1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2020 ARM Ltd.
4 */
5
6 #include <linux/bitops.h>
7 #include <linux/cpu.h>
8 #include <linux/kernel.h>
9 #include <linux/mm.h>
10 #include <linux/prctl.h>
11 #include <linux/sched.h>
12 #include <linux/sched/mm.h>
13 #include <linux/string.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/thread_info.h>
17 #include <linux/types.h>
18 #include <linux/uaccess.h>
19 #include <linux/uio.h>
20
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/mte.h>
24 #include <asm/ptrace.h>
25 #include <asm/sysreg.h>
26
27 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred);
28
29 #ifdef CONFIG_KASAN_HW_TAGS
30 /*
31 * The asynchronous and asymmetric MTE modes have the same behavior for
32 * store operations. This flag is set when either of these modes is enabled.
33 */
34 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode);
35 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode);
36 #endif
37
mte_sync_page_tags(struct page * page,pte_t old_pte,bool check_swap,bool pte_is_tagged)38 static void mte_sync_page_tags(struct page *page, pte_t old_pte,
39 bool check_swap, bool pte_is_tagged)
40 {
41 if (check_swap && is_swap_pte(old_pte)) {
42 swp_entry_t entry = pte_to_swp_entry(old_pte);
43
44 if (!non_swap_entry(entry) && mte_restore_tags(entry, page))
45 return;
46 }
47
48 if (!pte_is_tagged)
49 return;
50
51 /*
52 * Test PG_mte_tagged again in case it was racing with another
53 * set_pte_at().
54 */
55 if (!test_and_set_bit(PG_mte_tagged, &page->flags))
56 mte_clear_page_tags(page_address(page));
57 }
58
mte_sync_tags(pte_t old_pte,pte_t pte)59 void mte_sync_tags(pte_t old_pte, pte_t pte)
60 {
61 struct page *page = pte_page(pte);
62 long i, nr_pages = compound_nr(page);
63 bool check_swap = nr_pages == 1;
64 bool pte_is_tagged = pte_tagged(pte);
65
66 /* Early out if there's nothing to do */
67 if (!check_swap && !pte_is_tagged)
68 return;
69
70 /* if PG_mte_tagged is set, tags have already been initialised */
71 for (i = 0; i < nr_pages; i++, page++) {
72 if (!test_bit(PG_mte_tagged, &page->flags))
73 mte_sync_page_tags(page, old_pte, check_swap,
74 pte_is_tagged);
75 }
76
77 /* ensure the tags are visible before the PTE is set */
78 smp_wmb();
79 }
80
memcmp_pages(struct page * page1,struct page * page2)81 int memcmp_pages(struct page *page1, struct page *page2)
82 {
83 char *addr1, *addr2;
84 int ret;
85
86 addr1 = page_address(page1);
87 addr2 = page_address(page2);
88 ret = memcmp(addr1, addr2, PAGE_SIZE);
89
90 if (!system_supports_mte() || ret)
91 return ret;
92
93 /*
94 * If the page content is identical but at least one of the pages is
95 * tagged, return non-zero to avoid KSM merging. If only one of the
96 * pages is tagged, set_pte_at() may zero or change the tags of the
97 * other page via mte_sync_tags().
98 */
99 if (test_bit(PG_mte_tagged, &page1->flags) ||
100 test_bit(PG_mte_tagged, &page2->flags))
101 return addr1 != addr2;
102
103 return ret;
104 }
105
__mte_enable_kernel(const char * mode,unsigned long tcf)106 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
107 {
108 /* Enable MTE Sync Mode for EL1. */
109 sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
110 SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf));
111 isb();
112
113 pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
114 }
115
116 #ifdef CONFIG_KASAN_HW_TAGS
mte_enable_kernel_sync(void)117 void mte_enable_kernel_sync(void)
118 {
119 /*
120 * Make sure we enter this function when no PE has set
121 * async mode previously.
122 */
123 WARN_ONCE(system_uses_mte_async_or_asymm_mode(),
124 "MTE async mode enabled system wide!");
125
126 __mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC);
127 }
128
mte_enable_kernel_async(void)129 void mte_enable_kernel_async(void)
130 {
131 __mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC);
132
133 /*
134 * MTE async mode is set system wide by the first PE that
135 * executes this function.
136 *
137 * Note: If in future KASAN acquires a runtime switching
138 * mode in between sync and async, this strategy needs
139 * to be reviewed.
140 */
141 if (!system_uses_mte_async_or_asymm_mode())
142 static_branch_enable(&mte_async_or_asymm_mode);
143 }
144
mte_enable_kernel_asymm(void)145 void mte_enable_kernel_asymm(void)
146 {
147 if (cpus_have_cap(ARM64_MTE_ASYMM)) {
148 __mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM);
149
150 /*
151 * MTE asymm mode behaves as async mode for store
152 * operations. The mode is set system wide by the
153 * first PE that executes this function.
154 *
155 * Note: If in future KASAN acquires a runtime switching
156 * mode in between sync and async, this strategy needs
157 * to be reviewed.
158 */
159 if (!system_uses_mte_async_or_asymm_mode())
160 static_branch_enable(&mte_async_or_asymm_mode);
161 } else {
162 /*
163 * If the CPU does not support MTE asymmetric mode the
164 * kernel falls back on synchronous mode which is the
165 * default for kasan=on.
166 */
167 mte_enable_kernel_sync();
168 }
169 }
170 #endif
171
172 #ifdef CONFIG_KASAN_HW_TAGS
mte_check_tfsr_el1(void)173 void mte_check_tfsr_el1(void)
174 {
175 u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
176
177 if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
178 /*
179 * Note: isb() is not required after this direct write
180 * because there is no indirect read subsequent to it
181 * (per ARM DDI 0487F.c table D13-1).
182 */
183 write_sysreg_s(0, SYS_TFSR_EL1);
184
185 kasan_report_async();
186 }
187 }
188 #endif
189
190 /*
191 * This is where we actually resolve the system and process MTE mode
192 * configuration into an actual value in SCTLR_EL1 that affects
193 * userspace.
194 */
mte_update_sctlr_user(struct task_struct * task)195 static void mte_update_sctlr_user(struct task_struct *task)
196 {
197 /*
198 * This must be called with preemption disabled and can only be called
199 * on the current or next task since the CPU must match where the thread
200 * is going to run. The caller is responsible for calling
201 * update_sctlr_el1() later in the same preemption disabled block.
202 */
203 unsigned long sctlr = task->thread.sctlr_user;
204 unsigned long mte_ctrl = task->thread.mte_ctrl;
205 unsigned long pref, resolved_mte_tcf;
206
207 pref = __this_cpu_read(mte_tcf_preferred);
208 /*
209 * If there is no overlap between the system preferred and
210 * program requested values go with what was requested.
211 */
212 resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl;
213 sctlr &= ~SCTLR_EL1_TCF0_MASK;
214 /*
215 * Pick an actual setting. The order in which we check for
216 * set bits and map into register values determines our
217 * default order.
218 */
219 if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM)
220 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM);
221 else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC)
222 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC);
223 else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC)
224 sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC);
225 task->thread.sctlr_user = sctlr;
226 }
227
mte_update_gcr_excl(struct task_struct * task)228 static void mte_update_gcr_excl(struct task_struct *task)
229 {
230 /*
231 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by
232 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled.
233 */
234 if (kasan_hw_tags_enabled())
235 return;
236
237 write_sysreg_s(
238 ((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
239 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND,
240 SYS_GCR_EL1);
241 }
242
243 #ifdef CONFIG_KASAN_HW_TAGS
244 /* Only called from assembly, silence sparse */
245 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
246 __le32 *updptr, int nr_inst);
247
kasan_hw_tags_enable(struct alt_instr * alt,__le32 * origptr,__le32 * updptr,int nr_inst)248 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
249 __le32 *updptr, int nr_inst)
250 {
251 BUG_ON(nr_inst != 1); /* Branch -> NOP */
252
253 if (kasan_hw_tags_enabled())
254 *updptr = cpu_to_le32(aarch64_insn_gen_nop());
255 }
256 #endif
257
mte_thread_init_user(void)258 void mte_thread_init_user(void)
259 {
260 if (!system_supports_mte())
261 return;
262
263 /* clear any pending asynchronous tag fault */
264 dsb(ish);
265 write_sysreg_s(0, SYS_TFSRE0_EL1);
266 clear_thread_flag(TIF_MTE_ASYNC_FAULT);
267 /* disable tag checking and reset tag generation mask */
268 set_mte_ctrl(current, 0);
269 }
270
mte_thread_switch(struct task_struct * next)271 void mte_thread_switch(struct task_struct *next)
272 {
273 if (!system_supports_mte())
274 return;
275
276 mte_update_sctlr_user(next);
277 mte_update_gcr_excl(next);
278
279 /* TCO may not have been disabled on exception entry for the current task. */
280 mte_disable_tco_entry(next);
281
282 /*
283 * Check if an async tag exception occurred at EL1.
284 *
285 * Note: On the context switch path we rely on the dsb() present
286 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1
287 * are synchronized before this point.
288 */
289 isb();
290 mte_check_tfsr_el1();
291 }
292
mte_cpu_setup(void)293 void mte_cpu_setup(void)
294 {
295 u64 rgsr;
296
297 /*
298 * CnP must be enabled only after the MAIR_EL1 register has been set
299 * up. Inconsistent MAIR_EL1 between CPUs sharing the same TLB may
300 * lead to the wrong memory type being used for a brief window during
301 * CPU power-up.
302 *
303 * CnP is not a boot feature so MTE gets enabled before CnP, but let's
304 * make sure that is the case.
305 */
306 BUG_ON(read_sysreg(ttbr0_el1) & TTBR_CNP_BIT);
307 BUG_ON(read_sysreg(ttbr1_el1) & TTBR_CNP_BIT);
308
309 /* Normal Tagged memory type at the corresponding MAIR index */
310 sysreg_clear_set(mair_el1,
311 MAIR_ATTRIDX(MAIR_ATTR_MASK, MT_NORMAL_TAGGED),
312 MAIR_ATTRIDX(MAIR_ATTR_NORMAL_TAGGED,
313 MT_NORMAL_TAGGED));
314
315 write_sysreg_s(KERNEL_GCR_EL1, SYS_GCR_EL1);
316
317 /*
318 * If GCR_EL1.RRND=1 is implemented the same way as RRND=0, then
319 * RGSR_EL1.SEED must be non-zero for IRG to produce
320 * pseudorandom numbers. As RGSR_EL1 is UNKNOWN out of reset, we
321 * must initialize it.
322 */
323 rgsr = (read_sysreg(CNTVCT_EL0) & SYS_RGSR_EL1_SEED_MASK) <<
324 SYS_RGSR_EL1_SEED_SHIFT;
325 if (rgsr == 0)
326 rgsr = 1 << SYS_RGSR_EL1_SEED_SHIFT;
327 write_sysreg_s(rgsr, SYS_RGSR_EL1);
328
329 /* clear any pending tag check faults in TFSR*_EL1 */
330 write_sysreg_s(0, SYS_TFSR_EL1);
331 write_sysreg_s(0, SYS_TFSRE0_EL1);
332
333 local_flush_tlb_all();
334 }
335
mte_suspend_enter(void)336 void mte_suspend_enter(void)
337 {
338 if (!system_supports_mte())
339 return;
340
341 /*
342 * The barriers are required to guarantee that the indirect writes
343 * to TFSR_EL1 are synchronized before we report the state.
344 */
345 dsb(nsh);
346 isb();
347
348 /* Report SYS_TFSR_EL1 before suspend entry */
349 mte_check_tfsr_el1();
350 }
351
mte_suspend_exit(void)352 void mte_suspend_exit(void)
353 {
354 if (!system_supports_mte())
355 return;
356
357 mte_cpu_setup();
358 }
359
set_mte_ctrl(struct task_struct * task,unsigned long arg)360 long set_mte_ctrl(struct task_struct *task, unsigned long arg)
361 {
362 u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
363 SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT;
364
365 if (!system_supports_mte())
366 return 0;
367
368 if (arg & PR_MTE_TCF_ASYNC)
369 mte_ctrl |= MTE_CTRL_TCF_ASYNC;
370 if (arg & PR_MTE_TCF_SYNC)
371 mte_ctrl |= MTE_CTRL_TCF_SYNC;
372
373 /*
374 * If the system supports it and both sync and async modes are
375 * specified then implicitly enable asymmetric mode.
376 * Userspace could see a mix of both sync and async anyway due
377 * to differing or changing defaults on CPUs.
378 */
379 if (cpus_have_cap(ARM64_MTE_ASYMM) &&
380 (arg & PR_MTE_TCF_ASYNC) &&
381 (arg & PR_MTE_TCF_SYNC))
382 mte_ctrl |= MTE_CTRL_TCF_ASYMM;
383
384 task->thread.mte_ctrl = mte_ctrl;
385 if (task == current) {
386 preempt_disable();
387 mte_update_sctlr_user(task);
388 mte_update_gcr_excl(task);
389 update_sctlr_el1(task->thread.sctlr_user);
390 preempt_enable();
391 }
392
393 return 0;
394 }
395
get_mte_ctrl(struct task_struct * task)396 long get_mte_ctrl(struct task_struct *task)
397 {
398 unsigned long ret;
399 u64 mte_ctrl = task->thread.mte_ctrl;
400 u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
401 SYS_GCR_EL1_EXCL_MASK;
402
403 if (!system_supports_mte())
404 return 0;
405
406 ret = incl << PR_MTE_TAG_SHIFT;
407 if (mte_ctrl & MTE_CTRL_TCF_ASYNC)
408 ret |= PR_MTE_TCF_ASYNC;
409 if (mte_ctrl & MTE_CTRL_TCF_SYNC)
410 ret |= PR_MTE_TCF_SYNC;
411
412 return ret;
413 }
414
415 /*
416 * Access MTE tags in another process' address space as given in mm. Update
417 * the number of tags copied. Return 0 if any tags copied, error otherwise.
418 * Inspired by __access_remote_vm().
419 */
__access_remote_tags(struct mm_struct * mm,unsigned long addr,struct iovec * kiov,unsigned int gup_flags)420 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
421 struct iovec *kiov, unsigned int gup_flags)
422 {
423 struct vm_area_struct *vma;
424 void __user *buf = kiov->iov_base;
425 size_t len = kiov->iov_len;
426 int ret;
427 int write = gup_flags & FOLL_WRITE;
428
429 if (!access_ok(buf, len))
430 return -EFAULT;
431
432 if (mmap_read_lock_killable(mm))
433 return -EIO;
434
435 while (len) {
436 unsigned long tags, offset;
437 void *maddr;
438 struct page *page = NULL;
439
440 ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page,
441 &vma, NULL);
442 if (ret <= 0)
443 break;
444
445 /*
446 * Only copy tags if the page has been mapped as PROT_MTE
447 * (PG_mte_tagged set). Otherwise the tags are not valid and
448 * not accessible to user. Moreover, an mprotect(PROT_MTE)
449 * would cause the existing tags to be cleared if the page
450 * was never mapped with PROT_MTE.
451 */
452 if (!(vma->vm_flags & VM_MTE)) {
453 ret = -EOPNOTSUPP;
454 put_page(page);
455 break;
456 }
457 WARN_ON_ONCE(!test_bit(PG_mte_tagged, &page->flags));
458
459 /* limit access to the end of the page */
460 offset = offset_in_page(addr);
461 tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
462
463 maddr = page_address(page);
464 if (write) {
465 tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
466 set_page_dirty_lock(page);
467 } else {
468 tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
469 }
470 put_page(page);
471
472 /* error accessing the tracer's buffer */
473 if (!tags)
474 break;
475
476 len -= tags;
477 buf += tags;
478 addr += tags * MTE_GRANULE_SIZE;
479 }
480 mmap_read_unlock(mm);
481
482 /* return an error if no tags copied */
483 kiov->iov_len = buf - kiov->iov_base;
484 if (!kiov->iov_len) {
485 /* check for error accessing the tracee's address space */
486 if (ret <= 0)
487 return -EIO;
488 else
489 return -EFAULT;
490 }
491
492 return 0;
493 }
494
495 /*
496 * Copy MTE tags in another process' address space at 'addr' to/from tracer's
497 * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
498 */
access_remote_tags(struct task_struct * tsk,unsigned long addr,struct iovec * kiov,unsigned int gup_flags)499 static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
500 struct iovec *kiov, unsigned int gup_flags)
501 {
502 struct mm_struct *mm;
503 int ret;
504
505 mm = get_task_mm(tsk);
506 if (!mm)
507 return -EPERM;
508
509 if (!tsk->ptrace || (current != tsk->parent) ||
510 ((get_dumpable(mm) != SUID_DUMP_USER) &&
511 !ptracer_capable(tsk, mm->user_ns))) {
512 mmput(mm);
513 return -EPERM;
514 }
515
516 ret = __access_remote_tags(mm, addr, kiov, gup_flags);
517 mmput(mm);
518
519 return ret;
520 }
521
mte_ptrace_copy_tags(struct task_struct * child,long request,unsigned long addr,unsigned long data)522 int mte_ptrace_copy_tags(struct task_struct *child, long request,
523 unsigned long addr, unsigned long data)
524 {
525 int ret;
526 struct iovec kiov;
527 struct iovec __user *uiov = (void __user *)data;
528 unsigned int gup_flags = FOLL_FORCE;
529
530 if (!system_supports_mte())
531 return -EIO;
532
533 if (get_user(kiov.iov_base, &uiov->iov_base) ||
534 get_user(kiov.iov_len, &uiov->iov_len))
535 return -EFAULT;
536
537 if (request == PTRACE_POKEMTETAGS)
538 gup_flags |= FOLL_WRITE;
539
540 /* align addr to the MTE tag granule */
541 addr &= MTE_GRANULE_MASK;
542
543 ret = access_remote_tags(child, addr, &kiov, gup_flags);
544 if (!ret)
545 ret = put_user(kiov.iov_len, &uiov->iov_len);
546
547 return ret;
548 }
549
mte_tcf_preferred_show(struct device * dev,struct device_attribute * attr,char * buf)550 static ssize_t mte_tcf_preferred_show(struct device *dev,
551 struct device_attribute *attr, char *buf)
552 {
553 switch (per_cpu(mte_tcf_preferred, dev->id)) {
554 case MTE_CTRL_TCF_ASYNC:
555 return sysfs_emit(buf, "async\n");
556 case MTE_CTRL_TCF_SYNC:
557 return sysfs_emit(buf, "sync\n");
558 case MTE_CTRL_TCF_ASYMM:
559 return sysfs_emit(buf, "asymm\n");
560 default:
561 return sysfs_emit(buf, "???\n");
562 }
563 }
564
mte_tcf_preferred_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)565 static ssize_t mte_tcf_preferred_store(struct device *dev,
566 struct device_attribute *attr,
567 const char *buf, size_t count)
568 {
569 u64 tcf;
570
571 if (sysfs_streq(buf, "async"))
572 tcf = MTE_CTRL_TCF_ASYNC;
573 else if (sysfs_streq(buf, "sync"))
574 tcf = MTE_CTRL_TCF_SYNC;
575 else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm"))
576 tcf = MTE_CTRL_TCF_ASYMM;
577 else
578 return -EINVAL;
579
580 device_lock(dev);
581 per_cpu(mte_tcf_preferred, dev->id) = tcf;
582 device_unlock(dev);
583
584 return count;
585 }
586 static DEVICE_ATTR_RW(mte_tcf_preferred);
587
register_mte_tcf_preferred_sysctl(void)588 static int register_mte_tcf_preferred_sysctl(void)
589 {
590 unsigned int cpu;
591
592 if (!system_supports_mte())
593 return 0;
594
595 for_each_possible_cpu(cpu) {
596 per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC;
597 device_create_file(get_cpu_device(cpu),
598 &dev_attr_mte_tcf_preferred);
599 }
600
601 return 0;
602 }
603 subsys_initcall(register_mte_tcf_preferred_sysctl);
604
605 /*
606 * Return 0 on success, the number of bytes not probed otherwise.
607 */
mte_probe_user_range(const char __user * uaddr,size_t size)608 size_t mte_probe_user_range(const char __user *uaddr, size_t size)
609 {
610 const char __user *end = uaddr + size;
611 int err = 0;
612 char val;
613
614 __raw_get_user(val, uaddr, err);
615 if (err)
616 return size;
617
618 uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE);
619 while (uaddr < end) {
620 /*
621 * A read is sufficient for mte, the caller should have probed
622 * for the pte write permission if required.
623 */
624 __raw_get_user(val, uaddr, err);
625 if (err)
626 return end - uaddr;
627 uaddr += MTE_GRANULE_SIZE;
628 }
629 (void)val;
630
631 return 0;
632 }
633