1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Core registration and callback routines for MTD
4 * drivers and users.
5 *
6 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org>
7 * Copyright © 2006 Red Hat UK Limited
8 */
9
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/ptrace.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/timer.h>
16 #include <linux/major.h>
17 #include <linux/fs.h>
18 #include <linux/err.h>
19 #include <linux/ioctl.h>
20 #include <linux/init.h>
21 #include <linux/of.h>
22 #include <linux/proc_fs.h>
23 #include <linux/idr.h>
24 #include <linux/backing-dev.h>
25 #include <linux/gfp.h>
26 #include <linux/random.h>
27 #include <linux/slab.h>
28 #include <linux/reboot.h>
29 #include <linux/leds.h>
30 #include <linux/debugfs.h>
31 #include <linux/nvmem-provider.h>
32 #include <linux/root_dev.h>
33
34 #include <linux/mtd/mtd.h>
35 #include <linux/mtd/partitions.h>
36
37 #include "mtdcore.h"
38
39 struct backing_dev_info *mtd_bdi;
40
41 #ifdef CONFIG_PM_SLEEP
42
mtd_cls_suspend(struct device * dev)43 static int mtd_cls_suspend(struct device *dev)
44 {
45 struct mtd_info *mtd = dev_get_drvdata(dev);
46
47 return mtd ? mtd_suspend(mtd) : 0;
48 }
49
mtd_cls_resume(struct device * dev)50 static int mtd_cls_resume(struct device *dev)
51 {
52 struct mtd_info *mtd = dev_get_drvdata(dev);
53
54 if (mtd)
55 mtd_resume(mtd);
56 return 0;
57 }
58
59 static SIMPLE_DEV_PM_OPS(mtd_cls_pm_ops, mtd_cls_suspend, mtd_cls_resume);
60 #define MTD_CLS_PM_OPS (&mtd_cls_pm_ops)
61 #else
62 #define MTD_CLS_PM_OPS NULL
63 #endif
64
65 static struct class mtd_class = {
66 .name = "mtd",
67 .pm = MTD_CLS_PM_OPS,
68 };
69
70 static DEFINE_IDR(mtd_idr);
71
72 /* These are exported solely for the purpose of mtd_blkdevs.c. You
73 should not use them for _anything_ else */
74 DEFINE_MUTEX(mtd_table_mutex);
75 EXPORT_SYMBOL_GPL(mtd_table_mutex);
76
__mtd_next_device(int i)77 struct mtd_info *__mtd_next_device(int i)
78 {
79 return idr_get_next(&mtd_idr, &i);
80 }
81 EXPORT_SYMBOL_GPL(__mtd_next_device);
82
83 static LIST_HEAD(mtd_notifiers);
84
85
86 #define MTD_DEVT(index) MKDEV(MTD_CHAR_MAJOR, (index)*2)
87
88 /* REVISIT once MTD uses the driver model better, whoever allocates
89 * the mtd_info will probably want to use the release() hook...
90 */
mtd_release(struct device * dev)91 static void mtd_release(struct device *dev)
92 {
93 struct mtd_info *mtd = dev_get_drvdata(dev);
94 dev_t index = MTD_DEVT(mtd->index);
95
96 idr_remove(&mtd_idr, mtd->index);
97 of_node_put(mtd_get_of_node(mtd));
98
99 if (mtd_is_partition(mtd))
100 release_mtd_partition(mtd);
101
102 /* remove /dev/mtdXro node */
103 device_destroy(&mtd_class, index + 1);
104 }
105
mtd_device_release(struct kref * kref)106 static void mtd_device_release(struct kref *kref)
107 {
108 struct mtd_info *mtd = container_of(kref, struct mtd_info, refcnt);
109 bool is_partition = mtd_is_partition(mtd);
110
111 debugfs_remove_recursive(mtd->dbg.dfs_dir);
112
113 /* Try to remove the NVMEM provider */
114 nvmem_unregister(mtd->nvmem);
115
116 device_unregister(&mtd->dev);
117
118 /*
119 * Clear dev so mtd can be safely re-registered later if desired.
120 * Should not be done for partition,
121 * as it was already destroyed in device_unregister().
122 */
123 if (!is_partition)
124 memset(&mtd->dev, 0, sizeof(mtd->dev));
125
126 module_put(THIS_MODULE);
127 }
128
129 #define MTD_DEVICE_ATTR_RO(name) \
130 static DEVICE_ATTR(name, 0444, mtd_##name##_show, NULL)
131
132 #define MTD_DEVICE_ATTR_RW(name) \
133 static DEVICE_ATTR(name, 0644, mtd_##name##_show, mtd_##name##_store)
134
mtd_type_show(struct device * dev,struct device_attribute * attr,char * buf)135 static ssize_t mtd_type_show(struct device *dev,
136 struct device_attribute *attr, char *buf)
137 {
138 struct mtd_info *mtd = dev_get_drvdata(dev);
139 char *type;
140
141 switch (mtd->type) {
142 case MTD_ABSENT:
143 type = "absent";
144 break;
145 case MTD_RAM:
146 type = "ram";
147 break;
148 case MTD_ROM:
149 type = "rom";
150 break;
151 case MTD_NORFLASH:
152 type = "nor";
153 break;
154 case MTD_NANDFLASH:
155 type = "nand";
156 break;
157 case MTD_DATAFLASH:
158 type = "dataflash";
159 break;
160 case MTD_UBIVOLUME:
161 type = "ubi";
162 break;
163 case MTD_MLCNANDFLASH:
164 type = "mlc-nand";
165 break;
166 default:
167 type = "unknown";
168 }
169
170 return sysfs_emit(buf, "%s\n", type);
171 }
172 MTD_DEVICE_ATTR_RO(type);
173
mtd_flags_show(struct device * dev,struct device_attribute * attr,char * buf)174 static ssize_t mtd_flags_show(struct device *dev,
175 struct device_attribute *attr, char *buf)
176 {
177 struct mtd_info *mtd = dev_get_drvdata(dev);
178
179 return sysfs_emit(buf, "0x%lx\n", (unsigned long)mtd->flags);
180 }
181 MTD_DEVICE_ATTR_RO(flags);
182
mtd_size_show(struct device * dev,struct device_attribute * attr,char * buf)183 static ssize_t mtd_size_show(struct device *dev,
184 struct device_attribute *attr, char *buf)
185 {
186 struct mtd_info *mtd = dev_get_drvdata(dev);
187
188 return sysfs_emit(buf, "%llu\n", (unsigned long long)mtd->size);
189 }
190 MTD_DEVICE_ATTR_RO(size);
191
mtd_erasesize_show(struct device * dev,struct device_attribute * attr,char * buf)192 static ssize_t mtd_erasesize_show(struct device *dev,
193 struct device_attribute *attr, char *buf)
194 {
195 struct mtd_info *mtd = dev_get_drvdata(dev);
196
197 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->erasesize);
198 }
199 MTD_DEVICE_ATTR_RO(erasesize);
200
mtd_writesize_show(struct device * dev,struct device_attribute * attr,char * buf)201 static ssize_t mtd_writesize_show(struct device *dev,
202 struct device_attribute *attr, char *buf)
203 {
204 struct mtd_info *mtd = dev_get_drvdata(dev);
205
206 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->writesize);
207 }
208 MTD_DEVICE_ATTR_RO(writesize);
209
mtd_subpagesize_show(struct device * dev,struct device_attribute * attr,char * buf)210 static ssize_t mtd_subpagesize_show(struct device *dev,
211 struct device_attribute *attr, char *buf)
212 {
213 struct mtd_info *mtd = dev_get_drvdata(dev);
214 unsigned int subpagesize = mtd->writesize >> mtd->subpage_sft;
215
216 return sysfs_emit(buf, "%u\n", subpagesize);
217 }
218 MTD_DEVICE_ATTR_RO(subpagesize);
219
mtd_oobsize_show(struct device * dev,struct device_attribute * attr,char * buf)220 static ssize_t mtd_oobsize_show(struct device *dev,
221 struct device_attribute *attr, char *buf)
222 {
223 struct mtd_info *mtd = dev_get_drvdata(dev);
224
225 return sysfs_emit(buf, "%lu\n", (unsigned long)mtd->oobsize);
226 }
227 MTD_DEVICE_ATTR_RO(oobsize);
228
mtd_oobavail_show(struct device * dev,struct device_attribute * attr,char * buf)229 static ssize_t mtd_oobavail_show(struct device *dev,
230 struct device_attribute *attr, char *buf)
231 {
232 struct mtd_info *mtd = dev_get_drvdata(dev);
233
234 return sysfs_emit(buf, "%u\n", mtd->oobavail);
235 }
236 MTD_DEVICE_ATTR_RO(oobavail);
237
mtd_numeraseregions_show(struct device * dev,struct device_attribute * attr,char * buf)238 static ssize_t mtd_numeraseregions_show(struct device *dev,
239 struct device_attribute *attr, char *buf)
240 {
241 struct mtd_info *mtd = dev_get_drvdata(dev);
242
243 return sysfs_emit(buf, "%u\n", mtd->numeraseregions);
244 }
245 MTD_DEVICE_ATTR_RO(numeraseregions);
246
mtd_name_show(struct device * dev,struct device_attribute * attr,char * buf)247 static ssize_t mtd_name_show(struct device *dev,
248 struct device_attribute *attr, char *buf)
249 {
250 struct mtd_info *mtd = dev_get_drvdata(dev);
251
252 return sysfs_emit(buf, "%s\n", mtd->name);
253 }
254 MTD_DEVICE_ATTR_RO(name);
255
mtd_ecc_strength_show(struct device * dev,struct device_attribute * attr,char * buf)256 static ssize_t mtd_ecc_strength_show(struct device *dev,
257 struct device_attribute *attr, char *buf)
258 {
259 struct mtd_info *mtd = dev_get_drvdata(dev);
260
261 return sysfs_emit(buf, "%u\n", mtd->ecc_strength);
262 }
263 MTD_DEVICE_ATTR_RO(ecc_strength);
264
mtd_bitflip_threshold_show(struct device * dev,struct device_attribute * attr,char * buf)265 static ssize_t mtd_bitflip_threshold_show(struct device *dev,
266 struct device_attribute *attr,
267 char *buf)
268 {
269 struct mtd_info *mtd = dev_get_drvdata(dev);
270
271 return sysfs_emit(buf, "%u\n", mtd->bitflip_threshold);
272 }
273
mtd_bitflip_threshold_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)274 static ssize_t mtd_bitflip_threshold_store(struct device *dev,
275 struct device_attribute *attr,
276 const char *buf, size_t count)
277 {
278 struct mtd_info *mtd = dev_get_drvdata(dev);
279 unsigned int bitflip_threshold;
280 int retval;
281
282 retval = kstrtouint(buf, 0, &bitflip_threshold);
283 if (retval)
284 return retval;
285
286 mtd->bitflip_threshold = bitflip_threshold;
287 return count;
288 }
289 MTD_DEVICE_ATTR_RW(bitflip_threshold);
290
mtd_ecc_step_size_show(struct device * dev,struct device_attribute * attr,char * buf)291 static ssize_t mtd_ecc_step_size_show(struct device *dev,
292 struct device_attribute *attr, char *buf)
293 {
294 struct mtd_info *mtd = dev_get_drvdata(dev);
295
296 return sysfs_emit(buf, "%u\n", mtd->ecc_step_size);
297
298 }
299 MTD_DEVICE_ATTR_RO(ecc_step_size);
300
mtd_corrected_bits_show(struct device * dev,struct device_attribute * attr,char * buf)301 static ssize_t mtd_corrected_bits_show(struct device *dev,
302 struct device_attribute *attr, char *buf)
303 {
304 struct mtd_info *mtd = dev_get_drvdata(dev);
305 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
306
307 return sysfs_emit(buf, "%u\n", ecc_stats->corrected);
308 }
309 MTD_DEVICE_ATTR_RO(corrected_bits); /* ecc stats corrected */
310
mtd_ecc_failures_show(struct device * dev,struct device_attribute * attr,char * buf)311 static ssize_t mtd_ecc_failures_show(struct device *dev,
312 struct device_attribute *attr, char *buf)
313 {
314 struct mtd_info *mtd = dev_get_drvdata(dev);
315 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
316
317 return sysfs_emit(buf, "%u\n", ecc_stats->failed);
318 }
319 MTD_DEVICE_ATTR_RO(ecc_failures); /* ecc stats errors */
320
mtd_bad_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)321 static ssize_t mtd_bad_blocks_show(struct device *dev,
322 struct device_attribute *attr, char *buf)
323 {
324 struct mtd_info *mtd = dev_get_drvdata(dev);
325 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
326
327 return sysfs_emit(buf, "%u\n", ecc_stats->badblocks);
328 }
329 MTD_DEVICE_ATTR_RO(bad_blocks);
330
mtd_bbt_blocks_show(struct device * dev,struct device_attribute * attr,char * buf)331 static ssize_t mtd_bbt_blocks_show(struct device *dev,
332 struct device_attribute *attr, char *buf)
333 {
334 struct mtd_info *mtd = dev_get_drvdata(dev);
335 struct mtd_ecc_stats *ecc_stats = &mtd->ecc_stats;
336
337 return sysfs_emit(buf, "%u\n", ecc_stats->bbtblocks);
338 }
339 MTD_DEVICE_ATTR_RO(bbt_blocks);
340
341 static struct attribute *mtd_attrs[] = {
342 &dev_attr_type.attr,
343 &dev_attr_flags.attr,
344 &dev_attr_size.attr,
345 &dev_attr_erasesize.attr,
346 &dev_attr_writesize.attr,
347 &dev_attr_subpagesize.attr,
348 &dev_attr_oobsize.attr,
349 &dev_attr_oobavail.attr,
350 &dev_attr_numeraseregions.attr,
351 &dev_attr_name.attr,
352 &dev_attr_ecc_strength.attr,
353 &dev_attr_ecc_step_size.attr,
354 &dev_attr_corrected_bits.attr,
355 &dev_attr_ecc_failures.attr,
356 &dev_attr_bad_blocks.attr,
357 &dev_attr_bbt_blocks.attr,
358 &dev_attr_bitflip_threshold.attr,
359 NULL,
360 };
361 ATTRIBUTE_GROUPS(mtd);
362
363 static const struct device_type mtd_devtype = {
364 .name = "mtd",
365 .groups = mtd_groups,
366 .release = mtd_release,
367 };
368
369 static bool mtd_expert_analysis_mode;
370
371 #ifdef CONFIG_DEBUG_FS
mtd_check_expert_analysis_mode(void)372 bool mtd_check_expert_analysis_mode(void)
373 {
374 const char *mtd_expert_analysis_warning =
375 "Bad block checks have been entirely disabled.\n"
376 "This is only reserved for post-mortem forensics and debug purposes.\n"
377 "Never enable this mode if you do not know what you are doing!\n";
378
379 return WARN_ONCE(mtd_expert_analysis_mode, mtd_expert_analysis_warning);
380 }
381 EXPORT_SYMBOL_GPL(mtd_check_expert_analysis_mode);
382 #endif
383
384 static struct dentry *dfs_dir_mtd;
385
mtd_debugfs_populate(struct mtd_info * mtd)386 static void mtd_debugfs_populate(struct mtd_info *mtd)
387 {
388 struct device *dev = &mtd->dev;
389
390 if (IS_ERR_OR_NULL(dfs_dir_mtd))
391 return;
392
393 mtd->dbg.dfs_dir = debugfs_create_dir(dev_name(dev), dfs_dir_mtd);
394 }
395
396 #ifndef CONFIG_MMU
mtd_mmap_capabilities(struct mtd_info * mtd)397 unsigned mtd_mmap_capabilities(struct mtd_info *mtd)
398 {
399 switch (mtd->type) {
400 case MTD_RAM:
401 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
402 NOMMU_MAP_READ | NOMMU_MAP_WRITE;
403 case MTD_ROM:
404 return NOMMU_MAP_COPY | NOMMU_MAP_DIRECT | NOMMU_MAP_EXEC |
405 NOMMU_MAP_READ;
406 default:
407 return NOMMU_MAP_COPY;
408 }
409 }
410 EXPORT_SYMBOL_GPL(mtd_mmap_capabilities);
411 #endif
412
mtd_reboot_notifier(struct notifier_block * n,unsigned long state,void * cmd)413 static int mtd_reboot_notifier(struct notifier_block *n, unsigned long state,
414 void *cmd)
415 {
416 struct mtd_info *mtd;
417
418 mtd = container_of(n, struct mtd_info, reboot_notifier);
419 mtd->_reboot(mtd);
420
421 return NOTIFY_DONE;
422 }
423
424 /**
425 * mtd_wunit_to_pairing_info - get pairing information of a wunit
426 * @mtd: pointer to new MTD device info structure
427 * @wunit: write unit we are interested in
428 * @info: returned pairing information
429 *
430 * Retrieve pairing information associated to the wunit.
431 * This is mainly useful when dealing with MLC/TLC NANDs where pages can be
432 * paired together, and where programming a page may influence the page it is
433 * paired with.
434 * The notion of page is replaced by the term wunit (write-unit) to stay
435 * consistent with the ->writesize field.
436 *
437 * The @wunit argument can be extracted from an absolute offset using
438 * mtd_offset_to_wunit(). @info is filled with the pairing information attached
439 * to @wunit.
440 *
441 * From the pairing info the MTD user can find all the wunits paired with
442 * @wunit using the following loop:
443 *
444 * for (i = 0; i < mtd_pairing_groups(mtd); i++) {
445 * info.pair = i;
446 * mtd_pairing_info_to_wunit(mtd, &info);
447 * ...
448 * }
449 */
mtd_wunit_to_pairing_info(struct mtd_info * mtd,int wunit,struct mtd_pairing_info * info)450 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
451 struct mtd_pairing_info *info)
452 {
453 struct mtd_info *master = mtd_get_master(mtd);
454 int npairs = mtd_wunit_per_eb(master) / mtd_pairing_groups(master);
455
456 if (wunit < 0 || wunit >= npairs)
457 return -EINVAL;
458
459 if (master->pairing && master->pairing->get_info)
460 return master->pairing->get_info(master, wunit, info);
461
462 info->group = 0;
463 info->pair = wunit;
464
465 return 0;
466 }
467 EXPORT_SYMBOL_GPL(mtd_wunit_to_pairing_info);
468
469 /**
470 * mtd_pairing_info_to_wunit - get wunit from pairing information
471 * @mtd: pointer to new MTD device info structure
472 * @info: pairing information struct
473 *
474 * Returns a positive number representing the wunit associated to the info
475 * struct, or a negative error code.
476 *
477 * This is the reverse of mtd_wunit_to_pairing_info(), and can help one to
478 * iterate over all wunits of a given pair (see mtd_wunit_to_pairing_info()
479 * doc).
480 *
481 * It can also be used to only program the first page of each pair (i.e.
482 * page attached to group 0), which allows one to use an MLC NAND in
483 * software-emulated SLC mode:
484 *
485 * info.group = 0;
486 * npairs = mtd_wunit_per_eb(mtd) / mtd_pairing_groups(mtd);
487 * for (info.pair = 0; info.pair < npairs; info.pair++) {
488 * wunit = mtd_pairing_info_to_wunit(mtd, &info);
489 * mtd_write(mtd, mtd_wunit_to_offset(mtd, blkoffs, wunit),
490 * mtd->writesize, &retlen, buf + (i * mtd->writesize));
491 * }
492 */
mtd_pairing_info_to_wunit(struct mtd_info * mtd,const struct mtd_pairing_info * info)493 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
494 const struct mtd_pairing_info *info)
495 {
496 struct mtd_info *master = mtd_get_master(mtd);
497 int ngroups = mtd_pairing_groups(master);
498 int npairs = mtd_wunit_per_eb(master) / ngroups;
499
500 if (!info || info->pair < 0 || info->pair >= npairs ||
501 info->group < 0 || info->group >= ngroups)
502 return -EINVAL;
503
504 if (master->pairing && master->pairing->get_wunit)
505 return mtd->pairing->get_wunit(master, info);
506
507 return info->pair;
508 }
509 EXPORT_SYMBOL_GPL(mtd_pairing_info_to_wunit);
510
511 /**
512 * mtd_pairing_groups - get the number of pairing groups
513 * @mtd: pointer to new MTD device info structure
514 *
515 * Returns the number of pairing groups.
516 *
517 * This number is usually equal to the number of bits exposed by a single
518 * cell, and can be used in conjunction with mtd_pairing_info_to_wunit()
519 * to iterate over all pages of a given pair.
520 */
mtd_pairing_groups(struct mtd_info * mtd)521 int mtd_pairing_groups(struct mtd_info *mtd)
522 {
523 struct mtd_info *master = mtd_get_master(mtd);
524
525 if (!master->pairing || !master->pairing->ngroups)
526 return 1;
527
528 return master->pairing->ngroups;
529 }
530 EXPORT_SYMBOL_GPL(mtd_pairing_groups);
531
mtd_nvmem_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)532 static int mtd_nvmem_reg_read(void *priv, unsigned int offset,
533 void *val, size_t bytes)
534 {
535 struct mtd_info *mtd = priv;
536 size_t retlen;
537 int err;
538
539 err = mtd_read(mtd, offset, bytes, &retlen, val);
540 if (err && err != -EUCLEAN)
541 return err;
542
543 return retlen == bytes ? 0 : -EIO;
544 }
545
mtd_nvmem_add(struct mtd_info * mtd)546 static int mtd_nvmem_add(struct mtd_info *mtd)
547 {
548 struct device_node *node = mtd_get_of_node(mtd);
549 struct nvmem_config config = {};
550
551 config.id = NVMEM_DEVID_NONE;
552 config.dev = &mtd->dev;
553 config.name = dev_name(&mtd->dev);
554 config.owner = THIS_MODULE;
555 config.reg_read = mtd_nvmem_reg_read;
556 config.size = mtd->size;
557 config.word_size = 1;
558 config.stride = 1;
559 config.read_only = true;
560 config.root_only = true;
561 config.ignore_wp = true;
562 config.no_of_node = !of_device_is_compatible(node, "nvmem-cells");
563 config.priv = mtd;
564
565 mtd->nvmem = nvmem_register(&config);
566 if (IS_ERR(mtd->nvmem)) {
567 /* Just ignore if there is no NVMEM support in the kernel */
568 if (PTR_ERR(mtd->nvmem) == -EOPNOTSUPP)
569 mtd->nvmem = NULL;
570 else
571 return dev_err_probe(&mtd->dev, PTR_ERR(mtd->nvmem),
572 "Failed to register NVMEM device\n");
573 }
574
575 return 0;
576 }
577
mtd_check_of_node(struct mtd_info * mtd)578 static void mtd_check_of_node(struct mtd_info *mtd)
579 {
580 struct device_node *partitions, *parent_dn, *mtd_dn = NULL;
581 const char *pname, *prefix = "partition-";
582 int plen, mtd_name_len, offset, prefix_len;
583
584 /* Check if MTD already has a device node */
585 if (mtd_get_of_node(mtd))
586 return;
587
588 if (!mtd_is_partition(mtd))
589 return;
590
591 parent_dn = of_node_get(mtd_get_of_node(mtd->parent));
592 if (!parent_dn)
593 return;
594
595 if (mtd_is_partition(mtd->parent))
596 partitions = of_node_get(parent_dn);
597 else
598 partitions = of_get_child_by_name(parent_dn, "partitions");
599 if (!partitions)
600 goto exit_parent;
601
602 prefix_len = strlen(prefix);
603 mtd_name_len = strlen(mtd->name);
604
605 /* Search if a partition is defined with the same name */
606 for_each_child_of_node(partitions, mtd_dn) {
607 /* Skip partition with no/wrong prefix */
608 if (!of_node_name_prefix(mtd_dn, prefix))
609 continue;
610
611 /* Label have priority. Check that first */
612 if (!of_property_read_string(mtd_dn, "label", &pname)) {
613 offset = 0;
614 } else {
615 pname = mtd_dn->name;
616 offset = prefix_len;
617 }
618
619 plen = strlen(pname) - offset;
620 if (plen == mtd_name_len &&
621 !strncmp(mtd->name, pname + offset, plen)) {
622 mtd_set_of_node(mtd, mtd_dn);
623 break;
624 }
625 }
626
627 of_node_put(partitions);
628 exit_parent:
629 of_node_put(parent_dn);
630 }
631
632 /**
633 * add_mtd_device - register an MTD device
634 * @mtd: pointer to new MTD device info structure
635 *
636 * Add a device to the list of MTD devices present in the system, and
637 * notify each currently active MTD 'user' of its arrival. Returns
638 * zero on success or non-zero on failure.
639 */
640
add_mtd_device(struct mtd_info * mtd)641 int add_mtd_device(struct mtd_info *mtd)
642 {
643 struct device_node *np = mtd_get_of_node(mtd);
644 struct mtd_info *master = mtd_get_master(mtd);
645 struct mtd_notifier *not;
646 int i, error, ofidx;
647
648 /*
649 * May occur, for instance, on buggy drivers which call
650 * mtd_device_parse_register() multiple times on the same master MTD,
651 * especially with CONFIG_MTD_PARTITIONED_MASTER=y.
652 */
653 if (WARN_ONCE(mtd->dev.type, "MTD already registered\n"))
654 return -EEXIST;
655
656 BUG_ON(mtd->writesize == 0);
657
658 /*
659 * MTD drivers should implement ->_{write,read}() or
660 * ->_{write,read}_oob(), but not both.
661 */
662 if (WARN_ON((mtd->_write && mtd->_write_oob) ||
663 (mtd->_read && mtd->_read_oob)))
664 return -EINVAL;
665
666 if (WARN_ON((!mtd->erasesize || !master->_erase) &&
667 !(mtd->flags & MTD_NO_ERASE)))
668 return -EINVAL;
669
670 /*
671 * MTD_SLC_ON_MLC_EMULATION can only be set on partitions, when the
672 * master is an MLC NAND and has a proper pairing scheme defined.
673 * We also reject masters that implement ->_writev() for now, because
674 * NAND controller drivers don't implement this hook, and adding the
675 * SLC -> MLC address/length conversion to this path is useless if we
676 * don't have a user.
677 */
678 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION &&
679 (!mtd_is_partition(mtd) || master->type != MTD_MLCNANDFLASH ||
680 !master->pairing || master->_writev))
681 return -EINVAL;
682
683 mutex_lock(&mtd_table_mutex);
684
685 ofidx = -1;
686 if (np)
687 ofidx = of_alias_get_id(np, "mtd");
688 if (ofidx >= 0)
689 i = idr_alloc(&mtd_idr, mtd, ofidx, ofidx + 1, GFP_KERNEL);
690 else
691 i = idr_alloc(&mtd_idr, mtd, 0, 0, GFP_KERNEL);
692 if (i < 0) {
693 error = i;
694 goto fail_locked;
695 }
696
697 mtd->index = i;
698 kref_init(&mtd->refcnt);
699
700 /* default value if not set by driver */
701 if (mtd->bitflip_threshold == 0)
702 mtd->bitflip_threshold = mtd->ecc_strength;
703
704 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
705 int ngroups = mtd_pairing_groups(master);
706
707 mtd->erasesize /= ngroups;
708 mtd->size = (u64)mtd_div_by_eb(mtd->size, master) *
709 mtd->erasesize;
710 }
711
712 if (is_power_of_2(mtd->erasesize))
713 mtd->erasesize_shift = ffs(mtd->erasesize) - 1;
714 else
715 mtd->erasesize_shift = 0;
716
717 if (is_power_of_2(mtd->writesize))
718 mtd->writesize_shift = ffs(mtd->writesize) - 1;
719 else
720 mtd->writesize_shift = 0;
721
722 mtd->erasesize_mask = (1 << mtd->erasesize_shift) - 1;
723 mtd->writesize_mask = (1 << mtd->writesize_shift) - 1;
724
725 /* Some chips always power up locked. Unlock them now */
726 if ((mtd->flags & MTD_WRITEABLE) && (mtd->flags & MTD_POWERUP_LOCK)) {
727 error = mtd_unlock(mtd, 0, mtd->size);
728 if (error && error != -EOPNOTSUPP)
729 printk(KERN_WARNING
730 "%s: unlock failed, writes may not work\n",
731 mtd->name);
732 /* Ignore unlock failures? */
733 error = 0;
734 }
735
736 /* Caller should have set dev.parent to match the
737 * physical device, if appropriate.
738 */
739 mtd->dev.type = &mtd_devtype;
740 mtd->dev.class = &mtd_class;
741 mtd->dev.devt = MTD_DEVT(i);
742 dev_set_name(&mtd->dev, "mtd%d", i);
743 dev_set_drvdata(&mtd->dev, mtd);
744 mtd_check_of_node(mtd);
745 of_node_get(mtd_get_of_node(mtd));
746 error = device_register(&mtd->dev);
747 if (error) {
748 put_device(&mtd->dev);
749 goto fail_added;
750 }
751
752 /* Add the nvmem provider */
753 error = mtd_nvmem_add(mtd);
754 if (error)
755 goto fail_nvmem_add;
756
757 mtd_debugfs_populate(mtd);
758
759 device_create(&mtd_class, mtd->dev.parent, MTD_DEVT(i) + 1, NULL,
760 "mtd%dro", i);
761
762 pr_debug("mtd: Giving out device %d to %s\n", i, mtd->name);
763 /* No need to get a refcount on the module containing
764 the notifier, since we hold the mtd_table_mutex */
765 list_for_each_entry(not, &mtd_notifiers, list)
766 not->add(mtd);
767
768 mutex_unlock(&mtd_table_mutex);
769
770 if (of_property_read_bool(mtd_get_of_node(mtd), "linux,rootfs")) {
771 if (IS_BUILTIN(CONFIG_MTD)) {
772 pr_info("mtd: setting mtd%d (%s) as root device\n", mtd->index, mtd->name);
773 ROOT_DEV = MKDEV(MTD_BLOCK_MAJOR, mtd->index);
774 } else {
775 pr_warn("mtd: can't set mtd%d (%s) as root device - mtd must be builtin\n",
776 mtd->index, mtd->name);
777 }
778 }
779
780 /* We _know_ we aren't being removed, because
781 our caller is still holding us here. So none
782 of this try_ nonsense, and no bitching about it
783 either. :) */
784 __module_get(THIS_MODULE);
785 return 0;
786
787 fail_nvmem_add:
788 device_unregister(&mtd->dev);
789 fail_added:
790 of_node_put(mtd_get_of_node(mtd));
791 idr_remove(&mtd_idr, i);
792 fail_locked:
793 mutex_unlock(&mtd_table_mutex);
794 return error;
795 }
796
797 /**
798 * del_mtd_device - unregister an MTD device
799 * @mtd: pointer to MTD device info structure
800 *
801 * Remove a device from the list of MTD devices present in the system,
802 * and notify each currently active MTD 'user' of its departure.
803 * Returns zero on success or 1 on failure, which currently will happen
804 * if the requested device does not appear to be present in the list.
805 */
806
del_mtd_device(struct mtd_info * mtd)807 int del_mtd_device(struct mtd_info *mtd)
808 {
809 int ret;
810 struct mtd_notifier *not;
811
812 mutex_lock(&mtd_table_mutex);
813
814 if (idr_find(&mtd_idr, mtd->index) != mtd) {
815 ret = -ENODEV;
816 goto out_error;
817 }
818
819 /* No need to get a refcount on the module containing
820 the notifier, since we hold the mtd_table_mutex */
821 list_for_each_entry(not, &mtd_notifiers, list)
822 not->remove(mtd);
823
824 kref_put(&mtd->refcnt, mtd_device_release);
825 ret = 0;
826
827 out_error:
828 mutex_unlock(&mtd_table_mutex);
829 return ret;
830 }
831
832 /*
833 * Set a few defaults based on the parent devices, if not provided by the
834 * driver
835 */
mtd_set_dev_defaults(struct mtd_info * mtd)836 static void mtd_set_dev_defaults(struct mtd_info *mtd)
837 {
838 if (mtd->dev.parent) {
839 if (!mtd->owner && mtd->dev.parent->driver)
840 mtd->owner = mtd->dev.parent->driver->owner;
841 if (!mtd->name)
842 mtd->name = dev_name(mtd->dev.parent);
843 } else {
844 pr_debug("mtd device won't show a device symlink in sysfs\n");
845 }
846
847 INIT_LIST_HEAD(&mtd->partitions);
848 mutex_init(&mtd->master.partitions_lock);
849 mutex_init(&mtd->master.chrdev_lock);
850 }
851
mtd_otp_size(struct mtd_info * mtd,bool is_user)852 static ssize_t mtd_otp_size(struct mtd_info *mtd, bool is_user)
853 {
854 struct otp_info *info;
855 ssize_t size = 0;
856 unsigned int i;
857 size_t retlen;
858 int ret;
859
860 info = kmalloc(PAGE_SIZE, GFP_KERNEL);
861 if (!info)
862 return -ENOMEM;
863
864 if (is_user)
865 ret = mtd_get_user_prot_info(mtd, PAGE_SIZE, &retlen, info);
866 else
867 ret = mtd_get_fact_prot_info(mtd, PAGE_SIZE, &retlen, info);
868 if (ret)
869 goto err;
870
871 for (i = 0; i < retlen / sizeof(*info); i++)
872 size += info[i].length;
873
874 kfree(info);
875 return size;
876
877 err:
878 kfree(info);
879
880 /* ENODATA means there is no OTP region. */
881 return ret == -ENODATA ? 0 : ret;
882 }
883
mtd_otp_nvmem_register(struct mtd_info * mtd,const char * compatible,int size,nvmem_reg_read_t reg_read)884 static struct nvmem_device *mtd_otp_nvmem_register(struct mtd_info *mtd,
885 const char *compatible,
886 int size,
887 nvmem_reg_read_t reg_read)
888 {
889 struct nvmem_device *nvmem = NULL;
890 struct nvmem_config config = {};
891 struct device_node *np;
892
893 /* DT binding is optional */
894 np = of_get_compatible_child(mtd->dev.of_node, compatible);
895
896 /* OTP nvmem will be registered on the physical device */
897 config.dev = mtd->dev.parent;
898 config.name = compatible;
899 config.id = NVMEM_DEVID_AUTO;
900 config.owner = THIS_MODULE;
901 config.type = NVMEM_TYPE_OTP;
902 config.root_only = true;
903 config.ignore_wp = true;
904 config.reg_read = reg_read;
905 config.size = size;
906 config.of_node = np;
907 config.priv = mtd;
908
909 nvmem = nvmem_register(&config);
910 /* Just ignore if there is no NVMEM support in the kernel */
911 if (IS_ERR(nvmem) && PTR_ERR(nvmem) == -EOPNOTSUPP)
912 nvmem = NULL;
913
914 of_node_put(np);
915
916 return nvmem;
917 }
918
mtd_nvmem_user_otp_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)919 static int mtd_nvmem_user_otp_reg_read(void *priv, unsigned int offset,
920 void *val, size_t bytes)
921 {
922 struct mtd_info *mtd = priv;
923 size_t retlen;
924 int ret;
925
926 ret = mtd_read_user_prot_reg(mtd, offset, bytes, &retlen, val);
927 if (ret)
928 return ret;
929
930 return retlen == bytes ? 0 : -EIO;
931 }
932
mtd_nvmem_fact_otp_reg_read(void * priv,unsigned int offset,void * val,size_t bytes)933 static int mtd_nvmem_fact_otp_reg_read(void *priv, unsigned int offset,
934 void *val, size_t bytes)
935 {
936 struct mtd_info *mtd = priv;
937 size_t retlen;
938 int ret;
939
940 ret = mtd_read_fact_prot_reg(mtd, offset, bytes, &retlen, val);
941 if (ret)
942 return ret;
943
944 return retlen == bytes ? 0 : -EIO;
945 }
946
mtd_otp_nvmem_add(struct mtd_info * mtd)947 static int mtd_otp_nvmem_add(struct mtd_info *mtd)
948 {
949 struct device *dev = mtd->dev.parent;
950 struct nvmem_device *nvmem;
951 ssize_t size;
952 int err;
953
954 if (mtd->_get_user_prot_info && mtd->_read_user_prot_reg) {
955 size = mtd_otp_size(mtd, true);
956 if (size < 0)
957 return size;
958
959 if (size > 0) {
960 nvmem = mtd_otp_nvmem_register(mtd, "user-otp", size,
961 mtd_nvmem_user_otp_reg_read);
962 if (IS_ERR(nvmem)) {
963 err = PTR_ERR(nvmem);
964 goto err;
965 }
966 mtd->otp_user_nvmem = nvmem;
967 }
968 }
969
970 if (mtd->_get_fact_prot_info && mtd->_read_fact_prot_reg) {
971 size = mtd_otp_size(mtd, false);
972 if (size < 0) {
973 err = size;
974 goto err;
975 }
976
977 if (size > 0) {
978 /*
979 * The factory OTP contains thing such as a unique serial
980 * number and is small, so let's read it out and put it
981 * into the entropy pool.
982 */
983 void *otp;
984
985 otp = kmalloc(size, GFP_KERNEL);
986 if (!otp) {
987 err = -ENOMEM;
988 goto err;
989 }
990 err = mtd_nvmem_fact_otp_reg_read(mtd, 0, otp, size);
991 if (err < 0) {
992 kfree(otp);
993 goto err;
994 }
995 add_device_randomness(otp, err);
996 kfree(otp);
997
998 nvmem = mtd_otp_nvmem_register(mtd, "factory-otp", size,
999 mtd_nvmem_fact_otp_reg_read);
1000 if (IS_ERR(nvmem)) {
1001 err = PTR_ERR(nvmem);
1002 goto err;
1003 }
1004 mtd->otp_factory_nvmem = nvmem;
1005 }
1006 }
1007
1008 return 0;
1009
1010 err:
1011 nvmem_unregister(mtd->otp_user_nvmem);
1012 return dev_err_probe(dev, err, "Failed to register OTP NVMEM device\n");
1013 }
1014
1015 /**
1016 * mtd_device_parse_register - parse partitions and register an MTD device.
1017 *
1018 * @mtd: the MTD device to register
1019 * @types: the list of MTD partition probes to try, see
1020 * 'parse_mtd_partitions()' for more information
1021 * @parser_data: MTD partition parser-specific data
1022 * @parts: fallback partition information to register, if parsing fails;
1023 * only valid if %nr_parts > %0
1024 * @nr_parts: the number of partitions in parts, if zero then the full
1025 * MTD device is registered if no partition info is found
1026 *
1027 * This function aggregates MTD partitions parsing (done by
1028 * 'parse_mtd_partitions()') and MTD device and partitions registering. It
1029 * basically follows the most common pattern found in many MTD drivers:
1030 *
1031 * * If the MTD_PARTITIONED_MASTER option is set, then the device as a whole is
1032 * registered first.
1033 * * Then It tries to probe partitions on MTD device @mtd using parsers
1034 * specified in @types (if @types is %NULL, then the default list of parsers
1035 * is used, see 'parse_mtd_partitions()' for more information). If none are
1036 * found this functions tries to fallback to information specified in
1037 * @parts/@nr_parts.
1038 * * If no partitions were found this function just registers the MTD device
1039 * @mtd and exits.
1040 *
1041 * Returns zero in case of success and a negative error code in case of failure.
1042 */
mtd_device_parse_register(struct mtd_info * mtd,const char * const * types,struct mtd_part_parser_data * parser_data,const struct mtd_partition * parts,int nr_parts)1043 int mtd_device_parse_register(struct mtd_info *mtd, const char * const *types,
1044 struct mtd_part_parser_data *parser_data,
1045 const struct mtd_partition *parts,
1046 int nr_parts)
1047 {
1048 int ret;
1049
1050 mtd_set_dev_defaults(mtd);
1051
1052 ret = mtd_otp_nvmem_add(mtd);
1053 if (ret)
1054 goto out;
1055
1056 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER)) {
1057 ret = add_mtd_device(mtd);
1058 if (ret)
1059 goto out;
1060 }
1061
1062 /* Prefer parsed partitions over driver-provided fallback */
1063 ret = parse_mtd_partitions(mtd, types, parser_data);
1064 if (ret == -EPROBE_DEFER)
1065 goto out;
1066
1067 if (ret > 0)
1068 ret = 0;
1069 else if (nr_parts)
1070 ret = add_mtd_partitions(mtd, parts, nr_parts);
1071 else if (!device_is_registered(&mtd->dev))
1072 ret = add_mtd_device(mtd);
1073 else
1074 ret = 0;
1075
1076 if (ret)
1077 goto out;
1078
1079 /*
1080 * FIXME: some drivers unfortunately call this function more than once.
1081 * So we have to check if we've already assigned the reboot notifier.
1082 *
1083 * Generally, we can make multiple calls work for most cases, but it
1084 * does cause problems with parse_mtd_partitions() above (e.g.,
1085 * cmdlineparts will register partitions more than once).
1086 */
1087 WARN_ONCE(mtd->_reboot && mtd->reboot_notifier.notifier_call,
1088 "MTD already registered\n");
1089 if (mtd->_reboot && !mtd->reboot_notifier.notifier_call) {
1090 mtd->reboot_notifier.notifier_call = mtd_reboot_notifier;
1091 register_reboot_notifier(&mtd->reboot_notifier);
1092 }
1093
1094 out:
1095 if (ret) {
1096 nvmem_unregister(mtd->otp_user_nvmem);
1097 nvmem_unregister(mtd->otp_factory_nvmem);
1098 }
1099
1100 if (ret && device_is_registered(&mtd->dev))
1101 del_mtd_device(mtd);
1102
1103 return ret;
1104 }
1105 EXPORT_SYMBOL_GPL(mtd_device_parse_register);
1106
1107 /**
1108 * mtd_device_unregister - unregister an existing MTD device.
1109 *
1110 * @master: the MTD device to unregister. This will unregister both the master
1111 * and any partitions if registered.
1112 */
mtd_device_unregister(struct mtd_info * master)1113 int mtd_device_unregister(struct mtd_info *master)
1114 {
1115 int err;
1116
1117 if (master->_reboot) {
1118 unregister_reboot_notifier(&master->reboot_notifier);
1119 memset(&master->reboot_notifier, 0, sizeof(master->reboot_notifier));
1120 }
1121
1122 nvmem_unregister(master->otp_user_nvmem);
1123 nvmem_unregister(master->otp_factory_nvmem);
1124
1125 err = del_mtd_partitions(master);
1126 if (err)
1127 return err;
1128
1129 if (!device_is_registered(&master->dev))
1130 return 0;
1131
1132 return del_mtd_device(master);
1133 }
1134 EXPORT_SYMBOL_GPL(mtd_device_unregister);
1135
1136 /**
1137 * register_mtd_user - register a 'user' of MTD devices.
1138 * @new: pointer to notifier info structure
1139 *
1140 * Registers a pair of callbacks function to be called upon addition
1141 * or removal of MTD devices. Causes the 'add' callback to be immediately
1142 * invoked for each MTD device currently present in the system.
1143 */
register_mtd_user(struct mtd_notifier * new)1144 void register_mtd_user (struct mtd_notifier *new)
1145 {
1146 struct mtd_info *mtd;
1147
1148 mutex_lock(&mtd_table_mutex);
1149
1150 list_add(&new->list, &mtd_notifiers);
1151
1152 __module_get(THIS_MODULE);
1153
1154 mtd_for_each_device(mtd)
1155 new->add(mtd);
1156
1157 mutex_unlock(&mtd_table_mutex);
1158 }
1159 EXPORT_SYMBOL_GPL(register_mtd_user);
1160
1161 /**
1162 * unregister_mtd_user - unregister a 'user' of MTD devices.
1163 * @old: pointer to notifier info structure
1164 *
1165 * Removes a callback function pair from the list of 'users' to be
1166 * notified upon addition or removal of MTD devices. Causes the
1167 * 'remove' callback to be immediately invoked for each MTD device
1168 * currently present in the system.
1169 */
unregister_mtd_user(struct mtd_notifier * old)1170 int unregister_mtd_user (struct mtd_notifier *old)
1171 {
1172 struct mtd_info *mtd;
1173
1174 mutex_lock(&mtd_table_mutex);
1175
1176 module_put(THIS_MODULE);
1177
1178 mtd_for_each_device(mtd)
1179 old->remove(mtd);
1180
1181 list_del(&old->list);
1182 mutex_unlock(&mtd_table_mutex);
1183 return 0;
1184 }
1185 EXPORT_SYMBOL_GPL(unregister_mtd_user);
1186
1187 /**
1188 * get_mtd_device - obtain a validated handle for an MTD device
1189 * @mtd: last known address of the required MTD device
1190 * @num: internal device number of the required MTD device
1191 *
1192 * Given a number and NULL address, return the num'th entry in the device
1193 * table, if any. Given an address and num == -1, search the device table
1194 * for a device with that address and return if it's still present. Given
1195 * both, return the num'th driver only if its address matches. Return
1196 * error code if not.
1197 */
get_mtd_device(struct mtd_info * mtd,int num)1198 struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num)
1199 {
1200 struct mtd_info *ret = NULL, *other;
1201 int err = -ENODEV;
1202
1203 mutex_lock(&mtd_table_mutex);
1204
1205 if (num == -1) {
1206 mtd_for_each_device(other) {
1207 if (other == mtd) {
1208 ret = mtd;
1209 break;
1210 }
1211 }
1212 } else if (num >= 0) {
1213 ret = idr_find(&mtd_idr, num);
1214 if (mtd && mtd != ret)
1215 ret = NULL;
1216 }
1217
1218 if (!ret) {
1219 ret = ERR_PTR(err);
1220 goto out;
1221 }
1222
1223 err = __get_mtd_device(ret);
1224 if (err)
1225 ret = ERR_PTR(err);
1226 out:
1227 mutex_unlock(&mtd_table_mutex);
1228 return ret;
1229 }
1230 EXPORT_SYMBOL_GPL(get_mtd_device);
1231
1232
__get_mtd_device(struct mtd_info * mtd)1233 int __get_mtd_device(struct mtd_info *mtd)
1234 {
1235 struct mtd_info *master = mtd_get_master(mtd);
1236 int err;
1237
1238 if (master->_get_device) {
1239 err = master->_get_device(mtd);
1240 if (err)
1241 return err;
1242 }
1243
1244 if (!try_module_get(master->owner)) {
1245 if (master->_put_device)
1246 master->_put_device(master);
1247 return -ENODEV;
1248 }
1249
1250 while (mtd) {
1251 if (mtd != master)
1252 kref_get(&mtd->refcnt);
1253 mtd = mtd->parent;
1254 }
1255
1256 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1257 kref_get(&master->refcnt);
1258
1259 return 0;
1260 }
1261 EXPORT_SYMBOL_GPL(__get_mtd_device);
1262
1263 /**
1264 * of_get_mtd_device_by_node - obtain an MTD device associated with a given node
1265 *
1266 * @np: device tree node
1267 */
of_get_mtd_device_by_node(struct device_node * np)1268 struct mtd_info *of_get_mtd_device_by_node(struct device_node *np)
1269 {
1270 struct mtd_info *mtd = NULL;
1271 struct mtd_info *tmp;
1272 int err;
1273
1274 mutex_lock(&mtd_table_mutex);
1275
1276 err = -EPROBE_DEFER;
1277 mtd_for_each_device(tmp) {
1278 if (mtd_get_of_node(tmp) == np) {
1279 mtd = tmp;
1280 err = __get_mtd_device(mtd);
1281 break;
1282 }
1283 }
1284
1285 mutex_unlock(&mtd_table_mutex);
1286
1287 return err ? ERR_PTR(err) : mtd;
1288 }
1289 EXPORT_SYMBOL_GPL(of_get_mtd_device_by_node);
1290
1291 /**
1292 * get_mtd_device_nm - obtain a validated handle for an MTD device by
1293 * device name
1294 * @name: MTD device name to open
1295 *
1296 * This function returns MTD device description structure in case of
1297 * success and an error code in case of failure.
1298 */
get_mtd_device_nm(const char * name)1299 struct mtd_info *get_mtd_device_nm(const char *name)
1300 {
1301 int err = -ENODEV;
1302 struct mtd_info *mtd = NULL, *other;
1303
1304 mutex_lock(&mtd_table_mutex);
1305
1306 mtd_for_each_device(other) {
1307 if (!strcmp(name, other->name)) {
1308 mtd = other;
1309 break;
1310 }
1311 }
1312
1313 if (!mtd)
1314 goto out_unlock;
1315
1316 err = __get_mtd_device(mtd);
1317 if (err)
1318 goto out_unlock;
1319
1320 mutex_unlock(&mtd_table_mutex);
1321 return mtd;
1322
1323 out_unlock:
1324 mutex_unlock(&mtd_table_mutex);
1325 return ERR_PTR(err);
1326 }
1327 EXPORT_SYMBOL_GPL(get_mtd_device_nm);
1328
put_mtd_device(struct mtd_info * mtd)1329 void put_mtd_device(struct mtd_info *mtd)
1330 {
1331 mutex_lock(&mtd_table_mutex);
1332 __put_mtd_device(mtd);
1333 mutex_unlock(&mtd_table_mutex);
1334
1335 }
1336 EXPORT_SYMBOL_GPL(put_mtd_device);
1337
__put_mtd_device(struct mtd_info * mtd)1338 void __put_mtd_device(struct mtd_info *mtd)
1339 {
1340 struct mtd_info *master = mtd_get_master(mtd);
1341
1342 while (mtd) {
1343 /* kref_put() can relese mtd, so keep a reference mtd->parent */
1344 struct mtd_info *parent = mtd->parent;
1345
1346 if (mtd != master)
1347 kref_put(&mtd->refcnt, mtd_device_release);
1348 mtd = parent;
1349 }
1350
1351 if (IS_ENABLED(CONFIG_MTD_PARTITIONED_MASTER))
1352 kref_put(&master->refcnt, mtd_device_release);
1353
1354 module_put(master->owner);
1355
1356 /* must be the last as master can be freed in the _put_device */
1357 if (master->_put_device)
1358 master->_put_device(master);
1359 }
1360 EXPORT_SYMBOL_GPL(__put_mtd_device);
1361
1362 /*
1363 * Erase is an synchronous operation. Device drivers are epected to return a
1364 * negative error code if the operation failed and update instr->fail_addr
1365 * to point the portion that was not properly erased.
1366 */
mtd_erase(struct mtd_info * mtd,struct erase_info * instr)1367 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr)
1368 {
1369 struct mtd_info *master = mtd_get_master(mtd);
1370 u64 mst_ofs = mtd_get_master_ofs(mtd, 0);
1371 struct erase_info adjinstr;
1372 int ret;
1373
1374 instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
1375 adjinstr = *instr;
1376
1377 if (!mtd->erasesize || !master->_erase)
1378 return -ENOTSUPP;
1379
1380 if (instr->addr >= mtd->size || instr->len > mtd->size - instr->addr)
1381 return -EINVAL;
1382 if (!(mtd->flags & MTD_WRITEABLE))
1383 return -EROFS;
1384
1385 if (!instr->len)
1386 return 0;
1387
1388 ledtrig_mtd_activity();
1389
1390 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1391 adjinstr.addr = (loff_t)mtd_div_by_eb(instr->addr, mtd) *
1392 master->erasesize;
1393 adjinstr.len = ((u64)mtd_div_by_eb(instr->addr + instr->len, mtd) *
1394 master->erasesize) -
1395 adjinstr.addr;
1396 }
1397
1398 adjinstr.addr += mst_ofs;
1399
1400 ret = master->_erase(master, &adjinstr);
1401
1402 if (adjinstr.fail_addr != MTD_FAIL_ADDR_UNKNOWN) {
1403 instr->fail_addr = adjinstr.fail_addr - mst_ofs;
1404 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
1405 instr->fail_addr = mtd_div_by_eb(instr->fail_addr,
1406 master);
1407 instr->fail_addr *= mtd->erasesize;
1408 }
1409 }
1410
1411 return ret;
1412 }
1413 EXPORT_SYMBOL_GPL(mtd_erase);
1414
1415 /*
1416 * This stuff for eXecute-In-Place. phys is optional and may be set to NULL.
1417 */
mtd_point(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,void ** virt,resource_size_t * phys)1418 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1419 void **virt, resource_size_t *phys)
1420 {
1421 struct mtd_info *master = mtd_get_master(mtd);
1422
1423 *retlen = 0;
1424 *virt = NULL;
1425 if (phys)
1426 *phys = 0;
1427 if (!master->_point)
1428 return -EOPNOTSUPP;
1429 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1430 return -EINVAL;
1431 if (!len)
1432 return 0;
1433
1434 from = mtd_get_master_ofs(mtd, from);
1435 return master->_point(master, from, len, retlen, virt, phys);
1436 }
1437 EXPORT_SYMBOL_GPL(mtd_point);
1438
1439 /* We probably shouldn't allow XIP if the unpoint isn't a NULL */
mtd_unpoint(struct mtd_info * mtd,loff_t from,size_t len)1440 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
1441 {
1442 struct mtd_info *master = mtd_get_master(mtd);
1443
1444 if (!master->_unpoint)
1445 return -EOPNOTSUPP;
1446 if (from < 0 || from >= mtd->size || len > mtd->size - from)
1447 return -EINVAL;
1448 if (!len)
1449 return 0;
1450 return master->_unpoint(master, mtd_get_master_ofs(mtd, from), len);
1451 }
1452 EXPORT_SYMBOL_GPL(mtd_unpoint);
1453
1454 /*
1455 * Allow NOMMU mmap() to directly map the device (if not NULL)
1456 * - return the address to which the offset maps
1457 * - return -ENOSYS to indicate refusal to do the mapping
1458 */
mtd_get_unmapped_area(struct mtd_info * mtd,unsigned long len,unsigned long offset,unsigned long flags)1459 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
1460 unsigned long offset, unsigned long flags)
1461 {
1462 size_t retlen;
1463 void *virt;
1464 int ret;
1465
1466 ret = mtd_point(mtd, offset, len, &retlen, &virt, NULL);
1467 if (ret)
1468 return ret;
1469 if (retlen != len) {
1470 mtd_unpoint(mtd, offset, retlen);
1471 return -ENOSYS;
1472 }
1473 return (unsigned long)virt;
1474 }
1475 EXPORT_SYMBOL_GPL(mtd_get_unmapped_area);
1476
mtd_update_ecc_stats(struct mtd_info * mtd,struct mtd_info * master,const struct mtd_ecc_stats * old_stats)1477 static void mtd_update_ecc_stats(struct mtd_info *mtd, struct mtd_info *master,
1478 const struct mtd_ecc_stats *old_stats)
1479 {
1480 struct mtd_ecc_stats diff;
1481
1482 if (master == mtd)
1483 return;
1484
1485 diff = master->ecc_stats;
1486 diff.failed -= old_stats->failed;
1487 diff.corrected -= old_stats->corrected;
1488
1489 while (mtd->parent) {
1490 mtd->ecc_stats.failed += diff.failed;
1491 mtd->ecc_stats.corrected += diff.corrected;
1492 mtd = mtd->parent;
1493 }
1494 }
1495
mtd_read(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)1496 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
1497 u_char *buf)
1498 {
1499 struct mtd_oob_ops ops = {
1500 .len = len,
1501 .datbuf = buf,
1502 };
1503 int ret;
1504
1505 ret = mtd_read_oob(mtd, from, &ops);
1506 *retlen = ops.retlen;
1507
1508 return ret;
1509 }
1510 EXPORT_SYMBOL_GPL(mtd_read);
1511
mtd_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1512 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1513 const u_char *buf)
1514 {
1515 struct mtd_oob_ops ops = {
1516 .len = len,
1517 .datbuf = (u8 *)buf,
1518 };
1519 int ret;
1520
1521 ret = mtd_write_oob(mtd, to, &ops);
1522 *retlen = ops.retlen;
1523
1524 return ret;
1525 }
1526 EXPORT_SYMBOL_GPL(mtd_write);
1527
1528 /*
1529 * In blackbox flight recorder like scenarios we want to make successful writes
1530 * in interrupt context. panic_write() is only intended to be called when its
1531 * known the kernel is about to panic and we need the write to succeed. Since
1532 * the kernel is not going to be running for much longer, this function can
1533 * break locks and delay to ensure the write succeeds (but not sleep).
1534 */
mtd_panic_write(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)1535 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
1536 const u_char *buf)
1537 {
1538 struct mtd_info *master = mtd_get_master(mtd);
1539
1540 *retlen = 0;
1541 if (!master->_panic_write)
1542 return -EOPNOTSUPP;
1543 if (to < 0 || to >= mtd->size || len > mtd->size - to)
1544 return -EINVAL;
1545 if (!(mtd->flags & MTD_WRITEABLE))
1546 return -EROFS;
1547 if (!len)
1548 return 0;
1549 if (!master->oops_panic_write)
1550 master->oops_panic_write = true;
1551
1552 return master->_panic_write(master, mtd_get_master_ofs(mtd, to), len,
1553 retlen, buf);
1554 }
1555 EXPORT_SYMBOL_GPL(mtd_panic_write);
1556
mtd_check_oob_ops(struct mtd_info * mtd,loff_t offs,struct mtd_oob_ops * ops)1557 static int mtd_check_oob_ops(struct mtd_info *mtd, loff_t offs,
1558 struct mtd_oob_ops *ops)
1559 {
1560 /*
1561 * Some users are setting ->datbuf or ->oobbuf to NULL, but are leaving
1562 * ->len or ->ooblen uninitialized. Force ->len and ->ooblen to 0 in
1563 * this case.
1564 */
1565 if (!ops->datbuf)
1566 ops->len = 0;
1567
1568 if (!ops->oobbuf)
1569 ops->ooblen = 0;
1570
1571 if (offs < 0 || offs + ops->len > mtd->size)
1572 return -EINVAL;
1573
1574 if (ops->ooblen) {
1575 size_t maxooblen;
1576
1577 if (ops->ooboffs >= mtd_oobavail(mtd, ops))
1578 return -EINVAL;
1579
1580 maxooblen = ((size_t)(mtd_div_by_ws(mtd->size, mtd) -
1581 mtd_div_by_ws(offs, mtd)) *
1582 mtd_oobavail(mtd, ops)) - ops->ooboffs;
1583 if (ops->ooblen > maxooblen)
1584 return -EINVAL;
1585 }
1586
1587 return 0;
1588 }
1589
mtd_read_oob_std(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1590 static int mtd_read_oob_std(struct mtd_info *mtd, loff_t from,
1591 struct mtd_oob_ops *ops)
1592 {
1593 struct mtd_info *master = mtd_get_master(mtd);
1594 int ret;
1595
1596 from = mtd_get_master_ofs(mtd, from);
1597 if (master->_read_oob)
1598 ret = master->_read_oob(master, from, ops);
1599 else
1600 ret = master->_read(master, from, ops->len, &ops->retlen,
1601 ops->datbuf);
1602
1603 return ret;
1604 }
1605
mtd_write_oob_std(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1606 static int mtd_write_oob_std(struct mtd_info *mtd, loff_t to,
1607 struct mtd_oob_ops *ops)
1608 {
1609 struct mtd_info *master = mtd_get_master(mtd);
1610 int ret;
1611
1612 to = mtd_get_master_ofs(mtd, to);
1613 if (master->_write_oob)
1614 ret = master->_write_oob(master, to, ops);
1615 else
1616 ret = master->_write(master, to, ops->len, &ops->retlen,
1617 ops->datbuf);
1618
1619 return ret;
1620 }
1621
mtd_io_emulated_slc(struct mtd_info * mtd,loff_t start,bool read,struct mtd_oob_ops * ops)1622 static int mtd_io_emulated_slc(struct mtd_info *mtd, loff_t start, bool read,
1623 struct mtd_oob_ops *ops)
1624 {
1625 struct mtd_info *master = mtd_get_master(mtd);
1626 int ngroups = mtd_pairing_groups(master);
1627 int npairs = mtd_wunit_per_eb(master) / ngroups;
1628 struct mtd_oob_ops adjops = *ops;
1629 unsigned int wunit, oobavail;
1630 struct mtd_pairing_info info;
1631 int max_bitflips = 0;
1632 u32 ebofs, pageofs;
1633 loff_t base, pos;
1634
1635 ebofs = mtd_mod_by_eb(start, mtd);
1636 base = (loff_t)mtd_div_by_eb(start, mtd) * master->erasesize;
1637 info.group = 0;
1638 info.pair = mtd_div_by_ws(ebofs, mtd);
1639 pageofs = mtd_mod_by_ws(ebofs, mtd);
1640 oobavail = mtd_oobavail(mtd, ops);
1641
1642 while (ops->retlen < ops->len || ops->oobretlen < ops->ooblen) {
1643 int ret;
1644
1645 if (info.pair >= npairs) {
1646 info.pair = 0;
1647 base += master->erasesize;
1648 }
1649
1650 wunit = mtd_pairing_info_to_wunit(master, &info);
1651 pos = mtd_wunit_to_offset(mtd, base, wunit);
1652
1653 adjops.len = ops->len - ops->retlen;
1654 if (adjops.len > mtd->writesize - pageofs)
1655 adjops.len = mtd->writesize - pageofs;
1656
1657 adjops.ooblen = ops->ooblen - ops->oobretlen;
1658 if (adjops.ooblen > oobavail - adjops.ooboffs)
1659 adjops.ooblen = oobavail - adjops.ooboffs;
1660
1661 if (read) {
1662 ret = mtd_read_oob_std(mtd, pos + pageofs, &adjops);
1663 if (ret > 0)
1664 max_bitflips = max(max_bitflips, ret);
1665 } else {
1666 ret = mtd_write_oob_std(mtd, pos + pageofs, &adjops);
1667 }
1668
1669 if (ret < 0)
1670 return ret;
1671
1672 max_bitflips = max(max_bitflips, ret);
1673 ops->retlen += adjops.retlen;
1674 ops->oobretlen += adjops.oobretlen;
1675 adjops.datbuf += adjops.retlen;
1676 adjops.oobbuf += adjops.oobretlen;
1677 adjops.ooboffs = 0;
1678 pageofs = 0;
1679 info.pair++;
1680 }
1681
1682 return max_bitflips;
1683 }
1684
mtd_read_oob(struct mtd_info * mtd,loff_t from,struct mtd_oob_ops * ops)1685 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops)
1686 {
1687 struct mtd_info *master = mtd_get_master(mtd);
1688 struct mtd_ecc_stats old_stats = master->ecc_stats;
1689 int ret_code;
1690
1691 ops->retlen = ops->oobretlen = 0;
1692
1693 ret_code = mtd_check_oob_ops(mtd, from, ops);
1694 if (ret_code)
1695 return ret_code;
1696
1697 ledtrig_mtd_activity();
1698
1699 /* Check the validity of a potential fallback on mtd->_read */
1700 if (!master->_read_oob && (!master->_read || ops->oobbuf))
1701 return -EOPNOTSUPP;
1702
1703 if (ops->stats)
1704 memset(ops->stats, 0, sizeof(*ops->stats));
1705
1706 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1707 ret_code = mtd_io_emulated_slc(mtd, from, true, ops);
1708 else
1709 ret_code = mtd_read_oob_std(mtd, from, ops);
1710
1711 mtd_update_ecc_stats(mtd, master, &old_stats);
1712
1713 /*
1714 * In cases where ops->datbuf != NULL, mtd->_read_oob() has semantics
1715 * similar to mtd->_read(), returning a non-negative integer
1716 * representing max bitflips. In other cases, mtd->_read_oob() may
1717 * return -EUCLEAN. In all cases, perform similar logic to mtd_read().
1718 */
1719 if (unlikely(ret_code < 0))
1720 return ret_code;
1721 if (mtd->ecc_strength == 0)
1722 return 0; /* device lacks ecc */
1723 if (ops->stats)
1724 ops->stats->max_bitflips = ret_code;
1725 return ret_code >= mtd->bitflip_threshold ? -EUCLEAN : 0;
1726 }
1727 EXPORT_SYMBOL_GPL(mtd_read_oob);
1728
mtd_write_oob(struct mtd_info * mtd,loff_t to,struct mtd_oob_ops * ops)1729 int mtd_write_oob(struct mtd_info *mtd, loff_t to,
1730 struct mtd_oob_ops *ops)
1731 {
1732 struct mtd_info *master = mtd_get_master(mtd);
1733 int ret;
1734
1735 ops->retlen = ops->oobretlen = 0;
1736
1737 if (!(mtd->flags & MTD_WRITEABLE))
1738 return -EROFS;
1739
1740 ret = mtd_check_oob_ops(mtd, to, ops);
1741 if (ret)
1742 return ret;
1743
1744 ledtrig_mtd_activity();
1745
1746 /* Check the validity of a potential fallback on mtd->_write */
1747 if (!master->_write_oob && (!master->_write || ops->oobbuf))
1748 return -EOPNOTSUPP;
1749
1750 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
1751 return mtd_io_emulated_slc(mtd, to, false, ops);
1752
1753 return mtd_write_oob_std(mtd, to, ops);
1754 }
1755 EXPORT_SYMBOL_GPL(mtd_write_oob);
1756
1757 /**
1758 * mtd_ooblayout_ecc - Get the OOB region definition of a specific ECC section
1759 * @mtd: MTD device structure
1760 * @section: ECC section. Depending on the layout you may have all the ECC
1761 * bytes stored in a single contiguous section, or one section
1762 * per ECC chunk (and sometime several sections for a single ECC
1763 * ECC chunk)
1764 * @oobecc: OOB region struct filled with the appropriate ECC position
1765 * information
1766 *
1767 * This function returns ECC section information in the OOB area. If you want
1768 * to get all the ECC bytes information, then you should call
1769 * mtd_ooblayout_ecc(mtd, section++, oobecc) until it returns -ERANGE.
1770 *
1771 * Returns zero on success, a negative error code otherwise.
1772 */
mtd_ooblayout_ecc(struct mtd_info * mtd,int section,struct mtd_oob_region * oobecc)1773 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
1774 struct mtd_oob_region *oobecc)
1775 {
1776 struct mtd_info *master = mtd_get_master(mtd);
1777
1778 memset(oobecc, 0, sizeof(*oobecc));
1779
1780 if (!master || section < 0)
1781 return -EINVAL;
1782
1783 if (!master->ooblayout || !master->ooblayout->ecc)
1784 return -ENOTSUPP;
1785
1786 return master->ooblayout->ecc(master, section, oobecc);
1787 }
1788 EXPORT_SYMBOL_GPL(mtd_ooblayout_ecc);
1789
1790 /**
1791 * mtd_ooblayout_free - Get the OOB region definition of a specific free
1792 * section
1793 * @mtd: MTD device structure
1794 * @section: Free section you are interested in. Depending on the layout
1795 * you may have all the free bytes stored in a single contiguous
1796 * section, or one section per ECC chunk plus an extra section
1797 * for the remaining bytes (or other funky layout).
1798 * @oobfree: OOB region struct filled with the appropriate free position
1799 * information
1800 *
1801 * This function returns free bytes position in the OOB area. If you want
1802 * to get all the free bytes information, then you should call
1803 * mtd_ooblayout_free(mtd, section++, oobfree) until it returns -ERANGE.
1804 *
1805 * Returns zero on success, a negative error code otherwise.
1806 */
mtd_ooblayout_free(struct mtd_info * mtd,int section,struct mtd_oob_region * oobfree)1807 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
1808 struct mtd_oob_region *oobfree)
1809 {
1810 struct mtd_info *master = mtd_get_master(mtd);
1811
1812 memset(oobfree, 0, sizeof(*oobfree));
1813
1814 if (!master || section < 0)
1815 return -EINVAL;
1816
1817 if (!master->ooblayout || !master->ooblayout->free)
1818 return -ENOTSUPP;
1819
1820 return master->ooblayout->free(master, section, oobfree);
1821 }
1822 EXPORT_SYMBOL_GPL(mtd_ooblayout_free);
1823
1824 /**
1825 * mtd_ooblayout_find_region - Find the region attached to a specific byte
1826 * @mtd: mtd info structure
1827 * @byte: the byte we are searching for
1828 * @sectionp: pointer where the section id will be stored
1829 * @oobregion: used to retrieve the ECC position
1830 * @iter: iterator function. Should be either mtd_ooblayout_free or
1831 * mtd_ooblayout_ecc depending on the region type you're searching for
1832 *
1833 * This function returns the section id and oobregion information of a
1834 * specific byte. For example, say you want to know where the 4th ECC byte is
1835 * stored, you'll use:
1836 *
1837 * mtd_ooblayout_find_region(mtd, 3, §ion, &oobregion, mtd_ooblayout_ecc);
1838 *
1839 * Returns zero on success, a negative error code otherwise.
1840 */
mtd_ooblayout_find_region(struct mtd_info * mtd,int byte,int * sectionp,struct mtd_oob_region * oobregion,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1841 static int mtd_ooblayout_find_region(struct mtd_info *mtd, int byte,
1842 int *sectionp, struct mtd_oob_region *oobregion,
1843 int (*iter)(struct mtd_info *,
1844 int section,
1845 struct mtd_oob_region *oobregion))
1846 {
1847 int pos = 0, ret, section = 0;
1848
1849 memset(oobregion, 0, sizeof(*oobregion));
1850
1851 while (1) {
1852 ret = iter(mtd, section, oobregion);
1853 if (ret)
1854 return ret;
1855
1856 if (pos + oobregion->length > byte)
1857 break;
1858
1859 pos += oobregion->length;
1860 section++;
1861 }
1862
1863 /*
1864 * Adjust region info to make it start at the beginning at the
1865 * 'start' ECC byte.
1866 */
1867 oobregion->offset += byte - pos;
1868 oobregion->length -= byte - pos;
1869 *sectionp = section;
1870
1871 return 0;
1872 }
1873
1874 /**
1875 * mtd_ooblayout_find_eccregion - Find the ECC region attached to a specific
1876 * ECC byte
1877 * @mtd: mtd info structure
1878 * @eccbyte: the byte we are searching for
1879 * @section: pointer where the section id will be stored
1880 * @oobregion: OOB region information
1881 *
1882 * Works like mtd_ooblayout_find_region() except it searches for a specific ECC
1883 * byte.
1884 *
1885 * Returns zero on success, a negative error code otherwise.
1886 */
mtd_ooblayout_find_eccregion(struct mtd_info * mtd,int eccbyte,int * section,struct mtd_oob_region * oobregion)1887 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
1888 int *section,
1889 struct mtd_oob_region *oobregion)
1890 {
1891 return mtd_ooblayout_find_region(mtd, eccbyte, section, oobregion,
1892 mtd_ooblayout_ecc);
1893 }
1894 EXPORT_SYMBOL_GPL(mtd_ooblayout_find_eccregion);
1895
1896 /**
1897 * mtd_ooblayout_get_bytes - Extract OOB bytes from the oob buffer
1898 * @mtd: mtd info structure
1899 * @buf: destination buffer to store OOB bytes
1900 * @oobbuf: OOB buffer
1901 * @start: first byte to retrieve
1902 * @nbytes: number of bytes to retrieve
1903 * @iter: section iterator
1904 *
1905 * Extract bytes attached to a specific category (ECC or free)
1906 * from the OOB buffer and copy them into buf.
1907 *
1908 * Returns zero on success, a negative error code otherwise.
1909 */
mtd_ooblayout_get_bytes(struct mtd_info * mtd,u8 * buf,const u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1910 static int mtd_ooblayout_get_bytes(struct mtd_info *mtd, u8 *buf,
1911 const u8 *oobbuf, int start, int nbytes,
1912 int (*iter)(struct mtd_info *,
1913 int section,
1914 struct mtd_oob_region *oobregion))
1915 {
1916 struct mtd_oob_region oobregion;
1917 int section, ret;
1918
1919 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1920 &oobregion, iter);
1921
1922 while (!ret) {
1923 int cnt;
1924
1925 cnt = min_t(int, nbytes, oobregion.length);
1926 memcpy(buf, oobbuf + oobregion.offset, cnt);
1927 buf += cnt;
1928 nbytes -= cnt;
1929
1930 if (!nbytes)
1931 break;
1932
1933 ret = iter(mtd, ++section, &oobregion);
1934 }
1935
1936 return ret;
1937 }
1938
1939 /**
1940 * mtd_ooblayout_set_bytes - put OOB bytes into the oob buffer
1941 * @mtd: mtd info structure
1942 * @buf: source buffer to get OOB bytes from
1943 * @oobbuf: OOB buffer
1944 * @start: first OOB byte to set
1945 * @nbytes: number of OOB bytes to set
1946 * @iter: section iterator
1947 *
1948 * Fill the OOB buffer with data provided in buf. The category (ECC or free)
1949 * is selected by passing the appropriate iterator.
1950 *
1951 * Returns zero on success, a negative error code otherwise.
1952 */
mtd_ooblayout_set_bytes(struct mtd_info * mtd,const u8 * buf,u8 * oobbuf,int start,int nbytes,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1953 static int mtd_ooblayout_set_bytes(struct mtd_info *mtd, const u8 *buf,
1954 u8 *oobbuf, int start, int nbytes,
1955 int (*iter)(struct mtd_info *,
1956 int section,
1957 struct mtd_oob_region *oobregion))
1958 {
1959 struct mtd_oob_region oobregion;
1960 int section, ret;
1961
1962 ret = mtd_ooblayout_find_region(mtd, start, §ion,
1963 &oobregion, iter);
1964
1965 while (!ret) {
1966 int cnt;
1967
1968 cnt = min_t(int, nbytes, oobregion.length);
1969 memcpy(oobbuf + oobregion.offset, buf, cnt);
1970 buf += cnt;
1971 nbytes -= cnt;
1972
1973 if (!nbytes)
1974 break;
1975
1976 ret = iter(mtd, ++section, &oobregion);
1977 }
1978
1979 return ret;
1980 }
1981
1982 /**
1983 * mtd_ooblayout_count_bytes - count the number of bytes in a OOB category
1984 * @mtd: mtd info structure
1985 * @iter: category iterator
1986 *
1987 * Count the number of bytes in a given category.
1988 *
1989 * Returns a positive value on success, a negative error code otherwise.
1990 */
mtd_ooblayout_count_bytes(struct mtd_info * mtd,int (* iter)(struct mtd_info *,int section,struct mtd_oob_region * oobregion))1991 static int mtd_ooblayout_count_bytes(struct mtd_info *mtd,
1992 int (*iter)(struct mtd_info *,
1993 int section,
1994 struct mtd_oob_region *oobregion))
1995 {
1996 struct mtd_oob_region oobregion;
1997 int section = 0, ret, nbytes = 0;
1998
1999 while (1) {
2000 ret = iter(mtd, section++, &oobregion);
2001 if (ret) {
2002 if (ret == -ERANGE)
2003 ret = nbytes;
2004 break;
2005 }
2006
2007 nbytes += oobregion.length;
2008 }
2009
2010 return ret;
2011 }
2012
2013 /**
2014 * mtd_ooblayout_get_eccbytes - extract ECC bytes from the oob buffer
2015 * @mtd: mtd info structure
2016 * @eccbuf: destination buffer to store ECC bytes
2017 * @oobbuf: OOB buffer
2018 * @start: first ECC byte to retrieve
2019 * @nbytes: number of ECC bytes to retrieve
2020 *
2021 * Works like mtd_ooblayout_get_bytes(), except it acts on ECC bytes.
2022 *
2023 * Returns zero on success, a negative error code otherwise.
2024 */
mtd_ooblayout_get_eccbytes(struct mtd_info * mtd,u8 * eccbuf,const u8 * oobbuf,int start,int nbytes)2025 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
2026 const u8 *oobbuf, int start, int nbytes)
2027 {
2028 return mtd_ooblayout_get_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2029 mtd_ooblayout_ecc);
2030 }
2031 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_eccbytes);
2032
2033 /**
2034 * mtd_ooblayout_set_eccbytes - set ECC bytes into the oob buffer
2035 * @mtd: mtd info structure
2036 * @eccbuf: source buffer to get ECC bytes from
2037 * @oobbuf: OOB buffer
2038 * @start: first ECC byte to set
2039 * @nbytes: number of ECC bytes to set
2040 *
2041 * Works like mtd_ooblayout_set_bytes(), except it acts on ECC bytes.
2042 *
2043 * Returns zero on success, a negative error code otherwise.
2044 */
mtd_ooblayout_set_eccbytes(struct mtd_info * mtd,const u8 * eccbuf,u8 * oobbuf,int start,int nbytes)2045 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
2046 u8 *oobbuf, int start, int nbytes)
2047 {
2048 return mtd_ooblayout_set_bytes(mtd, eccbuf, oobbuf, start, nbytes,
2049 mtd_ooblayout_ecc);
2050 }
2051 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_eccbytes);
2052
2053 /**
2054 * mtd_ooblayout_get_databytes - extract data bytes from the oob buffer
2055 * @mtd: mtd info structure
2056 * @databuf: destination buffer to store ECC bytes
2057 * @oobbuf: OOB buffer
2058 * @start: first ECC byte to retrieve
2059 * @nbytes: number of ECC bytes to retrieve
2060 *
2061 * Works like mtd_ooblayout_get_bytes(), except it acts on free bytes.
2062 *
2063 * Returns zero on success, a negative error code otherwise.
2064 */
mtd_ooblayout_get_databytes(struct mtd_info * mtd,u8 * databuf,const u8 * oobbuf,int start,int nbytes)2065 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
2066 const u8 *oobbuf, int start, int nbytes)
2067 {
2068 return mtd_ooblayout_get_bytes(mtd, databuf, oobbuf, start, nbytes,
2069 mtd_ooblayout_free);
2070 }
2071 EXPORT_SYMBOL_GPL(mtd_ooblayout_get_databytes);
2072
2073 /**
2074 * mtd_ooblayout_set_databytes - set data bytes into the oob buffer
2075 * @mtd: mtd info structure
2076 * @databuf: source buffer to get data bytes from
2077 * @oobbuf: OOB buffer
2078 * @start: first ECC byte to set
2079 * @nbytes: number of ECC bytes to set
2080 *
2081 * Works like mtd_ooblayout_set_bytes(), except it acts on free bytes.
2082 *
2083 * Returns zero on success, a negative error code otherwise.
2084 */
mtd_ooblayout_set_databytes(struct mtd_info * mtd,const u8 * databuf,u8 * oobbuf,int start,int nbytes)2085 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
2086 u8 *oobbuf, int start, int nbytes)
2087 {
2088 return mtd_ooblayout_set_bytes(mtd, databuf, oobbuf, start, nbytes,
2089 mtd_ooblayout_free);
2090 }
2091 EXPORT_SYMBOL_GPL(mtd_ooblayout_set_databytes);
2092
2093 /**
2094 * mtd_ooblayout_count_freebytes - count the number of free bytes in OOB
2095 * @mtd: mtd info structure
2096 *
2097 * Works like mtd_ooblayout_count_bytes(), except it count free bytes.
2098 *
2099 * Returns zero on success, a negative error code otherwise.
2100 */
mtd_ooblayout_count_freebytes(struct mtd_info * mtd)2101 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd)
2102 {
2103 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_free);
2104 }
2105 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_freebytes);
2106
2107 /**
2108 * mtd_ooblayout_count_eccbytes - count the number of ECC bytes in OOB
2109 * @mtd: mtd info structure
2110 *
2111 * Works like mtd_ooblayout_count_bytes(), except it count ECC bytes.
2112 *
2113 * Returns zero on success, a negative error code otherwise.
2114 */
mtd_ooblayout_count_eccbytes(struct mtd_info * mtd)2115 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd)
2116 {
2117 return mtd_ooblayout_count_bytes(mtd, mtd_ooblayout_ecc);
2118 }
2119 EXPORT_SYMBOL_GPL(mtd_ooblayout_count_eccbytes);
2120
2121 /*
2122 * Method to access the protection register area, present in some flash
2123 * devices. The user data is one time programmable but the factory data is read
2124 * only.
2125 */
mtd_get_fact_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)2126 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2127 struct otp_info *buf)
2128 {
2129 struct mtd_info *master = mtd_get_master(mtd);
2130
2131 if (!master->_get_fact_prot_info)
2132 return -EOPNOTSUPP;
2133 if (!len)
2134 return 0;
2135 return master->_get_fact_prot_info(master, len, retlen, buf);
2136 }
2137 EXPORT_SYMBOL_GPL(mtd_get_fact_prot_info);
2138
mtd_read_fact_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2139 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2140 size_t *retlen, u_char *buf)
2141 {
2142 struct mtd_info *master = mtd_get_master(mtd);
2143
2144 *retlen = 0;
2145 if (!master->_read_fact_prot_reg)
2146 return -EOPNOTSUPP;
2147 if (!len)
2148 return 0;
2149 return master->_read_fact_prot_reg(master, from, len, retlen, buf);
2150 }
2151 EXPORT_SYMBOL_GPL(mtd_read_fact_prot_reg);
2152
mtd_get_user_prot_info(struct mtd_info * mtd,size_t len,size_t * retlen,struct otp_info * buf)2153 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
2154 struct otp_info *buf)
2155 {
2156 struct mtd_info *master = mtd_get_master(mtd);
2157
2158 if (!master->_get_user_prot_info)
2159 return -EOPNOTSUPP;
2160 if (!len)
2161 return 0;
2162 return master->_get_user_prot_info(master, len, retlen, buf);
2163 }
2164 EXPORT_SYMBOL_GPL(mtd_get_user_prot_info);
2165
mtd_read_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len,size_t * retlen,u_char * buf)2166 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
2167 size_t *retlen, u_char *buf)
2168 {
2169 struct mtd_info *master = mtd_get_master(mtd);
2170
2171 *retlen = 0;
2172 if (!master->_read_user_prot_reg)
2173 return -EOPNOTSUPP;
2174 if (!len)
2175 return 0;
2176 return master->_read_user_prot_reg(master, from, len, retlen, buf);
2177 }
2178 EXPORT_SYMBOL_GPL(mtd_read_user_prot_reg);
2179
mtd_write_user_prot_reg(struct mtd_info * mtd,loff_t to,size_t len,size_t * retlen,const u_char * buf)2180 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
2181 size_t *retlen, const u_char *buf)
2182 {
2183 struct mtd_info *master = mtd_get_master(mtd);
2184 int ret;
2185
2186 *retlen = 0;
2187 if (!master->_write_user_prot_reg)
2188 return -EOPNOTSUPP;
2189 if (!len)
2190 return 0;
2191 ret = master->_write_user_prot_reg(master, to, len, retlen, buf);
2192 if (ret)
2193 return ret;
2194
2195 /*
2196 * If no data could be written at all, we are out of memory and
2197 * must return -ENOSPC.
2198 */
2199 return (*retlen) ? 0 : -ENOSPC;
2200 }
2201 EXPORT_SYMBOL_GPL(mtd_write_user_prot_reg);
2202
mtd_lock_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)2203 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2204 {
2205 struct mtd_info *master = mtd_get_master(mtd);
2206
2207 if (!master->_lock_user_prot_reg)
2208 return -EOPNOTSUPP;
2209 if (!len)
2210 return 0;
2211 return master->_lock_user_prot_reg(master, from, len);
2212 }
2213 EXPORT_SYMBOL_GPL(mtd_lock_user_prot_reg);
2214
mtd_erase_user_prot_reg(struct mtd_info * mtd,loff_t from,size_t len)2215 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len)
2216 {
2217 struct mtd_info *master = mtd_get_master(mtd);
2218
2219 if (!master->_erase_user_prot_reg)
2220 return -EOPNOTSUPP;
2221 if (!len)
2222 return 0;
2223 return master->_erase_user_prot_reg(master, from, len);
2224 }
2225 EXPORT_SYMBOL_GPL(mtd_erase_user_prot_reg);
2226
2227 /* Chip-supported device locking */
mtd_lock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2228 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2229 {
2230 struct mtd_info *master = mtd_get_master(mtd);
2231
2232 if (!master->_lock)
2233 return -EOPNOTSUPP;
2234 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2235 return -EINVAL;
2236 if (!len)
2237 return 0;
2238
2239 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2240 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2241 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2242 }
2243
2244 return master->_lock(master, mtd_get_master_ofs(mtd, ofs), len);
2245 }
2246 EXPORT_SYMBOL_GPL(mtd_lock);
2247
mtd_unlock(struct mtd_info * mtd,loff_t ofs,uint64_t len)2248 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2249 {
2250 struct mtd_info *master = mtd_get_master(mtd);
2251
2252 if (!master->_unlock)
2253 return -EOPNOTSUPP;
2254 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2255 return -EINVAL;
2256 if (!len)
2257 return 0;
2258
2259 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2260 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2261 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2262 }
2263
2264 return master->_unlock(master, mtd_get_master_ofs(mtd, ofs), len);
2265 }
2266 EXPORT_SYMBOL_GPL(mtd_unlock);
2267
mtd_is_locked(struct mtd_info * mtd,loff_t ofs,uint64_t len)2268 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
2269 {
2270 struct mtd_info *master = mtd_get_master(mtd);
2271
2272 if (!master->_is_locked)
2273 return -EOPNOTSUPP;
2274 if (ofs < 0 || ofs >= mtd->size || len > mtd->size - ofs)
2275 return -EINVAL;
2276 if (!len)
2277 return 0;
2278
2279 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION) {
2280 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2281 len = (u64)mtd_div_by_eb(len, mtd) * master->erasesize;
2282 }
2283
2284 return master->_is_locked(master, mtd_get_master_ofs(mtd, ofs), len);
2285 }
2286 EXPORT_SYMBOL_GPL(mtd_is_locked);
2287
mtd_block_isreserved(struct mtd_info * mtd,loff_t ofs)2288 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs)
2289 {
2290 struct mtd_info *master = mtd_get_master(mtd);
2291
2292 if (ofs < 0 || ofs >= mtd->size)
2293 return -EINVAL;
2294 if (!master->_block_isreserved)
2295 return 0;
2296
2297 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2298 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2299
2300 return master->_block_isreserved(master, mtd_get_master_ofs(mtd, ofs));
2301 }
2302 EXPORT_SYMBOL_GPL(mtd_block_isreserved);
2303
mtd_block_isbad(struct mtd_info * mtd,loff_t ofs)2304 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs)
2305 {
2306 struct mtd_info *master = mtd_get_master(mtd);
2307
2308 if (ofs < 0 || ofs >= mtd->size)
2309 return -EINVAL;
2310 if (!master->_block_isbad)
2311 return 0;
2312
2313 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2314 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2315
2316 return master->_block_isbad(master, mtd_get_master_ofs(mtd, ofs));
2317 }
2318 EXPORT_SYMBOL_GPL(mtd_block_isbad);
2319
mtd_block_markbad(struct mtd_info * mtd,loff_t ofs)2320 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs)
2321 {
2322 struct mtd_info *master = mtd_get_master(mtd);
2323 int ret;
2324
2325 if (!master->_block_markbad)
2326 return -EOPNOTSUPP;
2327 if (ofs < 0 || ofs >= mtd->size)
2328 return -EINVAL;
2329 if (!(mtd->flags & MTD_WRITEABLE))
2330 return -EROFS;
2331
2332 if (mtd->flags & MTD_SLC_ON_MLC_EMULATION)
2333 ofs = (loff_t)mtd_div_by_eb(ofs, mtd) * master->erasesize;
2334
2335 ret = master->_block_markbad(master, mtd_get_master_ofs(mtd, ofs));
2336 if (ret)
2337 return ret;
2338
2339 while (mtd->parent) {
2340 mtd->ecc_stats.badblocks++;
2341 mtd = mtd->parent;
2342 }
2343
2344 return 0;
2345 }
2346 EXPORT_SYMBOL_GPL(mtd_block_markbad);
2347
2348 /*
2349 * default_mtd_writev - the default writev method
2350 * @mtd: mtd device description object pointer
2351 * @vecs: the vectors to write
2352 * @count: count of vectors in @vecs
2353 * @to: the MTD device offset to write to
2354 * @retlen: on exit contains the count of bytes written to the MTD device.
2355 *
2356 * This function returns zero in case of success and a negative error code in
2357 * case of failure.
2358 */
default_mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)2359 static int default_mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2360 unsigned long count, loff_t to, size_t *retlen)
2361 {
2362 unsigned long i;
2363 size_t totlen = 0, thislen;
2364 int ret = 0;
2365
2366 for (i = 0; i < count; i++) {
2367 if (!vecs[i].iov_len)
2368 continue;
2369 ret = mtd_write(mtd, to, vecs[i].iov_len, &thislen,
2370 vecs[i].iov_base);
2371 totlen += thislen;
2372 if (ret || thislen != vecs[i].iov_len)
2373 break;
2374 to += vecs[i].iov_len;
2375 }
2376 *retlen = totlen;
2377 return ret;
2378 }
2379
2380 /*
2381 * mtd_writev - the vector-based MTD write method
2382 * @mtd: mtd device description object pointer
2383 * @vecs: the vectors to write
2384 * @count: count of vectors in @vecs
2385 * @to: the MTD device offset to write to
2386 * @retlen: on exit contains the count of bytes written to the MTD device.
2387 *
2388 * This function returns zero in case of success and a negative error code in
2389 * case of failure.
2390 */
mtd_writev(struct mtd_info * mtd,const struct kvec * vecs,unsigned long count,loff_t to,size_t * retlen)2391 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
2392 unsigned long count, loff_t to, size_t *retlen)
2393 {
2394 struct mtd_info *master = mtd_get_master(mtd);
2395
2396 *retlen = 0;
2397 if (!(mtd->flags & MTD_WRITEABLE))
2398 return -EROFS;
2399
2400 if (!master->_writev)
2401 return default_mtd_writev(mtd, vecs, count, to, retlen);
2402
2403 return master->_writev(master, vecs, count,
2404 mtd_get_master_ofs(mtd, to), retlen);
2405 }
2406 EXPORT_SYMBOL_GPL(mtd_writev);
2407
2408 /**
2409 * mtd_kmalloc_up_to - allocate a contiguous buffer up to the specified size
2410 * @mtd: mtd device description object pointer
2411 * @size: a pointer to the ideal or maximum size of the allocation, points
2412 * to the actual allocation size on success.
2413 *
2414 * This routine attempts to allocate a contiguous kernel buffer up to
2415 * the specified size, backing off the size of the request exponentially
2416 * until the request succeeds or until the allocation size falls below
2417 * the system page size. This attempts to make sure it does not adversely
2418 * impact system performance, so when allocating more than one page, we
2419 * ask the memory allocator to avoid re-trying, swapping, writing back
2420 * or performing I/O.
2421 *
2422 * Note, this function also makes sure that the allocated buffer is aligned to
2423 * the MTD device's min. I/O unit, i.e. the "mtd->writesize" value.
2424 *
2425 * This is called, for example by mtd_{read,write} and jffs2_scan_medium,
2426 * to handle smaller (i.e. degraded) buffer allocations under low- or
2427 * fragmented-memory situations where such reduced allocations, from a
2428 * requested ideal, are allowed.
2429 *
2430 * Returns a pointer to the allocated buffer on success; otherwise, NULL.
2431 */
mtd_kmalloc_up_to(const struct mtd_info * mtd,size_t * size)2432 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size)
2433 {
2434 gfp_t flags = __GFP_NOWARN | __GFP_DIRECT_RECLAIM | __GFP_NORETRY;
2435 size_t min_alloc = max_t(size_t, mtd->writesize, PAGE_SIZE);
2436 void *kbuf;
2437
2438 *size = min_t(size_t, *size, KMALLOC_MAX_SIZE);
2439
2440 while (*size > min_alloc) {
2441 kbuf = kmalloc(*size, flags);
2442 if (kbuf)
2443 return kbuf;
2444
2445 *size >>= 1;
2446 *size = ALIGN(*size, mtd->writesize);
2447 }
2448
2449 /*
2450 * For the last resort allocation allow 'kmalloc()' to do all sorts of
2451 * things (write-back, dropping caches, etc) by using GFP_KERNEL.
2452 */
2453 return kmalloc(*size, GFP_KERNEL);
2454 }
2455 EXPORT_SYMBOL_GPL(mtd_kmalloc_up_to);
2456
2457 #ifdef CONFIG_PROC_FS
2458
2459 /*====================================================================*/
2460 /* Support for /proc/mtd */
2461
mtd_proc_show(struct seq_file * m,void * v)2462 static int mtd_proc_show(struct seq_file *m, void *v)
2463 {
2464 struct mtd_info *mtd;
2465
2466 seq_puts(m, "dev: size erasesize name\n");
2467 mutex_lock(&mtd_table_mutex);
2468 mtd_for_each_device(mtd) {
2469 seq_printf(m, "mtd%d: %8.8llx %8.8x \"%s\"\n",
2470 mtd->index, (unsigned long long)mtd->size,
2471 mtd->erasesize, mtd->name);
2472 }
2473 mutex_unlock(&mtd_table_mutex);
2474 return 0;
2475 }
2476 #endif /* CONFIG_PROC_FS */
2477
2478 /*====================================================================*/
2479 /* Init code */
2480
mtd_bdi_init(const char * name)2481 static struct backing_dev_info * __init mtd_bdi_init(const char *name)
2482 {
2483 struct backing_dev_info *bdi;
2484 int ret;
2485
2486 bdi = bdi_alloc(NUMA_NO_NODE);
2487 if (!bdi)
2488 return ERR_PTR(-ENOMEM);
2489 bdi->ra_pages = 0;
2490 bdi->io_pages = 0;
2491
2492 /*
2493 * We put '-0' suffix to the name to get the same name format as we
2494 * used to get. Since this is called only once, we get a unique name.
2495 */
2496 ret = bdi_register(bdi, "%.28s-0", name);
2497 if (ret)
2498 bdi_put(bdi);
2499
2500 return ret ? ERR_PTR(ret) : bdi;
2501 }
2502
2503 static struct proc_dir_entry *proc_mtd;
2504
init_mtd(void)2505 static int __init init_mtd(void)
2506 {
2507 int ret;
2508
2509 ret = class_register(&mtd_class);
2510 if (ret)
2511 goto err_reg;
2512
2513 mtd_bdi = mtd_bdi_init("mtd");
2514 if (IS_ERR(mtd_bdi)) {
2515 ret = PTR_ERR(mtd_bdi);
2516 goto err_bdi;
2517 }
2518
2519 proc_mtd = proc_create_single("mtd", 0, NULL, mtd_proc_show);
2520
2521 ret = init_mtdchar();
2522 if (ret)
2523 goto out_procfs;
2524
2525 dfs_dir_mtd = debugfs_create_dir("mtd", NULL);
2526 debugfs_create_bool("expert_analysis_mode", 0600, dfs_dir_mtd,
2527 &mtd_expert_analysis_mode);
2528
2529 return 0;
2530
2531 out_procfs:
2532 if (proc_mtd)
2533 remove_proc_entry("mtd", NULL);
2534 bdi_unregister(mtd_bdi);
2535 bdi_put(mtd_bdi);
2536 err_bdi:
2537 class_unregister(&mtd_class);
2538 err_reg:
2539 pr_err("Error registering mtd class or bdi: %d\n", ret);
2540 return ret;
2541 }
2542
cleanup_mtd(void)2543 static void __exit cleanup_mtd(void)
2544 {
2545 debugfs_remove_recursive(dfs_dir_mtd);
2546 cleanup_mtdchar();
2547 if (proc_mtd)
2548 remove_proc_entry("mtd", NULL);
2549 class_unregister(&mtd_class);
2550 bdi_unregister(mtd_bdi);
2551 bdi_put(mtd_bdi);
2552 idr_destroy(&mtd_idr);
2553 }
2554
2555 module_init(init_mtd);
2556 module_exit(cleanup_mtd);
2557
2558 MODULE_LICENSE("GPL");
2559 MODULE_AUTHOR("David Woodhouse <dwmw2@infradead.org>");
2560 MODULE_DESCRIPTION("Core MTD registration and access routines");
2561