1 /*
2  * kernel/mutex.c
3  *
4  * Mutexes: blocking mutual exclusion locks
5  *
6  * Started by Ingo Molnar:
7  *
8  *  Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
9  *
10  * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11  * David Howells for suggestions and improvements.
12  *
13  *  - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14  *    from the -rt tree, where it was originally implemented for rtmutexes
15  *    by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
16  *    and Sven Dietrich.
17  *
18  * Also see Documentation/mutex-design.txt.
19  */
20 #include <linux/mutex.h>
21 #include <linux/sched.h>
22 #include <linux/export.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/debug_locks.h>
26 
27 /*
28  * In the DEBUG case we are using the "NULL fastpath" for mutexes,
29  * which forces all calls into the slowpath:
30  */
31 #ifdef CONFIG_DEBUG_MUTEXES
32 # include "mutex-debug.h"
33 # include <asm-generic/mutex-null.h>
34 #else
35 # include "mutex.h"
36 # include <asm/mutex.h>
37 #endif
38 
39 void
__mutex_init(struct mutex * lock,const char * name,struct lock_class_key * key)40 __mutex_init(struct mutex *lock, const char *name, struct lock_class_key *key)
41 {
42 	atomic_set(&lock->count, 1);
43 	spin_lock_init(&lock->wait_lock);
44 	INIT_LIST_HEAD(&lock->wait_list);
45 	mutex_clear_owner(lock);
46 
47 	debug_mutex_init(lock, name, key);
48 }
49 
50 EXPORT_SYMBOL(__mutex_init);
51 
52 #ifndef CONFIG_DEBUG_LOCK_ALLOC
53 /*
54  * We split the mutex lock/unlock logic into separate fastpath and
55  * slowpath functions, to reduce the register pressure on the fastpath.
56  * We also put the fastpath first in the kernel image, to make sure the
57  * branch is predicted by the CPU as default-untaken.
58  */
59 static __used noinline void __sched
60 __mutex_lock_slowpath(atomic_t *lock_count);
61 
62 /**
63  * mutex_lock - acquire the mutex
64  * @lock: the mutex to be acquired
65  *
66  * Lock the mutex exclusively for this task. If the mutex is not
67  * available right now, it will sleep until it can get it.
68  *
69  * The mutex must later on be released by the same task that
70  * acquired it. Recursive locking is not allowed. The task
71  * may not exit without first unlocking the mutex. Also, kernel
72  * memory where the mutex resides mutex must not be freed with
73  * the mutex still locked. The mutex must first be initialized
74  * (or statically defined) before it can be locked. memset()-ing
75  * the mutex to 0 is not allowed.
76  *
77  * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
78  *   checks that will enforce the restrictions and will also do
79  *   deadlock debugging. )
80  *
81  * This function is similar to (but not equivalent to) down().
82  */
mutex_lock(struct mutex * lock)83 void __sched mutex_lock(struct mutex *lock)
84 {
85 	might_sleep();
86 	/*
87 	 * The locking fastpath is the 1->0 transition from
88 	 * 'unlocked' into 'locked' state.
89 	 */
90 	__mutex_fastpath_lock(&lock->count, __mutex_lock_slowpath);
91 	mutex_set_owner(lock);
92 }
93 
94 EXPORT_SYMBOL(mutex_lock);
95 #endif
96 
97 static __used noinline void __sched __mutex_unlock_slowpath(atomic_t *lock_count);
98 
99 /**
100  * mutex_unlock - release the mutex
101  * @lock: the mutex to be released
102  *
103  * Unlock a mutex that has been locked by this task previously.
104  *
105  * This function must not be used in interrupt context. Unlocking
106  * of a not locked mutex is not allowed.
107  *
108  * This function is similar to (but not equivalent to) up().
109  */
mutex_unlock(struct mutex * lock)110 void __sched mutex_unlock(struct mutex *lock)
111 {
112 	/*
113 	 * The unlocking fastpath is the 0->1 transition from 'locked'
114 	 * into 'unlocked' state:
115 	 */
116 #ifndef CONFIG_DEBUG_MUTEXES
117 	/*
118 	 * When debugging is enabled we must not clear the owner before time,
119 	 * the slow path will always be taken, and that clears the owner field
120 	 * after verifying that it was indeed current.
121 	 */
122 	mutex_clear_owner(lock);
123 #endif
124 	__mutex_fastpath_unlock(&lock->count, __mutex_unlock_slowpath);
125 }
126 
127 EXPORT_SYMBOL(mutex_unlock);
128 
129 /*
130  * Lock a mutex (possibly interruptible), slowpath:
131  */
132 static inline int __sched
__mutex_lock_common(struct mutex * lock,long state,unsigned int subclass,struct lockdep_map * nest_lock,unsigned long ip)133 __mutex_lock_common(struct mutex *lock, long state, unsigned int subclass,
134 		    struct lockdep_map *nest_lock, unsigned long ip)
135 {
136 	struct task_struct *task = current;
137 	struct mutex_waiter waiter;
138 	unsigned long flags;
139 
140 	preempt_disable();
141 	mutex_acquire_nest(&lock->dep_map, subclass, 0, nest_lock, ip);
142 
143 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
144 	/*
145 	 * Optimistic spinning.
146 	 *
147 	 * We try to spin for acquisition when we find that there are no
148 	 * pending waiters and the lock owner is currently running on a
149 	 * (different) CPU.
150 	 *
151 	 * The rationale is that if the lock owner is running, it is likely to
152 	 * release the lock soon.
153 	 *
154 	 * Since this needs the lock owner, and this mutex implementation
155 	 * doesn't track the owner atomically in the lock field, we need to
156 	 * track it non-atomically.
157 	 *
158 	 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
159 	 * to serialize everything.
160 	 */
161 
162 	for (;;) {
163 		struct task_struct *owner;
164 
165 		/*
166 		 * If there's an owner, wait for it to either
167 		 * release the lock or go to sleep.
168 		 */
169 		owner = ACCESS_ONCE(lock->owner);
170 		if (owner && !mutex_spin_on_owner(lock, owner))
171 			break;
172 
173 		if (atomic_cmpxchg(&lock->count, 1, 0) == 1) {
174 			lock_acquired(&lock->dep_map, ip);
175 			mutex_set_owner(lock);
176 			preempt_enable();
177 			return 0;
178 		}
179 
180 		/*
181 		 * When there's no owner, we might have preempted between the
182 		 * owner acquiring the lock and setting the owner field. If
183 		 * we're an RT task that will live-lock because we won't let
184 		 * the owner complete.
185 		 */
186 		if (!owner && (need_resched() || rt_task(task)))
187 			break;
188 
189 		/*
190 		 * The cpu_relax() call is a compiler barrier which forces
191 		 * everything in this loop to be re-loaded. We don't need
192 		 * memory barriers as we'll eventually observe the right
193 		 * values at the cost of a few extra spins.
194 		 */
195 		arch_mutex_cpu_relax();
196 	}
197 #endif
198 	spin_lock_mutex(&lock->wait_lock, flags);
199 
200 	debug_mutex_lock_common(lock, &waiter);
201 	debug_mutex_add_waiter(lock, &waiter, task_thread_info(task));
202 
203 	/* add waiting tasks to the end of the waitqueue (FIFO): */
204 	list_add_tail(&waiter.list, &lock->wait_list);
205 	waiter.task = task;
206 
207 	if (atomic_xchg(&lock->count, -1) == 1)
208 		goto done;
209 
210 	lock_contended(&lock->dep_map, ip);
211 
212 	for (;;) {
213 		/*
214 		 * Lets try to take the lock again - this is needed even if
215 		 * we get here for the first time (shortly after failing to
216 		 * acquire the lock), to make sure that we get a wakeup once
217 		 * it's unlocked. Later on, if we sleep, this is the
218 		 * operation that gives us the lock. We xchg it to -1, so
219 		 * that when we release the lock, we properly wake up the
220 		 * other waiters:
221 		 */
222 		if (atomic_xchg(&lock->count, -1) == 1)
223 			break;
224 
225 		/*
226 		 * got a signal? (This code gets eliminated in the
227 		 * TASK_UNINTERRUPTIBLE case.)
228 		 */
229 		if (unlikely(signal_pending_state(state, task))) {
230 			mutex_remove_waiter(lock, &waiter,
231 					    task_thread_info(task));
232 			mutex_release(&lock->dep_map, 1, ip);
233 			spin_unlock_mutex(&lock->wait_lock, flags);
234 
235 			debug_mutex_free_waiter(&waiter);
236 			preempt_enable();
237 			return -EINTR;
238 		}
239 		__set_task_state(task, state);
240 
241 		/* didn't get the lock, go to sleep: */
242 		spin_unlock_mutex(&lock->wait_lock, flags);
243 		schedule_preempt_disabled();
244 		spin_lock_mutex(&lock->wait_lock, flags);
245 	}
246 
247 done:
248 	lock_acquired(&lock->dep_map, ip);
249 	/* got the lock - rejoice! */
250 	mutex_remove_waiter(lock, &waiter, current_thread_info());
251 	mutex_set_owner(lock);
252 
253 	/* set it to 0 if there are no waiters left: */
254 	if (likely(list_empty(&lock->wait_list)))
255 		atomic_set(&lock->count, 0);
256 
257 	spin_unlock_mutex(&lock->wait_lock, flags);
258 
259 	debug_mutex_free_waiter(&waiter);
260 	preempt_enable();
261 
262 	return 0;
263 }
264 
265 #ifdef CONFIG_DEBUG_LOCK_ALLOC
266 void __sched
mutex_lock_nested(struct mutex * lock,unsigned int subclass)267 mutex_lock_nested(struct mutex *lock, unsigned int subclass)
268 {
269 	might_sleep();
270 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, subclass, NULL, _RET_IP_);
271 }
272 
273 EXPORT_SYMBOL_GPL(mutex_lock_nested);
274 
275 void __sched
_mutex_lock_nest_lock(struct mutex * lock,struct lockdep_map * nest)276 _mutex_lock_nest_lock(struct mutex *lock, struct lockdep_map *nest)
277 {
278 	might_sleep();
279 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, nest, _RET_IP_);
280 }
281 
282 EXPORT_SYMBOL_GPL(_mutex_lock_nest_lock);
283 
284 int __sched
mutex_lock_killable_nested(struct mutex * lock,unsigned int subclass)285 mutex_lock_killable_nested(struct mutex *lock, unsigned int subclass)
286 {
287 	might_sleep();
288 	return __mutex_lock_common(lock, TASK_KILLABLE, subclass, NULL, _RET_IP_);
289 }
290 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested);
291 
292 int __sched
mutex_lock_interruptible_nested(struct mutex * lock,unsigned int subclass)293 mutex_lock_interruptible_nested(struct mutex *lock, unsigned int subclass)
294 {
295 	might_sleep();
296 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE,
297 				   subclass, NULL, _RET_IP_);
298 }
299 
300 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested);
301 #endif
302 
303 /*
304  * Release the lock, slowpath:
305  */
306 static inline void
__mutex_unlock_common_slowpath(atomic_t * lock_count,int nested)307 __mutex_unlock_common_slowpath(atomic_t *lock_count, int nested)
308 {
309 	struct mutex *lock = container_of(lock_count, struct mutex, count);
310 	unsigned long flags;
311 
312 	spin_lock_mutex(&lock->wait_lock, flags);
313 	mutex_release(&lock->dep_map, nested, _RET_IP_);
314 	debug_mutex_unlock(lock);
315 
316 	/*
317 	 * some architectures leave the lock unlocked in the fastpath failure
318 	 * case, others need to leave it locked. In the later case we have to
319 	 * unlock it here
320 	 */
321 	if (__mutex_slowpath_needs_to_unlock())
322 		atomic_set(&lock->count, 1);
323 
324 	if (!list_empty(&lock->wait_list)) {
325 		/* get the first entry from the wait-list: */
326 		struct mutex_waiter *waiter =
327 				list_entry(lock->wait_list.next,
328 					   struct mutex_waiter, list);
329 
330 		debug_mutex_wake_waiter(lock, waiter);
331 
332 		wake_up_process(waiter->task);
333 	}
334 
335 	spin_unlock_mutex(&lock->wait_lock, flags);
336 }
337 
338 /*
339  * Release the lock, slowpath:
340  */
341 static __used noinline void
__mutex_unlock_slowpath(atomic_t * lock_count)342 __mutex_unlock_slowpath(atomic_t *lock_count)
343 {
344 	__mutex_unlock_common_slowpath(lock_count, 1);
345 }
346 
347 #ifndef CONFIG_DEBUG_LOCK_ALLOC
348 /*
349  * Here come the less common (and hence less performance-critical) APIs:
350  * mutex_lock_interruptible() and mutex_trylock().
351  */
352 static noinline int __sched
353 __mutex_lock_killable_slowpath(atomic_t *lock_count);
354 
355 static noinline int __sched
356 __mutex_lock_interruptible_slowpath(atomic_t *lock_count);
357 
358 /**
359  * mutex_lock_interruptible - acquire the mutex, interruptible
360  * @lock: the mutex to be acquired
361  *
362  * Lock the mutex like mutex_lock(), and return 0 if the mutex has
363  * been acquired or sleep until the mutex becomes available. If a
364  * signal arrives while waiting for the lock then this function
365  * returns -EINTR.
366  *
367  * This function is similar to (but not equivalent to) down_interruptible().
368  */
mutex_lock_interruptible(struct mutex * lock)369 int __sched mutex_lock_interruptible(struct mutex *lock)
370 {
371 	int ret;
372 
373 	might_sleep();
374 	ret =  __mutex_fastpath_lock_retval
375 			(&lock->count, __mutex_lock_interruptible_slowpath);
376 	if (!ret)
377 		mutex_set_owner(lock);
378 
379 	return ret;
380 }
381 
382 EXPORT_SYMBOL(mutex_lock_interruptible);
383 
mutex_lock_killable(struct mutex * lock)384 int __sched mutex_lock_killable(struct mutex *lock)
385 {
386 	int ret;
387 
388 	might_sleep();
389 	ret = __mutex_fastpath_lock_retval
390 			(&lock->count, __mutex_lock_killable_slowpath);
391 	if (!ret)
392 		mutex_set_owner(lock);
393 
394 	return ret;
395 }
396 EXPORT_SYMBOL(mutex_lock_killable);
397 
398 static __used noinline void __sched
__mutex_lock_slowpath(atomic_t * lock_count)399 __mutex_lock_slowpath(atomic_t *lock_count)
400 {
401 	struct mutex *lock = container_of(lock_count, struct mutex, count);
402 
403 	__mutex_lock_common(lock, TASK_UNINTERRUPTIBLE, 0, NULL, _RET_IP_);
404 }
405 
406 static noinline int __sched
__mutex_lock_killable_slowpath(atomic_t * lock_count)407 __mutex_lock_killable_slowpath(atomic_t *lock_count)
408 {
409 	struct mutex *lock = container_of(lock_count, struct mutex, count);
410 
411 	return __mutex_lock_common(lock, TASK_KILLABLE, 0, NULL, _RET_IP_);
412 }
413 
414 static noinline int __sched
__mutex_lock_interruptible_slowpath(atomic_t * lock_count)415 __mutex_lock_interruptible_slowpath(atomic_t *lock_count)
416 {
417 	struct mutex *lock = container_of(lock_count, struct mutex, count);
418 
419 	return __mutex_lock_common(lock, TASK_INTERRUPTIBLE, 0, NULL, _RET_IP_);
420 }
421 #endif
422 
423 /*
424  * Spinlock based trylock, we take the spinlock and check whether we
425  * can get the lock:
426  */
__mutex_trylock_slowpath(atomic_t * lock_count)427 static inline int __mutex_trylock_slowpath(atomic_t *lock_count)
428 {
429 	struct mutex *lock = container_of(lock_count, struct mutex, count);
430 	unsigned long flags;
431 	int prev;
432 
433 	spin_lock_mutex(&lock->wait_lock, flags);
434 
435 	prev = atomic_xchg(&lock->count, -1);
436 	if (likely(prev == 1)) {
437 		mutex_set_owner(lock);
438 		mutex_acquire(&lock->dep_map, 0, 1, _RET_IP_);
439 	}
440 
441 	/* Set it back to 0 if there are no waiters: */
442 	if (likely(list_empty(&lock->wait_list)))
443 		atomic_set(&lock->count, 0);
444 
445 	spin_unlock_mutex(&lock->wait_lock, flags);
446 
447 	return prev == 1;
448 }
449 
450 /**
451  * mutex_trylock - try to acquire the mutex, without waiting
452  * @lock: the mutex to be acquired
453  *
454  * Try to acquire the mutex atomically. Returns 1 if the mutex
455  * has been acquired successfully, and 0 on contention.
456  *
457  * NOTE: this function follows the spin_trylock() convention, so
458  * it is negated from the down_trylock() return values! Be careful
459  * about this when converting semaphore users to mutexes.
460  *
461  * This function must not be used in interrupt context. The
462  * mutex must be released by the same task that acquired it.
463  */
mutex_trylock(struct mutex * lock)464 int __sched mutex_trylock(struct mutex *lock)
465 {
466 	int ret;
467 
468 	ret = __mutex_fastpath_trylock(&lock->count, __mutex_trylock_slowpath);
469 	if (ret)
470 		mutex_set_owner(lock);
471 
472 	return ret;
473 }
474 EXPORT_SYMBOL(mutex_trylock);
475 
476 /**
477  * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
478  * @cnt: the atomic which we are to dec
479  * @lock: the mutex to return holding if we dec to 0
480  *
481  * return true and hold lock if we dec to 0, return false otherwise
482  */
atomic_dec_and_mutex_lock(atomic_t * cnt,struct mutex * lock)483 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock)
484 {
485 	/* dec if we can't possibly hit 0 */
486 	if (atomic_add_unless(cnt, -1, 1))
487 		return 0;
488 	/* we might hit 0, so take the lock */
489 	mutex_lock(lock);
490 	if (!atomic_dec_and_test(cnt)) {
491 		/* when we actually did the dec, we didn't hit 0 */
492 		mutex_unlock(lock);
493 		return 0;
494 	}
495 	/* we hit 0, and we hold the lock */
496 	return 1;
497 }
498 EXPORT_SYMBOL(atomic_dec_and_mutex_lock);
499