1 /*
2  * Marvell Wireless LAN device driver: WMM
3  *
4  * Copyright (C) 2011, Marvell International Ltd.
5  *
6  * This software file (the "File") is distributed by Marvell International
7  * Ltd. under the terms of the GNU General Public License Version 2, June 1991
8  * (the "License").  You may use, redistribute and/or modify this File in
9  * accordance with the terms and conditions of the License, a copy of which
10  * is available by writing to the Free Software Foundation, Inc.,
11  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA or on the
12  * worldwide web at http://www.gnu.org/licenses/old-licenses/gpl-2.0.txt.
13  *
14  * THE FILE IS DISTRIBUTED AS-IS, WITHOUT WARRANTY OF ANY KIND, AND THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE
16  * ARE EXPRESSLY DISCLAIMED.  The License provides additional details about
17  * this warranty disclaimer.
18  */
19 
20 #include "decl.h"
21 #include "ioctl.h"
22 #include "util.h"
23 #include "fw.h"
24 #include "main.h"
25 #include "wmm.h"
26 #include "11n.h"
27 
28 
29 /* Maximum value FW can accept for driver delay in packet transmission */
30 #define DRV_PKT_DELAY_TO_FW_MAX   512
31 
32 
33 #define WMM_QUEUED_PACKET_LOWER_LIMIT   180
34 
35 #define WMM_QUEUED_PACKET_UPPER_LIMIT   200
36 
37 /* Offset for TOS field in the IP header */
38 #define IPTOS_OFFSET 5
39 
40 /* WMM information IE */
41 static const u8 wmm_info_ie[] = { WLAN_EID_VENDOR_SPECIFIC, 0x07,
42 	0x00, 0x50, 0xf2, 0x02,
43 	0x00, 0x01, 0x00
44 };
45 
46 static const u8 wmm_aci_to_qidx_map[] = { WMM_AC_BE,
47 	WMM_AC_BK,
48 	WMM_AC_VI,
49 	WMM_AC_VO
50 };
51 
52 static u8 tos_to_tid[] = {
53 	/* TID DSCP_P2 DSCP_P1 DSCP_P0 WMM_AC */
54 	0x01,			/* 0 1 0 AC_BK */
55 	0x02,			/* 0 0 0 AC_BK */
56 	0x00,			/* 0 0 1 AC_BE */
57 	0x03,			/* 0 1 1 AC_BE */
58 	0x04,			/* 1 0 0 AC_VI */
59 	0x05,			/* 1 0 1 AC_VI */
60 	0x06,			/* 1 1 0 AC_VO */
61 	0x07			/* 1 1 1 AC_VO */
62 };
63 
64 /*
65  * This table inverses the tos_to_tid operation to get a priority
66  * which is in sequential order, and can be compared.
67  * Use this to compare the priority of two different TIDs.
68  */
69 static u8 tos_to_tid_inv[] = {
70 	0x02,  /* from tos_to_tid[2] = 0 */
71 	0x00,  /* from tos_to_tid[0] = 1 */
72 	0x01,  /* from tos_to_tid[1] = 2 */
73 	0x03,
74 	0x04,
75 	0x05,
76 	0x06,
77 	0x07};
78 
79 static u8 ac_to_tid[4][2] = { {1, 2}, {0, 3}, {4, 5}, {6, 7} };
80 
81 /*
82  * This function debug prints the priority parameters for a WMM AC.
83  */
84 static void
mwifiex_wmm_ac_debug_print(const struct ieee_types_wmm_ac_parameters * ac_param)85 mwifiex_wmm_ac_debug_print(const struct ieee_types_wmm_ac_parameters *ac_param)
86 {
87 	const char *ac_str[] = { "BK", "BE", "VI", "VO" };
88 
89 	pr_debug("info: WMM AC_%s: ACI=%d, ACM=%d, Aifsn=%d, "
90 		 "EcwMin=%d, EcwMax=%d, TxopLimit=%d\n",
91 		 ac_str[wmm_aci_to_qidx_map[(ac_param->aci_aifsn_bitmap
92 					     & MWIFIEX_ACI) >> 5]],
93 		 (ac_param->aci_aifsn_bitmap & MWIFIEX_ACI) >> 5,
94 		 (ac_param->aci_aifsn_bitmap & MWIFIEX_ACM) >> 4,
95 		 ac_param->aci_aifsn_bitmap & MWIFIEX_AIFSN,
96 		 ac_param->ecw_bitmap & MWIFIEX_ECW_MIN,
97 		 (ac_param->ecw_bitmap & MWIFIEX_ECW_MAX) >> 4,
98 		 le16_to_cpu(ac_param->tx_op_limit));
99 }
100 
101 /*
102  * This function allocates a route address list.
103  *
104  * The function also initializes the list with the provided RA.
105  */
106 static struct mwifiex_ra_list_tbl *
mwifiex_wmm_allocate_ralist_node(struct mwifiex_adapter * adapter,u8 * ra)107 mwifiex_wmm_allocate_ralist_node(struct mwifiex_adapter *adapter, u8 *ra)
108 {
109 	struct mwifiex_ra_list_tbl *ra_list;
110 
111 	ra_list = kzalloc(sizeof(struct mwifiex_ra_list_tbl), GFP_ATOMIC);
112 
113 	if (!ra_list) {
114 		dev_err(adapter->dev, "%s: failed to alloc ra_list\n",
115 			__func__);
116 		return NULL;
117 	}
118 	INIT_LIST_HEAD(&ra_list->list);
119 	skb_queue_head_init(&ra_list->skb_head);
120 
121 	memcpy(ra_list->ra, ra, ETH_ALEN);
122 
123 	ra_list->total_pkts_size = 0;
124 
125 	dev_dbg(adapter->dev, "info: allocated ra_list %p\n", ra_list);
126 
127 	return ra_list;
128 }
129 
130 /*
131  * This function allocates and adds a RA list for all TIDs
132  * with the given RA.
133  */
134 void
mwifiex_ralist_add(struct mwifiex_private * priv,u8 * ra)135 mwifiex_ralist_add(struct mwifiex_private *priv, u8 *ra)
136 {
137 	int i;
138 	struct mwifiex_ra_list_tbl *ra_list;
139 	struct mwifiex_adapter *adapter = priv->adapter;
140 
141 	for (i = 0; i < MAX_NUM_TID; ++i) {
142 		ra_list = mwifiex_wmm_allocate_ralist_node(adapter, ra);
143 		dev_dbg(adapter->dev, "info: created ra_list %p\n", ra_list);
144 
145 		if (!ra_list)
146 			break;
147 
148 		if (!mwifiex_queuing_ra_based(priv))
149 			ra_list->is_11n_enabled = IS_11N_ENABLED(priv);
150 		else
151 			ra_list->is_11n_enabled = false;
152 
153 		dev_dbg(adapter->dev, "data: ralist %p: is_11n_enabled=%d\n",
154 			ra_list, ra_list->is_11n_enabled);
155 
156 		list_add_tail(&ra_list->list,
157 			      &priv->wmm.tid_tbl_ptr[i].ra_list);
158 
159 		if (!priv->wmm.tid_tbl_ptr[i].ra_list_curr)
160 			priv->wmm.tid_tbl_ptr[i].ra_list_curr = ra_list;
161 	}
162 }
163 
164 /*
165  * This function sets the WMM queue priorities to their default values.
166  */
mwifiex_wmm_default_queue_priorities(struct mwifiex_private * priv)167 static void mwifiex_wmm_default_queue_priorities(struct mwifiex_private *priv)
168 {
169 	/* Default queue priorities: VO->VI->BE->BK */
170 	priv->wmm.queue_priority[0] = WMM_AC_VO;
171 	priv->wmm.queue_priority[1] = WMM_AC_VI;
172 	priv->wmm.queue_priority[2] = WMM_AC_BE;
173 	priv->wmm.queue_priority[3] = WMM_AC_BK;
174 }
175 
176 /*
177  * This function map ACs to TIDs.
178  */
179 static void
mwifiex_wmm_queue_priorities_tid(struct mwifiex_wmm_desc * wmm)180 mwifiex_wmm_queue_priorities_tid(struct mwifiex_wmm_desc *wmm)
181 {
182 	u8 *queue_priority = wmm->queue_priority;
183 	int i;
184 
185 	for (i = 0; i < 4; ++i) {
186 		tos_to_tid[7 - (i * 2)] = ac_to_tid[queue_priority[i]][1];
187 		tos_to_tid[6 - (i * 2)] = ac_to_tid[queue_priority[i]][0];
188 	}
189 
190 	for (i = 0; i < MAX_NUM_TID; ++i)
191 		tos_to_tid_inv[tos_to_tid[i]] = (u8)i;
192 
193 	atomic_set(&wmm->highest_queued_prio, HIGH_PRIO_TID);
194 }
195 
196 /*
197  * This function initializes WMM priority queues.
198  */
199 void
mwifiex_wmm_setup_queue_priorities(struct mwifiex_private * priv,struct ieee_types_wmm_parameter * wmm_ie)200 mwifiex_wmm_setup_queue_priorities(struct mwifiex_private *priv,
201 				   struct ieee_types_wmm_parameter *wmm_ie)
202 {
203 	u16 cw_min, avg_back_off, tmp[4];
204 	u32 i, j, num_ac;
205 	u8 ac_idx;
206 
207 	if (!wmm_ie || !priv->wmm_enabled) {
208 		/* WMM is not enabled, just set the defaults and return */
209 		mwifiex_wmm_default_queue_priorities(priv);
210 		return;
211 	}
212 
213 	dev_dbg(priv->adapter->dev, "info: WMM Parameter IE: version=%d, "
214 		"qos_info Parameter Set Count=%d, Reserved=%#x\n",
215 		wmm_ie->vend_hdr.version, wmm_ie->qos_info_bitmap &
216 		IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK,
217 		wmm_ie->reserved);
218 
219 	for (num_ac = 0; num_ac < ARRAY_SIZE(wmm_ie->ac_params); num_ac++) {
220 		u8 ecw = wmm_ie->ac_params[num_ac].ecw_bitmap;
221 		u8 aci_aifsn = wmm_ie->ac_params[num_ac].aci_aifsn_bitmap;
222 		cw_min = (1 << (ecw & MWIFIEX_ECW_MIN)) - 1;
223 		avg_back_off = (cw_min >> 1) + (aci_aifsn & MWIFIEX_AIFSN);
224 
225 		ac_idx = wmm_aci_to_qidx_map[(aci_aifsn & MWIFIEX_ACI) >> 5];
226 		priv->wmm.queue_priority[ac_idx] = ac_idx;
227 		tmp[ac_idx] = avg_back_off;
228 
229 		dev_dbg(priv->adapter->dev,
230 			"info: WMM: CWmax=%d CWmin=%d Avg Back-off=%d\n",
231 			(1 << ((ecw & MWIFIEX_ECW_MAX) >> 4)) - 1,
232 			cw_min, avg_back_off);
233 		mwifiex_wmm_ac_debug_print(&wmm_ie->ac_params[num_ac]);
234 	}
235 
236 	/* Bubble sort */
237 	for (i = 0; i < num_ac; i++) {
238 		for (j = 1; j < num_ac - i; j++) {
239 			if (tmp[j - 1] > tmp[j]) {
240 				swap(tmp[j - 1], tmp[j]);
241 				swap(priv->wmm.queue_priority[j - 1],
242 				     priv->wmm.queue_priority[j]);
243 			} else if (tmp[j - 1] == tmp[j]) {
244 				if (priv->wmm.queue_priority[j - 1]
245 				    < priv->wmm.queue_priority[j])
246 					swap(priv->wmm.queue_priority[j - 1],
247 					     priv->wmm.queue_priority[j]);
248 			}
249 		}
250 	}
251 
252 	mwifiex_wmm_queue_priorities_tid(&priv->wmm);
253 }
254 
255 /*
256  * This function evaluates whether or not an AC is to be downgraded.
257  *
258  * In case the AC is not enabled, the highest AC is returned that is
259  * enabled and does not require admission control.
260  */
261 static enum mwifiex_wmm_ac_e
mwifiex_wmm_eval_downgrade_ac(struct mwifiex_private * priv,enum mwifiex_wmm_ac_e eval_ac)262 mwifiex_wmm_eval_downgrade_ac(struct mwifiex_private *priv,
263 			      enum mwifiex_wmm_ac_e eval_ac)
264 {
265 	int down_ac;
266 	enum mwifiex_wmm_ac_e ret_ac;
267 	struct mwifiex_wmm_ac_status *ac_status;
268 
269 	ac_status = &priv->wmm.ac_status[eval_ac];
270 
271 	if (!ac_status->disabled)
272 		/* Okay to use this AC, its enabled */
273 		return eval_ac;
274 
275 	/* Setup a default return value of the lowest priority */
276 	ret_ac = WMM_AC_BK;
277 
278 	/*
279 	 *  Find the highest AC that is enabled and does not require
280 	 *  admission control. The spec disallows downgrading to an AC,
281 	 *  which is enabled due to a completed admission control.
282 	 *  Unadmitted traffic is not to be sent on an AC with admitted
283 	 *  traffic.
284 	 */
285 	for (down_ac = WMM_AC_BK; down_ac < eval_ac; down_ac++) {
286 		ac_status = &priv->wmm.ac_status[down_ac];
287 
288 		if (!ac_status->disabled && !ac_status->flow_required)
289 			/* AC is enabled and does not require admission
290 			   control */
291 			ret_ac = (enum mwifiex_wmm_ac_e) down_ac;
292 	}
293 
294 	return ret_ac;
295 }
296 
297 /*
298  * This function downgrades WMM priority queue.
299  */
300 void
mwifiex_wmm_setup_ac_downgrade(struct mwifiex_private * priv)301 mwifiex_wmm_setup_ac_downgrade(struct mwifiex_private *priv)
302 {
303 	int ac_val;
304 
305 	dev_dbg(priv->adapter->dev, "info: WMM: AC Priorities:"
306 			"BK(0), BE(1), VI(2), VO(3)\n");
307 
308 	if (!priv->wmm_enabled) {
309 		/* WMM is not enabled, default priorities */
310 		for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++)
311 			priv->wmm.ac_down_graded_vals[ac_val] =
312 						(enum mwifiex_wmm_ac_e) ac_val;
313 	} else {
314 		for (ac_val = WMM_AC_BK; ac_val <= WMM_AC_VO; ac_val++) {
315 			priv->wmm.ac_down_graded_vals[ac_val]
316 				= mwifiex_wmm_eval_downgrade_ac(priv,
317 						(enum mwifiex_wmm_ac_e) ac_val);
318 			dev_dbg(priv->adapter->dev,
319 				"info: WMM: AC PRIO %d maps to %d\n",
320 				ac_val, priv->wmm.ac_down_graded_vals[ac_val]);
321 		}
322 	}
323 }
324 
325 /*
326  * This function converts the IP TOS field to an WMM AC
327  * Queue assignment.
328  */
329 static enum mwifiex_wmm_ac_e
mwifiex_wmm_convert_tos_to_ac(struct mwifiex_adapter * adapter,u32 tos)330 mwifiex_wmm_convert_tos_to_ac(struct mwifiex_adapter *adapter, u32 tos)
331 {
332 	/* Map of TOS UP values to WMM AC */
333 	const enum mwifiex_wmm_ac_e tos_to_ac[] = { WMM_AC_BE,
334 		WMM_AC_BK,
335 		WMM_AC_BK,
336 		WMM_AC_BE,
337 		WMM_AC_VI,
338 		WMM_AC_VI,
339 		WMM_AC_VO,
340 		WMM_AC_VO
341 	};
342 
343 	if (tos >= ARRAY_SIZE(tos_to_ac))
344 		return WMM_AC_BE;
345 
346 	return tos_to_ac[tos];
347 }
348 
349 /*
350  * This function evaluates a given TID and downgrades it to a lower
351  * TID if the WMM Parameter IE received from the AP indicates that the
352  * AP is disabled (due to call admission control (ACM bit). Mapping
353  * of TID to AC is taken care of internally.
354  */
355 static u8
mwifiex_wmm_downgrade_tid(struct mwifiex_private * priv,u32 tid)356 mwifiex_wmm_downgrade_tid(struct mwifiex_private *priv, u32 tid)
357 {
358 	enum mwifiex_wmm_ac_e ac, ac_down;
359 	u8 new_tid;
360 
361 	ac = mwifiex_wmm_convert_tos_to_ac(priv->adapter, tid);
362 	ac_down = priv->wmm.ac_down_graded_vals[ac];
363 
364 	/* Send the index to tid array, picking from the array will be
365 	 * taken care by dequeuing function
366 	 */
367 	new_tid = ac_to_tid[ac_down][tid % 2];
368 
369 	return new_tid;
370 }
371 
372 /*
373  * This function initializes the WMM state information and the
374  * WMM data path queues.
375  */
376 void
mwifiex_wmm_init(struct mwifiex_adapter * adapter)377 mwifiex_wmm_init(struct mwifiex_adapter *adapter)
378 {
379 	int i, j;
380 	struct mwifiex_private *priv;
381 
382 	for (j = 0; j < adapter->priv_num; ++j) {
383 		priv = adapter->priv[j];
384 		if (!priv)
385 			continue;
386 
387 		for (i = 0; i < MAX_NUM_TID; ++i) {
388 			priv->aggr_prio_tbl[i].amsdu = tos_to_tid_inv[i];
389 			priv->aggr_prio_tbl[i].ampdu_ap = tos_to_tid_inv[i];
390 			priv->aggr_prio_tbl[i].ampdu_user = tos_to_tid_inv[i];
391 			priv->wmm.tid_tbl_ptr[i].ra_list_curr = NULL;
392 		}
393 
394 		priv->aggr_prio_tbl[6].amsdu
395 					= priv->aggr_prio_tbl[6].ampdu_ap
396 					= priv->aggr_prio_tbl[6].ampdu_user
397 					= BA_STREAM_NOT_ALLOWED;
398 
399 		priv->aggr_prio_tbl[7].amsdu = priv->aggr_prio_tbl[7].ampdu_ap
400 					= priv->aggr_prio_tbl[7].ampdu_user
401 					= BA_STREAM_NOT_ALLOWED;
402 
403 		priv->add_ba_param.timeout = MWIFIEX_DEFAULT_BLOCK_ACK_TIMEOUT;
404 		priv->add_ba_param.tx_win_size = MWIFIEX_AMPDU_DEF_TXWINSIZE;
405 		priv->add_ba_param.rx_win_size = MWIFIEX_AMPDU_DEF_RXWINSIZE;
406 
407 		mwifiex_reset_11n_rx_seq_num(priv);
408 
409 		atomic_set(&priv->wmm.tx_pkts_queued, 0);
410 		atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID);
411 	}
412 }
413 
414 /*
415  * This function checks if WMM Tx queue is empty.
416  */
417 int
mwifiex_wmm_lists_empty(struct mwifiex_adapter * adapter)418 mwifiex_wmm_lists_empty(struct mwifiex_adapter *adapter)
419 {
420 	int i;
421 	struct mwifiex_private *priv;
422 
423 	for (i = 0; i < adapter->priv_num; ++i) {
424 		priv = adapter->priv[i];
425 		if (priv && atomic_read(&priv->wmm.tx_pkts_queued))
426 				return false;
427 	}
428 
429 	return true;
430 }
431 
432 /*
433  * This function deletes all packets in an RA list node.
434  *
435  * The packet sent completion callback handler are called with
436  * status failure, after they are dequeued to ensure proper
437  * cleanup. The RA list node itself is freed at the end.
438  */
439 static void
mwifiex_wmm_del_pkts_in_ralist_node(struct mwifiex_private * priv,struct mwifiex_ra_list_tbl * ra_list)440 mwifiex_wmm_del_pkts_in_ralist_node(struct mwifiex_private *priv,
441 				    struct mwifiex_ra_list_tbl *ra_list)
442 {
443 	struct mwifiex_adapter *adapter = priv->adapter;
444 	struct sk_buff *skb, *tmp;
445 
446 	skb_queue_walk_safe(&ra_list->skb_head, skb, tmp)
447 		mwifiex_write_data_complete(adapter, skb, -1);
448 }
449 
450 /*
451  * This function deletes all packets in an RA list.
452  *
453  * Each nodes in the RA list are freed individually first, and then
454  * the RA list itself is freed.
455  */
456 static void
mwifiex_wmm_del_pkts_in_ralist(struct mwifiex_private * priv,struct list_head * ra_list_head)457 mwifiex_wmm_del_pkts_in_ralist(struct mwifiex_private *priv,
458 			       struct list_head *ra_list_head)
459 {
460 	struct mwifiex_ra_list_tbl *ra_list;
461 
462 	list_for_each_entry(ra_list, ra_list_head, list)
463 		mwifiex_wmm_del_pkts_in_ralist_node(priv, ra_list);
464 }
465 
466 /*
467  * This function deletes all packets in all RA lists.
468  */
mwifiex_wmm_cleanup_queues(struct mwifiex_private * priv)469 static void mwifiex_wmm_cleanup_queues(struct mwifiex_private *priv)
470 {
471 	int i;
472 
473 	for (i = 0; i < MAX_NUM_TID; i++)
474 		mwifiex_wmm_del_pkts_in_ralist(priv, &priv->wmm.tid_tbl_ptr[i].
475 								       ra_list);
476 
477 	atomic_set(&priv->wmm.tx_pkts_queued, 0);
478 	atomic_set(&priv->wmm.highest_queued_prio, HIGH_PRIO_TID);
479 }
480 
481 /*
482  * This function deletes all route addresses from all RA lists.
483  */
mwifiex_wmm_delete_all_ralist(struct mwifiex_private * priv)484 static void mwifiex_wmm_delete_all_ralist(struct mwifiex_private *priv)
485 {
486 	struct mwifiex_ra_list_tbl *ra_list, *tmp_node;
487 	int i;
488 
489 	for (i = 0; i < MAX_NUM_TID; ++i) {
490 		dev_dbg(priv->adapter->dev,
491 			"info: ra_list: freeing buf for tid %d\n", i);
492 		list_for_each_entry_safe(ra_list, tmp_node,
493 					 &priv->wmm.tid_tbl_ptr[i].ra_list,
494 					 list) {
495 			list_del(&ra_list->list);
496 			kfree(ra_list);
497 		}
498 
499 		INIT_LIST_HEAD(&priv->wmm.tid_tbl_ptr[i].ra_list);
500 
501 		priv->wmm.tid_tbl_ptr[i].ra_list_curr = NULL;
502 	}
503 }
504 
505 /*
506  * This function cleans up the Tx and Rx queues.
507  *
508  * Cleanup includes -
509  *      - All packets in RA lists
510  *      - All entries in Rx reorder table
511  *      - All entries in Tx BA stream table
512  *      - MPA buffer (if required)
513  *      - All RA lists
514  */
515 void
mwifiex_clean_txrx(struct mwifiex_private * priv)516 mwifiex_clean_txrx(struct mwifiex_private *priv)
517 {
518 	unsigned long flags;
519 
520 	mwifiex_11n_cleanup_reorder_tbl(priv);
521 	spin_lock_irqsave(&priv->wmm.ra_list_spinlock, flags);
522 
523 	mwifiex_wmm_cleanup_queues(priv);
524 	mwifiex_11n_delete_all_tx_ba_stream_tbl(priv);
525 
526 	if (priv->adapter->if_ops.cleanup_mpa_buf)
527 		priv->adapter->if_ops.cleanup_mpa_buf(priv->adapter);
528 
529 	mwifiex_wmm_delete_all_ralist(priv);
530 	memcpy(tos_to_tid, ac_to_tid, sizeof(tos_to_tid));
531 
532 	spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
533 }
534 
535 /*
536  * This function retrieves a particular RA list node, matching with the
537  * given TID and RA address.
538  */
539 static struct mwifiex_ra_list_tbl *
mwifiex_wmm_get_ralist_node(struct mwifiex_private * priv,u8 tid,u8 * ra_addr)540 mwifiex_wmm_get_ralist_node(struct mwifiex_private *priv, u8 tid,
541 			    u8 *ra_addr)
542 {
543 	struct mwifiex_ra_list_tbl *ra_list;
544 
545 	list_for_each_entry(ra_list, &priv->wmm.tid_tbl_ptr[tid].ra_list,
546 			    list) {
547 		if (!memcmp(ra_list->ra, ra_addr, ETH_ALEN))
548 			return ra_list;
549 	}
550 
551 	return NULL;
552 }
553 
554 /*
555  * This function retrieves an RA list node for a given TID and
556  * RA address pair.
557  *
558  * If no such node is found, a new node is added first and then
559  * retrieved.
560  */
561 static struct mwifiex_ra_list_tbl *
mwifiex_wmm_get_queue_raptr(struct mwifiex_private * priv,u8 tid,u8 * ra_addr)562 mwifiex_wmm_get_queue_raptr(struct mwifiex_private *priv, u8 tid, u8 *ra_addr)
563 {
564 	struct mwifiex_ra_list_tbl *ra_list;
565 
566 	ra_list = mwifiex_wmm_get_ralist_node(priv, tid, ra_addr);
567 	if (ra_list)
568 		return ra_list;
569 	mwifiex_ralist_add(priv, ra_addr);
570 
571 	return mwifiex_wmm_get_ralist_node(priv, tid, ra_addr);
572 }
573 
574 /*
575  * This function checks if a particular RA list node exists in a given TID
576  * table index.
577  */
578 int
mwifiex_is_ralist_valid(struct mwifiex_private * priv,struct mwifiex_ra_list_tbl * ra_list,int ptr_index)579 mwifiex_is_ralist_valid(struct mwifiex_private *priv,
580 			struct mwifiex_ra_list_tbl *ra_list, int ptr_index)
581 {
582 	struct mwifiex_ra_list_tbl *rlist;
583 
584 	list_for_each_entry(rlist, &priv->wmm.tid_tbl_ptr[ptr_index].ra_list,
585 			    list) {
586 		if (rlist == ra_list)
587 			return true;
588 	}
589 
590 	return false;
591 }
592 
593 /*
594  * This function adds a packet to WMM queue.
595  *
596  * In disconnected state the packet is immediately dropped and the
597  * packet send completion callback is called with status failure.
598  *
599  * Otherwise, the correct RA list node is located and the packet
600  * is queued at the list tail.
601  */
602 void
mwifiex_wmm_add_buf_txqueue(struct mwifiex_private * priv,struct sk_buff * skb)603 mwifiex_wmm_add_buf_txqueue(struct mwifiex_private *priv,
604 			    struct sk_buff *skb)
605 {
606 	struct mwifiex_adapter *adapter = priv->adapter;
607 	u32 tid;
608 	struct mwifiex_ra_list_tbl *ra_list;
609 	u8 ra[ETH_ALEN], tid_down;
610 	unsigned long flags;
611 
612 	if (!priv->media_connected) {
613 		dev_dbg(adapter->dev, "data: drop packet in disconnect\n");
614 		mwifiex_write_data_complete(adapter, skb, -1);
615 		return;
616 	}
617 
618 	tid = skb->priority;
619 
620 	spin_lock_irqsave(&priv->wmm.ra_list_spinlock, flags);
621 
622 	tid_down = mwifiex_wmm_downgrade_tid(priv, tid);
623 
624 	/* In case of infra as we have already created the list during
625 	   association we just don't have to call get_queue_raptr, we will
626 	   have only 1 raptr for a tid in case of infra */
627 	if (!mwifiex_queuing_ra_based(priv)) {
628 		if (!list_empty(&priv->wmm.tid_tbl_ptr[tid_down].ra_list))
629 			ra_list = list_first_entry(
630 				&priv->wmm.tid_tbl_ptr[tid_down].ra_list,
631 				struct mwifiex_ra_list_tbl, list);
632 		else
633 			ra_list = NULL;
634 	} else {
635 		memcpy(ra, skb->data, ETH_ALEN);
636 		if (ra[0] & 0x01)
637 			memset(ra, 0xff, ETH_ALEN);
638 		ra_list = mwifiex_wmm_get_queue_raptr(priv, tid_down, ra);
639 	}
640 
641 	if (!ra_list) {
642 		spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
643 		mwifiex_write_data_complete(adapter, skb, -1);
644 		return;
645 	}
646 
647 	skb_queue_tail(&ra_list->skb_head, skb);
648 
649 	ra_list->total_pkts_size += skb->len;
650 
651 	atomic_inc(&priv->wmm.tx_pkts_queued);
652 
653 	if (atomic_read(&priv->wmm.highest_queued_prio) <
654 						tos_to_tid_inv[tid_down])
655 		atomic_set(&priv->wmm.highest_queued_prio,
656 			   tos_to_tid_inv[tid_down]);
657 
658 	spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
659 }
660 
661 /*
662  * This function processes the get WMM status command response from firmware.
663  *
664  * The response may contain multiple TLVs -
665  *      - AC Queue status TLVs
666  *      - Current WMM Parameter IE TLV
667  *      - Admission Control action frame TLVs
668  *
669  * This function parses the TLVs and then calls further specific functions
670  * to process any changes in the queue prioritize or state.
671  */
mwifiex_ret_wmm_get_status(struct mwifiex_private * priv,const struct host_cmd_ds_command * resp)672 int mwifiex_ret_wmm_get_status(struct mwifiex_private *priv,
673 			       const struct host_cmd_ds_command *resp)
674 {
675 	u8 *curr = (u8 *) &resp->params.get_wmm_status;
676 	uint16_t resp_len = le16_to_cpu(resp->size), tlv_len;
677 	int valid = true;
678 
679 	struct mwifiex_ie_types_data *tlv_hdr;
680 	struct mwifiex_ie_types_wmm_queue_status *tlv_wmm_qstatus;
681 	struct ieee_types_wmm_parameter *wmm_param_ie = NULL;
682 	struct mwifiex_wmm_ac_status *ac_status;
683 
684 	dev_dbg(priv->adapter->dev, "info: WMM: WMM_GET_STATUS cmdresp received: %d\n",
685 		resp_len);
686 
687 	while ((resp_len >= sizeof(tlv_hdr->header)) && valid) {
688 		tlv_hdr = (struct mwifiex_ie_types_data *) curr;
689 		tlv_len = le16_to_cpu(tlv_hdr->header.len);
690 
691 		switch (le16_to_cpu(tlv_hdr->header.type)) {
692 		case TLV_TYPE_WMMQSTATUS:
693 			tlv_wmm_qstatus =
694 				(struct mwifiex_ie_types_wmm_queue_status *)
695 				tlv_hdr;
696 			dev_dbg(priv->adapter->dev,
697 				"info: CMD_RESP: WMM_GET_STATUS:"
698 				" QSTATUS TLV: %d, %d, %d\n",
699 				tlv_wmm_qstatus->queue_index,
700 				tlv_wmm_qstatus->flow_required,
701 				tlv_wmm_qstatus->disabled);
702 
703 			ac_status = &priv->wmm.ac_status[tlv_wmm_qstatus->
704 							 queue_index];
705 			ac_status->disabled = tlv_wmm_qstatus->disabled;
706 			ac_status->flow_required =
707 						tlv_wmm_qstatus->flow_required;
708 			ac_status->flow_created = tlv_wmm_qstatus->flow_created;
709 			break;
710 
711 		case WLAN_EID_VENDOR_SPECIFIC:
712 			/*
713 			 * Point the regular IEEE IE 2 bytes into the Marvell IE
714 			 *   and setup the IEEE IE type and length byte fields
715 			 */
716 
717 			wmm_param_ie =
718 				(struct ieee_types_wmm_parameter *) (curr +
719 								    2);
720 			wmm_param_ie->vend_hdr.len = (u8) tlv_len;
721 			wmm_param_ie->vend_hdr.element_id =
722 						WLAN_EID_VENDOR_SPECIFIC;
723 
724 			dev_dbg(priv->adapter->dev,
725 				"info: CMD_RESP: WMM_GET_STATUS:"
726 				" WMM Parameter Set Count: %d\n",
727 				wmm_param_ie->qos_info_bitmap &
728 				IEEE80211_WMM_IE_AP_QOSINFO_PARAM_SET_CNT_MASK);
729 
730 			memcpy((u8 *) &priv->curr_bss_params.bss_descriptor.
731 			       wmm_ie, wmm_param_ie,
732 			       wmm_param_ie->vend_hdr.len + 2);
733 
734 			break;
735 
736 		default:
737 			valid = false;
738 			break;
739 		}
740 
741 		curr += (tlv_len + sizeof(tlv_hdr->header));
742 		resp_len -= (tlv_len + sizeof(tlv_hdr->header));
743 	}
744 
745 	mwifiex_wmm_setup_queue_priorities(priv, wmm_param_ie);
746 	mwifiex_wmm_setup_ac_downgrade(priv);
747 
748 	return 0;
749 }
750 
751 /*
752  * Callback handler from the command module to allow insertion of a WMM TLV.
753  *
754  * If the BSS we are associating to supports WMM, this function adds the
755  * required WMM Information IE to the association request command buffer in
756  * the form of a Marvell extended IEEE IE.
757  */
758 u32
mwifiex_wmm_process_association_req(struct mwifiex_private * priv,u8 ** assoc_buf,struct ieee_types_wmm_parameter * wmm_ie,struct ieee80211_ht_cap * ht_cap)759 mwifiex_wmm_process_association_req(struct mwifiex_private *priv,
760 				    u8 **assoc_buf,
761 				    struct ieee_types_wmm_parameter *wmm_ie,
762 				    struct ieee80211_ht_cap *ht_cap)
763 {
764 	struct mwifiex_ie_types_wmm_param_set *wmm_tlv;
765 	u32 ret_len = 0;
766 
767 	/* Null checks */
768 	if (!assoc_buf)
769 		return 0;
770 	if (!(*assoc_buf))
771 		return 0;
772 
773 	if (!wmm_ie)
774 		return 0;
775 
776 	dev_dbg(priv->adapter->dev,
777 		"info: WMM: process assoc req: bss->wmm_ie=%#x\n",
778 		wmm_ie->vend_hdr.element_id);
779 
780 	if ((priv->wmm_required ||
781 	     (ht_cap && (priv->adapter->config_bands & BAND_GN ||
782 	     priv->adapter->config_bands & BAND_AN))) &&
783 	    wmm_ie->vend_hdr.element_id == WLAN_EID_VENDOR_SPECIFIC) {
784 		wmm_tlv = (struct mwifiex_ie_types_wmm_param_set *) *assoc_buf;
785 		wmm_tlv->header.type = cpu_to_le16((u16) wmm_info_ie[0]);
786 		wmm_tlv->header.len = cpu_to_le16((u16) wmm_info_ie[1]);
787 		memcpy(wmm_tlv->wmm_ie, &wmm_info_ie[2],
788 		       le16_to_cpu(wmm_tlv->header.len));
789 		if (wmm_ie->qos_info_bitmap & IEEE80211_WMM_IE_AP_QOSINFO_UAPSD)
790 			memcpy((u8 *) (wmm_tlv->wmm_ie
791 				       + le16_to_cpu(wmm_tlv->header.len)
792 				       - sizeof(priv->wmm_qosinfo)),
793 			       &priv->wmm_qosinfo, sizeof(priv->wmm_qosinfo));
794 
795 		ret_len = sizeof(wmm_tlv->header)
796 			  + le16_to_cpu(wmm_tlv->header.len);
797 
798 		*assoc_buf += ret_len;
799 	}
800 
801 	return ret_len;
802 }
803 
804 /*
805  * This function computes the time delay in the driver queues for a
806  * given packet.
807  *
808  * When the packet is received at the OS/Driver interface, the current
809  * time is set in the packet structure. The difference between the present
810  * time and that received time is computed in this function and limited
811  * based on pre-compiled limits in the driver.
812  */
813 u8
mwifiex_wmm_compute_drv_pkt_delay(struct mwifiex_private * priv,const struct sk_buff * skb)814 mwifiex_wmm_compute_drv_pkt_delay(struct mwifiex_private *priv,
815 				  const struct sk_buff *skb)
816 {
817 	u8 ret_val;
818 	struct timeval out_tstamp, in_tstamp;
819 	u32 queue_delay;
820 
821 	do_gettimeofday(&out_tstamp);
822 	in_tstamp = ktime_to_timeval(skb->tstamp);
823 
824 	queue_delay = (out_tstamp.tv_sec - in_tstamp.tv_sec) * 1000;
825 	queue_delay += (out_tstamp.tv_usec - in_tstamp.tv_usec) / 1000;
826 
827 	/*
828 	 * Queue delay is passed as a uint8 in units of 2ms (ms shifted
829 	 *  by 1). Min value (other than 0) is therefore 2ms, max is 510ms.
830 	 *
831 	 * Pass max value if queue_delay is beyond the uint8 range
832 	 */
833 	ret_val = (u8) (min(queue_delay, priv->wmm.drv_pkt_delay_max) >> 1);
834 
835 	dev_dbg(priv->adapter->dev, "data: WMM: Pkt Delay: %d ms,"
836 				" %d ms sent to FW\n", queue_delay, ret_val);
837 
838 	return ret_val;
839 }
840 
841 /*
842  * This function retrieves the highest priority RA list table pointer.
843  */
844 static struct mwifiex_ra_list_tbl *
mwifiex_wmm_get_highest_priolist_ptr(struct mwifiex_adapter * adapter,struct mwifiex_private ** priv,int * tid)845 mwifiex_wmm_get_highest_priolist_ptr(struct mwifiex_adapter *adapter,
846 				     struct mwifiex_private **priv, int *tid)
847 {
848 	struct mwifiex_private *priv_tmp;
849 	struct mwifiex_ra_list_tbl *ptr, *head;
850 	struct mwifiex_bss_prio_node *bssprio_node, *bssprio_head;
851 	struct mwifiex_tid_tbl *tid_ptr;
852 	atomic_t *hqp;
853 	int is_list_empty;
854 	unsigned long flags;
855 	int i, j;
856 
857 	for (j = adapter->priv_num - 1; j >= 0; --j) {
858 		spin_lock_irqsave(&adapter->bss_prio_tbl[j].bss_prio_lock,
859 				  flags);
860 		is_list_empty = list_empty(&adapter->bss_prio_tbl[j]
861 					   .bss_prio_head);
862 		spin_unlock_irqrestore(&adapter->bss_prio_tbl[j].bss_prio_lock,
863 				       flags);
864 		if (is_list_empty)
865 			continue;
866 
867 		if (adapter->bss_prio_tbl[j].bss_prio_cur ==
868 		    (struct mwifiex_bss_prio_node *)
869 		    &adapter->bss_prio_tbl[j].bss_prio_head) {
870 			bssprio_node =
871 				list_first_entry(&adapter->bss_prio_tbl[j]
872 						 .bss_prio_head,
873 						 struct mwifiex_bss_prio_node,
874 						 list);
875 			bssprio_head = bssprio_node;
876 		} else {
877 			bssprio_node = adapter->bss_prio_tbl[j].bss_prio_cur;
878 			bssprio_head = bssprio_node;
879 		}
880 
881 		do {
882 			priv_tmp = bssprio_node->priv;
883 			hqp = &priv_tmp->wmm.highest_queued_prio;
884 
885 			for (i = atomic_read(hqp); i >= LOW_PRIO_TID; --i) {
886 
887 				tid_ptr = &(priv_tmp)->wmm.
888 					tid_tbl_ptr[tos_to_tid[i]];
889 
890 				spin_lock_irqsave(&tid_ptr->tid_tbl_lock,
891 						  flags);
892 				is_list_empty =
893 					list_empty(&adapter->bss_prio_tbl[j]
894 						   .bss_prio_head);
895 				spin_unlock_irqrestore(&tid_ptr->tid_tbl_lock,
896 						       flags);
897 				if (is_list_empty)
898 					continue;
899 
900 				/*
901 				 * Always choose the next ra we transmitted
902 				 * last time, this way we pick the ra's in
903 				 * round robin fashion.
904 				 */
905 				ptr = list_first_entry(
906 						&tid_ptr->ra_list_curr->list,
907 						struct mwifiex_ra_list_tbl,
908 						list);
909 
910 				head = ptr;
911 				if (ptr == (struct mwifiex_ra_list_tbl *)
912 						&tid_ptr->ra_list) {
913 					/* Get next ra */
914 					ptr = list_first_entry(&ptr->list,
915 					    struct mwifiex_ra_list_tbl, list);
916 					head = ptr;
917 				}
918 
919 				do {
920 					is_list_empty =
921 						skb_queue_empty(&ptr->skb_head);
922 
923 					if (!is_list_empty)
924 						goto found;
925 
926 					/* Get next ra */
927 					ptr = list_first_entry(&ptr->list,
928 						 struct mwifiex_ra_list_tbl,
929 						 list);
930 					if (ptr ==
931 					    (struct mwifiex_ra_list_tbl *)
932 					    &tid_ptr->ra_list)
933 						ptr = list_first_entry(
934 						    &ptr->list,
935 						    struct mwifiex_ra_list_tbl,
936 						    list);
937 				} while (ptr != head);
938 			}
939 
940 			/* No packet at any TID for this priv. Mark as such
941 			 * to skip checking TIDs for this priv (until pkt is
942 			 * added).
943 			 */
944 			atomic_set(hqp, NO_PKT_PRIO_TID);
945 
946 			/* Get next bss priority node */
947 			bssprio_node = list_first_entry(&bssprio_node->list,
948 						struct mwifiex_bss_prio_node,
949 						list);
950 
951 			if (bssprio_node ==
952 			    (struct mwifiex_bss_prio_node *)
953 			    &adapter->bss_prio_tbl[j].bss_prio_head)
954 				/* Get next bss priority node */
955 				bssprio_node = list_first_entry(
956 						&bssprio_node->list,
957 						struct mwifiex_bss_prio_node,
958 						list);
959 		} while (bssprio_node != bssprio_head);
960 	}
961 	return NULL;
962 
963 found:
964 	spin_lock_irqsave(&priv_tmp->wmm.ra_list_spinlock, flags);
965 	if (atomic_read(hqp) > i)
966 		atomic_set(hqp, i);
967 	spin_unlock_irqrestore(&priv_tmp->wmm.ra_list_spinlock, flags);
968 
969 	*priv = priv_tmp;
970 	*tid = tos_to_tid[i];
971 
972 	return ptr;
973 }
974 
975 /*
976  * This function checks if 11n aggregation is possible.
977  */
978 static int
mwifiex_is_11n_aggragation_possible(struct mwifiex_private * priv,struct mwifiex_ra_list_tbl * ptr,int max_buf_size)979 mwifiex_is_11n_aggragation_possible(struct mwifiex_private *priv,
980 				    struct mwifiex_ra_list_tbl *ptr,
981 				    int max_buf_size)
982 {
983 	int count = 0, total_size = 0;
984 	struct sk_buff *skb, *tmp;
985 
986 	skb_queue_walk_safe(&ptr->skb_head, skb, tmp) {
987 		total_size += skb->len;
988 		if (total_size >= max_buf_size)
989 			break;
990 		if (++count >= MIN_NUM_AMSDU)
991 			return true;
992 	}
993 
994 	return false;
995 }
996 
997 /*
998  * This function sends a single packet to firmware for transmission.
999  */
1000 static void
mwifiex_send_single_packet(struct mwifiex_private * priv,struct mwifiex_ra_list_tbl * ptr,int ptr_index,unsigned long ra_list_flags)1001 mwifiex_send_single_packet(struct mwifiex_private *priv,
1002 			   struct mwifiex_ra_list_tbl *ptr, int ptr_index,
1003 			   unsigned long ra_list_flags)
1004 			   __releases(&priv->wmm.ra_list_spinlock)
1005 {
1006 	struct sk_buff *skb, *skb_next;
1007 	struct mwifiex_tx_param tx_param;
1008 	struct mwifiex_adapter *adapter = priv->adapter;
1009 	struct mwifiex_txinfo *tx_info;
1010 
1011 	if (skb_queue_empty(&ptr->skb_head)) {
1012 		spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
1013 				       ra_list_flags);
1014 		dev_dbg(adapter->dev, "data: nothing to send\n");
1015 		return;
1016 	}
1017 
1018 	skb = skb_dequeue(&ptr->skb_head);
1019 
1020 	tx_info = MWIFIEX_SKB_TXCB(skb);
1021 	dev_dbg(adapter->dev, "data: dequeuing the packet %p %p\n", ptr, skb);
1022 
1023 	ptr->total_pkts_size -= skb->len;
1024 
1025 	if (!skb_queue_empty(&ptr->skb_head))
1026 		skb_next = skb_peek(&ptr->skb_head);
1027 	else
1028 		skb_next = NULL;
1029 
1030 	spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, ra_list_flags);
1031 
1032 	tx_param.next_pkt_len = ((skb_next) ? skb_next->len +
1033 				sizeof(struct txpd) : 0);
1034 
1035 	if (mwifiex_process_tx(priv, skb, &tx_param) == -EBUSY) {
1036 		/* Queue the packet back at the head */
1037 		spin_lock_irqsave(&priv->wmm.ra_list_spinlock, ra_list_flags);
1038 
1039 		if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
1040 			spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
1041 					       ra_list_flags);
1042 			mwifiex_write_data_complete(adapter, skb, -1);
1043 			return;
1044 		}
1045 
1046 		skb_queue_tail(&ptr->skb_head, skb);
1047 
1048 		ptr->total_pkts_size += skb->len;
1049 		tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT;
1050 		spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
1051 				       ra_list_flags);
1052 	} else {
1053 		spin_lock_irqsave(&priv->wmm.ra_list_spinlock, ra_list_flags);
1054 		if (mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
1055 			priv->wmm.packets_out[ptr_index]++;
1056 			priv->wmm.tid_tbl_ptr[ptr_index].ra_list_curr = ptr;
1057 		}
1058 		adapter->bss_prio_tbl[priv->bss_priority].bss_prio_cur =
1059 			list_first_entry(
1060 				&adapter->bss_prio_tbl[priv->bss_priority]
1061 				.bss_prio_cur->list,
1062 				struct mwifiex_bss_prio_node,
1063 				list);
1064 		atomic_dec(&priv->wmm.tx_pkts_queued);
1065 		spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
1066 				       ra_list_flags);
1067 	}
1068 }
1069 
1070 /*
1071  * This function checks if the first packet in the given RA list
1072  * is already processed or not.
1073  */
1074 static int
mwifiex_is_ptr_processed(struct mwifiex_private * priv,struct mwifiex_ra_list_tbl * ptr)1075 mwifiex_is_ptr_processed(struct mwifiex_private *priv,
1076 			 struct mwifiex_ra_list_tbl *ptr)
1077 {
1078 	struct sk_buff *skb;
1079 	struct mwifiex_txinfo *tx_info;
1080 
1081 	if (skb_queue_empty(&ptr->skb_head))
1082 		return false;
1083 
1084 	skb = skb_peek(&ptr->skb_head);
1085 
1086 	tx_info = MWIFIEX_SKB_TXCB(skb);
1087 	if (tx_info->flags & MWIFIEX_BUF_FLAG_REQUEUED_PKT)
1088 		return true;
1089 
1090 	return false;
1091 }
1092 
1093 /*
1094  * This function sends a single processed packet to firmware for
1095  * transmission.
1096  */
1097 static void
mwifiex_send_processed_packet(struct mwifiex_private * priv,struct mwifiex_ra_list_tbl * ptr,int ptr_index,unsigned long ra_list_flags)1098 mwifiex_send_processed_packet(struct mwifiex_private *priv,
1099 			      struct mwifiex_ra_list_tbl *ptr, int ptr_index,
1100 			      unsigned long ra_list_flags)
1101 				__releases(&priv->wmm.ra_list_spinlock)
1102 {
1103 	struct mwifiex_tx_param tx_param;
1104 	struct mwifiex_adapter *adapter = priv->adapter;
1105 	int ret = -1;
1106 	struct sk_buff *skb, *skb_next;
1107 	struct mwifiex_txinfo *tx_info;
1108 
1109 	if (skb_queue_empty(&ptr->skb_head)) {
1110 		spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
1111 				       ra_list_flags);
1112 		return;
1113 	}
1114 
1115 	skb = skb_dequeue(&ptr->skb_head);
1116 
1117 	if (!skb_queue_empty(&ptr->skb_head))
1118 		skb_next = skb_peek(&ptr->skb_head);
1119 	else
1120 		skb_next = NULL;
1121 
1122 	tx_info = MWIFIEX_SKB_TXCB(skb);
1123 
1124 	spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, ra_list_flags);
1125 	tx_param.next_pkt_len =
1126 		((skb_next) ? skb_next->len +
1127 		 sizeof(struct txpd) : 0);
1128 	ret = adapter->if_ops.host_to_card(adapter, MWIFIEX_TYPE_DATA, skb,
1129 					   &tx_param);
1130 	switch (ret) {
1131 	case -EBUSY:
1132 		dev_dbg(adapter->dev, "data: -EBUSY is returned\n");
1133 		spin_lock_irqsave(&priv->wmm.ra_list_spinlock, ra_list_flags);
1134 
1135 		if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
1136 			spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
1137 					       ra_list_flags);
1138 			mwifiex_write_data_complete(adapter, skb, -1);
1139 			return;
1140 		}
1141 
1142 		skb_queue_tail(&ptr->skb_head, skb);
1143 
1144 		tx_info->flags |= MWIFIEX_BUF_FLAG_REQUEUED_PKT;
1145 		spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
1146 				       ra_list_flags);
1147 		break;
1148 	case -1:
1149 		adapter->data_sent = false;
1150 		dev_err(adapter->dev, "host_to_card failed: %#x\n", ret);
1151 		adapter->dbg.num_tx_host_to_card_failure++;
1152 		mwifiex_write_data_complete(adapter, skb, ret);
1153 		break;
1154 	case -EINPROGRESS:
1155 		adapter->data_sent = false;
1156 	default:
1157 		break;
1158 	}
1159 	if (ret != -EBUSY) {
1160 		spin_lock_irqsave(&priv->wmm.ra_list_spinlock, ra_list_flags);
1161 		if (mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
1162 			priv->wmm.packets_out[ptr_index]++;
1163 			priv->wmm.tid_tbl_ptr[ptr_index].ra_list_curr = ptr;
1164 		}
1165 		adapter->bss_prio_tbl[priv->bss_priority].bss_prio_cur =
1166 			list_first_entry(
1167 				&adapter->bss_prio_tbl[priv->bss_priority]
1168 				.bss_prio_cur->list,
1169 				struct mwifiex_bss_prio_node,
1170 				list);
1171 		atomic_dec(&priv->wmm.tx_pkts_queued);
1172 		spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock,
1173 				       ra_list_flags);
1174 	}
1175 }
1176 
1177 /*
1178  * This function dequeues a packet from the highest priority list
1179  * and transmits it.
1180  */
1181 static int
mwifiex_dequeue_tx_packet(struct mwifiex_adapter * adapter)1182 mwifiex_dequeue_tx_packet(struct mwifiex_adapter *adapter)
1183 {
1184 	struct mwifiex_ra_list_tbl *ptr;
1185 	struct mwifiex_private *priv = NULL;
1186 	int ptr_index = 0;
1187 	u8 ra[ETH_ALEN];
1188 	int tid_del = 0, tid = 0;
1189 	unsigned long flags;
1190 
1191 	ptr = mwifiex_wmm_get_highest_priolist_ptr(adapter, &priv, &ptr_index);
1192 	if (!ptr)
1193 		return -1;
1194 
1195 	tid = mwifiex_get_tid(ptr);
1196 
1197 	dev_dbg(adapter->dev, "data: tid=%d\n", tid);
1198 
1199 	spin_lock_irqsave(&priv->wmm.ra_list_spinlock, flags);
1200 	if (!mwifiex_is_ralist_valid(priv, ptr, ptr_index)) {
1201 		spin_unlock_irqrestore(&priv->wmm.ra_list_spinlock, flags);
1202 		return -1;
1203 	}
1204 
1205 	if (mwifiex_is_ptr_processed(priv, ptr)) {
1206 		mwifiex_send_processed_packet(priv, ptr, ptr_index, flags);
1207 		/* ra_list_spinlock has been freed in
1208 		   mwifiex_send_processed_packet() */
1209 		return 0;
1210 	}
1211 
1212 	if (!ptr->is_11n_enabled ||
1213 	    mwifiex_is_ba_stream_setup(priv, ptr, tid) ||
1214 	    priv->wps.session_enable ||
1215 	    ((priv->sec_info.wpa_enabled ||
1216 	      priv->sec_info.wpa2_enabled) &&
1217 	     !priv->wpa_is_gtk_set)) {
1218 		mwifiex_send_single_packet(priv, ptr, ptr_index, flags);
1219 		/* ra_list_spinlock has been freed in
1220 		   mwifiex_send_single_packet() */
1221 	} else {
1222 		if (mwifiex_is_ampdu_allowed(priv, tid)) {
1223 			if (mwifiex_space_avail_for_new_ba_stream(adapter)) {
1224 				mwifiex_create_ba_tbl(priv, ptr->ra, tid,
1225 						      BA_SETUP_INPROGRESS);
1226 				mwifiex_send_addba(priv, tid, ptr->ra);
1227 			} else if (mwifiex_find_stream_to_delete
1228 				   (priv, tid, &tid_del, ra)) {
1229 				mwifiex_create_ba_tbl(priv, ptr->ra, tid,
1230 						      BA_SETUP_INPROGRESS);
1231 				mwifiex_send_delba(priv, tid_del, ra, 1);
1232 			}
1233 		}
1234 		if (mwifiex_is_amsdu_allowed(priv, tid) &&
1235 		    mwifiex_is_11n_aggragation_possible(priv, ptr,
1236 							adapter->tx_buf_size))
1237 			mwifiex_11n_aggregate_pkt(priv, ptr, INTF_HEADER_LEN,
1238 						  ptr_index, flags);
1239 			/* ra_list_spinlock has been freed in
1240 			   mwifiex_11n_aggregate_pkt() */
1241 		else
1242 			mwifiex_send_single_packet(priv, ptr, ptr_index, flags);
1243 			/* ra_list_spinlock has been freed in
1244 			   mwifiex_send_single_packet() */
1245 	}
1246 	return 0;
1247 }
1248 
1249 /*
1250  * This function transmits the highest priority packet awaiting in the
1251  * WMM Queues.
1252  */
1253 void
mwifiex_wmm_process_tx(struct mwifiex_adapter * adapter)1254 mwifiex_wmm_process_tx(struct mwifiex_adapter *adapter)
1255 {
1256 	do {
1257 		/* Check if busy */
1258 		if (adapter->data_sent || adapter->tx_lock_flag)
1259 			break;
1260 
1261 		if (mwifiex_dequeue_tx_packet(adapter))
1262 			break;
1263 	} while (!mwifiex_wmm_lists_empty(adapter));
1264 }
1265