1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * INET An implementation of the TCP/IP protocol suite for the LINUX
4 * operating system. INET is implemented using the BSD Socket
5 * interface as the means of communication with the user level.
6 *
7 * Definitions for the Interfaces handler.
8 *
9 * Version: @(#)dev.h 1.0.10 08/12/93
10 *
11 * Authors: Ross Biro
12 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 * Corey Minyard <wf-rch!minyard@relay.EU.net>
14 * Donald J. Becker, <becker@cesdis.gsfc.nasa.gov>
15 * Alan Cox, <alan@lxorguk.ukuu.org.uk>
16 * Bjorn Ekwall. <bj0rn@blox.se>
17 * Pekka Riikonen <priikone@poseidon.pspt.fi>
18 *
19 * Moved to /usr/include/linux for NET3
20 */
21 #ifndef _LINUX_NETDEVICE_H
22 #define _LINUX_NETDEVICE_H
23
24 #include <linux/timer.h>
25 #include <linux/bug.h>
26 #include <linux/delay.h>
27 #include <linux/atomic.h>
28 #include <linux/prefetch.h>
29 #include <asm/cache.h>
30 #include <asm/byteorder.h>
31 #include <asm/local.h>
32
33 #include <linux/percpu.h>
34 #include <linux/rculist.h>
35 #include <linux/workqueue.h>
36 #include <linux/dynamic_queue_limits.h>
37
38 #include <net/net_namespace.h>
39 #ifdef CONFIG_DCB
40 #include <net/dcbnl.h>
41 #endif
42 #include <net/netprio_cgroup.h>
43 #include <net/xdp.h>
44
45 #include <linux/netdev_features.h>
46 #include <linux/neighbour.h>
47 #include <uapi/linux/netdevice.h>
48 #include <uapi/linux/if_bonding.h>
49 #include <uapi/linux/pkt_cls.h>
50 #include <linux/hashtable.h>
51 #include <linux/rbtree.h>
52 #include <net/net_trackers.h>
53 #include <net/net_debug.h>
54
55 struct netpoll_info;
56 struct device;
57 struct ethtool_ops;
58 struct phy_device;
59 struct dsa_port;
60 struct ip_tunnel_parm;
61 struct macsec_context;
62 struct macsec_ops;
63 struct netdev_name_node;
64 struct sd_flow_limit;
65 struct sfp_bus;
66 /* 802.11 specific */
67 struct wireless_dev;
68 /* 802.15.4 specific */
69 struct wpan_dev;
70 struct mpls_dev;
71 /* UDP Tunnel offloads */
72 struct udp_tunnel_info;
73 struct udp_tunnel_nic_info;
74 struct udp_tunnel_nic;
75 struct bpf_prog;
76 struct xdp_buff;
77
78 void synchronize_net(void);
79 void netdev_set_default_ethtool_ops(struct net_device *dev,
80 const struct ethtool_ops *ops);
81
82 /* Backlog congestion levels */
83 #define NET_RX_SUCCESS 0 /* keep 'em coming, baby */
84 #define NET_RX_DROP 1 /* packet dropped */
85
86 #define MAX_NEST_DEV 8
87
88 /*
89 * Transmit return codes: transmit return codes originate from three different
90 * namespaces:
91 *
92 * - qdisc return codes
93 * - driver transmit return codes
94 * - errno values
95 *
96 * Drivers are allowed to return any one of those in their hard_start_xmit()
97 * function. Real network devices commonly used with qdiscs should only return
98 * the driver transmit return codes though - when qdiscs are used, the actual
99 * transmission happens asynchronously, so the value is not propagated to
100 * higher layers. Virtual network devices transmit synchronously; in this case
101 * the driver transmit return codes are consumed by dev_queue_xmit(), and all
102 * others are propagated to higher layers.
103 */
104
105 /* qdisc ->enqueue() return codes. */
106 #define NET_XMIT_SUCCESS 0x00
107 #define NET_XMIT_DROP 0x01 /* skb dropped */
108 #define NET_XMIT_CN 0x02 /* congestion notification */
109 #define NET_XMIT_MASK 0x0f /* qdisc flags in net/sch_generic.h */
110
111 /* NET_XMIT_CN is special. It does not guarantee that this packet is lost. It
112 * indicates that the device will soon be dropping packets, or already drops
113 * some packets of the same priority; prompting us to send less aggressively. */
114 #define net_xmit_eval(e) ((e) == NET_XMIT_CN ? 0 : (e))
115 #define net_xmit_errno(e) ((e) != NET_XMIT_CN ? -ENOBUFS : 0)
116
117 /* Driver transmit return codes */
118 #define NETDEV_TX_MASK 0xf0
119
120 enum netdev_tx {
121 __NETDEV_TX_MIN = INT_MIN, /* make sure enum is signed */
122 NETDEV_TX_OK = 0x00, /* driver took care of packet */
123 NETDEV_TX_BUSY = 0x10, /* driver tx path was busy*/
124 };
125 typedef enum netdev_tx netdev_tx_t;
126
127 /*
128 * Current order: NETDEV_TX_MASK > NET_XMIT_MASK >= 0 is significant;
129 * hard_start_xmit() return < NET_XMIT_MASK means skb was consumed.
130 */
dev_xmit_complete(int rc)131 static inline bool dev_xmit_complete(int rc)
132 {
133 /*
134 * Positive cases with an skb consumed by a driver:
135 * - successful transmission (rc == NETDEV_TX_OK)
136 * - error while transmitting (rc < 0)
137 * - error while queueing to a different device (rc & NET_XMIT_MASK)
138 */
139 if (likely(rc < NET_XMIT_MASK))
140 return true;
141
142 return false;
143 }
144
145 /*
146 * Compute the worst-case header length according to the protocols
147 * used.
148 */
149
150 #if defined(CONFIG_HYPERV_NET)
151 # define LL_MAX_HEADER 128
152 #elif defined(CONFIG_WLAN) || IS_ENABLED(CONFIG_AX25)
153 # if defined(CONFIG_MAC80211_MESH)
154 # define LL_MAX_HEADER 128
155 # else
156 # define LL_MAX_HEADER 96
157 # endif
158 #else
159 # define LL_MAX_HEADER 32
160 #endif
161
162 #if !IS_ENABLED(CONFIG_NET_IPIP) && !IS_ENABLED(CONFIG_NET_IPGRE) && \
163 !IS_ENABLED(CONFIG_IPV6_SIT) && !IS_ENABLED(CONFIG_IPV6_TUNNEL)
164 #define MAX_HEADER LL_MAX_HEADER
165 #else
166 #define MAX_HEADER (LL_MAX_HEADER + 48)
167 #endif
168
169 /*
170 * Old network device statistics. Fields are native words
171 * (unsigned long) so they can be read and written atomically.
172 */
173
174 struct net_device_stats {
175 unsigned long rx_packets;
176 unsigned long tx_packets;
177 unsigned long rx_bytes;
178 unsigned long tx_bytes;
179 unsigned long rx_errors;
180 unsigned long tx_errors;
181 unsigned long rx_dropped;
182 unsigned long tx_dropped;
183 unsigned long multicast;
184 unsigned long collisions;
185 unsigned long rx_length_errors;
186 unsigned long rx_over_errors;
187 unsigned long rx_crc_errors;
188 unsigned long rx_frame_errors;
189 unsigned long rx_fifo_errors;
190 unsigned long rx_missed_errors;
191 unsigned long tx_aborted_errors;
192 unsigned long tx_carrier_errors;
193 unsigned long tx_fifo_errors;
194 unsigned long tx_heartbeat_errors;
195 unsigned long tx_window_errors;
196 unsigned long rx_compressed;
197 unsigned long tx_compressed;
198 };
199
200 /* per-cpu stats, allocated on demand.
201 * Try to fit them in a single cache line, for dev_get_stats() sake.
202 */
203 struct net_device_core_stats {
204 unsigned long rx_dropped;
205 unsigned long tx_dropped;
206 unsigned long rx_nohandler;
207 unsigned long rx_otherhost_dropped;
208 } __aligned(4 * sizeof(unsigned long));
209
210 #include <linux/cache.h>
211 #include <linux/skbuff.h>
212
213 #ifdef CONFIG_RPS
214 #include <linux/static_key.h>
215 extern struct static_key_false rps_needed;
216 extern struct static_key_false rfs_needed;
217 #endif
218
219 struct neighbour;
220 struct neigh_parms;
221 struct sk_buff;
222
223 struct netdev_hw_addr {
224 struct list_head list;
225 struct rb_node node;
226 unsigned char addr[MAX_ADDR_LEN];
227 unsigned char type;
228 #define NETDEV_HW_ADDR_T_LAN 1
229 #define NETDEV_HW_ADDR_T_SAN 2
230 #define NETDEV_HW_ADDR_T_UNICAST 3
231 #define NETDEV_HW_ADDR_T_MULTICAST 4
232 bool global_use;
233 int sync_cnt;
234 int refcount;
235 int synced;
236 struct rcu_head rcu_head;
237 };
238
239 struct netdev_hw_addr_list {
240 struct list_head list;
241 int count;
242
243 /* Auxiliary tree for faster lookup on addition and deletion */
244 struct rb_root tree;
245 };
246
247 #define netdev_hw_addr_list_count(l) ((l)->count)
248 #define netdev_hw_addr_list_empty(l) (netdev_hw_addr_list_count(l) == 0)
249 #define netdev_hw_addr_list_for_each(ha, l) \
250 list_for_each_entry(ha, &(l)->list, list)
251
252 #define netdev_uc_count(dev) netdev_hw_addr_list_count(&(dev)->uc)
253 #define netdev_uc_empty(dev) netdev_hw_addr_list_empty(&(dev)->uc)
254 #define netdev_for_each_uc_addr(ha, dev) \
255 netdev_hw_addr_list_for_each(ha, &(dev)->uc)
256
257 #define netdev_mc_count(dev) netdev_hw_addr_list_count(&(dev)->mc)
258 #define netdev_mc_empty(dev) netdev_hw_addr_list_empty(&(dev)->mc)
259 #define netdev_for_each_mc_addr(ha, dev) \
260 netdev_hw_addr_list_for_each(ha, &(dev)->mc)
261
262 struct hh_cache {
263 unsigned int hh_len;
264 seqlock_t hh_lock;
265
266 /* cached hardware header; allow for machine alignment needs. */
267 #define HH_DATA_MOD 16
268 #define HH_DATA_OFF(__len) \
269 (HH_DATA_MOD - (((__len - 1) & (HH_DATA_MOD - 1)) + 1))
270 #define HH_DATA_ALIGN(__len) \
271 (((__len)+(HH_DATA_MOD-1))&~(HH_DATA_MOD - 1))
272 unsigned long hh_data[HH_DATA_ALIGN(LL_MAX_HEADER) / sizeof(long)];
273 };
274
275 /* Reserve HH_DATA_MOD byte-aligned hard_header_len, but at least that much.
276 * Alternative is:
277 * dev->hard_header_len ? (dev->hard_header_len +
278 * (HH_DATA_MOD - 1)) & ~(HH_DATA_MOD - 1) : 0
279 *
280 * We could use other alignment values, but we must maintain the
281 * relationship HH alignment <= LL alignment.
282 */
283 #define LL_RESERVED_SPACE(dev) \
284 ((((dev)->hard_header_len+(dev)->needed_headroom)&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
285 #define LL_RESERVED_SPACE_EXTRA(dev,extra) \
286 ((((dev)->hard_header_len+(dev)->needed_headroom+(extra))&~(HH_DATA_MOD - 1)) + HH_DATA_MOD)
287
288 struct header_ops {
289 int (*create) (struct sk_buff *skb, struct net_device *dev,
290 unsigned short type, const void *daddr,
291 const void *saddr, unsigned int len);
292 int (*parse)(const struct sk_buff *skb, unsigned char *haddr);
293 int (*cache)(const struct neighbour *neigh, struct hh_cache *hh, __be16 type);
294 void (*cache_update)(struct hh_cache *hh,
295 const struct net_device *dev,
296 const unsigned char *haddr);
297 bool (*validate)(const char *ll_header, unsigned int len);
298 __be16 (*parse_protocol)(const struct sk_buff *skb);
299 };
300
301 /* These flag bits are private to the generic network queueing
302 * layer; they may not be explicitly referenced by any other
303 * code.
304 */
305
306 enum netdev_state_t {
307 __LINK_STATE_START,
308 __LINK_STATE_PRESENT,
309 __LINK_STATE_NOCARRIER,
310 __LINK_STATE_LINKWATCH_PENDING,
311 __LINK_STATE_DORMANT,
312 __LINK_STATE_TESTING,
313 };
314
315 struct gro_list {
316 struct list_head list;
317 int count;
318 };
319
320 /*
321 * size of gro hash buckets, must less than bit number of
322 * napi_struct::gro_bitmask
323 */
324 #define GRO_HASH_BUCKETS 8
325
326 /*
327 * Structure for NAPI scheduling similar to tasklet but with weighting
328 */
329 struct napi_struct {
330 /* The poll_list must only be managed by the entity which
331 * changes the state of the NAPI_STATE_SCHED bit. This means
332 * whoever atomically sets that bit can add this napi_struct
333 * to the per-CPU poll_list, and whoever clears that bit
334 * can remove from the list right before clearing the bit.
335 */
336 struct list_head poll_list;
337
338 unsigned long state;
339 int weight;
340 int defer_hard_irqs_count;
341 unsigned long gro_bitmask;
342 int (*poll)(struct napi_struct *, int);
343 #ifdef CONFIG_NETPOLL
344 int poll_owner;
345 #endif
346 struct net_device *dev;
347 struct gro_list gro_hash[GRO_HASH_BUCKETS];
348 struct sk_buff *skb;
349 struct list_head rx_list; /* Pending GRO_NORMAL skbs */
350 int rx_count; /* length of rx_list */
351 struct hrtimer timer;
352 struct list_head dev_list;
353 struct hlist_node napi_hash_node;
354 unsigned int napi_id;
355 struct task_struct *thread;
356 };
357
358 enum {
359 NAPI_STATE_SCHED, /* Poll is scheduled */
360 NAPI_STATE_MISSED, /* reschedule a napi */
361 NAPI_STATE_DISABLE, /* Disable pending */
362 NAPI_STATE_NPSVC, /* Netpoll - don't dequeue from poll_list */
363 NAPI_STATE_LISTED, /* NAPI added to system lists */
364 NAPI_STATE_NO_BUSY_POLL, /* Do not add in napi_hash, no busy polling */
365 NAPI_STATE_IN_BUSY_POLL, /* sk_busy_loop() owns this NAPI */
366 NAPI_STATE_PREFER_BUSY_POLL, /* prefer busy-polling over softirq processing*/
367 NAPI_STATE_THREADED, /* The poll is performed inside its own thread*/
368 NAPI_STATE_SCHED_THREADED, /* Napi is currently scheduled in threaded mode */
369 };
370
371 enum {
372 NAPIF_STATE_SCHED = BIT(NAPI_STATE_SCHED),
373 NAPIF_STATE_MISSED = BIT(NAPI_STATE_MISSED),
374 NAPIF_STATE_DISABLE = BIT(NAPI_STATE_DISABLE),
375 NAPIF_STATE_NPSVC = BIT(NAPI_STATE_NPSVC),
376 NAPIF_STATE_LISTED = BIT(NAPI_STATE_LISTED),
377 NAPIF_STATE_NO_BUSY_POLL = BIT(NAPI_STATE_NO_BUSY_POLL),
378 NAPIF_STATE_IN_BUSY_POLL = BIT(NAPI_STATE_IN_BUSY_POLL),
379 NAPIF_STATE_PREFER_BUSY_POLL = BIT(NAPI_STATE_PREFER_BUSY_POLL),
380 NAPIF_STATE_THREADED = BIT(NAPI_STATE_THREADED),
381 NAPIF_STATE_SCHED_THREADED = BIT(NAPI_STATE_SCHED_THREADED),
382 };
383
384 enum gro_result {
385 GRO_MERGED,
386 GRO_MERGED_FREE,
387 GRO_HELD,
388 GRO_NORMAL,
389 GRO_CONSUMED,
390 };
391 typedef enum gro_result gro_result_t;
392
393 /*
394 * enum rx_handler_result - Possible return values for rx_handlers.
395 * @RX_HANDLER_CONSUMED: skb was consumed by rx_handler, do not process it
396 * further.
397 * @RX_HANDLER_ANOTHER: Do another round in receive path. This is indicated in
398 * case skb->dev was changed by rx_handler.
399 * @RX_HANDLER_EXACT: Force exact delivery, no wildcard.
400 * @RX_HANDLER_PASS: Do nothing, pass the skb as if no rx_handler was called.
401 *
402 * rx_handlers are functions called from inside __netif_receive_skb(), to do
403 * special processing of the skb, prior to delivery to protocol handlers.
404 *
405 * Currently, a net_device can only have a single rx_handler registered. Trying
406 * to register a second rx_handler will return -EBUSY.
407 *
408 * To register a rx_handler on a net_device, use netdev_rx_handler_register().
409 * To unregister a rx_handler on a net_device, use
410 * netdev_rx_handler_unregister().
411 *
412 * Upon return, rx_handler is expected to tell __netif_receive_skb() what to
413 * do with the skb.
414 *
415 * If the rx_handler consumed the skb in some way, it should return
416 * RX_HANDLER_CONSUMED. This is appropriate when the rx_handler arranged for
417 * the skb to be delivered in some other way.
418 *
419 * If the rx_handler changed skb->dev, to divert the skb to another
420 * net_device, it should return RX_HANDLER_ANOTHER. The rx_handler for the
421 * new device will be called if it exists.
422 *
423 * If the rx_handler decides the skb should be ignored, it should return
424 * RX_HANDLER_EXACT. The skb will only be delivered to protocol handlers that
425 * are registered on exact device (ptype->dev == skb->dev).
426 *
427 * If the rx_handler didn't change skb->dev, but wants the skb to be normally
428 * delivered, it should return RX_HANDLER_PASS.
429 *
430 * A device without a registered rx_handler will behave as if rx_handler
431 * returned RX_HANDLER_PASS.
432 */
433
434 enum rx_handler_result {
435 RX_HANDLER_CONSUMED,
436 RX_HANDLER_ANOTHER,
437 RX_HANDLER_EXACT,
438 RX_HANDLER_PASS,
439 };
440 typedef enum rx_handler_result rx_handler_result_t;
441 typedef rx_handler_result_t rx_handler_func_t(struct sk_buff **pskb);
442
443 void __napi_schedule(struct napi_struct *n);
444 void __napi_schedule_irqoff(struct napi_struct *n);
445
napi_disable_pending(struct napi_struct * n)446 static inline bool napi_disable_pending(struct napi_struct *n)
447 {
448 return test_bit(NAPI_STATE_DISABLE, &n->state);
449 }
450
napi_prefer_busy_poll(struct napi_struct * n)451 static inline bool napi_prefer_busy_poll(struct napi_struct *n)
452 {
453 return test_bit(NAPI_STATE_PREFER_BUSY_POLL, &n->state);
454 }
455
456 bool napi_schedule_prep(struct napi_struct *n);
457
458 /**
459 * napi_schedule - schedule NAPI poll
460 * @n: NAPI context
461 *
462 * Schedule NAPI poll routine to be called if it is not already
463 * running.
464 */
napi_schedule(struct napi_struct * n)465 static inline void napi_schedule(struct napi_struct *n)
466 {
467 if (napi_schedule_prep(n))
468 __napi_schedule(n);
469 }
470
471 /**
472 * napi_schedule_irqoff - schedule NAPI poll
473 * @n: NAPI context
474 *
475 * Variant of napi_schedule(), assuming hard irqs are masked.
476 */
napi_schedule_irqoff(struct napi_struct * n)477 static inline void napi_schedule_irqoff(struct napi_struct *n)
478 {
479 if (napi_schedule_prep(n))
480 __napi_schedule_irqoff(n);
481 }
482
483 /* Try to reschedule poll. Called by dev->poll() after napi_complete(). */
napi_reschedule(struct napi_struct * napi)484 static inline bool napi_reschedule(struct napi_struct *napi)
485 {
486 if (napi_schedule_prep(napi)) {
487 __napi_schedule(napi);
488 return true;
489 }
490 return false;
491 }
492
493 bool napi_complete_done(struct napi_struct *n, int work_done);
494 /**
495 * napi_complete - NAPI processing complete
496 * @n: NAPI context
497 *
498 * Mark NAPI processing as complete.
499 * Consider using napi_complete_done() instead.
500 * Return false if device should avoid rearming interrupts.
501 */
napi_complete(struct napi_struct * n)502 static inline bool napi_complete(struct napi_struct *n)
503 {
504 return napi_complete_done(n, 0);
505 }
506
507 int dev_set_threaded(struct net_device *dev, bool threaded);
508
509 /**
510 * napi_disable - prevent NAPI from scheduling
511 * @n: NAPI context
512 *
513 * Stop NAPI from being scheduled on this context.
514 * Waits till any outstanding processing completes.
515 */
516 void napi_disable(struct napi_struct *n);
517
518 void napi_enable(struct napi_struct *n);
519
520 /**
521 * napi_synchronize - wait until NAPI is not running
522 * @n: NAPI context
523 *
524 * Wait until NAPI is done being scheduled on this context.
525 * Waits till any outstanding processing completes but
526 * does not disable future activations.
527 */
napi_synchronize(const struct napi_struct * n)528 static inline void napi_synchronize(const struct napi_struct *n)
529 {
530 if (IS_ENABLED(CONFIG_SMP))
531 while (test_bit(NAPI_STATE_SCHED, &n->state))
532 msleep(1);
533 else
534 barrier();
535 }
536
537 /**
538 * napi_if_scheduled_mark_missed - if napi is running, set the
539 * NAPIF_STATE_MISSED
540 * @n: NAPI context
541 *
542 * If napi is running, set the NAPIF_STATE_MISSED, and return true if
543 * NAPI is scheduled.
544 **/
napi_if_scheduled_mark_missed(struct napi_struct * n)545 static inline bool napi_if_scheduled_mark_missed(struct napi_struct *n)
546 {
547 unsigned long val, new;
548
549 do {
550 val = READ_ONCE(n->state);
551 if (val & NAPIF_STATE_DISABLE)
552 return true;
553
554 if (!(val & NAPIF_STATE_SCHED))
555 return false;
556
557 new = val | NAPIF_STATE_MISSED;
558 } while (cmpxchg(&n->state, val, new) != val);
559
560 return true;
561 }
562
563 enum netdev_queue_state_t {
564 __QUEUE_STATE_DRV_XOFF,
565 __QUEUE_STATE_STACK_XOFF,
566 __QUEUE_STATE_FROZEN,
567 };
568
569 #define QUEUE_STATE_DRV_XOFF (1 << __QUEUE_STATE_DRV_XOFF)
570 #define QUEUE_STATE_STACK_XOFF (1 << __QUEUE_STATE_STACK_XOFF)
571 #define QUEUE_STATE_FROZEN (1 << __QUEUE_STATE_FROZEN)
572
573 #define QUEUE_STATE_ANY_XOFF (QUEUE_STATE_DRV_XOFF | QUEUE_STATE_STACK_XOFF)
574 #define QUEUE_STATE_ANY_XOFF_OR_FROZEN (QUEUE_STATE_ANY_XOFF | \
575 QUEUE_STATE_FROZEN)
576 #define QUEUE_STATE_DRV_XOFF_OR_FROZEN (QUEUE_STATE_DRV_XOFF | \
577 QUEUE_STATE_FROZEN)
578
579 /*
580 * __QUEUE_STATE_DRV_XOFF is used by drivers to stop the transmit queue. The
581 * netif_tx_* functions below are used to manipulate this flag. The
582 * __QUEUE_STATE_STACK_XOFF flag is used by the stack to stop the transmit
583 * queue independently. The netif_xmit_*stopped functions below are called
584 * to check if the queue has been stopped by the driver or stack (either
585 * of the XOFF bits are set in the state). Drivers should not need to call
586 * netif_xmit*stopped functions, they should only be using netif_tx_*.
587 */
588
589 struct netdev_queue {
590 /*
591 * read-mostly part
592 */
593 struct net_device *dev;
594 netdevice_tracker dev_tracker;
595
596 struct Qdisc __rcu *qdisc;
597 struct Qdisc *qdisc_sleeping;
598 #ifdef CONFIG_SYSFS
599 struct kobject kobj;
600 #endif
601 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
602 int numa_node;
603 #endif
604 unsigned long tx_maxrate;
605 /*
606 * Number of TX timeouts for this queue
607 * (/sys/class/net/DEV/Q/trans_timeout)
608 */
609 atomic_long_t trans_timeout;
610
611 /* Subordinate device that the queue has been assigned to */
612 struct net_device *sb_dev;
613 #ifdef CONFIG_XDP_SOCKETS
614 struct xsk_buff_pool *pool;
615 #endif
616 /*
617 * write-mostly part
618 */
619 spinlock_t _xmit_lock ____cacheline_aligned_in_smp;
620 int xmit_lock_owner;
621 /*
622 * Time (in jiffies) of last Tx
623 */
624 unsigned long trans_start;
625
626 unsigned long state;
627
628 #ifdef CONFIG_BQL
629 struct dql dql;
630 #endif
631 } ____cacheline_aligned_in_smp;
632
633 extern int sysctl_fb_tunnels_only_for_init_net;
634 extern int sysctl_devconf_inherit_init_net;
635
636 /*
637 * sysctl_fb_tunnels_only_for_init_net == 0 : For all netns
638 * == 1 : For initns only
639 * == 2 : For none.
640 */
net_has_fallback_tunnels(const struct net * net)641 static inline bool net_has_fallback_tunnels(const struct net *net)
642 {
643 #if IS_ENABLED(CONFIG_SYSCTL)
644 int fb_tunnels_only_for_init_net = READ_ONCE(sysctl_fb_tunnels_only_for_init_net);
645
646 return !fb_tunnels_only_for_init_net ||
647 (net_eq(net, &init_net) && fb_tunnels_only_for_init_net == 1);
648 #else
649 return true;
650 #endif
651 }
652
net_inherit_devconf(void)653 static inline int net_inherit_devconf(void)
654 {
655 #if IS_ENABLED(CONFIG_SYSCTL)
656 return READ_ONCE(sysctl_devconf_inherit_init_net);
657 #else
658 return 0;
659 #endif
660 }
661
netdev_queue_numa_node_read(const struct netdev_queue * q)662 static inline int netdev_queue_numa_node_read(const struct netdev_queue *q)
663 {
664 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
665 return q->numa_node;
666 #else
667 return NUMA_NO_NODE;
668 #endif
669 }
670
netdev_queue_numa_node_write(struct netdev_queue * q,int node)671 static inline void netdev_queue_numa_node_write(struct netdev_queue *q, int node)
672 {
673 #if defined(CONFIG_XPS) && defined(CONFIG_NUMA)
674 q->numa_node = node;
675 #endif
676 }
677
678 #ifdef CONFIG_RPS
679 /*
680 * This structure holds an RPS map which can be of variable length. The
681 * map is an array of CPUs.
682 */
683 struct rps_map {
684 unsigned int len;
685 struct rcu_head rcu;
686 u16 cpus[];
687 };
688 #define RPS_MAP_SIZE(_num) (sizeof(struct rps_map) + ((_num) * sizeof(u16)))
689
690 /*
691 * The rps_dev_flow structure contains the mapping of a flow to a CPU, the
692 * tail pointer for that CPU's input queue at the time of last enqueue, and
693 * a hardware filter index.
694 */
695 struct rps_dev_flow {
696 u16 cpu;
697 u16 filter;
698 unsigned int last_qtail;
699 };
700 #define RPS_NO_FILTER 0xffff
701
702 /*
703 * The rps_dev_flow_table structure contains a table of flow mappings.
704 */
705 struct rps_dev_flow_table {
706 unsigned int mask;
707 struct rcu_head rcu;
708 struct rps_dev_flow flows[];
709 };
710 #define RPS_DEV_FLOW_TABLE_SIZE(_num) (sizeof(struct rps_dev_flow_table) + \
711 ((_num) * sizeof(struct rps_dev_flow)))
712
713 /*
714 * The rps_sock_flow_table contains mappings of flows to the last CPU
715 * on which they were processed by the application (set in recvmsg).
716 * Each entry is a 32bit value. Upper part is the high-order bits
717 * of flow hash, lower part is CPU number.
718 * rps_cpu_mask is used to partition the space, depending on number of
719 * possible CPUs : rps_cpu_mask = roundup_pow_of_two(nr_cpu_ids) - 1
720 * For example, if 64 CPUs are possible, rps_cpu_mask = 0x3f,
721 * meaning we use 32-6=26 bits for the hash.
722 */
723 struct rps_sock_flow_table {
724 u32 mask;
725
726 u32 ents[] ____cacheline_aligned_in_smp;
727 };
728 #define RPS_SOCK_FLOW_TABLE_SIZE(_num) (offsetof(struct rps_sock_flow_table, ents[_num]))
729
730 #define RPS_NO_CPU 0xffff
731
732 extern u32 rps_cpu_mask;
733 extern struct rps_sock_flow_table __rcu *rps_sock_flow_table;
734
rps_record_sock_flow(struct rps_sock_flow_table * table,u32 hash)735 static inline void rps_record_sock_flow(struct rps_sock_flow_table *table,
736 u32 hash)
737 {
738 if (table && hash) {
739 unsigned int index = hash & table->mask;
740 u32 val = hash & ~rps_cpu_mask;
741
742 /* We only give a hint, preemption can change CPU under us */
743 val |= raw_smp_processor_id();
744
745 if (table->ents[index] != val)
746 table->ents[index] = val;
747 }
748 }
749
750 #ifdef CONFIG_RFS_ACCEL
751 bool rps_may_expire_flow(struct net_device *dev, u16 rxq_index, u32 flow_id,
752 u16 filter_id);
753 #endif
754 #endif /* CONFIG_RPS */
755
756 /* This structure contains an instance of an RX queue. */
757 struct netdev_rx_queue {
758 struct xdp_rxq_info xdp_rxq;
759 #ifdef CONFIG_RPS
760 struct rps_map __rcu *rps_map;
761 struct rps_dev_flow_table __rcu *rps_flow_table;
762 #endif
763 struct kobject kobj;
764 struct net_device *dev;
765 netdevice_tracker dev_tracker;
766
767 #ifdef CONFIG_XDP_SOCKETS
768 struct xsk_buff_pool *pool;
769 #endif
770 } ____cacheline_aligned_in_smp;
771
772 /*
773 * RX queue sysfs structures and functions.
774 */
775 struct rx_queue_attribute {
776 struct attribute attr;
777 ssize_t (*show)(struct netdev_rx_queue *queue, char *buf);
778 ssize_t (*store)(struct netdev_rx_queue *queue,
779 const char *buf, size_t len);
780 };
781
782 /* XPS map type and offset of the xps map within net_device->xps_maps[]. */
783 enum xps_map_type {
784 XPS_CPUS = 0,
785 XPS_RXQS,
786 XPS_MAPS_MAX,
787 };
788
789 #ifdef CONFIG_XPS
790 /*
791 * This structure holds an XPS map which can be of variable length. The
792 * map is an array of queues.
793 */
794 struct xps_map {
795 unsigned int len;
796 unsigned int alloc_len;
797 struct rcu_head rcu;
798 u16 queues[];
799 };
800 #define XPS_MAP_SIZE(_num) (sizeof(struct xps_map) + ((_num) * sizeof(u16)))
801 #define XPS_MIN_MAP_ALLOC ((L1_CACHE_ALIGN(offsetof(struct xps_map, queues[1])) \
802 - sizeof(struct xps_map)) / sizeof(u16))
803
804 /*
805 * This structure holds all XPS maps for device. Maps are indexed by CPU.
806 *
807 * We keep track of the number of cpus/rxqs used when the struct is allocated,
808 * in nr_ids. This will help not accessing out-of-bound memory.
809 *
810 * We keep track of the number of traffic classes used when the struct is
811 * allocated, in num_tc. This will be used to navigate the maps, to ensure we're
812 * not crossing its upper bound, as the original dev->num_tc can be updated in
813 * the meantime.
814 */
815 struct xps_dev_maps {
816 struct rcu_head rcu;
817 unsigned int nr_ids;
818 s16 num_tc;
819 struct xps_map __rcu *attr_map[]; /* Either CPUs map or RXQs map */
820 };
821
822 #define XPS_CPU_DEV_MAPS_SIZE(_tcs) (sizeof(struct xps_dev_maps) + \
823 (nr_cpu_ids * (_tcs) * sizeof(struct xps_map *)))
824
825 #define XPS_RXQ_DEV_MAPS_SIZE(_tcs, _rxqs) (sizeof(struct xps_dev_maps) +\
826 (_rxqs * (_tcs) * sizeof(struct xps_map *)))
827
828 #endif /* CONFIG_XPS */
829
830 #define TC_MAX_QUEUE 16
831 #define TC_BITMASK 15
832 /* HW offloaded queuing disciplines txq count and offset maps */
833 struct netdev_tc_txq {
834 u16 count;
835 u16 offset;
836 };
837
838 #if defined(CONFIG_FCOE) || defined(CONFIG_FCOE_MODULE)
839 /*
840 * This structure is to hold information about the device
841 * configured to run FCoE protocol stack.
842 */
843 struct netdev_fcoe_hbainfo {
844 char manufacturer[64];
845 char serial_number[64];
846 char hardware_version[64];
847 char driver_version[64];
848 char optionrom_version[64];
849 char firmware_version[64];
850 char model[256];
851 char model_description[256];
852 };
853 #endif
854
855 #define MAX_PHYS_ITEM_ID_LEN 32
856
857 /* This structure holds a unique identifier to identify some
858 * physical item (port for example) used by a netdevice.
859 */
860 struct netdev_phys_item_id {
861 unsigned char id[MAX_PHYS_ITEM_ID_LEN];
862 unsigned char id_len;
863 };
864
netdev_phys_item_id_same(struct netdev_phys_item_id * a,struct netdev_phys_item_id * b)865 static inline bool netdev_phys_item_id_same(struct netdev_phys_item_id *a,
866 struct netdev_phys_item_id *b)
867 {
868 return a->id_len == b->id_len &&
869 memcmp(a->id, b->id, a->id_len) == 0;
870 }
871
872 typedef u16 (*select_queue_fallback_t)(struct net_device *dev,
873 struct sk_buff *skb,
874 struct net_device *sb_dev);
875
876 enum net_device_path_type {
877 DEV_PATH_ETHERNET = 0,
878 DEV_PATH_VLAN,
879 DEV_PATH_BRIDGE,
880 DEV_PATH_PPPOE,
881 DEV_PATH_DSA,
882 DEV_PATH_MTK_WDMA,
883 };
884
885 struct net_device_path {
886 enum net_device_path_type type;
887 const struct net_device *dev;
888 union {
889 struct {
890 u16 id;
891 __be16 proto;
892 u8 h_dest[ETH_ALEN];
893 } encap;
894 struct {
895 enum {
896 DEV_PATH_BR_VLAN_KEEP,
897 DEV_PATH_BR_VLAN_TAG,
898 DEV_PATH_BR_VLAN_UNTAG,
899 DEV_PATH_BR_VLAN_UNTAG_HW,
900 } vlan_mode;
901 u16 vlan_id;
902 __be16 vlan_proto;
903 } bridge;
904 struct {
905 int port;
906 u16 proto;
907 } dsa;
908 struct {
909 u8 wdma_idx;
910 u8 queue;
911 u16 wcid;
912 u8 bss;
913 } mtk_wdma;
914 };
915 };
916
917 #define NET_DEVICE_PATH_STACK_MAX 5
918 #define NET_DEVICE_PATH_VLAN_MAX 2
919
920 struct net_device_path_stack {
921 int num_paths;
922 struct net_device_path path[NET_DEVICE_PATH_STACK_MAX];
923 };
924
925 struct net_device_path_ctx {
926 const struct net_device *dev;
927 u8 daddr[ETH_ALEN];
928
929 int num_vlans;
930 struct {
931 u16 id;
932 __be16 proto;
933 } vlan[NET_DEVICE_PATH_VLAN_MAX];
934 };
935
936 enum tc_setup_type {
937 TC_SETUP_QDISC_MQPRIO,
938 TC_SETUP_CLSU32,
939 TC_SETUP_CLSFLOWER,
940 TC_SETUP_CLSMATCHALL,
941 TC_SETUP_CLSBPF,
942 TC_SETUP_BLOCK,
943 TC_SETUP_QDISC_CBS,
944 TC_SETUP_QDISC_RED,
945 TC_SETUP_QDISC_PRIO,
946 TC_SETUP_QDISC_MQ,
947 TC_SETUP_QDISC_ETF,
948 TC_SETUP_ROOT_QDISC,
949 TC_SETUP_QDISC_GRED,
950 TC_SETUP_QDISC_TAPRIO,
951 TC_SETUP_FT,
952 TC_SETUP_QDISC_ETS,
953 TC_SETUP_QDISC_TBF,
954 TC_SETUP_QDISC_FIFO,
955 TC_SETUP_QDISC_HTB,
956 TC_SETUP_ACT,
957 };
958
959 /* These structures hold the attributes of bpf state that are being passed
960 * to the netdevice through the bpf op.
961 */
962 enum bpf_netdev_command {
963 /* Set or clear a bpf program used in the earliest stages of packet
964 * rx. The prog will have been loaded as BPF_PROG_TYPE_XDP. The callee
965 * is responsible for calling bpf_prog_put on any old progs that are
966 * stored. In case of error, the callee need not release the new prog
967 * reference, but on success it takes ownership and must bpf_prog_put
968 * when it is no longer used.
969 */
970 XDP_SETUP_PROG,
971 XDP_SETUP_PROG_HW,
972 /* BPF program for offload callbacks, invoked at program load time. */
973 BPF_OFFLOAD_MAP_ALLOC,
974 BPF_OFFLOAD_MAP_FREE,
975 XDP_SETUP_XSK_POOL,
976 };
977
978 struct bpf_prog_offload_ops;
979 struct netlink_ext_ack;
980 struct xdp_umem;
981 struct xdp_dev_bulk_queue;
982 struct bpf_xdp_link;
983
984 enum bpf_xdp_mode {
985 XDP_MODE_SKB = 0,
986 XDP_MODE_DRV = 1,
987 XDP_MODE_HW = 2,
988 __MAX_XDP_MODE
989 };
990
991 struct bpf_xdp_entity {
992 struct bpf_prog *prog;
993 struct bpf_xdp_link *link;
994 };
995
996 struct netdev_bpf {
997 enum bpf_netdev_command command;
998 union {
999 /* XDP_SETUP_PROG */
1000 struct {
1001 u32 flags;
1002 struct bpf_prog *prog;
1003 struct netlink_ext_ack *extack;
1004 };
1005 /* BPF_OFFLOAD_MAP_ALLOC, BPF_OFFLOAD_MAP_FREE */
1006 struct {
1007 struct bpf_offloaded_map *offmap;
1008 };
1009 /* XDP_SETUP_XSK_POOL */
1010 struct {
1011 struct xsk_buff_pool *pool;
1012 u16 queue_id;
1013 } xsk;
1014 };
1015 };
1016
1017 /* Flags for ndo_xsk_wakeup. */
1018 #define XDP_WAKEUP_RX (1 << 0)
1019 #define XDP_WAKEUP_TX (1 << 1)
1020
1021 #ifdef CONFIG_XFRM_OFFLOAD
1022 struct xfrmdev_ops {
1023 int (*xdo_dev_state_add) (struct xfrm_state *x);
1024 void (*xdo_dev_state_delete) (struct xfrm_state *x);
1025 void (*xdo_dev_state_free) (struct xfrm_state *x);
1026 bool (*xdo_dev_offload_ok) (struct sk_buff *skb,
1027 struct xfrm_state *x);
1028 void (*xdo_dev_state_advance_esn) (struct xfrm_state *x);
1029 };
1030 #endif
1031
1032 struct dev_ifalias {
1033 struct rcu_head rcuhead;
1034 char ifalias[];
1035 };
1036
1037 struct devlink;
1038 struct tlsdev_ops;
1039
1040 struct netdev_net_notifier {
1041 struct list_head list;
1042 struct notifier_block *nb;
1043 };
1044
1045 /*
1046 * This structure defines the management hooks for network devices.
1047 * The following hooks can be defined; unless noted otherwise, they are
1048 * optional and can be filled with a null pointer.
1049 *
1050 * int (*ndo_init)(struct net_device *dev);
1051 * This function is called once when a network device is registered.
1052 * The network device can use this for any late stage initialization
1053 * or semantic validation. It can fail with an error code which will
1054 * be propagated back to register_netdev.
1055 *
1056 * void (*ndo_uninit)(struct net_device *dev);
1057 * This function is called when device is unregistered or when registration
1058 * fails. It is not called if init fails.
1059 *
1060 * int (*ndo_open)(struct net_device *dev);
1061 * This function is called when a network device transitions to the up
1062 * state.
1063 *
1064 * int (*ndo_stop)(struct net_device *dev);
1065 * This function is called when a network device transitions to the down
1066 * state.
1067 *
1068 * netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1069 * struct net_device *dev);
1070 * Called when a packet needs to be transmitted.
1071 * Returns NETDEV_TX_OK. Can return NETDEV_TX_BUSY, but you should stop
1072 * the queue before that can happen; it's for obsolete devices and weird
1073 * corner cases, but the stack really does a non-trivial amount
1074 * of useless work if you return NETDEV_TX_BUSY.
1075 * Required; cannot be NULL.
1076 *
1077 * netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1078 * struct net_device *dev
1079 * netdev_features_t features);
1080 * Called by core transmit path to determine if device is capable of
1081 * performing offload operations on a given packet. This is to give
1082 * the device an opportunity to implement any restrictions that cannot
1083 * be otherwise expressed by feature flags. The check is called with
1084 * the set of features that the stack has calculated and it returns
1085 * those the driver believes to be appropriate.
1086 *
1087 * u16 (*ndo_select_queue)(struct net_device *dev, struct sk_buff *skb,
1088 * struct net_device *sb_dev);
1089 * Called to decide which queue to use when device supports multiple
1090 * transmit queues.
1091 *
1092 * void (*ndo_change_rx_flags)(struct net_device *dev, int flags);
1093 * This function is called to allow device receiver to make
1094 * changes to configuration when multicast or promiscuous is enabled.
1095 *
1096 * void (*ndo_set_rx_mode)(struct net_device *dev);
1097 * This function is called device changes address list filtering.
1098 * If driver handles unicast address filtering, it should set
1099 * IFF_UNICAST_FLT in its priv_flags.
1100 *
1101 * int (*ndo_set_mac_address)(struct net_device *dev, void *addr);
1102 * This function is called when the Media Access Control address
1103 * needs to be changed. If this interface is not defined, the
1104 * MAC address can not be changed.
1105 *
1106 * int (*ndo_validate_addr)(struct net_device *dev);
1107 * Test if Media Access Control address is valid for the device.
1108 *
1109 * int (*ndo_do_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1110 * Old-style ioctl entry point. This is used internally by the
1111 * appletalk and ieee802154 subsystems but is no longer called by
1112 * the device ioctl handler.
1113 *
1114 * int (*ndo_siocbond)(struct net_device *dev, struct ifreq *ifr, int cmd);
1115 * Used by the bonding driver for its device specific ioctls:
1116 * SIOCBONDENSLAVE, SIOCBONDRELEASE, SIOCBONDSETHWADDR, SIOCBONDCHANGEACTIVE,
1117 * SIOCBONDSLAVEINFOQUERY, and SIOCBONDINFOQUERY
1118 *
1119 * * int (*ndo_eth_ioctl)(struct net_device *dev, struct ifreq *ifr, int cmd);
1120 * Called for ethernet specific ioctls: SIOCGMIIPHY, SIOCGMIIREG,
1121 * SIOCSMIIREG, SIOCSHWTSTAMP and SIOCGHWTSTAMP.
1122 *
1123 * int (*ndo_set_config)(struct net_device *dev, struct ifmap *map);
1124 * Used to set network devices bus interface parameters. This interface
1125 * is retained for legacy reasons; new devices should use the bus
1126 * interface (PCI) for low level management.
1127 *
1128 * int (*ndo_change_mtu)(struct net_device *dev, int new_mtu);
1129 * Called when a user wants to change the Maximum Transfer Unit
1130 * of a device.
1131 *
1132 * void (*ndo_tx_timeout)(struct net_device *dev, unsigned int txqueue);
1133 * Callback used when the transmitter has not made any progress
1134 * for dev->watchdog ticks.
1135 *
1136 * void (*ndo_get_stats64)(struct net_device *dev,
1137 * struct rtnl_link_stats64 *storage);
1138 * struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1139 * Called when a user wants to get the network device usage
1140 * statistics. Drivers must do one of the following:
1141 * 1. Define @ndo_get_stats64 to fill in a zero-initialised
1142 * rtnl_link_stats64 structure passed by the caller.
1143 * 2. Define @ndo_get_stats to update a net_device_stats structure
1144 * (which should normally be dev->stats) and return a pointer to
1145 * it. The structure may be changed asynchronously only if each
1146 * field is written atomically.
1147 * 3. Update dev->stats asynchronously and atomically, and define
1148 * neither operation.
1149 *
1150 * bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id)
1151 * Return true if this device supports offload stats of this attr_id.
1152 *
1153 * int (*ndo_get_offload_stats)(int attr_id, const struct net_device *dev,
1154 * void *attr_data)
1155 * Get statistics for offload operations by attr_id. Write it into the
1156 * attr_data pointer.
1157 *
1158 * int (*ndo_vlan_rx_add_vid)(struct net_device *dev, __be16 proto, u16 vid);
1159 * If device supports VLAN filtering this function is called when a
1160 * VLAN id is registered.
1161 *
1162 * int (*ndo_vlan_rx_kill_vid)(struct net_device *dev, __be16 proto, u16 vid);
1163 * If device supports VLAN filtering this function is called when a
1164 * VLAN id is unregistered.
1165 *
1166 * void (*ndo_poll_controller)(struct net_device *dev);
1167 *
1168 * SR-IOV management functions.
1169 * int (*ndo_set_vf_mac)(struct net_device *dev, int vf, u8* mac);
1170 * int (*ndo_set_vf_vlan)(struct net_device *dev, int vf, u16 vlan,
1171 * u8 qos, __be16 proto);
1172 * int (*ndo_set_vf_rate)(struct net_device *dev, int vf, int min_tx_rate,
1173 * int max_tx_rate);
1174 * int (*ndo_set_vf_spoofchk)(struct net_device *dev, int vf, bool setting);
1175 * int (*ndo_set_vf_trust)(struct net_device *dev, int vf, bool setting);
1176 * int (*ndo_get_vf_config)(struct net_device *dev,
1177 * int vf, struct ifla_vf_info *ivf);
1178 * int (*ndo_set_vf_link_state)(struct net_device *dev, int vf, int link_state);
1179 * int (*ndo_set_vf_port)(struct net_device *dev, int vf,
1180 * struct nlattr *port[]);
1181 *
1182 * Enable or disable the VF ability to query its RSS Redirection Table and
1183 * Hash Key. This is needed since on some devices VF share this information
1184 * with PF and querying it may introduce a theoretical security risk.
1185 * int (*ndo_set_vf_rss_query_en)(struct net_device *dev, int vf, bool setting);
1186 * int (*ndo_get_vf_port)(struct net_device *dev, int vf, struct sk_buff *skb);
1187 * int (*ndo_setup_tc)(struct net_device *dev, enum tc_setup_type type,
1188 * void *type_data);
1189 * Called to setup any 'tc' scheduler, classifier or action on @dev.
1190 * This is always called from the stack with the rtnl lock held and netif
1191 * tx queues stopped. This allows the netdevice to perform queue
1192 * management safely.
1193 *
1194 * Fiber Channel over Ethernet (FCoE) offload functions.
1195 * int (*ndo_fcoe_enable)(struct net_device *dev);
1196 * Called when the FCoE protocol stack wants to start using LLD for FCoE
1197 * so the underlying device can perform whatever needed configuration or
1198 * initialization to support acceleration of FCoE traffic.
1199 *
1200 * int (*ndo_fcoe_disable)(struct net_device *dev);
1201 * Called when the FCoE protocol stack wants to stop using LLD for FCoE
1202 * so the underlying device can perform whatever needed clean-ups to
1203 * stop supporting acceleration of FCoE traffic.
1204 *
1205 * int (*ndo_fcoe_ddp_setup)(struct net_device *dev, u16 xid,
1206 * struct scatterlist *sgl, unsigned int sgc);
1207 * Called when the FCoE Initiator wants to initialize an I/O that
1208 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1209 * perform necessary setup and returns 1 to indicate the device is set up
1210 * successfully to perform DDP on this I/O, otherwise this returns 0.
1211 *
1212 * int (*ndo_fcoe_ddp_done)(struct net_device *dev, u16 xid);
1213 * Called when the FCoE Initiator/Target is done with the DDPed I/O as
1214 * indicated by the FC exchange id 'xid', so the underlying device can
1215 * clean up and reuse resources for later DDP requests.
1216 *
1217 * int (*ndo_fcoe_ddp_target)(struct net_device *dev, u16 xid,
1218 * struct scatterlist *sgl, unsigned int sgc);
1219 * Called when the FCoE Target wants to initialize an I/O that
1220 * is a possible candidate for Direct Data Placement (DDP). The LLD can
1221 * perform necessary setup and returns 1 to indicate the device is set up
1222 * successfully to perform DDP on this I/O, otherwise this returns 0.
1223 *
1224 * int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1225 * struct netdev_fcoe_hbainfo *hbainfo);
1226 * Called when the FCoE Protocol stack wants information on the underlying
1227 * device. This information is utilized by the FCoE protocol stack to
1228 * register attributes with Fiber Channel management service as per the
1229 * FC-GS Fabric Device Management Information(FDMI) specification.
1230 *
1231 * int (*ndo_fcoe_get_wwn)(struct net_device *dev, u64 *wwn, int type);
1232 * Called when the underlying device wants to override default World Wide
1233 * Name (WWN) generation mechanism in FCoE protocol stack to pass its own
1234 * World Wide Port Name (WWPN) or World Wide Node Name (WWNN) to the FCoE
1235 * protocol stack to use.
1236 *
1237 * RFS acceleration.
1238 * int (*ndo_rx_flow_steer)(struct net_device *dev, const struct sk_buff *skb,
1239 * u16 rxq_index, u32 flow_id);
1240 * Set hardware filter for RFS. rxq_index is the target queue index;
1241 * flow_id is a flow ID to be passed to rps_may_expire_flow() later.
1242 * Return the filter ID on success, or a negative error code.
1243 *
1244 * Slave management functions (for bridge, bonding, etc).
1245 * int (*ndo_add_slave)(struct net_device *dev, struct net_device *slave_dev);
1246 * Called to make another netdev an underling.
1247 *
1248 * int (*ndo_del_slave)(struct net_device *dev, struct net_device *slave_dev);
1249 * Called to release previously enslaved netdev.
1250 *
1251 * struct net_device *(*ndo_get_xmit_slave)(struct net_device *dev,
1252 * struct sk_buff *skb,
1253 * bool all_slaves);
1254 * Get the xmit slave of master device. If all_slaves is true, function
1255 * assume all the slaves can transmit.
1256 *
1257 * Feature/offload setting functions.
1258 * netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1259 * netdev_features_t features);
1260 * Adjusts the requested feature flags according to device-specific
1261 * constraints, and returns the resulting flags. Must not modify
1262 * the device state.
1263 *
1264 * int (*ndo_set_features)(struct net_device *dev, netdev_features_t features);
1265 * Called to update device configuration to new features. Passed
1266 * feature set might be less than what was returned by ndo_fix_features()).
1267 * Must return >0 or -errno if it changed dev->features itself.
1268 *
1269 * int (*ndo_fdb_add)(struct ndmsg *ndm, struct nlattr *tb[],
1270 * struct net_device *dev,
1271 * const unsigned char *addr, u16 vid, u16 flags,
1272 * struct netlink_ext_ack *extack);
1273 * Adds an FDB entry to dev for addr.
1274 * int (*ndo_fdb_del)(struct ndmsg *ndm, struct nlattr *tb[],
1275 * struct net_device *dev,
1276 * const unsigned char *addr, u16 vid)
1277 * Deletes the FDB entry from dev coresponding to addr.
1278 * int (*ndo_fdb_del_bulk)(struct ndmsg *ndm, struct nlattr *tb[],
1279 * struct net_device *dev,
1280 * u16 vid,
1281 * struct netlink_ext_ack *extack);
1282 * int (*ndo_fdb_dump)(struct sk_buff *skb, struct netlink_callback *cb,
1283 * struct net_device *dev, struct net_device *filter_dev,
1284 * int *idx)
1285 * Used to add FDB entries to dump requests. Implementers should add
1286 * entries to skb and update idx with the number of entries.
1287 *
1288 * int (*ndo_bridge_setlink)(struct net_device *dev, struct nlmsghdr *nlh,
1289 * u16 flags, struct netlink_ext_ack *extack)
1290 * int (*ndo_bridge_getlink)(struct sk_buff *skb, u32 pid, u32 seq,
1291 * struct net_device *dev, u32 filter_mask,
1292 * int nlflags)
1293 * int (*ndo_bridge_dellink)(struct net_device *dev, struct nlmsghdr *nlh,
1294 * u16 flags);
1295 *
1296 * int (*ndo_change_carrier)(struct net_device *dev, bool new_carrier);
1297 * Called to change device carrier. Soft-devices (like dummy, team, etc)
1298 * which do not represent real hardware may define this to allow their
1299 * userspace components to manage their virtual carrier state. Devices
1300 * that determine carrier state from physical hardware properties (eg
1301 * network cables) or protocol-dependent mechanisms (eg
1302 * USB_CDC_NOTIFY_NETWORK_CONNECTION) should NOT implement this function.
1303 *
1304 * int (*ndo_get_phys_port_id)(struct net_device *dev,
1305 * struct netdev_phys_item_id *ppid);
1306 * Called to get ID of physical port of this device. If driver does
1307 * not implement this, it is assumed that the hw is not able to have
1308 * multiple net devices on single physical port.
1309 *
1310 * int (*ndo_get_port_parent_id)(struct net_device *dev,
1311 * struct netdev_phys_item_id *ppid)
1312 * Called to get the parent ID of the physical port of this device.
1313 *
1314 * void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1315 * struct net_device *dev)
1316 * Called by upper layer devices to accelerate switching or other
1317 * station functionality into hardware. 'pdev is the lowerdev
1318 * to use for the offload and 'dev' is the net device that will
1319 * back the offload. Returns a pointer to the private structure
1320 * the upper layer will maintain.
1321 * void (*ndo_dfwd_del_station)(struct net_device *pdev, void *priv)
1322 * Called by upper layer device to delete the station created
1323 * by 'ndo_dfwd_add_station'. 'pdev' is the net device backing
1324 * the station and priv is the structure returned by the add
1325 * operation.
1326 * int (*ndo_set_tx_maxrate)(struct net_device *dev,
1327 * int queue_index, u32 maxrate);
1328 * Called when a user wants to set a max-rate limitation of specific
1329 * TX queue.
1330 * int (*ndo_get_iflink)(const struct net_device *dev);
1331 * Called to get the iflink value of this device.
1332 * int (*ndo_fill_metadata_dst)(struct net_device *dev, struct sk_buff *skb);
1333 * This function is used to get egress tunnel information for given skb.
1334 * This is useful for retrieving outer tunnel header parameters while
1335 * sampling packet.
1336 * void (*ndo_set_rx_headroom)(struct net_device *dev, int needed_headroom);
1337 * This function is used to specify the headroom that the skb must
1338 * consider when allocation skb during packet reception. Setting
1339 * appropriate rx headroom value allows avoiding skb head copy on
1340 * forward. Setting a negative value resets the rx headroom to the
1341 * default value.
1342 * int (*ndo_bpf)(struct net_device *dev, struct netdev_bpf *bpf);
1343 * This function is used to set or query state related to XDP on the
1344 * netdevice and manage BPF offload. See definition of
1345 * enum bpf_netdev_command for details.
1346 * int (*ndo_xdp_xmit)(struct net_device *dev, int n, struct xdp_frame **xdp,
1347 * u32 flags);
1348 * This function is used to submit @n XDP packets for transmit on a
1349 * netdevice. Returns number of frames successfully transmitted, frames
1350 * that got dropped are freed/returned via xdp_return_frame().
1351 * Returns negative number, means general error invoking ndo, meaning
1352 * no frames were xmit'ed and core-caller will free all frames.
1353 * struct net_device *(*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1354 * struct xdp_buff *xdp);
1355 * Get the xmit slave of master device based on the xdp_buff.
1356 * int (*ndo_xsk_wakeup)(struct net_device *dev, u32 queue_id, u32 flags);
1357 * This function is used to wake up the softirq, ksoftirqd or kthread
1358 * responsible for sending and/or receiving packets on a specific
1359 * queue id bound to an AF_XDP socket. The flags field specifies if
1360 * only RX, only Tx, or both should be woken up using the flags
1361 * XDP_WAKEUP_RX and XDP_WAKEUP_TX.
1362 * struct devlink_port *(*ndo_get_devlink_port)(struct net_device *dev);
1363 * Get devlink port instance associated with a given netdev.
1364 * Called with a reference on the netdevice and devlink locks only,
1365 * rtnl_lock is not held.
1366 * int (*ndo_tunnel_ctl)(struct net_device *dev, struct ip_tunnel_parm *p,
1367 * int cmd);
1368 * Add, change, delete or get information on an IPv4 tunnel.
1369 * struct net_device *(*ndo_get_peer_dev)(struct net_device *dev);
1370 * If a device is paired with a peer device, return the peer instance.
1371 * The caller must be under RCU read context.
1372 * int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx, struct net_device_path *path);
1373 * Get the forwarding path to reach the real device from the HW destination address
1374 * ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1375 * const struct skb_shared_hwtstamps *hwtstamps,
1376 * bool cycles);
1377 * Get hardware timestamp based on normal/adjustable time or free running
1378 * cycle counter. This function is required if physical clock supports a
1379 * free running cycle counter.
1380 */
1381 struct net_device_ops {
1382 int (*ndo_init)(struct net_device *dev);
1383 void (*ndo_uninit)(struct net_device *dev);
1384 int (*ndo_open)(struct net_device *dev);
1385 int (*ndo_stop)(struct net_device *dev);
1386 netdev_tx_t (*ndo_start_xmit)(struct sk_buff *skb,
1387 struct net_device *dev);
1388 netdev_features_t (*ndo_features_check)(struct sk_buff *skb,
1389 struct net_device *dev,
1390 netdev_features_t features);
1391 u16 (*ndo_select_queue)(struct net_device *dev,
1392 struct sk_buff *skb,
1393 struct net_device *sb_dev);
1394 void (*ndo_change_rx_flags)(struct net_device *dev,
1395 int flags);
1396 void (*ndo_set_rx_mode)(struct net_device *dev);
1397 int (*ndo_set_mac_address)(struct net_device *dev,
1398 void *addr);
1399 int (*ndo_validate_addr)(struct net_device *dev);
1400 int (*ndo_do_ioctl)(struct net_device *dev,
1401 struct ifreq *ifr, int cmd);
1402 int (*ndo_eth_ioctl)(struct net_device *dev,
1403 struct ifreq *ifr, int cmd);
1404 int (*ndo_siocbond)(struct net_device *dev,
1405 struct ifreq *ifr, int cmd);
1406 int (*ndo_siocwandev)(struct net_device *dev,
1407 struct if_settings *ifs);
1408 int (*ndo_siocdevprivate)(struct net_device *dev,
1409 struct ifreq *ifr,
1410 void __user *data, int cmd);
1411 int (*ndo_set_config)(struct net_device *dev,
1412 struct ifmap *map);
1413 int (*ndo_change_mtu)(struct net_device *dev,
1414 int new_mtu);
1415 int (*ndo_neigh_setup)(struct net_device *dev,
1416 struct neigh_parms *);
1417 void (*ndo_tx_timeout) (struct net_device *dev,
1418 unsigned int txqueue);
1419
1420 void (*ndo_get_stats64)(struct net_device *dev,
1421 struct rtnl_link_stats64 *storage);
1422 bool (*ndo_has_offload_stats)(const struct net_device *dev, int attr_id);
1423 int (*ndo_get_offload_stats)(int attr_id,
1424 const struct net_device *dev,
1425 void *attr_data);
1426 struct net_device_stats* (*ndo_get_stats)(struct net_device *dev);
1427
1428 int (*ndo_vlan_rx_add_vid)(struct net_device *dev,
1429 __be16 proto, u16 vid);
1430 int (*ndo_vlan_rx_kill_vid)(struct net_device *dev,
1431 __be16 proto, u16 vid);
1432 #ifdef CONFIG_NET_POLL_CONTROLLER
1433 void (*ndo_poll_controller)(struct net_device *dev);
1434 int (*ndo_netpoll_setup)(struct net_device *dev,
1435 struct netpoll_info *info);
1436 void (*ndo_netpoll_cleanup)(struct net_device *dev);
1437 #endif
1438 int (*ndo_set_vf_mac)(struct net_device *dev,
1439 int queue, u8 *mac);
1440 int (*ndo_set_vf_vlan)(struct net_device *dev,
1441 int queue, u16 vlan,
1442 u8 qos, __be16 proto);
1443 int (*ndo_set_vf_rate)(struct net_device *dev,
1444 int vf, int min_tx_rate,
1445 int max_tx_rate);
1446 int (*ndo_set_vf_spoofchk)(struct net_device *dev,
1447 int vf, bool setting);
1448 int (*ndo_set_vf_trust)(struct net_device *dev,
1449 int vf, bool setting);
1450 int (*ndo_get_vf_config)(struct net_device *dev,
1451 int vf,
1452 struct ifla_vf_info *ivf);
1453 int (*ndo_set_vf_link_state)(struct net_device *dev,
1454 int vf, int link_state);
1455 int (*ndo_get_vf_stats)(struct net_device *dev,
1456 int vf,
1457 struct ifla_vf_stats
1458 *vf_stats);
1459 int (*ndo_set_vf_port)(struct net_device *dev,
1460 int vf,
1461 struct nlattr *port[]);
1462 int (*ndo_get_vf_port)(struct net_device *dev,
1463 int vf, struct sk_buff *skb);
1464 int (*ndo_get_vf_guid)(struct net_device *dev,
1465 int vf,
1466 struct ifla_vf_guid *node_guid,
1467 struct ifla_vf_guid *port_guid);
1468 int (*ndo_set_vf_guid)(struct net_device *dev,
1469 int vf, u64 guid,
1470 int guid_type);
1471 int (*ndo_set_vf_rss_query_en)(
1472 struct net_device *dev,
1473 int vf, bool setting);
1474 int (*ndo_setup_tc)(struct net_device *dev,
1475 enum tc_setup_type type,
1476 void *type_data);
1477 #if IS_ENABLED(CONFIG_FCOE)
1478 int (*ndo_fcoe_enable)(struct net_device *dev);
1479 int (*ndo_fcoe_disable)(struct net_device *dev);
1480 int (*ndo_fcoe_ddp_setup)(struct net_device *dev,
1481 u16 xid,
1482 struct scatterlist *sgl,
1483 unsigned int sgc);
1484 int (*ndo_fcoe_ddp_done)(struct net_device *dev,
1485 u16 xid);
1486 int (*ndo_fcoe_ddp_target)(struct net_device *dev,
1487 u16 xid,
1488 struct scatterlist *sgl,
1489 unsigned int sgc);
1490 int (*ndo_fcoe_get_hbainfo)(struct net_device *dev,
1491 struct netdev_fcoe_hbainfo *hbainfo);
1492 #endif
1493
1494 #if IS_ENABLED(CONFIG_LIBFCOE)
1495 #define NETDEV_FCOE_WWNN 0
1496 #define NETDEV_FCOE_WWPN 1
1497 int (*ndo_fcoe_get_wwn)(struct net_device *dev,
1498 u64 *wwn, int type);
1499 #endif
1500
1501 #ifdef CONFIG_RFS_ACCEL
1502 int (*ndo_rx_flow_steer)(struct net_device *dev,
1503 const struct sk_buff *skb,
1504 u16 rxq_index,
1505 u32 flow_id);
1506 #endif
1507 int (*ndo_add_slave)(struct net_device *dev,
1508 struct net_device *slave_dev,
1509 struct netlink_ext_ack *extack);
1510 int (*ndo_del_slave)(struct net_device *dev,
1511 struct net_device *slave_dev);
1512 struct net_device* (*ndo_get_xmit_slave)(struct net_device *dev,
1513 struct sk_buff *skb,
1514 bool all_slaves);
1515 struct net_device* (*ndo_sk_get_lower_dev)(struct net_device *dev,
1516 struct sock *sk);
1517 netdev_features_t (*ndo_fix_features)(struct net_device *dev,
1518 netdev_features_t features);
1519 int (*ndo_set_features)(struct net_device *dev,
1520 netdev_features_t features);
1521 int (*ndo_neigh_construct)(struct net_device *dev,
1522 struct neighbour *n);
1523 void (*ndo_neigh_destroy)(struct net_device *dev,
1524 struct neighbour *n);
1525
1526 int (*ndo_fdb_add)(struct ndmsg *ndm,
1527 struct nlattr *tb[],
1528 struct net_device *dev,
1529 const unsigned char *addr,
1530 u16 vid,
1531 u16 flags,
1532 struct netlink_ext_ack *extack);
1533 int (*ndo_fdb_del)(struct ndmsg *ndm,
1534 struct nlattr *tb[],
1535 struct net_device *dev,
1536 const unsigned char *addr,
1537 u16 vid, struct netlink_ext_ack *extack);
1538 int (*ndo_fdb_del_bulk)(struct ndmsg *ndm,
1539 struct nlattr *tb[],
1540 struct net_device *dev,
1541 u16 vid,
1542 struct netlink_ext_ack *extack);
1543 int (*ndo_fdb_dump)(struct sk_buff *skb,
1544 struct netlink_callback *cb,
1545 struct net_device *dev,
1546 struct net_device *filter_dev,
1547 int *idx);
1548 int (*ndo_fdb_get)(struct sk_buff *skb,
1549 struct nlattr *tb[],
1550 struct net_device *dev,
1551 const unsigned char *addr,
1552 u16 vid, u32 portid, u32 seq,
1553 struct netlink_ext_ack *extack);
1554 int (*ndo_bridge_setlink)(struct net_device *dev,
1555 struct nlmsghdr *nlh,
1556 u16 flags,
1557 struct netlink_ext_ack *extack);
1558 int (*ndo_bridge_getlink)(struct sk_buff *skb,
1559 u32 pid, u32 seq,
1560 struct net_device *dev,
1561 u32 filter_mask,
1562 int nlflags);
1563 int (*ndo_bridge_dellink)(struct net_device *dev,
1564 struct nlmsghdr *nlh,
1565 u16 flags);
1566 int (*ndo_change_carrier)(struct net_device *dev,
1567 bool new_carrier);
1568 int (*ndo_get_phys_port_id)(struct net_device *dev,
1569 struct netdev_phys_item_id *ppid);
1570 int (*ndo_get_port_parent_id)(struct net_device *dev,
1571 struct netdev_phys_item_id *ppid);
1572 int (*ndo_get_phys_port_name)(struct net_device *dev,
1573 char *name, size_t len);
1574 void* (*ndo_dfwd_add_station)(struct net_device *pdev,
1575 struct net_device *dev);
1576 void (*ndo_dfwd_del_station)(struct net_device *pdev,
1577 void *priv);
1578
1579 int (*ndo_set_tx_maxrate)(struct net_device *dev,
1580 int queue_index,
1581 u32 maxrate);
1582 int (*ndo_get_iflink)(const struct net_device *dev);
1583 int (*ndo_fill_metadata_dst)(struct net_device *dev,
1584 struct sk_buff *skb);
1585 void (*ndo_set_rx_headroom)(struct net_device *dev,
1586 int needed_headroom);
1587 int (*ndo_bpf)(struct net_device *dev,
1588 struct netdev_bpf *bpf);
1589 int (*ndo_xdp_xmit)(struct net_device *dev, int n,
1590 struct xdp_frame **xdp,
1591 u32 flags);
1592 struct net_device * (*ndo_xdp_get_xmit_slave)(struct net_device *dev,
1593 struct xdp_buff *xdp);
1594 int (*ndo_xsk_wakeup)(struct net_device *dev,
1595 u32 queue_id, u32 flags);
1596 struct devlink_port * (*ndo_get_devlink_port)(struct net_device *dev);
1597 int (*ndo_tunnel_ctl)(struct net_device *dev,
1598 struct ip_tunnel_parm *p, int cmd);
1599 struct net_device * (*ndo_get_peer_dev)(struct net_device *dev);
1600 int (*ndo_fill_forward_path)(struct net_device_path_ctx *ctx,
1601 struct net_device_path *path);
1602 ktime_t (*ndo_get_tstamp)(struct net_device *dev,
1603 const struct skb_shared_hwtstamps *hwtstamps,
1604 bool cycles);
1605 };
1606
1607 /**
1608 * enum netdev_priv_flags - &struct net_device priv_flags
1609 *
1610 * These are the &struct net_device, they are only set internally
1611 * by drivers and used in the kernel. These flags are invisible to
1612 * userspace; this means that the order of these flags can change
1613 * during any kernel release.
1614 *
1615 * You should have a pretty good reason to be extending these flags.
1616 *
1617 * @IFF_802_1Q_VLAN: 802.1Q VLAN device
1618 * @IFF_EBRIDGE: Ethernet bridging device
1619 * @IFF_BONDING: bonding master or slave
1620 * @IFF_ISATAP: ISATAP interface (RFC4214)
1621 * @IFF_WAN_HDLC: WAN HDLC device
1622 * @IFF_XMIT_DST_RELEASE: dev_hard_start_xmit() is allowed to
1623 * release skb->dst
1624 * @IFF_DONT_BRIDGE: disallow bridging this ether dev
1625 * @IFF_DISABLE_NETPOLL: disable netpoll at run-time
1626 * @IFF_MACVLAN_PORT: device used as macvlan port
1627 * @IFF_BRIDGE_PORT: device used as bridge port
1628 * @IFF_OVS_DATAPATH: device used as Open vSwitch datapath port
1629 * @IFF_TX_SKB_SHARING: The interface supports sharing skbs on transmit
1630 * @IFF_UNICAST_FLT: Supports unicast filtering
1631 * @IFF_TEAM_PORT: device used as team port
1632 * @IFF_SUPP_NOFCS: device supports sending custom FCS
1633 * @IFF_LIVE_ADDR_CHANGE: device supports hardware address
1634 * change when it's running
1635 * @IFF_MACVLAN: Macvlan device
1636 * @IFF_XMIT_DST_RELEASE_PERM: IFF_XMIT_DST_RELEASE not taking into account
1637 * underlying stacked devices
1638 * @IFF_L3MDEV_MASTER: device is an L3 master device
1639 * @IFF_NO_QUEUE: device can run without qdisc attached
1640 * @IFF_OPENVSWITCH: device is a Open vSwitch master
1641 * @IFF_L3MDEV_SLAVE: device is enslaved to an L3 master device
1642 * @IFF_TEAM: device is a team device
1643 * @IFF_RXFH_CONFIGURED: device has had Rx Flow indirection table configured
1644 * @IFF_PHONY_HEADROOM: the headroom value is controlled by an external
1645 * entity (i.e. the master device for bridged veth)
1646 * @IFF_MACSEC: device is a MACsec device
1647 * @IFF_NO_RX_HANDLER: device doesn't support the rx_handler hook
1648 * @IFF_FAILOVER: device is a failover master device
1649 * @IFF_FAILOVER_SLAVE: device is lower dev of a failover master device
1650 * @IFF_L3MDEV_RX_HANDLER: only invoke the rx handler of L3 master device
1651 * @IFF_LIVE_RENAME_OK: rename is allowed while device is up and running
1652 * @IFF_TX_SKB_NO_LINEAR: device/driver is capable of xmitting frames with
1653 * skb_headlen(skb) == 0 (data starts from frag0)
1654 * @IFF_CHANGE_PROTO_DOWN: device supports setting carrier via IFLA_PROTO_DOWN
1655 */
1656 enum netdev_priv_flags {
1657 IFF_802_1Q_VLAN = 1<<0,
1658 IFF_EBRIDGE = 1<<1,
1659 IFF_BONDING = 1<<2,
1660 IFF_ISATAP = 1<<3,
1661 IFF_WAN_HDLC = 1<<4,
1662 IFF_XMIT_DST_RELEASE = 1<<5,
1663 IFF_DONT_BRIDGE = 1<<6,
1664 IFF_DISABLE_NETPOLL = 1<<7,
1665 IFF_MACVLAN_PORT = 1<<8,
1666 IFF_BRIDGE_PORT = 1<<9,
1667 IFF_OVS_DATAPATH = 1<<10,
1668 IFF_TX_SKB_SHARING = 1<<11,
1669 IFF_UNICAST_FLT = 1<<12,
1670 IFF_TEAM_PORT = 1<<13,
1671 IFF_SUPP_NOFCS = 1<<14,
1672 IFF_LIVE_ADDR_CHANGE = 1<<15,
1673 IFF_MACVLAN = 1<<16,
1674 IFF_XMIT_DST_RELEASE_PERM = 1<<17,
1675 IFF_L3MDEV_MASTER = 1<<18,
1676 IFF_NO_QUEUE = 1<<19,
1677 IFF_OPENVSWITCH = 1<<20,
1678 IFF_L3MDEV_SLAVE = 1<<21,
1679 IFF_TEAM = 1<<22,
1680 IFF_RXFH_CONFIGURED = 1<<23,
1681 IFF_PHONY_HEADROOM = 1<<24,
1682 IFF_MACSEC = 1<<25,
1683 IFF_NO_RX_HANDLER = 1<<26,
1684 IFF_FAILOVER = 1<<27,
1685 IFF_FAILOVER_SLAVE = 1<<28,
1686 IFF_L3MDEV_RX_HANDLER = 1<<29,
1687 IFF_LIVE_RENAME_OK = 1<<30,
1688 IFF_TX_SKB_NO_LINEAR = BIT_ULL(31),
1689 IFF_CHANGE_PROTO_DOWN = BIT_ULL(32),
1690 };
1691
1692 #define IFF_802_1Q_VLAN IFF_802_1Q_VLAN
1693 #define IFF_EBRIDGE IFF_EBRIDGE
1694 #define IFF_BONDING IFF_BONDING
1695 #define IFF_ISATAP IFF_ISATAP
1696 #define IFF_WAN_HDLC IFF_WAN_HDLC
1697 #define IFF_XMIT_DST_RELEASE IFF_XMIT_DST_RELEASE
1698 #define IFF_DONT_BRIDGE IFF_DONT_BRIDGE
1699 #define IFF_DISABLE_NETPOLL IFF_DISABLE_NETPOLL
1700 #define IFF_MACVLAN_PORT IFF_MACVLAN_PORT
1701 #define IFF_BRIDGE_PORT IFF_BRIDGE_PORT
1702 #define IFF_OVS_DATAPATH IFF_OVS_DATAPATH
1703 #define IFF_TX_SKB_SHARING IFF_TX_SKB_SHARING
1704 #define IFF_UNICAST_FLT IFF_UNICAST_FLT
1705 #define IFF_TEAM_PORT IFF_TEAM_PORT
1706 #define IFF_SUPP_NOFCS IFF_SUPP_NOFCS
1707 #define IFF_LIVE_ADDR_CHANGE IFF_LIVE_ADDR_CHANGE
1708 #define IFF_MACVLAN IFF_MACVLAN
1709 #define IFF_XMIT_DST_RELEASE_PERM IFF_XMIT_DST_RELEASE_PERM
1710 #define IFF_L3MDEV_MASTER IFF_L3MDEV_MASTER
1711 #define IFF_NO_QUEUE IFF_NO_QUEUE
1712 #define IFF_OPENVSWITCH IFF_OPENVSWITCH
1713 #define IFF_L3MDEV_SLAVE IFF_L3MDEV_SLAVE
1714 #define IFF_TEAM IFF_TEAM
1715 #define IFF_RXFH_CONFIGURED IFF_RXFH_CONFIGURED
1716 #define IFF_PHONY_HEADROOM IFF_PHONY_HEADROOM
1717 #define IFF_MACSEC IFF_MACSEC
1718 #define IFF_NO_RX_HANDLER IFF_NO_RX_HANDLER
1719 #define IFF_FAILOVER IFF_FAILOVER
1720 #define IFF_FAILOVER_SLAVE IFF_FAILOVER_SLAVE
1721 #define IFF_L3MDEV_RX_HANDLER IFF_L3MDEV_RX_HANDLER
1722 #define IFF_LIVE_RENAME_OK IFF_LIVE_RENAME_OK
1723 #define IFF_TX_SKB_NO_LINEAR IFF_TX_SKB_NO_LINEAR
1724
1725 /* Specifies the type of the struct net_device::ml_priv pointer */
1726 enum netdev_ml_priv_type {
1727 ML_PRIV_NONE,
1728 ML_PRIV_CAN,
1729 };
1730
1731 /**
1732 * struct net_device - The DEVICE structure.
1733 *
1734 * Actually, this whole structure is a big mistake. It mixes I/O
1735 * data with strictly "high-level" data, and it has to know about
1736 * almost every data structure used in the INET module.
1737 *
1738 * @name: This is the first field of the "visible" part of this structure
1739 * (i.e. as seen by users in the "Space.c" file). It is the name
1740 * of the interface.
1741 *
1742 * @name_node: Name hashlist node
1743 * @ifalias: SNMP alias
1744 * @mem_end: Shared memory end
1745 * @mem_start: Shared memory start
1746 * @base_addr: Device I/O address
1747 * @irq: Device IRQ number
1748 *
1749 * @state: Generic network queuing layer state, see netdev_state_t
1750 * @dev_list: The global list of network devices
1751 * @napi_list: List entry used for polling NAPI devices
1752 * @unreg_list: List entry when we are unregistering the
1753 * device; see the function unregister_netdev
1754 * @close_list: List entry used when we are closing the device
1755 * @ptype_all: Device-specific packet handlers for all protocols
1756 * @ptype_specific: Device-specific, protocol-specific packet handlers
1757 *
1758 * @adj_list: Directly linked devices, like slaves for bonding
1759 * @features: Currently active device features
1760 * @hw_features: User-changeable features
1761 *
1762 * @wanted_features: User-requested features
1763 * @vlan_features: Mask of features inheritable by VLAN devices
1764 *
1765 * @hw_enc_features: Mask of features inherited by encapsulating devices
1766 * This field indicates what encapsulation
1767 * offloads the hardware is capable of doing,
1768 * and drivers will need to set them appropriately.
1769 *
1770 * @mpls_features: Mask of features inheritable by MPLS
1771 * @gso_partial_features: value(s) from NETIF_F_GSO\*
1772 *
1773 * @ifindex: interface index
1774 * @group: The group the device belongs to
1775 *
1776 * @stats: Statistics struct, which was left as a legacy, use
1777 * rtnl_link_stats64 instead
1778 *
1779 * @core_stats: core networking counters,
1780 * do not use this in drivers
1781 * @carrier_up_count: Number of times the carrier has been up
1782 * @carrier_down_count: Number of times the carrier has been down
1783 *
1784 * @wireless_handlers: List of functions to handle Wireless Extensions,
1785 * instead of ioctl,
1786 * see <net/iw_handler.h> for details.
1787 * @wireless_data: Instance data managed by the core of wireless extensions
1788 *
1789 * @netdev_ops: Includes several pointers to callbacks,
1790 * if one wants to override the ndo_*() functions
1791 * @ethtool_ops: Management operations
1792 * @l3mdev_ops: Layer 3 master device operations
1793 * @ndisc_ops: Includes callbacks for different IPv6 neighbour
1794 * discovery handling. Necessary for e.g. 6LoWPAN.
1795 * @xfrmdev_ops: Transformation offload operations
1796 * @tlsdev_ops: Transport Layer Security offload operations
1797 * @header_ops: Includes callbacks for creating,parsing,caching,etc
1798 * of Layer 2 headers.
1799 *
1800 * @flags: Interface flags (a la BSD)
1801 * @priv_flags: Like 'flags' but invisible to userspace,
1802 * see if.h for the definitions
1803 * @gflags: Global flags ( kept as legacy )
1804 * @padded: How much padding added by alloc_netdev()
1805 * @operstate: RFC2863 operstate
1806 * @link_mode: Mapping policy to operstate
1807 * @if_port: Selectable AUI, TP, ...
1808 * @dma: DMA channel
1809 * @mtu: Interface MTU value
1810 * @min_mtu: Interface Minimum MTU value
1811 * @max_mtu: Interface Maximum MTU value
1812 * @type: Interface hardware type
1813 * @hard_header_len: Maximum hardware header length.
1814 * @min_header_len: Minimum hardware header length
1815 *
1816 * @needed_headroom: Extra headroom the hardware may need, but not in all
1817 * cases can this be guaranteed
1818 * @needed_tailroom: Extra tailroom the hardware may need, but not in all
1819 * cases can this be guaranteed. Some cases also use
1820 * LL_MAX_HEADER instead to allocate the skb
1821 *
1822 * interface address info:
1823 *
1824 * @perm_addr: Permanent hw address
1825 * @addr_assign_type: Hw address assignment type
1826 * @addr_len: Hardware address length
1827 * @upper_level: Maximum depth level of upper devices.
1828 * @lower_level: Maximum depth level of lower devices.
1829 * @neigh_priv_len: Used in neigh_alloc()
1830 * @dev_id: Used to differentiate devices that share
1831 * the same link layer address
1832 * @dev_port: Used to differentiate devices that share
1833 * the same function
1834 * @addr_list_lock: XXX: need comments on this one
1835 * @name_assign_type: network interface name assignment type
1836 * @uc_promisc: Counter that indicates promiscuous mode
1837 * has been enabled due to the need to listen to
1838 * additional unicast addresses in a device that
1839 * does not implement ndo_set_rx_mode()
1840 * @uc: unicast mac addresses
1841 * @mc: multicast mac addresses
1842 * @dev_addrs: list of device hw addresses
1843 * @queues_kset: Group of all Kobjects in the Tx and RX queues
1844 * @promiscuity: Number of times the NIC is told to work in
1845 * promiscuous mode; if it becomes 0 the NIC will
1846 * exit promiscuous mode
1847 * @allmulti: Counter, enables or disables allmulticast mode
1848 *
1849 * @vlan_info: VLAN info
1850 * @dsa_ptr: dsa specific data
1851 * @tipc_ptr: TIPC specific data
1852 * @atalk_ptr: AppleTalk link
1853 * @ip_ptr: IPv4 specific data
1854 * @dn_ptr: DECnet specific data
1855 * @ip6_ptr: IPv6 specific data
1856 * @ax25_ptr: AX.25 specific data
1857 * @ieee80211_ptr: IEEE 802.11 specific data, assign before registering
1858 * @ieee802154_ptr: IEEE 802.15.4 low-rate Wireless Personal Area Network
1859 * device struct
1860 * @mpls_ptr: mpls_dev struct pointer
1861 * @mctp_ptr: MCTP specific data
1862 *
1863 * @dev_addr: Hw address (before bcast,
1864 * because most packets are unicast)
1865 *
1866 * @_rx: Array of RX queues
1867 * @num_rx_queues: Number of RX queues
1868 * allocated at register_netdev() time
1869 * @real_num_rx_queues: Number of RX queues currently active in device
1870 * @xdp_prog: XDP sockets filter program pointer
1871 * @gro_flush_timeout: timeout for GRO layer in NAPI
1872 * @napi_defer_hard_irqs: If not zero, provides a counter that would
1873 * allow to avoid NIC hard IRQ, on busy queues.
1874 *
1875 * @rx_handler: handler for received packets
1876 * @rx_handler_data: XXX: need comments on this one
1877 * @miniq_ingress: ingress/clsact qdisc specific data for
1878 * ingress processing
1879 * @ingress_queue: XXX: need comments on this one
1880 * @nf_hooks_ingress: netfilter hooks executed for ingress packets
1881 * @broadcast: hw bcast address
1882 *
1883 * @rx_cpu_rmap: CPU reverse-mapping for RX completion interrupts,
1884 * indexed by RX queue number. Assigned by driver.
1885 * This must only be set if the ndo_rx_flow_steer
1886 * operation is defined
1887 * @index_hlist: Device index hash chain
1888 *
1889 * @_tx: Array of TX queues
1890 * @num_tx_queues: Number of TX queues allocated at alloc_netdev_mq() time
1891 * @real_num_tx_queues: Number of TX queues currently active in device
1892 * @qdisc: Root qdisc from userspace point of view
1893 * @tx_queue_len: Max frames per queue allowed
1894 * @tx_global_lock: XXX: need comments on this one
1895 * @xdp_bulkq: XDP device bulk queue
1896 * @xps_maps: all CPUs/RXQs maps for XPS device
1897 *
1898 * @xps_maps: XXX: need comments on this one
1899 * @miniq_egress: clsact qdisc specific data for
1900 * egress processing
1901 * @nf_hooks_egress: netfilter hooks executed for egress packets
1902 * @qdisc_hash: qdisc hash table
1903 * @watchdog_timeo: Represents the timeout that is used by
1904 * the watchdog (see dev_watchdog())
1905 * @watchdog_timer: List of timers
1906 *
1907 * @proto_down_reason: reason a netdev interface is held down
1908 * @pcpu_refcnt: Number of references to this device
1909 * @dev_refcnt: Number of references to this device
1910 * @refcnt_tracker: Tracker directory for tracked references to this device
1911 * @todo_list: Delayed register/unregister
1912 * @link_watch_list: XXX: need comments on this one
1913 *
1914 * @reg_state: Register/unregister state machine
1915 * @dismantle: Device is going to be freed
1916 * @rtnl_link_state: This enum represents the phases of creating
1917 * a new link
1918 *
1919 * @needs_free_netdev: Should unregister perform free_netdev?
1920 * @priv_destructor: Called from unregister
1921 * @npinfo: XXX: need comments on this one
1922 * @nd_net: Network namespace this network device is inside
1923 *
1924 * @ml_priv: Mid-layer private
1925 * @ml_priv_type: Mid-layer private type
1926 * @lstats: Loopback statistics
1927 * @tstats: Tunnel statistics
1928 * @dstats: Dummy statistics
1929 * @vstats: Virtual ethernet statistics
1930 *
1931 * @garp_port: GARP
1932 * @mrp_port: MRP
1933 *
1934 * @dm_private: Drop monitor private
1935 *
1936 * @dev: Class/net/name entry
1937 * @sysfs_groups: Space for optional device, statistics and wireless
1938 * sysfs groups
1939 *
1940 * @sysfs_rx_queue_group: Space for optional per-rx queue attributes
1941 * @rtnl_link_ops: Rtnl_link_ops
1942 *
1943 * @gso_max_size: Maximum size of generic segmentation offload
1944 * @tso_max_size: Device (as in HW) limit on the max TSO request size
1945 * @gso_max_segs: Maximum number of segments that can be passed to the
1946 * NIC for GSO
1947 * @tso_max_segs: Device (as in HW) limit on the max TSO segment count
1948 *
1949 * @dcbnl_ops: Data Center Bridging netlink ops
1950 * @num_tc: Number of traffic classes in the net device
1951 * @tc_to_txq: XXX: need comments on this one
1952 * @prio_tc_map: XXX: need comments on this one
1953 *
1954 * @fcoe_ddp_xid: Max exchange id for FCoE LRO by ddp
1955 *
1956 * @priomap: XXX: need comments on this one
1957 * @phydev: Physical device may attach itself
1958 * for hardware timestamping
1959 * @sfp_bus: attached &struct sfp_bus structure.
1960 *
1961 * @qdisc_tx_busylock: lockdep class annotating Qdisc->busylock spinlock
1962 *
1963 * @proto_down: protocol port state information can be sent to the
1964 * switch driver and used to set the phys state of the
1965 * switch port.
1966 *
1967 * @wol_enabled: Wake-on-LAN is enabled
1968 *
1969 * @threaded: napi threaded mode is enabled
1970 *
1971 * @net_notifier_list: List of per-net netdev notifier block
1972 * that follow this device when it is moved
1973 * to another network namespace.
1974 *
1975 * @macsec_ops: MACsec offloading ops
1976 *
1977 * @udp_tunnel_nic_info: static structure describing the UDP tunnel
1978 * offload capabilities of the device
1979 * @udp_tunnel_nic: UDP tunnel offload state
1980 * @xdp_state: stores info on attached XDP BPF programs
1981 *
1982 * @nested_level: Used as a parameter of spin_lock_nested() of
1983 * dev->addr_list_lock.
1984 * @unlink_list: As netif_addr_lock() can be called recursively,
1985 * keep a list of interfaces to be deleted.
1986 * @gro_max_size: Maximum size of aggregated packet in generic
1987 * receive offload (GRO)
1988 *
1989 * @dev_addr_shadow: Copy of @dev_addr to catch direct writes.
1990 * @linkwatch_dev_tracker: refcount tracker used by linkwatch.
1991 * @watchdog_dev_tracker: refcount tracker used by watchdog.
1992 * @dev_registered_tracker: tracker for reference held while
1993 * registered
1994 * @offload_xstats_l3: L3 HW stats for this netdevice.
1995 *
1996 * FIXME: cleanup struct net_device such that network protocol info
1997 * moves out.
1998 */
1999
2000 struct net_device {
2001 char name[IFNAMSIZ];
2002 struct netdev_name_node *name_node;
2003 struct dev_ifalias __rcu *ifalias;
2004 /*
2005 * I/O specific fields
2006 * FIXME: Merge these and struct ifmap into one
2007 */
2008 unsigned long mem_end;
2009 unsigned long mem_start;
2010 unsigned long base_addr;
2011
2012 /*
2013 * Some hardware also needs these fields (state,dev_list,
2014 * napi_list,unreg_list,close_list) but they are not
2015 * part of the usual set specified in Space.c.
2016 */
2017
2018 unsigned long state;
2019
2020 struct list_head dev_list;
2021 struct list_head napi_list;
2022 struct list_head unreg_list;
2023 struct list_head close_list;
2024 struct list_head ptype_all;
2025 struct list_head ptype_specific;
2026
2027 struct {
2028 struct list_head upper;
2029 struct list_head lower;
2030 } adj_list;
2031
2032 /* Read-mostly cache-line for fast-path access */
2033 unsigned int flags;
2034 unsigned long long priv_flags;
2035 const struct net_device_ops *netdev_ops;
2036 int ifindex;
2037 unsigned short gflags;
2038 unsigned short hard_header_len;
2039
2040 /* Note : dev->mtu is often read without holding a lock.
2041 * Writers usually hold RTNL.
2042 * It is recommended to use READ_ONCE() to annotate the reads,
2043 * and to use WRITE_ONCE() to annotate the writes.
2044 */
2045 unsigned int mtu;
2046 unsigned short needed_headroom;
2047 unsigned short needed_tailroom;
2048
2049 netdev_features_t features;
2050 netdev_features_t hw_features;
2051 netdev_features_t wanted_features;
2052 netdev_features_t vlan_features;
2053 netdev_features_t hw_enc_features;
2054 netdev_features_t mpls_features;
2055 netdev_features_t gso_partial_features;
2056
2057 unsigned int min_mtu;
2058 unsigned int max_mtu;
2059 unsigned short type;
2060 unsigned char min_header_len;
2061 unsigned char name_assign_type;
2062
2063 int group;
2064
2065 struct net_device_stats stats; /* not used by modern drivers */
2066
2067 struct net_device_core_stats __percpu *core_stats;
2068
2069 /* Stats to monitor link on/off, flapping */
2070 atomic_t carrier_up_count;
2071 atomic_t carrier_down_count;
2072
2073 #ifdef CONFIG_WIRELESS_EXT
2074 const struct iw_handler_def *wireless_handlers;
2075 struct iw_public_data *wireless_data;
2076 #endif
2077 const struct ethtool_ops *ethtool_ops;
2078 #ifdef CONFIG_NET_L3_MASTER_DEV
2079 const struct l3mdev_ops *l3mdev_ops;
2080 #endif
2081 #if IS_ENABLED(CONFIG_IPV6)
2082 const struct ndisc_ops *ndisc_ops;
2083 #endif
2084
2085 #ifdef CONFIG_XFRM_OFFLOAD
2086 const struct xfrmdev_ops *xfrmdev_ops;
2087 #endif
2088
2089 #if IS_ENABLED(CONFIG_TLS_DEVICE)
2090 const struct tlsdev_ops *tlsdev_ops;
2091 #endif
2092
2093 const struct header_ops *header_ops;
2094
2095 unsigned char operstate;
2096 unsigned char link_mode;
2097
2098 unsigned char if_port;
2099 unsigned char dma;
2100
2101 /* Interface address info. */
2102 unsigned char perm_addr[MAX_ADDR_LEN];
2103 unsigned char addr_assign_type;
2104 unsigned char addr_len;
2105 unsigned char upper_level;
2106 unsigned char lower_level;
2107
2108 unsigned short neigh_priv_len;
2109 unsigned short dev_id;
2110 unsigned short dev_port;
2111 unsigned short padded;
2112
2113 spinlock_t addr_list_lock;
2114 int irq;
2115
2116 struct netdev_hw_addr_list uc;
2117 struct netdev_hw_addr_list mc;
2118 struct netdev_hw_addr_list dev_addrs;
2119
2120 #ifdef CONFIG_SYSFS
2121 struct kset *queues_kset;
2122 #endif
2123 #ifdef CONFIG_LOCKDEP
2124 struct list_head unlink_list;
2125 #endif
2126 unsigned int promiscuity;
2127 unsigned int allmulti;
2128 bool uc_promisc;
2129 #ifdef CONFIG_LOCKDEP
2130 unsigned char nested_level;
2131 #endif
2132
2133
2134 /* Protocol-specific pointers */
2135
2136 struct in_device __rcu *ip_ptr;
2137 struct inet6_dev __rcu *ip6_ptr;
2138 #if IS_ENABLED(CONFIG_VLAN_8021Q)
2139 struct vlan_info __rcu *vlan_info;
2140 #endif
2141 #if IS_ENABLED(CONFIG_NET_DSA)
2142 struct dsa_port *dsa_ptr;
2143 #endif
2144 #if IS_ENABLED(CONFIG_TIPC)
2145 struct tipc_bearer __rcu *tipc_ptr;
2146 #endif
2147 #if IS_ENABLED(CONFIG_ATALK)
2148 void *atalk_ptr;
2149 #endif
2150 #if IS_ENABLED(CONFIG_DECNET)
2151 struct dn_dev __rcu *dn_ptr;
2152 #endif
2153 #if IS_ENABLED(CONFIG_AX25)
2154 void *ax25_ptr;
2155 #endif
2156 #if IS_ENABLED(CONFIG_CFG80211)
2157 struct wireless_dev *ieee80211_ptr;
2158 #endif
2159 #if IS_ENABLED(CONFIG_IEEE802154) || IS_ENABLED(CONFIG_6LOWPAN)
2160 struct wpan_dev *ieee802154_ptr;
2161 #endif
2162 #if IS_ENABLED(CONFIG_MPLS_ROUTING)
2163 struct mpls_dev __rcu *mpls_ptr;
2164 #endif
2165 #if IS_ENABLED(CONFIG_MCTP)
2166 struct mctp_dev __rcu *mctp_ptr;
2167 #endif
2168
2169 /*
2170 * Cache lines mostly used on receive path (including eth_type_trans())
2171 */
2172 /* Interface address info used in eth_type_trans() */
2173 const unsigned char *dev_addr;
2174
2175 struct netdev_rx_queue *_rx;
2176 unsigned int num_rx_queues;
2177 unsigned int real_num_rx_queues;
2178
2179 struct bpf_prog __rcu *xdp_prog;
2180 unsigned long gro_flush_timeout;
2181 int napi_defer_hard_irqs;
2182 #define GRO_LEGACY_MAX_SIZE 65536u
2183 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2184 * and shinfo->gso_segs is a 16bit field.
2185 */
2186 #define GRO_MAX_SIZE (8 * 65535u)
2187 unsigned int gro_max_size;
2188 rx_handler_func_t __rcu *rx_handler;
2189 void __rcu *rx_handler_data;
2190
2191 #ifdef CONFIG_NET_CLS_ACT
2192 struct mini_Qdisc __rcu *miniq_ingress;
2193 #endif
2194 struct netdev_queue __rcu *ingress_queue;
2195 #ifdef CONFIG_NETFILTER_INGRESS
2196 struct nf_hook_entries __rcu *nf_hooks_ingress;
2197 #endif
2198
2199 unsigned char broadcast[MAX_ADDR_LEN];
2200 #ifdef CONFIG_RFS_ACCEL
2201 struct cpu_rmap *rx_cpu_rmap;
2202 #endif
2203 struct hlist_node index_hlist;
2204
2205 /*
2206 * Cache lines mostly used on transmit path
2207 */
2208 struct netdev_queue *_tx ____cacheline_aligned_in_smp;
2209 unsigned int num_tx_queues;
2210 unsigned int real_num_tx_queues;
2211 struct Qdisc __rcu *qdisc;
2212 unsigned int tx_queue_len;
2213 spinlock_t tx_global_lock;
2214
2215 struct xdp_dev_bulk_queue __percpu *xdp_bulkq;
2216
2217 #ifdef CONFIG_XPS
2218 struct xps_dev_maps __rcu *xps_maps[XPS_MAPS_MAX];
2219 #endif
2220 #ifdef CONFIG_NET_CLS_ACT
2221 struct mini_Qdisc __rcu *miniq_egress;
2222 #endif
2223 #ifdef CONFIG_NETFILTER_EGRESS
2224 struct nf_hook_entries __rcu *nf_hooks_egress;
2225 #endif
2226
2227 #ifdef CONFIG_NET_SCHED
2228 DECLARE_HASHTABLE (qdisc_hash, 4);
2229 #endif
2230 /* These may be needed for future network-power-down code. */
2231 struct timer_list watchdog_timer;
2232 int watchdog_timeo;
2233
2234 u32 proto_down_reason;
2235
2236 struct list_head todo_list;
2237
2238 #ifdef CONFIG_PCPU_DEV_REFCNT
2239 int __percpu *pcpu_refcnt;
2240 #else
2241 refcount_t dev_refcnt;
2242 #endif
2243 struct ref_tracker_dir refcnt_tracker;
2244
2245 struct list_head link_watch_list;
2246
2247 enum { NETREG_UNINITIALIZED=0,
2248 NETREG_REGISTERED, /* completed register_netdevice */
2249 NETREG_UNREGISTERING, /* called unregister_netdevice */
2250 NETREG_UNREGISTERED, /* completed unregister todo */
2251 NETREG_RELEASED, /* called free_netdev */
2252 NETREG_DUMMY, /* dummy device for NAPI poll */
2253 } reg_state:8;
2254
2255 bool dismantle;
2256
2257 enum {
2258 RTNL_LINK_INITIALIZED,
2259 RTNL_LINK_INITIALIZING,
2260 } rtnl_link_state:16;
2261
2262 bool needs_free_netdev;
2263 void (*priv_destructor)(struct net_device *dev);
2264
2265 #ifdef CONFIG_NETPOLL
2266 struct netpoll_info __rcu *npinfo;
2267 #endif
2268
2269 possible_net_t nd_net;
2270
2271 /* mid-layer private */
2272 void *ml_priv;
2273 enum netdev_ml_priv_type ml_priv_type;
2274
2275 union {
2276 struct pcpu_lstats __percpu *lstats;
2277 struct pcpu_sw_netstats __percpu *tstats;
2278 struct pcpu_dstats __percpu *dstats;
2279 };
2280
2281 #if IS_ENABLED(CONFIG_GARP)
2282 struct garp_port __rcu *garp_port;
2283 #endif
2284 #if IS_ENABLED(CONFIG_MRP)
2285 struct mrp_port __rcu *mrp_port;
2286 #endif
2287 #if IS_ENABLED(CONFIG_NET_DROP_MONITOR)
2288 struct dm_hw_stat_delta __rcu *dm_private;
2289 #endif
2290 struct device dev;
2291 const struct attribute_group *sysfs_groups[4];
2292 const struct attribute_group *sysfs_rx_queue_group;
2293
2294 const struct rtnl_link_ops *rtnl_link_ops;
2295
2296 /* for setting kernel sock attribute on TCP connection setup */
2297 #define GSO_MAX_SEGS 65535u
2298 #define GSO_LEGACY_MAX_SIZE 65536u
2299 /* TCP minimal MSS is 8 (TCP_MIN_GSO_SIZE),
2300 * and shinfo->gso_segs is a 16bit field.
2301 */
2302 #define GSO_MAX_SIZE (8 * GSO_MAX_SEGS)
2303
2304 unsigned int gso_max_size;
2305 #define TSO_LEGACY_MAX_SIZE 65536
2306 #define TSO_MAX_SIZE UINT_MAX
2307 unsigned int tso_max_size;
2308 u16 gso_max_segs;
2309 #define TSO_MAX_SEGS U16_MAX
2310 u16 tso_max_segs;
2311
2312 #ifdef CONFIG_DCB
2313 const struct dcbnl_rtnl_ops *dcbnl_ops;
2314 #endif
2315 s16 num_tc;
2316 struct netdev_tc_txq tc_to_txq[TC_MAX_QUEUE];
2317 u8 prio_tc_map[TC_BITMASK + 1];
2318
2319 #if IS_ENABLED(CONFIG_FCOE)
2320 unsigned int fcoe_ddp_xid;
2321 #endif
2322 #if IS_ENABLED(CONFIG_CGROUP_NET_PRIO)
2323 struct netprio_map __rcu *priomap;
2324 #endif
2325 struct phy_device *phydev;
2326 struct sfp_bus *sfp_bus;
2327 struct lock_class_key *qdisc_tx_busylock;
2328 bool proto_down;
2329 unsigned wol_enabled:1;
2330 unsigned threaded:1;
2331
2332 struct list_head net_notifier_list;
2333
2334 #if IS_ENABLED(CONFIG_MACSEC)
2335 /* MACsec management functions */
2336 const struct macsec_ops *macsec_ops;
2337 #endif
2338 const struct udp_tunnel_nic_info *udp_tunnel_nic_info;
2339 struct udp_tunnel_nic *udp_tunnel_nic;
2340
2341 /* protected by rtnl_lock */
2342 struct bpf_xdp_entity xdp_state[__MAX_XDP_MODE];
2343
2344 u8 dev_addr_shadow[MAX_ADDR_LEN];
2345 netdevice_tracker linkwatch_dev_tracker;
2346 netdevice_tracker watchdog_dev_tracker;
2347 netdevice_tracker dev_registered_tracker;
2348 struct rtnl_hw_stats64 *offload_xstats_l3;
2349 };
2350 #define to_net_dev(d) container_of(d, struct net_device, dev)
2351
netif_elide_gro(const struct net_device * dev)2352 static inline bool netif_elide_gro(const struct net_device *dev)
2353 {
2354 if (!(dev->features & NETIF_F_GRO) || dev->xdp_prog)
2355 return true;
2356 return false;
2357 }
2358
2359 #define NETDEV_ALIGN 32
2360
2361 static inline
netdev_get_prio_tc_map(const struct net_device * dev,u32 prio)2362 int netdev_get_prio_tc_map(const struct net_device *dev, u32 prio)
2363 {
2364 return dev->prio_tc_map[prio & TC_BITMASK];
2365 }
2366
2367 static inline
netdev_set_prio_tc_map(struct net_device * dev,u8 prio,u8 tc)2368 int netdev_set_prio_tc_map(struct net_device *dev, u8 prio, u8 tc)
2369 {
2370 if (tc >= dev->num_tc)
2371 return -EINVAL;
2372
2373 dev->prio_tc_map[prio & TC_BITMASK] = tc & TC_BITMASK;
2374 return 0;
2375 }
2376
2377 int netdev_txq_to_tc(struct net_device *dev, unsigned int txq);
2378 void netdev_reset_tc(struct net_device *dev);
2379 int netdev_set_tc_queue(struct net_device *dev, u8 tc, u16 count, u16 offset);
2380 int netdev_set_num_tc(struct net_device *dev, u8 num_tc);
2381
2382 static inline
netdev_get_num_tc(struct net_device * dev)2383 int netdev_get_num_tc(struct net_device *dev)
2384 {
2385 return dev->num_tc;
2386 }
2387
net_prefetch(void * p)2388 static inline void net_prefetch(void *p)
2389 {
2390 prefetch(p);
2391 #if L1_CACHE_BYTES < 128
2392 prefetch((u8 *)p + L1_CACHE_BYTES);
2393 #endif
2394 }
2395
net_prefetchw(void * p)2396 static inline void net_prefetchw(void *p)
2397 {
2398 prefetchw(p);
2399 #if L1_CACHE_BYTES < 128
2400 prefetchw((u8 *)p + L1_CACHE_BYTES);
2401 #endif
2402 }
2403
2404 void netdev_unbind_sb_channel(struct net_device *dev,
2405 struct net_device *sb_dev);
2406 int netdev_bind_sb_channel_queue(struct net_device *dev,
2407 struct net_device *sb_dev,
2408 u8 tc, u16 count, u16 offset);
2409 int netdev_set_sb_channel(struct net_device *dev, u16 channel);
netdev_get_sb_channel(struct net_device * dev)2410 static inline int netdev_get_sb_channel(struct net_device *dev)
2411 {
2412 return max_t(int, -dev->num_tc, 0);
2413 }
2414
2415 static inline
netdev_get_tx_queue(const struct net_device * dev,unsigned int index)2416 struct netdev_queue *netdev_get_tx_queue(const struct net_device *dev,
2417 unsigned int index)
2418 {
2419 return &dev->_tx[index];
2420 }
2421
skb_get_tx_queue(const struct net_device * dev,const struct sk_buff * skb)2422 static inline struct netdev_queue *skb_get_tx_queue(const struct net_device *dev,
2423 const struct sk_buff *skb)
2424 {
2425 return netdev_get_tx_queue(dev, skb_get_queue_mapping(skb));
2426 }
2427
netdev_for_each_tx_queue(struct net_device * dev,void (* f)(struct net_device *,struct netdev_queue *,void *),void * arg)2428 static inline void netdev_for_each_tx_queue(struct net_device *dev,
2429 void (*f)(struct net_device *,
2430 struct netdev_queue *,
2431 void *),
2432 void *arg)
2433 {
2434 unsigned int i;
2435
2436 for (i = 0; i < dev->num_tx_queues; i++)
2437 f(dev, &dev->_tx[i], arg);
2438 }
2439
2440 #define netdev_lockdep_set_classes(dev) \
2441 { \
2442 static struct lock_class_key qdisc_tx_busylock_key; \
2443 static struct lock_class_key qdisc_xmit_lock_key; \
2444 static struct lock_class_key dev_addr_list_lock_key; \
2445 unsigned int i; \
2446 \
2447 (dev)->qdisc_tx_busylock = &qdisc_tx_busylock_key; \
2448 lockdep_set_class(&(dev)->addr_list_lock, \
2449 &dev_addr_list_lock_key); \
2450 for (i = 0; i < (dev)->num_tx_queues; i++) \
2451 lockdep_set_class(&(dev)->_tx[i]._xmit_lock, \
2452 &qdisc_xmit_lock_key); \
2453 }
2454
2455 u16 netdev_pick_tx(struct net_device *dev, struct sk_buff *skb,
2456 struct net_device *sb_dev);
2457 struct netdev_queue *netdev_core_pick_tx(struct net_device *dev,
2458 struct sk_buff *skb,
2459 struct net_device *sb_dev);
2460
2461 /* returns the headroom that the master device needs to take in account
2462 * when forwarding to this dev
2463 */
netdev_get_fwd_headroom(struct net_device * dev)2464 static inline unsigned netdev_get_fwd_headroom(struct net_device *dev)
2465 {
2466 return dev->priv_flags & IFF_PHONY_HEADROOM ? 0 : dev->needed_headroom;
2467 }
2468
netdev_set_rx_headroom(struct net_device * dev,int new_hr)2469 static inline void netdev_set_rx_headroom(struct net_device *dev, int new_hr)
2470 {
2471 if (dev->netdev_ops->ndo_set_rx_headroom)
2472 dev->netdev_ops->ndo_set_rx_headroom(dev, new_hr);
2473 }
2474
2475 /* set the device rx headroom to the dev's default */
netdev_reset_rx_headroom(struct net_device * dev)2476 static inline void netdev_reset_rx_headroom(struct net_device *dev)
2477 {
2478 netdev_set_rx_headroom(dev, -1);
2479 }
2480
netdev_get_ml_priv(struct net_device * dev,enum netdev_ml_priv_type type)2481 static inline void *netdev_get_ml_priv(struct net_device *dev,
2482 enum netdev_ml_priv_type type)
2483 {
2484 if (dev->ml_priv_type != type)
2485 return NULL;
2486
2487 return dev->ml_priv;
2488 }
2489
netdev_set_ml_priv(struct net_device * dev,void * ml_priv,enum netdev_ml_priv_type type)2490 static inline void netdev_set_ml_priv(struct net_device *dev,
2491 void *ml_priv,
2492 enum netdev_ml_priv_type type)
2493 {
2494 WARN(dev->ml_priv_type && dev->ml_priv_type != type,
2495 "Overwriting already set ml_priv_type (%u) with different ml_priv_type (%u)!\n",
2496 dev->ml_priv_type, type);
2497 WARN(!dev->ml_priv_type && dev->ml_priv,
2498 "Overwriting already set ml_priv and ml_priv_type is ML_PRIV_NONE!\n");
2499
2500 dev->ml_priv = ml_priv;
2501 dev->ml_priv_type = type;
2502 }
2503
2504 /*
2505 * Net namespace inlines
2506 */
2507 static inline
dev_net(const struct net_device * dev)2508 struct net *dev_net(const struct net_device *dev)
2509 {
2510 return read_pnet(&dev->nd_net);
2511 }
2512
2513 static inline
dev_net_set(struct net_device * dev,struct net * net)2514 void dev_net_set(struct net_device *dev, struct net *net)
2515 {
2516 write_pnet(&dev->nd_net, net);
2517 }
2518
2519 /**
2520 * netdev_priv - access network device private data
2521 * @dev: network device
2522 *
2523 * Get network device private data
2524 */
netdev_priv(const struct net_device * dev)2525 static inline void *netdev_priv(const struct net_device *dev)
2526 {
2527 return (char *)dev + ALIGN(sizeof(struct net_device), NETDEV_ALIGN);
2528 }
2529
2530 /* Set the sysfs physical device reference for the network logical device
2531 * if set prior to registration will cause a symlink during initialization.
2532 */
2533 #define SET_NETDEV_DEV(net, pdev) ((net)->dev.parent = (pdev))
2534
2535 /* Set the sysfs device type for the network logical device to allow
2536 * fine-grained identification of different network device types. For
2537 * example Ethernet, Wireless LAN, Bluetooth, WiMAX etc.
2538 */
2539 #define SET_NETDEV_DEVTYPE(net, devtype) ((net)->dev.type = (devtype))
2540
2541 /* Default NAPI poll() weight
2542 * Device drivers are strongly advised to not use bigger value
2543 */
2544 #define NAPI_POLL_WEIGHT 64
2545
2546 void netif_napi_add_weight(struct net_device *dev, struct napi_struct *napi,
2547 int (*poll)(struct napi_struct *, int), int weight);
2548
2549 /**
2550 * netif_napi_add() - initialize a NAPI context
2551 * @dev: network device
2552 * @napi: NAPI context
2553 * @poll: polling function
2554 * @weight: default weight
2555 *
2556 * netif_napi_add() must be used to initialize a NAPI context prior to calling
2557 * *any* of the other NAPI-related functions.
2558 */
2559 static inline void
netif_napi_add(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2560 netif_napi_add(struct net_device *dev, struct napi_struct *napi,
2561 int (*poll)(struct napi_struct *, int), int weight)
2562 {
2563 netif_napi_add_weight(dev, napi, poll, weight);
2564 }
2565
2566 static inline void
netif_napi_add_tx_weight(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int),int weight)2567 netif_napi_add_tx_weight(struct net_device *dev,
2568 struct napi_struct *napi,
2569 int (*poll)(struct napi_struct *, int),
2570 int weight)
2571 {
2572 set_bit(NAPI_STATE_NO_BUSY_POLL, &napi->state);
2573 netif_napi_add_weight(dev, napi, poll, weight);
2574 }
2575
2576 #define netif_tx_napi_add netif_napi_add_tx_weight
2577
2578 /**
2579 * netif_napi_add_tx() - initialize a NAPI context to be used for Tx only
2580 * @dev: network device
2581 * @napi: NAPI context
2582 * @poll: polling function
2583 *
2584 * This variant of netif_napi_add() should be used from drivers using NAPI
2585 * to exclusively poll a TX queue.
2586 * This will avoid we add it into napi_hash[], thus polluting this hash table.
2587 */
netif_napi_add_tx(struct net_device * dev,struct napi_struct * napi,int (* poll)(struct napi_struct *,int))2588 static inline void netif_napi_add_tx(struct net_device *dev,
2589 struct napi_struct *napi,
2590 int (*poll)(struct napi_struct *, int))
2591 {
2592 netif_napi_add_tx_weight(dev, napi, poll, NAPI_POLL_WEIGHT);
2593 }
2594
2595 /**
2596 * __netif_napi_del - remove a NAPI context
2597 * @napi: NAPI context
2598 *
2599 * Warning: caller must observe RCU grace period before freeing memory
2600 * containing @napi. Drivers might want to call this helper to combine
2601 * all the needed RCU grace periods into a single one.
2602 */
2603 void __netif_napi_del(struct napi_struct *napi);
2604
2605 /**
2606 * netif_napi_del - remove a NAPI context
2607 * @napi: NAPI context
2608 *
2609 * netif_napi_del() removes a NAPI context from the network device NAPI list
2610 */
netif_napi_del(struct napi_struct * napi)2611 static inline void netif_napi_del(struct napi_struct *napi)
2612 {
2613 __netif_napi_del(napi);
2614 synchronize_net();
2615 }
2616
2617 struct packet_type {
2618 __be16 type; /* This is really htons(ether_type). */
2619 bool ignore_outgoing;
2620 struct net_device *dev; /* NULL is wildcarded here */
2621 netdevice_tracker dev_tracker;
2622 int (*func) (struct sk_buff *,
2623 struct net_device *,
2624 struct packet_type *,
2625 struct net_device *);
2626 void (*list_func) (struct list_head *,
2627 struct packet_type *,
2628 struct net_device *);
2629 bool (*id_match)(struct packet_type *ptype,
2630 struct sock *sk);
2631 struct net *af_packet_net;
2632 void *af_packet_priv;
2633 struct list_head list;
2634 };
2635
2636 struct offload_callbacks {
2637 struct sk_buff *(*gso_segment)(struct sk_buff *skb,
2638 netdev_features_t features);
2639 struct sk_buff *(*gro_receive)(struct list_head *head,
2640 struct sk_buff *skb);
2641 int (*gro_complete)(struct sk_buff *skb, int nhoff);
2642 };
2643
2644 struct packet_offload {
2645 __be16 type; /* This is really htons(ether_type). */
2646 u16 priority;
2647 struct offload_callbacks callbacks;
2648 struct list_head list;
2649 };
2650
2651 /* often modified stats are per-CPU, other are shared (netdev->stats) */
2652 struct pcpu_sw_netstats {
2653 u64 rx_packets;
2654 u64 rx_bytes;
2655 u64 tx_packets;
2656 u64 tx_bytes;
2657 struct u64_stats_sync syncp;
2658 } __aligned(4 * sizeof(u64));
2659
2660 struct pcpu_lstats {
2661 u64_stats_t packets;
2662 u64_stats_t bytes;
2663 struct u64_stats_sync syncp;
2664 } __aligned(2 * sizeof(u64));
2665
2666 void dev_lstats_read(struct net_device *dev, u64 *packets, u64 *bytes);
2667
dev_sw_netstats_rx_add(struct net_device * dev,unsigned int len)2668 static inline void dev_sw_netstats_rx_add(struct net_device *dev, unsigned int len)
2669 {
2670 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2671
2672 u64_stats_update_begin(&tstats->syncp);
2673 tstats->rx_bytes += len;
2674 tstats->rx_packets++;
2675 u64_stats_update_end(&tstats->syncp);
2676 }
2677
dev_sw_netstats_tx_add(struct net_device * dev,unsigned int packets,unsigned int len)2678 static inline void dev_sw_netstats_tx_add(struct net_device *dev,
2679 unsigned int packets,
2680 unsigned int len)
2681 {
2682 struct pcpu_sw_netstats *tstats = this_cpu_ptr(dev->tstats);
2683
2684 u64_stats_update_begin(&tstats->syncp);
2685 tstats->tx_bytes += len;
2686 tstats->tx_packets += packets;
2687 u64_stats_update_end(&tstats->syncp);
2688 }
2689
dev_lstats_add(struct net_device * dev,unsigned int len)2690 static inline void dev_lstats_add(struct net_device *dev, unsigned int len)
2691 {
2692 struct pcpu_lstats *lstats = this_cpu_ptr(dev->lstats);
2693
2694 u64_stats_update_begin(&lstats->syncp);
2695 u64_stats_add(&lstats->bytes, len);
2696 u64_stats_inc(&lstats->packets);
2697 u64_stats_update_end(&lstats->syncp);
2698 }
2699
2700 #define __netdev_alloc_pcpu_stats(type, gfp) \
2701 ({ \
2702 typeof(type) __percpu *pcpu_stats = alloc_percpu_gfp(type, gfp);\
2703 if (pcpu_stats) { \
2704 int __cpu; \
2705 for_each_possible_cpu(__cpu) { \
2706 typeof(type) *stat; \
2707 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2708 u64_stats_init(&stat->syncp); \
2709 } \
2710 } \
2711 pcpu_stats; \
2712 })
2713
2714 #define netdev_alloc_pcpu_stats(type) \
2715 __netdev_alloc_pcpu_stats(type, GFP_KERNEL)
2716
2717 #define devm_netdev_alloc_pcpu_stats(dev, type) \
2718 ({ \
2719 typeof(type) __percpu *pcpu_stats = devm_alloc_percpu(dev, type);\
2720 if (pcpu_stats) { \
2721 int __cpu; \
2722 for_each_possible_cpu(__cpu) { \
2723 typeof(type) *stat; \
2724 stat = per_cpu_ptr(pcpu_stats, __cpu); \
2725 u64_stats_init(&stat->syncp); \
2726 } \
2727 } \
2728 pcpu_stats; \
2729 })
2730
2731 enum netdev_lag_tx_type {
2732 NETDEV_LAG_TX_TYPE_UNKNOWN,
2733 NETDEV_LAG_TX_TYPE_RANDOM,
2734 NETDEV_LAG_TX_TYPE_BROADCAST,
2735 NETDEV_LAG_TX_TYPE_ROUNDROBIN,
2736 NETDEV_LAG_TX_TYPE_ACTIVEBACKUP,
2737 NETDEV_LAG_TX_TYPE_HASH,
2738 };
2739
2740 enum netdev_lag_hash {
2741 NETDEV_LAG_HASH_NONE,
2742 NETDEV_LAG_HASH_L2,
2743 NETDEV_LAG_HASH_L34,
2744 NETDEV_LAG_HASH_L23,
2745 NETDEV_LAG_HASH_E23,
2746 NETDEV_LAG_HASH_E34,
2747 NETDEV_LAG_HASH_VLAN_SRCMAC,
2748 NETDEV_LAG_HASH_UNKNOWN,
2749 };
2750
2751 struct netdev_lag_upper_info {
2752 enum netdev_lag_tx_type tx_type;
2753 enum netdev_lag_hash hash_type;
2754 };
2755
2756 struct netdev_lag_lower_state_info {
2757 u8 link_up : 1,
2758 tx_enabled : 1;
2759 };
2760
2761 #include <linux/notifier.h>
2762
2763 /* netdevice notifier chain. Please remember to update netdev_cmd_to_name()
2764 * and the rtnetlink notification exclusion list in rtnetlink_event() when
2765 * adding new types.
2766 */
2767 enum netdev_cmd {
2768 NETDEV_UP = 1, /* For now you can't veto a device up/down */
2769 NETDEV_DOWN,
2770 NETDEV_REBOOT, /* Tell a protocol stack a network interface
2771 detected a hardware crash and restarted
2772 - we can use this eg to kick tcp sessions
2773 once done */
2774 NETDEV_CHANGE, /* Notify device state change */
2775 NETDEV_REGISTER,
2776 NETDEV_UNREGISTER,
2777 NETDEV_CHANGEMTU, /* notify after mtu change happened */
2778 NETDEV_CHANGEADDR, /* notify after the address change */
2779 NETDEV_PRE_CHANGEADDR, /* notify before the address change */
2780 NETDEV_GOING_DOWN,
2781 NETDEV_CHANGENAME,
2782 NETDEV_FEAT_CHANGE,
2783 NETDEV_BONDING_FAILOVER,
2784 NETDEV_PRE_UP,
2785 NETDEV_PRE_TYPE_CHANGE,
2786 NETDEV_POST_TYPE_CHANGE,
2787 NETDEV_POST_INIT,
2788 NETDEV_RELEASE,
2789 NETDEV_NOTIFY_PEERS,
2790 NETDEV_JOIN,
2791 NETDEV_CHANGEUPPER,
2792 NETDEV_RESEND_IGMP,
2793 NETDEV_PRECHANGEMTU, /* notify before mtu change happened */
2794 NETDEV_CHANGEINFODATA,
2795 NETDEV_BONDING_INFO,
2796 NETDEV_PRECHANGEUPPER,
2797 NETDEV_CHANGELOWERSTATE,
2798 NETDEV_UDP_TUNNEL_PUSH_INFO,
2799 NETDEV_UDP_TUNNEL_DROP_INFO,
2800 NETDEV_CHANGE_TX_QUEUE_LEN,
2801 NETDEV_CVLAN_FILTER_PUSH_INFO,
2802 NETDEV_CVLAN_FILTER_DROP_INFO,
2803 NETDEV_SVLAN_FILTER_PUSH_INFO,
2804 NETDEV_SVLAN_FILTER_DROP_INFO,
2805 NETDEV_OFFLOAD_XSTATS_ENABLE,
2806 NETDEV_OFFLOAD_XSTATS_DISABLE,
2807 NETDEV_OFFLOAD_XSTATS_REPORT_USED,
2808 NETDEV_OFFLOAD_XSTATS_REPORT_DELTA,
2809 };
2810 const char *netdev_cmd_to_name(enum netdev_cmd cmd);
2811
2812 int register_netdevice_notifier(struct notifier_block *nb);
2813 int unregister_netdevice_notifier(struct notifier_block *nb);
2814 int register_netdevice_notifier_net(struct net *net, struct notifier_block *nb);
2815 int unregister_netdevice_notifier_net(struct net *net,
2816 struct notifier_block *nb);
2817 int register_netdevice_notifier_dev_net(struct net_device *dev,
2818 struct notifier_block *nb,
2819 struct netdev_net_notifier *nn);
2820 int unregister_netdevice_notifier_dev_net(struct net_device *dev,
2821 struct notifier_block *nb,
2822 struct netdev_net_notifier *nn);
2823
2824 struct netdev_notifier_info {
2825 struct net_device *dev;
2826 struct netlink_ext_ack *extack;
2827 };
2828
2829 struct netdev_notifier_info_ext {
2830 struct netdev_notifier_info info; /* must be first */
2831 union {
2832 u32 mtu;
2833 } ext;
2834 };
2835
2836 struct netdev_notifier_change_info {
2837 struct netdev_notifier_info info; /* must be first */
2838 unsigned int flags_changed;
2839 };
2840
2841 struct netdev_notifier_changeupper_info {
2842 struct netdev_notifier_info info; /* must be first */
2843 struct net_device *upper_dev; /* new upper dev */
2844 bool master; /* is upper dev master */
2845 bool linking; /* is the notification for link or unlink */
2846 void *upper_info; /* upper dev info */
2847 };
2848
2849 struct netdev_notifier_changelowerstate_info {
2850 struct netdev_notifier_info info; /* must be first */
2851 void *lower_state_info; /* is lower dev state */
2852 };
2853
2854 struct netdev_notifier_pre_changeaddr_info {
2855 struct netdev_notifier_info info; /* must be first */
2856 const unsigned char *dev_addr;
2857 };
2858
2859 enum netdev_offload_xstats_type {
2860 NETDEV_OFFLOAD_XSTATS_TYPE_L3 = 1,
2861 };
2862
2863 struct netdev_notifier_offload_xstats_info {
2864 struct netdev_notifier_info info; /* must be first */
2865 enum netdev_offload_xstats_type type;
2866
2867 union {
2868 /* NETDEV_OFFLOAD_XSTATS_REPORT_DELTA */
2869 struct netdev_notifier_offload_xstats_rd *report_delta;
2870 /* NETDEV_OFFLOAD_XSTATS_REPORT_USED */
2871 struct netdev_notifier_offload_xstats_ru *report_used;
2872 };
2873 };
2874
2875 int netdev_offload_xstats_enable(struct net_device *dev,
2876 enum netdev_offload_xstats_type type,
2877 struct netlink_ext_ack *extack);
2878 int netdev_offload_xstats_disable(struct net_device *dev,
2879 enum netdev_offload_xstats_type type);
2880 bool netdev_offload_xstats_enabled(const struct net_device *dev,
2881 enum netdev_offload_xstats_type type);
2882 int netdev_offload_xstats_get(struct net_device *dev,
2883 enum netdev_offload_xstats_type type,
2884 struct rtnl_hw_stats64 *stats, bool *used,
2885 struct netlink_ext_ack *extack);
2886 void
2887 netdev_offload_xstats_report_delta(struct netdev_notifier_offload_xstats_rd *rd,
2888 const struct rtnl_hw_stats64 *stats);
2889 void
2890 netdev_offload_xstats_report_used(struct netdev_notifier_offload_xstats_ru *ru);
2891 void netdev_offload_xstats_push_delta(struct net_device *dev,
2892 enum netdev_offload_xstats_type type,
2893 const struct rtnl_hw_stats64 *stats);
2894
netdev_notifier_info_init(struct netdev_notifier_info * info,struct net_device * dev)2895 static inline void netdev_notifier_info_init(struct netdev_notifier_info *info,
2896 struct net_device *dev)
2897 {
2898 info->dev = dev;
2899 info->extack = NULL;
2900 }
2901
2902 static inline struct net_device *
netdev_notifier_info_to_dev(const struct netdev_notifier_info * info)2903 netdev_notifier_info_to_dev(const struct netdev_notifier_info *info)
2904 {
2905 return info->dev;
2906 }
2907
2908 static inline struct netlink_ext_ack *
netdev_notifier_info_to_extack(const struct netdev_notifier_info * info)2909 netdev_notifier_info_to_extack(const struct netdev_notifier_info *info)
2910 {
2911 return info->extack;
2912 }
2913
2914 int call_netdevice_notifiers(unsigned long val, struct net_device *dev);
2915
2916
2917 extern rwlock_t dev_base_lock; /* Device list lock */
2918
2919 #define for_each_netdev(net, d) \
2920 list_for_each_entry(d, &(net)->dev_base_head, dev_list)
2921 #define for_each_netdev_reverse(net, d) \
2922 list_for_each_entry_reverse(d, &(net)->dev_base_head, dev_list)
2923 #define for_each_netdev_rcu(net, d) \
2924 list_for_each_entry_rcu(d, &(net)->dev_base_head, dev_list)
2925 #define for_each_netdev_safe(net, d, n) \
2926 list_for_each_entry_safe(d, n, &(net)->dev_base_head, dev_list)
2927 #define for_each_netdev_continue(net, d) \
2928 list_for_each_entry_continue(d, &(net)->dev_base_head, dev_list)
2929 #define for_each_netdev_continue_reverse(net, d) \
2930 list_for_each_entry_continue_reverse(d, &(net)->dev_base_head, \
2931 dev_list)
2932 #define for_each_netdev_continue_rcu(net, d) \
2933 list_for_each_entry_continue_rcu(d, &(net)->dev_base_head, dev_list)
2934 #define for_each_netdev_in_bond_rcu(bond, slave) \
2935 for_each_netdev_rcu(&init_net, slave) \
2936 if (netdev_master_upper_dev_get_rcu(slave) == (bond))
2937 #define net_device_entry(lh) list_entry(lh, struct net_device, dev_list)
2938
next_net_device(struct net_device * dev)2939 static inline struct net_device *next_net_device(struct net_device *dev)
2940 {
2941 struct list_head *lh;
2942 struct net *net;
2943
2944 net = dev_net(dev);
2945 lh = dev->dev_list.next;
2946 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2947 }
2948
next_net_device_rcu(struct net_device * dev)2949 static inline struct net_device *next_net_device_rcu(struct net_device *dev)
2950 {
2951 struct list_head *lh;
2952 struct net *net;
2953
2954 net = dev_net(dev);
2955 lh = rcu_dereference(list_next_rcu(&dev->dev_list));
2956 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2957 }
2958
first_net_device(struct net * net)2959 static inline struct net_device *first_net_device(struct net *net)
2960 {
2961 return list_empty(&net->dev_base_head) ? NULL :
2962 net_device_entry(net->dev_base_head.next);
2963 }
2964
first_net_device_rcu(struct net * net)2965 static inline struct net_device *first_net_device_rcu(struct net *net)
2966 {
2967 struct list_head *lh = rcu_dereference(list_next_rcu(&net->dev_base_head));
2968
2969 return lh == &net->dev_base_head ? NULL : net_device_entry(lh);
2970 }
2971
2972 int netdev_boot_setup_check(struct net_device *dev);
2973 struct net_device *dev_getbyhwaddr_rcu(struct net *net, unsigned short type,
2974 const char *hwaddr);
2975 struct net_device *dev_getfirstbyhwtype(struct net *net, unsigned short type);
2976 void dev_add_pack(struct packet_type *pt);
2977 void dev_remove_pack(struct packet_type *pt);
2978 void __dev_remove_pack(struct packet_type *pt);
2979 void dev_add_offload(struct packet_offload *po);
2980 void dev_remove_offload(struct packet_offload *po);
2981
2982 int dev_get_iflink(const struct net_device *dev);
2983 int dev_fill_metadata_dst(struct net_device *dev, struct sk_buff *skb);
2984 int dev_fill_forward_path(const struct net_device *dev, const u8 *daddr,
2985 struct net_device_path_stack *stack);
2986 struct net_device *__dev_get_by_flags(struct net *net, unsigned short flags,
2987 unsigned short mask);
2988 struct net_device *dev_get_by_name(struct net *net, const char *name);
2989 struct net_device *dev_get_by_name_rcu(struct net *net, const char *name);
2990 struct net_device *__dev_get_by_name(struct net *net, const char *name);
2991 bool netdev_name_in_use(struct net *net, const char *name);
2992 int dev_alloc_name(struct net_device *dev, const char *name);
2993 int dev_open(struct net_device *dev, struct netlink_ext_ack *extack);
2994 void dev_close(struct net_device *dev);
2995 void dev_close_many(struct list_head *head, bool unlink);
2996 void dev_disable_lro(struct net_device *dev);
2997 int dev_loopback_xmit(struct net *net, struct sock *sk, struct sk_buff *newskb);
2998 u16 dev_pick_tx_zero(struct net_device *dev, struct sk_buff *skb,
2999 struct net_device *sb_dev);
3000 u16 dev_pick_tx_cpu_id(struct net_device *dev, struct sk_buff *skb,
3001 struct net_device *sb_dev);
3002
3003 int __dev_queue_xmit(struct sk_buff *skb, struct net_device *sb_dev);
3004 int __dev_direct_xmit(struct sk_buff *skb, u16 queue_id);
3005
dev_queue_xmit(struct sk_buff * skb)3006 static inline int dev_queue_xmit(struct sk_buff *skb)
3007 {
3008 return __dev_queue_xmit(skb, NULL);
3009 }
3010
dev_queue_xmit_accel(struct sk_buff * skb,struct net_device * sb_dev)3011 static inline int dev_queue_xmit_accel(struct sk_buff *skb,
3012 struct net_device *sb_dev)
3013 {
3014 return __dev_queue_xmit(skb, sb_dev);
3015 }
3016
dev_direct_xmit(struct sk_buff * skb,u16 queue_id)3017 static inline int dev_direct_xmit(struct sk_buff *skb, u16 queue_id)
3018 {
3019 int ret;
3020
3021 ret = __dev_direct_xmit(skb, queue_id);
3022 if (!dev_xmit_complete(ret))
3023 kfree_skb(skb);
3024 return ret;
3025 }
3026
3027 int register_netdevice(struct net_device *dev);
3028 void unregister_netdevice_queue(struct net_device *dev, struct list_head *head);
3029 void unregister_netdevice_many(struct list_head *head);
unregister_netdevice(struct net_device * dev)3030 static inline void unregister_netdevice(struct net_device *dev)
3031 {
3032 unregister_netdevice_queue(dev, NULL);
3033 }
3034
3035 int netdev_refcnt_read(const struct net_device *dev);
3036 void free_netdev(struct net_device *dev);
3037 void netdev_freemem(struct net_device *dev);
3038 int init_dummy_netdev(struct net_device *dev);
3039
3040 struct net_device *netdev_get_xmit_slave(struct net_device *dev,
3041 struct sk_buff *skb,
3042 bool all_slaves);
3043 struct net_device *netdev_sk_get_lowest_dev(struct net_device *dev,
3044 struct sock *sk);
3045 struct net_device *dev_get_by_index(struct net *net, int ifindex);
3046 struct net_device *__dev_get_by_index(struct net *net, int ifindex);
3047 struct net_device *dev_get_by_index_rcu(struct net *net, int ifindex);
3048 struct net_device *dev_get_by_napi_id(unsigned int napi_id);
3049 int dev_restart(struct net_device *dev);
3050
3051
dev_hard_header(struct sk_buff * skb,struct net_device * dev,unsigned short type,const void * daddr,const void * saddr,unsigned int len)3052 static inline int dev_hard_header(struct sk_buff *skb, struct net_device *dev,
3053 unsigned short type,
3054 const void *daddr, const void *saddr,
3055 unsigned int len)
3056 {
3057 if (!dev->header_ops || !dev->header_ops->create)
3058 return 0;
3059
3060 return dev->header_ops->create(skb, dev, type, daddr, saddr, len);
3061 }
3062
dev_parse_header(const struct sk_buff * skb,unsigned char * haddr)3063 static inline int dev_parse_header(const struct sk_buff *skb,
3064 unsigned char *haddr)
3065 {
3066 const struct net_device *dev = skb->dev;
3067
3068 if (!dev->header_ops || !dev->header_ops->parse)
3069 return 0;
3070 return dev->header_ops->parse(skb, haddr);
3071 }
3072
dev_parse_header_protocol(const struct sk_buff * skb)3073 static inline __be16 dev_parse_header_protocol(const struct sk_buff *skb)
3074 {
3075 const struct net_device *dev = skb->dev;
3076
3077 if (!dev->header_ops || !dev->header_ops->parse_protocol)
3078 return 0;
3079 return dev->header_ops->parse_protocol(skb);
3080 }
3081
3082 /* ll_header must have at least hard_header_len allocated */
dev_validate_header(const struct net_device * dev,char * ll_header,int len)3083 static inline bool dev_validate_header(const struct net_device *dev,
3084 char *ll_header, int len)
3085 {
3086 if (likely(len >= dev->hard_header_len))
3087 return true;
3088 if (len < dev->min_header_len)
3089 return false;
3090
3091 if (capable(CAP_SYS_RAWIO)) {
3092 memset(ll_header + len, 0, dev->hard_header_len - len);
3093 return true;
3094 }
3095
3096 if (dev->header_ops && dev->header_ops->validate)
3097 return dev->header_ops->validate(ll_header, len);
3098
3099 return false;
3100 }
3101
dev_has_header(const struct net_device * dev)3102 static inline bool dev_has_header(const struct net_device *dev)
3103 {
3104 return dev->header_ops && dev->header_ops->create;
3105 }
3106
3107 /*
3108 * Incoming packets are placed on per-CPU queues
3109 */
3110 struct softnet_data {
3111 struct list_head poll_list;
3112 struct sk_buff_head process_queue;
3113
3114 /* stats */
3115 unsigned int processed;
3116 unsigned int time_squeeze;
3117 unsigned int received_rps;
3118 #ifdef CONFIG_RPS
3119 struct softnet_data *rps_ipi_list;
3120 #endif
3121 #ifdef CONFIG_NET_FLOW_LIMIT
3122 struct sd_flow_limit __rcu *flow_limit;
3123 #endif
3124 struct Qdisc *output_queue;
3125 struct Qdisc **output_queue_tailp;
3126 struct sk_buff *completion_queue;
3127 #ifdef CONFIG_XFRM_OFFLOAD
3128 struct sk_buff_head xfrm_backlog;
3129 #endif
3130 /* written and read only by owning cpu: */
3131 struct {
3132 u16 recursion;
3133 u8 more;
3134 #ifdef CONFIG_NET_EGRESS
3135 u8 skip_txqueue;
3136 #endif
3137 } xmit;
3138 #ifdef CONFIG_RPS
3139 /* input_queue_head should be written by cpu owning this struct,
3140 * and only read by other cpus. Worth using a cache line.
3141 */
3142 unsigned int input_queue_head ____cacheline_aligned_in_smp;
3143
3144 /* Elements below can be accessed between CPUs for RPS/RFS */
3145 call_single_data_t csd ____cacheline_aligned_in_smp;
3146 struct softnet_data *rps_ipi_next;
3147 unsigned int cpu;
3148 unsigned int input_queue_tail;
3149 #endif
3150 unsigned int dropped;
3151 struct sk_buff_head input_pkt_queue;
3152 struct napi_struct backlog;
3153
3154 /* Another possibly contended cache line */
3155 spinlock_t defer_lock ____cacheline_aligned_in_smp;
3156 int defer_count;
3157 int defer_ipi_scheduled;
3158 struct sk_buff *defer_list;
3159 call_single_data_t defer_csd;
3160 };
3161
input_queue_head_incr(struct softnet_data * sd)3162 static inline void input_queue_head_incr(struct softnet_data *sd)
3163 {
3164 #ifdef CONFIG_RPS
3165 sd->input_queue_head++;
3166 #endif
3167 }
3168
input_queue_tail_incr_save(struct softnet_data * sd,unsigned int * qtail)3169 static inline void input_queue_tail_incr_save(struct softnet_data *sd,
3170 unsigned int *qtail)
3171 {
3172 #ifdef CONFIG_RPS
3173 *qtail = ++sd->input_queue_tail;
3174 #endif
3175 }
3176
3177 DECLARE_PER_CPU_ALIGNED(struct softnet_data, softnet_data);
3178
dev_recursion_level(void)3179 static inline int dev_recursion_level(void)
3180 {
3181 return this_cpu_read(softnet_data.xmit.recursion);
3182 }
3183
3184 #define XMIT_RECURSION_LIMIT 8
dev_xmit_recursion(void)3185 static inline bool dev_xmit_recursion(void)
3186 {
3187 return unlikely(__this_cpu_read(softnet_data.xmit.recursion) >
3188 XMIT_RECURSION_LIMIT);
3189 }
3190
dev_xmit_recursion_inc(void)3191 static inline void dev_xmit_recursion_inc(void)
3192 {
3193 __this_cpu_inc(softnet_data.xmit.recursion);
3194 }
3195
dev_xmit_recursion_dec(void)3196 static inline void dev_xmit_recursion_dec(void)
3197 {
3198 __this_cpu_dec(softnet_data.xmit.recursion);
3199 }
3200
3201 void __netif_schedule(struct Qdisc *q);
3202 void netif_schedule_queue(struct netdev_queue *txq);
3203
netif_tx_schedule_all(struct net_device * dev)3204 static inline void netif_tx_schedule_all(struct net_device *dev)
3205 {
3206 unsigned int i;
3207
3208 for (i = 0; i < dev->num_tx_queues; i++)
3209 netif_schedule_queue(netdev_get_tx_queue(dev, i));
3210 }
3211
netif_tx_start_queue(struct netdev_queue * dev_queue)3212 static __always_inline void netif_tx_start_queue(struct netdev_queue *dev_queue)
3213 {
3214 clear_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3215 }
3216
3217 /**
3218 * netif_start_queue - allow transmit
3219 * @dev: network device
3220 *
3221 * Allow upper layers to call the device hard_start_xmit routine.
3222 */
netif_start_queue(struct net_device * dev)3223 static inline void netif_start_queue(struct net_device *dev)
3224 {
3225 netif_tx_start_queue(netdev_get_tx_queue(dev, 0));
3226 }
3227
netif_tx_start_all_queues(struct net_device * dev)3228 static inline void netif_tx_start_all_queues(struct net_device *dev)
3229 {
3230 unsigned int i;
3231
3232 for (i = 0; i < dev->num_tx_queues; i++) {
3233 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3234 netif_tx_start_queue(txq);
3235 }
3236 }
3237
3238 void netif_tx_wake_queue(struct netdev_queue *dev_queue);
3239
3240 /**
3241 * netif_wake_queue - restart transmit
3242 * @dev: network device
3243 *
3244 * Allow upper layers to call the device hard_start_xmit routine.
3245 * Used for flow control when transmit resources are available.
3246 */
netif_wake_queue(struct net_device * dev)3247 static inline void netif_wake_queue(struct net_device *dev)
3248 {
3249 netif_tx_wake_queue(netdev_get_tx_queue(dev, 0));
3250 }
3251
netif_tx_wake_all_queues(struct net_device * dev)3252 static inline void netif_tx_wake_all_queues(struct net_device *dev)
3253 {
3254 unsigned int i;
3255
3256 for (i = 0; i < dev->num_tx_queues; i++) {
3257 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
3258 netif_tx_wake_queue(txq);
3259 }
3260 }
3261
netif_tx_stop_queue(struct netdev_queue * dev_queue)3262 static __always_inline void netif_tx_stop_queue(struct netdev_queue *dev_queue)
3263 {
3264 set_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3265 }
3266
3267 /**
3268 * netif_stop_queue - stop transmitted packets
3269 * @dev: network device
3270 *
3271 * Stop upper layers calling the device hard_start_xmit routine.
3272 * Used for flow control when transmit resources are unavailable.
3273 */
netif_stop_queue(struct net_device * dev)3274 static inline void netif_stop_queue(struct net_device *dev)
3275 {
3276 netif_tx_stop_queue(netdev_get_tx_queue(dev, 0));
3277 }
3278
3279 void netif_tx_stop_all_queues(struct net_device *dev);
3280
netif_tx_queue_stopped(const struct netdev_queue * dev_queue)3281 static inline bool netif_tx_queue_stopped(const struct netdev_queue *dev_queue)
3282 {
3283 return test_bit(__QUEUE_STATE_DRV_XOFF, &dev_queue->state);
3284 }
3285
3286 /**
3287 * netif_queue_stopped - test if transmit queue is flowblocked
3288 * @dev: network device
3289 *
3290 * Test if transmit queue on device is currently unable to send.
3291 */
netif_queue_stopped(const struct net_device * dev)3292 static inline bool netif_queue_stopped(const struct net_device *dev)
3293 {
3294 return netif_tx_queue_stopped(netdev_get_tx_queue(dev, 0));
3295 }
3296
netif_xmit_stopped(const struct netdev_queue * dev_queue)3297 static inline bool netif_xmit_stopped(const struct netdev_queue *dev_queue)
3298 {
3299 return dev_queue->state & QUEUE_STATE_ANY_XOFF;
3300 }
3301
3302 static inline bool
netif_xmit_frozen_or_stopped(const struct netdev_queue * dev_queue)3303 netif_xmit_frozen_or_stopped(const struct netdev_queue *dev_queue)
3304 {
3305 return dev_queue->state & QUEUE_STATE_ANY_XOFF_OR_FROZEN;
3306 }
3307
3308 static inline bool
netif_xmit_frozen_or_drv_stopped(const struct netdev_queue * dev_queue)3309 netif_xmit_frozen_or_drv_stopped(const struct netdev_queue *dev_queue)
3310 {
3311 return dev_queue->state & QUEUE_STATE_DRV_XOFF_OR_FROZEN;
3312 }
3313
3314 /**
3315 * netdev_queue_set_dql_min_limit - set dql minimum limit
3316 * @dev_queue: pointer to transmit queue
3317 * @min_limit: dql minimum limit
3318 *
3319 * Forces xmit_more() to return true until the minimum threshold
3320 * defined by @min_limit is reached (or until the tx queue is
3321 * empty). Warning: to be use with care, misuse will impact the
3322 * latency.
3323 */
netdev_queue_set_dql_min_limit(struct netdev_queue * dev_queue,unsigned int min_limit)3324 static inline void netdev_queue_set_dql_min_limit(struct netdev_queue *dev_queue,
3325 unsigned int min_limit)
3326 {
3327 #ifdef CONFIG_BQL
3328 dev_queue->dql.min_limit = min_limit;
3329 #endif
3330 }
3331
3332 /**
3333 * netdev_txq_bql_enqueue_prefetchw - prefetch bql data for write
3334 * @dev_queue: pointer to transmit queue
3335 *
3336 * BQL enabled drivers might use this helper in their ndo_start_xmit(),
3337 * to give appropriate hint to the CPU.
3338 */
netdev_txq_bql_enqueue_prefetchw(struct netdev_queue * dev_queue)3339 static inline void netdev_txq_bql_enqueue_prefetchw(struct netdev_queue *dev_queue)
3340 {
3341 #ifdef CONFIG_BQL
3342 prefetchw(&dev_queue->dql.num_queued);
3343 #endif
3344 }
3345
3346 /**
3347 * netdev_txq_bql_complete_prefetchw - prefetch bql data for write
3348 * @dev_queue: pointer to transmit queue
3349 *
3350 * BQL enabled drivers might use this helper in their TX completion path,
3351 * to give appropriate hint to the CPU.
3352 */
netdev_txq_bql_complete_prefetchw(struct netdev_queue * dev_queue)3353 static inline void netdev_txq_bql_complete_prefetchw(struct netdev_queue *dev_queue)
3354 {
3355 #ifdef CONFIG_BQL
3356 prefetchw(&dev_queue->dql.limit);
3357 #endif
3358 }
3359
netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes)3360 static inline void netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3361 unsigned int bytes)
3362 {
3363 #ifdef CONFIG_BQL
3364 dql_queued(&dev_queue->dql, bytes);
3365
3366 if (likely(dql_avail(&dev_queue->dql) >= 0))
3367 return;
3368
3369 set_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3370
3371 /*
3372 * The XOFF flag must be set before checking the dql_avail below,
3373 * because in netdev_tx_completed_queue we update the dql_completed
3374 * before checking the XOFF flag.
3375 */
3376 smp_mb();
3377
3378 /* check again in case another CPU has just made room avail */
3379 if (unlikely(dql_avail(&dev_queue->dql) >= 0))
3380 clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state);
3381 #endif
3382 }
3383
3384 /* Variant of netdev_tx_sent_queue() for drivers that are aware
3385 * that they should not test BQL status themselves.
3386 * We do want to change __QUEUE_STATE_STACK_XOFF only for the last
3387 * skb of a batch.
3388 * Returns true if the doorbell must be used to kick the NIC.
3389 */
__netdev_tx_sent_queue(struct netdev_queue * dev_queue,unsigned int bytes,bool xmit_more)3390 static inline bool __netdev_tx_sent_queue(struct netdev_queue *dev_queue,
3391 unsigned int bytes,
3392 bool xmit_more)
3393 {
3394 if (xmit_more) {
3395 #ifdef CONFIG_BQL
3396 dql_queued(&dev_queue->dql, bytes);
3397 #endif
3398 return netif_tx_queue_stopped(dev_queue);
3399 }
3400 netdev_tx_sent_queue(dev_queue, bytes);
3401 return true;
3402 }
3403
3404 /**
3405 * netdev_sent_queue - report the number of bytes queued to hardware
3406 * @dev: network device
3407 * @bytes: number of bytes queued to the hardware device queue
3408 *
3409 * Report the number of bytes queued for sending/completion to the network
3410 * device hardware queue. @bytes should be a good approximation and should
3411 * exactly match netdev_completed_queue() @bytes
3412 */
netdev_sent_queue(struct net_device * dev,unsigned int bytes)3413 static inline void netdev_sent_queue(struct net_device *dev, unsigned int bytes)
3414 {
3415 netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes);
3416 }
3417
__netdev_sent_queue(struct net_device * dev,unsigned int bytes,bool xmit_more)3418 static inline bool __netdev_sent_queue(struct net_device *dev,
3419 unsigned int bytes,
3420 bool xmit_more)
3421 {
3422 return __netdev_tx_sent_queue(netdev_get_tx_queue(dev, 0), bytes,
3423 xmit_more);
3424 }
3425
netdev_tx_completed_queue(struct netdev_queue * dev_queue,unsigned int pkts,unsigned int bytes)3426 static inline void netdev_tx_completed_queue(struct netdev_queue *dev_queue,
3427 unsigned int pkts, unsigned int bytes)
3428 {
3429 #ifdef CONFIG_BQL
3430 if (unlikely(!bytes))
3431 return;
3432
3433 dql_completed(&dev_queue->dql, bytes);
3434
3435 /*
3436 * Without the memory barrier there is a small possiblity that
3437 * netdev_tx_sent_queue will miss the update and cause the queue to
3438 * be stopped forever
3439 */
3440 smp_mb();
3441
3442 if (unlikely(dql_avail(&dev_queue->dql) < 0))
3443 return;
3444
3445 if (test_and_clear_bit(__QUEUE_STATE_STACK_XOFF, &dev_queue->state))
3446 netif_schedule_queue(dev_queue);
3447 #endif
3448 }
3449
3450 /**
3451 * netdev_completed_queue - report bytes and packets completed by device
3452 * @dev: network device
3453 * @pkts: actual number of packets sent over the medium
3454 * @bytes: actual number of bytes sent over the medium
3455 *
3456 * Report the number of bytes and packets transmitted by the network device
3457 * hardware queue over the physical medium, @bytes must exactly match the
3458 * @bytes amount passed to netdev_sent_queue()
3459 */
netdev_completed_queue(struct net_device * dev,unsigned int pkts,unsigned int bytes)3460 static inline void netdev_completed_queue(struct net_device *dev,
3461 unsigned int pkts, unsigned int bytes)
3462 {
3463 netdev_tx_completed_queue(netdev_get_tx_queue(dev, 0), pkts, bytes);
3464 }
3465
netdev_tx_reset_queue(struct netdev_queue * q)3466 static inline void netdev_tx_reset_queue(struct netdev_queue *q)
3467 {
3468 #ifdef CONFIG_BQL
3469 clear_bit(__QUEUE_STATE_STACK_XOFF, &q->state);
3470 dql_reset(&q->dql);
3471 #endif
3472 }
3473
3474 /**
3475 * netdev_reset_queue - reset the packets and bytes count of a network device
3476 * @dev_queue: network device
3477 *
3478 * Reset the bytes and packet count of a network device and clear the
3479 * software flow control OFF bit for this network device
3480 */
netdev_reset_queue(struct net_device * dev_queue)3481 static inline void netdev_reset_queue(struct net_device *dev_queue)
3482 {
3483 netdev_tx_reset_queue(netdev_get_tx_queue(dev_queue, 0));
3484 }
3485
3486 /**
3487 * netdev_cap_txqueue - check if selected tx queue exceeds device queues
3488 * @dev: network device
3489 * @queue_index: given tx queue index
3490 *
3491 * Returns 0 if given tx queue index >= number of device tx queues,
3492 * otherwise returns the originally passed tx queue index.
3493 */
netdev_cap_txqueue(struct net_device * dev,u16 queue_index)3494 static inline u16 netdev_cap_txqueue(struct net_device *dev, u16 queue_index)
3495 {
3496 if (unlikely(queue_index >= dev->real_num_tx_queues)) {
3497 net_warn_ratelimited("%s selects TX queue %d, but real number of TX queues is %d\n",
3498 dev->name, queue_index,
3499 dev->real_num_tx_queues);
3500 return 0;
3501 }
3502
3503 return queue_index;
3504 }
3505
3506 /**
3507 * netif_running - test if up
3508 * @dev: network device
3509 *
3510 * Test if the device has been brought up.
3511 */
netif_running(const struct net_device * dev)3512 static inline bool netif_running(const struct net_device *dev)
3513 {
3514 return test_bit(__LINK_STATE_START, &dev->state);
3515 }
3516
3517 /*
3518 * Routines to manage the subqueues on a device. We only need start,
3519 * stop, and a check if it's stopped. All other device management is
3520 * done at the overall netdevice level.
3521 * Also test the device if we're multiqueue.
3522 */
3523
3524 /**
3525 * netif_start_subqueue - allow sending packets on subqueue
3526 * @dev: network device
3527 * @queue_index: sub queue index
3528 *
3529 * Start individual transmit queue of a device with multiple transmit queues.
3530 */
netif_start_subqueue(struct net_device * dev,u16 queue_index)3531 static inline void netif_start_subqueue(struct net_device *dev, u16 queue_index)
3532 {
3533 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3534
3535 netif_tx_start_queue(txq);
3536 }
3537
3538 /**
3539 * netif_stop_subqueue - stop sending packets on subqueue
3540 * @dev: network device
3541 * @queue_index: sub queue index
3542 *
3543 * Stop individual transmit queue of a device with multiple transmit queues.
3544 */
netif_stop_subqueue(struct net_device * dev,u16 queue_index)3545 static inline void netif_stop_subqueue(struct net_device *dev, u16 queue_index)
3546 {
3547 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3548 netif_tx_stop_queue(txq);
3549 }
3550
3551 /**
3552 * __netif_subqueue_stopped - test status of subqueue
3553 * @dev: network device
3554 * @queue_index: sub queue index
3555 *
3556 * Check individual transmit queue of a device with multiple transmit queues.
3557 */
__netif_subqueue_stopped(const struct net_device * dev,u16 queue_index)3558 static inline bool __netif_subqueue_stopped(const struct net_device *dev,
3559 u16 queue_index)
3560 {
3561 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3562
3563 return netif_tx_queue_stopped(txq);
3564 }
3565
3566 /**
3567 * netif_subqueue_stopped - test status of subqueue
3568 * @dev: network device
3569 * @skb: sub queue buffer pointer
3570 *
3571 * Check individual transmit queue of a device with multiple transmit queues.
3572 */
netif_subqueue_stopped(const struct net_device * dev,struct sk_buff * skb)3573 static inline bool netif_subqueue_stopped(const struct net_device *dev,
3574 struct sk_buff *skb)
3575 {
3576 return __netif_subqueue_stopped(dev, skb_get_queue_mapping(skb));
3577 }
3578
3579 /**
3580 * netif_wake_subqueue - allow sending packets on subqueue
3581 * @dev: network device
3582 * @queue_index: sub queue index
3583 *
3584 * Resume individual transmit queue of a device with multiple transmit queues.
3585 */
netif_wake_subqueue(struct net_device * dev,u16 queue_index)3586 static inline void netif_wake_subqueue(struct net_device *dev, u16 queue_index)
3587 {
3588 struct netdev_queue *txq = netdev_get_tx_queue(dev, queue_index);
3589
3590 netif_tx_wake_queue(txq);
3591 }
3592
3593 #ifdef CONFIG_XPS
3594 int netif_set_xps_queue(struct net_device *dev, const struct cpumask *mask,
3595 u16 index);
3596 int __netif_set_xps_queue(struct net_device *dev, const unsigned long *mask,
3597 u16 index, enum xps_map_type type);
3598
3599 /**
3600 * netif_attr_test_mask - Test a CPU or Rx queue set in a mask
3601 * @j: CPU/Rx queue index
3602 * @mask: bitmask of all cpus/rx queues
3603 * @nr_bits: number of bits in the bitmask
3604 *
3605 * Test if a CPU or Rx queue index is set in a mask of all CPU/Rx queues.
3606 */
netif_attr_test_mask(unsigned long j,const unsigned long * mask,unsigned int nr_bits)3607 static inline bool netif_attr_test_mask(unsigned long j,
3608 const unsigned long *mask,
3609 unsigned int nr_bits)
3610 {
3611 cpu_max_bits_warn(j, nr_bits);
3612 return test_bit(j, mask);
3613 }
3614
3615 /**
3616 * netif_attr_test_online - Test for online CPU/Rx queue
3617 * @j: CPU/Rx queue index
3618 * @online_mask: bitmask for CPUs/Rx queues that are online
3619 * @nr_bits: number of bits in the bitmask
3620 *
3621 * Returns true if a CPU/Rx queue is online.
3622 */
netif_attr_test_online(unsigned long j,const unsigned long * online_mask,unsigned int nr_bits)3623 static inline bool netif_attr_test_online(unsigned long j,
3624 const unsigned long *online_mask,
3625 unsigned int nr_bits)
3626 {
3627 cpu_max_bits_warn(j, nr_bits);
3628
3629 if (online_mask)
3630 return test_bit(j, online_mask);
3631
3632 return (j < nr_bits);
3633 }
3634
3635 /**
3636 * netif_attrmask_next - get the next CPU/Rx queue in a cpu/Rx queues mask
3637 * @n: CPU/Rx queue index
3638 * @srcp: the cpumask/Rx queue mask pointer
3639 * @nr_bits: number of bits in the bitmask
3640 *
3641 * Returns >= nr_bits if no further CPUs/Rx queues set.
3642 */
netif_attrmask_next(int n,const unsigned long * srcp,unsigned int nr_bits)3643 static inline unsigned int netif_attrmask_next(int n, const unsigned long *srcp,
3644 unsigned int nr_bits)
3645 {
3646 /* -1 is a legal arg here. */
3647 if (n != -1)
3648 cpu_max_bits_warn(n, nr_bits);
3649
3650 if (srcp)
3651 return find_next_bit(srcp, nr_bits, n + 1);
3652
3653 return n + 1;
3654 }
3655
3656 /**
3657 * netif_attrmask_next_and - get the next CPU/Rx queue in \*src1p & \*src2p
3658 * @n: CPU/Rx queue index
3659 * @src1p: the first CPUs/Rx queues mask pointer
3660 * @src2p: the second CPUs/Rx queues mask pointer
3661 * @nr_bits: number of bits in the bitmask
3662 *
3663 * Returns >= nr_bits if no further CPUs/Rx queues set in both.
3664 */
netif_attrmask_next_and(int n,const unsigned long * src1p,const unsigned long * src2p,unsigned int nr_bits)3665 static inline int netif_attrmask_next_and(int n, const unsigned long *src1p,
3666 const unsigned long *src2p,
3667 unsigned int nr_bits)
3668 {
3669 /* -1 is a legal arg here. */
3670 if (n != -1)
3671 cpu_max_bits_warn(n, nr_bits);
3672
3673 if (src1p && src2p)
3674 return find_next_and_bit(src1p, src2p, nr_bits, n + 1);
3675 else if (src1p)
3676 return find_next_bit(src1p, nr_bits, n + 1);
3677 else if (src2p)
3678 return find_next_bit(src2p, nr_bits, n + 1);
3679
3680 return n + 1;
3681 }
3682 #else
netif_set_xps_queue(struct net_device * dev,const struct cpumask * mask,u16 index)3683 static inline int netif_set_xps_queue(struct net_device *dev,
3684 const struct cpumask *mask,
3685 u16 index)
3686 {
3687 return 0;
3688 }
3689
__netif_set_xps_queue(struct net_device * dev,const unsigned long * mask,u16 index,enum xps_map_type type)3690 static inline int __netif_set_xps_queue(struct net_device *dev,
3691 const unsigned long *mask,
3692 u16 index, enum xps_map_type type)
3693 {
3694 return 0;
3695 }
3696 #endif
3697
3698 /**
3699 * netif_is_multiqueue - test if device has multiple transmit queues
3700 * @dev: network device
3701 *
3702 * Check if device has multiple transmit queues
3703 */
netif_is_multiqueue(const struct net_device * dev)3704 static inline bool netif_is_multiqueue(const struct net_device *dev)
3705 {
3706 return dev->num_tx_queues > 1;
3707 }
3708
3709 int netif_set_real_num_tx_queues(struct net_device *dev, unsigned int txq);
3710
3711 #ifdef CONFIG_SYSFS
3712 int netif_set_real_num_rx_queues(struct net_device *dev, unsigned int rxq);
3713 #else
netif_set_real_num_rx_queues(struct net_device * dev,unsigned int rxqs)3714 static inline int netif_set_real_num_rx_queues(struct net_device *dev,
3715 unsigned int rxqs)
3716 {
3717 dev->real_num_rx_queues = rxqs;
3718 return 0;
3719 }
3720 #endif
3721 int netif_set_real_num_queues(struct net_device *dev,
3722 unsigned int txq, unsigned int rxq);
3723
3724 static inline struct netdev_rx_queue *
__netif_get_rx_queue(struct net_device * dev,unsigned int rxq)3725 __netif_get_rx_queue(struct net_device *dev, unsigned int rxq)
3726 {
3727 return dev->_rx + rxq;
3728 }
3729
3730 #ifdef CONFIG_SYSFS
get_netdev_rx_queue_index(struct netdev_rx_queue * queue)3731 static inline unsigned int get_netdev_rx_queue_index(
3732 struct netdev_rx_queue *queue)
3733 {
3734 struct net_device *dev = queue->dev;
3735 int index = queue - dev->_rx;
3736
3737 BUG_ON(index >= dev->num_rx_queues);
3738 return index;
3739 }
3740 #endif
3741
3742 int netif_get_num_default_rss_queues(void);
3743
3744 enum skb_free_reason {
3745 SKB_REASON_CONSUMED,
3746 SKB_REASON_DROPPED,
3747 };
3748
3749 void __dev_kfree_skb_irq(struct sk_buff *skb, enum skb_free_reason reason);
3750 void __dev_kfree_skb_any(struct sk_buff *skb, enum skb_free_reason reason);
3751
3752 /*
3753 * It is not allowed to call kfree_skb() or consume_skb() from hardware
3754 * interrupt context or with hardware interrupts being disabled.
3755 * (in_hardirq() || irqs_disabled())
3756 *
3757 * We provide four helpers that can be used in following contexts :
3758 *
3759 * dev_kfree_skb_irq(skb) when caller drops a packet from irq context,
3760 * replacing kfree_skb(skb)
3761 *
3762 * dev_consume_skb_irq(skb) when caller consumes a packet from irq context.
3763 * Typically used in place of consume_skb(skb) in TX completion path
3764 *
3765 * dev_kfree_skb_any(skb) when caller doesn't know its current irq context,
3766 * replacing kfree_skb(skb)
3767 *
3768 * dev_consume_skb_any(skb) when caller doesn't know its current irq context,
3769 * and consumed a packet. Used in place of consume_skb(skb)
3770 */
dev_kfree_skb_irq(struct sk_buff * skb)3771 static inline void dev_kfree_skb_irq(struct sk_buff *skb)
3772 {
3773 __dev_kfree_skb_irq(skb, SKB_REASON_DROPPED);
3774 }
3775
dev_consume_skb_irq(struct sk_buff * skb)3776 static inline void dev_consume_skb_irq(struct sk_buff *skb)
3777 {
3778 __dev_kfree_skb_irq(skb, SKB_REASON_CONSUMED);
3779 }
3780
dev_kfree_skb_any(struct sk_buff * skb)3781 static inline void dev_kfree_skb_any(struct sk_buff *skb)
3782 {
3783 __dev_kfree_skb_any(skb, SKB_REASON_DROPPED);
3784 }
3785
dev_consume_skb_any(struct sk_buff * skb)3786 static inline void dev_consume_skb_any(struct sk_buff *skb)
3787 {
3788 __dev_kfree_skb_any(skb, SKB_REASON_CONSUMED);
3789 }
3790
3791 u32 bpf_prog_run_generic_xdp(struct sk_buff *skb, struct xdp_buff *xdp,
3792 struct bpf_prog *xdp_prog);
3793 void generic_xdp_tx(struct sk_buff *skb, struct bpf_prog *xdp_prog);
3794 int do_xdp_generic(struct bpf_prog *xdp_prog, struct sk_buff *skb);
3795 int netif_rx(struct sk_buff *skb);
3796 int __netif_rx(struct sk_buff *skb);
3797
3798 int netif_receive_skb(struct sk_buff *skb);
3799 int netif_receive_skb_core(struct sk_buff *skb);
3800 void netif_receive_skb_list_internal(struct list_head *head);
3801 void netif_receive_skb_list(struct list_head *head);
3802 gro_result_t napi_gro_receive(struct napi_struct *napi, struct sk_buff *skb);
3803 void napi_gro_flush(struct napi_struct *napi, bool flush_old);
3804 struct sk_buff *napi_get_frags(struct napi_struct *napi);
3805 gro_result_t napi_gro_frags(struct napi_struct *napi);
3806 struct packet_offload *gro_find_receive_by_type(__be16 type);
3807 struct packet_offload *gro_find_complete_by_type(__be16 type);
3808
napi_free_frags(struct napi_struct * napi)3809 static inline void napi_free_frags(struct napi_struct *napi)
3810 {
3811 kfree_skb(napi->skb);
3812 napi->skb = NULL;
3813 }
3814
3815 bool netdev_is_rx_handler_busy(struct net_device *dev);
3816 int netdev_rx_handler_register(struct net_device *dev,
3817 rx_handler_func_t *rx_handler,
3818 void *rx_handler_data);
3819 void netdev_rx_handler_unregister(struct net_device *dev);
3820
3821 bool dev_valid_name(const char *name);
is_socket_ioctl_cmd(unsigned int cmd)3822 static inline bool is_socket_ioctl_cmd(unsigned int cmd)
3823 {
3824 return _IOC_TYPE(cmd) == SOCK_IOC_TYPE;
3825 }
3826 int get_user_ifreq(struct ifreq *ifr, void __user **ifrdata, void __user *arg);
3827 int put_user_ifreq(struct ifreq *ifr, void __user *arg);
3828 int dev_ioctl(struct net *net, unsigned int cmd, struct ifreq *ifr,
3829 void __user *data, bool *need_copyout);
3830 int dev_ifconf(struct net *net, struct ifconf __user *ifc);
3831 int dev_ethtool(struct net *net, struct ifreq *ifr, void __user *userdata);
3832 unsigned int dev_get_flags(const struct net_device *);
3833 int __dev_change_flags(struct net_device *dev, unsigned int flags,
3834 struct netlink_ext_ack *extack);
3835 int dev_change_flags(struct net_device *dev, unsigned int flags,
3836 struct netlink_ext_ack *extack);
3837 void __dev_notify_flags(struct net_device *, unsigned int old_flags,
3838 unsigned int gchanges);
3839 int dev_set_alias(struct net_device *, const char *, size_t);
3840 int dev_get_alias(const struct net_device *, char *, size_t);
3841 int __dev_change_net_namespace(struct net_device *dev, struct net *net,
3842 const char *pat, int new_ifindex);
3843 static inline
dev_change_net_namespace(struct net_device * dev,struct net * net,const char * pat)3844 int dev_change_net_namespace(struct net_device *dev, struct net *net,
3845 const char *pat)
3846 {
3847 return __dev_change_net_namespace(dev, net, pat, 0);
3848 }
3849 int __dev_set_mtu(struct net_device *, int);
3850 int dev_set_mtu(struct net_device *, int);
3851 int dev_pre_changeaddr_notify(struct net_device *dev, const char *addr,
3852 struct netlink_ext_ack *extack);
3853 int dev_set_mac_address(struct net_device *dev, struct sockaddr *sa,
3854 struct netlink_ext_ack *extack);
3855 int dev_set_mac_address_user(struct net_device *dev, struct sockaddr *sa,
3856 struct netlink_ext_ack *extack);
3857 int dev_get_mac_address(struct sockaddr *sa, struct net *net, char *dev_name);
3858 int dev_get_port_parent_id(struct net_device *dev,
3859 struct netdev_phys_item_id *ppid, bool recurse);
3860 bool netdev_port_same_parent_id(struct net_device *a, struct net_device *b);
3861 struct sk_buff *validate_xmit_skb_list(struct sk_buff *skb, struct net_device *dev, bool *again);
3862 struct sk_buff *dev_hard_start_xmit(struct sk_buff *skb, struct net_device *dev,
3863 struct netdev_queue *txq, int *ret);
3864
3865 int bpf_xdp_link_attach(const union bpf_attr *attr, struct bpf_prog *prog);
3866 u8 dev_xdp_prog_count(struct net_device *dev);
3867 u32 dev_xdp_prog_id(struct net_device *dev, enum bpf_xdp_mode mode);
3868
3869 int __dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3870 int dev_forward_skb(struct net_device *dev, struct sk_buff *skb);
3871 int dev_forward_skb_nomtu(struct net_device *dev, struct sk_buff *skb);
3872 bool is_skb_forwardable(const struct net_device *dev,
3873 const struct sk_buff *skb);
3874
__is_skb_forwardable(const struct net_device * dev,const struct sk_buff * skb,const bool check_mtu)3875 static __always_inline bool __is_skb_forwardable(const struct net_device *dev,
3876 const struct sk_buff *skb,
3877 const bool check_mtu)
3878 {
3879 const u32 vlan_hdr_len = 4; /* VLAN_HLEN */
3880 unsigned int len;
3881
3882 if (!(dev->flags & IFF_UP))
3883 return false;
3884
3885 if (!check_mtu)
3886 return true;
3887
3888 len = dev->mtu + dev->hard_header_len + vlan_hdr_len;
3889 if (skb->len <= len)
3890 return true;
3891
3892 /* if TSO is enabled, we don't care about the length as the packet
3893 * could be forwarded without being segmented before
3894 */
3895 if (skb_is_gso(skb))
3896 return true;
3897
3898 return false;
3899 }
3900
3901 struct net_device_core_stats __percpu *netdev_core_stats_alloc(struct net_device *dev);
3902
dev_core_stats(struct net_device * dev)3903 static inline struct net_device_core_stats __percpu *dev_core_stats(struct net_device *dev)
3904 {
3905 /* This READ_ONCE() pairs with the write in netdev_core_stats_alloc() */
3906 struct net_device_core_stats __percpu *p = READ_ONCE(dev->core_stats);
3907
3908 if (likely(p))
3909 return p;
3910
3911 return netdev_core_stats_alloc(dev);
3912 }
3913
3914 #define DEV_CORE_STATS_INC(FIELD) \
3915 static inline void dev_core_stats_##FIELD##_inc(struct net_device *dev) \
3916 { \
3917 struct net_device_core_stats __percpu *p; \
3918 \
3919 p = dev_core_stats(dev); \
3920 if (p) \
3921 this_cpu_inc(p->FIELD); \
3922 }
3923 DEV_CORE_STATS_INC(rx_dropped)
DEV_CORE_STATS_INC(tx_dropped)3924 DEV_CORE_STATS_INC(tx_dropped)
3925 DEV_CORE_STATS_INC(rx_nohandler)
3926 DEV_CORE_STATS_INC(rx_otherhost_dropped)
3927
3928 static __always_inline int ____dev_forward_skb(struct net_device *dev,
3929 struct sk_buff *skb,
3930 const bool check_mtu)
3931 {
3932 if (skb_orphan_frags(skb, GFP_ATOMIC) ||
3933 unlikely(!__is_skb_forwardable(dev, skb, check_mtu))) {
3934 dev_core_stats_rx_dropped_inc(dev);
3935 kfree_skb(skb);
3936 return NET_RX_DROP;
3937 }
3938
3939 skb_scrub_packet(skb, !net_eq(dev_net(dev), dev_net(skb->dev)));
3940 skb->priority = 0;
3941 return 0;
3942 }
3943
3944 bool dev_nit_active(struct net_device *dev);
3945 void dev_queue_xmit_nit(struct sk_buff *skb, struct net_device *dev);
3946
__dev_put(struct net_device * dev)3947 static inline void __dev_put(struct net_device *dev)
3948 {
3949 if (dev) {
3950 #ifdef CONFIG_PCPU_DEV_REFCNT
3951 this_cpu_dec(*dev->pcpu_refcnt);
3952 #else
3953 refcount_dec(&dev->dev_refcnt);
3954 #endif
3955 }
3956 }
3957
__dev_hold(struct net_device * dev)3958 static inline void __dev_hold(struct net_device *dev)
3959 {
3960 if (dev) {
3961 #ifdef CONFIG_PCPU_DEV_REFCNT
3962 this_cpu_inc(*dev->pcpu_refcnt);
3963 #else
3964 refcount_inc(&dev->dev_refcnt);
3965 #endif
3966 }
3967 }
3968
__netdev_tracker_alloc(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)3969 static inline void __netdev_tracker_alloc(struct net_device *dev,
3970 netdevice_tracker *tracker,
3971 gfp_t gfp)
3972 {
3973 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3974 ref_tracker_alloc(&dev->refcnt_tracker, tracker, gfp);
3975 #endif
3976 }
3977
3978 /* netdev_tracker_alloc() can upgrade a prior untracked reference
3979 * taken by dev_get_by_name()/dev_get_by_index() to a tracked one.
3980 */
netdev_tracker_alloc(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)3981 static inline void netdev_tracker_alloc(struct net_device *dev,
3982 netdevice_tracker *tracker, gfp_t gfp)
3983 {
3984 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3985 refcount_dec(&dev->refcnt_tracker.no_tracker);
3986 __netdev_tracker_alloc(dev, tracker, gfp);
3987 #endif
3988 }
3989
netdev_tracker_free(struct net_device * dev,netdevice_tracker * tracker)3990 static inline void netdev_tracker_free(struct net_device *dev,
3991 netdevice_tracker *tracker)
3992 {
3993 #ifdef CONFIG_NET_DEV_REFCNT_TRACKER
3994 ref_tracker_free(&dev->refcnt_tracker, tracker);
3995 #endif
3996 }
3997
dev_hold_track(struct net_device * dev,netdevice_tracker * tracker,gfp_t gfp)3998 static inline void dev_hold_track(struct net_device *dev,
3999 netdevice_tracker *tracker, gfp_t gfp)
4000 {
4001 if (dev) {
4002 __dev_hold(dev);
4003 __netdev_tracker_alloc(dev, tracker, gfp);
4004 }
4005 }
4006
dev_put_track(struct net_device * dev,netdevice_tracker * tracker)4007 static inline void dev_put_track(struct net_device *dev,
4008 netdevice_tracker *tracker)
4009 {
4010 if (dev) {
4011 netdev_tracker_free(dev, tracker);
4012 __dev_put(dev);
4013 }
4014 }
4015
4016 /**
4017 * dev_hold - get reference to device
4018 * @dev: network device
4019 *
4020 * Hold reference to device to keep it from being freed.
4021 * Try using dev_hold_track() instead.
4022 */
dev_hold(struct net_device * dev)4023 static inline void dev_hold(struct net_device *dev)
4024 {
4025 dev_hold_track(dev, NULL, GFP_ATOMIC);
4026 }
4027
4028 /**
4029 * dev_put - release reference to device
4030 * @dev: network device
4031 *
4032 * Release reference to device to allow it to be freed.
4033 * Try using dev_put_track() instead.
4034 */
dev_put(struct net_device * dev)4035 static inline void dev_put(struct net_device *dev)
4036 {
4037 dev_put_track(dev, NULL);
4038 }
4039
dev_replace_track(struct net_device * odev,struct net_device * ndev,netdevice_tracker * tracker,gfp_t gfp)4040 static inline void dev_replace_track(struct net_device *odev,
4041 struct net_device *ndev,
4042 netdevice_tracker *tracker,
4043 gfp_t gfp)
4044 {
4045 if (odev)
4046 netdev_tracker_free(odev, tracker);
4047
4048 __dev_hold(ndev);
4049 __dev_put(odev);
4050
4051 if (ndev)
4052 __netdev_tracker_alloc(ndev, tracker, gfp);
4053 }
4054
4055 /* Carrier loss detection, dial on demand. The functions netif_carrier_on
4056 * and _off may be called from IRQ context, but it is caller
4057 * who is responsible for serialization of these calls.
4058 *
4059 * The name carrier is inappropriate, these functions should really be
4060 * called netif_lowerlayer_*() because they represent the state of any
4061 * kind of lower layer not just hardware media.
4062 */
4063 void linkwatch_fire_event(struct net_device *dev);
4064
4065 /**
4066 * netif_carrier_ok - test if carrier present
4067 * @dev: network device
4068 *
4069 * Check if carrier is present on device
4070 */
netif_carrier_ok(const struct net_device * dev)4071 static inline bool netif_carrier_ok(const struct net_device *dev)
4072 {
4073 return !test_bit(__LINK_STATE_NOCARRIER, &dev->state);
4074 }
4075
4076 unsigned long dev_trans_start(struct net_device *dev);
4077
4078 void __netdev_watchdog_up(struct net_device *dev);
4079
4080 void netif_carrier_on(struct net_device *dev);
4081 void netif_carrier_off(struct net_device *dev);
4082 void netif_carrier_event(struct net_device *dev);
4083
4084 /**
4085 * netif_dormant_on - mark device as dormant.
4086 * @dev: network device
4087 *
4088 * Mark device as dormant (as per RFC2863).
4089 *
4090 * The dormant state indicates that the relevant interface is not
4091 * actually in a condition to pass packets (i.e., it is not 'up') but is
4092 * in a "pending" state, waiting for some external event. For "on-
4093 * demand" interfaces, this new state identifies the situation where the
4094 * interface is waiting for events to place it in the up state.
4095 */
netif_dormant_on(struct net_device * dev)4096 static inline void netif_dormant_on(struct net_device *dev)
4097 {
4098 if (!test_and_set_bit(__LINK_STATE_DORMANT, &dev->state))
4099 linkwatch_fire_event(dev);
4100 }
4101
4102 /**
4103 * netif_dormant_off - set device as not dormant.
4104 * @dev: network device
4105 *
4106 * Device is not in dormant state.
4107 */
netif_dormant_off(struct net_device * dev)4108 static inline void netif_dormant_off(struct net_device *dev)
4109 {
4110 if (test_and_clear_bit(__LINK_STATE_DORMANT, &dev->state))
4111 linkwatch_fire_event(dev);
4112 }
4113
4114 /**
4115 * netif_dormant - test if device is dormant
4116 * @dev: network device
4117 *
4118 * Check if device is dormant.
4119 */
netif_dormant(const struct net_device * dev)4120 static inline bool netif_dormant(const struct net_device *dev)
4121 {
4122 return test_bit(__LINK_STATE_DORMANT, &dev->state);
4123 }
4124
4125
4126 /**
4127 * netif_testing_on - mark device as under test.
4128 * @dev: network device
4129 *
4130 * Mark device as under test (as per RFC2863).
4131 *
4132 * The testing state indicates that some test(s) must be performed on
4133 * the interface. After completion, of the test, the interface state
4134 * will change to up, dormant, or down, as appropriate.
4135 */
netif_testing_on(struct net_device * dev)4136 static inline void netif_testing_on(struct net_device *dev)
4137 {
4138 if (!test_and_set_bit(__LINK_STATE_TESTING, &dev->state))
4139 linkwatch_fire_event(dev);
4140 }
4141
4142 /**
4143 * netif_testing_off - set device as not under test.
4144 * @dev: network device
4145 *
4146 * Device is not in testing state.
4147 */
netif_testing_off(struct net_device * dev)4148 static inline void netif_testing_off(struct net_device *dev)
4149 {
4150 if (test_and_clear_bit(__LINK_STATE_TESTING, &dev->state))
4151 linkwatch_fire_event(dev);
4152 }
4153
4154 /**
4155 * netif_testing - test if device is under test
4156 * @dev: network device
4157 *
4158 * Check if device is under test
4159 */
netif_testing(const struct net_device * dev)4160 static inline bool netif_testing(const struct net_device *dev)
4161 {
4162 return test_bit(__LINK_STATE_TESTING, &dev->state);
4163 }
4164
4165
4166 /**
4167 * netif_oper_up - test if device is operational
4168 * @dev: network device
4169 *
4170 * Check if carrier is operational
4171 */
netif_oper_up(const struct net_device * dev)4172 static inline bool netif_oper_up(const struct net_device *dev)
4173 {
4174 return (dev->operstate == IF_OPER_UP ||
4175 dev->operstate == IF_OPER_UNKNOWN /* backward compat */);
4176 }
4177
4178 /**
4179 * netif_device_present - is device available or removed
4180 * @dev: network device
4181 *
4182 * Check if device has not been removed from system.
4183 */
netif_device_present(const struct net_device * dev)4184 static inline bool netif_device_present(const struct net_device *dev)
4185 {
4186 return test_bit(__LINK_STATE_PRESENT, &dev->state);
4187 }
4188
4189 void netif_device_detach(struct net_device *dev);
4190
4191 void netif_device_attach(struct net_device *dev);
4192
4193 /*
4194 * Network interface message level settings
4195 */
4196
4197 enum {
4198 NETIF_MSG_DRV_BIT,
4199 NETIF_MSG_PROBE_BIT,
4200 NETIF_MSG_LINK_BIT,
4201 NETIF_MSG_TIMER_BIT,
4202 NETIF_MSG_IFDOWN_BIT,
4203 NETIF_MSG_IFUP_BIT,
4204 NETIF_MSG_RX_ERR_BIT,
4205 NETIF_MSG_TX_ERR_BIT,
4206 NETIF_MSG_TX_QUEUED_BIT,
4207 NETIF_MSG_INTR_BIT,
4208 NETIF_MSG_TX_DONE_BIT,
4209 NETIF_MSG_RX_STATUS_BIT,
4210 NETIF_MSG_PKTDATA_BIT,
4211 NETIF_MSG_HW_BIT,
4212 NETIF_MSG_WOL_BIT,
4213
4214 /* When you add a new bit above, update netif_msg_class_names array
4215 * in net/ethtool/common.c
4216 */
4217 NETIF_MSG_CLASS_COUNT,
4218 };
4219 /* Both ethtool_ops interface and internal driver implementation use u32 */
4220 static_assert(NETIF_MSG_CLASS_COUNT <= 32);
4221
4222 #define __NETIF_MSG_BIT(bit) ((u32)1 << (bit))
4223 #define __NETIF_MSG(name) __NETIF_MSG_BIT(NETIF_MSG_ ## name ## _BIT)
4224
4225 #define NETIF_MSG_DRV __NETIF_MSG(DRV)
4226 #define NETIF_MSG_PROBE __NETIF_MSG(PROBE)
4227 #define NETIF_MSG_LINK __NETIF_MSG(LINK)
4228 #define NETIF_MSG_TIMER __NETIF_MSG(TIMER)
4229 #define NETIF_MSG_IFDOWN __NETIF_MSG(IFDOWN)
4230 #define NETIF_MSG_IFUP __NETIF_MSG(IFUP)
4231 #define NETIF_MSG_RX_ERR __NETIF_MSG(RX_ERR)
4232 #define NETIF_MSG_TX_ERR __NETIF_MSG(TX_ERR)
4233 #define NETIF_MSG_TX_QUEUED __NETIF_MSG(TX_QUEUED)
4234 #define NETIF_MSG_INTR __NETIF_MSG(INTR)
4235 #define NETIF_MSG_TX_DONE __NETIF_MSG(TX_DONE)
4236 #define NETIF_MSG_RX_STATUS __NETIF_MSG(RX_STATUS)
4237 #define NETIF_MSG_PKTDATA __NETIF_MSG(PKTDATA)
4238 #define NETIF_MSG_HW __NETIF_MSG(HW)
4239 #define NETIF_MSG_WOL __NETIF_MSG(WOL)
4240
4241 #define netif_msg_drv(p) ((p)->msg_enable & NETIF_MSG_DRV)
4242 #define netif_msg_probe(p) ((p)->msg_enable & NETIF_MSG_PROBE)
4243 #define netif_msg_link(p) ((p)->msg_enable & NETIF_MSG_LINK)
4244 #define netif_msg_timer(p) ((p)->msg_enable & NETIF_MSG_TIMER)
4245 #define netif_msg_ifdown(p) ((p)->msg_enable & NETIF_MSG_IFDOWN)
4246 #define netif_msg_ifup(p) ((p)->msg_enable & NETIF_MSG_IFUP)
4247 #define netif_msg_rx_err(p) ((p)->msg_enable & NETIF_MSG_RX_ERR)
4248 #define netif_msg_tx_err(p) ((p)->msg_enable & NETIF_MSG_TX_ERR)
4249 #define netif_msg_tx_queued(p) ((p)->msg_enable & NETIF_MSG_TX_QUEUED)
4250 #define netif_msg_intr(p) ((p)->msg_enable & NETIF_MSG_INTR)
4251 #define netif_msg_tx_done(p) ((p)->msg_enable & NETIF_MSG_TX_DONE)
4252 #define netif_msg_rx_status(p) ((p)->msg_enable & NETIF_MSG_RX_STATUS)
4253 #define netif_msg_pktdata(p) ((p)->msg_enable & NETIF_MSG_PKTDATA)
4254 #define netif_msg_hw(p) ((p)->msg_enable & NETIF_MSG_HW)
4255 #define netif_msg_wol(p) ((p)->msg_enable & NETIF_MSG_WOL)
4256
netif_msg_init(int debug_value,int default_msg_enable_bits)4257 static inline u32 netif_msg_init(int debug_value, int default_msg_enable_bits)
4258 {
4259 /* use default */
4260 if (debug_value < 0 || debug_value >= (sizeof(u32) * 8))
4261 return default_msg_enable_bits;
4262 if (debug_value == 0) /* no output */
4263 return 0;
4264 /* set low N bits */
4265 return (1U << debug_value) - 1;
4266 }
4267
__netif_tx_lock(struct netdev_queue * txq,int cpu)4268 static inline void __netif_tx_lock(struct netdev_queue *txq, int cpu)
4269 {
4270 spin_lock(&txq->_xmit_lock);
4271 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4272 WRITE_ONCE(txq->xmit_lock_owner, cpu);
4273 }
4274
__netif_tx_acquire(struct netdev_queue * txq)4275 static inline bool __netif_tx_acquire(struct netdev_queue *txq)
4276 {
4277 __acquire(&txq->_xmit_lock);
4278 return true;
4279 }
4280
__netif_tx_release(struct netdev_queue * txq)4281 static inline void __netif_tx_release(struct netdev_queue *txq)
4282 {
4283 __release(&txq->_xmit_lock);
4284 }
4285
__netif_tx_lock_bh(struct netdev_queue * txq)4286 static inline void __netif_tx_lock_bh(struct netdev_queue *txq)
4287 {
4288 spin_lock_bh(&txq->_xmit_lock);
4289 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4290 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4291 }
4292
__netif_tx_trylock(struct netdev_queue * txq)4293 static inline bool __netif_tx_trylock(struct netdev_queue *txq)
4294 {
4295 bool ok = spin_trylock(&txq->_xmit_lock);
4296
4297 if (likely(ok)) {
4298 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4299 WRITE_ONCE(txq->xmit_lock_owner, smp_processor_id());
4300 }
4301 return ok;
4302 }
4303
__netif_tx_unlock(struct netdev_queue * txq)4304 static inline void __netif_tx_unlock(struct netdev_queue *txq)
4305 {
4306 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4307 WRITE_ONCE(txq->xmit_lock_owner, -1);
4308 spin_unlock(&txq->_xmit_lock);
4309 }
4310
__netif_tx_unlock_bh(struct netdev_queue * txq)4311 static inline void __netif_tx_unlock_bh(struct netdev_queue *txq)
4312 {
4313 /* Pairs with READ_ONCE() in __dev_queue_xmit() */
4314 WRITE_ONCE(txq->xmit_lock_owner, -1);
4315 spin_unlock_bh(&txq->_xmit_lock);
4316 }
4317
4318 /*
4319 * txq->trans_start can be read locklessly from dev_watchdog()
4320 */
txq_trans_update(struct netdev_queue * txq)4321 static inline void txq_trans_update(struct netdev_queue *txq)
4322 {
4323 if (txq->xmit_lock_owner != -1)
4324 WRITE_ONCE(txq->trans_start, jiffies);
4325 }
4326
txq_trans_cond_update(struct netdev_queue * txq)4327 static inline void txq_trans_cond_update(struct netdev_queue *txq)
4328 {
4329 unsigned long now = jiffies;
4330
4331 if (READ_ONCE(txq->trans_start) != now)
4332 WRITE_ONCE(txq->trans_start, now);
4333 }
4334
4335 /* legacy drivers only, netdev_start_xmit() sets txq->trans_start */
netif_trans_update(struct net_device * dev)4336 static inline void netif_trans_update(struct net_device *dev)
4337 {
4338 struct netdev_queue *txq = netdev_get_tx_queue(dev, 0);
4339
4340 txq_trans_cond_update(txq);
4341 }
4342
4343 /**
4344 * netif_tx_lock - grab network device transmit lock
4345 * @dev: network device
4346 *
4347 * Get network device transmit lock
4348 */
4349 void netif_tx_lock(struct net_device *dev);
4350
netif_tx_lock_bh(struct net_device * dev)4351 static inline void netif_tx_lock_bh(struct net_device *dev)
4352 {
4353 local_bh_disable();
4354 netif_tx_lock(dev);
4355 }
4356
4357 void netif_tx_unlock(struct net_device *dev);
4358
netif_tx_unlock_bh(struct net_device * dev)4359 static inline void netif_tx_unlock_bh(struct net_device *dev)
4360 {
4361 netif_tx_unlock(dev);
4362 local_bh_enable();
4363 }
4364
4365 #define HARD_TX_LOCK(dev, txq, cpu) { \
4366 if ((dev->features & NETIF_F_LLTX) == 0) { \
4367 __netif_tx_lock(txq, cpu); \
4368 } else { \
4369 __netif_tx_acquire(txq); \
4370 } \
4371 }
4372
4373 #define HARD_TX_TRYLOCK(dev, txq) \
4374 (((dev->features & NETIF_F_LLTX) == 0) ? \
4375 __netif_tx_trylock(txq) : \
4376 __netif_tx_acquire(txq))
4377
4378 #define HARD_TX_UNLOCK(dev, txq) { \
4379 if ((dev->features & NETIF_F_LLTX) == 0) { \
4380 __netif_tx_unlock(txq); \
4381 } else { \
4382 __netif_tx_release(txq); \
4383 } \
4384 }
4385
netif_tx_disable(struct net_device * dev)4386 static inline void netif_tx_disable(struct net_device *dev)
4387 {
4388 unsigned int i;
4389 int cpu;
4390
4391 local_bh_disable();
4392 cpu = smp_processor_id();
4393 spin_lock(&dev->tx_global_lock);
4394 for (i = 0; i < dev->num_tx_queues; i++) {
4395 struct netdev_queue *txq = netdev_get_tx_queue(dev, i);
4396
4397 __netif_tx_lock(txq, cpu);
4398 netif_tx_stop_queue(txq);
4399 __netif_tx_unlock(txq);
4400 }
4401 spin_unlock(&dev->tx_global_lock);
4402 local_bh_enable();
4403 }
4404
netif_addr_lock(struct net_device * dev)4405 static inline void netif_addr_lock(struct net_device *dev)
4406 {
4407 unsigned char nest_level = 0;
4408
4409 #ifdef CONFIG_LOCKDEP
4410 nest_level = dev->nested_level;
4411 #endif
4412 spin_lock_nested(&dev->addr_list_lock, nest_level);
4413 }
4414
netif_addr_lock_bh(struct net_device * dev)4415 static inline void netif_addr_lock_bh(struct net_device *dev)
4416 {
4417 unsigned char nest_level = 0;
4418
4419 #ifdef CONFIG_LOCKDEP
4420 nest_level = dev->nested_level;
4421 #endif
4422 local_bh_disable();
4423 spin_lock_nested(&dev->addr_list_lock, nest_level);
4424 }
4425
netif_addr_unlock(struct net_device * dev)4426 static inline void netif_addr_unlock(struct net_device *dev)
4427 {
4428 spin_unlock(&dev->addr_list_lock);
4429 }
4430
netif_addr_unlock_bh(struct net_device * dev)4431 static inline void netif_addr_unlock_bh(struct net_device *dev)
4432 {
4433 spin_unlock_bh(&dev->addr_list_lock);
4434 }
4435
4436 /*
4437 * dev_addrs walker. Should be used only for read access. Call with
4438 * rcu_read_lock held.
4439 */
4440 #define for_each_dev_addr(dev, ha) \
4441 list_for_each_entry_rcu(ha, &dev->dev_addrs.list, list)
4442
4443 /* These functions live elsewhere (drivers/net/net_init.c, but related) */
4444
4445 void ether_setup(struct net_device *dev);
4446
4447 /* Support for loadable net-drivers */
4448 struct net_device *alloc_netdev_mqs(int sizeof_priv, const char *name,
4449 unsigned char name_assign_type,
4450 void (*setup)(struct net_device *),
4451 unsigned int txqs, unsigned int rxqs);
4452 #define alloc_netdev(sizeof_priv, name, name_assign_type, setup) \
4453 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, 1, 1)
4454
4455 #define alloc_netdev_mq(sizeof_priv, name, name_assign_type, setup, count) \
4456 alloc_netdev_mqs(sizeof_priv, name, name_assign_type, setup, count, \
4457 count)
4458
4459 int register_netdev(struct net_device *dev);
4460 void unregister_netdev(struct net_device *dev);
4461
4462 int devm_register_netdev(struct device *dev, struct net_device *ndev);
4463
4464 /* General hardware address lists handling functions */
4465 int __hw_addr_sync(struct netdev_hw_addr_list *to_list,
4466 struct netdev_hw_addr_list *from_list, int addr_len);
4467 void __hw_addr_unsync(struct netdev_hw_addr_list *to_list,
4468 struct netdev_hw_addr_list *from_list, int addr_len);
4469 int __hw_addr_sync_dev(struct netdev_hw_addr_list *list,
4470 struct net_device *dev,
4471 int (*sync)(struct net_device *, const unsigned char *),
4472 int (*unsync)(struct net_device *,
4473 const unsigned char *));
4474 int __hw_addr_ref_sync_dev(struct netdev_hw_addr_list *list,
4475 struct net_device *dev,
4476 int (*sync)(struct net_device *,
4477 const unsigned char *, int),
4478 int (*unsync)(struct net_device *,
4479 const unsigned char *, int));
4480 void __hw_addr_ref_unsync_dev(struct netdev_hw_addr_list *list,
4481 struct net_device *dev,
4482 int (*unsync)(struct net_device *,
4483 const unsigned char *, int));
4484 void __hw_addr_unsync_dev(struct netdev_hw_addr_list *list,
4485 struct net_device *dev,
4486 int (*unsync)(struct net_device *,
4487 const unsigned char *));
4488 void __hw_addr_init(struct netdev_hw_addr_list *list);
4489
4490 /* Functions used for device addresses handling */
4491 void dev_addr_mod(struct net_device *dev, unsigned int offset,
4492 const void *addr, size_t len);
4493
4494 static inline void
__dev_addr_set(struct net_device * dev,const void * addr,size_t len)4495 __dev_addr_set(struct net_device *dev, const void *addr, size_t len)
4496 {
4497 dev_addr_mod(dev, 0, addr, len);
4498 }
4499
dev_addr_set(struct net_device * dev,const u8 * addr)4500 static inline void dev_addr_set(struct net_device *dev, const u8 *addr)
4501 {
4502 __dev_addr_set(dev, addr, dev->addr_len);
4503 }
4504
4505 int dev_addr_add(struct net_device *dev, const unsigned char *addr,
4506 unsigned char addr_type);
4507 int dev_addr_del(struct net_device *dev, const unsigned char *addr,
4508 unsigned char addr_type);
4509
4510 /* Functions used for unicast addresses handling */
4511 int dev_uc_add(struct net_device *dev, const unsigned char *addr);
4512 int dev_uc_add_excl(struct net_device *dev, const unsigned char *addr);
4513 int dev_uc_del(struct net_device *dev, const unsigned char *addr);
4514 int dev_uc_sync(struct net_device *to, struct net_device *from);
4515 int dev_uc_sync_multiple(struct net_device *to, struct net_device *from);
4516 void dev_uc_unsync(struct net_device *to, struct net_device *from);
4517 void dev_uc_flush(struct net_device *dev);
4518 void dev_uc_init(struct net_device *dev);
4519
4520 /**
4521 * __dev_uc_sync - Synchonize device's unicast list
4522 * @dev: device to sync
4523 * @sync: function to call if address should be added
4524 * @unsync: function to call if address should be removed
4525 *
4526 * Add newly added addresses to the interface, and release
4527 * addresses that have been deleted.
4528 */
__dev_uc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4529 static inline int __dev_uc_sync(struct net_device *dev,
4530 int (*sync)(struct net_device *,
4531 const unsigned char *),
4532 int (*unsync)(struct net_device *,
4533 const unsigned char *))
4534 {
4535 return __hw_addr_sync_dev(&dev->uc, dev, sync, unsync);
4536 }
4537
4538 /**
4539 * __dev_uc_unsync - Remove synchronized addresses from device
4540 * @dev: device to sync
4541 * @unsync: function to call if address should be removed
4542 *
4543 * Remove all addresses that were added to the device by dev_uc_sync().
4544 */
__dev_uc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4545 static inline void __dev_uc_unsync(struct net_device *dev,
4546 int (*unsync)(struct net_device *,
4547 const unsigned char *))
4548 {
4549 __hw_addr_unsync_dev(&dev->uc, dev, unsync);
4550 }
4551
4552 /* Functions used for multicast addresses handling */
4553 int dev_mc_add(struct net_device *dev, const unsigned char *addr);
4554 int dev_mc_add_global(struct net_device *dev, const unsigned char *addr);
4555 int dev_mc_add_excl(struct net_device *dev, const unsigned char *addr);
4556 int dev_mc_del(struct net_device *dev, const unsigned char *addr);
4557 int dev_mc_del_global(struct net_device *dev, const unsigned char *addr);
4558 int dev_mc_sync(struct net_device *to, struct net_device *from);
4559 int dev_mc_sync_multiple(struct net_device *to, struct net_device *from);
4560 void dev_mc_unsync(struct net_device *to, struct net_device *from);
4561 void dev_mc_flush(struct net_device *dev);
4562 void dev_mc_init(struct net_device *dev);
4563
4564 /**
4565 * __dev_mc_sync - Synchonize device's multicast list
4566 * @dev: device to sync
4567 * @sync: function to call if address should be added
4568 * @unsync: function to call if address should be removed
4569 *
4570 * Add newly added addresses to the interface, and release
4571 * addresses that have been deleted.
4572 */
__dev_mc_sync(struct net_device * dev,int (* sync)(struct net_device *,const unsigned char *),int (* unsync)(struct net_device *,const unsigned char *))4573 static inline int __dev_mc_sync(struct net_device *dev,
4574 int (*sync)(struct net_device *,
4575 const unsigned char *),
4576 int (*unsync)(struct net_device *,
4577 const unsigned char *))
4578 {
4579 return __hw_addr_sync_dev(&dev->mc, dev, sync, unsync);
4580 }
4581
4582 /**
4583 * __dev_mc_unsync - Remove synchronized addresses from device
4584 * @dev: device to sync
4585 * @unsync: function to call if address should be removed
4586 *
4587 * Remove all addresses that were added to the device by dev_mc_sync().
4588 */
__dev_mc_unsync(struct net_device * dev,int (* unsync)(struct net_device *,const unsigned char *))4589 static inline void __dev_mc_unsync(struct net_device *dev,
4590 int (*unsync)(struct net_device *,
4591 const unsigned char *))
4592 {
4593 __hw_addr_unsync_dev(&dev->mc, dev, unsync);
4594 }
4595
4596 /* Functions used for secondary unicast and multicast support */
4597 void dev_set_rx_mode(struct net_device *dev);
4598 int dev_set_promiscuity(struct net_device *dev, int inc);
4599 int dev_set_allmulti(struct net_device *dev, int inc);
4600 void netdev_state_change(struct net_device *dev);
4601 void __netdev_notify_peers(struct net_device *dev);
4602 void netdev_notify_peers(struct net_device *dev);
4603 void netdev_features_change(struct net_device *dev);
4604 /* Load a device via the kmod */
4605 void dev_load(struct net *net, const char *name);
4606 struct rtnl_link_stats64 *dev_get_stats(struct net_device *dev,
4607 struct rtnl_link_stats64 *storage);
4608 void netdev_stats_to_stats64(struct rtnl_link_stats64 *stats64,
4609 const struct net_device_stats *netdev_stats);
4610 void dev_fetch_sw_netstats(struct rtnl_link_stats64 *s,
4611 const struct pcpu_sw_netstats __percpu *netstats);
4612 void dev_get_tstats64(struct net_device *dev, struct rtnl_link_stats64 *s);
4613
4614 extern int netdev_max_backlog;
4615 extern int dev_rx_weight;
4616 extern int dev_tx_weight;
4617 extern int gro_normal_batch;
4618
4619 enum {
4620 NESTED_SYNC_IMM_BIT,
4621 NESTED_SYNC_TODO_BIT,
4622 };
4623
4624 #define __NESTED_SYNC_BIT(bit) ((u32)1 << (bit))
4625 #define __NESTED_SYNC(name) __NESTED_SYNC_BIT(NESTED_SYNC_ ## name ## _BIT)
4626
4627 #define NESTED_SYNC_IMM __NESTED_SYNC(IMM)
4628 #define NESTED_SYNC_TODO __NESTED_SYNC(TODO)
4629
4630 struct netdev_nested_priv {
4631 unsigned char flags;
4632 void *data;
4633 };
4634
4635 bool netdev_has_upper_dev(struct net_device *dev, struct net_device *upper_dev);
4636 struct net_device *netdev_upper_get_next_dev_rcu(struct net_device *dev,
4637 struct list_head **iter);
4638
4639 /* iterate through upper list, must be called under RCU read lock */
4640 #define netdev_for_each_upper_dev_rcu(dev, updev, iter) \
4641 for (iter = &(dev)->adj_list.upper, \
4642 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)); \
4643 updev; \
4644 updev = netdev_upper_get_next_dev_rcu(dev, &(iter)))
4645
4646 int netdev_walk_all_upper_dev_rcu(struct net_device *dev,
4647 int (*fn)(struct net_device *upper_dev,
4648 struct netdev_nested_priv *priv),
4649 struct netdev_nested_priv *priv);
4650
4651 bool netdev_has_upper_dev_all_rcu(struct net_device *dev,
4652 struct net_device *upper_dev);
4653
4654 bool netdev_has_any_upper_dev(struct net_device *dev);
4655
4656 void *netdev_lower_get_next_private(struct net_device *dev,
4657 struct list_head **iter);
4658 void *netdev_lower_get_next_private_rcu(struct net_device *dev,
4659 struct list_head **iter);
4660
4661 #define netdev_for_each_lower_private(dev, priv, iter) \
4662 for (iter = (dev)->adj_list.lower.next, \
4663 priv = netdev_lower_get_next_private(dev, &(iter)); \
4664 priv; \
4665 priv = netdev_lower_get_next_private(dev, &(iter)))
4666
4667 #define netdev_for_each_lower_private_rcu(dev, priv, iter) \
4668 for (iter = &(dev)->adj_list.lower, \
4669 priv = netdev_lower_get_next_private_rcu(dev, &(iter)); \
4670 priv; \
4671 priv = netdev_lower_get_next_private_rcu(dev, &(iter)))
4672
4673 void *netdev_lower_get_next(struct net_device *dev,
4674 struct list_head **iter);
4675
4676 #define netdev_for_each_lower_dev(dev, ldev, iter) \
4677 for (iter = (dev)->adj_list.lower.next, \
4678 ldev = netdev_lower_get_next(dev, &(iter)); \
4679 ldev; \
4680 ldev = netdev_lower_get_next(dev, &(iter)))
4681
4682 struct net_device *netdev_next_lower_dev_rcu(struct net_device *dev,
4683 struct list_head **iter);
4684 int netdev_walk_all_lower_dev(struct net_device *dev,
4685 int (*fn)(struct net_device *lower_dev,
4686 struct netdev_nested_priv *priv),
4687 struct netdev_nested_priv *priv);
4688 int netdev_walk_all_lower_dev_rcu(struct net_device *dev,
4689 int (*fn)(struct net_device *lower_dev,
4690 struct netdev_nested_priv *priv),
4691 struct netdev_nested_priv *priv);
4692
4693 void *netdev_adjacent_get_private(struct list_head *adj_list);
4694 void *netdev_lower_get_first_private_rcu(struct net_device *dev);
4695 struct net_device *netdev_master_upper_dev_get(struct net_device *dev);
4696 struct net_device *netdev_master_upper_dev_get_rcu(struct net_device *dev);
4697 int netdev_upper_dev_link(struct net_device *dev, struct net_device *upper_dev,
4698 struct netlink_ext_ack *extack);
4699 int netdev_master_upper_dev_link(struct net_device *dev,
4700 struct net_device *upper_dev,
4701 void *upper_priv, void *upper_info,
4702 struct netlink_ext_ack *extack);
4703 void netdev_upper_dev_unlink(struct net_device *dev,
4704 struct net_device *upper_dev);
4705 int netdev_adjacent_change_prepare(struct net_device *old_dev,
4706 struct net_device *new_dev,
4707 struct net_device *dev,
4708 struct netlink_ext_ack *extack);
4709 void netdev_adjacent_change_commit(struct net_device *old_dev,
4710 struct net_device *new_dev,
4711 struct net_device *dev);
4712 void netdev_adjacent_change_abort(struct net_device *old_dev,
4713 struct net_device *new_dev,
4714 struct net_device *dev);
4715 void netdev_adjacent_rename_links(struct net_device *dev, char *oldname);
4716 void *netdev_lower_dev_get_private(struct net_device *dev,
4717 struct net_device *lower_dev);
4718 void netdev_lower_state_changed(struct net_device *lower_dev,
4719 void *lower_state_info);
4720
4721 /* RSS keys are 40 or 52 bytes long */
4722 #define NETDEV_RSS_KEY_LEN 52
4723 extern u8 netdev_rss_key[NETDEV_RSS_KEY_LEN] __read_mostly;
4724 void netdev_rss_key_fill(void *buffer, size_t len);
4725
4726 int skb_checksum_help(struct sk_buff *skb);
4727 int skb_crc32c_csum_help(struct sk_buff *skb);
4728 int skb_csum_hwoffload_help(struct sk_buff *skb,
4729 const netdev_features_t features);
4730
4731 struct sk_buff *__skb_gso_segment(struct sk_buff *skb,
4732 netdev_features_t features, bool tx_path);
4733 struct sk_buff *skb_eth_gso_segment(struct sk_buff *skb,
4734 netdev_features_t features, __be16 type);
4735 struct sk_buff *skb_mac_gso_segment(struct sk_buff *skb,
4736 netdev_features_t features);
4737
4738 struct netdev_bonding_info {
4739 ifslave slave;
4740 ifbond master;
4741 };
4742
4743 struct netdev_notifier_bonding_info {
4744 struct netdev_notifier_info info; /* must be first */
4745 struct netdev_bonding_info bonding_info;
4746 };
4747
4748 void netdev_bonding_info_change(struct net_device *dev,
4749 struct netdev_bonding_info *bonding_info);
4750
4751 #if IS_ENABLED(CONFIG_ETHTOOL_NETLINK)
4752 void ethtool_notify(struct net_device *dev, unsigned int cmd, const void *data);
4753 #else
ethtool_notify(struct net_device * dev,unsigned int cmd,const void * data)4754 static inline void ethtool_notify(struct net_device *dev, unsigned int cmd,
4755 const void *data)
4756 {
4757 }
4758 #endif
4759
4760 static inline
skb_gso_segment(struct sk_buff * skb,netdev_features_t features)4761 struct sk_buff *skb_gso_segment(struct sk_buff *skb, netdev_features_t features)
4762 {
4763 return __skb_gso_segment(skb, features, true);
4764 }
4765 __be16 skb_network_protocol(struct sk_buff *skb, int *depth);
4766
can_checksum_protocol(netdev_features_t features,__be16 protocol)4767 static inline bool can_checksum_protocol(netdev_features_t features,
4768 __be16 protocol)
4769 {
4770 if (protocol == htons(ETH_P_FCOE))
4771 return !!(features & NETIF_F_FCOE_CRC);
4772
4773 /* Assume this is an IP checksum (not SCTP CRC) */
4774
4775 if (features & NETIF_F_HW_CSUM) {
4776 /* Can checksum everything */
4777 return true;
4778 }
4779
4780 switch (protocol) {
4781 case htons(ETH_P_IP):
4782 return !!(features & NETIF_F_IP_CSUM);
4783 case htons(ETH_P_IPV6):
4784 return !!(features & NETIF_F_IPV6_CSUM);
4785 default:
4786 return false;
4787 }
4788 }
4789
4790 #ifdef CONFIG_BUG
4791 void netdev_rx_csum_fault(struct net_device *dev, struct sk_buff *skb);
4792 #else
netdev_rx_csum_fault(struct net_device * dev,struct sk_buff * skb)4793 static inline void netdev_rx_csum_fault(struct net_device *dev,
4794 struct sk_buff *skb)
4795 {
4796 }
4797 #endif
4798 /* rx skb timestamps */
4799 void net_enable_timestamp(void);
4800 void net_disable_timestamp(void);
4801
netdev_get_tstamp(struct net_device * dev,const struct skb_shared_hwtstamps * hwtstamps,bool cycles)4802 static inline ktime_t netdev_get_tstamp(struct net_device *dev,
4803 const struct skb_shared_hwtstamps *hwtstamps,
4804 bool cycles)
4805 {
4806 const struct net_device_ops *ops = dev->netdev_ops;
4807
4808 if (ops->ndo_get_tstamp)
4809 return ops->ndo_get_tstamp(dev, hwtstamps, cycles);
4810
4811 return hwtstamps->hwtstamp;
4812 }
4813
__netdev_start_xmit(const struct net_device_ops * ops,struct sk_buff * skb,struct net_device * dev,bool more)4814 static inline netdev_tx_t __netdev_start_xmit(const struct net_device_ops *ops,
4815 struct sk_buff *skb, struct net_device *dev,
4816 bool more)
4817 {
4818 __this_cpu_write(softnet_data.xmit.more, more);
4819 return ops->ndo_start_xmit(skb, dev);
4820 }
4821
netdev_xmit_more(void)4822 static inline bool netdev_xmit_more(void)
4823 {
4824 return __this_cpu_read(softnet_data.xmit.more);
4825 }
4826
netdev_start_xmit(struct sk_buff * skb,struct net_device * dev,struct netdev_queue * txq,bool more)4827 static inline netdev_tx_t netdev_start_xmit(struct sk_buff *skb, struct net_device *dev,
4828 struct netdev_queue *txq, bool more)
4829 {
4830 const struct net_device_ops *ops = dev->netdev_ops;
4831 netdev_tx_t rc;
4832
4833 rc = __netdev_start_xmit(ops, skb, dev, more);
4834 if (rc == NETDEV_TX_OK)
4835 txq_trans_update(txq);
4836
4837 return rc;
4838 }
4839
4840 int netdev_class_create_file_ns(const struct class_attribute *class_attr,
4841 const void *ns);
4842 void netdev_class_remove_file_ns(const struct class_attribute *class_attr,
4843 const void *ns);
4844
4845 extern const struct kobj_ns_type_operations net_ns_type_operations;
4846
4847 const char *netdev_drivername(const struct net_device *dev);
4848
netdev_intersect_features(netdev_features_t f1,netdev_features_t f2)4849 static inline netdev_features_t netdev_intersect_features(netdev_features_t f1,
4850 netdev_features_t f2)
4851 {
4852 if ((f1 ^ f2) & NETIF_F_HW_CSUM) {
4853 if (f1 & NETIF_F_HW_CSUM)
4854 f1 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4855 else
4856 f2 |= (NETIF_F_IP_CSUM|NETIF_F_IPV6_CSUM);
4857 }
4858
4859 return f1 & f2;
4860 }
4861
netdev_get_wanted_features(struct net_device * dev)4862 static inline netdev_features_t netdev_get_wanted_features(
4863 struct net_device *dev)
4864 {
4865 return (dev->features & ~dev->hw_features) | dev->wanted_features;
4866 }
4867 netdev_features_t netdev_increment_features(netdev_features_t all,
4868 netdev_features_t one, netdev_features_t mask);
4869
4870 /* Allow TSO being used on stacked device :
4871 * Performing the GSO segmentation before last device
4872 * is a performance improvement.
4873 */
netdev_add_tso_features(netdev_features_t features,netdev_features_t mask)4874 static inline netdev_features_t netdev_add_tso_features(netdev_features_t features,
4875 netdev_features_t mask)
4876 {
4877 return netdev_increment_features(features, NETIF_F_ALL_TSO, mask);
4878 }
4879
4880 int __netdev_update_features(struct net_device *dev);
4881 void netdev_update_features(struct net_device *dev);
4882 void netdev_change_features(struct net_device *dev);
4883
4884 void netif_stacked_transfer_operstate(const struct net_device *rootdev,
4885 struct net_device *dev);
4886
4887 netdev_features_t passthru_features_check(struct sk_buff *skb,
4888 struct net_device *dev,
4889 netdev_features_t features);
4890 netdev_features_t netif_skb_features(struct sk_buff *skb);
4891
net_gso_ok(netdev_features_t features,int gso_type)4892 static inline bool net_gso_ok(netdev_features_t features, int gso_type)
4893 {
4894 netdev_features_t feature = (netdev_features_t)gso_type << NETIF_F_GSO_SHIFT;
4895
4896 /* check flags correspondence */
4897 BUILD_BUG_ON(SKB_GSO_TCPV4 != (NETIF_F_TSO >> NETIF_F_GSO_SHIFT));
4898 BUILD_BUG_ON(SKB_GSO_DODGY != (NETIF_F_GSO_ROBUST >> NETIF_F_GSO_SHIFT));
4899 BUILD_BUG_ON(SKB_GSO_TCP_ECN != (NETIF_F_TSO_ECN >> NETIF_F_GSO_SHIFT));
4900 BUILD_BUG_ON(SKB_GSO_TCP_FIXEDID != (NETIF_F_TSO_MANGLEID >> NETIF_F_GSO_SHIFT));
4901 BUILD_BUG_ON(SKB_GSO_TCPV6 != (NETIF_F_TSO6 >> NETIF_F_GSO_SHIFT));
4902 BUILD_BUG_ON(SKB_GSO_FCOE != (NETIF_F_FSO >> NETIF_F_GSO_SHIFT));
4903 BUILD_BUG_ON(SKB_GSO_GRE != (NETIF_F_GSO_GRE >> NETIF_F_GSO_SHIFT));
4904 BUILD_BUG_ON(SKB_GSO_GRE_CSUM != (NETIF_F_GSO_GRE_CSUM >> NETIF_F_GSO_SHIFT));
4905 BUILD_BUG_ON(SKB_GSO_IPXIP4 != (NETIF_F_GSO_IPXIP4 >> NETIF_F_GSO_SHIFT));
4906 BUILD_BUG_ON(SKB_GSO_IPXIP6 != (NETIF_F_GSO_IPXIP6 >> NETIF_F_GSO_SHIFT));
4907 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL != (NETIF_F_GSO_UDP_TUNNEL >> NETIF_F_GSO_SHIFT));
4908 BUILD_BUG_ON(SKB_GSO_UDP_TUNNEL_CSUM != (NETIF_F_GSO_UDP_TUNNEL_CSUM >> NETIF_F_GSO_SHIFT));
4909 BUILD_BUG_ON(SKB_GSO_PARTIAL != (NETIF_F_GSO_PARTIAL >> NETIF_F_GSO_SHIFT));
4910 BUILD_BUG_ON(SKB_GSO_TUNNEL_REMCSUM != (NETIF_F_GSO_TUNNEL_REMCSUM >> NETIF_F_GSO_SHIFT));
4911 BUILD_BUG_ON(SKB_GSO_SCTP != (NETIF_F_GSO_SCTP >> NETIF_F_GSO_SHIFT));
4912 BUILD_BUG_ON(SKB_GSO_ESP != (NETIF_F_GSO_ESP >> NETIF_F_GSO_SHIFT));
4913 BUILD_BUG_ON(SKB_GSO_UDP != (NETIF_F_GSO_UDP >> NETIF_F_GSO_SHIFT));
4914 BUILD_BUG_ON(SKB_GSO_UDP_L4 != (NETIF_F_GSO_UDP_L4 >> NETIF_F_GSO_SHIFT));
4915 BUILD_BUG_ON(SKB_GSO_FRAGLIST != (NETIF_F_GSO_FRAGLIST >> NETIF_F_GSO_SHIFT));
4916
4917 return (features & feature) == feature;
4918 }
4919
skb_gso_ok(struct sk_buff * skb,netdev_features_t features)4920 static inline bool skb_gso_ok(struct sk_buff *skb, netdev_features_t features)
4921 {
4922 return net_gso_ok(features, skb_shinfo(skb)->gso_type) &&
4923 (!skb_has_frag_list(skb) || (features & NETIF_F_FRAGLIST));
4924 }
4925
netif_needs_gso(struct sk_buff * skb,netdev_features_t features)4926 static inline bool netif_needs_gso(struct sk_buff *skb,
4927 netdev_features_t features)
4928 {
4929 return skb_is_gso(skb) && (!skb_gso_ok(skb, features) ||
4930 unlikely((skb->ip_summed != CHECKSUM_PARTIAL) &&
4931 (skb->ip_summed != CHECKSUM_UNNECESSARY)));
4932 }
4933
4934 void netif_set_tso_max_size(struct net_device *dev, unsigned int size);
4935 void netif_set_tso_max_segs(struct net_device *dev, unsigned int segs);
4936 void netif_inherit_tso_max(struct net_device *to,
4937 const struct net_device *from);
4938
skb_gso_error_unwind(struct sk_buff * skb,__be16 protocol,int pulled_hlen,u16 mac_offset,int mac_len)4939 static inline void skb_gso_error_unwind(struct sk_buff *skb, __be16 protocol,
4940 int pulled_hlen, u16 mac_offset,
4941 int mac_len)
4942 {
4943 skb->protocol = protocol;
4944 skb->encapsulation = 1;
4945 skb_push(skb, pulled_hlen);
4946 skb_reset_transport_header(skb);
4947 skb->mac_header = mac_offset;
4948 skb->network_header = skb->mac_header + mac_len;
4949 skb->mac_len = mac_len;
4950 }
4951
netif_is_macsec(const struct net_device * dev)4952 static inline bool netif_is_macsec(const struct net_device *dev)
4953 {
4954 return dev->priv_flags & IFF_MACSEC;
4955 }
4956
netif_is_macvlan(const struct net_device * dev)4957 static inline bool netif_is_macvlan(const struct net_device *dev)
4958 {
4959 return dev->priv_flags & IFF_MACVLAN;
4960 }
4961
netif_is_macvlan_port(const struct net_device * dev)4962 static inline bool netif_is_macvlan_port(const struct net_device *dev)
4963 {
4964 return dev->priv_flags & IFF_MACVLAN_PORT;
4965 }
4966
netif_is_bond_master(const struct net_device * dev)4967 static inline bool netif_is_bond_master(const struct net_device *dev)
4968 {
4969 return dev->flags & IFF_MASTER && dev->priv_flags & IFF_BONDING;
4970 }
4971
netif_is_bond_slave(const struct net_device * dev)4972 static inline bool netif_is_bond_slave(const struct net_device *dev)
4973 {
4974 return dev->flags & IFF_SLAVE && dev->priv_flags & IFF_BONDING;
4975 }
4976
netif_supports_nofcs(struct net_device * dev)4977 static inline bool netif_supports_nofcs(struct net_device *dev)
4978 {
4979 return dev->priv_flags & IFF_SUPP_NOFCS;
4980 }
4981
netif_has_l3_rx_handler(const struct net_device * dev)4982 static inline bool netif_has_l3_rx_handler(const struct net_device *dev)
4983 {
4984 return dev->priv_flags & IFF_L3MDEV_RX_HANDLER;
4985 }
4986
netif_is_l3_master(const struct net_device * dev)4987 static inline bool netif_is_l3_master(const struct net_device *dev)
4988 {
4989 return dev->priv_flags & IFF_L3MDEV_MASTER;
4990 }
4991
netif_is_l3_slave(const struct net_device * dev)4992 static inline bool netif_is_l3_slave(const struct net_device *dev)
4993 {
4994 return dev->priv_flags & IFF_L3MDEV_SLAVE;
4995 }
4996
netif_is_bridge_master(const struct net_device * dev)4997 static inline bool netif_is_bridge_master(const struct net_device *dev)
4998 {
4999 return dev->priv_flags & IFF_EBRIDGE;
5000 }
5001
netif_is_bridge_port(const struct net_device * dev)5002 static inline bool netif_is_bridge_port(const struct net_device *dev)
5003 {
5004 return dev->priv_flags & IFF_BRIDGE_PORT;
5005 }
5006
netif_is_ovs_master(const struct net_device * dev)5007 static inline bool netif_is_ovs_master(const struct net_device *dev)
5008 {
5009 return dev->priv_flags & IFF_OPENVSWITCH;
5010 }
5011
netif_is_ovs_port(const struct net_device * dev)5012 static inline bool netif_is_ovs_port(const struct net_device *dev)
5013 {
5014 return dev->priv_flags & IFF_OVS_DATAPATH;
5015 }
5016
netif_is_any_bridge_port(const struct net_device * dev)5017 static inline bool netif_is_any_bridge_port(const struct net_device *dev)
5018 {
5019 return netif_is_bridge_port(dev) || netif_is_ovs_port(dev);
5020 }
5021
netif_is_team_master(const struct net_device * dev)5022 static inline bool netif_is_team_master(const struct net_device *dev)
5023 {
5024 return dev->priv_flags & IFF_TEAM;
5025 }
5026
netif_is_team_port(const struct net_device * dev)5027 static inline bool netif_is_team_port(const struct net_device *dev)
5028 {
5029 return dev->priv_flags & IFF_TEAM_PORT;
5030 }
5031
netif_is_lag_master(const struct net_device * dev)5032 static inline bool netif_is_lag_master(const struct net_device *dev)
5033 {
5034 return netif_is_bond_master(dev) || netif_is_team_master(dev);
5035 }
5036
netif_is_lag_port(const struct net_device * dev)5037 static inline bool netif_is_lag_port(const struct net_device *dev)
5038 {
5039 return netif_is_bond_slave(dev) || netif_is_team_port(dev);
5040 }
5041
netif_is_rxfh_configured(const struct net_device * dev)5042 static inline bool netif_is_rxfh_configured(const struct net_device *dev)
5043 {
5044 return dev->priv_flags & IFF_RXFH_CONFIGURED;
5045 }
5046
netif_is_failover(const struct net_device * dev)5047 static inline bool netif_is_failover(const struct net_device *dev)
5048 {
5049 return dev->priv_flags & IFF_FAILOVER;
5050 }
5051
netif_is_failover_slave(const struct net_device * dev)5052 static inline bool netif_is_failover_slave(const struct net_device *dev)
5053 {
5054 return dev->priv_flags & IFF_FAILOVER_SLAVE;
5055 }
5056
5057 /* This device needs to keep skb dst for qdisc enqueue or ndo_start_xmit() */
netif_keep_dst(struct net_device * dev)5058 static inline void netif_keep_dst(struct net_device *dev)
5059 {
5060 dev->priv_flags &= ~(IFF_XMIT_DST_RELEASE | IFF_XMIT_DST_RELEASE_PERM);
5061 }
5062
5063 /* return true if dev can't cope with mtu frames that need vlan tag insertion */
netif_reduces_vlan_mtu(struct net_device * dev)5064 static inline bool netif_reduces_vlan_mtu(struct net_device *dev)
5065 {
5066 /* TODO: reserve and use an additional IFF bit, if we get more users */
5067 return netif_is_macsec(dev);
5068 }
5069
5070 extern struct pernet_operations __net_initdata loopback_net_ops;
5071
5072 /* Logging, debugging and troubleshooting/diagnostic helpers. */
5073
5074 /* netdev_printk helpers, similar to dev_printk */
5075
netdev_name(const struct net_device * dev)5076 static inline const char *netdev_name(const struct net_device *dev)
5077 {
5078 if (!dev->name[0] || strchr(dev->name, '%'))
5079 return "(unnamed net_device)";
5080 return dev->name;
5081 }
5082
netdev_unregistering(const struct net_device * dev)5083 static inline bool netdev_unregistering(const struct net_device *dev)
5084 {
5085 return dev->reg_state == NETREG_UNREGISTERING;
5086 }
5087
netdev_reg_state(const struct net_device * dev)5088 static inline const char *netdev_reg_state(const struct net_device *dev)
5089 {
5090 switch (dev->reg_state) {
5091 case NETREG_UNINITIALIZED: return " (uninitialized)";
5092 case NETREG_REGISTERED: return "";
5093 case NETREG_UNREGISTERING: return " (unregistering)";
5094 case NETREG_UNREGISTERED: return " (unregistered)";
5095 case NETREG_RELEASED: return " (released)";
5096 case NETREG_DUMMY: return " (dummy)";
5097 }
5098
5099 WARN_ONCE(1, "%s: unknown reg_state %d\n", dev->name, dev->reg_state);
5100 return " (unknown)";
5101 }
5102
5103 #define MODULE_ALIAS_NETDEV(device) \
5104 MODULE_ALIAS("netdev-" device)
5105
5106 /*
5107 * netdev_WARN() acts like dev_printk(), but with the key difference
5108 * of using a WARN/WARN_ON to get the message out, including the
5109 * file/line information and a backtrace.
5110 */
5111 #define netdev_WARN(dev, format, args...) \
5112 WARN(1, "netdevice: %s%s: " format, netdev_name(dev), \
5113 netdev_reg_state(dev), ##args)
5114
5115 #define netdev_WARN_ONCE(dev, format, args...) \
5116 WARN_ONCE(1, "netdevice: %s%s: " format, netdev_name(dev), \
5117 netdev_reg_state(dev), ##args)
5118
5119 /*
5120 * The list of packet types we will receive (as opposed to discard)
5121 * and the routines to invoke.
5122 *
5123 * Why 16. Because with 16 the only overlap we get on a hash of the
5124 * low nibble of the protocol value is RARP/SNAP/X.25.
5125 *
5126 * 0800 IP
5127 * 0001 802.3
5128 * 0002 AX.25
5129 * 0004 802.2
5130 * 8035 RARP
5131 * 0005 SNAP
5132 * 0805 X.25
5133 * 0806 ARP
5134 * 8137 IPX
5135 * 0009 Localtalk
5136 * 86DD IPv6
5137 */
5138 #define PTYPE_HASH_SIZE (16)
5139 #define PTYPE_HASH_MASK (PTYPE_HASH_SIZE - 1)
5140
5141 extern struct list_head ptype_all __read_mostly;
5142 extern struct list_head ptype_base[PTYPE_HASH_SIZE] __read_mostly;
5143
5144 extern struct net_device *blackhole_netdev;
5145
5146 #endif /* _LINUX_NETDEVICE_H */
5147