1 // SPDX-License-Identifier: GPL-2.0-only
2 #include <linux/init.h>
3
4 #include <linux/mm.h>
5 #include <linux/spinlock.h>
6 #include <linux/smp.h>
7 #include <linux/interrupt.h>
8 #include <linux/export.h>
9 #include <linux/cpu.h>
10 #include <linux/debugfs.h>
11 #include <linux/sched/smt.h>
12 #include <linux/task_work.h>
13
14 #include <asm/tlbflush.h>
15 #include <asm/mmu_context.h>
16 #include <asm/nospec-branch.h>
17 #include <asm/cache.h>
18 #include <asm/cacheflush.h>
19 #include <asm/apic.h>
20 #include <asm/perf_event.h>
21
22 #include "mm_internal.h"
23
24 #ifdef CONFIG_PARAVIRT
25 # define STATIC_NOPV
26 #else
27 # define STATIC_NOPV static
28 # define __flush_tlb_local native_flush_tlb_local
29 # define __flush_tlb_global native_flush_tlb_global
30 # define __flush_tlb_one_user(addr) native_flush_tlb_one_user(addr)
31 # define __flush_tlb_multi(msk, info) native_flush_tlb_multi(msk, info)
32 #endif
33
34 /*
35 * TLB flushing, formerly SMP-only
36 * c/o Linus Torvalds.
37 *
38 * These mean you can really definitely utterly forget about
39 * writing to user space from interrupts. (Its not allowed anyway).
40 *
41 * Optimizations Manfred Spraul <manfred@colorfullife.com>
42 *
43 * More scalable flush, from Andi Kleen
44 *
45 * Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
46 */
47
48 /*
49 * Bits to mangle the TIF_SPEC_* state into the mm pointer which is
50 * stored in cpu_tlb_state.last_user_mm_spec.
51 */
52 #define LAST_USER_MM_IBPB 0x1UL
53 #define LAST_USER_MM_L1D_FLUSH 0x2UL
54 #define LAST_USER_MM_SPEC_MASK (LAST_USER_MM_IBPB | LAST_USER_MM_L1D_FLUSH)
55
56 /* Bits to set when tlbstate and flush is (re)initialized */
57 #define LAST_USER_MM_INIT LAST_USER_MM_IBPB
58
59 /*
60 * The x86 feature is called PCID (Process Context IDentifier). It is similar
61 * to what is traditionally called ASID on the RISC processors.
62 *
63 * We don't use the traditional ASID implementation, where each process/mm gets
64 * its own ASID and flush/restart when we run out of ASID space.
65 *
66 * Instead we have a small per-cpu array of ASIDs and cache the last few mm's
67 * that came by on this CPU, allowing cheaper switch_mm between processes on
68 * this CPU.
69 *
70 * We end up with different spaces for different things. To avoid confusion we
71 * use different names for each of them:
72 *
73 * ASID - [0, TLB_NR_DYN_ASIDS-1]
74 * the canonical identifier for an mm
75 *
76 * kPCID - [1, TLB_NR_DYN_ASIDS]
77 * the value we write into the PCID part of CR3; corresponds to the
78 * ASID+1, because PCID 0 is special.
79 *
80 * uPCID - [2048 + 1, 2048 + TLB_NR_DYN_ASIDS]
81 * for KPTI each mm has two address spaces and thus needs two
82 * PCID values, but we can still do with a single ASID denomination
83 * for each mm. Corresponds to kPCID + 2048.
84 *
85 */
86
87 /* There are 12 bits of space for ASIDS in CR3 */
88 #define CR3_HW_ASID_BITS 12
89
90 /*
91 * When enabled, PAGE_TABLE_ISOLATION consumes a single bit for
92 * user/kernel switches
93 */
94 #ifdef CONFIG_PAGE_TABLE_ISOLATION
95 # define PTI_CONSUMED_PCID_BITS 1
96 #else
97 # define PTI_CONSUMED_PCID_BITS 0
98 #endif
99
100 #define CR3_AVAIL_PCID_BITS (X86_CR3_PCID_BITS - PTI_CONSUMED_PCID_BITS)
101
102 /*
103 * ASIDs are zero-based: 0->MAX_AVAIL_ASID are valid. -1 below to account
104 * for them being zero-based. Another -1 is because PCID 0 is reserved for
105 * use by non-PCID-aware users.
106 */
107 #define MAX_ASID_AVAILABLE ((1 << CR3_AVAIL_PCID_BITS) - 2)
108
109 /*
110 * Given @asid, compute kPCID
111 */
kern_pcid(u16 asid)112 static inline u16 kern_pcid(u16 asid)
113 {
114 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
115
116 #ifdef CONFIG_PAGE_TABLE_ISOLATION
117 /*
118 * Make sure that the dynamic ASID space does not conflict with the
119 * bit we are using to switch between user and kernel ASIDs.
120 */
121 BUILD_BUG_ON(TLB_NR_DYN_ASIDS >= (1 << X86_CR3_PTI_PCID_USER_BIT));
122
123 /*
124 * The ASID being passed in here should have respected the
125 * MAX_ASID_AVAILABLE and thus never have the switch bit set.
126 */
127 VM_WARN_ON_ONCE(asid & (1 << X86_CR3_PTI_PCID_USER_BIT));
128 #endif
129 /*
130 * The dynamically-assigned ASIDs that get passed in are small
131 * (<TLB_NR_DYN_ASIDS). They never have the high switch bit set,
132 * so do not bother to clear it.
133 *
134 * If PCID is on, ASID-aware code paths put the ASID+1 into the
135 * PCID bits. This serves two purposes. It prevents a nasty
136 * situation in which PCID-unaware code saves CR3, loads some other
137 * value (with PCID == 0), and then restores CR3, thus corrupting
138 * the TLB for ASID 0 if the saved ASID was nonzero. It also means
139 * that any bugs involving loading a PCID-enabled CR3 with
140 * CR4.PCIDE off will trigger deterministically.
141 */
142 return asid + 1;
143 }
144
145 /*
146 * Given @asid, compute uPCID
147 */
user_pcid(u16 asid)148 static inline u16 user_pcid(u16 asid)
149 {
150 u16 ret = kern_pcid(asid);
151 #ifdef CONFIG_PAGE_TABLE_ISOLATION
152 ret |= 1 << X86_CR3_PTI_PCID_USER_BIT;
153 #endif
154 return ret;
155 }
156
build_cr3(pgd_t * pgd,u16 asid)157 static inline unsigned long build_cr3(pgd_t *pgd, u16 asid)
158 {
159 if (static_cpu_has(X86_FEATURE_PCID)) {
160 return __sme_pa(pgd) | kern_pcid(asid);
161 } else {
162 VM_WARN_ON_ONCE(asid != 0);
163 return __sme_pa(pgd);
164 }
165 }
166
build_cr3_noflush(pgd_t * pgd,u16 asid)167 static inline unsigned long build_cr3_noflush(pgd_t *pgd, u16 asid)
168 {
169 VM_WARN_ON_ONCE(asid > MAX_ASID_AVAILABLE);
170 /*
171 * Use boot_cpu_has() instead of this_cpu_has() as this function
172 * might be called during early boot. This should work even after
173 * boot because all CPU's the have same capabilities:
174 */
175 VM_WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_PCID));
176 return __sme_pa(pgd) | kern_pcid(asid) | CR3_NOFLUSH;
177 }
178
179 /*
180 * We get here when we do something requiring a TLB invalidation
181 * but could not go invalidate all of the contexts. We do the
182 * necessary invalidation by clearing out the 'ctx_id' which
183 * forces a TLB flush when the context is loaded.
184 */
clear_asid_other(void)185 static void clear_asid_other(void)
186 {
187 u16 asid;
188
189 /*
190 * This is only expected to be set if we have disabled
191 * kernel _PAGE_GLOBAL pages.
192 */
193 if (!static_cpu_has(X86_FEATURE_PTI)) {
194 WARN_ON_ONCE(1);
195 return;
196 }
197
198 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
199 /* Do not need to flush the current asid */
200 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
201 continue;
202 /*
203 * Make sure the next time we go to switch to
204 * this asid, we do a flush:
205 */
206 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
207 }
208 this_cpu_write(cpu_tlbstate.invalidate_other, false);
209 }
210
211 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
212
213
choose_new_asid(struct mm_struct * next,u64 next_tlb_gen,u16 * new_asid,bool * need_flush)214 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
215 u16 *new_asid, bool *need_flush)
216 {
217 u16 asid;
218
219 if (!static_cpu_has(X86_FEATURE_PCID)) {
220 *new_asid = 0;
221 *need_flush = true;
222 return;
223 }
224
225 if (this_cpu_read(cpu_tlbstate.invalidate_other))
226 clear_asid_other();
227
228 for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
229 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
230 next->context.ctx_id)
231 continue;
232
233 *new_asid = asid;
234 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
235 next_tlb_gen);
236 return;
237 }
238
239 /*
240 * We don't currently own an ASID slot on this CPU.
241 * Allocate a slot.
242 */
243 *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
244 if (*new_asid >= TLB_NR_DYN_ASIDS) {
245 *new_asid = 0;
246 this_cpu_write(cpu_tlbstate.next_asid, 1);
247 }
248 *need_flush = true;
249 }
250
251 /*
252 * Given an ASID, flush the corresponding user ASID. We can delay this
253 * until the next time we switch to it.
254 *
255 * See SWITCH_TO_USER_CR3.
256 */
invalidate_user_asid(u16 asid)257 static inline void invalidate_user_asid(u16 asid)
258 {
259 /* There is no user ASID if address space separation is off */
260 if (!IS_ENABLED(CONFIG_PAGE_TABLE_ISOLATION))
261 return;
262
263 /*
264 * We only have a single ASID if PCID is off and the CR3
265 * write will have flushed it.
266 */
267 if (!cpu_feature_enabled(X86_FEATURE_PCID))
268 return;
269
270 if (!static_cpu_has(X86_FEATURE_PTI))
271 return;
272
273 __set_bit(kern_pcid(asid),
274 (unsigned long *)this_cpu_ptr(&cpu_tlbstate.user_pcid_flush_mask));
275 }
276
load_new_mm_cr3(pgd_t * pgdir,u16 new_asid,bool need_flush)277 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
278 {
279 unsigned long new_mm_cr3;
280
281 if (need_flush) {
282 invalidate_user_asid(new_asid);
283 new_mm_cr3 = build_cr3(pgdir, new_asid);
284 } else {
285 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
286 }
287
288 /*
289 * Caution: many callers of this function expect
290 * that load_cr3() is serializing and orders TLB
291 * fills with respect to the mm_cpumask writes.
292 */
293 write_cr3(new_mm_cr3);
294 }
295
leave_mm(int cpu)296 void leave_mm(int cpu)
297 {
298 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
299
300 /*
301 * It's plausible that we're in lazy TLB mode while our mm is init_mm.
302 * If so, our callers still expect us to flush the TLB, but there
303 * aren't any user TLB entries in init_mm to worry about.
304 *
305 * This needs to happen before any other sanity checks due to
306 * intel_idle's shenanigans.
307 */
308 if (loaded_mm == &init_mm)
309 return;
310
311 /* Warn if we're not lazy. */
312 WARN_ON(!this_cpu_read(cpu_tlbstate_shared.is_lazy));
313
314 switch_mm(NULL, &init_mm, NULL);
315 }
316 EXPORT_SYMBOL_GPL(leave_mm);
317
switch_mm(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)318 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
319 struct task_struct *tsk)
320 {
321 unsigned long flags;
322
323 local_irq_save(flags);
324 switch_mm_irqs_off(prev, next, tsk);
325 local_irq_restore(flags);
326 }
327
328 /*
329 * Invoked from return to user/guest by a task that opted-in to L1D
330 * flushing but ended up running on an SMT enabled core due to wrong
331 * affinity settings or CPU hotplug. This is part of the paranoid L1D flush
332 * contract which this task requested.
333 */
l1d_flush_force_sigbus(struct callback_head * ch)334 static void l1d_flush_force_sigbus(struct callback_head *ch)
335 {
336 force_sig(SIGBUS);
337 }
338
l1d_flush_evaluate(unsigned long prev_mm,unsigned long next_mm,struct task_struct * next)339 static void l1d_flush_evaluate(unsigned long prev_mm, unsigned long next_mm,
340 struct task_struct *next)
341 {
342 /* Flush L1D if the outgoing task requests it */
343 if (prev_mm & LAST_USER_MM_L1D_FLUSH)
344 wrmsrl(MSR_IA32_FLUSH_CMD, L1D_FLUSH);
345
346 /* Check whether the incoming task opted in for L1D flush */
347 if (likely(!(next_mm & LAST_USER_MM_L1D_FLUSH)))
348 return;
349
350 /*
351 * Validate that it is not running on an SMT sibling as this would
352 * make the excercise pointless because the siblings share L1D. If
353 * it runs on a SMT sibling, notify it with SIGBUS on return to
354 * user/guest
355 */
356 if (this_cpu_read(cpu_info.smt_active)) {
357 clear_ti_thread_flag(&next->thread_info, TIF_SPEC_L1D_FLUSH);
358 next->l1d_flush_kill.func = l1d_flush_force_sigbus;
359 task_work_add(next, &next->l1d_flush_kill, TWA_RESUME);
360 }
361 }
362
mm_mangle_tif_spec_bits(struct task_struct * next)363 static unsigned long mm_mangle_tif_spec_bits(struct task_struct *next)
364 {
365 unsigned long next_tif = read_task_thread_flags(next);
366 unsigned long spec_bits = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_SPEC_MASK;
367
368 /*
369 * Ensure that the bit shift above works as expected and the two flags
370 * end up in bit 0 and 1.
371 */
372 BUILD_BUG_ON(TIF_SPEC_L1D_FLUSH != TIF_SPEC_IB + 1);
373
374 return (unsigned long)next->mm | spec_bits;
375 }
376
cond_mitigation(struct task_struct * next)377 static void cond_mitigation(struct task_struct *next)
378 {
379 unsigned long prev_mm, next_mm;
380
381 if (!next || !next->mm)
382 return;
383
384 next_mm = mm_mangle_tif_spec_bits(next);
385 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_spec);
386
387 /*
388 * Avoid user/user BTB poisoning by flushing the branch predictor
389 * when switching between processes. This stops one process from
390 * doing Spectre-v2 attacks on another.
391 *
392 * Both, the conditional and the always IBPB mode use the mm
393 * pointer to avoid the IBPB when switching between tasks of the
394 * same process. Using the mm pointer instead of mm->context.ctx_id
395 * opens a hypothetical hole vs. mm_struct reuse, which is more or
396 * less impossible to control by an attacker. Aside of that it
397 * would only affect the first schedule so the theoretically
398 * exposed data is not really interesting.
399 */
400 if (static_branch_likely(&switch_mm_cond_ibpb)) {
401 /*
402 * This is a bit more complex than the always mode because
403 * it has to handle two cases:
404 *
405 * 1) Switch from a user space task (potential attacker)
406 * which has TIF_SPEC_IB set to a user space task
407 * (potential victim) which has TIF_SPEC_IB not set.
408 *
409 * 2) Switch from a user space task (potential attacker)
410 * which has TIF_SPEC_IB not set to a user space task
411 * (potential victim) which has TIF_SPEC_IB set.
412 *
413 * This could be done by unconditionally issuing IBPB when
414 * a task which has TIF_SPEC_IB set is either scheduled in
415 * or out. Though that results in two flushes when:
416 *
417 * - the same user space task is scheduled out and later
418 * scheduled in again and only a kernel thread ran in
419 * between.
420 *
421 * - a user space task belonging to the same process is
422 * scheduled in after a kernel thread ran in between
423 *
424 * - a user space task belonging to the same process is
425 * scheduled in immediately.
426 *
427 * Optimize this with reasonably small overhead for the
428 * above cases. Mangle the TIF_SPEC_IB bit into the mm
429 * pointer of the incoming task which is stored in
430 * cpu_tlbstate.last_user_mm_spec for comparison.
431 *
432 * Issue IBPB only if the mm's are different and one or
433 * both have the IBPB bit set.
434 */
435 if (next_mm != prev_mm &&
436 (next_mm | prev_mm) & LAST_USER_MM_IBPB)
437 indirect_branch_prediction_barrier();
438 }
439
440 if (static_branch_unlikely(&switch_mm_always_ibpb)) {
441 /*
442 * Only flush when switching to a user space task with a
443 * different context than the user space task which ran
444 * last on this CPU.
445 */
446 if ((prev_mm & ~LAST_USER_MM_SPEC_MASK) !=
447 (unsigned long)next->mm)
448 indirect_branch_prediction_barrier();
449 }
450
451 if (static_branch_unlikely(&switch_mm_cond_l1d_flush)) {
452 /*
453 * Flush L1D when the outgoing task requested it and/or
454 * check whether the incoming task requested L1D flushing
455 * and ended up on an SMT sibling.
456 */
457 if (unlikely((prev_mm | next_mm) & LAST_USER_MM_L1D_FLUSH))
458 l1d_flush_evaluate(prev_mm, next_mm, next);
459 }
460
461 this_cpu_write(cpu_tlbstate.last_user_mm_spec, next_mm);
462 }
463
464 #ifdef CONFIG_PERF_EVENTS
cr4_update_pce_mm(struct mm_struct * mm)465 static inline void cr4_update_pce_mm(struct mm_struct *mm)
466 {
467 if (static_branch_unlikely(&rdpmc_always_available_key) ||
468 (!static_branch_unlikely(&rdpmc_never_available_key) &&
469 atomic_read(&mm->context.perf_rdpmc_allowed))) {
470 /*
471 * Clear the existing dirty counters to
472 * prevent the leak for an RDPMC task.
473 */
474 perf_clear_dirty_counters();
475 cr4_set_bits_irqsoff(X86_CR4_PCE);
476 } else
477 cr4_clear_bits_irqsoff(X86_CR4_PCE);
478 }
479
cr4_update_pce(void * ignored)480 void cr4_update_pce(void *ignored)
481 {
482 cr4_update_pce_mm(this_cpu_read(cpu_tlbstate.loaded_mm));
483 }
484
485 #else
cr4_update_pce_mm(struct mm_struct * mm)486 static inline void cr4_update_pce_mm(struct mm_struct *mm) { }
487 #endif
488
switch_mm_irqs_off(struct mm_struct * prev,struct mm_struct * next,struct task_struct * tsk)489 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
490 struct task_struct *tsk)
491 {
492 struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
493 u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
494 bool was_lazy = this_cpu_read(cpu_tlbstate_shared.is_lazy);
495 unsigned cpu = smp_processor_id();
496 u64 next_tlb_gen;
497 bool need_flush;
498 u16 new_asid;
499
500 /*
501 * NB: The scheduler will call us with prev == next when switching
502 * from lazy TLB mode to normal mode if active_mm isn't changing.
503 * When this happens, we don't assume that CR3 (and hence
504 * cpu_tlbstate.loaded_mm) matches next.
505 *
506 * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
507 */
508
509 /* We don't want flush_tlb_func() to run concurrently with us. */
510 if (IS_ENABLED(CONFIG_PROVE_LOCKING))
511 WARN_ON_ONCE(!irqs_disabled());
512
513 /*
514 * Verify that CR3 is what we think it is. This will catch
515 * hypothetical buggy code that directly switches to swapper_pg_dir
516 * without going through leave_mm() / switch_mm_irqs_off() or that
517 * does something like write_cr3(read_cr3_pa()).
518 *
519 * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
520 * isn't free.
521 */
522 #ifdef CONFIG_DEBUG_VM
523 if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
524 /*
525 * If we were to BUG here, we'd be very likely to kill
526 * the system so hard that we don't see the call trace.
527 * Try to recover instead by ignoring the error and doing
528 * a global flush to minimize the chance of corruption.
529 *
530 * (This is far from being a fully correct recovery.
531 * Architecturally, the CPU could prefetch something
532 * back into an incorrect ASID slot and leave it there
533 * to cause trouble down the road. It's better than
534 * nothing, though.)
535 */
536 __flush_tlb_all();
537 }
538 #endif
539 if (was_lazy)
540 this_cpu_write(cpu_tlbstate_shared.is_lazy, false);
541
542 /*
543 * The membarrier system call requires a full memory barrier and
544 * core serialization before returning to user-space, after
545 * storing to rq->curr, when changing mm. This is because
546 * membarrier() sends IPIs to all CPUs that are in the target mm
547 * to make them issue memory barriers. However, if another CPU
548 * switches to/from the target mm concurrently with
549 * membarrier(), it can cause that CPU not to receive an IPI
550 * when it really should issue a memory barrier. Writing to CR3
551 * provides that full memory barrier and core serializing
552 * instruction.
553 */
554 if (real_prev == next) {
555 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
556 next->context.ctx_id);
557
558 /*
559 * Even in lazy TLB mode, the CPU should stay set in the
560 * mm_cpumask. The TLB shootdown code can figure out from
561 * cpu_tlbstate_shared.is_lazy whether or not to send an IPI.
562 */
563 if (WARN_ON_ONCE(real_prev != &init_mm &&
564 !cpumask_test_cpu(cpu, mm_cpumask(next))))
565 cpumask_set_cpu(cpu, mm_cpumask(next));
566
567 /*
568 * If the CPU is not in lazy TLB mode, we are just switching
569 * from one thread in a process to another thread in the same
570 * process. No TLB flush required.
571 */
572 if (!was_lazy)
573 return;
574
575 /*
576 * Read the tlb_gen to check whether a flush is needed.
577 * If the TLB is up to date, just use it.
578 * The barrier synchronizes with the tlb_gen increment in
579 * the TLB shootdown code.
580 */
581 smp_mb();
582 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
583 if (this_cpu_read(cpu_tlbstate.ctxs[prev_asid].tlb_gen) ==
584 next_tlb_gen)
585 return;
586
587 /*
588 * TLB contents went out of date while we were in lazy
589 * mode. Fall through to the TLB switching code below.
590 */
591 new_asid = prev_asid;
592 need_flush = true;
593 } else {
594 /*
595 * Apply process to process speculation vulnerability
596 * mitigations if applicable.
597 */
598 cond_mitigation(tsk);
599
600 /*
601 * Stop remote flushes for the previous mm.
602 * Skip kernel threads; we never send init_mm TLB flushing IPIs,
603 * but the bitmap manipulation can cause cache line contention.
604 */
605 if (real_prev != &init_mm) {
606 VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
607 mm_cpumask(real_prev)));
608 cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
609 }
610
611 /*
612 * Start remote flushes and then read tlb_gen.
613 */
614 if (next != &init_mm)
615 cpumask_set_cpu(cpu, mm_cpumask(next));
616 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
617
618 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
619
620 /* Let nmi_uaccess_okay() know that we're changing CR3. */
621 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
622 barrier();
623 }
624
625 if (need_flush) {
626 this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
627 this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
628 load_new_mm_cr3(next->pgd, new_asid, true);
629
630 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
631 } else {
632 /* The new ASID is already up to date. */
633 load_new_mm_cr3(next->pgd, new_asid, false);
634
635 trace_tlb_flush(TLB_FLUSH_ON_TASK_SWITCH, 0);
636 }
637
638 /* Make sure we write CR3 before loaded_mm. */
639 barrier();
640
641 this_cpu_write(cpu_tlbstate.loaded_mm, next);
642 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
643
644 if (next != real_prev) {
645 cr4_update_pce_mm(next);
646 switch_ldt(real_prev, next);
647 }
648 }
649
650 /*
651 * Please ignore the name of this function. It should be called
652 * switch_to_kernel_thread().
653 *
654 * enter_lazy_tlb() is a hint from the scheduler that we are entering a
655 * kernel thread or other context without an mm. Acceptable implementations
656 * include doing nothing whatsoever, switching to init_mm, or various clever
657 * lazy tricks to try to minimize TLB flushes.
658 *
659 * The scheduler reserves the right to call enter_lazy_tlb() several times
660 * in a row. It will notify us that we're going back to a real mm by
661 * calling switch_mm_irqs_off().
662 */
enter_lazy_tlb(struct mm_struct * mm,struct task_struct * tsk)663 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
664 {
665 if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
666 return;
667
668 this_cpu_write(cpu_tlbstate_shared.is_lazy, true);
669 }
670
671 /*
672 * Call this when reinitializing a CPU. It fixes the following potential
673 * problems:
674 *
675 * - The ASID changed from what cpu_tlbstate thinks it is (most likely
676 * because the CPU was taken down and came back up with CR3's PCID
677 * bits clear. CPU hotplug can do this.
678 *
679 * - The TLB contains junk in slots corresponding to inactive ASIDs.
680 *
681 * - The CPU went so far out to lunch that it may have missed a TLB
682 * flush.
683 */
initialize_tlbstate_and_flush(void)684 void initialize_tlbstate_and_flush(void)
685 {
686 int i;
687 struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
688 u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
689 unsigned long cr3 = __read_cr3();
690
691 /* Assert that CR3 already references the right mm. */
692 WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
693
694 /*
695 * Assert that CR4.PCIDE is set if needed. (CR4.PCIDE initialization
696 * doesn't work like other CR4 bits because it can only be set from
697 * long mode.)
698 */
699 WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
700 !(cr4_read_shadow() & X86_CR4_PCIDE));
701
702 /* Force ASID 0 and force a TLB flush. */
703 write_cr3(build_cr3(mm->pgd, 0));
704
705 /* Reinitialize tlbstate. */
706 this_cpu_write(cpu_tlbstate.last_user_mm_spec, LAST_USER_MM_INIT);
707 this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
708 this_cpu_write(cpu_tlbstate.next_asid, 1);
709 this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
710 this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
711
712 for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
713 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
714 }
715
716 /*
717 * flush_tlb_func()'s memory ordering requirement is that any
718 * TLB fills that happen after we flush the TLB are ordered after we
719 * read active_mm's tlb_gen. We don't need any explicit barriers
720 * because all x86 flush operations are serializing and the
721 * atomic64_read operation won't be reordered by the compiler.
722 */
flush_tlb_func(void * info)723 static void flush_tlb_func(void *info)
724 {
725 /*
726 * We have three different tlb_gen values in here. They are:
727 *
728 * - mm_tlb_gen: the latest generation.
729 * - local_tlb_gen: the generation that this CPU has already caught
730 * up to.
731 * - f->new_tlb_gen: the generation that the requester of the flush
732 * wants us to catch up to.
733 */
734 const struct flush_tlb_info *f = info;
735 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
736 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
737 u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
738 u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
739 bool local = smp_processor_id() == f->initiating_cpu;
740 unsigned long nr_invalidate = 0;
741
742 /* This code cannot presently handle being reentered. */
743 VM_WARN_ON(!irqs_disabled());
744
745 if (!local) {
746 inc_irq_stat(irq_tlb_count);
747 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
748
749 /* Can only happen on remote CPUs */
750 if (f->mm && f->mm != loaded_mm)
751 return;
752 }
753
754 if (unlikely(loaded_mm == &init_mm))
755 return;
756
757 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
758 loaded_mm->context.ctx_id);
759
760 if (this_cpu_read(cpu_tlbstate_shared.is_lazy)) {
761 /*
762 * We're in lazy mode. We need to at least flush our
763 * paging-structure cache to avoid speculatively reading
764 * garbage into our TLB. Since switching to init_mm is barely
765 * slower than a minimal flush, just switch to init_mm.
766 *
767 * This should be rare, with native_flush_tlb_multi() skipping
768 * IPIs to lazy TLB mode CPUs.
769 */
770 switch_mm_irqs_off(NULL, &init_mm, NULL);
771 return;
772 }
773
774 if (unlikely(local_tlb_gen == mm_tlb_gen)) {
775 /*
776 * There's nothing to do: we're already up to date. This can
777 * happen if two concurrent flushes happen -- the first flush to
778 * be handled can catch us all the way up, leaving no work for
779 * the second flush.
780 */
781 goto done;
782 }
783
784 WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
785 WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
786
787 /*
788 * If we get to this point, we know that our TLB is out of date.
789 * This does not strictly imply that we need to flush (it's
790 * possible that f->new_tlb_gen <= local_tlb_gen), but we're
791 * going to need to flush in the very near future, so we might
792 * as well get it over with.
793 *
794 * The only question is whether to do a full or partial flush.
795 *
796 * We do a partial flush if requested and two extra conditions
797 * are met:
798 *
799 * 1. f->new_tlb_gen == local_tlb_gen + 1. We have an invariant that
800 * we've always done all needed flushes to catch up to
801 * local_tlb_gen. If, for example, local_tlb_gen == 2 and
802 * f->new_tlb_gen == 3, then we know that the flush needed to bring
803 * us up to date for tlb_gen 3 is the partial flush we're
804 * processing.
805 *
806 * As an example of why this check is needed, suppose that there
807 * are two concurrent flushes. The first is a full flush that
808 * changes context.tlb_gen from 1 to 2. The second is a partial
809 * flush that changes context.tlb_gen from 2 to 3. If they get
810 * processed on this CPU in reverse order, we'll see
811 * local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
812 * If we were to use __flush_tlb_one_user() and set local_tlb_gen to
813 * 3, we'd be break the invariant: we'd update local_tlb_gen above
814 * 1 without the full flush that's needed for tlb_gen 2.
815 *
816 * 2. f->new_tlb_gen == mm_tlb_gen. This is purely an optimization.
817 * Partial TLB flushes are not all that much cheaper than full TLB
818 * flushes, so it seems unlikely that it would be a performance win
819 * to do a partial flush if that won't bring our TLB fully up to
820 * date. By doing a full flush instead, we can increase
821 * local_tlb_gen all the way to mm_tlb_gen and we can probably
822 * avoid another flush in the very near future.
823 */
824 if (f->end != TLB_FLUSH_ALL &&
825 f->new_tlb_gen == local_tlb_gen + 1 &&
826 f->new_tlb_gen == mm_tlb_gen) {
827 /* Partial flush */
828 unsigned long addr = f->start;
829
830 nr_invalidate = (f->end - f->start) >> f->stride_shift;
831
832 while (addr < f->end) {
833 flush_tlb_one_user(addr);
834 addr += 1UL << f->stride_shift;
835 }
836 if (local)
837 count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_invalidate);
838 } else {
839 /* Full flush. */
840 nr_invalidate = TLB_FLUSH_ALL;
841
842 flush_tlb_local();
843 if (local)
844 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
845 }
846
847 /* Both paths above update our state to mm_tlb_gen. */
848 this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
849
850 /* Tracing is done in a unified manner to reduce the code size */
851 done:
852 trace_tlb_flush(!local ? TLB_REMOTE_SHOOTDOWN :
853 (f->mm == NULL) ? TLB_LOCAL_SHOOTDOWN :
854 TLB_LOCAL_MM_SHOOTDOWN,
855 nr_invalidate);
856 }
857
tlb_is_not_lazy(int cpu,void * data)858 static bool tlb_is_not_lazy(int cpu, void *data)
859 {
860 return !per_cpu(cpu_tlbstate_shared.is_lazy, cpu);
861 }
862
863 DEFINE_PER_CPU_SHARED_ALIGNED(struct tlb_state_shared, cpu_tlbstate_shared);
864 EXPORT_PER_CPU_SYMBOL(cpu_tlbstate_shared);
865
native_flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)866 STATIC_NOPV void native_flush_tlb_multi(const struct cpumask *cpumask,
867 const struct flush_tlb_info *info)
868 {
869 /*
870 * Do accounting and tracing. Note that there are (and have always been)
871 * cases in which a remote TLB flush will be traced, but eventually
872 * would not happen.
873 */
874 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
875 if (info->end == TLB_FLUSH_ALL)
876 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
877 else
878 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
879 (info->end - info->start) >> PAGE_SHIFT);
880
881 /*
882 * If no page tables were freed, we can skip sending IPIs to
883 * CPUs in lazy TLB mode. They will flush the CPU themselves
884 * at the next context switch.
885 *
886 * However, if page tables are getting freed, we need to send the
887 * IPI everywhere, to prevent CPUs in lazy TLB mode from tripping
888 * up on the new contents of what used to be page tables, while
889 * doing a speculative memory access.
890 */
891 if (info->freed_tables)
892 on_each_cpu_mask(cpumask, flush_tlb_func, (void *)info, true);
893 else
894 on_each_cpu_cond_mask(tlb_is_not_lazy, flush_tlb_func,
895 (void *)info, 1, cpumask);
896 }
897
flush_tlb_multi(const struct cpumask * cpumask,const struct flush_tlb_info * info)898 void flush_tlb_multi(const struct cpumask *cpumask,
899 const struct flush_tlb_info *info)
900 {
901 __flush_tlb_multi(cpumask, info);
902 }
903
904 /*
905 * See Documentation/x86/tlb.rst for details. We choose 33
906 * because it is large enough to cover the vast majority (at
907 * least 95%) of allocations, and is small enough that we are
908 * confident it will not cause too much overhead. Each single
909 * flush is about 100 ns, so this caps the maximum overhead at
910 * _about_ 3,000 ns.
911 *
912 * This is in units of pages.
913 */
914 unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
915
916 static DEFINE_PER_CPU_SHARED_ALIGNED(struct flush_tlb_info, flush_tlb_info);
917
918 #ifdef CONFIG_DEBUG_VM
919 static DEFINE_PER_CPU(unsigned int, flush_tlb_info_idx);
920 #endif
921
get_flush_tlb_info(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables,u64 new_tlb_gen)922 static struct flush_tlb_info *get_flush_tlb_info(struct mm_struct *mm,
923 unsigned long start, unsigned long end,
924 unsigned int stride_shift, bool freed_tables,
925 u64 new_tlb_gen)
926 {
927 struct flush_tlb_info *info = this_cpu_ptr(&flush_tlb_info);
928
929 #ifdef CONFIG_DEBUG_VM
930 /*
931 * Ensure that the following code is non-reentrant and flush_tlb_info
932 * is not overwritten. This means no TLB flushing is initiated by
933 * interrupt handlers and machine-check exception handlers.
934 */
935 BUG_ON(this_cpu_inc_return(flush_tlb_info_idx) != 1);
936 #endif
937
938 info->start = start;
939 info->end = end;
940 info->mm = mm;
941 info->stride_shift = stride_shift;
942 info->freed_tables = freed_tables;
943 info->new_tlb_gen = new_tlb_gen;
944 info->initiating_cpu = smp_processor_id();
945
946 return info;
947 }
948
put_flush_tlb_info(void)949 static void put_flush_tlb_info(void)
950 {
951 #ifdef CONFIG_DEBUG_VM
952 /* Complete reentrancy prevention checks */
953 barrier();
954 this_cpu_dec(flush_tlb_info_idx);
955 #endif
956 }
957
flush_tlb_mm_range(struct mm_struct * mm,unsigned long start,unsigned long end,unsigned int stride_shift,bool freed_tables)958 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
959 unsigned long end, unsigned int stride_shift,
960 bool freed_tables)
961 {
962 struct flush_tlb_info *info;
963 u64 new_tlb_gen;
964 int cpu;
965
966 cpu = get_cpu();
967
968 /* Should we flush just the requested range? */
969 if ((end == TLB_FLUSH_ALL) ||
970 ((end - start) >> stride_shift) > tlb_single_page_flush_ceiling) {
971 start = 0;
972 end = TLB_FLUSH_ALL;
973 }
974
975 /* This is also a barrier that synchronizes with switch_mm(). */
976 new_tlb_gen = inc_mm_tlb_gen(mm);
977
978 info = get_flush_tlb_info(mm, start, end, stride_shift, freed_tables,
979 new_tlb_gen);
980
981 /*
982 * flush_tlb_multi() is not optimized for the common case in which only
983 * a local TLB flush is needed. Optimize this use-case by calling
984 * flush_tlb_func_local() directly in this case.
985 */
986 if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids) {
987 flush_tlb_multi(mm_cpumask(mm), info);
988 } else if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
989 lockdep_assert_irqs_enabled();
990 local_irq_disable();
991 flush_tlb_func(info);
992 local_irq_enable();
993 }
994
995 put_flush_tlb_info();
996 put_cpu();
997 }
998
999
do_flush_tlb_all(void * info)1000 static void do_flush_tlb_all(void *info)
1001 {
1002 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
1003 __flush_tlb_all();
1004 }
1005
flush_tlb_all(void)1006 void flush_tlb_all(void)
1007 {
1008 count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
1009 on_each_cpu(do_flush_tlb_all, NULL, 1);
1010 }
1011
do_kernel_range_flush(void * info)1012 static void do_kernel_range_flush(void *info)
1013 {
1014 struct flush_tlb_info *f = info;
1015 unsigned long addr;
1016
1017 /* flush range by one by one 'invlpg' */
1018 for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
1019 flush_tlb_one_kernel(addr);
1020 }
1021
flush_tlb_kernel_range(unsigned long start,unsigned long end)1022 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
1023 {
1024 /* Balance as user space task's flush, a bit conservative */
1025 if (end == TLB_FLUSH_ALL ||
1026 (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
1027 on_each_cpu(do_flush_tlb_all, NULL, 1);
1028 } else {
1029 struct flush_tlb_info *info;
1030
1031 preempt_disable();
1032 info = get_flush_tlb_info(NULL, start, end, 0, false, 0);
1033
1034 on_each_cpu(do_kernel_range_flush, info, 1);
1035
1036 put_flush_tlb_info();
1037 preempt_enable();
1038 }
1039 }
1040
1041 /*
1042 * This can be used from process context to figure out what the value of
1043 * CR3 is without needing to do a (slow) __read_cr3().
1044 *
1045 * It's intended to be used for code like KVM that sneakily changes CR3
1046 * and needs to restore it. It needs to be used very carefully.
1047 */
__get_current_cr3_fast(void)1048 unsigned long __get_current_cr3_fast(void)
1049 {
1050 unsigned long cr3 = build_cr3(this_cpu_read(cpu_tlbstate.loaded_mm)->pgd,
1051 this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1052
1053 /* For now, be very restrictive about when this can be called. */
1054 VM_WARN_ON(in_nmi() || preemptible());
1055
1056 VM_BUG_ON(cr3 != __read_cr3());
1057 return cr3;
1058 }
1059 EXPORT_SYMBOL_GPL(__get_current_cr3_fast);
1060
1061 /*
1062 * Flush one page in the kernel mapping
1063 */
flush_tlb_one_kernel(unsigned long addr)1064 void flush_tlb_one_kernel(unsigned long addr)
1065 {
1066 count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ONE);
1067
1068 /*
1069 * If PTI is off, then __flush_tlb_one_user() is just INVLPG or its
1070 * paravirt equivalent. Even with PCID, this is sufficient: we only
1071 * use PCID if we also use global PTEs for the kernel mapping, and
1072 * INVLPG flushes global translations across all address spaces.
1073 *
1074 * If PTI is on, then the kernel is mapped with non-global PTEs, and
1075 * __flush_tlb_one_user() will flush the given address for the current
1076 * kernel address space and for its usermode counterpart, but it does
1077 * not flush it for other address spaces.
1078 */
1079 flush_tlb_one_user(addr);
1080
1081 if (!static_cpu_has(X86_FEATURE_PTI))
1082 return;
1083
1084 /*
1085 * See above. We need to propagate the flush to all other address
1086 * spaces. In principle, we only need to propagate it to kernelmode
1087 * address spaces, but the extra bookkeeping we would need is not
1088 * worth it.
1089 */
1090 this_cpu_write(cpu_tlbstate.invalidate_other, true);
1091 }
1092
1093 /*
1094 * Flush one page in the user mapping
1095 */
native_flush_tlb_one_user(unsigned long addr)1096 STATIC_NOPV void native_flush_tlb_one_user(unsigned long addr)
1097 {
1098 u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
1099
1100 asm volatile("invlpg (%0)" ::"r" (addr) : "memory");
1101
1102 if (!static_cpu_has(X86_FEATURE_PTI))
1103 return;
1104
1105 /*
1106 * Some platforms #GP if we call invpcid(type=1/2) before CR4.PCIDE=1.
1107 * Just use invalidate_user_asid() in case we are called early.
1108 */
1109 if (!this_cpu_has(X86_FEATURE_INVPCID_SINGLE))
1110 invalidate_user_asid(loaded_mm_asid);
1111 else
1112 invpcid_flush_one(user_pcid(loaded_mm_asid), addr);
1113 }
1114
flush_tlb_one_user(unsigned long addr)1115 void flush_tlb_one_user(unsigned long addr)
1116 {
1117 __flush_tlb_one_user(addr);
1118 }
1119
1120 /*
1121 * Flush everything
1122 */
native_flush_tlb_global(void)1123 STATIC_NOPV void native_flush_tlb_global(void)
1124 {
1125 unsigned long flags;
1126
1127 if (static_cpu_has(X86_FEATURE_INVPCID)) {
1128 /*
1129 * Using INVPCID is considerably faster than a pair of writes
1130 * to CR4 sandwiched inside an IRQ flag save/restore.
1131 *
1132 * Note, this works with CR4.PCIDE=0 or 1.
1133 */
1134 invpcid_flush_all();
1135 return;
1136 }
1137
1138 /*
1139 * Read-modify-write to CR4 - protect it from preemption and
1140 * from interrupts. (Use the raw variant because this code can
1141 * be called from deep inside debugging code.)
1142 */
1143 raw_local_irq_save(flags);
1144
1145 __native_tlb_flush_global(this_cpu_read(cpu_tlbstate.cr4));
1146
1147 raw_local_irq_restore(flags);
1148 }
1149
1150 /*
1151 * Flush the entire current user mapping
1152 */
native_flush_tlb_local(void)1153 STATIC_NOPV void native_flush_tlb_local(void)
1154 {
1155 /*
1156 * Preemption or interrupts must be disabled to protect the access
1157 * to the per CPU variable and to prevent being preempted between
1158 * read_cr3() and write_cr3().
1159 */
1160 WARN_ON_ONCE(preemptible());
1161
1162 invalidate_user_asid(this_cpu_read(cpu_tlbstate.loaded_mm_asid));
1163
1164 /* If current->mm == NULL then the read_cr3() "borrows" an mm */
1165 native_write_cr3(__native_read_cr3());
1166 }
1167
flush_tlb_local(void)1168 void flush_tlb_local(void)
1169 {
1170 __flush_tlb_local();
1171 }
1172
1173 /*
1174 * Flush everything
1175 */
__flush_tlb_all(void)1176 void __flush_tlb_all(void)
1177 {
1178 /*
1179 * This is to catch users with enabled preemption and the PGE feature
1180 * and don't trigger the warning in __native_flush_tlb().
1181 */
1182 VM_WARN_ON_ONCE(preemptible());
1183
1184 if (boot_cpu_has(X86_FEATURE_PGE)) {
1185 __flush_tlb_global();
1186 } else {
1187 /*
1188 * !PGE -> !PCID (setup_pcid()), thus every flush is total.
1189 */
1190 flush_tlb_local();
1191 }
1192 }
1193 EXPORT_SYMBOL_GPL(__flush_tlb_all);
1194
arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch * batch)1195 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
1196 {
1197 struct flush_tlb_info *info;
1198
1199 int cpu = get_cpu();
1200
1201 info = get_flush_tlb_info(NULL, 0, TLB_FLUSH_ALL, 0, false, 0);
1202 /*
1203 * flush_tlb_multi() is not optimized for the common case in which only
1204 * a local TLB flush is needed. Optimize this use-case by calling
1205 * flush_tlb_func_local() directly in this case.
1206 */
1207 if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids) {
1208 flush_tlb_multi(&batch->cpumask, info);
1209 } else if (cpumask_test_cpu(cpu, &batch->cpumask)) {
1210 lockdep_assert_irqs_enabled();
1211 local_irq_disable();
1212 flush_tlb_func(info);
1213 local_irq_enable();
1214 }
1215
1216 cpumask_clear(&batch->cpumask);
1217
1218 put_flush_tlb_info();
1219 put_cpu();
1220 }
1221
1222 /*
1223 * Blindly accessing user memory from NMI context can be dangerous
1224 * if we're in the middle of switching the current user task or
1225 * switching the loaded mm. It can also be dangerous if we
1226 * interrupted some kernel code that was temporarily using a
1227 * different mm.
1228 */
nmi_uaccess_okay(void)1229 bool nmi_uaccess_okay(void)
1230 {
1231 struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
1232 struct mm_struct *current_mm = current->mm;
1233
1234 VM_WARN_ON_ONCE(!loaded_mm);
1235
1236 /*
1237 * The condition we want to check is
1238 * current_mm->pgd == __va(read_cr3_pa()). This may be slow, though,
1239 * if we're running in a VM with shadow paging, and nmi_uaccess_okay()
1240 * is supposed to be reasonably fast.
1241 *
1242 * Instead, we check the almost equivalent but somewhat conservative
1243 * condition below, and we rely on the fact that switch_mm_irqs_off()
1244 * sets loaded_mm to LOADED_MM_SWITCHING before writing to CR3.
1245 */
1246 if (loaded_mm != current_mm)
1247 return false;
1248
1249 VM_WARN_ON_ONCE(current_mm->pgd != __va(read_cr3_pa()));
1250
1251 return true;
1252 }
1253
tlbflush_read_file(struct file * file,char __user * user_buf,size_t count,loff_t * ppos)1254 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
1255 size_t count, loff_t *ppos)
1256 {
1257 char buf[32];
1258 unsigned int len;
1259
1260 len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
1261 return simple_read_from_buffer(user_buf, count, ppos, buf, len);
1262 }
1263
tlbflush_write_file(struct file * file,const char __user * user_buf,size_t count,loff_t * ppos)1264 static ssize_t tlbflush_write_file(struct file *file,
1265 const char __user *user_buf, size_t count, loff_t *ppos)
1266 {
1267 char buf[32];
1268 ssize_t len;
1269 int ceiling;
1270
1271 len = min(count, sizeof(buf) - 1);
1272 if (copy_from_user(buf, user_buf, len))
1273 return -EFAULT;
1274
1275 buf[len] = '\0';
1276 if (kstrtoint(buf, 0, &ceiling))
1277 return -EINVAL;
1278
1279 if (ceiling < 0)
1280 return -EINVAL;
1281
1282 tlb_single_page_flush_ceiling = ceiling;
1283 return count;
1284 }
1285
1286 static const struct file_operations fops_tlbflush = {
1287 .read = tlbflush_read_file,
1288 .write = tlbflush_write_file,
1289 .llseek = default_llseek,
1290 };
1291
create_tlb_single_page_flush_ceiling(void)1292 static int __init create_tlb_single_page_flush_ceiling(void)
1293 {
1294 debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
1295 arch_debugfs_dir, NULL, &fops_tlbflush);
1296 return 0;
1297 }
1298 late_initcall(create_tlb_single_page_flush_ceiling);
1299