO_LINEAR
1738 
1739 /* Specifies the type of the struct net_device::ml_priv pointer */
1740 enum netdev_ml_priv_type {
1741 	ML_PRIV_NONE,
1742 	ML_PRIV_CAN,
1743 };
1744 
1745 /**
1746  *	struct net_device - The DEVICE structure.
1747  *
1748  *	Actually, this whole structure is a big mistake.  It mixes I/O
1749  *	data with strictly "high-level" data, and it has to know about
1750  *	almost every data structure used in the INET module.
1751  *
1752  *	@name:	This is the first field of the "visible" part of this structure
1753  *		(i.e. as seen by users in the "Space.c" file).  It is the name
1754  *		of the interface.
1755  *
1756  *	@name_node:	Name hashlist node
1757  *	@ifalias:	SNMP alias
1758  *	@mem_end:	Shared memory end
1759  *	@mem_start:	Shared memory start
1760  *	@base_addr:	Device I/O address
1761  *	@irq:		Device IRQ number
1762  *
1763  *	@state:		Generic network queuing layer state, see netdev_state_t
1764  *	@dev_list:	The global list of network devices
1765  *	@napi_list:	List entry used for polling NAPI devices
1766  *	@unreg_list:	List entry  when we are unregistering the
1767  *			device; see the function unregister_netdev
1768  *	@close_list:	List entry used when we are closing the device
1769  *	@ptype_all:     Device-specific packet handlers for all protocols
1770  *	@ptype_specific: Device-specific, protocol-specific packet handlers
1771  *
1772  *	@adj_list:	Directly linked devices, like slaves for bonding
1773  *	@features:	Currently active device features
1774  *	@hw_features:	User-changeable features
1775  *
1776  *	@wanted_features:	User-requested features
1777  *	@vlan_features:		Mask of features inheritable by VLAN devices
1778  *
1779  *	@hw_enc_features:	Mask of features inherited by encapsulating devices
1780  *				This field indicates what encapsulation
1781  *				offloads the hardware is capable of doing,
1782  *				and drivers will need to set them appropriately.
1783  *
1784  *	@mpls_features:	Mask of features inheritable by MPLS
1785  *	@gso_partial_features: value(s) from NETIF_F_GSO\*
1786  *
1787  *	@ifindex:	interface index
1788  *	@group:		The group the device belongs to
1789  *
1790  *	@stats:		Statistics struct, which was left as a legacy, use
1791  *			rtnl_link_stats64 instead
1792  *
1793  *	@core_stats:	core networking counters,
1794  *			do not use this in drivers
1795  *	@carrier_up_count:	Number of times the carrier has been up
1796  *	@carrier_down_count:	Number of times the carrier has been down
1797  *
1798  *	@wireless_handlers:	List of functions to handle Wireless Extensions,
1799  *				instead of ioctl,
1800  *				see <net/iw_handler.h> for details.
1801  *	@wireless_data:	Instance data managed by the core of wireless extensions
1802  *
1803  *	@netdev_ops:	Includes several pointers to callbacks,
1804  *			if one wants to override the ndo_*() functions
1805  *	@ethtool_ops:	Management operations
1806  *	@l3mdev_ops:	Layer 3 master device operations
1807  *	@ndisc_ops:	Includes callbacks for different IPv6 neighbour
1808  *			discovery handling. Necessary for e.g. 6LoWPAN.
1809  *	@xfrmdev_ops:	Transformation offload operations
1810  *	@tlsdev_ops:	Transport Layer Security offload operations
1811  *	@header_ops:	Includes callbacks for creating,parsing,caching,etc
1812  *			of Layer 2 headers.
1813  *
1814  *	@flags:		Interface flags (a la BSD)
1815  *	@priv_flags:	Like 'flags' but invisible to userspace,
1816  *			see if.h for the definitions
1817  *	@gflags:	Global flags ( kept as legacy )
1818  *	@padded:	How much padding added by alloc_netdev()
1819  *	@operstate:	RFC2863 operstate
1820  *	@link_mode:	Mapping policy to operstate
1821  *	@if_port:	Selectable AUI, TP, ...
1822  *	@dma:		DMA channel
1823  *	@mtu:		Interface MTU value
1824  *	@min_mtu:	Interface Minimum MTU value
1825  *	@max_mtu:	Interface Maximum MTU value
1826  *	@type:		Interface hardware type
1827  *	@hard_header_len: Maximum hardware header length.
1828  *	@min_header_len:  Minimum hardware header length
1829  *
1830  *	@needed_headroom: Extra headroom the hardware may need, but not in all
1831  *			  cases can this be guaranteed
1832  *	@needed_tailroom: Extra tailroom the hardware may need, but not in all
1833  *			  cases can this be guaranteed. Some cases also use
1834  *			  LL_MAX_HEADER instead to allocate the skb
1835  *
1836  *	interface address info:
1837  *
1838  * 	@perm_addr:		Permanent hw address
1839  * 	@addr_assign_type:	Hw address assignment type
1840  * 	@addr_len:		Hardware address length
1841  *	@upper_level:		Maximum depth level of upper devices.
1842  *	@lower_level:		Maximum depth level of lower devices.
1843  *	@neigh_priv_len:	Used in neigh_alloc()
1844  * 	@dev_id:		Used to differentiate devices that share
1845  * 				the same link layer address
1846  * 	@dev_port:		Used to differentiate devices that share
1847  * 				the same function
1848  *	@addr_list_lock:	XXX: need comments on this one
1849  *	@name_assign_type:	network interface name assignment type
1850  *	@uc_promisc:		Counter that indicates promiscuous mode
1851  *				has been enabled due to the need to listen to
1852  *				additional unicast addresses in a device that
1853  *				does not implement ndo_set_rx_mode()
1854  *	@uc:			unicast mac addresses
1855  *	@mc:			multicast mac addresses
1856  *	@dev_addrs:		list of device hw addresses
1857  *	@queues_kset:		Group of all Kobjects in the Tx and RX queues
1858  *	@promiscuity:		Number of times the NIC is told to work in
1859  *				promiscuous mode; if it becomes 0 the NIC will
1860  *				exit promiscuous mode
1861  *	@allmulti:		Counter, enables or disables allmulticast mode
1862  *
1863  *	@vlan_info:	VLAN info
1864  *	@dsa_ptr:	dsa specific data
1865  *	@tipc_ptr:	TIPC specific data
1866  *	@atalk_ptr:	AppleTalk link
1867  *	@ip_ptr:	IPv4 specific data
1868  *	@ip6_ptr:	IPv6 specific data
1869  *	@ax25_ptr:	AX.25 specific data
1870  *	@ieee80211_ptr:	IEEE 802.11 specific data, assign before registering
1871  *	@ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1872  *			 device struct
1873  *	@mpls_ptr:	mpls_dev struct pointer
1874  *	@mctp_ptr:	MCTP specific data
1875  *
1876  *	@dev_addr:	Hw address (before bcast,
1877  *			because most packets are unicast)
1878  *
1879  *	@_rx:			Array of RX queues
1880  *	@num_rx_queues:		Number of RX queues
1881  *				allocated at register_netdev() time
1882  *	@real_num_rx_queues: 	Number of RX queues currently active in device
1883  *	@xdp_prog:		XDP sockets filter program pointer
1884  *	@gro_flush_timeout:	timeout for GRO layer in NAPI
1885  *	@napi_defer_hard_irqs:	If not zero, provides a counter that would
1886  *				allow to avoid NIC hard IRQ, on busy queues.
1887  *
1888  *	@rx_handler:		handler for received packets
1889  *	@rx_handler_data: 	XXX: need comments on this one
1890  *	@miniq_ingress:		ingress/clsact qdisc specific data for
1891  *				ingress processing
1892  *	@ingress_queue:		XXX: need comments on this one
1893  *	@nf_hooks_ingress:	netfilter hooks executed for ingress packets
1894  *	@broadcast:		hw bcast address
1895  *
1896  *	@rx_cpu_rmap:	CPU reverse-mapping for RX completion interrupts,
1897  *			indexed by RX queue number. Assigned by driver.
1898  *			This must only be set if the ndo_rx_flow_steer
1899  *			operation is defined
1900  *	@index_hlist:		Device index hash chain
1901  *
1902  *	@_tx:			Array of TX queues
1903  *	@num_tx_queues:		Number of TX queues allocated at alloc_netdev_mq() time
1904  *	@real_num_tx_queues: 	Number of TX queues currently active in device
1905  *	@qdisc:			Root qdisc from userspace point of view
1906  *	@tx_queue_len:		Max frames per queue allowed
1907  *	@tx_global_lock: 	XXX: need comments on this one
1908  *	@xdp_bulkq:		XDP device bulk queue
1909  *	@xps_maps:		all CPUs/RXQs maps for XPS device
1910  *
1911  *	@xps_maps:	XXX: need comments on this one
1912  *	@miniq_egress:		clsact qdisc specific data for
1913  *				egress processing
1914  *	@nf_hooks_egress:	netfilter hooks executed for egress packets
1915  *	@qdisc_hash:		qdisc hash table
1916  *	@watchdog_timeo:	Represents the timeout that is used by
1917  *				the watchdog (see dev_watchdog())
1918  *	@watchdog_timer:	List of timers
1919  *
1920  *	@proto_down_reason:	reason a netdev interface is held down
1921  *	@pcpu_refcnt:		Number of references to this device
1922  *	@dev_refcnt:		Number of references to this device
1923  *	@refcnt_tracker:	Tracker directory for tracked references to this device
1924  *	@todo_list:		Delayed register/unregister
1925  *	@link_watch_list:	XXX: need comments on this one
1926  *
1927  *	@reg_state:		Register/unregister state machine
1928  *	@dismantle:		Device is going to be freed
1929  *	@rtnl_link_state:	This enum represents the phases of creating
1930  *				a new link
1931  *
1932  *	@needs_free_netdev:	Should unregister perform free_netdev?
1933  *	@priv_destructor:	Called from unregister
1934  *	@npinfo:		XXX: need comments on this one
1935  * 	@nd_net:		Network namespace this network device is inside
1936  *
1937  * 	@ml_priv:	Mid-layer private
1938  *	@ml_priv_type:  Mid-layer private type
1939  * 	@lstats:	Loopback statistics
1940  * 	@tstats:	Tunnel statistics
1941  * 	@dstats:	Dummy statistics
1942  * 	@vstats:	Virtual ethernet statistics
1943  *
1944  *	@garp_port:	GARP
1945  *	@mrp_port:	MRP
1946  *
1947  *	@dm_private:	Drop monitor private
1948  *
1949  *	@dev:		Class/net/name entry
1950  *	@sysfs_groups:	Space for optional device, statistics and wireless
1951  *			sysfs groups
1952  *
1953  *	@sysfs_rx_queue_group:	Space for optional per-rx queue attributes
1954  *	@rtnl_link_ops:	Rtnl_link_ops
1955  *
1956  *	@gso_max_size:	Maximum size of generic segmentation offload
1957  *	@tso_max_size:	Device (as in HW) limit on the max TSO request size
1958  *	@gso_max_segs:	Maximum number of segments that can be passed to the
1959  *			NIC for GSO
1960  *	@tso_max_segs:	Device (as in HW) limit on the max TSO segment count
1961  *
1962  *	@dcbnl_ops:	Data Center Bridging netlink ops
1963  *	@num_tc:	Number of traffic classes in the net device
1964  *	@tc_to_txq:	XXX: need comments on this one
1965  *	@prio_tc_map:	XXX: need comments on this one
1966  *
1967  *	@fcoe_ddp_xid:	Max exchange id for FCoE LRO by ddp
1968  *
1969  *	@priomap:	XXX: need comments on this one
1970  *	@phydev:	Physical device may attach itself
1971  *			for hardware timestamping
1972  *	@sfp_bus:	attached &struct sfp_bus structure.
1973  *
1974  *	@qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1975  *
1976  *	@proto_down:	protocol port state information can be sent to the
1977  *			switch driver and used to set the phys state of the
1978  *			switch port.
1979  *
1980  *	@wol_enabled:	Wake-on-LAN is enabled
1981  *
1982  *	@threaded:	napi threaded mode is enabled
1983  *
1984  *	@net_notifier_list:	List of per-net netdev notifier block
1985  *				that follow this device when it is moved
1986  *				to another network namespace.
1987  *
1988  *	@macsec_ops:    MACsec offloading ops
1989  *
1990  *	@udp_tunnel_nic_info:	static structure describing the UDP tunnel
1991  *				offload capabilities of the device
1992  *	@udp_tunnel_nic:	UDP tunnel offload state
1993  *	@xdp_state:		stores info on attached XDP BPF programs
1994  *
1995  *	@nested_level:	Used as a parameter of spin_lock_nested() of
1996  *			dev->addr_list_lock.
1997  *	@unlink_list:	As netif_addr_lock() can be called recursively,
1998  *			keep a list of interfaces to be deleted.
1999  *	@gro_max_size:	Maximum size of aggregated packet in generic
2000  *			receive offload (GRO)
2001  *
2002  *	@dev_addr_shadow:	Copy of @dev_addr to catch direct writes.
2003  *	@linkwatch_dev_tracker:	refcount tracker used by linkwatch.
2004  *	@watchdog_dev_tracker:	refcount tracker used by watchdog.
2005  *	@dev_registered_tracker:	tracker for reference held while
2006  *					registered
2007  *	@offload_xstats_l3:	L3 HW stats for this netdevice.
2008  *
2009  *	FIXME: cleanup struct net_device such that network protocol info
2010  *	moves out.
2011  */
2012 
2013 struct net_device {
2014 	char			name[IFNAMSIZ];
2015 	struct netdev_name_node	*name_node;
2016 	struct dev_ifalias	__rcu *ifalias;
2017 	/*
2018 	 *	I/O specific fields
2019 	 *	FIXME: Merge these and struct ifmap into one
2020 	 */
2021 	unsigned long		mem_end;
2022 	unsigned long		mem_start;
2023 	unsigned long		base_addr;
2024 
2025 	/*
2026 	 *	Some hardware also needs these fields (state,dev_list,
2027 	 *	napi_list,unreg_list,close_list) but they are not
2028 	 *	part of the usual set specified in Space.c.
2029 	 */
2030 
2031 	unsigned long		state;
2032 
2033 	struct list_head	dev_list;
2034 	struct list_head	napi_list;
2035 	struct list_head	unreg_list;
2036 	struct list_head	close_list;
2037 	struct list_head	ptype_all;
2038 	struct list_head	ptype_specific;
2039 
2040 	struct {
2041 		struct list_head upper;
2042 		struct list_head lower;
2043 	} adj_list;
2044 
2045 	/* Read-mostly cache-line for fast-path access */
2046 	unsigned int		flags;
2047 	unsigned long long	priv_flags;
2048 	const struct net_device_ops *netdev_ops;
2049 	int			ifindex;
2050 	unsigned short		gflags;
2051 	unsigned short		hard_header_len;
2052 
2053 	/* Note : dev->mtu is often read without holding a lock.
2054 	 * Writers usually hold RTNL.
2055 	 * It is recommended to use READ_ONCE() to annotate the reads,
2056 	 * and to use WRITE_ONCE() to annotate the writes.
2057 	 */
2058 	unsigned int		mtu;
2059 	unsigned short		needed_headroom;
2060 	unsigned short		needed_tailroom;
2061 
2062 	netdev_features_t	features;
2063 	netdev_features_t	hw_features;
2064 	netdev_features_t	wanted_features;
2065 	netdev_features_t	vlan_features;
2066 	netdev_features_t	hw_enc_features;
2067 	netdev_features_t	mpls_features;
2068 	netdev_features_t	gso_partial_features;
2069 
2070 	unsigned int		min_mtu;
2071 	unsigned int		max_mtu;
2072 	unsigned short		type;
2073 	unsigned char		min_header_len;
2074 	unsigned char		name_assign_type;
2075 
2076 	int			group;
2077 
2078 	struct net_device_stats	stats; /* not used by modern drivers */
2079 
2080 	struct net_device_core_stats __percpu *core_stats;
2081 
2082 	/* Stats to monitor link on/off, flapping */
2083 	atomic_t		carrier_up_count;
2084 	atomic_t		carrier_down_count;
2085 
2086 #ifdef CONFIG_WIRELESS_EXT
2087 	const struct iw_handler_def *wireless_handlers;
2088 	struct iw_public_data	*wireless_data;
2089 #endif
2090 	const struct ethtool_ops *ethtool_ops;
2091 #ifdef CONFIG_NET_L3_MASTER_DEV
2092 	const struct l3mdev_ops	*l3mdev_ops;
2093 #endif
2094 #if IS_ENABLED(CONFIG_IPV6)
2095 	const struct ndisc_ops *ndisc_ops;
2096 #endif
2097 
2098 #ifdef CONFIG_XFRM_OFFLOAD
2099 	const struct xfrmdev_ops *xfrmdev_ops;
2100 #endif
2101 
2102 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2103 	const struct tlsdev_ops *tlsdev_ops;
2104 #endif
2105 
2106 	const struct header_ops *header_ops;
2107 
2108 	unsigned char		operstate;
2109 	unsigned char		link_mode;
2110 
2111 	unsigned char		if_port;
2112 	unsigned char		dma;
2113 
2114 	/* Interface address info. */
2115 	unsigned char		perm_addr[MAX_ADDR_LEN];
2116 	unsigned char		addr_assign_type;
2117 	unsigned char		addr_len;
2118 	unsigned char		upper_level;
2119 	unsigned char		lower_level;
2120 
2121 	unsigned short		neigh_priv_len;
2122 	unsigned short          dev_id;
2123 	unsigned short          dev_port;
2124 	unsigned short		padded;
2125 
2126 	spinlock_t		addr_list_lock;
2127 	int			irq;
2128 
2129 	struct netdev_hw_addr_list	uc;
2130 	struct netdev_hw_addr_list	mc;
2131 	struct netdev_hw_addr_list	dev_addrs;
2132 
2133 #ifdef CONFIG_SYSFS
2134 	struct kset		*queues_kset;
2135 #endif
2136 #ifdef CONFIG_LOCKDEP
2137 	struct list_head	unlink_list;
2138 #endif
2139 	unsigned int		promiscuity;
2140 	unsigned int		allmulti;
2141 	bool			uc_promisc;
2142 #ifdef CONFIG_LOCKDEP
2143 	unsigned char		nested_level;
2144 #endif
2145 
2146 
2147 	/* Protocol-specific pointers */
2148 
2149 	struct in_device __rcu	*ip_ptr;
2150 	struct inet6_dev __rcu	*ip6_ptr;
2151 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2152 	struct vlan_info __rcu	*vlan_info;
2153 #endif
2154 #if IS_ENABLED(CONFIG_NET_DSA)
2155 	struct dsa_port		*dsa_ptr;
2156 #endif
2157 #if IS_ENABLED(CONFIG_TIPC)
2158 	struct tipc_bearer __rcu *tipc_ptr;
2159 #endif
2160 #if IS_ENABLED(CONFIG_ATALK)
2161 	void 			*atalk_ptr;
2162 #endif
2163 #if IS_ENABLED(CONFIG_AX25)
2164 	void			*ax25_ptr;
2165 #endif
2166 #if IS_ENABLED(CONFIG_CFG80211)
2167 	struct wireless_dev	*ieee80211_ptr;
2168 #endif
2169 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2170 	struct wpan_dev		*ieee802154_ptr;
2171 #endif
2172 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2173 	struct mpls_dev __rcu	*mpls_ptr;
2174 #endif
2175 #if IS_ENABLED(CONFIG_MCTP)
2176 	struct mctp_dev __rcu	*mctp_ptr;
2177 #endif
2178 
2179 /*
2180  * Cache lines mostly used on receive path (including eth_type_trans())
2181  */
2182 	/* Interface address info used in eth_type_trans() */
2183 	const unsigned char	*dev_addr;
2184 
2185 	struct netdev_rx_queue	*_rx;
2186 	unsigned int		num_rx_queues;
2187 	unsigned int		real_num_rx_queues;
2188 
2189 	struct bpf_prog __rcu	*xdp_prog;
2190 	unsigned long		gro_flush_timeout;
2191 	int			napi_defer_hard_irqs;
2192 #define GRO_LEGACY_MAX_SIZE	65536u
2193 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2194  * and shinfo->gso_segs is a 16bit field.
2195  */
2196 #define GRO_MAX_SIZE		(8 * 65535u)
2197 	unsigned int		gro_max_size;
2198 	rx_handler_func_t __rcu	*rx_handler;
2199 	void __rcu		*rx_handler_data;
2200 
2201 #ifdef CONFIG_NET_CLS_ACT
2202 	struct mini_Qdisc __rcu	*miniq_ingress;
2203 #endif
2204 	struct netdev_queue __rcu *ingress_queue;
2205 #ifdef CONFIG_NETFILTER_INGRESS
2206 	struct nf_hook_entries __rcu *nf_hooks_ingress;
2207 #endif
2208 
2209 	unsigned char		broadcast[MAX_ADDR_LEN];
2210 #ifdef CONFIG_RFS_ACCEL
2211 	struct cpu_rmap		*rx_cpu_rmap;
2212 #endif
2213 	struct hlist_node	index_hlist;
2214 
2215 /*
2216  * Cache lines mostly used on transmit path
2217  */
2218 	struct netdev_queue	*_tx ____cacheline_aligned_in_smp;
2219 	unsigned int		num_tx_queues;
2220 	unsigned int		real_num_tx_queues;
2221 	struct Qdisc __rcu	*qdisc;
2222 	unsigned int		tx_queue_len;
2223 	spinlock_t		tx_global_lock;
2224 
2225 	struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2226 
2227 #ifdef CONFIG_XPS
2228 	struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2229 #endif
2230 #ifdef CONFIG_NET_CLS_ACT
2231 	struct mini_Qdisc __rcu	*miniq_egress;
2232 #endif
2233 #ifdef CONFIG_NETFILTER_EGRESS
2234 	struct nf_hook_entries __rcu *nf_hooks_egress;
2235 #endif
2236 
2237 #ifdef CONFIG_NET_SCHED
2238 	DECLARE_HASHTABLE	(qdisc_hash, 4);
2239 #endif
2240 	/* These may be needed for future network-power-down code. */
2241 	struct timer_list	watchdog_timer;
2242 	int			watchdog_timeo;
2243 
2244 	u32                     proto_down_reason;
2245 
2246 	struct list_head	todo_list;
2247 
2248 #ifdef CONFIG_PCPU_DEV_REFCNT
2249 	int __percpu		*pcpu_refcnt;
2250 #else
2251 	refcount_t		dev_refcnt;
2252 #endif
2253 	struct ref_tracker_dir	refcnt_tracker;
2254 
2255 	struct list_head	link_watch_list;
2256 
2257 	enum { NETREG_UNINITIALIZED=0,
2258 	       NETREG_REGISTERED,	/* completed register_netdevice */
2259 	       NETREG_UNREGISTERING,	/* called unregister_netdevice */
2260 	       NETREG_UNREGISTERED,	/* completed unregister todo */
2261 	       NETREG_RELEASED,		/* called free_netdev */
2262 	       NETREG_DUMMY,		/* dummy device for NAPI poll */
2263 	} reg_state:8;
2264 
2265 	bool dismantle;
2266 
2267 	enum {
2268 		RTNL_LINK_INITIALIZED,
2269 		RTNL_LINK_INITIALIZING,
2270 	} rtnl_link_state:16;
2271 
2272 	bool needs_free_netdev;
2273 	void (*priv_destructor)(struct net_device *dev);
2274 
2275 #ifdef CONFIG_NETPOLL
2276 	struct netpoll_info __rcu	*npinfo;
2277 #endif
2278 
2279 	possible_net_t			nd_net;
2280 
2281 	/* mid-layer private */
2282 	void				*ml_priv;
2283 	enum netdev_ml_priv_type	ml_priv_type;
2284 
2285 	union {
2286 		struct pcpu_lstats __percpu		*lstats;
2287 		struct pcpu_sw_netstats __percpu	*tstats;
2288 		struct pcpu_dstats __percpu		*dstats;
2289 	};
2290 
2291 #if IS_ENABLED(CONFIG_GARP)
2292 	struct garp_port __rcu	*garp_port;
2293 #endif
2294 #if IS_ENABLED(CONFIG_MRP)
2295 	struct mrp_port __rcu	*mrp_port;
2296 #endif
2297 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2298 	struct dm_hw_stat_delta __rcu *dm_private;
2299 #endif
2300 	struct device		dev;
2301 	const struct attribute_group *sysfs_groups[4];
2302 	const struct attribute_group *sysfs_rx_queue_group;
2303 
2304 	const struct rtnl_link_ops *rtnl_link_ops;
2305 
2306 	/* for setting kernel sock attribute on TCP connection setup */
2307 #define GSO_MAX_SEGS		65535u
2308 #define GSO_LEGACY_MAX_SIZE	65536u
2309 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2310  * and shinfo->gso_segs is a 16bit field.
2311  */
2312 #define GSO_MAX_SIZE		(8 * GSO_MAX_SEGS)
2313 
2314 	unsigned int		gso_max_size;
2315 #define TSO_LEGACY_MAX_SIZE	65536
2316 #define TSO_MAX_SIZE		UINT_MAX
2317 	unsigned int		tso_max_size;
2318 	u16			gso_max_segs;
2319 #define TSO_MAX_SEGS		U16_MAX
2320 	u16			tso_max_segs;
2321 
2322 #ifdef CONFIG_DCB
2323 	const struct dcbnl_rtnl_ops *dcbnl_ops;
2324 #endif
2325 	s16			num_tc;
2326 	struct netdev_tc_txq	tc_to_txq[TC_MAX_QUEUE];
2327 	u8			prio_tc_map[TC_BITMASK + 1];
2328 
2329 #if IS_ENABLED(CONFIG_FCOE)
2330 	unsigned int		fcoe_ddp_xid;
2331 #endif
2332 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2333 	struct netprio_map __rcu *priomap;
2334 #endif
2335 	struct phy_device	*phydev;
2336 	struct sfp_bus		*sfp_bus;
2337 	struct lock_class_key	*qdisc_tx_busylock;
2338 	bool			proto_down;
2339 	unsigned		wol_enabled:1;
2340 	unsigned		threaded:1;
2341 
2342 	struct list_head	net_notifier_list;
2343 
2344 #if IS_ENABLED(CONFIG_MACSEC)
2345 	/* MACsec management functions */
2346 	const struct macsec_ops *macsec_ops;
2347 #endif
2348 	const struct udp_tunnel_nic_info	*udp_tunnel_nic_info;
2349 	struct udp_tunnel_nic	*udp_tunnel_nic;
2350 
2351 	/* protected by rtnl_lock */
2352 	struct bpf_xdp_entity	xdp_state[__MAX_XDP_MODE];
2353 
2354 	u8 dev_addr_shadow[MAX_ADDR_LEN];
2355 	netdevice_tracker	linkwatch_dev_tracker;
2356 	netdevice_tracker	watchdog_dev_tracker;
2357 	netdevice_tracker	dev_registered_tracker;
2358 	struct rtnl_hw_stats64	*offload_xstats_l3;
2359 };
2360 #define to_net_dev(d) container_of(d, struct net_device, dev)
2361 
netif_elide_gro(const struct net_device * dev)2362 static inline bool netif_elide_gro(const struct net_device *dev)
2363 {
2364 	if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2365 		return true;
2366 	return false;
2367 }
2368 
2369 #define	NETDEV_ALIGN		32
2370 
2371 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)2372 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2373 {
2374 	return dev->prio_tc_map[prio & TC_BITMASK];
2375 }
2376 
2377 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)2378 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2379 {
2380 	if (tc >= dev->num_tc)
2381 		return -EINVAL;
2382 
2383 	dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2384 	return 0;
2385 }
2386 
2387 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2388 void netdev_reset_tc(struct net_device *dev);
2389 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2390 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2391 
2392 static inline
netdev_get_num_tc(struct net_device * dev)2393 int netdev_get_num_tc(struct net_device *dev)
2394 {
2395 	return dev->num_tc;
2396 }
2397 
net_prefetch(void * p)2398 static inline void net_prefetch(void *p)
2399 {
2400 	prefetch(p);
2401 #if L1_CACHE_BYTES < 128
2402 	prefetch((u8 *)p + L1_CACHE_BYTES);
2403 #endif
2404 }
2405 
net_prefetchw(void * p)2406 static inline void net_prefetchw(void *p)
2407 {
2408 	prefetchw(p);
2409 #if L1_CACHE_BYTES < 128
2410 	prefetchw((u8 *)p + L1_CACHE_BYTES);
2411 #endif
2412 }
2413 
2414 void netdev_unbind_sb_channel(struct net_device *dev,
2415 			      struct net_device *sb_dev);
2416 int netdev_bind_sb_channel_queue(struct net_device *dev,
2417 				 struct net_device *sb_dev,
2418 				 u8 tc, u16 count, u16 offset);
2419 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
netdev_get_sb_channel(struct net_device * dev)2420 static inline int netdev_get_sb_channel(struct net_device *dev)
2421 {
2422 	return max_t(int, -dev->num_tc, 0);
2423 }
2424 
2425 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)2426 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2427 					 unsigned int index)
2428 {
2429 	return &dev->_tx[index];
2430 }
2431 
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)2432 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2433 						    const struct sk_buff *skb)
2434 {
2435 	return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2436 }
2437 
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)2438 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2439 					    void (*f)(struct net_device *,
2440 						      struct netdev_queue *,
2441 						      void *),
2442 					    void *arg)
2443 {
2444 	unsigned int i;
2445 
2446 	for (i = 0; i < dev->num_tx_queues; i++)
2447 		f(dev, &dev->_tx[i], arg);
2448 }
2449 
2450 #define netdev_lockdep_set_classes(dev)				\
2451 {								\
2452 	static struct lock_class_key qdisc_tx_busylock_key;	\
2453 	static struct lock_class_key qdisc_xmit_lock_key;	\
2454 	static struct lock_class_key dev_addr_list_lock_key;	\
2455 	unsigned int i;						\
2456 								\
2457 	(dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key;	\
2458 	lockdep_set_class(&(dev)->addr_list_lock,		\
2459 			  &dev_addr_list_lock_key);		\
2460 	for (i = 0; i < (dev)->num_tx_queues; i++)		\
2461 		lockdep_set_class(&(dev)->_tx[i]._xmit_lock,	\
2462 				  &qdisc_xmit_lock_key);	\
2463 }
2464 
2465 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2466 		     struct net_device *sb_dev);
2467 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2468 					 struct sk_buff *skb,
2469 					 struct net_device *sb_dev);
2470 
2471 /* returns the headroom that the master device needs to take in account
2472  * when forwarding to this dev
2473  */
netdev_get_fwd_headroom(struct net_device * dev)2474 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2475 {
2476 	return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2477 }
2478 
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2479 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2480 {
2481 	if (dev->netdev_ops->ndo_set_rx_headroom)
2482 		dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2483 }
2484 
2485 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2486 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2487 {
2488 	netdev_set_rx_headroom(dev, -1);
2489 }
2490 
netdev_get_ml_priv(struct net_device * dev,enum netdev_ml_priv_type type)2491 static inline void *netdev_get_ml_priv(struct net_device *dev,
2492 				       enum netdev_ml_priv_type type)
2493 {
2494 	if (dev->ml_priv_type != type)
2495 		return NULL;
2496 
2497 	return dev->ml_priv;
2498 }
2499 
netdev_set_ml_priv(struct net_device * dev,void * ml_priv,enum netdev_ml_priv_type type)2500 static inline void netdev_set_ml_priv(struct net_device *dev,
2501 				      void *ml_priv,
2502 				      enum netdev_ml_priv_type type)
2503 {
2504 	WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2505 	     "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2506 	     dev->ml_priv_type, type);
2507 	WARN(!dev->ml_priv_type && dev->ml_priv,
2508 	     "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2509 
2510 	dev->ml_priv = ml_priv;
2511 	dev->ml_priv_type = type;
2512 }
2513 
2514 /*
2515  * Net namespace inlines
2516  */
2517 static inline
dev_net(const struct net_device * dev)2518 struct net *dev_net(const struct net_device *dev)
2519 {
2520 	return read_pnet(&dev->nd_net);
2521 }
2522 
2523 static inline
dev_net_set(struct net_device * dev,struct net * net)2524 void dev_net_set(struct net_device *dev, struct net *net)
2525 {
2526 	write_pnet(&dev->nd_net, net);
2527 }
2528 
2529 /**
2530  *	netdev_priv - access network device private data
2531  *	@dev: network device
2532  *
2533  * Get network device private data
2534  */
netdev_priv(const struct net_device * dev)2535 static inline void *netdev_priv(const struct net_device *dev)
2536 {
2537 	return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2538 }
2539 
2540 /* Set the sysfs physical device reference for the network logical device
2541  * if set prior to registration will cause a symlink during initialization.
2542  */
2543 #define SET_NETDEV_DEV(net, pdev)	((net)->dev.parent = (pdev))
2544 
2545 /* Set the sysfs device type for the network logical device to allow
2546  * fine-grained identification of different network device types. For
2547  * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2548  */
2549 #define SET_NETDEV_DEVTYPE(net, devtype)	((net)->dev.type = (devtype))
2550 
2551 /* Default NAPI poll() weight
2552  * Device drivers are strongly advised to not use bigger value
2553  */
2554 #define NAPI_POLL_WEIGHT 64
2555 
2556 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2557 			   int (*poll)(struct napi_struct *, int), int weight);
2558 
2559 /**
2560  * netif_napi_add() - initialize a NAPI context
2561  * @dev:  network device
2562  * @napi: NAPI context
2563  * @poll: polling function
2564  *
2565  * netif_napi_add() must be used to initialize a NAPI context prior to calling
2566  * *any* of the other NAPI-related functions.
2567  */
2568 static inline void
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int))2569 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2570 	       int (*poll)(struct napi_struct *, int))
2571 {
2572 	netif_napi_add_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2573 }
2574 
2575 static inline void
netif_napi_add_tx_weight(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2576 netif_napi_add_tx_weight(struct net_device *dev,
2577 			 struct napi_struct *napi,
2578 			 int (*poll)(struct napi_struct *, int),
2579 			 int weight)
2580 {
2581 	set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2582 	netif_napi_add_weight(dev, napi, poll, weight);
2583 }
2584 
2585 /**
2586  * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2587  * @dev:  network device
2588  * @napi: NAPI context
2589  * @poll: polling function
2590  *
2591  * This variant of netif_napi_add() should be used from drivers using NAPI
2592  * to exclusively poll a TX queue.
2593  * This will avoid we add it into napi_hash[], thus polluting this hash table.
2594  */
netif_napi_add_tx(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int))2595 static inline void netif_napi_add_tx(struct net_device *dev,
2596 				     struct napi_struct *napi,
2597 				     int (*poll)(struct napi_struct *, int))
2598 {
2599 	netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2600 }
2601 
2602 /**
2603  *  __netif_napi_del - remove a NAPI context
2604  *  @napi: NAPI context
2605  *
2606  * Warning: caller must observe RCU grace period before freeing memory
2607  * containing @napi. Drivers might want to call this helper to combine
2608  * all the needed RCU grace periods into a single one.
2609  */
2610 void __netif_napi_del(struct napi_struct *napi);
2611 
2612 /**
2613  *  netif_napi_del - remove a NAPI context
2614  *  @napi: NAPI context
2615  *
2616  *  netif_napi_del() removes a NAPI context from the network device NAPI list
2617  */
netif_napi_del(struct napi_struct * napi)2618 static inline void netif_napi_del(struct napi_struct *napi)
2619 {
2620 	__netif_napi_del(napi);
2621 	synchronize_net();
2622 }
2623 
2624 struct packet_type {
2625 	__be16			type;	/* This is really htons(ether_type). */
2626 	bool			ignore_outgoing;
2627 	struct net_device	*dev;	/* NULL is wildcarded here	     */
2628 	netdevice_tracker	dev_tracker;
2629 	int			(*func) (struct sk_buff *,
2630 					 struct net_device *,
2631 					 struct packet_type *,
2632 					 struct net_device *);
2633 	void			(*list_func) (struct list_head *,
2634 					      struct packet_type *,
2635 					      struct net_device *);
2636 	bool			(*id_match)(struct packet_type *ptype,
2637 					    struct sock *sk);
2638 	struct net		*af_packet_net;
2639 	void			*af_packet_priv;
2640 	struct list_head	list;
2641 };
2642 
2643 struct offload_callbacks {
2644 	struct sk_buff		*(*gso_segment)(struct sk_buff *skb,
2645 						netdev_features_t features);
2646 	struct sk_buff		*(*gro_receive)(struct list_head *head,
2647 						struct sk_buff *skb);
2648 	int			(*gro_complete)(struct sk_buff *skb, int nhoff);
2649 };
2650 
2651 struct packet_offload {
2652 	__be16			 type;	/* This is really htons(ether_type). */
2653 	u16			 priority;
2654 	struct offload_callbacks callbacks;
2655 	struct list_head	 list;
2656 };
2657 
2658 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2659 struct pcpu_sw_netstats {
2660 	u64_stats_t		rx_packets;
2661 	u64_stats_t		rx_bytes;
2662 	u64_stats_t		tx_packets;
2663 	u64_stats_t		tx_bytes;
2664 	struct u64_stats_sync   syncp;
2665 } __aligned(4 * sizeof(u64));
2666 
2667 struct pcpu_lstats {
2668 	u64_stats_t packets;
2669 	u64_stats_t bytes;
2670 	struct u64_stats_sync syncp;
2671 } __aligned(2 * sizeof(u64));
2672 
2673 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2674 
dev_sw_netstats_rx_add(struct net_device * dev,unsigned int len)2675 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2676 {
2677 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2678 
2679 	u64_stats_update_begin(&tstats->syncp);
2680 	u64_stats_add(&tstats->rx_bytes, len);
2681 	u64_stats_inc(&tstats->rx_packets);
2682 	u64_stats_update_end(&tstats->syncp);
2683 }
2684 
dev_sw_netstats_tx_add(struct net_device * dev,unsigned int packets,unsigned int len)2685 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2686 					  unsigned int packets,
2687 					  unsigned int len)
2688 {
2689 	struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2690 
2691 	u64_stats_update_begin(&tstats->syncp);
2692 	u64_stats_add(&tstats->tx_bytes, len);
2693 	u64_stats_add(&tstats->tx_packets, packets);
2694 	u64_stats_update_end(&tstats->syncp);
2695 }
2696 
dev_lstats_add(struct net_device * dev,unsigned int len)2697 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2698 {
2699 	struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2700 
2701 	u64_stats_update_begin(&lstats->syncp);
2702 	u64_stats_add(&lstats->bytes, len);
2703 	u64_stats_inc(&lstats->packets);
2704 	u64_stats_update_end(&lstats->syncp);
2705 }
2706 
2707 #define __netdev_alloc_pcpu_stats(type, gfp)				\
2708 ({									\
2709 	typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2710 	if (pcpu_stats)	{						\
2711 		int __cpu;						\
2712 		for_each_possible_cpu(__cpu) {				\
2713 			typeof(type) *stat;				\
2714 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2715 			u64_stats_init(&stat->syncp);			\
2716 		}							\
2717 	}								\
2718 	pcpu_stats;							\
2719 })
2720 
2721 #define netdev_alloc_pcpu_stats(type)					\
2722 	__netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2723 
2724 #define devm_netdev_alloc_pcpu_stats(dev, type)				\
2725 ({									\
2726 	typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2727 	if (pcpu_stats) {						\
2728 		int __cpu;						\
2729 		for_each_possible_cpu(__cpu) {				\
2730 			typeof(type) *stat;				\
2731 			stat = per_cpu_ptr(pcpu_stats, __cpu);		\
2732 			u64_stats_init(&stat->syncp);			\
2733 		}							\
2734 	}								\
2735 	pcpu_stats;							\
2736 })
2737 
2738 enum netdev_lag_tx_type {
2739 	NETDEV_LAG_TX_TYPE_UNKNOWN,
2740 	NETDEV_LAG_TX_TYPE_RANDOM,
2741 	NETDEV_LAG_TX_TYPE_BROADCAST,
2742 	NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2743 	NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2744 	NETDEV_LAG_TX_TYPE_HASH,
2745 };
2746 
2747 enum netdev_lag_hash {
2748 	NETDEV_LAG_HASH_NONE,
2749 	NETDEV_LAG_HASH_L2,
2750 	NETDEV_LAG_HASH_L34,
2751 	NETDEV_LAG_HASH_L23,
2752 	NETDEV_LAG_HASH_E23,
2753 	NETDEV_LAG_HASH_E34,
2754 	NETDEV_LAG_HASH_VLAN_SRCMAC,
2755 	NETDEV_LAG_HASH_UNKNOWN,
2756 };
2757 
2758 struct netdev_lag_upper_info {
2759 	enum netdev_lag_tx_type tx_type;
2760 	enum netdev_lag_hash hash_type;
2761 };
2762 
2763 struct netdev_lag_lower_state_info {
2764 	u8 link_up : 1,
2765 	   tx_enabled : 1;
2766 };
2767 
2768 #include <linux/notifier.h>
2769 
2770 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2771  * and the rtnetlink notification exclusion list in rtnetlink_event() when
2772  * adding new types.
2773  */
2774 enum netdev_cmd {
2775 	NETDEV_UP	= 1,	/* For now you can't veto a device up/down */
2776 	NETDEV_DOWN,
2777 	NETDEV_REBOOT,		/* Tell a protocol stack a network interface
2778 				   detected a hardware crash and restarted
2779 				   - we can use this eg to kick tcp sessions
2780 				   once done */
2781 	NETDEV_CHANGE,		/* Notify device state change */
2782 	NETDEV_REGISTER,
2783 	NETDEV_UNREGISTER,
2784 	NETDEV_CHANGEMTU,	/* notify after mtu change happened */
2785 	NETDEV_CHANGEADDR,	/* notify after the address change */
2786 	NETDEV_PRE_CHANGEADDR,	/* notify before the address change */
2787 	NETDEV_GOING_DOWN,
2788 	NETDEV_CHANGENAME,
2789 	NETDEV_FEAT_CHANGE,
2790 	NETDEV_BONDING_FAILOVER,
2791 	NETDEV_PRE_UP,
2792 	NETDEV_PRE_TYPE_CHANGE,
2793 	NETDEV_POST_TYPE_CHANGE,
2794 	NETDEV_POST_INIT,
2795 	NETDEV_RELEASE,
2796 	NETDEV_NOTIFY_PEERS,
2797 	NETDEV_JOIN,
2798 	NETDEV_CHANGEUPPER,
2799 	NETDEV_RESEND_IGMP,
2800 	NETDEV_PRECHANGEMTU,	/* notify before mtu change happened */
2801 	NETDEV_CHANGEINFODATA,
2802 	NETDEV_BONDING_INFO,
2803 	NETDEV_PRECHANGEUPPER,
2804 	NETDEV_CHANGELOWERSTATE,
2805 	NETDEV_UDP_TUNNEL_PUSH_INFO,
2806 	NETDEV_UDP_TUNNEL_DROP_INFO,
2807 	NETDEV_CHANGE_TX_QUEUE_LEN,
2808 	NETDEV_CVLAN_FILTER_PUSH_INFO,
2809 	NETDEV_CVLAN_FILTER_DROP_INFO,
2810 	NETDEV_SVLAN_FILTER_PUSH_INFO,
2811 	NETDEV_SVLAN_FILTER_DROP_INFO,
2812 	NETDEV_OFFLOAD_XSTATS_ENABLE,
2813 	NETDEV_OFFLOAD_XSTATS_DISABLE,
2814 	NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2815 	NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2816 };
2817 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2818 
2819 int register_netdevice_notifier(struct notifier_block *nb);
2820 int unregister_netdevice_notifier(struct notifier_block *nb);
2821 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2822 int unregister_netdevice_notifier_net(struct net *net,
2823 				      struct notifier_block *nb);
2824 int register_netdevice_notifier_dev_net(struct net_device *dev,
2825 					struct notifier_block *nb,
2826 					struct netdev_net_notifier *nn);
2827 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2828 					  struct notifier_block *nb,
2829 					  struct netdev_net_notifier *nn);
2830 
2831 struct netdev_notifier_info {
2832 	struct net_device	*dev;
2833 	struct netlink_ext_ack	*extack;
2834 };
2835 
2836 struct netdev_notifier_info_ext {
2837 	struct netdev_notifier_info info; /* must be first */
2838 	union {
2839 		u32 mtu;
2840 	} ext;
2841 };
2842 
2843 struct netdev_notifier_change_info {
2844 	struct netdev_notifier_info info; /* must be first */
2845 	unsigned int flags_changed;
2846 };
2847 
2848 struct netdev_notifier_changeupper_info {
2849 	struct netdev_notifier_info info; /* must be first */
2850 	struct net_device *upper_dev; /* new upper dev */
2851 	bool master; /* is upper dev master */
2852 	bool linking; /* is the notification for link or unlink */
2853 	void *upper_info; /* upper dev info */
2854 };
2855 
2856 struct netdev_notifier_changelowerstate_info {
2857 	struct netdev_notifier_info info; /* must be first */
2858 	void *lower_state_info; /* is lower dev state */
2859 };
2860 
2861 struct netdev_notifier_pre_changeaddr_info {
2862 	struct netdev_notifier_info info; /* must be first */
2863 	const unsigned char *dev_addr;
2864 };
2865 
2866 enum netdev_offload_xstats_type {
2867 	NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2868 };
2869 
2870 struct netdev_notifier_offload_xstats_info {
2871 	struct netdev_notifier_info info; /* must be first */
2872 	enum netdev_offload_xstats_type type;
2873 
2874 	union {
2875 		/* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2876 		struct netdev_notifier_offload_xstats_rd *report_delta;
2877 		/* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2878 		struct netdev_notifier_offload_xstats_ru *report_used;
2879 	};
2880 };
2881 
2882 int netdev_offload_xstats_enable(struct net_device *dev,
2883 				 enum netdev_offload_xstats_type type,
2884 				 struct netlink_ext_ack *extack);
2885 int netdev_offload_xstats_disable(struct net_device *dev,
2886 				  enum netdev_offload_xstats_type type);
2887 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2888 				   enum netdev_offload_xstats_type type);
2889 int netdev_offload_xstats_get(struct net_device *dev,
2890 			      enum netdev_offload_xstats_type type,
2891 			      struct rtnl_hw_stats64 *stats, bool *used,
2892 			      struct netlink_ext_ack *extack);
2893 void
2894 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2895 				   const struct rtnl_hw_stats64 *stats);
2896 void
2897 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2898 void netdev_offload_xstats_push_delta(struct net_device *dev,
2899 				      enum netdev_offload_xstats_type type,
2900 				      const struct rtnl_hw_stats64 *stats);
2901 
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2902 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2903 					     struct net_device *dev)
2904 {
2905 	info->dev = dev;
2906 	info->extack = NULL;
2907 }
2908 
2909 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2910 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2911 {
2912 	return info->dev;
2913 }
2914 
2915 static inline struct netlink_ext_ack *
netdev_notifier_info_to_extack(const struct netdev_notifier_info * info)2916 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2917 {
2918 	return info->extack;
2919 }
2920 
2921 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2922 
2923 
2924 extern rwlock_t				dev_base_lock;		/* Device list lock */
2925 
2926 #define for_each_netdev(net, d)		\
2927 		list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2928 #define for_each_netdev_reverse(net, d)	\
2929 		list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2930 #define for_each_netdev_rcu(net, d)		\
2931 		list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2932 #define for_each_netdev_safe(net, d, n)	\
2933 		list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2934 #define for_each_netdev_continue(net, d)		\
2935 		list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2936 #define for_each_netdev_continue_reverse(net, d)		\
2937 		list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2938 						     dev_list)
2939 #define for_each_netdev_continue_rcu(net, d)		\
2940 	list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2941 #define for_each_netdev_in_bond_rcu(bond, slave)	\
2942 		for_each_netdev_rcu(&init_net, slave)	\
2943 			if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2944 #define net_device_entry(lh)	list_entry(lh, struct net_device, dev_list)
2945 
next_net_device(struct net_device * dev)2946 static inline struct net_device *next_net_device(struct net_device *dev)
2947 {
2948 	struct list_head *lh;
2949 	struct net *net;
2950 
2951 	net = dev_net(dev);
2952 	lh = dev->dev_list.next;
2953 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2954 }
2955 
next_net_device_rcu(struct net_device * dev)2956 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2957 {
2958 	struct list_head *lh;
2959 	struct net *net;
2960 
2961 	net = dev_net(dev);
2962 	lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2963 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2964 }
2965 
first_net_device(struct net * net)2966 static inline struct net_device *first_net_device(struct net *net)
2967 {
2968 	return list_empty(&net->dev_base_head) ? NULL :
2969 		net_device_entry(net->dev_base_head.next);
2970 }
2971 
first_net_device_rcu(struct net * net)2972 static inline struct net_device *first_net_device_rcu(struct net *net)
2973 {
2974 	struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2975 
2976 	return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2977 }
2978 
2979 int netdev_boot_setup_check(struct net_device *dev);
2980 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2981 				       const char *hwaddr);
2982 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2983 void dev_add_pack(struct packet_type *pt);
2984 void dev_remove_pack(struct packet_type *pt);
2985 void __dev_remove_pack(struct packet_type *pt);
2986 void dev_add_offload(struct packet_offload *po);
2987 void dev_remove_offload(struct packet_offload *po);
2988 
2989 int dev_get_iflink(const struct net_device *dev);
2990 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2991 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2992 			  struct net_device_path_stack *stack);
2993 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2994 				      unsigned short mask);
2995 struct net_device *dev_get_by_name(struct net *net, const char *name);
2996 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2997 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2998 bool netdev_name_in_use(struct net *net, const char *name);
2999 int dev_alloc_name(struct net_device *dev, const char *name);
3000 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
3001 void dev_close(struct net_device *dev);
3002 void dev_close_many(struct list_head *head, bool unlink);
3003 void dev_disable_lro(struct net_device *dev);
3004 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
3005 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
3006 		     struct net_device *sb_dev);
3007 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3008 		       struct net_device *sb_dev);
3009 
3010 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3011 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3012 
dev_queue_xmit(struct sk_buff * skb)3013 static inline int dev_queue_xmit(struct sk_buff *skb)
3014 {
3015 	return __dev_queue_xmit(skb, NULL);
3016 }
3017 
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)3018 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3019 				       struct net_device *sb_dev)
3020 {
3021 	return __dev_queue_xmit(skb, sb_dev);
3022 }
3023 
dev_direct_xmit(struct sk_buff * skb,u16 queue_id)3024 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3025 {
3026 	int ret;
3027 
3028 	ret = __dev_direct_xmit(skb, queue_id);
3029 	if (!dev_xmit_complete(ret))
3030 		kfree_skb(skb);
3031 	return ret;
3032 }
3033 
3034 int register_netdevice(struct net_device *dev);
3035 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3036 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)3037 static inline void unregister_netdevice(struct net_device *dev)
3038 {
3039 	unregister_netdevice_queue(dev, NULL);
3040 }
3041 
3042 int netdev_refcnt_read(const struct net_device *dev);
3043 void free_netdev(struct net_device *dev);
3044 void netdev_freemem(struct net_device *dev);
3045 int init_dummy_netdev(struct net_device *dev);
3046 
3047 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3048 					 struct sk_buff *skb,
3049 					 bool all_slaves);
3050 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3051 					    struct sock *sk);
3052 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3053 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3054 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3055 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3056 int dev_restart(struct net_device *dev);
3057 
3058 
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)3059 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3060 				  unsigned short type,
3061 				  const void *daddr, const void *saddr,
3062 				  unsigned int len)
3063 {
3064 	if (!dev->header_ops || !dev->header_ops->create)
3065 		return 0;
3066 
3067 	return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3068 }
3069 
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)3070 static inline int dev_parse_header(const struct sk_buff *skb,
3071 				   unsigned char *haddr)
3072 {
3073 	const struct net_device *dev = skb->dev;
3074 
3075 	if (!dev->header_ops || !dev->header_ops->parse)
3076 		return 0;
3077 	return dev->header_ops->parse(skb, haddr);
3078 }
3079 
dev_parse_header_protocol(const struct sk_buff * skb)3080 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3081 {
3082 	const struct net_device *dev = skb->dev;
3083 
3084 	if (!dev->header_ops || !dev->header_ops->parse_protocol)
3085 		return 0;
3086 	return dev->header_ops->parse_protocol(skb);
3087 }
3088 
3089 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)3090 static inline bool dev_validate_header(const struct net_device *dev,
3091 				       char *ll_header, int len)
3092 {
3093 	if (likely(len >= dev->hard_header_len))
3094 		return true;
3095 	if (len < dev->min_header_len)
3096 		return false;
3097 
3098 	if (capable(CAP_SYS_RAWIO)) {
3099 		memset(ll_header + len, 0, dev->hard_header_len - len);
3100 		return true;
3101 	}
3102 
3103 	if (dev->header_ops && dev->header_ops->validate)
3104 		return dev->header_ops->validate(ll_header, len);
3105 
3106 	return false;
3107 }
3108 
dev_has_header(const struct net_device * dev)3109 static inline bool dev_has_header(const struct net_device *dev)
3110 {
3111 	return dev->header_ops && dev->header_ops->create;
3112 }
3113 
3114 /*
3115  * Incoming packets are placed on per-CPU queues
3116  */
3117 struct softnet_data {
3118 	struct list_head	poll_list;
3119 	struct sk_buff_head	process_queue;
3120 
3121 	/* stats */
3122 	unsigned int		processed;
3123 	unsigned int		time_squeeze;
3124 	unsigned int		received_rps;
3125 #ifdef CONFIG_RPS
3126 	struct softnet_data	*rps_ipi_list;
3127 #endif
3128 #ifdef CONFIG_NET_FLOW_LIMIT
3129 	struct sd_flow_limit __rcu *flow_limit;
3130 #endif
3131 	struct Qdisc		*output_queue;
3132 	struct Qdisc		**output_queue_tailp;
3133 	struct sk_buff		*completion_queue;
3134 #ifdef CONFIG_XFRM_OFFLOAD
3135 	struct sk_buff_head	xfrm_backlog;
3136 #endif
3137 	/* written and read only by owning cpu: */
3138 	struct {
3139 		u16 recursion;
3140 		u8  more;
3141 #ifdef CONFIG_NET_EGRESS
3142 		u8  skip_txqueue;
3143 #endif
3144 	} xmit;
3145 #ifdef CONFIG_RPS
3146 	/* input_queue_head should be written by cpu owning this struct,
3147 	 * and only read by other cpus. Worth using a cache line.
3148 	 */
3149 	unsigned int		input_queue_head ____cacheline_aligned_in_smp;
3150 
3151 	/* Elements below can be accessed between CPUs for RPS/RFS */
3152 	call_single_data_t	csd ____cacheline_aligned_in_smp;
3153 	struct softnet_data	*rps_ipi_next;
3154 	unsigned int		cpu;
3155 	unsigned int		input_queue_tail;
3156 #endif
3157 	unsigned int		dropped;
3158 	struct sk_buff_head	input_pkt_queue;
3159 	struct napi_struct	backlog;
3160 
3161 	/* Another possibly contended cache line */
3162 	spinlock_t		defer_lock ____cacheline_aligned_in_smp;
3163 	int			defer_count;
3164 	int			defer_ipi_scheduled;
3165 	struct sk_buff		*defer_list;
3166 	call_single_data_t	defer_csd;
3167 };
3168 
input_queue_head_incr(struct softnet_data * sd)3169 static inline void input_queue_head_incr(struct softnet_data *sd)
3170 {
3171 #ifdef CONFIG_RPS
3172 	sd->input_queue_head++;
3173 #endif
3174 }
3175 
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)3176 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3177 					      unsigned int *qtail)
3178 {
3179 #ifdef CONFIG_RPS
3180 	*qtail = ++sd->input_queue_tail;
3181 #endif
3182 }
3183 
3184 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3185 
dev_recursion_level(void)3186 static inline int dev_recursion_level(void)
3187 {
3188 	return this_cpu_read(softnet_data.xmit.recursion);
3189 }
3190 
3191 #define XMIT_RECURSION_LIMIT	8
dev_xmit_recursion(void)3192 static inline bool dev_xmit_recursion(void)
3193 {
3194 	return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3195 			XMIT_RECURSION_LIMIT);
3196 }
3197 
dev_xmit_recursion_inc(void)3198 static inline void dev_xmit_recursion_inc(void)
3199 {
3200 	__this_cpu_inc(softnet_data.xmit.recursion);
3201 }
3202 
dev_xmit_recursion_dec(void)3203 static inline void dev_xmit_recursion_dec(void)
3204 {
3205 	__this_cpu_dec(softnet_data.xmit.recursion);
3206 }
3207 
3208 void __netif_schedule(struct Qdisc *q);
3209 void netif_schedule_queue(struct netdev_queue *txq);
3210 
netif_tx_schedule_all(struct net_device * dev)3211 static inline void netif_tx_schedule_all(struct net_device *dev)
3212 {
3213 	unsigned int i;
3214 
3215 	for (i = 0; i < dev->num_tx_queues; i++)
3216 		netif_schedule_queue(netdev_get_tx_queue(dev, i));
3217 }
3218 
netif_tx_start_queue(struct netdev_queue * dev_queue)3219 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3220 {
3221 	clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3222 }
3223 
3224 /**
3225  *	netif_start_queue - allow transmit
3226  *	@dev: network device
3227  *
3228  *	Allow upper layers to call the device hard_start_xmit routine.
3229  */
netif_start_queue(struct net_device * dev)3230 static inline void netif_start_queue(struct net_device *dev)
3231 {
3232 	netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3233 }
3234 
netif_tx_start_all_queues(struct net_device * dev)3235 static inline void netif_tx_start_all_queues(struct net_device *dev)
3236 {
3237 	unsigned int i;
3238 
3239 	for (i = 0; i < dev->num_tx_queues; i++) {
3240 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3241 		netif_tx_start_queue(txq);
3242 	}
3243 }
3244 
3245 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3246 
3247 /**
3248  *	netif_wake_queue - restart transmit
3249  *	@dev: network device
3250  *
3251  *	Allow upper layers to call the device hard_start_xmit routine.
3252  *	Used for flow control when transmit resources are available.
3253  */
netif_wake_queue(struct net_device * dev)3254 static inline void netif_wake_queue(struct net_device *dev)
3255 {
3256 	netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3257 }
3258 
netif_tx_wake_all_queues(struct net_device * dev)3259 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3260 {
3261 	unsigned int i;
3262 
3263 	for (i = 0; i < dev->num_tx_queues; i++) {
3264 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3265 		netif_tx_wake_queue(txq);
3266 	}
3267 }
3268 
netif_tx_stop_queue(struct netdev_queue * dev_queue)3269 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3270 {
3271 	set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3272 }
3273 
3274 /**
3275  *	netif_stop_queue - stop transmitted packets
3276  *	@dev: network device
3277  *
3278  *	Stop upper layers calling the device hard_start_xmit routine.
3279  *	Used for flow control when transmit resources are unavailable.
3280  */
netif_stop_queue(struct net_device * dev)3281 static inline void netif_stop_queue(struct net_device *dev)
3282 {
3283 	netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3284 }
3285 
3286 void netif_tx_stop_all_queues(struct net_device *dev);
3287 
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)3288 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3289 {
3290 	return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3291 }
3292 
3293 /**
3294  *	netif_queue_stopped - test if transmit queue is flowblocked
3295  *	@dev: network device
3296  *
3297  *	Test if transmit queue on device is currently unable to send.
3298  */
netif_queue_stopped(const struct net_device * dev)3299 static inline bool netif_queue_stopped(const struct net_device *dev)
3300 {
3301 	return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3302 }
3303 
netif_xmit_stopped(const struct netdev_queue * dev_queue)3304 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3305 {
3306 	return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3307 }
3308 
3309 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)3310 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3311 {
3312 	return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3313 }
3314 
3315 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)3316 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3317 {
3318 	return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3319 }
3320 
3321 /**
3322  *	netdev_queue_set_dql_min_limit - set dql minimum limit
3323  *	@dev_queue: pointer to transmit queue
3324  *	@min_limit: dql minimum limit
3325  *
3326  * Forces xmit_more() to return true until the minimum threshold
3327  * defined by @min_limit is reached (or until the tx queue is
3328  * empty). Warning: to be use with care, misuse will impact the
3329  * latency.
3330  */
netdev_queue_set_dql_min_limit(struct netdev_queue * dev_queue,unsigned int min_limit)3331 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3332 						  unsigned int min_limit)
3333 {
3334 #ifdef CONFIG_BQL
3335 	dev_queue->dql.min_limit = min_limit;
3336 #endif
3337 }
3338 
3339 /**
3340  *	netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3341  *	@dev_queue: pointer to transmit queue
3342  *
3343  * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3344  * to give appropriate hint to the CPU.
3345  */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)3346 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3347 {
3348 #ifdef CONFIG_BQL
3349 	prefetchw(&dev_queue->dql.num_queued);
3350 #endif
3351 }
3352 
3353 /**
3354  *	netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3355  *	@dev_queue: pointer to transmit queue
3356  *
3357  * BQL enabled drivers might use this helper in their TX completion path,
3358  * to give appropriate hint to the CPU.
3359  */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)3360 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3361 {
3362 #ifdef CONFIG_BQL
3363 	prefetchw(&dev_queue->dql.limit);
3364 #endif
3365 }
3366 
3367 /**
3368  *	netdev_tx_sent_queue - report the number of bytes queued to a given tx queue
3369  *	@dev_queue: network device queue
3370  *	@bytes: number of bytes queued to the device queue
3371  *
3372  *	Report the number of bytes queued for sending/completion to the network
3373  *	device hardware queue. @bytes should be a good approximation and should
3374  *	exactly match netdev_completed_queue() @bytes.
3375  *	This is typically called once per packet, from ndo_start_xmit().
3376  */
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)3377 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3378 					unsigned int bytes)
3379 {
3380 #ifdef CONFIG_BQL
3381 	dql_queued(&dev_queue->dql, bytes);
3382 
3383 	if (likely(dql_avail(&dev_queue->dql) >= 0))
3384 		return;
3385 
3386 	set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3387 
3388 	/*
3389 	 * The XOFF flag must be set before checking the dql_avail below,
3390 	 * because in netdev_tx_completed_queue we update the dql_completed
3391 	 * before checking the XOFF flag.
3392 	 */
3393 	smp_mb();
3394 
3395 	/* check again in case another CPU has just made room avail */
3396 	if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3397 		clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3398 #endif
3399 }
3400 
3401 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3402  * that they should not test BQL status themselves.
3403  * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3404  * skb of a batch.
3405  * Returns true if the doorbell must be used to kick the NIC.
3406  */
__netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes,bool xmit_more)3407 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3408 					  unsigned int bytes,
3409 					  bool xmit_more)
3410 {
3411 	if (xmit_more) {
3412 #ifdef CONFIG_BQL
3413 		dql_queued(&dev_queue->dql, bytes);
3414 #endif
3415 		return netif_tx_queue_stopped(dev_queue);
3416 	}
3417 	netdev_tx_sent_queue(dev_queue, bytes);
3418 	return true;
3419 }
3420 
3421 /**
3422  *	netdev_sent_queue - report the number of bytes queued to hardware
3423  *	@dev: network device
3424  *	@bytes: number of bytes queued to the hardware device queue
3425  *
3426  *	Report the number of bytes queued for sending/completion to the network
3427  *	device hardware queue#0. @bytes should be a good approximation and should
3428  *	exactly match netdev_completed_queue() @bytes.
3429  *	This is typically called once per packet, from ndo_start_xmit().
3430  */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3431 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3432 {
3433 	netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3434 }
3435 
__netdev_sent_queue(struct net_device * dev,unsigned int bytes,bool xmit_more)3436 static inline bool __netdev_sent_queue(struct net_device *dev,
3437 				       unsigned int bytes,
3438 				       bool xmit_more)
3439 {
3440 	return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3441 				      xmit_more);
3442 }
3443 
3444 /**
3445  *	netdev_tx_completed_queue - report number of packets/bytes at TX completion.
3446  *	@dev_queue: network device queue
3447  *	@pkts: number of packets (currently ignored)
3448  *	@bytes: number of bytes dequeued from the device queue
3449  *
3450  *	Must be called at most once per TX completion round (and not per
3451  *	individual packet), so that BQL can adjust its limits appropriately.
3452  */
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3453 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3454 					     unsigned int pkts, unsigned int bytes)
3455 {
3456 #ifdef CONFIG_BQL
3457 	if (unlikely(!bytes))
3458 		return;
3459 
3460 	dql_completed(&dev_queue->dql, bytes);
3461 
3462 	/*
3463 	 * Without the memory barrier there is a small possiblity that
3464 	 * netdev_tx_sent_queue will miss the update and cause the queue to
3465 	 * be stopped forever
3466 	 */
3467 	smp_mb();
3468 
3469 	if (unlikely(dql_avail(&dev_queue->dql) < 0))
3470 		return;
3471 
3472 	if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3473 		netif_schedule_queue(dev_queue);
3474 #endif
3475 }
3476 
3477 /**
3478  * 	netdev_completed_queue - report bytes and packets completed by device
3479  * 	@dev: network device
3480  * 	@pkts: actual number of packets sent over the medium
3481  * 	@bytes: actual number of bytes sent over the medium
3482  *
3483  * 	Report the number of bytes and packets transmitted by the network device
3484  * 	hardware queue over the physical medium, @bytes must exactly match the
3485  * 	@bytes amount passed to netdev_sent_queue()
3486  */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3487 static inline void netdev_completed_queue(struct net_device *dev,
3488 					  unsigned int pkts, unsigned int bytes)
3489 {
3490 	netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3491 }
3492 
netdev_tx_reset_queue(struct netdev_queue * q)3493 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3494 {
3495 #ifdef CONFIG_BQL
3496 	clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3497 	dql_reset(&q->dql);
3498 #endif
3499 }
3500 
3501 /**
3502  * 	netdev_reset_queue - reset the packets and bytes count of a network device
3503  * 	@dev_queue: network device
3504  *
3505  * 	Reset the bytes and packet count of a network device and clear the
3506  * 	software flow control OFF bit for this network device
3507  */
netdev_reset_queue(struct net_device * dev_queue)3508 static inline void netdev_reset_queue(struct net_device *dev_queue)
3509 {
3510 	netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3511 }
3512 
3513 /**
3514  * 	netdev_cap_txqueue - check if selected tx queue exceeds device queues
3515  * 	@dev: network device
3516  * 	@queue_index: given tx queue index
3517  *
3518  * 	Returns 0 if given tx queue index >= number of device tx queues,
3519  * 	otherwise returns the originally passed tx queue index.
3520  */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3521 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3522 {
3523 	if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3524 		net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3525 				     dev->name, queue_index,
3526 				     dev->real_num_tx_queues);
3527 		return 0;
3528 	}
3529 
3530 	return queue_index;
3531 }
3532 
3533 /**
3534  *	netif_running - test if up
3535  *	@dev: network device
3536  *
3537  *	Test if the device has been brought up.
3538  */
netif_running(const struct net_device * dev)3539 static inline bool netif_running(const struct net_device *dev)
3540 {
3541 	return test_bit(__LINK_STATE_START, &dev->state);
3542 }
3543 
3544 /*
3545  * Routines to manage the subqueues on a device.  We only need start,
3546  * stop, and a check if it's stopped.  All other device management is
3547  * done at the overall netdevice level.
3548  * Also test the device if we're multiqueue.
3549  */
3550 
3551 /**
3552  *	netif_start_subqueue - allow sending packets on subqueue
3553  *	@dev: network device
3554  *	@queue_index: sub queue index
3555  *
3556  * Start individual transmit queue of a device with multiple transmit queues.
3557  */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3558 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3559 {
3560 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3561 
3562 	netif_tx_start_queue(txq);
3563 }
3564 
3565 /**
3566  *	netif_stop_subqueue - stop sending packets on subqueue
3567  *	@dev: network device
3568  *	@queue_index: sub queue index
3569  *
3570  * Stop individual transmit queue of a device with multiple transmit queues.
3571  */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3572 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3573 {
3574 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3575 	netif_tx_stop_queue(txq);
3576 }
3577 
3578 /**
3579  *	__netif_subqueue_stopped - test status of subqueue
3580  *	@dev: network device
3581  *	@queue_index: sub queue index
3582  *
3583  * Check individual transmit queue of a device with multiple transmit queues.
3584  */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3585 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3586 					    u16 queue_index)
3587 {
3588 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3589 
3590 	return netif_tx_queue_stopped(txq);
3591 }
3592 
3593 /**
3594  *	netif_subqueue_stopped - test status of subqueue
3595  *	@dev: network device
3596  *	@skb: sub queue buffer pointer
3597  *
3598  * Check individual transmit queue of a device with multiple transmit queues.
3599  */
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3600 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3601 					  struct sk_buff *skb)
3602 {
3603 	return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3604 }
3605 
3606 /**
3607  *	netif_wake_subqueue - allow sending packets on subqueue
3608  *	@dev: network device
3609  *	@queue_index: sub queue index
3610  *
3611  * Resume individual transmit queue of a device with multiple transmit queues.
3612  */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)3613 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3614 {
3615 	struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3616 
3617 	netif_tx_wake_queue(txq);
3618 }
3619 
3620 #ifdef CONFIG_XPS
3621 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3622 			u16 index);
3623 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3624 			  u16 index, enum xps_map_type type);
3625 
3626 /**
3627  *	netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3628  *	@j: CPU/Rx queue index
3629  *	@mask: bitmask of all cpus/rx queues
3630  *	@nr_bits: number of bits in the bitmask
3631  *
3632  * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3633  */
netif_attr_test_mask(unsigned long j,const unsigned long * mask,unsigned int nr_bits)3634 static inline bool netif_attr_test_mask(unsigned long j,
3635 					const unsigned long *mask,
3636 					unsigned int nr_bits)
3637 {
3638 	cpu_max_bits_warn(j, nr_bits);
3639 	return test_bit(j, mask);
3640 }
3641 
3642 /**
3643  *	netif_attr_test_online - Test for online CPU/Rx queue
3644  *	@j: CPU/Rx queue index
3645  *	@online_mask: bitmask for CPUs/Rx queues that are online
3646  *	@nr_bits: number of bits in the bitmask
3647  *
3648  * Returns true if a CPU/Rx queue is online.
3649  */
netif_attr_test_online(unsigned long j,const unsigned long * online_mask,unsigned int nr_bits)3650 static inline bool netif_attr_test_online(unsigned long j,
3651 					  const unsigned long *online_mask,
3652 					  unsigned int nr_bits)
3653 {
3654 	cpu_max_bits_warn(j, nr_bits);
3655 
3656 	if (online_mask)
3657 		return test_bit(j, online_mask);
3658 
3659 	return (j < nr_bits);
3660 }
3661 
3662 /**
3663  *	netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3664  *	@n: CPU/Rx queue index
3665  *	@srcp: the cpumask/Rx queue mask pointer
3666  *	@nr_bits: number of bits in the bitmask
3667  *
3668  * Returns >= nr_bits if no further CPUs/Rx queues set.
3669  */
netif_attrmask_next(int n,const unsigned long * srcp,unsigned int nr_bits)3670 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3671 					       unsigned int nr_bits)
3672 {
3673 	/* -1 is a legal arg here. */
3674 	if (n != -1)
3675 		cpu_max_bits_warn(n, nr_bits);
3676 
3677 	if (srcp)
3678 		return find_next_bit(srcp, nr_bits, n + 1);
3679 
3680 	return n + 1;
3681 }
3682 
3683 /**
3684  *	netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3685  *	@n: CPU/Rx queue index
3686  *	@src1p: the first CPUs/Rx queues mask pointer
3687  *	@src2p: the second CPUs/Rx queues mask pointer
3688  *	@nr_bits: number of bits in the bitmask
3689  *
3690  * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3691  */
netif_attrmask_next_and(int n,const unsigned long * src1p,const unsigned long * src2p,unsigned int nr_bits)3692 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3693 					  const unsigned long *src2p,
3694 					  unsigned int nr_bits)
3695 {
3696 	/* -1 is a legal arg here. */
3697 	if (n != -1)
3698 		cpu_max_bits_warn(n, nr_bits);
3699 
3700 	if (src1p && src2p)
3701 		return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3702 	else if (src1p)
3703 		return find_next_bit(src1p, nr_bits, n + 1);
3704 	else if (src2p)
3705 		return find_next_bit(src2p, nr_bits, n + 1);
3706 
3707 	return n + 1;
3708 }
3709 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3710 static inline int netif_set_xps_queue(struct net_device *dev,
3711 				      const struct cpumask *mask,
3712 				      u16 index)
3713 {
3714 	return 0;
3715 }
3716 
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)3717 static inline int __netif_set_xps_queue(struct net_device *dev,
3718 					const unsigned long *mask,
3719 					u16 index, enum xps_map_type type)
3720 {
3721 	return 0;
3722 }
3723 #endif
3724 
3725 /**
3726  *	netif_is_multiqueue - test if device has multiple transmit queues
3727  *	@dev: network device
3728  *
3729  * Check if device has multiple transmit queues
3730  */
netif_is_multiqueue(const struct net_device * dev)3731 static inline bool netif_is_multiqueue(const struct net_device *dev)
3732 {
3733 	return dev->num_tx_queues > 1;
3734 }
3735 
3736 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3737 
3738 #ifdef CONFIG_SYSFS
3739 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3740 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxqs)3741 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3742 						unsigned int rxqs)
3743 {
3744 	dev->real_num_rx_queues = rxqs;
3745 	return 0;
3746 }
3747 #endif
3748 int netif_set_real_num_queues(struct net_device *dev,
3749 			      unsigned int txq, unsigned int rxq);
3750 
3751 static inline struct netdev_rx_queue *
__netif_get_rx_queue(struct net_device * dev,unsigned int rxq)3752 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3753 {
3754 	return dev->_rx + rxq;
3755 }
3756 
3757 #ifdef CONFIG_SYSFS
get_netdev_rx_queue_index(struct netdev_rx_queue * queue)3758 static inline unsigned int get_netdev_rx_queue_index(
3759 		struct netdev_rx_queue *queue)
3760 {
3761 	struct net_device *dev = queue->dev;
3762 	int index = queue - dev->_rx;
3763 
3764 	BUG_ON(index >= dev->num_rx_queues);
3765 	return index;
3766 }
3767 #endif
3768 
3769 int netif_get_num_default_rss_queues(void);
3770 
3771 enum skb_free_reason {
3772 	SKB_REASON_CONSUMED,
3773 	SKB_REASON_DROPPED,
3774 };
3775 
3776 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3777 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3778 
3779 /*
3780  * It is not allowed to call kfree_skb() or consume_skb() from hardware
3781  * interrupt context or with hardware interrupts being disabled.
3782  * (in_hardirq() || irqs_disabled())
3783  *
3784  * We provide four helpers that can be used in following contexts :
3785  *
3786  * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3787  *  replacing kfree_skb(skb)
3788  *
3789  * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3790  *  Typically used in place of consume_skb(skb) in TX completion path
3791  *
3792  * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3793  *  replacing kfree_skb(skb)
3794  *
3795  * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3796  *  and consumed a packet. Used in place of consume_skb(skb)
3797  */
dev_kfree_skb_irq(struct sk_buff * skb)3798 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3799 {
3800 	__dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3801 }
3802 
dev_consume_skb_irq(struct sk_buff * skb)3803 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3804 {
3805 	__dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3806 }
3807 
dev_kfree_skb_any(struct sk_buff * skb)3808 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3809 {
3810 	__dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3811 }
3812 
dev_consume_skb_any(struct sk_buff * skb)3813 static inline void dev_consume_skb_any(struct sk_buff *skb)
3814 {
3815 	__dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3816 }
3817 
3818 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3819 			     struct bpf_prog *xdp_prog);
3820 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3821 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3822 int netif_rx(struct sk_buff *skb);
3823 int __netif_rx(struct sk_buff *skb);
3824 
3825 int netif_receive_skb(struct sk_buff *skb);
3826 int netif_receive_skb_core(struct sk_buff *skb);
3827 void netif_receive_skb_list_internal(struct list_head *head);
3828 void netif_receive_skb_list(struct list_head *head);
3829 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3830 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3831 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3832 void napi_get_frags_check(struct napi_struct *napi);
3833 gro_result_t napi_gro_frags(struct napi_struct *napi);
3834 struct packet_offload *gro_find_receive_by_type(__be16 type);
3835 struct packet_offload *gro_find_complete_by_type(__be16 type);
3836 
napi_free_frags(struct napi_struct * napi)3837 static inline void napi_free_frags(struct napi_struct *napi)
3838 {
3839 	kfree_skb(napi->skb);
3840 	napi->skb = NULL;
3841 }
3842 
3843 bool netdev_is_rx_handler_busy(struct net_device *dev);
3844 int netdev_rx_handler_register(struct net_device *dev,
3845 			       rx_handler_func_t *rx_handler,
3846 			       void *rx_handler_data);
3847 void netdev_rx_handler_unregister(struct net_device *dev);
3848 
3849 bool dev_valid_name(const char *name);
is_socket_ioctl_cmd(unsigned int cmd)3850 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3851 {
3852 	return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3853 }
3854 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3855 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3856 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3857 		void __user *data, bool *need_copyout);
3858 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3859 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3860 unsigned int dev_get_flags(const struct net_device *);
3861 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3862 		       struct netlink_ext_ack *extack);
3863 int dev_change_flags(struct net_device *dev, unsigned int flags,
3864 		     struct netlink_ext_ack *extack);
3865 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3866 			unsigned int gchanges);
3867 int dev_set_alias(struct net_device *, const char *, size_t);
3868 int dev_get_alias(const struct net_device *, char *, size_t);
3869 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3870 			       const char *pat, int new_ifindex);
3871 static inline
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)3872 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3873 			     const char *pat)
3874 {
3875 	return __dev_change_net_namespace(dev, net, pat, 0);
3876 }
3877 int __dev_set_mtu(struct net_device *, int);
3878 int dev_set_mtu(struct net_device *, int);
3879 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3880 			      struct netlink_ext_ack *extack);
3881 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3882 			struct netlink_ext_ack *extack);
3883 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3884 			     struct netlink_ext_ack *extack);
3885 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3886 int dev_get_port_parent_id(struct net_device *dev,
3887 			   struct netdev_phys_item_id *ppid, bool recurse);
3888 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3889 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3890 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3891 				    struct netdev_queue *txq, int *ret);
3892 
3893 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3894 u8 dev_xdp_prog_count(struct net_device *dev);
3895 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3896 
3897 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3898 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3899 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3900 bool is_skb_forwardable(const struct net_device *dev,
3901 			const struct sk_buff *skb);
3902 
__is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb,const bool check_mtu)3903 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3904 						 const struct sk_buff *skb,
3905 						 const bool check_mtu)
3906 {
3907 	const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3908 	unsigned int len;
3909 
3910 	if (!(dev->flags & IFF_UP))
3911 		return false;
3912 
3913 	if (!check_mtu)
3914 		return true;
3915 
3916 	len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3917 	if (skb->len <= len)
3918 		return true;
3919 
3920 	/* if TSO is enabled, we don't care about the length as the packet
3921 	 * could be forwarded without being segmented before
3922 	 */
3923 	if (skb_is_gso(skb))
3924 		return true;
3925 
3926 	return false;
3927 }
3928 
3929 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
3930 
dev_core_stats(struct net_device * dev)3931 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
3932 {
3933 	/* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
3934 	struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
3935 
3936 	if (likely(p))
3937 		return p;
3938 
3939 	return netdev_core_stats_alloc(dev);
3940 }
3941 
3942 #define DEV_CORE_STATS_INC(FIELD)						\
3943 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev)		\
3944 {										\
3945 	struct net_device_core_stats __percpu *p;				\
3946 										\
3947 	p = dev_core_stats(dev);						\
3948 	if (p)									\
3949 		this_cpu_inc(p->FIELD);						\
3950 }
3951 DEV_CORE_STATS_INC(rx_dropped)
DEV_CORE_STATS_INC(tx_dropped)3952 DEV_CORE_STATS_INC(tx_dropped)
3953 DEV_CORE_STATS_INC(rx_nohandler)
3954 DEV_CORE_STATS_INC(rx_otherhost_dropped)
3955 
3956 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3957 					       struct sk_buff *skb,
3958 					       const bool check_mtu)
3959 {
3960 	if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3961 	    unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3962 		dev_core_stats_rx_dropped_inc(dev);
3963 		kfree_skb(skb);
3964 		return NET_RX_DROP;
3965 	}
3966 
3967 	skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3968 	skb->priority = 0;
3969 	return 0;
3970 }
3971 
3972 bool dev_nit_active(struct net_device *dev);
3973 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3974 
__dev_put(struct net_device * dev)3975 static inline void __dev_put(struct net_device *dev)
3976 {
3977 	if (dev) {
3978 #ifdef CONFIG_PCPU_DEV_REFCNT
3979 		this_cpu_dec(*dev->pcpu_refcnt);
3980 #else
3981 		refcount_dec(&dev->dev_refcnt);
3982 #endif
3983 	}
3984 }
3985 
__dev_hold(struct net_device * dev)3986 static inline void __dev_hold(struct net_device *dev)
3987 {
3988 	if (dev) {
3989 #ifdef CONFIG_PCPU_DEV_REFCNT
3990 		this_cpu_inc(*dev->pcpu_refcnt);
3991 #else
3992 		refcount_inc(&dev->dev_refcnt);
3993 #endif
3994 	}
3995 }
3996 
__netdev_tracker_alloc(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)3997 static inline void __netdev_tracker_alloc(struct net_device *dev,
3998 					  netdevice_tracker *tracker,
3999 					  gfp_t gfp)
4000 {
4001 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4002 	ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
4003 #endif
4004 }
4005 
4006 /* netdev_tracker_alloc() can upgrade a prior untracked reference
4007  * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
4008  */
netdev_tracker_alloc(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4009 static inline void netdev_tracker_alloc(struct net_device *dev,
4010 					netdevice_tracker *tracker, gfp_t gfp)
4011 {
4012 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4013 	refcount_dec(&dev->refcnt_tracker.no_tracker);
4014 	__netdev_tracker_alloc(dev, tracker, gfp);
4015 #endif
4016 }
4017 
netdev_tracker_free(struct net_device * dev,netdevice_tracker * tracker)4018 static inline void netdev_tracker_free(struct net_device *dev,
4019 				       netdevice_tracker *tracker)
4020 {
4021 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
4022 	ref_tracker_free(&dev->refcnt_tracker, tracker);
4023 #endif
4024 }
4025 
netdev_hold(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)4026 static inline void netdev_hold(struct net_device *dev,
4027 			       netdevice_tracker *tracker, gfp_t gfp)
4028 {
4029 	if (dev) {
4030 		__dev_hold(dev);
4031 		__netdev_tracker_alloc(dev, tracker, gfp);
4032 	}
4033 }
4034 
netdev_put(struct net_device * dev,netdevice_tracker * tracker)4035 static inline void netdev_put(struct net_device *dev,
4036 			      netdevice_tracker *tracker)
4037 {
4038 	if (dev) {
4039 		netdev_tracker_free(dev, tracker);
4040 		__dev_put(dev);
4041 	}
4042 }
4043 
4044 /**
4045  *	dev_hold - get reference to device
4046  *	@dev: network device
4047  *
4048  * Hold reference to device to keep it from being freed.
4049  * Try using netdev_hold() instead.
4050  */
dev_hold(struct net_device * dev)4051 static inline void dev_hold(struct net_device *dev)
4052 {
4053 	netdev_hold(dev, NULL, GFP_ATOMIC);
4054 }
4055 
4056 /**
4057  *	dev_put - release reference to device
4058  *	@dev: network device
4059  *
4060  * Release reference to device to allow it to be freed.
4061  * Try using netdev_put() instead.
4062  */
dev_put(struct net_device * dev)4063 static inline void dev_put(struct net_device *dev)
4064 {
4065 	netdev_put(dev, NULL);
4066 }
4067 
netdev_ref_replace(struct net_device * odev,struct net_device * ndev,netdevice_tracker * tracker,gfp_t gfp)4068 static inline void netdev_ref_replace(struct net_device *odev,
4069 				      struct net_device *ndev,
4070 				      netdevice_tracker *tracker,
4071 				      gfp_t gfp)
4072 {
4073 	if (odev)
4074 		netdev_tracker_free(odev, tracker);
4075 
4076 	__dev_hold(ndev);
4077 	__dev_put(odev);
4078 
4079 	if (ndev)
4080 		__netdev_tracker_alloc(ndev, tracker, gfp);
4081 }
4082 
4083 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4084  * and _off may be called from IRQ context, but it is caller
4085  * who is responsible for serialization of these calls.
4086  *
4087  * The name carrier is inappropriate, these functions should really be
4088  * called netif_lowerlayer_*() because they represent the state of any
4089  * kind of lower layer not just hardware media.
4090  */
4091 void linkwatch_fire_event(struct net_device *dev);
4092 
4093 /**
4094  *	netif_carrier_ok - test if carrier present
4095  *	@dev: network device
4096  *
4097  * Check if carrier is present on device
4098  */
netif_carrier_ok(const struct net_device * dev)4099 static inline bool netif_carrier_ok(const struct net_device *dev)
4100 {
4101 	return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4102 }
4103 
4104 unsigned long dev_trans_start(struct net_device *dev);
4105 
4106 void __netdev_watchdog_up(struct net_device *dev);
4107 
4108 void netif_carrier_on(struct net_device *dev);
4109 void netif_carrier_off(struct net_device *dev);
4110 void netif_carrier_event(struct net_device *dev);
4111 
4112 /**
4113  *	netif_dormant_on - mark device as dormant.
4114  *	@dev: network device
4115  *
4116  * Mark device as dormant (as per RFC2863).
4117  *
4118  * The dormant state indicates that the relevant interface is not
4119  * actually in a condition to pass packets (i.e., it is not 'up') but is
4120  * in a "pending" state, waiting for some external event.  For "on-
4121  * demand" interfaces, this new state identifies the situation where the
4122  * interface is waiting for events to place it in the up state.
4123  */
netif_dormant_on(struct net_device * dev)4124 static inline void netif_dormant_on(struct net_device *dev)
4125 {
4126 	if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4127 		linkwatch_fire_event(dev);
4128 }
4129 
4130 /**
4131  *	netif_dormant_off - set device as not dormant.
4132  *	@dev: network device
4133  *
4134  * Device is not in dormant state.
4135  */
netif_dormant_off(struct net_device * dev)4136 static inline void netif_dormant_off(struct net_device *dev)
4137 {
4138 	if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4139 		linkwatch_fire_event(dev);
4140 }
4141 
4142 /**
4143  *	netif_dormant - test if device is dormant
4144  *	@dev: network device
4145  *
4146  * Check if device is dormant.
4147  */
netif_dormant(const struct net_device * dev)4148 static inline bool netif_dormant(const struct net_device *dev)
4149 {
4150 	return test_bit(__LINK_STATE_DORMANT, &dev->state);
4151 }
4152 
4153 
4154 /**
4155  *	netif_testing_on - mark device as under test.
4156  *	@dev: network device
4157  *
4158  * Mark device as under test (as per RFC2863).
4159  *
4160  * The testing state indicates that some test(s) must be performed on
4161  * the interface. After completion, of the test, the interface state
4162  * will change to up, dormant, or down, as appropriate.
4163  */
netif_testing_on(struct net_device * dev)4164 static inline void netif_testing_on(struct net_device *dev)
4165 {
4166 	if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4167 		linkwatch_fire_event(dev);
4168 }
4169 
4170 /**
4171  *	netif_testing_off - set device as not under test.
4172  *	@dev: network device
4173  *
4174  * Device is not in testing state.
4175  */
netif_testing_off(struct net_device * dev)4176 static inline void netif_testing_off(struct net_device *dev)
4177 {
4178 	if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4179 		linkwatch_fire_event(dev);
4180 }
4181 
4182 /**
4183  *	netif_testing - test if device is under test
4184  *	@dev: network device
4185  *
4186  * Check if device is under test
4187  */
netif_testing(const struct net_device * dev)4188 static inline bool netif_testing(const struct net_device *dev)
4189 {
4190 	return test_bit(__LINK_STATE_TESTING, &dev->state);
4191 }
4192 
4193 
4194 /**
4195  *	netif_oper_up - test if device is operational
4196  *	@dev: network device
4197  *
4198  * Check if carrier is operational
4199  */
netif_oper_up(const struct net_device * dev)4200 static inline bool netif_oper_up(const struct net_device *dev)
4201 {
4202 	return (dev->operstate == IF_OPER_UP ||
4203 		dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4204 }
4205 
4206 /**
4207  *	netif_device_present - is device available or removed
4208  *	@dev: network device
4209  *
4210  * Check if device has not been removed from system.
4211  */
netif_device_present(const struct net_device * dev)4212 static inline bool netif_device_present(const struct net_device *dev)
4213 {
4214 	return test_bit(__LINK_STATE_PRESENT, &dev->state);
4215 }
4216 
4217 void netif_device_detach(struct net_device *dev);
4218 
4219 void netif_device_attach(struct net_device *dev);
4220 
4221 /*
4222  * Network interface message level settings
4223  */
4224 
4225 enum {
4226 	NETIF_MSG_DRV_BIT,
4227 	NETIF_MSG_PROBE_BIT,
4228 	NETIF_MSG_LINK_BIT,
4229 	NETIF_MSG_TIMER_BIT,
4230 	NETIF_MSG_IFDOWN_BIT,
4231 	NETIF_MSG_IFUP_BIT,
4232 	NETIF_MSG_RX_ERR_BIT,
4233 	NETIF_MSG_TX_ERR_BIT,
4234 	NETIF_MSG_TX_QUEUED_BIT,
4235 	NETIF_MSG_INTR_BIT,
4236 	NETIF_MSG_TX_DONE_BIT,
4237 	NETIF_MSG_RX_STATUS_BIT,
4238 	NETIF_MSG_PKTDATA_BIT,
4239 	NETIF_MSG_HW_BIT,
4240 	NETIF_MSG_WOL_BIT,
4241 
4242 	/* When you add a new bit above, update netif_msg_class_names array
4243 	 * in net/ethtool/common.c
4244 	 */
4245 	NETIF_MSG_CLASS_COUNT,
4246 };
4247 /* Both ethtool_ops interface and internal driver implementation use u32 */
4248 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4249 
4250 #define __NETIF_MSG_BIT(bit)	((u32)1 << (bit))
4251 #define __NETIF_MSG(name)	__NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4252 
4253 #define NETIF_MSG_DRV		__NETIF_MSG(DRV)
4254 #define NETIF_MSG_PROBE		__NETIF_MSG(PROBE)
4255 #define NETIF_MSG_LINK		__NETIF_MSG(LINK)
4256 #define NETIF_MSG_TIMER		__NETIF_MSG(TIMER)
4257 #define NETIF_MSG_IFDOWN	__NETIF_MSG(IFDOWN)
4258 #define NETIF_MSG_IFUP		__NETIF_MSG(IFUP)
4259 #define NETIF_MSG_RX_ERR	__NETIF_MSG(RX_ERR)
4260 #define NETIF_MSG_TX_ERR	__NETIF_MSG(TX_ERR)
4261 #define NETIF_MSG_TX_QUEUED	__NETIF_MSG(TX_QUEUED)
4262 #define NETIF_MSG_INTR		__NETIF_MSG(INTR)
4263 #define NETIF_MSG_TX_DONE	__NETIF_MSG(TX_DONE)
4264 #define NETIF_MSG_RX_STATUS	__NETIF_MSG(RX_STATUS)
4265 #define NETIF_MSG_PKTDATA	__NETIF_MSG(PKTDATA)
4266 #define NETIF_MSG_HW		__NETIF_MSG(HW)
4267 #define NETIF_MSG_WOL		__NETIF_MSG(WOL)
4268 
4269 #define netif_msg_drv(p)	((p)->msg_enable & NETIF_MSG_DRV)
4270 #define netif_msg_probe(p)	((p)->msg_enable & NETIF_MSG_PROBE)
4271 #define netif_msg_link(p)	((p)->msg_enable & NETIF_MSG_LINK)
4272 #define netif_msg_timer(p)	((p)->msg_enable & NETIF_MSG_TIMER)
4273 #define netif_msg_ifdown(p)	((p)->msg_enable & NETIF_MSG_IFDOWN)
4274 #define netif_msg_ifup(p)	((p)->msg_enable & NETIF_MSG_IFUP)
4275 #define netif_msg_rx_err(p)	((p)->msg_enable & NETIF_MSG_RX_ERR)
4276 #define netif_msg_tx_err(p)	((p)->msg_enable & NETIF_MSG_TX_ERR)
4277 #define netif_msg_tx_queued(p)	((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4278 #define netif_msg_intr(p)	((p)->msg_enable & NETIF_MSG_INTR)
4279 #define netif_msg_tx_done(p)	((p)->msg_enable & NETIF_MSG_TX_DONE)
4280 #define netif_msg_rx_status(p)	((p)->msg_enable & NETIF_MSG_RX_STATUS)
4281 #define netif_msg_pktdata(p)	((p)->msg_enable & NETIF_MSG_PKTDATA)
4282 #define netif_msg_hw(p)		((p)->msg_enable & NETIF_MSG_HW)
4283 #define netif_msg_wol(p)	((p)->msg_enable & NETIF_MSG_WOL)
4284 
netif_msg_init(int debug_value,int default_msg_enable_bits)4285 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4286 {
4287 	/* use default */
4288 	if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4289 		return default_msg_enable_bits;
4290 	if (debug_value == 0)	/* no output */
4291 		return 0;
4292 	/* set low N bits */
4293 	return (1U << debug_value) - 1;
4294 }
4295 
__netif_tx_lock(struct netdev_queue * txq,int cpu)4296 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4297 {
4298 	spin_lock(&txq->_xmit_lock);
4299 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4300 	WRITE_ONCE(txq->xmit_lock_owner, cpu);
4301 }
4302 
__netif_tx_acquire(struct netdev_queue * txq)4303 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4304 {
4305 	__acquire(&txq->_xmit_lock);
4306 	return true;
4307 }
4308 
__netif_tx_release(struct netdev_queue * txq)4309 static inline void __netif_tx_release(struct netdev_queue *txq)
4310 {
4311 	__release(&txq->_xmit_lock);
4312 }
4313 
__netif_tx_lock_bh(struct netdev_queue * txq)4314 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4315 {
4316 	spin_lock_bh(&txq->_xmit_lock);
4317 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4318 	WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4319 }
4320 
__netif_tx_trylock(struct netdev_queue * txq)4321 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4322 {
4323 	bool ok = spin_trylock(&txq->_xmit_lock);
4324 
4325 	if (likely(ok)) {
4326 		/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4327 		WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4328 	}
4329 	return ok;
4330 }
4331 
__netif_tx_unlock(struct netdev_queue * txq)4332 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4333 {
4334 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4335 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4336 	spin_unlock(&txq->_xmit_lock);
4337 }
4338 
__netif_tx_unlock_bh(struct netdev_queue * txq)4339 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4340 {
4341 	/* Pairs with READ_ONCE() in __dev_queue_xmit() */
4342 	WRITE_ONCE(txq->xmit_lock_owner, -1);
4343 	spin_unlock_bh(&txq->_xmit_lock);
4344 }
4345 
4346 /*
4347  * txq->trans_start can be read locklessly from dev_watchdog()
4348  */
txq_trans_update(struct netdev_queue * txq)4349 static inline void txq_trans_update(struct netdev_queue *txq)
4350 {
4351 	if (txq->xmit_lock_owner != -1)
4352 		WRITE_ONCE(txq->trans_start, jiffies);
4353 }
4354 
txq_trans_cond_update(struct netdev_queue * txq)4355 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4356 {
4357 	unsigned long now = jiffies;
4358 
4359 	if (READ_ONCE(txq->trans_start) != now)
4360 		WRITE_ONCE(txq->trans_start, now);
4361 }
4362 
4363 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)4364 static inline void netif_trans_update(struct net_device *dev)
4365 {
4366 	struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4367 
4368 	txq_trans_cond_update(txq);
4369 }
4370 
4371 /**
4372  *	netif_tx_lock - grab network device transmit lock
4373  *	@dev: network device
4374  *
4375  * Get network device transmit lock
4376  */
4377 void netif_tx_lock(struct net_device *dev);
4378 
netif_tx_lock_bh(struct net_device * dev)4379 static inline void netif_tx_lock_bh(struct net_device *dev)
4380 {
4381 	local_bh_disable();
4382 	netif_tx_lock(dev);
4383 }
4384 
4385 void netif_tx_unlock(struct net_device *dev);
4386 
netif_tx_unlock_bh(struct net_device * dev)4387 static inline void netif_tx_unlock_bh(struct net_device *dev)
4388 {
4389 	netif_tx_unlock(dev);
4390 	local_bh_enable();
4391 }
4392 
4393 #define HARD_TX_LOCK(dev, txq, cpu) {			\
4394 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4395 		__netif_tx_lock(txq, cpu);		\
4396 	} else {					\
4397 		__netif_tx_acquire(txq);		\
4398 	}						\
4399 }
4400 
4401 #define HARD_TX_TRYLOCK(dev, txq)			\
4402 	(((dev->features & NETIF_F_LLTX) == 0) ?	\
4403 		__netif_tx_trylock(txq) :		\
4404 		__netif_tx_acquire(txq))
4405 
4406 #define HARD_TX_UNLOCK(dev, txq) {			\
4407 	if ((dev->features & NETIF_F_LLTX) == 0) {	\
4408 		__netif_tx_unlock(txq);			\
4409 	} else {					\
4410 		__netif_tx_release(txq);		\
4411 	}						\
4412 }
4413 
netif_tx_disable(struct net_device * dev)4414 static inline void netif_tx_disable(struct net_device *dev)
4415 {
4416 	unsigned int i;
4417 	int cpu;
4418 
4419 	local_bh_disable();
4420 	cpu = smp_processor_id();
4421 	spin_lock(&dev->tx_global_lock);
4422 	for (i = 0; i < dev->num_tx_queues; i++) {
4423 		struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4424 
4425 		__netif_tx_lock(txq, cpu);
4426 		netif_tx_stop_queue(txq);
4427 		__netif_tx_unlock(txq);
4428 	}
4429 	spin_unlock(&dev->tx_global_lock);
4430 	local_bh_enable();
4431 }
4432 
netif_addr_lock(struct net_device * dev)4433 static inline void netif_addr_lock(struct net_device *dev)
4434 {
4435 	unsigned char nest_level = 0;
4436 
4437 #ifdef CONFIG_LOCKDEP
4438 	nest_level = dev->nested_level;
4439 #endif
4440 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4441 }
4442 
netif_addr_lock_bh(struct net_device * dev)4443 static inline void netif_addr_lock_bh(struct net_device *dev)
4444 {
4445 	unsigned char nest_level = 0;
4446 
4447 #ifdef CONFIG_LOCKDEP
4448 	nest_level = dev->nested_level;
4449 #endif
4450 	local_bh_disable();
4451 	spin_lock_nested(&dev->addr_list_lock, nest_level);
4452 }
4453 
netif_addr_unlock(struct net_device * dev)4454 static inline void netif_addr_unlock(struct net_device *dev)
4455 {
4456 	spin_unlock(&dev->addr_list_lock);
4457 }
4458 
netif_addr_unlock_bh(struct net_device * dev)4459 static inline void netif_addr_unlock_bh(struct net_device *dev)
4460 {
4461 	spin_unlock_bh(&dev->addr_list_lock);
4462 }
4463 
4464 /*
4465  * dev_addrs walker. Should be used only for read access. Call with
4466  * rcu_read_lock held.
4467  */
4468 #define for_each_dev_addr(dev, ha) \
4469 		list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4470 
4471 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4472 
4473 void ether_setup(struct net_device *dev);
4474 
4475 /* Support for loadable net-drivers */
4476 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4477 				    unsigned char name_assign_type,
4478 				    void (*setup)(struct net_device *),
4479 				    unsigned int txqs, unsigned int rxqs);
4480 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4481 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4482 
4483 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4484 	alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4485 			 count)
4486 
4487 int register_netdev(struct net_device *dev);
4488 void unregister_netdev(struct net_device *dev);
4489 
4490 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4491 
4492 /* General hardware address lists handling functions */
4493 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4494 		   struct netdev_hw_addr_list *from_list, int addr_len);
4495 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4496 		      struct netdev_hw_addr_list *from_list, int addr_len);
4497 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4498 		       struct net_device *dev,
4499 		       int (*sync)(struct net_device *, const unsigned char *),
4500 		       int (*unsync)(struct net_device *,
4501 				     const unsigned char *));
4502 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4503 			   struct net_device *dev,
4504 			   int (*sync)(struct net_device *,
4505 				       const unsigned char *, int),
4506 			   int (*unsync)(struct net_device *,
4507 					 const unsigned char *, int));
4508 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4509 			      struct net_device *dev,
4510 			      int (*unsync)(struct net_device *,
4511 					    const unsigned char *, int));
4512 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4513 			  struct net_device *dev,
4514 			  int (*unsync)(struct net_device *,
4515 					const unsigned char *));
4516 void __hw_addr_init(struct netdev_hw_addr_list *list);
4517 
4518 /* Functions used for device addresses handling */
4519 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4520 		  const void *addr, size_t len);
4521 
4522 static inline void
__dev_addr_set(struct net_device * dev,const void * addr,size_t len)4523 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4524 {
4525 	dev_addr_mod(dev, 0, addr, len);
4526 }
4527 
dev_addr_set(struct net_device * dev,const u8 * addr)4528 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4529 {
4530 	__dev_addr_set(dev, addr, dev->addr_len);
4531 }
4532 
4533 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4534 		 unsigned char addr_type);
4535 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4536 		 unsigned char addr_type);
4537 
4538 /* Functions used for unicast addresses handling */
4539 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4540 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4541 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4542 int dev_uc_sync(struct net_device *to, struct net_device *from);
4543 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4544 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4545 void dev_uc_flush(struct net_device *dev);
4546 void dev_uc_init(struct net_device *dev);
4547 
4548 /**
4549  *  __dev_uc_sync - Synchonize device's unicast list
4550  *  @dev:  device to sync
4551  *  @sync: function to call if address should be added
4552  *  @unsync: function to call if address should be removed
4553  *
4554  *  Add newly added addresses to the interface, and release
4555  *  addresses that have been deleted.
4556  */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4557 static inline int __dev_uc_sync(struct net_device *dev,
4558 				int (*sync)(struct net_device *,
4559 					    const unsigned char *),
4560 				int (*unsync)(struct net_device *,
4561 					      const unsigned char *))
4562 {
4563 	return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4564 }
4565 
4566 /**
4567  *  __dev_uc_unsync - Remove synchronized addresses from device
4568  *  @dev:  device to sync
4569  *  @unsync: function to call if address should be removed
4570  *
4571  *  Remove all addresses that were added to the device by dev_uc_sync().
4572  */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4573 static inline void __dev_uc_unsync(struct net_device *dev,
4574 				   int (*unsync)(struct net_device *,
4575 						 const unsigned char *))
4576 {
4577 	__hw_addr_unsync_dev(&dev->uc, dev, unsync);
4578 }
4579 
4580 /* Functions used for multicast addresses handling */
4581 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4582 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4583 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4584 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4585 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4586 int dev_mc_sync(struct net_device *to, struct net_device *from);
4587 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4588 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4589 void dev_mc_flush(struct net_device *dev);
4590 void dev_mc_init(struct net_device *dev);
4591 
4592 /**
4593  *  __dev_mc_sync - Synchonize device's multicast list
4594  *  @dev:  device to sync
4595  *  @sync: function to call if address should be added
4596  *  @unsync: function to call if address should be removed
4597  *
4598  *  Add newly added addresses to the interface, and release
4599  *  addresses that have been deleted.
4600  */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4601 static inline int __dev_mc_sync(struct net_device *dev,
4602 				int (*sync)(struct net_device *,
4603 					    const unsigned char *),
4604 				int (*unsync)(struct net_device *,
4605 					      const unsigned char *))
4606 {
4607 	return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4608 }
4609 
4610 /**
4611  *  __dev_mc_unsync - Remove synchronized addresses from device
4612  *  @dev:  device to sync
4613  *  @unsync: function to call if address should be removed
4614  *
4615  *  Remove all addresses that were added to the device by dev_mc_sync().
4616  */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4617 static inline void __dev_mc_unsync(struct net_device *dev,
4618 				   int (*unsync)(struct net_device *,
4619 						 const unsigned char *))
4620 {
4621 	__hw_addr_unsync_dev(&dev->mc, dev, unsync);
4622 }
4623 
4624 /* Functions used for secondary unicast and multicast support */
4625 void dev_set_rx_mode(struct net_device *dev);
4626 int dev_set_promiscuity(struct net_device *dev, int inc);
4627 int dev_set_allmulti(struct net_device *dev, int inc);
4628 void netdev_state_change(struct net_device *dev);
4629 void __netdev_notify_peers(struct net_device *dev);
4630 void netdev_notify_peers(struct net_device *dev);
4631 void netdev_features_change(struct net_device *dev);
4632 /* Load a device via the kmod */
4633 void dev_load(struct net *net, const char *name);
4634 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4635 					struct rtnl_link_stats64 *storage);
4636 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4637 			     const struct net_device_stats *netdev_stats);
4638 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4639 			   const struct pcpu_sw_netstats __percpu *netstats);
4640 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4641 
4642 extern int		netdev_max_backlog;
4643 extern int		dev_rx_weight;
4644 extern int		dev_tx_weight;
4645 extern int		gro_normal_batch;
4646 
4647 enum {
4648 	NESTED_SYNC_IMM_BIT,
4649 	NESTED_SYNC_TODO_BIT,
4650 };
4651 
4652 #define __NESTED_SYNC_BIT(bit)	((u32)1 << (bit))
4653 #define __NESTED_SYNC(name)	__NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4654 
4655 #define NESTED_SYNC_IMM		__NESTED_SYNC(IMM)
4656 #define NESTED_SYNC_TODO	__NESTED_SYNC(TODO)
4657 
4658 struct netdev_nested_priv {
4659 	unsigned char flags;
4660 	void *data;
4661 };
4662 
4663 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4664 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4665 						     struct list_head **iter);
4666 
4667 /* iterate through upper list, must be called under RCU read lock */
4668 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4669 	for (iter = &(dev)->adj_list.upper, \
4670 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4671 	     updev; \
4672 	     updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4673 
4674 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4675 				  int (*fn)(struct net_device *upper_dev,
4676 					    struct netdev_nested_priv *priv),
4677 				  struct netdev_nested_priv *priv);
4678 
4679 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4680 				  struct net_device *upper_dev);
4681 
4682 bool netdev_has_any_upper_dev(struct net_device *dev);
4683 
4684 void *netdev_lower_get_next_private(struct net_device *dev,
4685 				    struct list_head **iter);
4686 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4687 					struct list_head **iter);
4688 
4689 #define netdev_for_each_lower_private(dev, priv, iter) \
4690 	for (iter = (dev)->adj_list.lower.next, \
4691 	     priv = netdev_lower_get_next_private(dev, &(iter)); \
4692 	     priv; \
4693 	     priv = netdev_lower_get_next_private(dev, &(iter)))
4694 
4695 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4696 	for (iter = &(dev)->adj_list.lower, \
4697 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4698 	     priv; \
4699 	     priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4700 
4701 void *netdev_lower_get_next(struct net_device *dev,
4702 				struct list_head **iter);
4703 
4704 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4705 	for (iter = (dev)->adj_list.lower.next, \
4706 	     ldev = netdev_lower_get_next(dev, &(iter)); \
4707 	     ldev; \
4708 	     ldev = netdev_lower_get_next(dev, &(iter)))
4709 
4710 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4711 					     struct list_head **iter);
4712 int netdev_walk_all_lower_dev(struct net_device *dev,
4713 			      int (*fn)(struct net_device *lower_dev,
4714 					struct netdev_nested_priv *priv),
4715 			      struct netdev_nested_priv *priv);
4716 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4717 				  int (*fn)(struct net_device *lower_dev,
4718 					    struct netdev_nested_priv *priv),
4719 				  struct netdev_nested_priv *priv);
4720 
4721 void *netdev_adjacent_get_private(struct list_head *adj_list);
4722 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4723 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4724 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4725 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4726 			  struct netlink_ext_ack *extack);
4727 int netdev_master_upper_dev_link(struct net_device *dev,
4728 				 struct net_device *upper_dev,
4729 				 void *upper_priv, void *upper_info,
4730 				 struct netlink_ext_ack *extack);
4731 void netdev_upper_dev_unlink(struct net_device *dev,
4732 			     struct net_device *upper_dev);
4733 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4734 				   struct net_device *new_dev,
4735 				   struct net_device *dev,
4736 				   struct netlink_ext_ack *extack);
4737 void netdev_adjacent_change_commit(struct net_device *old_dev,
4738 				   struct net_device *new_dev,
4739 				   struct net_device *dev);
4740 void netdev_adjacent_change_abort(struct net_device *old_dev,
4741 				  struct net_device *new_dev,
4742 				  struct net_device *dev);
4743 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4744 void *netdev_lower_dev_get_private(struct net_device *dev,
4745 				   struct net_device *lower_dev);
4746 void netdev_lower_state_changed(struct net_device *lower_dev,
4747 				void *lower_state_info);
4748 
4749 /* RSS keys are 40 or 52 bytes long */
4750 #define NETDEV_RSS_KEY_LEN 52
4751 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4752 void netdev_rss_key_fill(void *buffer, size_t len);
4753 
4754 int skb_checksum_help(struct sk_buff *skb);
4755 int skb_crc32c_csum_help(struct sk_buff *skb);
4756 int skb_csum_hwoffload_help(struct sk_buff *skb,
4757 			    const netdev_features_t features);
4758 
4759 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4760 				  netdev_features_t features, bool tx_path);
4761 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4762 				    netdev_features_t features, __be16 type);
4763 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4764 				    netdev_features_t features);
4765 
4766 struct netdev_bonding_info {
4767 	ifslave	slave;
4768 	ifbond	master;
4769 };
4770 
4771 struct netdev_notifier_bonding_info {
4772 	struct netdev_notifier_info info; /* must be first */
4773 	struct netdev_bonding_info  bonding_info;
4774 };
4775 
4776 void netdev_bonding_info_change(struct net_device *dev,
4777 				struct netdev_bonding_info *bonding_info);
4778 
4779 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4780 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4781 #else
ethtool_notify(struct net_device * dev,unsigned int cmd,const void * data)4782 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4783 				  const void *data)
4784 {
4785 }
4786 #endif
4787 
4788 static inline
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)4789 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4790 {
4791 	return __skb_gso_segment(skb, features, true);
4792 }
4793 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4794 
can_checksum_protocol(netdev_features_t features,__be16 protocol)4795 static inline bool can_checksum_protocol(netdev_features_t features,
4796 					 __be16 protocol)
4797 {
4798 	if (protocol == htons(ETH_P_FCOE))
4799 		return !!(features & NETIF_F_FCOE_CRC);
4800 
4801 	/* Assume this is an IP checksum (not SCTP CRC) */
4802 
4803 	if (features & NETIF_F_HW_CSUM) {
4804 		/* Can checksum everything */
4805 		return true;
4806 	}
4807 
4808 	switch (protocol) {
4809 	case htons(ETH_P_IP):
4810 		return !!(features & NETIF_F_IP_CSUM);
4811 	case htons(ETH_P_IPV6):
4812 		return !!(features & NETIF_F_IPV6_CSUM);
4813 	default:
4814 		return false;
4815 	}
4816 }
4817 
4818 #ifdef CONFIG_BUG
4819 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4820 #else
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)4821 static inline void netdev_rx_csum_fault(struct net_device *dev,
4822 					struct sk_buff *skb)
4823 {
4824 }
4825 #endif
4826 /* rx skb timestamps */
4827 void net_enable_timestamp(void);
4828 void net_disable_timestamp(void);
4829 
netdev_get_tstamp(struct net_device * dev,const struct skb_shared_hwtstamps * hwtstamps,bool cycles)4830 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4831 					const struct skb_shared_hwtstamps *hwtstamps,
4832 					bool cycles)
4833 {
4834 	const struct net_device_ops *ops = dev->netdev_ops;
4835 
4836 	if (ops->ndo_get_tstamp)
4837 		return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4838 
4839 	return hwtstamps->hwtstamp;
4840 }
4841 
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)4842 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4843 					      struct sk_buff *skb, struct net_device *dev,
4844 					      bool more)
4845 {
4846 	__this_cpu_write(softnet_data.xmit.more, more);
4847 	return ops->ndo_start_xmit(skb, dev);
4848 }
4849 
netdev_xmit_more(void)4850 static inline bool netdev_xmit_more(void)
4851 {
4852 	return __this_cpu_read(softnet_data.xmit.more);
4853 }
4854 
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)4855 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4856 					    struct netdev_queue *txq, bool more)
4857 {
4858 	const struct net_device_ops *ops = dev->netdev_ops;
4859 	netdev_tx_t rc;
4860 
4861 	rc = __netdev_start_xmit(ops, skb, dev, more);
4862 	if (rc == NETDEV_TX_OK)
4863 		txq_trans_update(txq);
4864 
4865 	return rc;
4866 }
4867 
4868 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4869 				const void *ns);
4870 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4871 				 const void *ns);
4872 
4873 extern const struct kobj_ns_type_operations net_ns_type_operations;
4874 
4875 const char *netdev_drivername(const struct net_device *dev);
4876 
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)4877 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4878 							  netdev_features_t f2)
4879 {
4880 	if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4881 		if (f1 & NETIF_F_HW_CSUM)
4882 			f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4883 		else
4884 			f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4885 	}
4886 
4887 	return f1 & f2;
4888 }
4889 
netdev_get_wanted_features(struct net_device * dev)4890 static inline netdev_features_t netdev_get_wanted_features(
4891 	struct net_device *dev)
4892 {
4893 	return (dev->features & ~dev->hw_features) | dev->wanted_features;
4894 }
4895 netdev_features_t netdev_increment_features(netdev_features_t all,
4896 	netdev_features_t one, netdev_features_t mask);
4897 
4898 /* Allow TSO being used on stacked device :
4899  * Performing the GSO segmentation before last device
4900  * is a performance improvement.
4901  */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)4902 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4903 							netdev_features_t mask)
4904 {
4905 	return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4906 }
4907 
4908 int __netdev_update_features(struct net_device *dev);
4909 void netdev_update_features(struct net_device *dev);
4910 void netdev_change_features(struct net_device *dev);
4911 
4912 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4913 					struct net_device *dev);
4914 
4915 netdev_features_t passthru_features_check(struct sk_buff *skb,
4916 					  struct net_device *dev,
4917 					  netdev_features_t features);
4918 netdev_features_t netif_skb_features(struct sk_buff *skb);
4919 
net_gso_ok(netdev_features_t features,int gso_type)4920 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4921 {
4922 	netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4923 
4924 	/* check flags correspondence */
4925 	BUILD_BUG_ON(SKB_GSO_TCPV4   != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4926 	BUILD_BUG_ON(SKB_GSO_DODGY   != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4927 	BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4928 	BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4929 	BUILD_BUG_ON(SKB_GSO_TCPV6   != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4930 	BUILD_BUG_ON(SKB_GSO_FCOE    != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4931 	BUILD_BUG_ON(SKB_GSO_GRE     != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4932 	BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4933 	BUILD_BUG_ON(SKB_GSO_IPXIP4  != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4934 	BUILD_BUG_ON(SKB_GSO_IPXIP6  != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4935 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4936 	BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4937 	BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4938 	BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4939 	BUILD_BUG_ON(SKB_GSO_SCTP    != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4940 	BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4941 	BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4942 	BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4943 	BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4944 
4945 	return (features & feature) == feature;
4946 }
4947 
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)4948 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4949 {
4950 	return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4951 	       (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4952 }
4953 
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)4954 static inline bool netif_needs_gso(struct sk_buff *skb,
4955 				   netdev_features_t features)
4956 {
4957 	return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4958 		unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4959 			 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4960 }
4961 
4962 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
4963 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
4964 void netif_inherit_tso_max(struct net_device *to,
4965 			   const struct net_device *from);
4966 
skb_gso_error_unwind(struct sk_buff * skb,__be16 protocol,int pulled_hlen,u16 mac_offset,int mac_len)4967 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4968 					int pulled_hlen, u16 mac_offset,
4969 					int mac_len)
4970 {
4971 	skb->protocol = protocol;
4972 	skb->encapsulation = 1;
4973 	skb_push(skb, pulled_hlen);
4974 	skb_reset_transport_header(skb);
4975 	skb->mac_header = mac_offset;
4976 	skb->network_header = skb->mac_header + mac_len;
4977 	skb->mac_len = mac_len;
4978 }
4979 
netif_is_macsec(const struct net_device * dev)4980 static inline bool netif_is_macsec(const struct net_device *dev)
4981 {
4982 	return dev->priv_flags & IFF_MACSEC;
4983 }
4984 
netif_is_macvlan(const struct net_device * dev)4985 static inline bool netif_is_macvlan(const struct net_device *dev)
4986 {
4987 	return dev->priv_flags & IFF_MACVLAN;
4988 }
4989 
netif_is_macvlan_port(const struct net_device * dev)4990 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4991 {
4992 	return dev->priv_flags & IFF_MACVLAN_PORT;
4993 }
4994 
netif_is_bond_master(const struct net_device * dev)4995 static inline bool netif_is_bond_master(const struct net_device *dev)
4996 {
4997 	return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4998 }
4999 
netif_is_bond_slave(const struct net_device * dev)5000 static inline bool netif_is_bond_slave(const struct net_device *dev)
5001 {
5002 	return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
5003 }
5004 
netif_supports_nofcs(struct net_device * dev)5005 static inline bool netif_supports_nofcs(struct net_device *dev)
5006 {
5007 	return dev->priv_flags & IFF_SUPP_NOFCS;
5008 }
5009 
netif_has_l3_rx_handler(const struct net_device * dev)5010 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
5011 {
5012 	return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
5013 }
5014 
netif_is_l3_master(const struct net_device * dev)5015 static inline bool netif_is_l3_master(const struct net_device *dev)
5016 {
5017 	return dev->priv_flags & IFF_L3MDEV_MASTER;
5018 }
5019 
netif_is_l3_slave(const struct net_device * dev)5020 static inline bool netif_is_l3_slave(const struct net_device *dev)
5021 {
5022 	return dev->priv_flags & IFF_L3MDEV_SLAVE;
5023 }
5024 
netif_is_bridge_master(const struct net_device * dev)5025 static inline bool netif_is_bridge_master(const struct net_device *dev)
5026 {
5027 	return dev->priv_flags & IFF_EBRIDGE;
5028 }
5029 
netif_is_bridge_port(const struct net_device * dev)5030 static inline bool netif_is_bridge_port(const struct net_device *dev)
5031 {
5032 	return dev->priv_flags & IFF_BRIDGE_PORT;
5033 }
5034 
netif_is_ovs_master(const struct net_device * dev)5035 static inline bool netif_is_ovs_master(const struct net_device *dev)
5036 {
5037 	return dev->priv_flags & IFF_OPENVSWITCH;
5038 }
5039 
netif_is_ovs_port(const struct net_device * dev)5040 static inline bool netif_is_ovs_port(const struct net_device *dev)
5041 {
5042 	return dev->priv_flags & IFF_OVS_DATAPATH;
5043 }
5044 
netif_is_any_bridge_port(const struct net_device * dev)5045 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5046 {
5047 	return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5048 }
5049 
netif_is_team_master(const struct net_device * dev)5050 static inline bool netif_is_team_master(const struct net_device *dev)
5051 {
5052 	return dev->priv_flags & IFF_TEAM;
5053 }
5054 
netif_is_team_port(const struct net_device * dev)5055 static inline bool netif_is_team_port(const struct net_device *dev)
5056 {
5057 	return dev->priv_flags & IFF_TEAM_PORT;
5058 }
5059 
netif_is_lag_master(const struct net_device * dev)5060 static inline bool netif_is_lag_master(const struct net_device *dev)
5061 {
5062 	return netif_is_bond_master(dev) || netif_is_team_master(dev);
5063 }
5064 
netif_is_lag_port(const struct net_device * dev)5065 static inline bool netif_is_lag_port(const struct net_device *dev)
5066 {
5067 	return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5068 }
5069 
netif_is_rxfh_configured(const struct net_device * dev)5070 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5071 {
5072 	return dev->priv_flags & IFF_RXFH_CONFIGURED;
5073 }
5074 
netif_is_failover(const struct net_device * dev)5075 static inline bool netif_is_failover(const struct net_device *dev)
5076 {
5077 	return dev->priv_flags & IFF_FAILOVER;
5078 }
5079 
netif_is_failover_slave(const struct net_device * dev)5080 static inline bool netif_is_failover_slave(const struct net_device *dev)
5081 {
5082 	return dev->priv_flags & IFF_FAILOVER_SLAVE;
5083 }
5084 
5085 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)5086 static inline void netif_keep_dst(struct net_device *dev)
5087 {
5088 	dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5089 }
5090 
5091 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)5092 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5093 {
5094 	/* TODO: reserve and use an additional IFF bit, if we get more users */
5095 	return netif_is_macsec(dev);
5096 }
5097 
5098 extern struct pernet_operations __net_initdata loopback_net_ops;
5099 
5100 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5101 
5102 /* netdev_printk helpers, similar to dev_printk */
5103 
netdev_name(const struct net_device * dev)5104 static inline const char *netdev_name(const struct net_device *dev)
5105 {
5106 	if (!dev->name[0] || strchr(dev->name, '%'))
5107 		return "(unnamed net_device)";
5108 	return dev->name;
5109 }
5110 
netdev_unregistering(const struct net_device * dev)5111 static inline bool netdev_unregistering(const struct net_device *dev)
5112 {
5113 	return dev->reg_state == NETREG_UNREGISTERING;
5114 }
5115 
netdev_reg_state(const struct net_device * dev)5116 static inline const char *netdev_reg_state(const struct net_device *dev)
5117 {
5118 	switch (dev->reg_state) {
5119 	case NETREG_UNINITIALIZED: return " (uninitialized)";
5120 	case NETREG_REGISTERED: return "";
5121 	case NETREG_UNREGISTERING: return " (unregistering)";
5122 	case NETREG_UNREGISTERED: return " (unregistered)";
5123 	case NETREG_RELEASED: return " (released)";
5124 	case NETREG_DUMMY: return " (dummy)";
5125 	}
5126 
5127 	WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5128 	return " (unknown)";
5129 }
5130 
5131 #define MODULE_ALIAS_NETDEV(device) \
5132 	MODULE_ALIAS("netdev-" device)
5133 
5134 /*
5135  * netdev_WARN() acts like dev_printk(), but with the key difference
5136  * of using a WARN/WARN_ON to get the message out, including the
5137  * file/line information and a backtrace.
5138  */
5139 #define netdev_WARN(dev, format, args...)			\
5140 	WARN(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5141 	     netdev_reg_state(dev), ##args)
5142 
5143 #define netdev_WARN_ONCE(dev, format, args...)				\
5144 	WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev),	\
5145 		  netdev_reg_state(dev), ##args)
5146 
5147 /*
5148  *	The list of packet types we will receive (as opposed to discard)
5149  *	and the routines to invoke.
5150  *
5151  *	Why 16. Because with 16 the only overlap we get on a hash of the
5152  *	low nibble of the protocol value is RARP/SNAP/X.25.
5153  *
5154  *		0800	IP
5155  *		0001	802.3
5156  *		0002	AX.25
5157  *		0004	802.2
5158  *		8035	RARP
5159  *		0005	SNAP
5160  *		0805	X.25
5161  *		0806	ARP
5162  *		8137	IPX
5163  *		0009	Localtalk
5164  *		86DD	IPv6
5165  */
5166 #define PTYPE_HASH_SIZE	(16)
5167 #define PTYPE_HASH_MASK	(PTYPE_HASH_SIZE - 1)
5168 
5169 extern struct list_head ptype_all __read_mostly;
5170 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5171 
5172 extern struct net_device *blackhole_netdev;
5173 
5174 /* Note: Avoid these macros in fast path, prefer per-cpu or per-queue counters. */
5175 #define DEV_STATS_INC(DEV, FIELD) atomic_long_inc(&(DEV)->stats.__##FIELD)
5176 #define DEV_STATS_ADD(DEV, FIELD, VAL) 	\
5177 		atomic_long_add((VAL), &(DEV)->stats.__##FIELD)
5178 
5179 #endif	/* _LINUX_NETDEVICE_H */
5180