1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2020 ARM Ltd.
4  */
5 
6 #include <linux/bitops.h>
7 #include <linux/cpu.h>
8 #include <linux/kernel.h>
9 #include <linux/mm.h>
10 #include <linux/prctl.h>
11 #include <linux/sched.h>
12 #include <linux/sched/mm.h>
13 #include <linux/string.h>
14 #include <linux/swap.h>
15 #include <linux/swapops.h>
16 #include <linux/thread_info.h>
17 #include <linux/types.h>
18 #include <linux/uaccess.h>
19 #include <linux/uio.h>
20 
21 #include <asm/barrier.h>
22 #include <asm/cpufeature.h>
23 #include <asm/mte.h>
24 #include <asm/ptrace.h>
25 #include <asm/sysreg.h>
26 
27 static DEFINE_PER_CPU_READ_MOSTLY(u64, mte_tcf_preferred);
28 
29 #ifdef CONFIG_KASAN_HW_TAGS
30 /*
31  * The asynchronous and asymmetric MTE modes have the same behavior for
32  * store operations. This flag is set when either of these modes is enabled.
33  */
34 DEFINE_STATIC_KEY_FALSE(mte_async_or_asymm_mode);
35 EXPORT_SYMBOL_GPL(mte_async_or_asymm_mode);
36 #endif
37 
mte_sync_page_tags(struct page * page,pte_t old_pte,bool check_swap,bool pte_is_tagged)38 static void mte_sync_page_tags(struct page *page, pte_t old_pte,
39 			       bool check_swap, bool pte_is_tagged)
40 {
41 	if (check_swap && is_swap_pte(old_pte)) {
42 		swp_entry_t entry = pte_to_swp_entry(old_pte);
43 
44 		if (!non_swap_entry(entry) && mte_restore_tags(entry, page))
45 			return;
46 	}
47 
48 	if (!pte_is_tagged)
49 		return;
50 
51 	/*
52 	 * Test PG_mte_tagged again in case it was racing with another
53 	 * set_pte_at().
54 	 */
55 	if (!test_and_set_bit(PG_mte_tagged, &page->flags))
56 		mte_clear_page_tags(page_address(page));
57 }
58 
mte_sync_tags(pte_t old_pte,pte_t pte)59 void mte_sync_tags(pte_t old_pte, pte_t pte)
60 {
61 	struct page *page = pte_page(pte);
62 	long i, nr_pages = compound_nr(page);
63 	bool check_swap = nr_pages == 1;
64 	bool pte_is_tagged = pte_tagged(pte);
65 
66 	/* Early out if there's nothing to do */
67 	if (!check_swap && !pte_is_tagged)
68 		return;
69 
70 	/* if PG_mte_tagged is set, tags have already been initialised */
71 	for (i = 0; i < nr_pages; i++, page++) {
72 		if (!test_bit(PG_mte_tagged, &page->flags))
73 			mte_sync_page_tags(page, old_pte, check_swap,
74 					   pte_is_tagged);
75 	}
76 
77 	/* ensure the tags are visible before the PTE is set */
78 	smp_wmb();
79 }
80 
memcmp_pages(struct page * page1,struct page * page2)81 int memcmp_pages(struct page *page1, struct page *page2)
82 {
83 	char *addr1, *addr2;
84 	int ret;
85 
86 	addr1 = page_address(page1);
87 	addr2 = page_address(page2);
88 	ret = memcmp(addr1, addr2, PAGE_SIZE);
89 
90 	if (!system_supports_mte() || ret)
91 		return ret;
92 
93 	/*
94 	 * If the page content is identical but at least one of the pages is
95 	 * tagged, return non-zero to avoid KSM merging. If only one of the
96 	 * pages is tagged, set_pte_at() may zero or change the tags of the
97 	 * other page via mte_sync_tags().
98 	 */
99 	if (test_bit(PG_mte_tagged, &page1->flags) ||
100 	    test_bit(PG_mte_tagged, &page2->flags))
101 		return addr1 != addr2;
102 
103 	return ret;
104 }
105 
__mte_enable_kernel(const char * mode,unsigned long tcf)106 static inline void __mte_enable_kernel(const char *mode, unsigned long tcf)
107 {
108 	/* Enable MTE Sync Mode for EL1. */
109 	sysreg_clear_set(sctlr_el1, SCTLR_EL1_TCF_MASK,
110 			 SYS_FIELD_PREP(SCTLR_EL1, TCF, tcf));
111 	isb();
112 
113 	pr_info_once("MTE: enabled in %s mode at EL1\n", mode);
114 }
115 
116 #ifdef CONFIG_KASAN_HW_TAGS
mte_enable_kernel_sync(void)117 void mte_enable_kernel_sync(void)
118 {
119 	/*
120 	 * Make sure we enter this function when no PE has set
121 	 * async mode previously.
122 	 */
123 	WARN_ONCE(system_uses_mte_async_or_asymm_mode(),
124 			"MTE async mode enabled system wide!");
125 
126 	__mte_enable_kernel("synchronous", SCTLR_EL1_TCF_SYNC);
127 }
128 
mte_enable_kernel_async(void)129 void mte_enable_kernel_async(void)
130 {
131 	__mte_enable_kernel("asynchronous", SCTLR_EL1_TCF_ASYNC);
132 
133 	/*
134 	 * MTE async mode is set system wide by the first PE that
135 	 * executes this function.
136 	 *
137 	 * Note: If in future KASAN acquires a runtime switching
138 	 * mode in between sync and async, this strategy needs
139 	 * to be reviewed.
140 	 */
141 	if (!system_uses_mte_async_or_asymm_mode())
142 		static_branch_enable(&mte_async_or_asymm_mode);
143 }
144 
mte_enable_kernel_asymm(void)145 void mte_enable_kernel_asymm(void)
146 {
147 	if (cpus_have_cap(ARM64_MTE_ASYMM)) {
148 		__mte_enable_kernel("asymmetric", SCTLR_EL1_TCF_ASYMM);
149 
150 		/*
151 		 * MTE asymm mode behaves as async mode for store
152 		 * operations. The mode is set system wide by the
153 		 * first PE that executes this function.
154 		 *
155 		 * Note: If in future KASAN acquires a runtime switching
156 		 * mode in between sync and async, this strategy needs
157 		 * to be reviewed.
158 		 */
159 		if (!system_uses_mte_async_or_asymm_mode())
160 			static_branch_enable(&mte_async_or_asymm_mode);
161 	} else {
162 		/*
163 		 * If the CPU does not support MTE asymmetric mode the
164 		 * kernel falls back on synchronous mode which is the
165 		 * default for kasan=on.
166 		 */
167 		mte_enable_kernel_sync();
168 	}
169 }
170 #endif
171 
172 #ifdef CONFIG_KASAN_HW_TAGS
mte_check_tfsr_el1(void)173 void mte_check_tfsr_el1(void)
174 {
175 	u64 tfsr_el1 = read_sysreg_s(SYS_TFSR_EL1);
176 
177 	if (unlikely(tfsr_el1 & SYS_TFSR_EL1_TF1)) {
178 		/*
179 		 * Note: isb() is not required after this direct write
180 		 * because there is no indirect read subsequent to it
181 		 * (per ARM DDI 0487F.c table D13-1).
182 		 */
183 		write_sysreg_s(0, SYS_TFSR_EL1);
184 
185 		kasan_report_async();
186 	}
187 }
188 #endif
189 
190 /*
191  * This is where we actually resolve the system and process MTE mode
192  * configuration into an actual value in SCTLR_EL1 that affects
193  * userspace.
194  */
mte_update_sctlr_user(struct task_struct * task)195 static void mte_update_sctlr_user(struct task_struct *task)
196 {
197 	/*
198 	 * This must be called with preemption disabled and can only be called
199 	 * on the current or next task since the CPU must match where the thread
200 	 * is going to run. The caller is responsible for calling
201 	 * update_sctlr_el1() later in the same preemption disabled block.
202 	 */
203 	unsigned long sctlr = task->thread.sctlr_user;
204 	unsigned long mte_ctrl = task->thread.mte_ctrl;
205 	unsigned long pref, resolved_mte_tcf;
206 
207 	pref = __this_cpu_read(mte_tcf_preferred);
208 	/*
209 	 * If there is no overlap between the system preferred and
210 	 * program requested values go with what was requested.
211 	 */
212 	resolved_mte_tcf = (mte_ctrl & pref) ? pref : mte_ctrl;
213 	sctlr &= ~SCTLR_EL1_TCF0_MASK;
214 	/*
215 	 * Pick an actual setting. The order in which we check for
216 	 * set bits and map into register values determines our
217 	 * default order.
218 	 */
219 	if (resolved_mte_tcf & MTE_CTRL_TCF_ASYMM)
220 		sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYMM);
221 	else if (resolved_mte_tcf & MTE_CTRL_TCF_ASYNC)
222 		sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, ASYNC);
223 	else if (resolved_mte_tcf & MTE_CTRL_TCF_SYNC)
224 		sctlr |= SYS_FIELD_PREP_ENUM(SCTLR_EL1, TCF0, SYNC);
225 	task->thread.sctlr_user = sctlr;
226 }
227 
mte_update_gcr_excl(struct task_struct * task)228 static void mte_update_gcr_excl(struct task_struct *task)
229 {
230 	/*
231 	 * SYS_GCR_EL1 will be set to current->thread.mte_ctrl value by
232 	 * mte_set_user_gcr() in kernel_exit, but only if KASAN is enabled.
233 	 */
234 	if (kasan_hw_tags_enabled())
235 		return;
236 
237 	write_sysreg_s(
238 		((task->thread.mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
239 		 SYS_GCR_EL1_EXCL_MASK) | SYS_GCR_EL1_RRND,
240 		SYS_GCR_EL1);
241 }
242 
243 #ifdef CONFIG_KASAN_HW_TAGS
244 /* Only called from assembly, silence sparse */
245 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
246 				 __le32 *updptr, int nr_inst);
247 
kasan_hw_tags_enable(struct alt_instr * alt,__le32 * origptr,__le32 * updptr,int nr_inst)248 void __init kasan_hw_tags_enable(struct alt_instr *alt, __le32 *origptr,
249 				 __le32 *updptr, int nr_inst)
250 {
251 	BUG_ON(nr_inst != 1); /* Branch -> NOP */
252 
253 	if (kasan_hw_tags_enabled())
254 		*updptr = cpu_to_le32(aarch64_insn_gen_nop());
255 }
256 #endif
257 
mte_thread_init_user(void)258 void mte_thread_init_user(void)
259 {
260 	if (!system_supports_mte())
261 		return;
262 
263 	/* clear any pending asynchronous tag fault */
264 	dsb(ish);
265 	write_sysreg_s(0, SYS_TFSRE0_EL1);
266 	clear_thread_flag(TIF_MTE_ASYNC_FAULT);
267 	/* disable tag checking and reset tag generation mask */
268 	set_mte_ctrl(current, 0);
269 }
270 
mte_thread_switch(struct task_struct * next)271 void mte_thread_switch(struct task_struct *next)
272 {
273 	if (!system_supports_mte())
274 		return;
275 
276 	mte_update_sctlr_user(next);
277 	mte_update_gcr_excl(next);
278 
279 	/* TCO may not have been disabled on exception entry for the current task. */
280 	mte_disable_tco_entry(next);
281 
282 	/*
283 	 * Check if an async tag exception occurred at EL1.
284 	 *
285 	 * Note: On the context switch path we rely on the dsb() present
286 	 * in __switch_to() to guarantee that the indirect writes to TFSR_EL1
287 	 * are synchronized before this point.
288 	 */
289 	isb();
290 	mte_check_tfsr_el1();
291 }
292 
mte_cpu_setup(void)293 void mte_cpu_setup(void)
294 {
295 	u64 rgsr;
296 
297 	/*
298 	 * CnP must be enabled only after the MAIR_EL1 register has been set
299 	 * up. Inconsistent MAIR_EL1 between CPUs sharing the same TLB may
300 	 * lead to the wrong memory type being used for a brief window during
301 	 * CPU power-up.
302 	 *
303 	 * CnP is not a boot feature so MTE gets enabled before CnP, but let's
304 	 * make sure that is the case.
305 	 */
306 	BUG_ON(read_sysreg(ttbr0_el1) & TTBR_CNP_BIT);
307 	BUG_ON(read_sysreg(ttbr1_el1) & TTBR_CNP_BIT);
308 
309 	/* Normal Tagged memory type at the corresponding MAIR index */
310 	sysreg_clear_set(mair_el1,
311 			 MAIR_ATTRIDX(MAIR_ATTR_MASK, MT_NORMAL_TAGGED),
312 			 MAIR_ATTRIDX(MAIR_ATTR_NORMAL_TAGGED,
313 				      MT_NORMAL_TAGGED));
314 
315 	write_sysreg_s(KERNEL_GCR_EL1, SYS_GCR_EL1);
316 
317 	/*
318 	 * If GCR_EL1.RRND=1 is implemented the same way as RRND=0, then
319 	 * RGSR_EL1.SEED must be non-zero for IRG to produce
320 	 * pseudorandom numbers. As RGSR_EL1 is UNKNOWN out of reset, we
321 	 * must initialize it.
322 	 */
323 	rgsr = (read_sysreg(CNTVCT_EL0) & SYS_RGSR_EL1_SEED_MASK) <<
324 	       SYS_RGSR_EL1_SEED_SHIFT;
325 	if (rgsr == 0)
326 		rgsr = 1 << SYS_RGSR_EL1_SEED_SHIFT;
327 	write_sysreg_s(rgsr, SYS_RGSR_EL1);
328 
329 	/* clear any pending tag check faults in TFSR*_EL1 */
330 	write_sysreg_s(0, SYS_TFSR_EL1);
331 	write_sysreg_s(0, SYS_TFSRE0_EL1);
332 
333 	local_flush_tlb_all();
334 }
335 
mte_suspend_enter(void)336 void mte_suspend_enter(void)
337 {
338 	if (!system_supports_mte())
339 		return;
340 
341 	/*
342 	 * The barriers are required to guarantee that the indirect writes
343 	 * to TFSR_EL1 are synchronized before we report the state.
344 	 */
345 	dsb(nsh);
346 	isb();
347 
348 	/* Report SYS_TFSR_EL1 before suspend entry */
349 	mte_check_tfsr_el1();
350 }
351 
mte_suspend_exit(void)352 void mte_suspend_exit(void)
353 {
354 	if (!system_supports_mte())
355 		return;
356 
357 	mte_cpu_setup();
358 }
359 
set_mte_ctrl(struct task_struct * task,unsigned long arg)360 long set_mte_ctrl(struct task_struct *task, unsigned long arg)
361 {
362 	u64 mte_ctrl = (~((arg & PR_MTE_TAG_MASK) >> PR_MTE_TAG_SHIFT) &
363 			SYS_GCR_EL1_EXCL_MASK) << MTE_CTRL_GCR_USER_EXCL_SHIFT;
364 
365 	if (!system_supports_mte())
366 		return 0;
367 
368 	if (arg & PR_MTE_TCF_ASYNC)
369 		mte_ctrl |= MTE_CTRL_TCF_ASYNC;
370 	if (arg & PR_MTE_TCF_SYNC)
371 		mte_ctrl |= MTE_CTRL_TCF_SYNC;
372 
373 	/*
374 	 * If the system supports it and both sync and async modes are
375 	 * specified then implicitly enable asymmetric mode.
376 	 * Userspace could see a mix of both sync and async anyway due
377 	 * to differing or changing defaults on CPUs.
378 	 */
379 	if (cpus_have_cap(ARM64_MTE_ASYMM) &&
380 	    (arg & PR_MTE_TCF_ASYNC) &&
381 	    (arg & PR_MTE_TCF_SYNC))
382 		mte_ctrl |= MTE_CTRL_TCF_ASYMM;
383 
384 	task->thread.mte_ctrl = mte_ctrl;
385 	if (task == current) {
386 		preempt_disable();
387 		mte_update_sctlr_user(task);
388 		mte_update_gcr_excl(task);
389 		update_sctlr_el1(task->thread.sctlr_user);
390 		preempt_enable();
391 	}
392 
393 	return 0;
394 }
395 
get_mte_ctrl(struct task_struct * task)396 long get_mte_ctrl(struct task_struct *task)
397 {
398 	unsigned long ret;
399 	u64 mte_ctrl = task->thread.mte_ctrl;
400 	u64 incl = (~mte_ctrl >> MTE_CTRL_GCR_USER_EXCL_SHIFT) &
401 		   SYS_GCR_EL1_EXCL_MASK;
402 
403 	if (!system_supports_mte())
404 		return 0;
405 
406 	ret = incl << PR_MTE_TAG_SHIFT;
407 	if (mte_ctrl & MTE_CTRL_TCF_ASYNC)
408 		ret |= PR_MTE_TCF_ASYNC;
409 	if (mte_ctrl & MTE_CTRL_TCF_SYNC)
410 		ret |= PR_MTE_TCF_SYNC;
411 
412 	return ret;
413 }
414 
415 /*
416  * Access MTE tags in another process' address space as given in mm. Update
417  * the number of tags copied. Return 0 if any tags copied, error otherwise.
418  * Inspired by __access_remote_vm().
419  */
__access_remote_tags(struct mm_struct * mm,unsigned long addr,struct iovec * kiov,unsigned int gup_flags)420 static int __access_remote_tags(struct mm_struct *mm, unsigned long addr,
421 				struct iovec *kiov, unsigned int gup_flags)
422 {
423 	struct vm_area_struct *vma;
424 	void __user *buf = kiov->iov_base;
425 	size_t len = kiov->iov_len;
426 	int ret;
427 	int write = gup_flags & FOLL_WRITE;
428 
429 	if (!access_ok(buf, len))
430 		return -EFAULT;
431 
432 	if (mmap_read_lock_killable(mm))
433 		return -EIO;
434 
435 	while (len) {
436 		unsigned long tags, offset;
437 		void *maddr;
438 		struct page *page = NULL;
439 
440 		ret = get_user_pages_remote(mm, addr, 1, gup_flags, &page,
441 					    &vma, NULL);
442 		if (ret <= 0)
443 			break;
444 
445 		/*
446 		 * Only copy tags if the page has been mapped as PROT_MTE
447 		 * (PG_mte_tagged set). Otherwise the tags are not valid and
448 		 * not accessible to user. Moreover, an mprotect(PROT_MTE)
449 		 * would cause the existing tags to be cleared if the page
450 		 * was never mapped with PROT_MTE.
451 		 */
452 		if (!(vma->vm_flags & VM_MTE)) {
453 			ret = -EOPNOTSUPP;
454 			put_page(page);
455 			break;
456 		}
457 		WARN_ON_ONCE(!test_bit(PG_mte_tagged, &page->flags));
458 
459 		/* limit access to the end of the page */
460 		offset = offset_in_page(addr);
461 		tags = min(len, (PAGE_SIZE - offset) / MTE_GRANULE_SIZE);
462 
463 		maddr = page_address(page);
464 		if (write) {
465 			tags = mte_copy_tags_from_user(maddr + offset, buf, tags);
466 			set_page_dirty_lock(page);
467 		} else {
468 			tags = mte_copy_tags_to_user(buf, maddr + offset, tags);
469 		}
470 		put_page(page);
471 
472 		/* error accessing the tracer's buffer */
473 		if (!tags)
474 			break;
475 
476 		len -= tags;
477 		buf += tags;
478 		addr += tags * MTE_GRANULE_SIZE;
479 	}
480 	mmap_read_unlock(mm);
481 
482 	/* return an error if no tags copied */
483 	kiov->iov_len = buf - kiov->iov_base;
484 	if (!kiov->iov_len) {
485 		/* check for error accessing the tracee's address space */
486 		if (ret <= 0)
487 			return -EIO;
488 		else
489 			return -EFAULT;
490 	}
491 
492 	return 0;
493 }
494 
495 /*
496  * Copy MTE tags in another process' address space at 'addr' to/from tracer's
497  * iovec buffer. Return 0 on success. Inspired by ptrace_access_vm().
498  */
access_remote_tags(struct task_struct * tsk,unsigned long addr,struct iovec * kiov,unsigned int gup_flags)499 static int access_remote_tags(struct task_struct *tsk, unsigned long addr,
500 			      struct iovec *kiov, unsigned int gup_flags)
501 {
502 	struct mm_struct *mm;
503 	int ret;
504 
505 	mm = get_task_mm(tsk);
506 	if (!mm)
507 		return -EPERM;
508 
509 	if (!tsk->ptrace || (current != tsk->parent) ||
510 	    ((get_dumpable(mm) != SUID_DUMP_USER) &&
511 	     !ptracer_capable(tsk, mm->user_ns))) {
512 		mmput(mm);
513 		return -EPERM;
514 	}
515 
516 	ret = __access_remote_tags(mm, addr, kiov, gup_flags);
517 	mmput(mm);
518 
519 	return ret;
520 }
521 
mte_ptrace_copy_tags(struct task_struct * child,long request,unsigned long addr,unsigned long data)522 int mte_ptrace_copy_tags(struct task_struct *child, long request,
523 			 unsigned long addr, unsigned long data)
524 {
525 	int ret;
526 	struct iovec kiov;
527 	struct iovec __user *uiov = (void __user *)data;
528 	unsigned int gup_flags = FOLL_FORCE;
529 
530 	if (!system_supports_mte())
531 		return -EIO;
532 
533 	if (get_user(kiov.iov_base, &uiov->iov_base) ||
534 	    get_user(kiov.iov_len, &uiov->iov_len))
535 		return -EFAULT;
536 
537 	if (request == PTRACE_POKEMTETAGS)
538 		gup_flags |= FOLL_WRITE;
539 
540 	/* align addr to the MTE tag granule */
541 	addr &= MTE_GRANULE_MASK;
542 
543 	ret = access_remote_tags(child, addr, &kiov, gup_flags);
544 	if (!ret)
545 		ret = put_user(kiov.iov_len, &uiov->iov_len);
546 
547 	return ret;
548 }
549 
mte_tcf_preferred_show(struct device * dev,struct device_attribute * attr,char * buf)550 static ssize_t mte_tcf_preferred_show(struct device *dev,
551 				      struct device_attribute *attr, char *buf)
552 {
553 	switch (per_cpu(mte_tcf_preferred, dev->id)) {
554 	case MTE_CTRL_TCF_ASYNC:
555 		return sysfs_emit(buf, "async\n");
556 	case MTE_CTRL_TCF_SYNC:
557 		return sysfs_emit(buf, "sync\n");
558 	case MTE_CTRL_TCF_ASYMM:
559 		return sysfs_emit(buf, "asymm\n");
560 	default:
561 		return sysfs_emit(buf, "???\n");
562 	}
563 }
564 
mte_tcf_preferred_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)565 static ssize_t mte_tcf_preferred_store(struct device *dev,
566 				       struct device_attribute *attr,
567 				       const char *buf, size_t count)
568 {
569 	u64 tcf;
570 
571 	if (sysfs_streq(buf, "async"))
572 		tcf = MTE_CTRL_TCF_ASYNC;
573 	else if (sysfs_streq(buf, "sync"))
574 		tcf = MTE_CTRL_TCF_SYNC;
575 	else if (cpus_have_cap(ARM64_MTE_ASYMM) && sysfs_streq(buf, "asymm"))
576 		tcf = MTE_CTRL_TCF_ASYMM;
577 	else
578 		return -EINVAL;
579 
580 	device_lock(dev);
581 	per_cpu(mte_tcf_preferred, dev->id) = tcf;
582 	device_unlock(dev);
583 
584 	return count;
585 }
586 static DEVICE_ATTR_RW(mte_tcf_preferred);
587 
register_mte_tcf_preferred_sysctl(void)588 static int register_mte_tcf_preferred_sysctl(void)
589 {
590 	unsigned int cpu;
591 
592 	if (!system_supports_mte())
593 		return 0;
594 
595 	for_each_possible_cpu(cpu) {
596 		per_cpu(mte_tcf_preferred, cpu) = MTE_CTRL_TCF_ASYNC;
597 		device_create_file(get_cpu_device(cpu),
598 				   &dev_attr_mte_tcf_preferred);
599 	}
600 
601 	return 0;
602 }
603 subsys_initcall(register_mte_tcf_preferred_sysctl);
604 
605 /*
606  * Return 0 on success, the number of bytes not probed otherwise.
607  */
mte_probe_user_range(const char __user * uaddr,size_t size)608 size_t mte_probe_user_range(const char __user *uaddr, size_t size)
609 {
610 	const char __user *end = uaddr + size;
611 	int err = 0;
612 	char val;
613 
614 	__raw_get_user(val, uaddr, err);
615 	if (err)
616 		return size;
617 
618 	uaddr = PTR_ALIGN(uaddr, MTE_GRANULE_SIZE);
619 	while (uaddr < end) {
620 		/*
621 		 * A read is sufficient for mte, the caller should have probed
622 		 * for the pte write permission if required.
623 		 */
624 		__raw_get_user(val, uaddr, err);
625 		if (err)
626 			return end - uaddr;
627 		uaddr += MTE_GRANULE_SIZE;
628 	}
629 	(void)val;
630 
631 	return 0;
632 }
633