1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright(c) 2013-2015 Intel Corporation. All rights reserved.
4 */
5 #include <linux/scatterlist.h>
6 #include <linux/memregion.h>
7 #include <linux/highmem.h>
8 #include <linux/sched.h>
9 #include <linux/slab.h>
10 #include <linux/hash.h>
11 #include <linux/sort.h>
12 #include <linux/io.h>
13 #include <linux/nd.h>
14 #include "nd-core.h"
15 #include "nd.h"
16
17 /*
18 * For readq() and writeq() on 32-bit builds, the hi-lo, lo-hi order is
19 * irrelevant.
20 */
21 #include <linux/io-64-nonatomic-hi-lo.h>
22
23 static DEFINE_PER_CPU(int, flush_idx);
24
nvdimm_map_flush(struct device * dev,struct nvdimm * nvdimm,int dimm,struct nd_region_data * ndrd)25 static int nvdimm_map_flush(struct device *dev, struct nvdimm *nvdimm, int dimm,
26 struct nd_region_data *ndrd)
27 {
28 int i, j;
29
30 dev_dbg(dev, "%s: map %d flush address%s\n", nvdimm_name(nvdimm),
31 nvdimm->num_flush, nvdimm->num_flush == 1 ? "" : "es");
32 for (i = 0; i < (1 << ndrd->hints_shift); i++) {
33 struct resource *res = &nvdimm->flush_wpq[i];
34 unsigned long pfn = PHYS_PFN(res->start);
35 void __iomem *flush_page;
36
37 /* check if flush hints share a page */
38 for (j = 0; j < i; j++) {
39 struct resource *res_j = &nvdimm->flush_wpq[j];
40 unsigned long pfn_j = PHYS_PFN(res_j->start);
41
42 if (pfn == pfn_j)
43 break;
44 }
45
46 if (j < i)
47 flush_page = (void __iomem *) ((unsigned long)
48 ndrd_get_flush_wpq(ndrd, dimm, j)
49 & PAGE_MASK);
50 else
51 flush_page = devm_nvdimm_ioremap(dev,
52 PFN_PHYS(pfn), PAGE_SIZE);
53 if (!flush_page)
54 return -ENXIO;
55 ndrd_set_flush_wpq(ndrd, dimm, i, flush_page
56 + (res->start & ~PAGE_MASK));
57 }
58
59 return 0;
60 }
61
nd_region_activate(struct nd_region * nd_region)62 int nd_region_activate(struct nd_region *nd_region)
63 {
64 int i, j, num_flush = 0;
65 struct nd_region_data *ndrd;
66 struct device *dev = &nd_region->dev;
67 size_t flush_data_size = sizeof(void *);
68
69 nvdimm_bus_lock(&nd_region->dev);
70 for (i = 0; i < nd_region->ndr_mappings; i++) {
71 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
72 struct nvdimm *nvdimm = nd_mapping->nvdimm;
73
74 if (test_bit(NDD_SECURITY_OVERWRITE, &nvdimm->flags)) {
75 nvdimm_bus_unlock(&nd_region->dev);
76 return -EBUSY;
77 }
78
79 /* at least one null hint slot per-dimm for the "no-hint" case */
80 flush_data_size += sizeof(void *);
81 num_flush = min_not_zero(num_flush, nvdimm->num_flush);
82 if (!nvdimm->num_flush)
83 continue;
84 flush_data_size += nvdimm->num_flush * sizeof(void *);
85 }
86 nvdimm_bus_unlock(&nd_region->dev);
87
88 ndrd = devm_kzalloc(dev, sizeof(*ndrd) + flush_data_size, GFP_KERNEL);
89 if (!ndrd)
90 return -ENOMEM;
91 dev_set_drvdata(dev, ndrd);
92
93 if (!num_flush)
94 return 0;
95
96 ndrd->hints_shift = ilog2(num_flush);
97 for (i = 0; i < nd_region->ndr_mappings; i++) {
98 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
99 struct nvdimm *nvdimm = nd_mapping->nvdimm;
100 int rc = nvdimm_map_flush(&nd_region->dev, nvdimm, i, ndrd);
101
102 if (rc)
103 return rc;
104 }
105
106 /*
107 * Clear out entries that are duplicates. This should prevent the
108 * extra flushings.
109 */
110 for (i = 0; i < nd_region->ndr_mappings - 1; i++) {
111 /* ignore if NULL already */
112 if (!ndrd_get_flush_wpq(ndrd, i, 0))
113 continue;
114
115 for (j = i + 1; j < nd_region->ndr_mappings; j++)
116 if (ndrd_get_flush_wpq(ndrd, i, 0) ==
117 ndrd_get_flush_wpq(ndrd, j, 0))
118 ndrd_set_flush_wpq(ndrd, j, 0, NULL);
119 }
120
121 return 0;
122 }
123
nd_region_release(struct device * dev)124 static void nd_region_release(struct device *dev)
125 {
126 struct nd_region *nd_region = to_nd_region(dev);
127 u16 i;
128
129 for (i = 0; i < nd_region->ndr_mappings; i++) {
130 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
131 struct nvdimm *nvdimm = nd_mapping->nvdimm;
132
133 put_device(&nvdimm->dev);
134 }
135 free_percpu(nd_region->lane);
136 memregion_free(nd_region->id);
137 kfree(nd_region);
138 }
139
to_nd_region(struct device * dev)140 struct nd_region *to_nd_region(struct device *dev)
141 {
142 struct nd_region *nd_region = container_of(dev, struct nd_region, dev);
143
144 WARN_ON(dev->type->release != nd_region_release);
145 return nd_region;
146 }
147 EXPORT_SYMBOL_GPL(to_nd_region);
148
nd_region_dev(struct nd_region * nd_region)149 struct device *nd_region_dev(struct nd_region *nd_region)
150 {
151 if (!nd_region)
152 return NULL;
153 return &nd_region->dev;
154 }
155 EXPORT_SYMBOL_GPL(nd_region_dev);
156
nd_region_provider_data(struct nd_region * nd_region)157 void *nd_region_provider_data(struct nd_region *nd_region)
158 {
159 return nd_region->provider_data;
160 }
161 EXPORT_SYMBOL_GPL(nd_region_provider_data);
162
163 /**
164 * nd_region_to_nstype() - region to an integer namespace type
165 * @nd_region: region-device to interrogate
166 *
167 * This is the 'nstype' attribute of a region as well, an input to the
168 * MODALIAS for namespace devices, and bit number for a nvdimm_bus to match
169 * namespace devices with namespace drivers.
170 */
nd_region_to_nstype(struct nd_region * nd_region)171 int nd_region_to_nstype(struct nd_region *nd_region)
172 {
173 if (is_memory(&nd_region->dev)) {
174 u16 i, label;
175
176 for (i = 0, label = 0; i < nd_region->ndr_mappings; i++) {
177 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
178 struct nvdimm *nvdimm = nd_mapping->nvdimm;
179
180 if (test_bit(NDD_LABELING, &nvdimm->flags))
181 label++;
182 }
183 if (label)
184 return ND_DEVICE_NAMESPACE_PMEM;
185 else
186 return ND_DEVICE_NAMESPACE_IO;
187 }
188
189 return 0;
190 }
191 EXPORT_SYMBOL(nd_region_to_nstype);
192
region_size(struct nd_region * nd_region)193 static unsigned long long region_size(struct nd_region *nd_region)
194 {
195 if (is_memory(&nd_region->dev)) {
196 return nd_region->ndr_size;
197 } else if (nd_region->ndr_mappings == 1) {
198 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
199
200 return nd_mapping->size;
201 }
202
203 return 0;
204 }
205
size_show(struct device * dev,struct device_attribute * attr,char * buf)206 static ssize_t size_show(struct device *dev,
207 struct device_attribute *attr, char *buf)
208 {
209 struct nd_region *nd_region = to_nd_region(dev);
210
211 return sprintf(buf, "%llu\n", region_size(nd_region));
212 }
213 static DEVICE_ATTR_RO(size);
214
deep_flush_show(struct device * dev,struct device_attribute * attr,char * buf)215 static ssize_t deep_flush_show(struct device *dev,
216 struct device_attribute *attr, char *buf)
217 {
218 struct nd_region *nd_region = to_nd_region(dev);
219
220 /*
221 * NOTE: in the nvdimm_has_flush() error case this attribute is
222 * not visible.
223 */
224 return sprintf(buf, "%d\n", nvdimm_has_flush(nd_region));
225 }
226
deep_flush_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)227 static ssize_t deep_flush_store(struct device *dev, struct device_attribute *attr,
228 const char *buf, size_t len)
229 {
230 bool flush;
231 int rc = strtobool(buf, &flush);
232 struct nd_region *nd_region = to_nd_region(dev);
233
234 if (rc)
235 return rc;
236 if (!flush)
237 return -EINVAL;
238 rc = nvdimm_flush(nd_region, NULL);
239 if (rc)
240 return rc;
241
242 return len;
243 }
244 static DEVICE_ATTR_RW(deep_flush);
245
mappings_show(struct device * dev,struct device_attribute * attr,char * buf)246 static ssize_t mappings_show(struct device *dev,
247 struct device_attribute *attr, char *buf)
248 {
249 struct nd_region *nd_region = to_nd_region(dev);
250
251 return sprintf(buf, "%d\n", nd_region->ndr_mappings);
252 }
253 static DEVICE_ATTR_RO(mappings);
254
nstype_show(struct device * dev,struct device_attribute * attr,char * buf)255 static ssize_t nstype_show(struct device *dev,
256 struct device_attribute *attr, char *buf)
257 {
258 struct nd_region *nd_region = to_nd_region(dev);
259
260 return sprintf(buf, "%d\n", nd_region_to_nstype(nd_region));
261 }
262 static DEVICE_ATTR_RO(nstype);
263
set_cookie_show(struct device * dev,struct device_attribute * attr,char * buf)264 static ssize_t set_cookie_show(struct device *dev,
265 struct device_attribute *attr, char *buf)
266 {
267 struct nd_region *nd_region = to_nd_region(dev);
268 struct nd_interleave_set *nd_set = nd_region->nd_set;
269 ssize_t rc = 0;
270
271 if (is_memory(dev) && nd_set)
272 /* pass, should be precluded by region_visible */;
273 else
274 return -ENXIO;
275
276 /*
277 * The cookie to show depends on which specification of the
278 * labels we are using. If there are not labels then default to
279 * the v1.1 namespace label cookie definition. To read all this
280 * data we need to wait for probing to settle.
281 */
282 device_lock(dev);
283 nvdimm_bus_lock(dev);
284 wait_nvdimm_bus_probe_idle(dev);
285 if (nd_region->ndr_mappings) {
286 struct nd_mapping *nd_mapping = &nd_region->mapping[0];
287 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
288
289 if (ndd) {
290 struct nd_namespace_index *nsindex;
291
292 nsindex = to_namespace_index(ndd, ndd->ns_current);
293 rc = sprintf(buf, "%#llx\n",
294 nd_region_interleave_set_cookie(nd_region,
295 nsindex));
296 }
297 }
298 nvdimm_bus_unlock(dev);
299 device_unlock(dev);
300
301 if (rc)
302 return rc;
303 return sprintf(buf, "%#llx\n", nd_set->cookie1);
304 }
305 static DEVICE_ATTR_RO(set_cookie);
306
nd_region_available_dpa(struct nd_region * nd_region)307 resource_size_t nd_region_available_dpa(struct nd_region *nd_region)
308 {
309 resource_size_t available;
310 int i;
311
312 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
313
314 available = 0;
315 for (i = 0; i < nd_region->ndr_mappings; i++) {
316 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
317 struct nvdimm_drvdata *ndd = to_ndd(nd_mapping);
318
319 /* if a dimm is disabled the available capacity is zero */
320 if (!ndd)
321 return 0;
322
323 available += nd_pmem_available_dpa(nd_region, nd_mapping);
324 }
325
326 return available;
327 }
328
nd_region_allocatable_dpa(struct nd_region * nd_region)329 resource_size_t nd_region_allocatable_dpa(struct nd_region *nd_region)
330 {
331 resource_size_t avail = 0;
332 int i;
333
334 WARN_ON(!is_nvdimm_bus_locked(&nd_region->dev));
335 for (i = 0; i < nd_region->ndr_mappings; i++) {
336 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
337
338 avail = min_not_zero(avail, nd_pmem_max_contiguous_dpa(
339 nd_region, nd_mapping));
340 }
341 return avail * nd_region->ndr_mappings;
342 }
343
available_size_show(struct device * dev,struct device_attribute * attr,char * buf)344 static ssize_t available_size_show(struct device *dev,
345 struct device_attribute *attr, char *buf)
346 {
347 struct nd_region *nd_region = to_nd_region(dev);
348 unsigned long long available = 0;
349
350 /*
351 * Flush in-flight updates and grab a snapshot of the available
352 * size. Of course, this value is potentially invalidated the
353 * memory nvdimm_bus_lock() is dropped, but that's userspace's
354 * problem to not race itself.
355 */
356 device_lock(dev);
357 nvdimm_bus_lock(dev);
358 wait_nvdimm_bus_probe_idle(dev);
359 available = nd_region_available_dpa(nd_region);
360 nvdimm_bus_unlock(dev);
361 device_unlock(dev);
362
363 return sprintf(buf, "%llu\n", available);
364 }
365 static DEVICE_ATTR_RO(available_size);
366
max_available_extent_show(struct device * dev,struct device_attribute * attr,char * buf)367 static ssize_t max_available_extent_show(struct device *dev,
368 struct device_attribute *attr, char *buf)
369 {
370 struct nd_region *nd_region = to_nd_region(dev);
371 unsigned long long available = 0;
372
373 device_lock(dev);
374 nvdimm_bus_lock(dev);
375 wait_nvdimm_bus_probe_idle(dev);
376 available = nd_region_allocatable_dpa(nd_region);
377 nvdimm_bus_unlock(dev);
378 device_unlock(dev);
379
380 return sprintf(buf, "%llu\n", available);
381 }
382 static DEVICE_ATTR_RO(max_available_extent);
383
init_namespaces_show(struct device * dev,struct device_attribute * attr,char * buf)384 static ssize_t init_namespaces_show(struct device *dev,
385 struct device_attribute *attr, char *buf)
386 {
387 struct nd_region_data *ndrd = dev_get_drvdata(dev);
388 ssize_t rc;
389
390 nvdimm_bus_lock(dev);
391 if (ndrd)
392 rc = sprintf(buf, "%d/%d\n", ndrd->ns_active, ndrd->ns_count);
393 else
394 rc = -ENXIO;
395 nvdimm_bus_unlock(dev);
396
397 return rc;
398 }
399 static DEVICE_ATTR_RO(init_namespaces);
400
namespace_seed_show(struct device * dev,struct device_attribute * attr,char * buf)401 static ssize_t namespace_seed_show(struct device *dev,
402 struct device_attribute *attr, char *buf)
403 {
404 struct nd_region *nd_region = to_nd_region(dev);
405 ssize_t rc;
406
407 nvdimm_bus_lock(dev);
408 if (nd_region->ns_seed)
409 rc = sprintf(buf, "%s\n", dev_name(nd_region->ns_seed));
410 else
411 rc = sprintf(buf, "\n");
412 nvdimm_bus_unlock(dev);
413 return rc;
414 }
415 static DEVICE_ATTR_RO(namespace_seed);
416
btt_seed_show(struct device * dev,struct device_attribute * attr,char * buf)417 static ssize_t btt_seed_show(struct device *dev,
418 struct device_attribute *attr, char *buf)
419 {
420 struct nd_region *nd_region = to_nd_region(dev);
421 ssize_t rc;
422
423 nvdimm_bus_lock(dev);
424 if (nd_region->btt_seed)
425 rc = sprintf(buf, "%s\n", dev_name(nd_region->btt_seed));
426 else
427 rc = sprintf(buf, "\n");
428 nvdimm_bus_unlock(dev);
429
430 return rc;
431 }
432 static DEVICE_ATTR_RO(btt_seed);
433
pfn_seed_show(struct device * dev,struct device_attribute * attr,char * buf)434 static ssize_t pfn_seed_show(struct device *dev,
435 struct device_attribute *attr, char *buf)
436 {
437 struct nd_region *nd_region = to_nd_region(dev);
438 ssize_t rc;
439
440 nvdimm_bus_lock(dev);
441 if (nd_region->pfn_seed)
442 rc = sprintf(buf, "%s\n", dev_name(nd_region->pfn_seed));
443 else
444 rc = sprintf(buf, "\n");
445 nvdimm_bus_unlock(dev);
446
447 return rc;
448 }
449 static DEVICE_ATTR_RO(pfn_seed);
450
dax_seed_show(struct device * dev,struct device_attribute * attr,char * buf)451 static ssize_t dax_seed_show(struct device *dev,
452 struct device_attribute *attr, char *buf)
453 {
454 struct nd_region *nd_region = to_nd_region(dev);
455 ssize_t rc;
456
457 nvdimm_bus_lock(dev);
458 if (nd_region->dax_seed)
459 rc = sprintf(buf, "%s\n", dev_name(nd_region->dax_seed));
460 else
461 rc = sprintf(buf, "\n");
462 nvdimm_bus_unlock(dev);
463
464 return rc;
465 }
466 static DEVICE_ATTR_RO(dax_seed);
467
read_only_show(struct device * dev,struct device_attribute * attr,char * buf)468 static ssize_t read_only_show(struct device *dev,
469 struct device_attribute *attr, char *buf)
470 {
471 struct nd_region *nd_region = to_nd_region(dev);
472
473 return sprintf(buf, "%d\n", nd_region->ro);
474 }
475
revalidate_read_only(struct device * dev,void * data)476 static int revalidate_read_only(struct device *dev, void *data)
477 {
478 nd_device_notify(dev, NVDIMM_REVALIDATE_REGION);
479 return 0;
480 }
481
read_only_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)482 static ssize_t read_only_store(struct device *dev,
483 struct device_attribute *attr, const char *buf, size_t len)
484 {
485 bool ro;
486 int rc = strtobool(buf, &ro);
487 struct nd_region *nd_region = to_nd_region(dev);
488
489 if (rc)
490 return rc;
491
492 nd_region->ro = ro;
493 device_for_each_child(dev, NULL, revalidate_read_only);
494 return len;
495 }
496 static DEVICE_ATTR_RW(read_only);
497
align_show(struct device * dev,struct device_attribute * attr,char * buf)498 static ssize_t align_show(struct device *dev,
499 struct device_attribute *attr, char *buf)
500 {
501 struct nd_region *nd_region = to_nd_region(dev);
502
503 return sprintf(buf, "%#lx\n", nd_region->align);
504 }
505
align_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t len)506 static ssize_t align_store(struct device *dev,
507 struct device_attribute *attr, const char *buf, size_t len)
508 {
509 struct nd_region *nd_region = to_nd_region(dev);
510 unsigned long val, dpa;
511 u32 remainder;
512 int rc;
513
514 rc = kstrtoul(buf, 0, &val);
515 if (rc)
516 return rc;
517
518 if (!nd_region->ndr_mappings)
519 return -ENXIO;
520
521 /*
522 * Ensure space-align is evenly divisible by the region
523 * interleave-width because the kernel typically has no facility
524 * to determine which DIMM(s), dimm-physical-addresses, would
525 * contribute to the tail capacity in system-physical-address
526 * space for the namespace.
527 */
528 dpa = div_u64_rem(val, nd_region->ndr_mappings, &remainder);
529 if (!is_power_of_2(dpa) || dpa < PAGE_SIZE
530 || val > region_size(nd_region) || remainder)
531 return -EINVAL;
532
533 /*
534 * Given that space allocation consults this value multiple
535 * times ensure it does not change for the duration of the
536 * allocation.
537 */
538 nvdimm_bus_lock(dev);
539 nd_region->align = val;
540 nvdimm_bus_unlock(dev);
541
542 return len;
543 }
544 static DEVICE_ATTR_RW(align);
545
region_badblocks_show(struct device * dev,struct device_attribute * attr,char * buf)546 static ssize_t region_badblocks_show(struct device *dev,
547 struct device_attribute *attr, char *buf)
548 {
549 struct nd_region *nd_region = to_nd_region(dev);
550 ssize_t rc;
551
552 device_lock(dev);
553 if (dev->driver)
554 rc = badblocks_show(&nd_region->bb, buf, 0);
555 else
556 rc = -ENXIO;
557 device_unlock(dev);
558
559 return rc;
560 }
561 static DEVICE_ATTR(badblocks, 0444, region_badblocks_show, NULL);
562
resource_show(struct device * dev,struct device_attribute * attr,char * buf)563 static ssize_t resource_show(struct device *dev,
564 struct device_attribute *attr, char *buf)
565 {
566 struct nd_region *nd_region = to_nd_region(dev);
567
568 return sprintf(buf, "%#llx\n", nd_region->ndr_start);
569 }
570 static DEVICE_ATTR_ADMIN_RO(resource);
571
persistence_domain_show(struct device * dev,struct device_attribute * attr,char * buf)572 static ssize_t persistence_domain_show(struct device *dev,
573 struct device_attribute *attr, char *buf)
574 {
575 struct nd_region *nd_region = to_nd_region(dev);
576
577 if (test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags))
578 return sprintf(buf, "cpu_cache\n");
579 else if (test_bit(ND_REGION_PERSIST_MEMCTRL, &nd_region->flags))
580 return sprintf(buf, "memory_controller\n");
581 else
582 return sprintf(buf, "\n");
583 }
584 static DEVICE_ATTR_RO(persistence_domain);
585
586 static struct attribute *nd_region_attributes[] = {
587 &dev_attr_size.attr,
588 &dev_attr_align.attr,
589 &dev_attr_nstype.attr,
590 &dev_attr_mappings.attr,
591 &dev_attr_btt_seed.attr,
592 &dev_attr_pfn_seed.attr,
593 &dev_attr_dax_seed.attr,
594 &dev_attr_deep_flush.attr,
595 &dev_attr_read_only.attr,
596 &dev_attr_set_cookie.attr,
597 &dev_attr_available_size.attr,
598 &dev_attr_max_available_extent.attr,
599 &dev_attr_namespace_seed.attr,
600 &dev_attr_init_namespaces.attr,
601 &dev_attr_badblocks.attr,
602 &dev_attr_resource.attr,
603 &dev_attr_persistence_domain.attr,
604 NULL,
605 };
606
region_visible(struct kobject * kobj,struct attribute * a,int n)607 static umode_t region_visible(struct kobject *kobj, struct attribute *a, int n)
608 {
609 struct device *dev = container_of(kobj, typeof(*dev), kobj);
610 struct nd_region *nd_region = to_nd_region(dev);
611 struct nd_interleave_set *nd_set = nd_region->nd_set;
612 int type = nd_region_to_nstype(nd_region);
613
614 if (!is_memory(dev) && a == &dev_attr_pfn_seed.attr)
615 return 0;
616
617 if (!is_memory(dev) && a == &dev_attr_dax_seed.attr)
618 return 0;
619
620 if (!is_memory(dev) && a == &dev_attr_badblocks.attr)
621 return 0;
622
623 if (a == &dev_attr_resource.attr && !is_memory(dev))
624 return 0;
625
626 if (a == &dev_attr_deep_flush.attr) {
627 int has_flush = nvdimm_has_flush(nd_region);
628
629 if (has_flush == 1)
630 return a->mode;
631 else if (has_flush == 0)
632 return 0444;
633 else
634 return 0;
635 }
636
637 if (a == &dev_attr_persistence_domain.attr) {
638 if ((nd_region->flags & (BIT(ND_REGION_PERSIST_CACHE)
639 | BIT(ND_REGION_PERSIST_MEMCTRL))) == 0)
640 return 0;
641 return a->mode;
642 }
643
644 if (a == &dev_attr_align.attr)
645 return a->mode;
646
647 if (a != &dev_attr_set_cookie.attr
648 && a != &dev_attr_available_size.attr)
649 return a->mode;
650
651 if (type == ND_DEVICE_NAMESPACE_PMEM &&
652 a == &dev_attr_available_size.attr)
653 return a->mode;
654 else if (is_memory(dev) && nd_set)
655 return a->mode;
656
657 return 0;
658 }
659
mappingN(struct device * dev,char * buf,int n)660 static ssize_t mappingN(struct device *dev, char *buf, int n)
661 {
662 struct nd_region *nd_region = to_nd_region(dev);
663 struct nd_mapping *nd_mapping;
664 struct nvdimm *nvdimm;
665
666 if (n >= nd_region->ndr_mappings)
667 return -ENXIO;
668 nd_mapping = &nd_region->mapping[n];
669 nvdimm = nd_mapping->nvdimm;
670
671 return sprintf(buf, "%s,%llu,%llu,%d\n", dev_name(&nvdimm->dev),
672 nd_mapping->start, nd_mapping->size,
673 nd_mapping->position);
674 }
675
676 #define REGION_MAPPING(idx) \
677 static ssize_t mapping##idx##_show(struct device *dev, \
678 struct device_attribute *attr, char *buf) \
679 { \
680 return mappingN(dev, buf, idx); \
681 } \
682 static DEVICE_ATTR_RO(mapping##idx)
683
684 /*
685 * 32 should be enough for a while, even in the presence of socket
686 * interleave a 32-way interleave set is a degenerate case.
687 */
688 REGION_MAPPING(0);
689 REGION_MAPPING(1);
690 REGION_MAPPING(2);
691 REGION_MAPPING(3);
692 REGION_MAPPING(4);
693 REGION_MAPPING(5);
694 REGION_MAPPING(6);
695 REGION_MAPPING(7);
696 REGION_MAPPING(8);
697 REGION_MAPPING(9);
698 REGION_MAPPING(10);
699 REGION_MAPPING(11);
700 REGION_MAPPING(12);
701 REGION_MAPPING(13);
702 REGION_MAPPING(14);
703 REGION_MAPPING(15);
704 REGION_MAPPING(16);
705 REGION_MAPPING(17);
706 REGION_MAPPING(18);
707 REGION_MAPPING(19);
708 REGION_MAPPING(20);
709 REGION_MAPPING(21);
710 REGION_MAPPING(22);
711 REGION_MAPPING(23);
712 REGION_MAPPING(24);
713 REGION_MAPPING(25);
714 REGION_MAPPING(26);
715 REGION_MAPPING(27);
716 REGION_MAPPING(28);
717 REGION_MAPPING(29);
718 REGION_MAPPING(30);
719 REGION_MAPPING(31);
720
mapping_visible(struct kobject * kobj,struct attribute * a,int n)721 static umode_t mapping_visible(struct kobject *kobj, struct attribute *a, int n)
722 {
723 struct device *dev = container_of(kobj, struct device, kobj);
724 struct nd_region *nd_region = to_nd_region(dev);
725
726 if (n < nd_region->ndr_mappings)
727 return a->mode;
728 return 0;
729 }
730
731 static struct attribute *mapping_attributes[] = {
732 &dev_attr_mapping0.attr,
733 &dev_attr_mapping1.attr,
734 &dev_attr_mapping2.attr,
735 &dev_attr_mapping3.attr,
736 &dev_attr_mapping4.attr,
737 &dev_attr_mapping5.attr,
738 &dev_attr_mapping6.attr,
739 &dev_attr_mapping7.attr,
740 &dev_attr_mapping8.attr,
741 &dev_attr_mapping9.attr,
742 &dev_attr_mapping10.attr,
743 &dev_attr_mapping11.attr,
744 &dev_attr_mapping12.attr,
745 &dev_attr_mapping13.attr,
746 &dev_attr_mapping14.attr,
747 &dev_attr_mapping15.attr,
748 &dev_attr_mapping16.attr,
749 &dev_attr_mapping17.attr,
750 &dev_attr_mapping18.attr,
751 &dev_attr_mapping19.attr,
752 &dev_attr_mapping20.attr,
753 &dev_attr_mapping21.attr,
754 &dev_attr_mapping22.attr,
755 &dev_attr_mapping23.attr,
756 &dev_attr_mapping24.attr,
757 &dev_attr_mapping25.attr,
758 &dev_attr_mapping26.attr,
759 &dev_attr_mapping27.attr,
760 &dev_attr_mapping28.attr,
761 &dev_attr_mapping29.attr,
762 &dev_attr_mapping30.attr,
763 &dev_attr_mapping31.attr,
764 NULL,
765 };
766
767 static const struct attribute_group nd_mapping_attribute_group = {
768 .is_visible = mapping_visible,
769 .attrs = mapping_attributes,
770 };
771
772 static const struct attribute_group nd_region_attribute_group = {
773 .attrs = nd_region_attributes,
774 .is_visible = region_visible,
775 };
776
777 static const struct attribute_group *nd_region_attribute_groups[] = {
778 &nd_device_attribute_group,
779 &nd_region_attribute_group,
780 &nd_numa_attribute_group,
781 &nd_mapping_attribute_group,
782 NULL,
783 };
784
785 static const struct device_type nd_pmem_device_type = {
786 .name = "nd_pmem",
787 .release = nd_region_release,
788 .groups = nd_region_attribute_groups,
789 };
790
791 static const struct device_type nd_volatile_device_type = {
792 .name = "nd_volatile",
793 .release = nd_region_release,
794 .groups = nd_region_attribute_groups,
795 };
796
is_nd_pmem(struct device * dev)797 bool is_nd_pmem(struct device *dev)
798 {
799 return dev ? dev->type == &nd_pmem_device_type : false;
800 }
801
is_nd_volatile(struct device * dev)802 bool is_nd_volatile(struct device *dev)
803 {
804 return dev ? dev->type == &nd_volatile_device_type : false;
805 }
806
nd_region_interleave_set_cookie(struct nd_region * nd_region,struct nd_namespace_index * nsindex)807 u64 nd_region_interleave_set_cookie(struct nd_region *nd_region,
808 struct nd_namespace_index *nsindex)
809 {
810 struct nd_interleave_set *nd_set = nd_region->nd_set;
811
812 if (!nd_set)
813 return 0;
814
815 if (nsindex && __le16_to_cpu(nsindex->major) == 1
816 && __le16_to_cpu(nsindex->minor) == 1)
817 return nd_set->cookie1;
818 return nd_set->cookie2;
819 }
820
nd_region_interleave_set_altcookie(struct nd_region * nd_region)821 u64 nd_region_interleave_set_altcookie(struct nd_region *nd_region)
822 {
823 struct nd_interleave_set *nd_set = nd_region->nd_set;
824
825 if (nd_set)
826 return nd_set->altcookie;
827 return 0;
828 }
829
nd_mapping_free_labels(struct nd_mapping * nd_mapping)830 void nd_mapping_free_labels(struct nd_mapping *nd_mapping)
831 {
832 struct nd_label_ent *label_ent, *e;
833
834 lockdep_assert_held(&nd_mapping->lock);
835 list_for_each_entry_safe(label_ent, e, &nd_mapping->labels, list) {
836 list_del(&label_ent->list);
837 kfree(label_ent);
838 }
839 }
840
841 /*
842 * When a namespace is activated create new seeds for the next
843 * namespace, or namespace-personality to be configured.
844 */
nd_region_advance_seeds(struct nd_region * nd_region,struct device * dev)845 void nd_region_advance_seeds(struct nd_region *nd_region, struct device *dev)
846 {
847 nvdimm_bus_lock(dev);
848 if (nd_region->ns_seed == dev) {
849 nd_region_create_ns_seed(nd_region);
850 } else if (is_nd_btt(dev)) {
851 struct nd_btt *nd_btt = to_nd_btt(dev);
852
853 if (nd_region->btt_seed == dev)
854 nd_region_create_btt_seed(nd_region);
855 if (nd_region->ns_seed == &nd_btt->ndns->dev)
856 nd_region_create_ns_seed(nd_region);
857 } else if (is_nd_pfn(dev)) {
858 struct nd_pfn *nd_pfn = to_nd_pfn(dev);
859
860 if (nd_region->pfn_seed == dev)
861 nd_region_create_pfn_seed(nd_region);
862 if (nd_region->ns_seed == &nd_pfn->ndns->dev)
863 nd_region_create_ns_seed(nd_region);
864 } else if (is_nd_dax(dev)) {
865 struct nd_dax *nd_dax = to_nd_dax(dev);
866
867 if (nd_region->dax_seed == dev)
868 nd_region_create_dax_seed(nd_region);
869 if (nd_region->ns_seed == &nd_dax->nd_pfn.ndns->dev)
870 nd_region_create_ns_seed(nd_region);
871 }
872 nvdimm_bus_unlock(dev);
873 }
874
875 /**
876 * nd_region_acquire_lane - allocate and lock a lane
877 * @nd_region: region id and number of lanes possible
878 *
879 * A lane correlates to a BLK-data-window and/or a log slot in the BTT.
880 * We optimize for the common case where there are 256 lanes, one
881 * per-cpu. For larger systems we need to lock to share lanes. For now
882 * this implementation assumes the cost of maintaining an allocator for
883 * free lanes is on the order of the lock hold time, so it implements a
884 * static lane = cpu % num_lanes mapping.
885 *
886 * In the case of a BTT instance on top of a BLK namespace a lane may be
887 * acquired recursively. We lock on the first instance.
888 *
889 * In the case of a BTT instance on top of PMEM, we only acquire a lane
890 * for the BTT metadata updates.
891 */
nd_region_acquire_lane(struct nd_region * nd_region)892 unsigned int nd_region_acquire_lane(struct nd_region *nd_region)
893 {
894 unsigned int cpu, lane;
895
896 cpu = get_cpu();
897 if (nd_region->num_lanes < nr_cpu_ids) {
898 struct nd_percpu_lane *ndl_lock, *ndl_count;
899
900 lane = cpu % nd_region->num_lanes;
901 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
902 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
903 if (ndl_count->count++ == 0)
904 spin_lock(&ndl_lock->lock);
905 } else
906 lane = cpu;
907
908 return lane;
909 }
910 EXPORT_SYMBOL(nd_region_acquire_lane);
911
nd_region_release_lane(struct nd_region * nd_region,unsigned int lane)912 void nd_region_release_lane(struct nd_region *nd_region, unsigned int lane)
913 {
914 if (nd_region->num_lanes < nr_cpu_ids) {
915 unsigned int cpu = get_cpu();
916 struct nd_percpu_lane *ndl_lock, *ndl_count;
917
918 ndl_count = per_cpu_ptr(nd_region->lane, cpu);
919 ndl_lock = per_cpu_ptr(nd_region->lane, lane);
920 if (--ndl_count->count == 0)
921 spin_unlock(&ndl_lock->lock);
922 put_cpu();
923 }
924 put_cpu();
925 }
926 EXPORT_SYMBOL(nd_region_release_lane);
927
928 /*
929 * PowerPC requires this alignment for memremap_pages(). All other archs
930 * should be ok with SUBSECTION_SIZE (see memremap_compat_align()).
931 */
932 #define MEMREMAP_COMPAT_ALIGN_MAX SZ_16M
933
default_align(struct nd_region * nd_region)934 static unsigned long default_align(struct nd_region *nd_region)
935 {
936 unsigned long align;
937 u32 remainder;
938 int mappings;
939
940 align = MEMREMAP_COMPAT_ALIGN_MAX;
941 if (nd_region->ndr_size < MEMREMAP_COMPAT_ALIGN_MAX)
942 align = PAGE_SIZE;
943
944 mappings = max_t(u16, 1, nd_region->ndr_mappings);
945 div_u64_rem(align, mappings, &remainder);
946 if (remainder)
947 align *= mappings;
948
949 return align;
950 }
951
952 static struct lock_class_key nvdimm_region_key;
953
nd_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc,const struct device_type * dev_type,const char * caller)954 static struct nd_region *nd_region_create(struct nvdimm_bus *nvdimm_bus,
955 struct nd_region_desc *ndr_desc,
956 const struct device_type *dev_type, const char *caller)
957 {
958 struct nd_region *nd_region;
959 struct device *dev;
960 unsigned int i;
961 int ro = 0;
962
963 for (i = 0; i < ndr_desc->num_mappings; i++) {
964 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
965 struct nvdimm *nvdimm = mapping->nvdimm;
966
967 if ((mapping->start | mapping->size) % PAGE_SIZE) {
968 dev_err(&nvdimm_bus->dev,
969 "%s: %s mapping%d is not %ld aligned\n",
970 caller, dev_name(&nvdimm->dev), i, PAGE_SIZE);
971 return NULL;
972 }
973
974 if (test_bit(NDD_UNARMED, &nvdimm->flags))
975 ro = 1;
976
977 }
978
979 nd_region =
980 kzalloc(struct_size(nd_region, mapping, ndr_desc->num_mappings),
981 GFP_KERNEL);
982
983 if (!nd_region)
984 return NULL;
985 nd_region->id = memregion_alloc(GFP_KERNEL);
986 if (nd_region->id < 0)
987 goto err_id;
988
989 nd_region->lane = alloc_percpu(struct nd_percpu_lane);
990 if (!nd_region->lane)
991 goto err_percpu;
992
993 for (i = 0; i < nr_cpu_ids; i++) {
994 struct nd_percpu_lane *ndl;
995
996 ndl = per_cpu_ptr(nd_region->lane, i);
997 spin_lock_init(&ndl->lock);
998 ndl->count = 0;
999 }
1000
1001 for (i = 0; i < ndr_desc->num_mappings; i++) {
1002 struct nd_mapping_desc *mapping = &ndr_desc->mapping[i];
1003 struct nvdimm *nvdimm = mapping->nvdimm;
1004
1005 nd_region->mapping[i].nvdimm = nvdimm;
1006 nd_region->mapping[i].start = mapping->start;
1007 nd_region->mapping[i].size = mapping->size;
1008 nd_region->mapping[i].position = mapping->position;
1009 INIT_LIST_HEAD(&nd_region->mapping[i].labels);
1010 mutex_init(&nd_region->mapping[i].lock);
1011
1012 get_device(&nvdimm->dev);
1013 }
1014 nd_region->ndr_mappings = ndr_desc->num_mappings;
1015 nd_region->provider_data = ndr_desc->provider_data;
1016 nd_region->nd_set = ndr_desc->nd_set;
1017 nd_region->num_lanes = ndr_desc->num_lanes;
1018 nd_region->flags = ndr_desc->flags;
1019 nd_region->ro = ro;
1020 nd_region->numa_node = ndr_desc->numa_node;
1021 nd_region->target_node = ndr_desc->target_node;
1022 ida_init(&nd_region->ns_ida);
1023 ida_init(&nd_region->btt_ida);
1024 ida_init(&nd_region->pfn_ida);
1025 ida_init(&nd_region->dax_ida);
1026 dev = &nd_region->dev;
1027 dev_set_name(dev, "region%d", nd_region->id);
1028 dev->parent = &nvdimm_bus->dev;
1029 dev->type = dev_type;
1030 dev->groups = ndr_desc->attr_groups;
1031 dev->of_node = ndr_desc->of_node;
1032 nd_region->ndr_size = resource_size(ndr_desc->res);
1033 nd_region->ndr_start = ndr_desc->res->start;
1034 nd_region->align = default_align(nd_region);
1035 if (ndr_desc->flush)
1036 nd_region->flush = ndr_desc->flush;
1037 else
1038 nd_region->flush = NULL;
1039
1040 device_initialize(dev);
1041 lockdep_set_class(&dev->mutex, &nvdimm_region_key);
1042 nd_device_register(dev);
1043
1044 return nd_region;
1045
1046 err_percpu:
1047 memregion_free(nd_region->id);
1048 err_id:
1049 kfree(nd_region);
1050 return NULL;
1051 }
1052
nvdimm_pmem_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc)1053 struct nd_region *nvdimm_pmem_region_create(struct nvdimm_bus *nvdimm_bus,
1054 struct nd_region_desc *ndr_desc)
1055 {
1056 ndr_desc->num_lanes = ND_MAX_LANES;
1057 return nd_region_create(nvdimm_bus, ndr_desc, &nd_pmem_device_type,
1058 __func__);
1059 }
1060 EXPORT_SYMBOL_GPL(nvdimm_pmem_region_create);
1061
nvdimm_volatile_region_create(struct nvdimm_bus * nvdimm_bus,struct nd_region_desc * ndr_desc)1062 struct nd_region *nvdimm_volatile_region_create(struct nvdimm_bus *nvdimm_bus,
1063 struct nd_region_desc *ndr_desc)
1064 {
1065 ndr_desc->num_lanes = ND_MAX_LANES;
1066 return nd_region_create(nvdimm_bus, ndr_desc, &nd_volatile_device_type,
1067 __func__);
1068 }
1069 EXPORT_SYMBOL_GPL(nvdimm_volatile_region_create);
1070
nvdimm_flush(struct nd_region * nd_region,struct bio * bio)1071 int nvdimm_flush(struct nd_region *nd_region, struct bio *bio)
1072 {
1073 int rc = 0;
1074
1075 if (!nd_region->flush)
1076 rc = generic_nvdimm_flush(nd_region);
1077 else {
1078 if (nd_region->flush(nd_region, bio))
1079 rc = -EIO;
1080 }
1081
1082 return rc;
1083 }
1084 /**
1085 * nvdimm_flush - flush any posted write queues between the cpu and pmem media
1086 * @nd_region: interleaved pmem region
1087 */
generic_nvdimm_flush(struct nd_region * nd_region)1088 int generic_nvdimm_flush(struct nd_region *nd_region)
1089 {
1090 struct nd_region_data *ndrd = dev_get_drvdata(&nd_region->dev);
1091 int i, idx;
1092
1093 /*
1094 * Try to encourage some diversity in flush hint addresses
1095 * across cpus assuming a limited number of flush hints.
1096 */
1097 idx = this_cpu_read(flush_idx);
1098 idx = this_cpu_add_return(flush_idx, hash_32(current->pid + idx, 8));
1099
1100 /*
1101 * The pmem_wmb() is needed to 'sfence' all
1102 * previous writes such that they are architecturally visible for
1103 * the platform buffer flush. Note that we've already arranged for pmem
1104 * writes to avoid the cache via memcpy_flushcache(). The final
1105 * wmb() ensures ordering for the NVDIMM flush write.
1106 */
1107 pmem_wmb();
1108 for (i = 0; i < nd_region->ndr_mappings; i++)
1109 if (ndrd_get_flush_wpq(ndrd, i, 0))
1110 writeq(1, ndrd_get_flush_wpq(ndrd, i, idx));
1111 wmb();
1112
1113 return 0;
1114 }
1115 EXPORT_SYMBOL_GPL(nvdimm_flush);
1116
1117 /**
1118 * nvdimm_has_flush - determine write flushing requirements
1119 * @nd_region: interleaved pmem region
1120 *
1121 * Returns 1 if writes require flushing
1122 * Returns 0 if writes do not require flushing
1123 * Returns -ENXIO if flushing capability can not be determined
1124 */
nvdimm_has_flush(struct nd_region * nd_region)1125 int nvdimm_has_flush(struct nd_region *nd_region)
1126 {
1127 int i;
1128
1129 /* no nvdimm or pmem api == flushing capability unknown */
1130 if (nd_region->ndr_mappings == 0
1131 || !IS_ENABLED(CONFIG_ARCH_HAS_PMEM_API))
1132 return -ENXIO;
1133
1134 /* Test if an explicit flush function is defined */
1135 if (test_bit(ND_REGION_ASYNC, &nd_region->flags) && nd_region->flush)
1136 return 1;
1137
1138 /* Test if any flush hints for the region are available */
1139 for (i = 0; i < nd_region->ndr_mappings; i++) {
1140 struct nd_mapping *nd_mapping = &nd_region->mapping[i];
1141 struct nvdimm *nvdimm = nd_mapping->nvdimm;
1142
1143 /* flush hints present / available */
1144 if (nvdimm->num_flush)
1145 return 1;
1146 }
1147
1148 /*
1149 * The platform defines dimm devices without hints nor explicit flush,
1150 * assume platform persistence mechanism like ADR
1151 */
1152 return 0;
1153 }
1154 EXPORT_SYMBOL_GPL(nvdimm_has_flush);
1155
nvdimm_has_cache(struct nd_region * nd_region)1156 int nvdimm_has_cache(struct nd_region *nd_region)
1157 {
1158 return is_nd_pmem(&nd_region->dev) &&
1159 !test_bit(ND_REGION_PERSIST_CACHE, &nd_region->flags);
1160 }
1161 EXPORT_SYMBOL_GPL(nvdimm_has_cache);
1162
is_nvdimm_sync(struct nd_region * nd_region)1163 bool is_nvdimm_sync(struct nd_region *nd_region)
1164 {
1165 if (is_nd_volatile(&nd_region->dev))
1166 return true;
1167
1168 return is_nd_pmem(&nd_region->dev) &&
1169 !test_bit(ND_REGION_ASYNC, &nd_region->flags);
1170 }
1171 EXPORT_SYMBOL_GPL(is_nvdimm_sync);
1172
1173 struct conflict_context {
1174 struct nd_region *nd_region;
1175 resource_size_t start, size;
1176 };
1177
region_conflict(struct device * dev,void * data)1178 static int region_conflict(struct device *dev, void *data)
1179 {
1180 struct nd_region *nd_region;
1181 struct conflict_context *ctx = data;
1182 resource_size_t res_end, region_end, region_start;
1183
1184 if (!is_memory(dev))
1185 return 0;
1186
1187 nd_region = to_nd_region(dev);
1188 if (nd_region == ctx->nd_region)
1189 return 0;
1190
1191 res_end = ctx->start + ctx->size;
1192 region_start = nd_region->ndr_start;
1193 region_end = region_start + nd_region->ndr_size;
1194 if (ctx->start >= region_start && ctx->start < region_end)
1195 return -EBUSY;
1196 if (res_end > region_start && res_end <= region_end)
1197 return -EBUSY;
1198 return 0;
1199 }
1200
nd_region_conflict(struct nd_region * nd_region,resource_size_t start,resource_size_t size)1201 int nd_region_conflict(struct nd_region *nd_region, resource_size_t start,
1202 resource_size_t size)
1203 {
1204 struct nvdimm_bus *nvdimm_bus = walk_to_nvdimm_bus(&nd_region->dev);
1205 struct conflict_context ctx = {
1206 .nd_region = nd_region,
1207 .start = start,
1208 .size = size,
1209 };
1210
1211 return device_for_each_child(&nvdimm_bus->dev, &ctx, region_conflict);
1212 }
1213