1 /*
2  *  drivers/mtd/nand.c
3  *
4  *  Overview:
5  *   This is the generic MTD driver for NAND flash devices. It should be
6  *   capable of working with almost all NAND chips currently available.
7  *   Basic support for AG-AND chips is provided.
8  *
9  *	Additional technical information is available on
10  *	http://www.linux-mtd.infradead.org/doc/nand.html
11  *
12  *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13  *		  2002-2006 Thomas Gleixner (tglx@linutronix.de)
14  *
15  *  Credits:
16  *	David Woodhouse for adding multichip support
17  *
18  *	Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19  *	rework for 2K page size chips
20  *
21  *  TODO:
22  *	Enable cached programming for 2k page size chips
23  *	Check, if mtd->ecctype should be set to MTD_ECC_HW
24  *	if we have HW ECC support.
25  *	The AG-AND chips have nice features for speed improvement,
26  *	which are not supported yet. Read / program 4 pages in one go.
27  *	BBT table is not serialized, has to be fixed
28  *
29  * This program is free software; you can redistribute it and/or modify
30  * it under the terms of the GNU General Public License version 2 as
31  * published by the Free Software Foundation.
32  *
33  */
34 
35 #include <linux/module.h>
36 #include <linux/delay.h>
37 #include <linux/errno.h>
38 #include <linux/err.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42 #include <linux/mtd/mtd.h>
43 #include <linux/mtd/nand.h>
44 #include <linux/mtd/nand_ecc.h>
45 #include <linux/mtd/nand_bch.h>
46 #include <linux/interrupt.h>
47 #include <linux/bitops.h>
48 #include <linux/leds.h>
49 #include <linux/io.h>
50 #include <linux/mtd/partitions.h>
51 
52 /* Define default oob placement schemes for large and small page devices */
53 static struct nand_ecclayout nand_oob_8 = {
54 	.eccbytes = 3,
55 	.eccpos = {0, 1, 2},
56 	.oobfree = {
57 		{.offset = 3,
58 		 .length = 2},
59 		{.offset = 6,
60 		 .length = 2} }
61 };
62 
63 static struct nand_ecclayout nand_oob_16 = {
64 	.eccbytes = 6,
65 	.eccpos = {0, 1, 2, 3, 6, 7},
66 	.oobfree = {
67 		{.offset = 8,
68 		 . length = 8} }
69 };
70 
71 static struct nand_ecclayout nand_oob_64 = {
72 	.eccbytes = 24,
73 	.eccpos = {
74 		   40, 41, 42, 43, 44, 45, 46, 47,
75 		   48, 49, 50, 51, 52, 53, 54, 55,
76 		   56, 57, 58, 59, 60, 61, 62, 63},
77 	.oobfree = {
78 		{.offset = 2,
79 		 .length = 38} }
80 };
81 
82 static struct nand_ecclayout nand_oob_128 = {
83 	.eccbytes = 48,
84 	.eccpos = {
85 		   80, 81, 82, 83, 84, 85, 86, 87,
86 		   88, 89, 90, 91, 92, 93, 94, 95,
87 		   96, 97, 98, 99, 100, 101, 102, 103,
88 		   104, 105, 106, 107, 108, 109, 110, 111,
89 		   112, 113, 114, 115, 116, 117, 118, 119,
90 		   120, 121, 122, 123, 124, 125, 126, 127},
91 	.oobfree = {
92 		{.offset = 2,
93 		 .length = 78} }
94 };
95 
96 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
97 			   int new_state);
98 
99 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
100 			     struct mtd_oob_ops *ops);
101 
102 /*
103  * For devices which display every fart in the system on a separate LED. Is
104  * compiled away when LED support is disabled.
105  */
106 DEFINE_LED_TRIGGER(nand_led_trigger);
107 
check_offs_len(struct mtd_info * mtd,loff_t ofs,uint64_t len)108 static int check_offs_len(struct mtd_info *mtd,
109 					loff_t ofs, uint64_t len)
110 {
111 	struct nand_chip *chip = mtd->priv;
112 	int ret = 0;
113 
114 	/* Start address must align on block boundary */
115 	if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
116 		pr_debug("%s: unaligned address\n", __func__);
117 		ret = -EINVAL;
118 	}
119 
120 	/* Length must align on block boundary */
121 	if (len & ((1 << chip->phys_erase_shift) - 1)) {
122 		pr_debug("%s: length not block aligned\n", __func__);
123 		ret = -EINVAL;
124 	}
125 
126 	return ret;
127 }
128 
129 /**
130  * nand_release_device - [GENERIC] release chip
131  * @mtd: MTD device structure
132  *
133  * Deselect, release chip lock and wake up anyone waiting on the device.
134  */
nand_release_device(struct mtd_info * mtd)135 static void nand_release_device(struct mtd_info *mtd)
136 {
137 	struct nand_chip *chip = mtd->priv;
138 
139 	/* De-select the NAND device */
140 	chip->select_chip(mtd, -1);
141 
142 	/* Release the controller and the chip */
143 	spin_lock(&chip->controller->lock);
144 	chip->controller->active = NULL;
145 	chip->state = FL_READY;
146 	wake_up(&chip->controller->wq);
147 	spin_unlock(&chip->controller->lock);
148 }
149 
150 /**
151  * nand_read_byte - [DEFAULT] read one byte from the chip
152  * @mtd: MTD device structure
153  *
154  * Default read function for 8bit buswidth
155  */
nand_read_byte(struct mtd_info * mtd)156 static uint8_t nand_read_byte(struct mtd_info *mtd)
157 {
158 	struct nand_chip *chip = mtd->priv;
159 	return readb(chip->IO_ADDR_R);
160 }
161 
162 /**
163  * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
164  * nand_read_byte16 - [DEFAULT] read one byte endianness aware from the chip
165  * @mtd: MTD device structure
166  *
167  * Default read function for 16bit buswidth with endianness conversion.
168  *
169  */
nand_read_byte16(struct mtd_info * mtd)170 static uint8_t nand_read_byte16(struct mtd_info *mtd)
171 {
172 	struct nand_chip *chip = mtd->priv;
173 	return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
174 }
175 
176 /**
177  * nand_read_word - [DEFAULT] read one word from the chip
178  * @mtd: MTD device structure
179  *
180  * Default read function for 16bit buswidth without endianness conversion.
181  */
nand_read_word(struct mtd_info * mtd)182 static u16 nand_read_word(struct mtd_info *mtd)
183 {
184 	struct nand_chip *chip = mtd->priv;
185 	return readw(chip->IO_ADDR_R);
186 }
187 
188 /**
189  * nand_select_chip - [DEFAULT] control CE line
190  * @mtd: MTD device structure
191  * @chipnr: chipnumber to select, -1 for deselect
192  *
193  * Default select function for 1 chip devices.
194  */
nand_select_chip(struct mtd_info * mtd,int chipnr)195 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
196 {
197 	struct nand_chip *chip = mtd->priv;
198 
199 	switch (chipnr) {
200 	case -1:
201 		chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
202 		break;
203 	case 0:
204 		break;
205 
206 	default:
207 		BUG();
208 	}
209 }
210 
211 /**
212  * nand_write_buf - [DEFAULT] write buffer to chip
213  * @mtd: MTD device structure
214  * @buf: data buffer
215  * @len: number of bytes to write
216  *
217  * Default write function for 8bit buswidth.
218  */
nand_write_buf(struct mtd_info * mtd,const uint8_t * buf,int len)219 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
220 {
221 	int i;
222 	struct nand_chip *chip = mtd->priv;
223 
224 	for (i = 0; i < len; i++)
225 		writeb(buf[i], chip->IO_ADDR_W);
226 }
227 
228 /**
229  * nand_read_buf - [DEFAULT] read chip data into buffer
230  * @mtd: MTD device structure
231  * @buf: buffer to store date
232  * @len: number of bytes to read
233  *
234  * Default read function for 8bit buswidth.
235  */
nand_read_buf(struct mtd_info * mtd,uint8_t * buf,int len)236 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
237 {
238 	int i;
239 	struct nand_chip *chip = mtd->priv;
240 
241 	for (i = 0; i < len; i++)
242 		buf[i] = readb(chip->IO_ADDR_R);
243 }
244 
245 /**
246  * nand_verify_buf - [DEFAULT] Verify chip data against buffer
247  * @mtd: MTD device structure
248  * @buf: buffer containing the data to compare
249  * @len: number of bytes to compare
250  *
251  * Default verify function for 8bit buswidth.
252  */
nand_verify_buf(struct mtd_info * mtd,const uint8_t * buf,int len)253 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
254 {
255 	int i;
256 	struct nand_chip *chip = mtd->priv;
257 
258 	for (i = 0; i < len; i++)
259 		if (buf[i] != readb(chip->IO_ADDR_R))
260 			return -EFAULT;
261 	return 0;
262 }
263 
264 /**
265  * nand_write_buf16 - [DEFAULT] write buffer to chip
266  * @mtd: MTD device structure
267  * @buf: data buffer
268  * @len: number of bytes to write
269  *
270  * Default write function for 16bit buswidth.
271  */
nand_write_buf16(struct mtd_info * mtd,const uint8_t * buf,int len)272 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
273 {
274 	int i;
275 	struct nand_chip *chip = mtd->priv;
276 	u16 *p = (u16 *) buf;
277 	len >>= 1;
278 
279 	for (i = 0; i < len; i++)
280 		writew(p[i], chip->IO_ADDR_W);
281 
282 }
283 
284 /**
285  * nand_read_buf16 - [DEFAULT] read chip data into buffer
286  * @mtd: MTD device structure
287  * @buf: buffer to store date
288  * @len: number of bytes to read
289  *
290  * Default read function for 16bit buswidth.
291  */
nand_read_buf16(struct mtd_info * mtd,uint8_t * buf,int len)292 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
293 {
294 	int i;
295 	struct nand_chip *chip = mtd->priv;
296 	u16 *p = (u16 *) buf;
297 	len >>= 1;
298 
299 	for (i = 0; i < len; i++)
300 		p[i] = readw(chip->IO_ADDR_R);
301 }
302 
303 /**
304  * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
305  * @mtd: MTD device structure
306  * @buf: buffer containing the data to compare
307  * @len: number of bytes to compare
308  *
309  * Default verify function for 16bit buswidth.
310  */
nand_verify_buf16(struct mtd_info * mtd,const uint8_t * buf,int len)311 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
312 {
313 	int i;
314 	struct nand_chip *chip = mtd->priv;
315 	u16 *p = (u16 *) buf;
316 	len >>= 1;
317 
318 	for (i = 0; i < len; i++)
319 		if (p[i] != readw(chip->IO_ADDR_R))
320 			return -EFAULT;
321 
322 	return 0;
323 }
324 
325 /**
326  * nand_block_bad - [DEFAULT] Read bad block marker from the chip
327  * @mtd: MTD device structure
328  * @ofs: offset from device start
329  * @getchip: 0, if the chip is already selected
330  *
331  * Check, if the block is bad.
332  */
nand_block_bad(struct mtd_info * mtd,loff_t ofs,int getchip)333 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
334 {
335 	int page, chipnr, res = 0, i = 0;
336 	struct nand_chip *chip = mtd->priv;
337 	u16 bad;
338 
339 	if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
340 		ofs += mtd->erasesize - mtd->writesize;
341 
342 	page = (int)(ofs >> chip->page_shift) & chip->pagemask;
343 
344 	if (getchip) {
345 		chipnr = (int)(ofs >> chip->chip_shift);
346 
347 		nand_get_device(chip, mtd, FL_READING);
348 
349 		/* Select the NAND device */
350 		chip->select_chip(mtd, chipnr);
351 	}
352 
353 	do {
354 		if (chip->options & NAND_BUSWIDTH_16) {
355 			chip->cmdfunc(mtd, NAND_CMD_READOOB,
356 					chip->badblockpos & 0xFE, page);
357 			bad = cpu_to_le16(chip->read_word(mtd));
358 			if (chip->badblockpos & 0x1)
359 				bad >>= 8;
360 			else
361 				bad &= 0xFF;
362 		} else {
363 			chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
364 					page);
365 			bad = chip->read_byte(mtd);
366 		}
367 
368 		if (likely(chip->badblockbits == 8))
369 			res = bad != 0xFF;
370 		else
371 			res = hweight8(bad) < chip->badblockbits;
372 		ofs += mtd->writesize;
373 		page = (int)(ofs >> chip->page_shift) & chip->pagemask;
374 		i++;
375 	} while (!res && i < 2 && (chip->bbt_options & NAND_BBT_SCAN2NDPAGE));
376 
377 	if (getchip)
378 		nand_release_device(mtd);
379 
380 	return res;
381 }
382 
383 /**
384  * nand_default_block_markbad - [DEFAULT] mark a block bad
385  * @mtd: MTD device structure
386  * @ofs: offset from device start
387  *
388  * This is the default implementation, which can be overridden by a hardware
389  * specific driver. We try operations in the following order, according to our
390  * bbt_options (NAND_BBT_NO_OOB_BBM and NAND_BBT_USE_FLASH):
391  *  (1) erase the affected block, to allow OOB marker to be written cleanly
392  *  (2) update in-memory BBT
393  *  (3) write bad block marker to OOB area of affected block
394  *  (4) update flash-based BBT
395  * Note that we retain the first error encountered in (3) or (4), finish the
396  * procedures, and dump the error in the end.
397 */
nand_default_block_markbad(struct mtd_info * mtd,loff_t ofs)398 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
399 {
400 	struct nand_chip *chip = mtd->priv;
401 	uint8_t buf[2] = { 0, 0 };
402 	int block, res, ret = 0, i = 0;
403 	int write_oob = !(chip->bbt_options & NAND_BBT_NO_OOB_BBM);
404 
405 	if (write_oob) {
406 		struct erase_info einfo;
407 
408 		/* Attempt erase before marking OOB */
409 		memset(&einfo, 0, sizeof(einfo));
410 		einfo.mtd = mtd;
411 		einfo.addr = ofs;
412 		einfo.len = 1 << chip->phys_erase_shift;
413 		nand_erase_nand(mtd, &einfo, 0);
414 	}
415 
416 	/* Get block number */
417 	block = (int)(ofs >> chip->bbt_erase_shift);
418 	/* Mark block bad in memory-based BBT */
419 	if (chip->bbt)
420 		chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
421 
422 	/* Write bad block marker to OOB */
423 	if (write_oob) {
424 		struct mtd_oob_ops ops;
425 		loff_t wr_ofs = ofs;
426 
427 		nand_get_device(chip, mtd, FL_WRITING);
428 
429 		ops.datbuf = NULL;
430 		ops.oobbuf = buf;
431 		ops.ooboffs = chip->badblockpos;
432 		if (chip->options & NAND_BUSWIDTH_16) {
433 			ops.ooboffs &= ~0x01;
434 			ops.len = ops.ooblen = 2;
435 		} else {
436 			ops.len = ops.ooblen = 1;
437 		}
438 		ops.mode = MTD_OPS_PLACE_OOB;
439 
440 		/* Write to first/last page(s) if necessary */
441 		if (chip->bbt_options & NAND_BBT_SCANLASTPAGE)
442 			wr_ofs += mtd->erasesize - mtd->writesize;
443 		do {
444 			res = nand_do_write_oob(mtd, wr_ofs, &ops);
445 			if (!ret)
446 				ret = res;
447 
448 			i++;
449 			wr_ofs += mtd->writesize;
450 		} while ((chip->bbt_options & NAND_BBT_SCAN2NDPAGE) && i < 2);
451 
452 		nand_release_device(mtd);
453 	}
454 
455 	/* Update flash-based bad block table */
456 	if (chip->bbt_options & NAND_BBT_USE_FLASH) {
457 		res = nand_update_bbt(mtd, ofs);
458 		if (!ret)
459 			ret = res;
460 	}
461 
462 	if (!ret)
463 		mtd->ecc_stats.badblocks++;
464 
465 	return ret;
466 }
467 
468 /**
469  * nand_check_wp - [GENERIC] check if the chip is write protected
470  * @mtd: MTD device structure
471  *
472  * Check, if the device is write protected. The function expects, that the
473  * device is already selected.
474  */
nand_check_wp(struct mtd_info * mtd)475 static int nand_check_wp(struct mtd_info *mtd)
476 {
477 	struct nand_chip *chip = mtd->priv;
478 
479 	/* Broken xD cards report WP despite being writable */
480 	if (chip->options & NAND_BROKEN_XD)
481 		return 0;
482 
483 	/* Check the WP bit */
484 	chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
485 	return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
486 }
487 
488 /**
489  * nand_block_checkbad - [GENERIC] Check if a block is marked bad
490  * @mtd: MTD device structure
491  * @ofs: offset from device start
492  * @getchip: 0, if the chip is already selected
493  * @allowbbt: 1, if its allowed to access the bbt area
494  *
495  * Check, if the block is bad. Either by reading the bad block table or
496  * calling of the scan function.
497  */
nand_block_checkbad(struct mtd_info * mtd,loff_t ofs,int getchip,int allowbbt)498 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
499 			       int allowbbt)
500 {
501 	struct nand_chip *chip = mtd->priv;
502 
503 	if (!chip->bbt)
504 		return chip->block_bad(mtd, ofs, getchip);
505 
506 	/* Return info from the table */
507 	return nand_isbad_bbt(mtd, ofs, allowbbt);
508 }
509 
510 /**
511  * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
512  * @mtd: MTD device structure
513  * @timeo: Timeout
514  *
515  * Helper function for nand_wait_ready used when needing to wait in interrupt
516  * context.
517  */
panic_nand_wait_ready(struct mtd_info * mtd,unsigned long timeo)518 static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
519 {
520 	struct nand_chip *chip = mtd->priv;
521 	int i;
522 
523 	/* Wait for the device to get ready */
524 	for (i = 0; i < timeo; i++) {
525 		if (chip->dev_ready(mtd))
526 			break;
527 		touch_softlockup_watchdog();
528 		mdelay(1);
529 	}
530 }
531 
532 /* Wait for the ready pin, after a command. The timeout is caught later. */
nand_wait_ready(struct mtd_info * mtd)533 void nand_wait_ready(struct mtd_info *mtd)
534 {
535 	struct nand_chip *chip = mtd->priv;
536 	unsigned long timeo = jiffies + 2;
537 
538 	/* 400ms timeout */
539 	if (in_interrupt() || oops_in_progress)
540 		return panic_nand_wait_ready(mtd, 400);
541 
542 	led_trigger_event(nand_led_trigger, LED_FULL);
543 	/* Wait until command is processed or timeout occurs */
544 	do {
545 		if (chip->dev_ready(mtd))
546 			break;
547 		touch_softlockup_watchdog();
548 	} while (time_before(jiffies, timeo));
549 	led_trigger_event(nand_led_trigger, LED_OFF);
550 }
551 EXPORT_SYMBOL_GPL(nand_wait_ready);
552 
553 /**
554  * nand_command - [DEFAULT] Send command to NAND device
555  * @mtd: MTD device structure
556  * @command: the command to be sent
557  * @column: the column address for this command, -1 if none
558  * @page_addr: the page address for this command, -1 if none
559  *
560  * Send command to NAND device. This function is used for small page devices
561  * (256/512 Bytes per page).
562  */
nand_command(struct mtd_info * mtd,unsigned int command,int column,int page_addr)563 static void nand_command(struct mtd_info *mtd, unsigned int command,
564 			 int column, int page_addr)
565 {
566 	register struct nand_chip *chip = mtd->priv;
567 	int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
568 
569 	/* Write out the command to the device */
570 	if (command == NAND_CMD_SEQIN) {
571 		int readcmd;
572 
573 		if (column >= mtd->writesize) {
574 			/* OOB area */
575 			column -= mtd->writesize;
576 			readcmd = NAND_CMD_READOOB;
577 		} else if (column < 256) {
578 			/* First 256 bytes --> READ0 */
579 			readcmd = NAND_CMD_READ0;
580 		} else {
581 			column -= 256;
582 			readcmd = NAND_CMD_READ1;
583 		}
584 		chip->cmd_ctrl(mtd, readcmd, ctrl);
585 		ctrl &= ~NAND_CTRL_CHANGE;
586 	}
587 	chip->cmd_ctrl(mtd, command, ctrl);
588 
589 	/* Address cycle, when necessary */
590 	ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
591 	/* Serially input address */
592 	if (column != -1) {
593 		/* Adjust columns for 16 bit buswidth */
594 		if (chip->options & NAND_BUSWIDTH_16)
595 			column >>= 1;
596 		chip->cmd_ctrl(mtd, column, ctrl);
597 		ctrl &= ~NAND_CTRL_CHANGE;
598 	}
599 	if (page_addr != -1) {
600 		chip->cmd_ctrl(mtd, page_addr, ctrl);
601 		ctrl &= ~NAND_CTRL_CHANGE;
602 		chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
603 		/* One more address cycle for devices > 32MiB */
604 		if (chip->chipsize > (32 << 20))
605 			chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
606 	}
607 	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
608 
609 	/*
610 	 * Program and erase have their own busy handlers status and sequential
611 	 * in needs no delay
612 	 */
613 	switch (command) {
614 
615 	case NAND_CMD_PAGEPROG:
616 	case NAND_CMD_ERASE1:
617 	case NAND_CMD_ERASE2:
618 	case NAND_CMD_SEQIN:
619 	case NAND_CMD_STATUS:
620 		return;
621 
622 	case NAND_CMD_RESET:
623 		if (chip->dev_ready)
624 			break;
625 		udelay(chip->chip_delay);
626 		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
627 			       NAND_CTRL_CLE | NAND_CTRL_CHANGE);
628 		chip->cmd_ctrl(mtd,
629 			       NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
630 		while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
631 				;
632 		return;
633 
634 		/* This applies to read commands */
635 	default:
636 		/*
637 		 * If we don't have access to the busy pin, we apply the given
638 		 * command delay
639 		 */
640 		if (!chip->dev_ready) {
641 			udelay(chip->chip_delay);
642 			return;
643 		}
644 	}
645 	/*
646 	 * Apply this short delay always to ensure that we do wait tWB in
647 	 * any case on any machine.
648 	 */
649 	ndelay(100);
650 
651 	nand_wait_ready(mtd);
652 }
653 
654 /**
655  * nand_command_lp - [DEFAULT] Send command to NAND large page device
656  * @mtd: MTD device structure
657  * @command: the command to be sent
658  * @column: the column address for this command, -1 if none
659  * @page_addr: the page address for this command, -1 if none
660  *
661  * Send command to NAND device. This is the version for the new large page
662  * devices. We don't have the separate regions as we have in the small page
663  * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
664  */
nand_command_lp(struct mtd_info * mtd,unsigned int command,int column,int page_addr)665 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
666 			    int column, int page_addr)
667 {
668 	register struct nand_chip *chip = mtd->priv;
669 
670 	/* Emulate NAND_CMD_READOOB */
671 	if (command == NAND_CMD_READOOB) {
672 		column += mtd->writesize;
673 		command = NAND_CMD_READ0;
674 	}
675 
676 	/* Command latch cycle */
677 	chip->cmd_ctrl(mtd, command & 0xff,
678 		       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
679 
680 	if (column != -1 || page_addr != -1) {
681 		int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
682 
683 		/* Serially input address */
684 		if (column != -1) {
685 			/* Adjust columns for 16 bit buswidth */
686 			if (chip->options & NAND_BUSWIDTH_16)
687 				column >>= 1;
688 			chip->cmd_ctrl(mtd, column, ctrl);
689 			ctrl &= ~NAND_CTRL_CHANGE;
690 			chip->cmd_ctrl(mtd, column >> 8, ctrl);
691 		}
692 		if (page_addr != -1) {
693 			chip->cmd_ctrl(mtd, page_addr, ctrl);
694 			chip->cmd_ctrl(mtd, page_addr >> 8,
695 				       NAND_NCE | NAND_ALE);
696 			/* One more address cycle for devices > 128MiB */
697 			if (chip->chipsize > (128 << 20))
698 				chip->cmd_ctrl(mtd, page_addr >> 16,
699 					       NAND_NCE | NAND_ALE);
700 		}
701 	}
702 	chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
703 
704 	/*
705 	 * Program and erase have their own busy handlers status, sequential
706 	 * in, and deplete1 need no delay.
707 	 */
708 	switch (command) {
709 
710 	case NAND_CMD_CACHEDPROG:
711 	case NAND_CMD_PAGEPROG:
712 	case NAND_CMD_ERASE1:
713 	case NAND_CMD_ERASE2:
714 	case NAND_CMD_SEQIN:
715 	case NAND_CMD_RNDIN:
716 	case NAND_CMD_STATUS:
717 	case NAND_CMD_DEPLETE1:
718 		return;
719 
720 	case NAND_CMD_STATUS_ERROR:
721 	case NAND_CMD_STATUS_ERROR0:
722 	case NAND_CMD_STATUS_ERROR1:
723 	case NAND_CMD_STATUS_ERROR2:
724 	case NAND_CMD_STATUS_ERROR3:
725 		/* Read error status commands require only a short delay */
726 		udelay(chip->chip_delay);
727 		return;
728 
729 	case NAND_CMD_RESET:
730 		if (chip->dev_ready)
731 			break;
732 		udelay(chip->chip_delay);
733 		chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
734 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
735 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
736 			       NAND_NCE | NAND_CTRL_CHANGE);
737 		while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
738 				;
739 		return;
740 
741 	case NAND_CMD_RNDOUT:
742 		/* No ready / busy check necessary */
743 		chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
744 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
745 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
746 			       NAND_NCE | NAND_CTRL_CHANGE);
747 		return;
748 
749 	case NAND_CMD_READ0:
750 		chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
751 			       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
752 		chip->cmd_ctrl(mtd, NAND_CMD_NONE,
753 			       NAND_NCE | NAND_CTRL_CHANGE);
754 
755 		/* This applies to read commands */
756 	default:
757 		/*
758 		 * If we don't have access to the busy pin, we apply the given
759 		 * command delay.
760 		 */
761 		if (!chip->dev_ready) {
762 			udelay(chip->chip_delay);
763 			return;
764 		}
765 	}
766 
767 	/*
768 	 * Apply this short delay always to ensure that we do wait tWB in
769 	 * any case on any machine.
770 	 */
771 	ndelay(100);
772 
773 	nand_wait_ready(mtd);
774 }
775 
776 /**
777  * panic_nand_get_device - [GENERIC] Get chip for selected access
778  * @chip: the nand chip descriptor
779  * @mtd: MTD device structure
780  * @new_state: the state which is requested
781  *
782  * Used when in panic, no locks are taken.
783  */
panic_nand_get_device(struct nand_chip * chip,struct mtd_info * mtd,int new_state)784 static void panic_nand_get_device(struct nand_chip *chip,
785 		      struct mtd_info *mtd, int new_state)
786 {
787 	/* Hardware controller shared among independent devices */
788 	chip->controller->active = chip;
789 	chip->state = new_state;
790 }
791 
792 /**
793  * nand_get_device - [GENERIC] Get chip for selected access
794  * @chip: the nand chip descriptor
795  * @mtd: MTD device structure
796  * @new_state: the state which is requested
797  *
798  * Get the device and lock it for exclusive access
799  */
800 static int
nand_get_device(struct nand_chip * chip,struct mtd_info * mtd,int new_state)801 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
802 {
803 	spinlock_t *lock = &chip->controller->lock;
804 	wait_queue_head_t *wq = &chip->controller->wq;
805 	DECLARE_WAITQUEUE(wait, current);
806 retry:
807 	spin_lock(lock);
808 
809 	/* Hardware controller shared among independent devices */
810 	if (!chip->controller->active)
811 		chip->controller->active = chip;
812 
813 	if (chip->controller->active == chip && chip->state == FL_READY) {
814 		chip->state = new_state;
815 		spin_unlock(lock);
816 		return 0;
817 	}
818 	if (new_state == FL_PM_SUSPENDED) {
819 		if (chip->controller->active->state == FL_PM_SUSPENDED) {
820 			chip->state = FL_PM_SUSPENDED;
821 			spin_unlock(lock);
822 			return 0;
823 		}
824 	}
825 	set_current_state(TASK_UNINTERRUPTIBLE);
826 	add_wait_queue(wq, &wait);
827 	spin_unlock(lock);
828 	schedule();
829 	remove_wait_queue(wq, &wait);
830 	goto retry;
831 }
832 
833 /**
834  * panic_nand_wait - [GENERIC] wait until the command is done
835  * @mtd: MTD device structure
836  * @chip: NAND chip structure
837  * @timeo: timeout
838  *
839  * Wait for command done. This is a helper function for nand_wait used when
840  * we are in interrupt context. May happen when in panic and trying to write
841  * an oops through mtdoops.
842  */
panic_nand_wait(struct mtd_info * mtd,struct nand_chip * chip,unsigned long timeo)843 static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
844 			    unsigned long timeo)
845 {
846 	int i;
847 	for (i = 0; i < timeo; i++) {
848 		if (chip->dev_ready) {
849 			if (chip->dev_ready(mtd))
850 				break;
851 		} else {
852 			if (chip->read_byte(mtd) & NAND_STATUS_READY)
853 				break;
854 		}
855 		mdelay(1);
856 	}
857 }
858 
859 /**
860  * nand_wait - [DEFAULT] wait until the command is done
861  * @mtd: MTD device structure
862  * @chip: NAND chip structure
863  *
864  * Wait for command done. This applies to erase and program only. Erase can
865  * take up to 400ms and program up to 20ms according to general NAND and
866  * SmartMedia specs.
867  */
nand_wait(struct mtd_info * mtd,struct nand_chip * chip)868 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
869 {
870 
871 	unsigned long timeo = jiffies;
872 	int status, state = chip->state;
873 
874 	if (state == FL_ERASING)
875 		timeo += (HZ * 400) / 1000;
876 	else
877 		timeo += (HZ * 20) / 1000;
878 
879 	led_trigger_event(nand_led_trigger, LED_FULL);
880 
881 	/*
882 	 * Apply this short delay always to ensure that we do wait tWB in any
883 	 * case on any machine.
884 	 */
885 	ndelay(100);
886 
887 	if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
888 		chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
889 	else
890 		chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
891 
892 	if (in_interrupt() || oops_in_progress)
893 		panic_nand_wait(mtd, chip, timeo);
894 	else {
895 		while (time_before(jiffies, timeo)) {
896 			if (chip->dev_ready) {
897 				if (chip->dev_ready(mtd))
898 					break;
899 			} else {
900 				if (chip->read_byte(mtd) & NAND_STATUS_READY)
901 					break;
902 			}
903 			cond_resched();
904 		}
905 	}
906 	led_trigger_event(nand_led_trigger, LED_OFF);
907 
908 	status = (int)chip->read_byte(mtd);
909 	return status;
910 }
911 
912 /**
913  * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
914  * @mtd: mtd info
915  * @ofs: offset to start unlock from
916  * @len: length to unlock
917  * @invert: when = 0, unlock the range of blocks within the lower and
918  *                    upper boundary address
919  *          when = 1, unlock the range of blocks outside the boundaries
920  *                    of the lower and upper boundary address
921  *
922  * Returs unlock status.
923  */
__nand_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len,int invert)924 static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
925 					uint64_t len, int invert)
926 {
927 	int ret = 0;
928 	int status, page;
929 	struct nand_chip *chip = mtd->priv;
930 
931 	/* Submit address of first page to unlock */
932 	page = ofs >> chip->page_shift;
933 	chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
934 
935 	/* Submit address of last page to unlock */
936 	page = (ofs + len) >> chip->page_shift;
937 	chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
938 				(page | invert) & chip->pagemask);
939 
940 	/* Call wait ready function */
941 	status = chip->waitfunc(mtd, chip);
942 	/* See if device thinks it succeeded */
943 	if (status & 0x01) {
944 		pr_debug("%s: error status = 0x%08x\n",
945 					__func__, status);
946 		ret = -EIO;
947 	}
948 
949 	return ret;
950 }
951 
952 /**
953  * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
954  * @mtd: mtd info
955  * @ofs: offset to start unlock from
956  * @len: length to unlock
957  *
958  * Returns unlock status.
959  */
nand_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)960 int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
961 {
962 	int ret = 0;
963 	int chipnr;
964 	struct nand_chip *chip = mtd->priv;
965 
966 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
967 			__func__, (unsigned long long)ofs, len);
968 
969 	if (check_offs_len(mtd, ofs, len))
970 		ret = -EINVAL;
971 
972 	/* Align to last block address if size addresses end of the device */
973 	if (ofs + len == mtd->size)
974 		len -= mtd->erasesize;
975 
976 	nand_get_device(chip, mtd, FL_UNLOCKING);
977 
978 	/* Shift to get chip number */
979 	chipnr = ofs >> chip->chip_shift;
980 
981 	chip->select_chip(mtd, chipnr);
982 
983 	/* Check, if it is write protected */
984 	if (nand_check_wp(mtd)) {
985 		pr_debug("%s: device is write protected!\n",
986 					__func__);
987 		ret = -EIO;
988 		goto out;
989 	}
990 
991 	ret = __nand_unlock(mtd, ofs, len, 0);
992 
993 out:
994 	nand_release_device(mtd);
995 
996 	return ret;
997 }
998 EXPORT_SYMBOL(nand_unlock);
999 
1000 /**
1001  * nand_lock - [REPLACEABLE] locks all blocks present in the device
1002  * @mtd: mtd info
1003  * @ofs: offset to start unlock from
1004  * @len: length to unlock
1005  *
1006  * This feature is not supported in many NAND parts. 'Micron' NAND parts do
1007  * have this feature, but it allows only to lock all blocks, not for specified
1008  * range for block. Implementing 'lock' feature by making use of 'unlock', for
1009  * now.
1010  *
1011  * Returns lock status.
1012  */
nand_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)1013 int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1014 {
1015 	int ret = 0;
1016 	int chipnr, status, page;
1017 	struct nand_chip *chip = mtd->priv;
1018 
1019 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
1020 			__func__, (unsigned long long)ofs, len);
1021 
1022 	if (check_offs_len(mtd, ofs, len))
1023 		ret = -EINVAL;
1024 
1025 	nand_get_device(chip, mtd, FL_LOCKING);
1026 
1027 	/* Shift to get chip number */
1028 	chipnr = ofs >> chip->chip_shift;
1029 
1030 	chip->select_chip(mtd, chipnr);
1031 
1032 	/* Check, if it is write protected */
1033 	if (nand_check_wp(mtd)) {
1034 		pr_debug("%s: device is write protected!\n",
1035 					__func__);
1036 		status = MTD_ERASE_FAILED;
1037 		ret = -EIO;
1038 		goto out;
1039 	}
1040 
1041 	/* Submit address of first page to lock */
1042 	page = ofs >> chip->page_shift;
1043 	chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1044 
1045 	/* Call wait ready function */
1046 	status = chip->waitfunc(mtd, chip);
1047 	/* See if device thinks it succeeded */
1048 	if (status & 0x01) {
1049 		pr_debug("%s: error status = 0x%08x\n",
1050 					__func__, status);
1051 		ret = -EIO;
1052 		goto out;
1053 	}
1054 
1055 	ret = __nand_unlock(mtd, ofs, len, 0x1);
1056 
1057 out:
1058 	nand_release_device(mtd);
1059 
1060 	return ret;
1061 }
1062 EXPORT_SYMBOL(nand_lock);
1063 
1064 /**
1065  * nand_read_page_raw - [INTERN] read raw page data without ecc
1066  * @mtd: mtd info structure
1067  * @chip: nand chip info structure
1068  * @buf: buffer to store read data
1069  * @page: page number to read
1070  *
1071  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1072  */
nand_read_page_raw(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int page)1073 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1074 			      uint8_t *buf, int page)
1075 {
1076 	chip->read_buf(mtd, buf, mtd->writesize);
1077 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1078 	return 0;
1079 }
1080 
1081 /**
1082  * nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
1083  * @mtd: mtd info structure
1084  * @chip: nand chip info structure
1085  * @buf: buffer to store read data
1086  * @page: page number to read
1087  *
1088  * We need a special oob layout and handling even when OOB isn't used.
1089  */
nand_read_page_raw_syndrome(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int page)1090 static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1091 					struct nand_chip *chip,
1092 					uint8_t *buf, int page)
1093 {
1094 	int eccsize = chip->ecc.size;
1095 	int eccbytes = chip->ecc.bytes;
1096 	uint8_t *oob = chip->oob_poi;
1097 	int steps, size;
1098 
1099 	for (steps = chip->ecc.steps; steps > 0; steps--) {
1100 		chip->read_buf(mtd, buf, eccsize);
1101 		buf += eccsize;
1102 
1103 		if (chip->ecc.prepad) {
1104 			chip->read_buf(mtd, oob, chip->ecc.prepad);
1105 			oob += chip->ecc.prepad;
1106 		}
1107 
1108 		chip->read_buf(mtd, oob, eccbytes);
1109 		oob += eccbytes;
1110 
1111 		if (chip->ecc.postpad) {
1112 			chip->read_buf(mtd, oob, chip->ecc.postpad);
1113 			oob += chip->ecc.postpad;
1114 		}
1115 	}
1116 
1117 	size = mtd->oobsize - (oob - chip->oob_poi);
1118 	if (size)
1119 		chip->read_buf(mtd, oob, size);
1120 
1121 	return 0;
1122 }
1123 
1124 /**
1125  * nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
1126  * @mtd: mtd info structure
1127  * @chip: nand chip info structure
1128  * @buf: buffer to store read data
1129  * @page: page number to read
1130  */
nand_read_page_swecc(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int page)1131 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1132 				uint8_t *buf, int page)
1133 {
1134 	int i, eccsize = chip->ecc.size;
1135 	int eccbytes = chip->ecc.bytes;
1136 	int eccsteps = chip->ecc.steps;
1137 	uint8_t *p = buf;
1138 	uint8_t *ecc_calc = chip->buffers->ecccalc;
1139 	uint8_t *ecc_code = chip->buffers->ecccode;
1140 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1141 
1142 	chip->ecc.read_page_raw(mtd, chip, buf, page);
1143 
1144 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1145 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1146 
1147 	for (i = 0; i < chip->ecc.total; i++)
1148 		ecc_code[i] = chip->oob_poi[eccpos[i]];
1149 
1150 	eccsteps = chip->ecc.steps;
1151 	p = buf;
1152 
1153 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1154 		int stat;
1155 
1156 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1157 		if (stat < 0)
1158 			mtd->ecc_stats.failed++;
1159 		else
1160 			mtd->ecc_stats.corrected += stat;
1161 	}
1162 	return 0;
1163 }
1164 
1165 /**
1166  * nand_read_subpage - [REPLACEABLE] software ECC based sub-page read function
1167  * @mtd: mtd info structure
1168  * @chip: nand chip info structure
1169  * @data_offs: offset of requested data within the page
1170  * @readlen: data length
1171  * @bufpoi: buffer to store read data
1172  */
nand_read_subpage(struct mtd_info * mtd,struct nand_chip * chip,uint32_t data_offs,uint32_t readlen,uint8_t * bufpoi)1173 static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1174 			uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1175 {
1176 	int start_step, end_step, num_steps;
1177 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1178 	uint8_t *p;
1179 	int data_col_addr, i, gaps = 0;
1180 	int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1181 	int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1182 	int index = 0;
1183 
1184 	/* Column address within the page aligned to ECC size (256bytes) */
1185 	start_step = data_offs / chip->ecc.size;
1186 	end_step = (data_offs + readlen - 1) / chip->ecc.size;
1187 	num_steps = end_step - start_step + 1;
1188 
1189 	/* Data size aligned to ECC ecc.size */
1190 	datafrag_len = num_steps * chip->ecc.size;
1191 	eccfrag_len = num_steps * chip->ecc.bytes;
1192 
1193 	data_col_addr = start_step * chip->ecc.size;
1194 	/* If we read not a page aligned data */
1195 	if (data_col_addr != 0)
1196 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1197 
1198 	p = bufpoi + data_col_addr;
1199 	chip->read_buf(mtd, p, datafrag_len);
1200 
1201 	/* Calculate ECC */
1202 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1203 		chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1204 
1205 	/*
1206 	 * The performance is faster if we position offsets according to
1207 	 * ecc.pos. Let's make sure that there are no gaps in ECC positions.
1208 	 */
1209 	for (i = 0; i < eccfrag_len - 1; i++) {
1210 		if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1211 			eccpos[i + start_step * chip->ecc.bytes + 1]) {
1212 			gaps = 1;
1213 			break;
1214 		}
1215 	}
1216 	if (gaps) {
1217 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1218 		chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1219 	} else {
1220 		/*
1221 		 * Send the command to read the particular ECC bytes take care
1222 		 * about buswidth alignment in read_buf.
1223 		 */
1224 		index = start_step * chip->ecc.bytes;
1225 
1226 		aligned_pos = eccpos[index] & ~(busw - 1);
1227 		aligned_len = eccfrag_len;
1228 		if (eccpos[index] & (busw - 1))
1229 			aligned_len++;
1230 		if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1231 			aligned_len++;
1232 
1233 		chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1234 					mtd->writesize + aligned_pos, -1);
1235 		chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1236 	}
1237 
1238 	for (i = 0; i < eccfrag_len; i++)
1239 		chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1240 
1241 	p = bufpoi + data_col_addr;
1242 	for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1243 		int stat;
1244 
1245 		stat = chip->ecc.correct(mtd, p,
1246 			&chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1247 		if (stat < 0)
1248 			mtd->ecc_stats.failed++;
1249 		else
1250 			mtd->ecc_stats.corrected += stat;
1251 	}
1252 	return 0;
1253 }
1254 
1255 /**
1256  * nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
1257  * @mtd: mtd info structure
1258  * @chip: nand chip info structure
1259  * @buf: buffer to store read data
1260  * @page: page number to read
1261  *
1262  * Not for syndrome calculating ECC controllers which need a special oob layout.
1263  */
nand_read_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int page)1264 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1265 				uint8_t *buf, int page)
1266 {
1267 	int i, eccsize = chip->ecc.size;
1268 	int eccbytes = chip->ecc.bytes;
1269 	int eccsteps = chip->ecc.steps;
1270 	uint8_t *p = buf;
1271 	uint8_t *ecc_calc = chip->buffers->ecccalc;
1272 	uint8_t *ecc_code = chip->buffers->ecccode;
1273 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1274 
1275 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1276 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
1277 		chip->read_buf(mtd, p, eccsize);
1278 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1279 	}
1280 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1281 
1282 	for (i = 0; i < chip->ecc.total; i++)
1283 		ecc_code[i] = chip->oob_poi[eccpos[i]];
1284 
1285 	eccsteps = chip->ecc.steps;
1286 	p = buf;
1287 
1288 	for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1289 		int stat;
1290 
1291 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1292 		if (stat < 0)
1293 			mtd->ecc_stats.failed++;
1294 		else
1295 			mtd->ecc_stats.corrected += stat;
1296 	}
1297 	return 0;
1298 }
1299 
1300 /**
1301  * nand_read_page_hwecc_oob_first - [REPLACEABLE] hw ecc, read oob first
1302  * @mtd: mtd info structure
1303  * @chip: nand chip info structure
1304  * @buf: buffer to store read data
1305  * @page: page number to read
1306  *
1307  * Hardware ECC for large page chips, require OOB to be read first. For this
1308  * ECC mode, the write_page method is re-used from ECC_HW. These methods
1309  * read/write ECC from the OOB area, unlike the ECC_HW_SYNDROME support with
1310  * multiple ECC steps, follows the "infix ECC" scheme and reads/writes ECC from
1311  * the data area, by overwriting the NAND manufacturer bad block markings.
1312  */
nand_read_page_hwecc_oob_first(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int page)1313 static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1314 	struct nand_chip *chip, uint8_t *buf, int page)
1315 {
1316 	int i, eccsize = chip->ecc.size;
1317 	int eccbytes = chip->ecc.bytes;
1318 	int eccsteps = chip->ecc.steps;
1319 	uint8_t *p = buf;
1320 	uint8_t *ecc_code = chip->buffers->ecccode;
1321 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1322 	uint8_t *ecc_calc = chip->buffers->ecccalc;
1323 
1324 	/* Read the OOB area first */
1325 	chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1326 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1327 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1328 
1329 	for (i = 0; i < chip->ecc.total; i++)
1330 		ecc_code[i] = chip->oob_poi[eccpos[i]];
1331 
1332 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1333 		int stat;
1334 
1335 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
1336 		chip->read_buf(mtd, p, eccsize);
1337 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1338 
1339 		stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1340 		if (stat < 0)
1341 			mtd->ecc_stats.failed++;
1342 		else
1343 			mtd->ecc_stats.corrected += stat;
1344 	}
1345 	return 0;
1346 }
1347 
1348 /**
1349  * nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
1350  * @mtd: mtd info structure
1351  * @chip: nand chip info structure
1352  * @buf: buffer to store read data
1353  * @page: page number to read
1354  *
1355  * The hw generator calculates the error syndrome automatically. Therefore we
1356  * need a special oob layout and handling.
1357  */
nand_read_page_syndrome(struct mtd_info * mtd,struct nand_chip * chip,uint8_t * buf,int page)1358 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1359 				   uint8_t *buf, int page)
1360 {
1361 	int i, eccsize = chip->ecc.size;
1362 	int eccbytes = chip->ecc.bytes;
1363 	int eccsteps = chip->ecc.steps;
1364 	uint8_t *p = buf;
1365 	uint8_t *oob = chip->oob_poi;
1366 
1367 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1368 		int stat;
1369 
1370 		chip->ecc.hwctl(mtd, NAND_ECC_READ);
1371 		chip->read_buf(mtd, p, eccsize);
1372 
1373 		if (chip->ecc.prepad) {
1374 			chip->read_buf(mtd, oob, chip->ecc.prepad);
1375 			oob += chip->ecc.prepad;
1376 		}
1377 
1378 		chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1379 		chip->read_buf(mtd, oob, eccbytes);
1380 		stat = chip->ecc.correct(mtd, p, oob, NULL);
1381 
1382 		if (stat < 0)
1383 			mtd->ecc_stats.failed++;
1384 		else
1385 			mtd->ecc_stats.corrected += stat;
1386 
1387 		oob += eccbytes;
1388 
1389 		if (chip->ecc.postpad) {
1390 			chip->read_buf(mtd, oob, chip->ecc.postpad);
1391 			oob += chip->ecc.postpad;
1392 		}
1393 	}
1394 
1395 	/* Calculate remaining oob bytes */
1396 	i = mtd->oobsize - (oob - chip->oob_poi);
1397 	if (i)
1398 		chip->read_buf(mtd, oob, i);
1399 
1400 	return 0;
1401 }
1402 
1403 /**
1404  * nand_transfer_oob - [INTERN] Transfer oob to client buffer
1405  * @chip: nand chip structure
1406  * @oob: oob destination address
1407  * @ops: oob ops structure
1408  * @len: size of oob to transfer
1409  */
nand_transfer_oob(struct nand_chip * chip,uint8_t * oob,struct mtd_oob_ops * ops,size_t len)1410 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1411 				  struct mtd_oob_ops *ops, size_t len)
1412 {
1413 	switch (ops->mode) {
1414 
1415 	case MTD_OPS_PLACE_OOB:
1416 	case MTD_OPS_RAW:
1417 		memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1418 		return oob + len;
1419 
1420 	case MTD_OPS_AUTO_OOB: {
1421 		struct nand_oobfree *free = chip->ecc.layout->oobfree;
1422 		uint32_t boffs = 0, roffs = ops->ooboffs;
1423 		size_t bytes = 0;
1424 
1425 		for (; free->length && len; free++, len -= bytes) {
1426 			/* Read request not from offset 0? */
1427 			if (unlikely(roffs)) {
1428 				if (roffs >= free->length) {
1429 					roffs -= free->length;
1430 					continue;
1431 				}
1432 				boffs = free->offset + roffs;
1433 				bytes = min_t(size_t, len,
1434 					      (free->length - roffs));
1435 				roffs = 0;
1436 			} else {
1437 				bytes = min_t(size_t, len, free->length);
1438 				boffs = free->offset;
1439 			}
1440 			memcpy(oob, chip->oob_poi + boffs, bytes);
1441 			oob += bytes;
1442 		}
1443 		return oob;
1444 	}
1445 	default:
1446 		BUG();
1447 	}
1448 	return NULL;
1449 }
1450 
1451 /**
1452  * nand_do_read_ops - [INTERN] Read data with ECC
1453  * @mtd: MTD device structure
1454  * @from: offset to read from
1455  * @ops: oob ops structure
1456  *
1457  * Internal function. Called with chip held.
1458  */
nand_do_read_ops(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1459 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1460 			    struct mtd_oob_ops *ops)
1461 {
1462 	int chipnr, page, realpage, col, bytes, aligned;
1463 	struct nand_chip *chip = mtd->priv;
1464 	struct mtd_ecc_stats stats;
1465 	int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1466 	int sndcmd = 1;
1467 	int ret = 0;
1468 	uint32_t readlen = ops->len;
1469 	uint32_t oobreadlen = ops->ooblen;
1470 	uint32_t max_oobsize = ops->mode == MTD_OPS_AUTO_OOB ?
1471 		mtd->oobavail : mtd->oobsize;
1472 
1473 	uint8_t *bufpoi, *oob, *buf;
1474 
1475 	stats = mtd->ecc_stats;
1476 
1477 	chipnr = (int)(from >> chip->chip_shift);
1478 	chip->select_chip(mtd, chipnr);
1479 
1480 	realpage = (int)(from >> chip->page_shift);
1481 	page = realpage & chip->pagemask;
1482 
1483 	col = (int)(from & (mtd->writesize - 1));
1484 
1485 	buf = ops->datbuf;
1486 	oob = ops->oobbuf;
1487 
1488 	while (1) {
1489 		bytes = min(mtd->writesize - col, readlen);
1490 		aligned = (bytes == mtd->writesize);
1491 
1492 		/* Is the current page in the buffer? */
1493 		if (realpage != chip->pagebuf || oob) {
1494 			bufpoi = aligned ? buf : chip->buffers->databuf;
1495 
1496 			if (likely(sndcmd)) {
1497 				chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1498 				sndcmd = 0;
1499 			}
1500 
1501 			/* Now read the page into the buffer */
1502 			if (unlikely(ops->mode == MTD_OPS_RAW))
1503 				ret = chip->ecc.read_page_raw(mtd, chip,
1504 							      bufpoi, page);
1505 			else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1506 				ret = chip->ecc.read_subpage(mtd, chip,
1507 							col, bytes, bufpoi);
1508 			else
1509 				ret = chip->ecc.read_page(mtd, chip, bufpoi,
1510 							  page);
1511 			if (ret < 0) {
1512 				if (!aligned)
1513 					/* Invalidate page cache */
1514 					chip->pagebuf = -1;
1515 				break;
1516 			}
1517 
1518 			/* Transfer not aligned data */
1519 			if (!aligned) {
1520 				if (!NAND_SUBPAGE_READ(chip) && !oob &&
1521 				    !(mtd->ecc_stats.failed - stats.failed) &&
1522 				    (ops->mode != MTD_OPS_RAW))
1523 					chip->pagebuf = realpage;
1524 				else
1525 					/* Invalidate page cache */
1526 					chip->pagebuf = -1;
1527 				memcpy(buf, chip->buffers->databuf + col, bytes);
1528 			}
1529 
1530 			buf += bytes;
1531 
1532 			if (unlikely(oob)) {
1533 
1534 				int toread = min(oobreadlen, max_oobsize);
1535 
1536 				if (toread) {
1537 					oob = nand_transfer_oob(chip,
1538 						oob, ops, toread);
1539 					oobreadlen -= toread;
1540 				}
1541 			}
1542 
1543 			if (!(chip->options & NAND_NO_READRDY)) {
1544 				/*
1545 				 * Apply delay or wait for ready/busy pin. Do
1546 				 * this before the AUTOINCR check, so no
1547 				 * problems arise if a chip which does auto
1548 				 * increment is marked as NOAUTOINCR by the
1549 				 * board driver.
1550 				 */
1551 				if (!chip->dev_ready)
1552 					udelay(chip->chip_delay);
1553 				else
1554 					nand_wait_ready(mtd);
1555 			}
1556 		} else {
1557 			memcpy(buf, chip->buffers->databuf + col, bytes);
1558 			buf += bytes;
1559 		}
1560 
1561 		readlen -= bytes;
1562 
1563 		if (!readlen)
1564 			break;
1565 
1566 		/* For subsequent reads align to page boundary */
1567 		col = 0;
1568 		/* Increment page address */
1569 		realpage++;
1570 
1571 		page = realpage & chip->pagemask;
1572 		/* Check, if we cross a chip boundary */
1573 		if (!page) {
1574 			chipnr++;
1575 			chip->select_chip(mtd, -1);
1576 			chip->select_chip(mtd, chipnr);
1577 		}
1578 
1579 		/*
1580 		 * Check, if the chip supports auto page increment or if we
1581 		 * have hit a block boundary.
1582 		 */
1583 		if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1584 			sndcmd = 1;
1585 	}
1586 
1587 	ops->retlen = ops->len - (size_t) readlen;
1588 	if (oob)
1589 		ops->oobretlen = ops->ooblen - oobreadlen;
1590 
1591 	if (ret)
1592 		return ret;
1593 
1594 	if (mtd->ecc_stats.failed - stats.failed)
1595 		return -EBADMSG;
1596 
1597 	return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1598 }
1599 
1600 /**
1601  * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1602  * @mtd: MTD device structure
1603  * @from: offset to read from
1604  * @len: number of bytes to read
1605  * @retlen: pointer to variable to store the number of read bytes
1606  * @buf: the databuffer to put data
1607  *
1608  * Get hold of the chip and call nand_do_read.
1609  */
nand_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,uint8_t * buf)1610 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1611 		     size_t *retlen, uint8_t *buf)
1612 {
1613 	struct nand_chip *chip = mtd->priv;
1614 	struct mtd_oob_ops ops;
1615 	int ret;
1616 
1617 	nand_get_device(chip, mtd, FL_READING);
1618 	ops.len = len;
1619 	ops.datbuf = buf;
1620 	ops.oobbuf = NULL;
1621 	ops.mode = 0;
1622 	ret = nand_do_read_ops(mtd, from, &ops);
1623 	*retlen = ops.retlen;
1624 	nand_release_device(mtd);
1625 	return ret;
1626 }
1627 
1628 /**
1629  * nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
1630  * @mtd: mtd info structure
1631  * @chip: nand chip info structure
1632  * @page: page number to read
1633  * @sndcmd: flag whether to issue read command or not
1634  */
nand_read_oob_std(struct mtd_info * mtd,struct nand_chip * chip,int page,int sndcmd)1635 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1636 			     int page, int sndcmd)
1637 {
1638 	if (sndcmd) {
1639 		chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1640 		sndcmd = 0;
1641 	}
1642 	chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1643 	return sndcmd;
1644 }
1645 
1646 /**
1647  * nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
1648  *			    with syndromes
1649  * @mtd: mtd info structure
1650  * @chip: nand chip info structure
1651  * @page: page number to read
1652  * @sndcmd: flag whether to issue read command or not
1653  */
nand_read_oob_syndrome(struct mtd_info * mtd,struct nand_chip * chip,int page,int sndcmd)1654 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1655 				  int page, int sndcmd)
1656 {
1657 	uint8_t *buf = chip->oob_poi;
1658 	int length = mtd->oobsize;
1659 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1660 	int eccsize = chip->ecc.size;
1661 	uint8_t *bufpoi = buf;
1662 	int i, toread, sndrnd = 0, pos;
1663 
1664 	chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1665 	for (i = 0; i < chip->ecc.steps; i++) {
1666 		if (sndrnd) {
1667 			pos = eccsize + i * (eccsize + chunk);
1668 			if (mtd->writesize > 512)
1669 				chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1670 			else
1671 				chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1672 		} else
1673 			sndrnd = 1;
1674 		toread = min_t(int, length, chunk);
1675 		chip->read_buf(mtd, bufpoi, toread);
1676 		bufpoi += toread;
1677 		length -= toread;
1678 	}
1679 	if (length > 0)
1680 		chip->read_buf(mtd, bufpoi, length);
1681 
1682 	return 1;
1683 }
1684 
1685 /**
1686  * nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
1687  * @mtd: mtd info structure
1688  * @chip: nand chip info structure
1689  * @page: page number to write
1690  */
nand_write_oob_std(struct mtd_info * mtd,struct nand_chip * chip,int page)1691 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1692 			      int page)
1693 {
1694 	int status = 0;
1695 	const uint8_t *buf = chip->oob_poi;
1696 	int length = mtd->oobsize;
1697 
1698 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1699 	chip->write_buf(mtd, buf, length);
1700 	/* Send command to program the OOB data */
1701 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1702 
1703 	status = chip->waitfunc(mtd, chip);
1704 
1705 	return status & NAND_STATUS_FAIL ? -EIO : 0;
1706 }
1707 
1708 /**
1709  * nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
1710  *			     with syndrome - only for large page flash
1711  * @mtd: mtd info structure
1712  * @chip: nand chip info structure
1713  * @page: page number to write
1714  */
nand_write_oob_syndrome(struct mtd_info * mtd,struct nand_chip * chip,int page)1715 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1716 				   struct nand_chip *chip, int page)
1717 {
1718 	int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1719 	int eccsize = chip->ecc.size, length = mtd->oobsize;
1720 	int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1721 	const uint8_t *bufpoi = chip->oob_poi;
1722 
1723 	/*
1724 	 * data-ecc-data-ecc ... ecc-oob
1725 	 * or
1726 	 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1727 	 */
1728 	if (!chip->ecc.prepad && !chip->ecc.postpad) {
1729 		pos = steps * (eccsize + chunk);
1730 		steps = 0;
1731 	} else
1732 		pos = eccsize;
1733 
1734 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1735 	for (i = 0; i < steps; i++) {
1736 		if (sndcmd) {
1737 			if (mtd->writesize <= 512) {
1738 				uint32_t fill = 0xFFFFFFFF;
1739 
1740 				len = eccsize;
1741 				while (len > 0) {
1742 					int num = min_t(int, len, 4);
1743 					chip->write_buf(mtd, (uint8_t *)&fill,
1744 							num);
1745 					len -= num;
1746 				}
1747 			} else {
1748 				pos = eccsize + i * (eccsize + chunk);
1749 				chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1750 			}
1751 		} else
1752 			sndcmd = 1;
1753 		len = min_t(int, length, chunk);
1754 		chip->write_buf(mtd, bufpoi, len);
1755 		bufpoi += len;
1756 		length -= len;
1757 	}
1758 	if (length > 0)
1759 		chip->write_buf(mtd, bufpoi, length);
1760 
1761 	chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1762 	status = chip->waitfunc(mtd, chip);
1763 
1764 	return status & NAND_STATUS_FAIL ? -EIO : 0;
1765 }
1766 
1767 /**
1768  * nand_do_read_oob - [INTERN] NAND read out-of-band
1769  * @mtd: MTD device structure
1770  * @from: offset to read from
1771  * @ops: oob operations description structure
1772  *
1773  * NAND read out-of-band data from the spare area.
1774  */
nand_do_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1775 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1776 			    struct mtd_oob_ops *ops)
1777 {
1778 	int page, realpage, chipnr, sndcmd = 1;
1779 	struct nand_chip *chip = mtd->priv;
1780 	struct mtd_ecc_stats stats;
1781 	int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1782 	int readlen = ops->ooblen;
1783 	int len;
1784 	uint8_t *buf = ops->oobbuf;
1785 
1786 	pr_debug("%s: from = 0x%08Lx, len = %i\n",
1787 			__func__, (unsigned long long)from, readlen);
1788 
1789 	stats = mtd->ecc_stats;
1790 
1791 	if (ops->mode == MTD_OPS_AUTO_OOB)
1792 		len = chip->ecc.layout->oobavail;
1793 	else
1794 		len = mtd->oobsize;
1795 
1796 	if (unlikely(ops->ooboffs >= len)) {
1797 		pr_debug("%s: attempt to start read outside oob\n",
1798 				__func__);
1799 		return -EINVAL;
1800 	}
1801 
1802 	/* Do not allow reads past end of device */
1803 	if (unlikely(from >= mtd->size ||
1804 		     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1805 					(from >> chip->page_shift)) * len)) {
1806 		pr_debug("%s: attempt to read beyond end of device\n",
1807 				__func__);
1808 		return -EINVAL;
1809 	}
1810 
1811 	chipnr = (int)(from >> chip->chip_shift);
1812 	chip->select_chip(mtd, chipnr);
1813 
1814 	/* Shift to get page */
1815 	realpage = (int)(from >> chip->page_shift);
1816 	page = realpage & chip->pagemask;
1817 
1818 	while (1) {
1819 		if (ops->mode == MTD_OPS_RAW)
1820 			sndcmd = chip->ecc.read_oob_raw(mtd, chip, page, sndcmd);
1821 		else
1822 			sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1823 
1824 		len = min(len, readlen);
1825 		buf = nand_transfer_oob(chip, buf, ops, len);
1826 
1827 		if (!(chip->options & NAND_NO_READRDY)) {
1828 			/*
1829 			 * Apply delay or wait for ready/busy pin. Do this
1830 			 * before the AUTOINCR check, so no problems arise if a
1831 			 * chip which does auto increment is marked as
1832 			 * NOAUTOINCR by the board driver.
1833 			 */
1834 			if (!chip->dev_ready)
1835 				udelay(chip->chip_delay);
1836 			else
1837 				nand_wait_ready(mtd);
1838 		}
1839 
1840 		readlen -= len;
1841 		if (!readlen)
1842 			break;
1843 
1844 		/* Increment page address */
1845 		realpage++;
1846 
1847 		page = realpage & chip->pagemask;
1848 		/* Check, if we cross a chip boundary */
1849 		if (!page) {
1850 			chipnr++;
1851 			chip->select_chip(mtd, -1);
1852 			chip->select_chip(mtd, chipnr);
1853 		}
1854 
1855 		/*
1856 		 * Check, if the chip supports auto page increment or if we
1857 		 * have hit a block boundary.
1858 		 */
1859 		if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1860 			sndcmd = 1;
1861 	}
1862 
1863 	ops->oobretlen = ops->ooblen;
1864 
1865 	if (mtd->ecc_stats.failed - stats.failed)
1866 		return -EBADMSG;
1867 
1868 	return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1869 }
1870 
1871 /**
1872  * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1873  * @mtd: MTD device structure
1874  * @from: offset to read from
1875  * @ops: oob operation description structure
1876  *
1877  * NAND read data and/or out-of-band data.
1878  */
nand_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1879 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1880 			 struct mtd_oob_ops *ops)
1881 {
1882 	struct nand_chip *chip = mtd->priv;
1883 	int ret = -ENOTSUPP;
1884 
1885 	ops->retlen = 0;
1886 
1887 	/* Do not allow reads past end of device */
1888 	if (ops->datbuf && (from + ops->len) > mtd->size) {
1889 		pr_debug("%s: attempt to read beyond end of device\n",
1890 				__func__);
1891 		return -EINVAL;
1892 	}
1893 
1894 	nand_get_device(chip, mtd, FL_READING);
1895 
1896 	switch (ops->mode) {
1897 	case MTD_OPS_PLACE_OOB:
1898 	case MTD_OPS_AUTO_OOB:
1899 	case MTD_OPS_RAW:
1900 		break;
1901 
1902 	default:
1903 		goto out;
1904 	}
1905 
1906 	if (!ops->datbuf)
1907 		ret = nand_do_read_oob(mtd, from, ops);
1908 	else
1909 		ret = nand_do_read_ops(mtd, from, ops);
1910 
1911 out:
1912 	nand_release_device(mtd);
1913 	return ret;
1914 }
1915 
1916 
1917 /**
1918  * nand_write_page_raw - [INTERN] raw page write function
1919  * @mtd: mtd info structure
1920  * @chip: nand chip info structure
1921  * @buf: data buffer
1922  *
1923  * Not for syndrome calculating ECC controllers, which use a special oob layout.
1924  */
nand_write_page_raw(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf)1925 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1926 				const uint8_t *buf)
1927 {
1928 	chip->write_buf(mtd, buf, mtd->writesize);
1929 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1930 }
1931 
1932 /**
1933  * nand_write_page_raw_syndrome - [INTERN] raw page write function
1934  * @mtd: mtd info structure
1935  * @chip: nand chip info structure
1936  * @buf: data buffer
1937  *
1938  * We need a special oob layout and handling even when ECC isn't checked.
1939  */
nand_write_page_raw_syndrome(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf)1940 static void nand_write_page_raw_syndrome(struct mtd_info *mtd,
1941 					struct nand_chip *chip,
1942 					const uint8_t *buf)
1943 {
1944 	int eccsize = chip->ecc.size;
1945 	int eccbytes = chip->ecc.bytes;
1946 	uint8_t *oob = chip->oob_poi;
1947 	int steps, size;
1948 
1949 	for (steps = chip->ecc.steps; steps > 0; steps--) {
1950 		chip->write_buf(mtd, buf, eccsize);
1951 		buf += eccsize;
1952 
1953 		if (chip->ecc.prepad) {
1954 			chip->write_buf(mtd, oob, chip->ecc.prepad);
1955 			oob += chip->ecc.prepad;
1956 		}
1957 
1958 		chip->read_buf(mtd, oob, eccbytes);
1959 		oob += eccbytes;
1960 
1961 		if (chip->ecc.postpad) {
1962 			chip->write_buf(mtd, oob, chip->ecc.postpad);
1963 			oob += chip->ecc.postpad;
1964 		}
1965 	}
1966 
1967 	size = mtd->oobsize - (oob - chip->oob_poi);
1968 	if (size)
1969 		chip->write_buf(mtd, oob, size);
1970 }
1971 /**
1972  * nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
1973  * @mtd: mtd info structure
1974  * @chip: nand chip info structure
1975  * @buf: data buffer
1976  */
nand_write_page_swecc(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf)1977 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1978 				  const uint8_t *buf)
1979 {
1980 	int i, eccsize = chip->ecc.size;
1981 	int eccbytes = chip->ecc.bytes;
1982 	int eccsteps = chip->ecc.steps;
1983 	uint8_t *ecc_calc = chip->buffers->ecccalc;
1984 	const uint8_t *p = buf;
1985 	uint32_t *eccpos = chip->ecc.layout->eccpos;
1986 
1987 	/* Software ECC calculation */
1988 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1989 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1990 
1991 	for (i = 0; i < chip->ecc.total; i++)
1992 		chip->oob_poi[eccpos[i]] = ecc_calc[i];
1993 
1994 	chip->ecc.write_page_raw(mtd, chip, buf);
1995 }
1996 
1997 /**
1998  * nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
1999  * @mtd: mtd info structure
2000  * @chip: nand chip info structure
2001  * @buf: data buffer
2002  */
nand_write_page_hwecc(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf)2003 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
2004 				  const uint8_t *buf)
2005 {
2006 	int i, eccsize = chip->ecc.size;
2007 	int eccbytes = chip->ecc.bytes;
2008 	int eccsteps = chip->ecc.steps;
2009 	uint8_t *ecc_calc = chip->buffers->ecccalc;
2010 	const uint8_t *p = buf;
2011 	uint32_t *eccpos = chip->ecc.layout->eccpos;
2012 
2013 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2014 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2015 		chip->write_buf(mtd, p, eccsize);
2016 		chip->ecc.calculate(mtd, p, &ecc_calc[i]);
2017 	}
2018 
2019 	for (i = 0; i < chip->ecc.total; i++)
2020 		chip->oob_poi[eccpos[i]] = ecc_calc[i];
2021 
2022 	chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
2023 }
2024 
2025 /**
2026  * nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
2027  * @mtd: mtd info structure
2028  * @chip: nand chip info structure
2029  * @buf: data buffer
2030  *
2031  * The hw generator calculates the error syndrome automatically. Therefore we
2032  * need a special oob layout and handling.
2033  */
nand_write_page_syndrome(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf)2034 static void nand_write_page_syndrome(struct mtd_info *mtd,
2035 				    struct nand_chip *chip, const uint8_t *buf)
2036 {
2037 	int i, eccsize = chip->ecc.size;
2038 	int eccbytes = chip->ecc.bytes;
2039 	int eccsteps = chip->ecc.steps;
2040 	const uint8_t *p = buf;
2041 	uint8_t *oob = chip->oob_poi;
2042 
2043 	for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2044 
2045 		chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2046 		chip->write_buf(mtd, p, eccsize);
2047 
2048 		if (chip->ecc.prepad) {
2049 			chip->write_buf(mtd, oob, chip->ecc.prepad);
2050 			oob += chip->ecc.prepad;
2051 		}
2052 
2053 		chip->ecc.calculate(mtd, p, oob);
2054 		chip->write_buf(mtd, oob, eccbytes);
2055 		oob += eccbytes;
2056 
2057 		if (chip->ecc.postpad) {
2058 			chip->write_buf(mtd, oob, chip->ecc.postpad);
2059 			oob += chip->ecc.postpad;
2060 		}
2061 	}
2062 
2063 	/* Calculate remaining oob bytes */
2064 	i = mtd->oobsize - (oob - chip->oob_poi);
2065 	if (i)
2066 		chip->write_buf(mtd, oob, i);
2067 }
2068 
2069 /**
2070  * nand_write_page - [REPLACEABLE] write one page
2071  * @mtd: MTD device structure
2072  * @chip: NAND chip descriptor
2073  * @buf: the data to write
2074  * @page: page number to write
2075  * @cached: cached programming
2076  * @raw: use _raw version of write_page
2077  */
nand_write_page(struct mtd_info * mtd,struct nand_chip * chip,const uint8_t * buf,int page,int cached,int raw)2078 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2079 			   const uint8_t *buf, int page, int cached, int raw)
2080 {
2081 	int status;
2082 
2083 	chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2084 
2085 	if (unlikely(raw))
2086 		chip->ecc.write_page_raw(mtd, chip, buf);
2087 	else
2088 		chip->ecc.write_page(mtd, chip, buf);
2089 
2090 	/*
2091 	 * Cached progamming disabled for now. Not sure if it's worth the
2092 	 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s).
2093 	 */
2094 	cached = 0;
2095 
2096 	if (!cached || !(chip->options & NAND_CACHEPRG)) {
2097 
2098 		chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2099 		status = chip->waitfunc(mtd, chip);
2100 		/*
2101 		 * See if operation failed and additional status checks are
2102 		 * available.
2103 		 */
2104 		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2105 			status = chip->errstat(mtd, chip, FL_WRITING, status,
2106 					       page);
2107 
2108 		if (status & NAND_STATUS_FAIL)
2109 			return -EIO;
2110 	} else {
2111 		chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2112 		status = chip->waitfunc(mtd, chip);
2113 	}
2114 
2115 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2116 	/* Send command to read back the data */
2117 	chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2118 
2119 	if (chip->verify_buf(mtd, buf, mtd->writesize))
2120 		return -EIO;
2121 #endif
2122 	return 0;
2123 }
2124 
2125 /**
2126  * nand_fill_oob - [INTERN] Transfer client buffer to oob
2127  * @mtd: MTD device structure
2128  * @oob: oob data buffer
2129  * @len: oob data write length
2130  * @ops: oob ops structure
2131  */
nand_fill_oob(struct mtd_info * mtd,uint8_t * oob,size_t len,struct mtd_oob_ops * ops)2132 static uint8_t *nand_fill_oob(struct mtd_info *mtd, uint8_t *oob, size_t len,
2133 			      struct mtd_oob_ops *ops)
2134 {
2135 	struct nand_chip *chip = mtd->priv;
2136 
2137 	/*
2138 	 * Initialise to all 0xFF, to avoid the possibility of left over OOB
2139 	 * data from a previous OOB read.
2140 	 */
2141 	memset(chip->oob_poi, 0xff, mtd->oobsize);
2142 
2143 	switch (ops->mode) {
2144 
2145 	case MTD_OPS_PLACE_OOB:
2146 	case MTD_OPS_RAW:
2147 		memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2148 		return oob + len;
2149 
2150 	case MTD_OPS_AUTO_OOB: {
2151 		struct nand_oobfree *free = chip->ecc.layout->oobfree;
2152 		uint32_t boffs = 0, woffs = ops->ooboffs;
2153 		size_t bytes = 0;
2154 
2155 		for (; free->length && len; free++, len -= bytes) {
2156 			/* Write request not from offset 0? */
2157 			if (unlikely(woffs)) {
2158 				if (woffs >= free->length) {
2159 					woffs -= free->length;
2160 					continue;
2161 				}
2162 				boffs = free->offset + woffs;
2163 				bytes = min_t(size_t, len,
2164 					      (free->length - woffs));
2165 				woffs = 0;
2166 			} else {
2167 				bytes = min_t(size_t, len, free->length);
2168 				boffs = free->offset;
2169 			}
2170 			memcpy(chip->oob_poi + boffs, oob, bytes);
2171 			oob += bytes;
2172 		}
2173 		return oob;
2174 	}
2175 	default:
2176 		BUG();
2177 	}
2178 	return NULL;
2179 }
2180 
2181 #define NOTALIGNED(x)	((x & (chip->subpagesize - 1)) != 0)
2182 
2183 /**
2184  * nand_do_write_ops - [INTERN] NAND write with ECC
2185  * @mtd: MTD device structure
2186  * @to: offset to write to
2187  * @ops: oob operations description structure
2188  *
2189  * NAND write with ECC.
2190  */
nand_do_write_ops(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2191 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2192 			     struct mtd_oob_ops *ops)
2193 {
2194 	int chipnr, realpage, page, blockmask, column;
2195 	struct nand_chip *chip = mtd->priv;
2196 	uint32_t writelen = ops->len;
2197 
2198 	uint32_t oobwritelen = ops->ooblen;
2199 	uint32_t oobmaxlen = ops->mode == MTD_OPS_AUTO_OOB ?
2200 				mtd->oobavail : mtd->oobsize;
2201 
2202 	uint8_t *oob = ops->oobbuf;
2203 	uint8_t *buf = ops->datbuf;
2204 	int ret, subpage;
2205 
2206 	ops->retlen = 0;
2207 	if (!writelen)
2208 		return 0;
2209 
2210 	/* Reject writes, which are not page aligned */
2211 	if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2212 		pr_notice("%s: attempt to write non page aligned data\n",
2213 			   __func__);
2214 		return -EINVAL;
2215 	}
2216 
2217 	column = to & (mtd->writesize - 1);
2218 	subpage = column || (writelen & (mtd->writesize - 1));
2219 
2220 	if (subpage && oob)
2221 		return -EINVAL;
2222 
2223 	chipnr = (int)(to >> chip->chip_shift);
2224 	chip->select_chip(mtd, chipnr);
2225 
2226 	/* Check, if it is write protected */
2227 	if (nand_check_wp(mtd))
2228 		return -EIO;
2229 
2230 	realpage = (int)(to >> chip->page_shift);
2231 	page = realpage & chip->pagemask;
2232 	blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2233 
2234 	/* Invalidate the page cache, when we write to the cached page */
2235 	if (to <= (chip->pagebuf << chip->page_shift) &&
2236 	    (chip->pagebuf << chip->page_shift) < (to + ops->len))
2237 		chip->pagebuf = -1;
2238 
2239 	/* Don't allow multipage oob writes with offset */
2240 	if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
2241 		return -EINVAL;
2242 
2243 	while (1) {
2244 		int bytes = mtd->writesize;
2245 		int cached = writelen > bytes && page != blockmask;
2246 		uint8_t *wbuf = buf;
2247 
2248 		/* Partial page write? */
2249 		if (unlikely(column || writelen < (mtd->writesize - 1))) {
2250 			cached = 0;
2251 			bytes = min_t(int, bytes - column, (int) writelen);
2252 			chip->pagebuf = -1;
2253 			memset(chip->buffers->databuf, 0xff, mtd->writesize);
2254 			memcpy(&chip->buffers->databuf[column], buf, bytes);
2255 			wbuf = chip->buffers->databuf;
2256 		}
2257 
2258 		if (unlikely(oob)) {
2259 			size_t len = min(oobwritelen, oobmaxlen);
2260 			oob = nand_fill_oob(mtd, oob, len, ops);
2261 			oobwritelen -= len;
2262 		} else {
2263 			/* We still need to erase leftover OOB data */
2264 			memset(chip->oob_poi, 0xff, mtd->oobsize);
2265 		}
2266 
2267 		ret = chip->write_page(mtd, chip, wbuf, page, cached,
2268 				       (ops->mode == MTD_OPS_RAW));
2269 		if (ret)
2270 			break;
2271 
2272 		writelen -= bytes;
2273 		if (!writelen)
2274 			break;
2275 
2276 		column = 0;
2277 		buf += bytes;
2278 		realpage++;
2279 
2280 		page = realpage & chip->pagemask;
2281 		/* Check, if we cross a chip boundary */
2282 		if (!page) {
2283 			chipnr++;
2284 			chip->select_chip(mtd, -1);
2285 			chip->select_chip(mtd, chipnr);
2286 		}
2287 	}
2288 
2289 	ops->retlen = ops->len - writelen;
2290 	if (unlikely(oob))
2291 		ops->oobretlen = ops->ooblen;
2292 	return ret;
2293 }
2294 
2295 /**
2296  * panic_nand_write - [MTD Interface] NAND write with ECC
2297  * @mtd: MTD device structure
2298  * @to: offset to write to
2299  * @len: number of bytes to write
2300  * @retlen: pointer to variable to store the number of written bytes
2301  * @buf: the data to write
2302  *
2303  * NAND write with ECC. Used when performing writes in interrupt context, this
2304  * may for example be called by mtdoops when writing an oops while in panic.
2305  */
panic_nand_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const uint8_t * buf)2306 static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2307 			    size_t *retlen, const uint8_t *buf)
2308 {
2309 	struct nand_chip *chip = mtd->priv;
2310 	struct mtd_oob_ops ops;
2311 	int ret;
2312 
2313 	/* Wait for the device to get ready */
2314 	panic_nand_wait(mtd, chip, 400);
2315 
2316 	/* Grab the device */
2317 	panic_nand_get_device(chip, mtd, FL_WRITING);
2318 
2319 	ops.len = len;
2320 	ops.datbuf = (uint8_t *)buf;
2321 	ops.oobbuf = NULL;
2322 	ops.mode = 0;
2323 
2324 	ret = nand_do_write_ops(mtd, to, &ops);
2325 
2326 	*retlen = ops.retlen;
2327 	return ret;
2328 }
2329 
2330 /**
2331  * nand_write - [MTD Interface] NAND write with ECC
2332  * @mtd: MTD device structure
2333  * @to: offset to write to
2334  * @len: number of bytes to write
2335  * @retlen: pointer to variable to store the number of written bytes
2336  * @buf: the data to write
2337  *
2338  * NAND write with ECC.
2339  */
nand_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const uint8_t * buf)2340 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2341 			  size_t *retlen, const uint8_t *buf)
2342 {
2343 	struct nand_chip *chip = mtd->priv;
2344 	struct mtd_oob_ops ops;
2345 	int ret;
2346 
2347 	nand_get_device(chip, mtd, FL_WRITING);
2348 	ops.len = len;
2349 	ops.datbuf = (uint8_t *)buf;
2350 	ops.oobbuf = NULL;
2351 	ops.mode = 0;
2352 	ret = nand_do_write_ops(mtd, to, &ops);
2353 	*retlen = ops.retlen;
2354 	nand_release_device(mtd);
2355 	return ret;
2356 }
2357 
2358 /**
2359  * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2360  * @mtd: MTD device structure
2361  * @to: offset to write to
2362  * @ops: oob operation description structure
2363  *
2364  * NAND write out-of-band.
2365  */
nand_do_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2366 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2367 			     struct mtd_oob_ops *ops)
2368 {
2369 	int chipnr, page, status, len;
2370 	struct nand_chip *chip = mtd->priv;
2371 
2372 	pr_debug("%s: to = 0x%08x, len = %i\n",
2373 			 __func__, (unsigned int)to, (int)ops->ooblen);
2374 
2375 	if (ops->mode == MTD_OPS_AUTO_OOB)
2376 		len = chip->ecc.layout->oobavail;
2377 	else
2378 		len = mtd->oobsize;
2379 
2380 	/* Do not allow write past end of page */
2381 	if ((ops->ooboffs + ops->ooblen) > len) {
2382 		pr_debug("%s: attempt to write past end of page\n",
2383 				__func__);
2384 		return -EINVAL;
2385 	}
2386 
2387 	if (unlikely(ops->ooboffs >= len)) {
2388 		pr_debug("%s: attempt to start write outside oob\n",
2389 				__func__);
2390 		return -EINVAL;
2391 	}
2392 
2393 	/* Do not allow write past end of device */
2394 	if (unlikely(to >= mtd->size ||
2395 		     ops->ooboffs + ops->ooblen >
2396 			((mtd->size >> chip->page_shift) -
2397 			 (to >> chip->page_shift)) * len)) {
2398 		pr_debug("%s: attempt to write beyond end of device\n",
2399 				__func__);
2400 		return -EINVAL;
2401 	}
2402 
2403 	chipnr = (int)(to >> chip->chip_shift);
2404 	chip->select_chip(mtd, chipnr);
2405 
2406 	/* Shift to get page */
2407 	page = (int)(to >> chip->page_shift);
2408 
2409 	/*
2410 	 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2411 	 * of my DiskOnChip 2000 test units) will clear the whole data page too
2412 	 * if we don't do this. I have no clue why, but I seem to have 'fixed'
2413 	 * it in the doc2000 driver in August 1999.  dwmw2.
2414 	 */
2415 	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2416 
2417 	/* Check, if it is write protected */
2418 	if (nand_check_wp(mtd))
2419 		return -EROFS;
2420 
2421 	/* Invalidate the page cache, if we write to the cached page */
2422 	if (page == chip->pagebuf)
2423 		chip->pagebuf = -1;
2424 
2425 	nand_fill_oob(mtd, ops->oobbuf, ops->ooblen, ops);
2426 
2427 	if (ops->mode == MTD_OPS_RAW)
2428 		status = chip->ecc.write_oob_raw(mtd, chip, page & chip->pagemask);
2429 	else
2430 		status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2431 
2432 	if (status)
2433 		return status;
2434 
2435 	ops->oobretlen = ops->ooblen;
2436 
2437 	return 0;
2438 }
2439 
2440 /**
2441  * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2442  * @mtd: MTD device structure
2443  * @to: offset to write to
2444  * @ops: oob operation description structure
2445  */
nand_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)2446 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2447 			  struct mtd_oob_ops *ops)
2448 {
2449 	struct nand_chip *chip = mtd->priv;
2450 	int ret = -ENOTSUPP;
2451 
2452 	ops->retlen = 0;
2453 
2454 	/* Do not allow writes past end of device */
2455 	if (ops->datbuf && (to + ops->len) > mtd->size) {
2456 		pr_debug("%s: attempt to write beyond end of device\n",
2457 				__func__);
2458 		return -EINVAL;
2459 	}
2460 
2461 	nand_get_device(chip, mtd, FL_WRITING);
2462 
2463 	switch (ops->mode) {
2464 	case MTD_OPS_PLACE_OOB:
2465 	case MTD_OPS_AUTO_OOB:
2466 	case MTD_OPS_RAW:
2467 		break;
2468 
2469 	default:
2470 		goto out;
2471 	}
2472 
2473 	if (!ops->datbuf)
2474 		ret = nand_do_write_oob(mtd, to, ops);
2475 	else
2476 		ret = nand_do_write_ops(mtd, to, ops);
2477 
2478 out:
2479 	nand_release_device(mtd);
2480 	return ret;
2481 }
2482 
2483 /**
2484  * single_erase_cmd - [GENERIC] NAND standard block erase command function
2485  * @mtd: MTD device structure
2486  * @page: the page address of the block which will be erased
2487  *
2488  * Standard erase command for NAND chips.
2489  */
single_erase_cmd(struct mtd_info * mtd,int page)2490 static void single_erase_cmd(struct mtd_info *mtd, int page)
2491 {
2492 	struct nand_chip *chip = mtd->priv;
2493 	/* Send commands to erase a block */
2494 	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2495 	chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2496 }
2497 
2498 /**
2499  * multi_erase_cmd - [GENERIC] AND specific block erase command function
2500  * @mtd: MTD device structure
2501  * @page: the page address of the block which will be erased
2502  *
2503  * AND multi block erase command function. Erase 4 consecutive blocks.
2504  */
multi_erase_cmd(struct mtd_info * mtd,int page)2505 static void multi_erase_cmd(struct mtd_info *mtd, int page)
2506 {
2507 	struct nand_chip *chip = mtd->priv;
2508 	/* Send commands to erase a block */
2509 	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2510 	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2511 	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2512 	chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2513 	chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2514 }
2515 
2516 /**
2517  * nand_erase - [MTD Interface] erase block(s)
2518  * @mtd: MTD device structure
2519  * @instr: erase instruction
2520  *
2521  * Erase one ore more blocks.
2522  */
nand_erase(struct mtd_info * mtd,struct erase_info * instr)2523 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2524 {
2525 	return nand_erase_nand(mtd, instr, 0);
2526 }
2527 
2528 #define BBT_PAGE_MASK	0xffffff3f
2529 /**
2530  * nand_erase_nand - [INTERN] erase block(s)
2531  * @mtd: MTD device structure
2532  * @instr: erase instruction
2533  * @allowbbt: allow erasing the bbt area
2534  *
2535  * Erase one ore more blocks.
2536  */
nand_erase_nand(struct mtd_info * mtd,struct erase_info * instr,int allowbbt)2537 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2538 		    int allowbbt)
2539 {
2540 	int page, status, pages_per_block, ret, chipnr;
2541 	struct nand_chip *chip = mtd->priv;
2542 	loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
2543 	unsigned int bbt_masked_page = 0xffffffff;
2544 	loff_t len;
2545 
2546 	pr_debug("%s: start = 0x%012llx, len = %llu\n",
2547 			__func__, (unsigned long long)instr->addr,
2548 			(unsigned long long)instr->len);
2549 
2550 	if (check_offs_len(mtd, instr->addr, instr->len))
2551 		return -EINVAL;
2552 
2553 	/* Grab the lock and see if the device is available */
2554 	nand_get_device(chip, mtd, FL_ERASING);
2555 
2556 	/* Shift to get first page */
2557 	page = (int)(instr->addr >> chip->page_shift);
2558 	chipnr = (int)(instr->addr >> chip->chip_shift);
2559 
2560 	/* Calculate pages in each block */
2561 	pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2562 
2563 	/* Select the NAND device */
2564 	chip->select_chip(mtd, chipnr);
2565 
2566 	/* Check, if it is write protected */
2567 	if (nand_check_wp(mtd)) {
2568 		pr_debug("%s: device is write protected!\n",
2569 				__func__);
2570 		instr->state = MTD_ERASE_FAILED;
2571 		goto erase_exit;
2572 	}
2573 
2574 	/*
2575 	 * If BBT requires refresh, set the BBT page mask to see if the BBT
2576 	 * should be rewritten. Otherwise the mask is set to 0xffffffff which
2577 	 * can not be matched. This is also done when the bbt is actually
2578 	 * erased to avoid recursive updates.
2579 	 */
2580 	if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2581 		bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2582 
2583 	/* Loop through the pages */
2584 	len = instr->len;
2585 
2586 	instr->state = MTD_ERASING;
2587 
2588 	while (len) {
2589 		/* Check if we have a bad block, we do not erase bad blocks! */
2590 		if (nand_block_checkbad(mtd, ((loff_t) page) <<
2591 					chip->page_shift, 0, allowbbt)) {
2592 			pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
2593 				    __func__, page);
2594 			instr->state = MTD_ERASE_FAILED;
2595 			goto erase_exit;
2596 		}
2597 
2598 		/*
2599 		 * Invalidate the page cache, if we erase the block which
2600 		 * contains the current cached page.
2601 		 */
2602 		if (page <= chip->pagebuf && chip->pagebuf <
2603 		    (page + pages_per_block))
2604 			chip->pagebuf = -1;
2605 
2606 		chip->erase_cmd(mtd, page & chip->pagemask);
2607 
2608 		status = chip->waitfunc(mtd, chip);
2609 
2610 		/*
2611 		 * See if operation failed and additional status checks are
2612 		 * available
2613 		 */
2614 		if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2615 			status = chip->errstat(mtd, chip, FL_ERASING,
2616 					       status, page);
2617 
2618 		/* See if block erase succeeded */
2619 		if (status & NAND_STATUS_FAIL) {
2620 			pr_debug("%s: failed erase, page 0x%08x\n",
2621 					__func__, page);
2622 			instr->state = MTD_ERASE_FAILED;
2623 			instr->fail_addr =
2624 				((loff_t)page << chip->page_shift);
2625 			goto erase_exit;
2626 		}
2627 
2628 		/*
2629 		 * If BBT requires refresh, set the BBT rewrite flag to the
2630 		 * page being erased.
2631 		 */
2632 		if (bbt_masked_page != 0xffffffff &&
2633 		    (page & BBT_PAGE_MASK) == bbt_masked_page)
2634 			    rewrite_bbt[chipnr] =
2635 					((loff_t)page << chip->page_shift);
2636 
2637 		/* Increment page address and decrement length */
2638 		len -= (1 << chip->phys_erase_shift);
2639 		page += pages_per_block;
2640 
2641 		/* Check, if we cross a chip boundary */
2642 		if (len && !(page & chip->pagemask)) {
2643 			chipnr++;
2644 			chip->select_chip(mtd, -1);
2645 			chip->select_chip(mtd, chipnr);
2646 
2647 			/*
2648 			 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2649 			 * page mask to see if this BBT should be rewritten.
2650 			 */
2651 			if (bbt_masked_page != 0xffffffff &&
2652 			    (chip->bbt_td->options & NAND_BBT_PERCHIP))
2653 				bbt_masked_page = chip->bbt_td->pages[chipnr] &
2654 					BBT_PAGE_MASK;
2655 		}
2656 	}
2657 	instr->state = MTD_ERASE_DONE;
2658 
2659 erase_exit:
2660 
2661 	ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2662 
2663 	/* Deselect and wake up anyone waiting on the device */
2664 	nand_release_device(mtd);
2665 
2666 	/* Do call back function */
2667 	if (!ret)
2668 		mtd_erase_callback(instr);
2669 
2670 	/*
2671 	 * If BBT requires refresh and erase was successful, rewrite any
2672 	 * selected bad block tables.
2673 	 */
2674 	if (bbt_masked_page == 0xffffffff || ret)
2675 		return ret;
2676 
2677 	for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2678 		if (!rewrite_bbt[chipnr])
2679 			continue;
2680 		/* Update the BBT for chip */
2681 		pr_debug("%s: nand_update_bbt (%d:0x%0llx 0x%0x)\n",
2682 				__func__, chipnr, rewrite_bbt[chipnr],
2683 				chip->bbt_td->pages[chipnr]);
2684 		nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2685 	}
2686 
2687 	/* Return more or less happy */
2688 	return ret;
2689 }
2690 
2691 /**
2692  * nand_sync - [MTD Interface] sync
2693  * @mtd: MTD device structure
2694  *
2695  * Sync is actually a wait for chip ready function.
2696  */
nand_sync(struct mtd_info * mtd)2697 static void nand_sync(struct mtd_info *mtd)
2698 {
2699 	struct nand_chip *chip = mtd->priv;
2700 
2701 	pr_debug("%s: called\n", __func__);
2702 
2703 	/* Grab the lock and see if the device is available */
2704 	nand_get_device(chip, mtd, FL_SYNCING);
2705 	/* Release it and go back */
2706 	nand_release_device(mtd);
2707 }
2708 
2709 /**
2710  * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2711  * @mtd: MTD device structure
2712  * @offs: offset relative to mtd start
2713  */
nand_block_isbad(struct mtd_info * mtd,loff_t offs)2714 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2715 {
2716 	return nand_block_checkbad(mtd, offs, 1, 0);
2717 }
2718 
2719 /**
2720  * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2721  * @mtd: MTD device structure
2722  * @ofs: offset relative to mtd start
2723  */
nand_block_markbad(struct mtd_info * mtd,loff_t ofs)2724 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2725 {
2726 	struct nand_chip *chip = mtd->priv;
2727 	int ret;
2728 
2729 	ret = nand_block_isbad(mtd, ofs);
2730 	if (ret) {
2731 		/* If it was bad already, return success and do nothing */
2732 		if (ret > 0)
2733 			return 0;
2734 		return ret;
2735 	}
2736 
2737 	return chip->block_markbad(mtd, ofs);
2738 }
2739 
2740 /**
2741  * nand_suspend - [MTD Interface] Suspend the NAND flash
2742  * @mtd: MTD device structure
2743  */
nand_suspend(struct mtd_info * mtd)2744 static int nand_suspend(struct mtd_info *mtd)
2745 {
2746 	struct nand_chip *chip = mtd->priv;
2747 
2748 	return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2749 }
2750 
2751 /**
2752  * nand_resume - [MTD Interface] Resume the NAND flash
2753  * @mtd: MTD device structure
2754  */
nand_resume(struct mtd_info * mtd)2755 static void nand_resume(struct mtd_info *mtd)
2756 {
2757 	struct nand_chip *chip = mtd->priv;
2758 
2759 	if (chip->state == FL_PM_SUSPENDED)
2760 		nand_release_device(mtd);
2761 	else
2762 		pr_err("%s called for a chip which is not in suspended state\n",
2763 			__func__);
2764 }
2765 
2766 /* Set default functions */
nand_set_defaults(struct nand_chip * chip,int busw)2767 static void nand_set_defaults(struct nand_chip *chip, int busw)
2768 {
2769 	/* check for proper chip_delay setup, set 20us if not */
2770 	if (!chip->chip_delay)
2771 		chip->chip_delay = 20;
2772 
2773 	/* check, if a user supplied command function given */
2774 	if (chip->cmdfunc == NULL)
2775 		chip->cmdfunc = nand_command;
2776 
2777 	/* check, if a user supplied wait function given */
2778 	if (chip->waitfunc == NULL)
2779 		chip->waitfunc = nand_wait;
2780 
2781 	if (!chip->select_chip)
2782 		chip->select_chip = nand_select_chip;
2783 	if (!chip->read_byte)
2784 		chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2785 	if (!chip->read_word)
2786 		chip->read_word = nand_read_word;
2787 	if (!chip->block_bad)
2788 		chip->block_bad = nand_block_bad;
2789 	if (!chip->block_markbad)
2790 		chip->block_markbad = nand_default_block_markbad;
2791 	if (!chip->write_buf)
2792 		chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2793 	if (!chip->read_buf)
2794 		chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2795 	if (!chip->verify_buf)
2796 		chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2797 	if (!chip->scan_bbt)
2798 		chip->scan_bbt = nand_default_bbt;
2799 
2800 	if (!chip->controller) {
2801 		chip->controller = &chip->hwcontrol;
2802 		spin_lock_init(&chip->controller->lock);
2803 		init_waitqueue_head(&chip->controller->wq);
2804 	}
2805 
2806 }
2807 
2808 /* Sanitize ONFI strings so we can safely print them */
sanitize_string(uint8_t * s,size_t len)2809 static void sanitize_string(uint8_t *s, size_t len)
2810 {
2811 	ssize_t i;
2812 
2813 	/* Null terminate */
2814 	s[len - 1] = 0;
2815 
2816 	/* Remove non printable chars */
2817 	for (i = 0; i < len - 1; i++) {
2818 		if (s[i] < ' ' || s[i] > 127)
2819 			s[i] = '?';
2820 	}
2821 
2822 	/* Remove trailing spaces */
2823 	strim(s);
2824 }
2825 
onfi_crc16(u16 crc,u8 const * p,size_t len)2826 static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2827 {
2828 	int i;
2829 	while (len--) {
2830 		crc ^= *p++ << 8;
2831 		for (i = 0; i < 8; i++)
2832 			crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2833 	}
2834 
2835 	return crc;
2836 }
2837 
2838 /*
2839  * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise.
2840  */
nand_flash_detect_onfi(struct mtd_info * mtd,struct nand_chip * chip,int * busw)2841 static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2842 					int *busw)
2843 {
2844 	struct nand_onfi_params *p = &chip->onfi_params;
2845 	int i;
2846 	int val;
2847 
2848 	/* Try ONFI for unknown chip or LP */
2849 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2850 	if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2851 		chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2852 		return 0;
2853 
2854 	chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2855 	for (i = 0; i < 3; i++) {
2856 		chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2857 		if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2858 				le16_to_cpu(p->crc)) {
2859 			pr_info("ONFI param page %d valid\n", i);
2860 			break;
2861 		}
2862 	}
2863 
2864 	if (i == 3)
2865 		return 0;
2866 
2867 	/* Check version */
2868 	val = le16_to_cpu(p->revision);
2869 	if (val & (1 << 5))
2870 		chip->onfi_version = 23;
2871 	else if (val & (1 << 4))
2872 		chip->onfi_version = 22;
2873 	else if (val & (1 << 3))
2874 		chip->onfi_version = 21;
2875 	else if (val & (1 << 2))
2876 		chip->onfi_version = 20;
2877 	else if (val & (1 << 1))
2878 		chip->onfi_version = 10;
2879 	else
2880 		chip->onfi_version = 0;
2881 
2882 	if (!chip->onfi_version) {
2883 		pr_info("%s: unsupported ONFI version: %d\n", __func__, val);
2884 		return 0;
2885 	}
2886 
2887 	sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2888 	sanitize_string(p->model, sizeof(p->model));
2889 	if (!mtd->name)
2890 		mtd->name = p->model;
2891 
2892 	mtd->writesize = le32_to_cpu(p->byte_per_page);
2893 
2894 	/*
2895 	 * pages_per_block and blocks_per_lun may not be a power-of-2 size
2896 	 * (don't ask me who thought of this...). MTD assumes that these
2897 	 * dimensions will be power-of-2, so just truncate the remaining area.
2898 	 */
2899 	mtd->erasesize = 1 << (fls(le32_to_cpu(p->pages_per_block)) - 1);
2900 	mtd->erasesize *= mtd->writesize;
2901 
2902 	mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
2903 
2904 	/* See erasesize comment */
2905 	chip->chipsize = 1 << (fls(le32_to_cpu(p->blocks_per_lun)) - 1);
2906 	chip->chipsize *= (uint64_t)mtd->erasesize * p->lun_count;
2907 	*busw = 0;
2908 	if (le16_to_cpu(p->features) & 1)
2909 		*busw = NAND_BUSWIDTH_16;
2910 
2911 	chip->options |= NAND_NO_READRDY | NAND_NO_AUTOINCR;
2912 
2913 	pr_info("ONFI flash detected\n");
2914 	return 1;
2915 }
2916 
2917 /*
2918  * Get the flash and manufacturer id and lookup if the type is supported.
2919  */
nand_get_flash_type(struct mtd_info * mtd,struct nand_chip * chip,int busw,int * maf_id,int * dev_id,struct nand_flash_dev * type)2920 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2921 						  struct nand_chip *chip,
2922 						  int busw,
2923 						  int *maf_id, int *dev_id,
2924 						  struct nand_flash_dev *type)
2925 {
2926 	int i, maf_idx;
2927 	u8 id_data[8];
2928 	int ret;
2929 
2930 	/* Select the device */
2931 	chip->select_chip(mtd, 0);
2932 
2933 	/*
2934 	 * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2935 	 * after power-up.
2936 	 */
2937 	chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2938 
2939 	/* Send the command for reading device ID */
2940 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2941 
2942 	/* Read manufacturer and device IDs */
2943 	*maf_id = chip->read_byte(mtd);
2944 	*dev_id = chip->read_byte(mtd);
2945 
2946 	/*
2947 	 * Try again to make sure, as some systems the bus-hold or other
2948 	 * interface concerns can cause random data which looks like a
2949 	 * possibly credible NAND flash to appear. If the two results do
2950 	 * not match, ignore the device completely.
2951 	 */
2952 
2953 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2954 
2955 	for (i = 0; i < 2; i++)
2956 		id_data[i] = chip->read_byte(mtd);
2957 
2958 	if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
2959 		pr_info("%s: second ID read did not match "
2960 			"%02x,%02x against %02x,%02x\n", __func__,
2961 			*maf_id, *dev_id, id_data[0], id_data[1]);
2962 		return ERR_PTR(-ENODEV);
2963 	}
2964 
2965 	if (!type)
2966 		type = nand_flash_ids;
2967 
2968 	for (; type->name != NULL; type++)
2969 		if (*dev_id == type->id)
2970 			break;
2971 
2972 	chip->onfi_version = 0;
2973 	if (!type->name || !type->pagesize) {
2974 		/* Check is chip is ONFI compliant */
2975 		ret = nand_flash_detect_onfi(mtd, chip, &busw);
2976 		if (ret)
2977 			goto ident_done;
2978 	}
2979 
2980 	chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2981 
2982 	/* Read entire ID string */
2983 
2984 	for (i = 0; i < 8; i++)
2985 		id_data[i] = chip->read_byte(mtd);
2986 
2987 	if (!type->name)
2988 		return ERR_PTR(-ENODEV);
2989 
2990 	if (!mtd->name)
2991 		mtd->name = type->name;
2992 
2993 	chip->chipsize = (uint64_t)type->chipsize << 20;
2994 
2995 	if (!type->pagesize && chip->init_size) {
2996 		/* Set the pagesize, oobsize, erasesize by the driver */
2997 		busw = chip->init_size(mtd, chip, id_data);
2998 	} else if (!type->pagesize) {
2999 		int extid;
3000 		/* The 3rd id byte holds MLC / multichip data */
3001 		chip->cellinfo = id_data[2];
3002 		/* The 4th id byte is the important one */
3003 		extid = id_data[3];
3004 
3005 		/*
3006 		 * Field definitions are in the following datasheets:
3007 		 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
3008 		 * New style   (6 byte ID): Samsung K9GBG08U0M (p.40)
3009 		 *
3010 		 * Check for wraparound + Samsung ID + nonzero 6th byte
3011 		 * to decide what to do.
3012 		 */
3013 		if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
3014 				id_data[0] == NAND_MFR_SAMSUNG &&
3015 				(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3016 				id_data[5] != 0x00) {
3017 			/* Calc pagesize */
3018 			mtd->writesize = 2048 << (extid & 0x03);
3019 			extid >>= 2;
3020 			/* Calc oobsize */
3021 			switch (extid & 0x03) {
3022 			case 1:
3023 				mtd->oobsize = 128;
3024 				break;
3025 			case 2:
3026 				mtd->oobsize = 218;
3027 				break;
3028 			case 3:
3029 				mtd->oobsize = 400;
3030 				break;
3031 			default:
3032 				mtd->oobsize = 436;
3033 				break;
3034 			}
3035 			extid >>= 2;
3036 			/* Calc blocksize */
3037 			mtd->erasesize = (128 * 1024) <<
3038 				(((extid >> 1) & 0x04) | (extid & 0x03));
3039 			busw = 0;
3040 		} else {
3041 			/* Calc pagesize */
3042 			mtd->writesize = 1024 << (extid & 0x03);
3043 			extid >>= 2;
3044 			/* Calc oobsize */
3045 			mtd->oobsize = (8 << (extid & 0x01)) *
3046 				(mtd->writesize >> 9);
3047 			extid >>= 2;
3048 			/* Calc blocksize. Blocksize is multiples of 64KiB */
3049 			mtd->erasesize = (64 * 1024) << (extid & 0x03);
3050 			extid >>= 2;
3051 			/* Get buswidth information */
3052 			busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3053 		}
3054 	} else {
3055 		/*
3056 		 * Old devices have chip data hardcoded in the device id table.
3057 		 */
3058 		mtd->erasesize = type->erasesize;
3059 		mtd->writesize = type->pagesize;
3060 		mtd->oobsize = mtd->writesize / 32;
3061 		busw = type->options & NAND_BUSWIDTH_16;
3062 
3063 		/*
3064 		 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3065 		 * some Spansion chips have erasesize that conflicts with size
3066 		 * listed in nand_ids table.
3067 		 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3068 		 */
3069 		if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 &&
3070 				id_data[5] == 0x00 && id_data[6] == 0x00 &&
3071 				id_data[7] == 0x00 && mtd->writesize == 512) {
3072 			mtd->erasesize = 128 * 1024;
3073 			mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3074 		}
3075 	}
3076 	/* Get chip options */
3077 	chip->options |= type->options;
3078 
3079 	/*
3080 	 * Check if chip is not a Samsung device. Do not clear the
3081 	 * options for chips which do not have an extended id.
3082 	 */
3083 	if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3084 		chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3085 ident_done:
3086 
3087 	/*
3088 	 * Set chip as a default. Board drivers can override it, if necessary.
3089 	 */
3090 	chip->options |= NAND_NO_AUTOINCR;
3091 
3092 	/* Try to identify manufacturer */
3093 	for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3094 		if (nand_manuf_ids[maf_idx].id == *maf_id)
3095 			break;
3096 	}
3097 
3098 	/*
3099 	 * Check, if buswidth is correct. Hardware drivers should set
3100 	 * chip correct!
3101 	 */
3102 	if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3103 		pr_info("NAND device: Manufacturer ID:"
3104 			" 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3105 			*dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
3106 		pr_warn("NAND bus width %d instead %d bit\n",
3107 			   (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3108 			   busw ? 16 : 8);
3109 		return ERR_PTR(-EINVAL);
3110 	}
3111 
3112 	/* Calculate the address shift from the page size */
3113 	chip->page_shift = ffs(mtd->writesize) - 1;
3114 	/* Convert chipsize to number of pages per chip -1 */
3115 	chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3116 
3117 	chip->bbt_erase_shift = chip->phys_erase_shift =
3118 		ffs(mtd->erasesize) - 1;
3119 	if (chip->chipsize & 0xffffffff)
3120 		chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3121 	else {
3122 		chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3123 		chip->chip_shift += 32 - 1;
3124 	}
3125 
3126 	chip->badblockbits = 8;
3127 
3128 	/* Set the bad block position */
3129 	if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16))
3130 		chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3131 	else
3132 		chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3133 
3134 	/*
3135 	 * Bad block marker is stored in the last page of each block
3136 	 * on Samsung and Hynix MLC devices; stored in first two pages
3137 	 * of each block on Micron devices with 2KiB pages and on
3138 	 * SLC Samsung, Hynix, Toshiba, AMD/Spansion, and Macronix.
3139 	 * All others scan only the first page.
3140 	 */
3141 	if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3142 			(*maf_id == NAND_MFR_SAMSUNG ||
3143 			 *maf_id == NAND_MFR_HYNIX))
3144 		chip->bbt_options |= NAND_BBT_SCANLASTPAGE;
3145 	else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3146 				(*maf_id == NAND_MFR_SAMSUNG ||
3147 				 *maf_id == NAND_MFR_HYNIX ||
3148 				 *maf_id == NAND_MFR_TOSHIBA ||
3149 				 *maf_id == NAND_MFR_AMD ||
3150 				 *maf_id == NAND_MFR_MACRONIX)) ||
3151 			(mtd->writesize == 2048 &&
3152 			 *maf_id == NAND_MFR_MICRON))
3153 		chip->bbt_options |= NAND_BBT_SCAN2NDPAGE;
3154 
3155 	/* Check for AND chips with 4 page planes */
3156 	if (chip->options & NAND_4PAGE_ARRAY)
3157 		chip->erase_cmd = multi_erase_cmd;
3158 	else
3159 		chip->erase_cmd = single_erase_cmd;
3160 
3161 	/* Do not replace user supplied command function! */
3162 	if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3163 		chip->cmdfunc = nand_command_lp;
3164 
3165 	pr_info("NAND device: Manufacturer ID:"
3166 		" 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, *dev_id,
3167 		nand_manuf_ids[maf_idx].name,
3168 		chip->onfi_version ? chip->onfi_params.model : type->name);
3169 
3170 	return type;
3171 }
3172 
3173 /**
3174  * nand_scan_ident - [NAND Interface] Scan for the NAND device
3175  * @mtd: MTD device structure
3176  * @maxchips: number of chips to scan for
3177  * @table: alternative NAND ID table
3178  *
3179  * This is the first phase of the normal nand_scan() function. It reads the
3180  * flash ID and sets up MTD fields accordingly.
3181  *
3182  * The mtd->owner field must be set to the module of the caller.
3183  */
nand_scan_ident(struct mtd_info * mtd,int maxchips,struct nand_flash_dev * table)3184 int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3185 		    struct nand_flash_dev *table)
3186 {
3187 	int i, busw, nand_maf_id, nand_dev_id;
3188 	struct nand_chip *chip = mtd->priv;
3189 	struct nand_flash_dev *type;
3190 
3191 	/* Get buswidth to select the correct functions */
3192 	busw = chip->options & NAND_BUSWIDTH_16;
3193 	/* Set the default functions */
3194 	nand_set_defaults(chip, busw);
3195 
3196 	/* Read the flash type */
3197 	type = nand_get_flash_type(mtd, chip, busw,
3198 				&nand_maf_id, &nand_dev_id, table);
3199 
3200 	if (IS_ERR(type)) {
3201 		if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3202 			pr_warn("No NAND device found\n");
3203 		chip->select_chip(mtd, -1);
3204 		return PTR_ERR(type);
3205 	}
3206 
3207 	/* Check for a chip array */
3208 	for (i = 1; i < maxchips; i++) {
3209 		chip->select_chip(mtd, i);
3210 		/* See comment in nand_get_flash_type for reset */
3211 		chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3212 		/* Send the command for reading device ID */
3213 		chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3214 		/* Read manufacturer and device IDs */
3215 		if (nand_maf_id != chip->read_byte(mtd) ||
3216 		    nand_dev_id != chip->read_byte(mtd))
3217 			break;
3218 	}
3219 	if (i > 1)
3220 		pr_info("%d NAND chips detected\n", i);
3221 
3222 	/* Store the number of chips and calc total size for mtd */
3223 	chip->numchips = i;
3224 	mtd->size = i * chip->chipsize;
3225 
3226 	return 0;
3227 }
3228 EXPORT_SYMBOL(nand_scan_ident);
3229 
3230 
3231 /**
3232  * nand_scan_tail - [NAND Interface] Scan for the NAND device
3233  * @mtd: MTD device structure
3234  *
3235  * This is the second phase of the normal nand_scan() function. It fills out
3236  * all the uninitialized function pointers with the defaults and scans for a
3237  * bad block table if appropriate.
3238  */
nand_scan_tail(struct mtd_info * mtd)3239 int nand_scan_tail(struct mtd_info *mtd)
3240 {
3241 	int i;
3242 	struct nand_chip *chip = mtd->priv;
3243 
3244 	/* New bad blocks should be marked in OOB, flash-based BBT, or both */
3245 	BUG_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
3246 			!(chip->bbt_options & NAND_BBT_USE_FLASH));
3247 
3248 	if (!(chip->options & NAND_OWN_BUFFERS))
3249 		chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3250 	if (!chip->buffers)
3251 		return -ENOMEM;
3252 
3253 	/* Set the internal oob buffer location, just after the page data */
3254 	chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3255 
3256 	/*
3257 	 * If no default placement scheme is given, select an appropriate one.
3258 	 */
3259 	if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
3260 		switch (mtd->oobsize) {
3261 		case 8:
3262 			chip->ecc.layout = &nand_oob_8;
3263 			break;
3264 		case 16:
3265 			chip->ecc.layout = &nand_oob_16;
3266 			break;
3267 		case 64:
3268 			chip->ecc.layout = &nand_oob_64;
3269 			break;
3270 		case 128:
3271 			chip->ecc.layout = &nand_oob_128;
3272 			break;
3273 		default:
3274 			pr_warn("No oob scheme defined for oobsize %d\n",
3275 				   mtd->oobsize);
3276 			BUG();
3277 		}
3278 	}
3279 
3280 	if (!chip->write_page)
3281 		chip->write_page = nand_write_page;
3282 
3283 	/*
3284 	 * Check ECC mode, default to software if 3byte/512byte hardware ECC is
3285 	 * selected and we have 256 byte pagesize fallback to software ECC
3286 	 */
3287 
3288 	switch (chip->ecc.mode) {
3289 	case NAND_ECC_HW_OOB_FIRST:
3290 		/* Similar to NAND_ECC_HW, but a separate read_page handle */
3291 		if (!chip->ecc.calculate || !chip->ecc.correct ||
3292 		     !chip->ecc.hwctl) {
3293 			pr_warn("No ECC functions supplied; "
3294 				   "hardware ECC not possible\n");
3295 			BUG();
3296 		}
3297 		if (!chip->ecc.read_page)
3298 			chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3299 
3300 	case NAND_ECC_HW:
3301 		/* Use standard hwecc read page function? */
3302 		if (!chip->ecc.read_page)
3303 			chip->ecc.read_page = nand_read_page_hwecc;
3304 		if (!chip->ecc.write_page)
3305 			chip->ecc.write_page = nand_write_page_hwecc;
3306 		if (!chip->ecc.read_page_raw)
3307 			chip->ecc.read_page_raw = nand_read_page_raw;
3308 		if (!chip->ecc.write_page_raw)
3309 			chip->ecc.write_page_raw = nand_write_page_raw;
3310 		if (!chip->ecc.read_oob)
3311 			chip->ecc.read_oob = nand_read_oob_std;
3312 		if (!chip->ecc.write_oob)
3313 			chip->ecc.write_oob = nand_write_oob_std;
3314 
3315 	case NAND_ECC_HW_SYNDROME:
3316 		if ((!chip->ecc.calculate || !chip->ecc.correct ||
3317 		     !chip->ecc.hwctl) &&
3318 		    (!chip->ecc.read_page ||
3319 		     chip->ecc.read_page == nand_read_page_hwecc ||
3320 		     !chip->ecc.write_page ||
3321 		     chip->ecc.write_page == nand_write_page_hwecc)) {
3322 			pr_warn("No ECC functions supplied; "
3323 				   "hardware ECC not possible\n");
3324 			BUG();
3325 		}
3326 		/* Use standard syndrome read/write page function? */
3327 		if (!chip->ecc.read_page)
3328 			chip->ecc.read_page = nand_read_page_syndrome;
3329 		if (!chip->ecc.write_page)
3330 			chip->ecc.write_page = nand_write_page_syndrome;
3331 		if (!chip->ecc.read_page_raw)
3332 			chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3333 		if (!chip->ecc.write_page_raw)
3334 			chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3335 		if (!chip->ecc.read_oob)
3336 			chip->ecc.read_oob = nand_read_oob_syndrome;
3337 		if (!chip->ecc.write_oob)
3338 			chip->ecc.write_oob = nand_write_oob_syndrome;
3339 
3340 		if (mtd->writesize >= chip->ecc.size)
3341 			break;
3342 		pr_warn("%d byte HW ECC not possible on "
3343 			   "%d byte page size, fallback to SW ECC\n",
3344 			   chip->ecc.size, mtd->writesize);
3345 		chip->ecc.mode = NAND_ECC_SOFT;
3346 
3347 	case NAND_ECC_SOFT:
3348 		chip->ecc.calculate = nand_calculate_ecc;
3349 		chip->ecc.correct = nand_correct_data;
3350 		chip->ecc.read_page = nand_read_page_swecc;
3351 		chip->ecc.read_subpage = nand_read_subpage;
3352 		chip->ecc.write_page = nand_write_page_swecc;
3353 		chip->ecc.read_page_raw = nand_read_page_raw;
3354 		chip->ecc.write_page_raw = nand_write_page_raw;
3355 		chip->ecc.read_oob = nand_read_oob_std;
3356 		chip->ecc.write_oob = nand_write_oob_std;
3357 		if (!chip->ecc.size)
3358 			chip->ecc.size = 256;
3359 		chip->ecc.bytes = 3;
3360 		chip->ecc.strength = 1;
3361 		break;
3362 
3363 	case NAND_ECC_SOFT_BCH:
3364 		if (!mtd_nand_has_bch()) {
3365 			pr_warn("CONFIG_MTD_ECC_BCH not enabled\n");
3366 			BUG();
3367 		}
3368 		chip->ecc.calculate = nand_bch_calculate_ecc;
3369 		chip->ecc.correct = nand_bch_correct_data;
3370 		chip->ecc.read_page = nand_read_page_swecc;
3371 		chip->ecc.read_subpage = nand_read_subpage;
3372 		chip->ecc.write_page = nand_write_page_swecc;
3373 		chip->ecc.read_page_raw = nand_read_page_raw;
3374 		chip->ecc.write_page_raw = nand_write_page_raw;
3375 		chip->ecc.read_oob = nand_read_oob_std;
3376 		chip->ecc.write_oob = nand_write_oob_std;
3377 		/*
3378 		 * Board driver should supply ecc.size and ecc.bytes values to
3379 		 * select how many bits are correctable; see nand_bch_init()
3380 		 * for details. Otherwise, default to 4 bits for large page
3381 		 * devices.
3382 		 */
3383 		if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3384 			chip->ecc.size = 512;
3385 			chip->ecc.bytes = 7;
3386 		}
3387 		chip->ecc.priv = nand_bch_init(mtd,
3388 					       chip->ecc.size,
3389 					       chip->ecc.bytes,
3390 					       &chip->ecc.layout);
3391 		if (!chip->ecc.priv) {
3392 			pr_warn("BCH ECC initialization failed!\n");
3393 			BUG();
3394 		}
3395 		chip->ecc.strength =
3396 			chip->ecc.bytes*8 / fls(8*chip->ecc.size);
3397 		break;
3398 
3399 	case NAND_ECC_NONE:
3400 		pr_warn("NAND_ECC_NONE selected by board driver. "
3401 			   "This is not recommended!\n");
3402 		chip->ecc.read_page = nand_read_page_raw;
3403 		chip->ecc.write_page = nand_write_page_raw;
3404 		chip->ecc.read_oob = nand_read_oob_std;
3405 		chip->ecc.read_page_raw = nand_read_page_raw;
3406 		chip->ecc.write_page_raw = nand_write_page_raw;
3407 		chip->ecc.write_oob = nand_write_oob_std;
3408 		chip->ecc.size = mtd->writesize;
3409 		chip->ecc.bytes = 0;
3410 		chip->ecc.strength = 0;
3411 		break;
3412 
3413 	default:
3414 		pr_warn("Invalid NAND_ECC_MODE %d\n", chip->ecc.mode);
3415 		BUG();
3416 	}
3417 
3418 	/* For many systems, the standard OOB write also works for raw */
3419 	if (!chip->ecc.read_oob_raw)
3420 		chip->ecc.read_oob_raw = chip->ecc.read_oob;
3421 	if (!chip->ecc.write_oob_raw)
3422 		chip->ecc.write_oob_raw = chip->ecc.write_oob;
3423 
3424 	/*
3425 	 * The number of bytes available for a client to place data into
3426 	 * the out of band area.
3427 	 */
3428 	chip->ecc.layout->oobavail = 0;
3429 	for (i = 0; chip->ecc.layout->oobfree[i].length
3430 			&& i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3431 		chip->ecc.layout->oobavail +=
3432 			chip->ecc.layout->oobfree[i].length;
3433 	mtd->oobavail = chip->ecc.layout->oobavail;
3434 
3435 	/*
3436 	 * Set the number of read / write steps for one page depending on ECC
3437 	 * mode.
3438 	 */
3439 	chip->ecc.steps = mtd->writesize / chip->ecc.size;
3440 	if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3441 		pr_warn("Invalid ECC parameters\n");
3442 		BUG();
3443 	}
3444 	chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3445 
3446 	/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
3447 	if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3448 	    !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3449 		switch (chip->ecc.steps) {
3450 		case 2:
3451 			mtd->subpage_sft = 1;
3452 			break;
3453 		case 4:
3454 		case 8:
3455 		case 16:
3456 			mtd->subpage_sft = 2;
3457 			break;
3458 		}
3459 	}
3460 	chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3461 
3462 	/* Initialize state */
3463 	chip->state = FL_READY;
3464 
3465 	/* De-select the device */
3466 	chip->select_chip(mtd, -1);
3467 
3468 	/* Invalidate the pagebuffer reference */
3469 	chip->pagebuf = -1;
3470 
3471 	/* Fill in remaining MTD driver data */
3472 	mtd->type = MTD_NANDFLASH;
3473 	mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3474 						MTD_CAP_NANDFLASH;
3475 	mtd->_erase = nand_erase;
3476 	mtd->_point = NULL;
3477 	mtd->_unpoint = NULL;
3478 	mtd->_read = nand_read;
3479 	mtd->_write = nand_write;
3480 	mtd->_panic_write = panic_nand_write;
3481 	mtd->_read_oob = nand_read_oob;
3482 	mtd->_write_oob = nand_write_oob;
3483 	mtd->_sync = nand_sync;
3484 	mtd->_lock = NULL;
3485 	mtd->_unlock = NULL;
3486 	mtd->_suspend = nand_suspend;
3487 	mtd->_resume = nand_resume;
3488 	mtd->_block_isbad = nand_block_isbad;
3489 	mtd->_block_markbad = nand_block_markbad;
3490 	mtd->writebufsize = mtd->writesize;
3491 
3492 	/* propagate ecc info to mtd_info */
3493 	mtd->ecclayout = chip->ecc.layout;
3494 	mtd->ecc_strength = chip->ecc.strength * chip->ecc.steps;
3495 
3496 	/* Check, if we should skip the bad block table scan */
3497 	if (chip->options & NAND_SKIP_BBTSCAN)
3498 		return 0;
3499 
3500 	/* Build bad block table */
3501 	return chip->scan_bbt(mtd);
3502 }
3503 EXPORT_SYMBOL(nand_scan_tail);
3504 
3505 /*
3506  * is_module_text_address() isn't exported, and it's mostly a pointless
3507  * test if this is a module _anyway_ -- they'd have to try _really_ hard
3508  * to call us from in-kernel code if the core NAND support is modular.
3509  */
3510 #ifdef MODULE
3511 #define caller_is_module() (1)
3512 #else
3513 #define caller_is_module() \
3514 	is_module_text_address((unsigned long)__builtin_return_address(0))
3515 #endif
3516 
3517 /**
3518  * nand_scan - [NAND Interface] Scan for the NAND device
3519  * @mtd: MTD device structure
3520  * @maxchips: number of chips to scan for
3521  *
3522  * This fills out all the uninitialized function pointers with the defaults.
3523  * The flash ID is read and the mtd/chip structures are filled with the
3524  * appropriate values. The mtd->owner field must be set to the module of the
3525  * caller.
3526  */
nand_scan(struct mtd_info * mtd,int maxchips)3527 int nand_scan(struct mtd_info *mtd, int maxchips)
3528 {
3529 	int ret;
3530 
3531 	/* Many callers got this wrong, so check for it for a while... */
3532 	if (!mtd->owner && caller_is_module()) {
3533 		pr_crit("%s called with NULL mtd->owner!\n", __func__);
3534 		BUG();
3535 	}
3536 
3537 	ret = nand_scan_ident(mtd, maxchips, NULL);
3538 	if (!ret)
3539 		ret = nand_scan_tail(mtd);
3540 	return ret;
3541 }
3542 EXPORT_SYMBOL(nand_scan);
3543 
3544 /**
3545  * nand_release - [NAND Interface] Free resources held by the NAND device
3546  * @mtd: MTD device structure
3547  */
nand_release(struct mtd_info * mtd)3548 void nand_release(struct mtd_info *mtd)
3549 {
3550 	struct nand_chip *chip = mtd->priv;
3551 
3552 	if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3553 		nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3554 
3555 	mtd_device_unregister(mtd);
3556 
3557 	/* Free bad block table memory */
3558 	kfree(chip->bbt);
3559 	if (!(chip->options & NAND_OWN_BUFFERS))
3560 		kfree(chip->buffers);
3561 
3562 	/* Free bad block descriptor memory */
3563 	if (chip->badblock_pattern && chip->badblock_pattern->options
3564 			& NAND_BBT_DYNAMICSTRUCT)
3565 		kfree(chip->badblock_pattern);
3566 }
3567 EXPORT_SYMBOL_GPL(nand_release);
3568 
nand_base_init(void)3569 static int __init nand_base_init(void)
3570 {
3571 	led_trigger_register_simple("nand-disk", &nand_led_trigger);
3572 	return 0;
3573 }
3574 
nand_base_exit(void)3575 static void __exit nand_base_exit(void)
3576 {
3577 	led_trigger_unregister_simple(nand_led_trigger);
3578 }
3579 
3580 module_init(nand_base_init);
3581 module_exit(nand_base_exit);
3582 
3583 MODULE_LICENSE("GPL");
3584 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3585 MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3586 MODULE_DESCRIPTION("Generic NAND flash driver code");
3587