1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al.
4 */
5
6 #ifndef __MTD_MTD_H__
7 #define __MTD_MTD_H__
8
9 #include <linux/types.h>
10 #include <linux/uio.h>
11 #include <linux/list.h>
12 #include <linux/notifier.h>
13 #include <linux/device.h>
14 #include <linux/of.h>
15 #include <linux/nvmem-provider.h>
16
17 #include <mtd/mtd-abi.h>
18
19 #include <asm/div64.h>
20
21 #define MTD_FAIL_ADDR_UNKNOWN -1LL
22
23 struct mtd_info;
24
25 /*
26 * If the erase fails, fail_addr might indicate exactly which block failed. If
27 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level
28 * or was not specific to any particular block.
29 */
30 struct erase_info {
31 uint64_t addr;
32 uint64_t len;
33 uint64_t fail_addr;
34 };
35
36 struct mtd_erase_region_info {
37 uint64_t offset; /* At which this region starts, from the beginning of the MTD */
38 uint32_t erasesize; /* For this region */
39 uint32_t numblocks; /* Number of blocks of erasesize in this region */
40 unsigned long *lockmap; /* If keeping bitmap of locks */
41 };
42
43 struct mtd_req_stats {
44 unsigned int uncorrectable_errors;
45 unsigned int corrected_bitflips;
46 unsigned int max_bitflips;
47 };
48
49 /**
50 * struct mtd_oob_ops - oob operation operands
51 * @mode: operation mode
52 *
53 * @len: number of data bytes to write/read
54 *
55 * @retlen: number of data bytes written/read
56 *
57 * @ooblen: number of oob bytes to write/read
58 * @oobretlen: number of oob bytes written/read
59 * @ooboffs: offset of oob data in the oob area (only relevant when
60 * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW)
61 * @datbuf: data buffer - if NULL only oob data are read/written
62 * @oobbuf: oob data buffer
63 *
64 * Note, some MTD drivers do not allow you to write more than one OOB area at
65 * one go. If you try to do that on such an MTD device, -EINVAL will be
66 * returned. If you want to make your implementation portable on all kind of MTD
67 * devices you should split the write request into several sub-requests when the
68 * request crosses a page boundary.
69 */
70 struct mtd_oob_ops {
71 unsigned int mode;
72 size_t len;
73 size_t retlen;
74 size_t ooblen;
75 size_t oobretlen;
76 uint32_t ooboffs;
77 uint8_t *datbuf;
78 uint8_t *oobbuf;
79 struct mtd_req_stats *stats;
80 };
81
82 /**
83 * struct mtd_oob_region - oob region definition
84 * @offset: region offset
85 * @length: region length
86 *
87 * This structure describes a region of the OOB area, and is used
88 * to retrieve ECC or free bytes sections.
89 * Each section is defined by an offset within the OOB area and a
90 * length.
91 */
92 struct mtd_oob_region {
93 u32 offset;
94 u32 length;
95 };
96
97 /*
98 * struct mtd_ooblayout_ops - NAND OOB layout operations
99 * @ecc: function returning an ECC region in the OOB area.
100 * Should return -ERANGE if %section exceeds the total number of
101 * ECC sections.
102 * @free: function returning a free region in the OOB area.
103 * Should return -ERANGE if %section exceeds the total number of
104 * free sections.
105 */
106 struct mtd_ooblayout_ops {
107 int (*ecc)(struct mtd_info *mtd, int section,
108 struct mtd_oob_region *oobecc);
109 int (*free)(struct mtd_info *mtd, int section,
110 struct mtd_oob_region *oobfree);
111 };
112
113 /**
114 * struct mtd_pairing_info - page pairing information
115 *
116 * @pair: pair id
117 * @group: group id
118 *
119 * The term "pair" is used here, even though TLC NANDs might group pages by 3
120 * (3 bits in a single cell). A pair should regroup all pages that are sharing
121 * the same cell. Pairs are then indexed in ascending order.
122 *
123 * @group is defining the position of a page in a given pair. It can also be
124 * seen as the bit position in the cell: page attached to bit 0 belongs to
125 * group 0, page attached to bit 1 belongs to group 1, etc.
126 *
127 * Example:
128 * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme:
129 *
130 * group-0 group-1
131 *
132 * pair-0 page-0 page-4
133 * pair-1 page-1 page-5
134 * pair-2 page-2 page-8
135 * ...
136 * pair-127 page-251 page-255
137 *
138 *
139 * Note that the "group" and "pair" terms were extracted from Samsung and
140 * Hynix datasheets, and might be referenced under other names in other
141 * datasheets (Micron is describing this concept as "shared pages").
142 */
143 struct mtd_pairing_info {
144 int pair;
145 int group;
146 };
147
148 /**
149 * struct mtd_pairing_scheme - page pairing scheme description
150 *
151 * @ngroups: number of groups. Should be related to the number of bits
152 * per cell.
153 * @get_info: converts a write-unit (page number within an erase block) into
154 * mtd_pairing information (pair + group). This function should
155 * fill the info parameter based on the wunit index or return
156 * -EINVAL if the wunit parameter is invalid.
157 * @get_wunit: converts pairing information into a write-unit (page) number.
158 * This function should return the wunit index pointed by the
159 * pairing information described in the info argument. It should
160 * return -EINVAL, if there's no wunit corresponding to the
161 * passed pairing information.
162 *
163 * See mtd_pairing_info documentation for a detailed explanation of the
164 * pair and group concepts.
165 *
166 * The mtd_pairing_scheme structure provides a generic solution to represent
167 * NAND page pairing scheme. Instead of exposing two big tables to do the
168 * write-unit <-> (pair + group) conversions, we ask the MTD drivers to
169 * implement the ->get_info() and ->get_wunit() functions.
170 *
171 * MTD users will then be able to query these information by using the
172 * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers.
173 *
174 * @ngroups is here to help MTD users iterating over all the pages in a
175 * given pair. This value can be retrieved by MTD users using the
176 * mtd_pairing_groups() helper.
177 *
178 * Examples are given in the mtd_pairing_info_to_wunit() and
179 * mtd_wunit_to_pairing_info() documentation.
180 */
181 struct mtd_pairing_scheme {
182 int ngroups;
183 int (*get_info)(struct mtd_info *mtd, int wunit,
184 struct mtd_pairing_info *info);
185 int (*get_wunit)(struct mtd_info *mtd,
186 const struct mtd_pairing_info *info);
187 };
188
189 struct module; /* only needed for owner field in mtd_info */
190
191 /**
192 * struct mtd_debug_info - debugging information for an MTD device.
193 *
194 * @dfs_dir: direntry object of the MTD device debugfs directory
195 */
196 struct mtd_debug_info {
197 struct dentry *dfs_dir;
198 };
199
200 /**
201 * struct mtd_part - MTD partition specific fields
202 *
203 * @node: list node used to add an MTD partition to the parent partition list
204 * @offset: offset of the partition relatively to the parent offset
205 * @size: partition size. Should be equal to mtd->size unless
206 * MTD_SLC_ON_MLC_EMULATION is set
207 * @flags: original flags (before the mtdpart logic decided to tweak them based
208 * on flash constraints, like eraseblock/pagesize alignment)
209 *
210 * This struct is embedded in mtd_info and contains partition-specific
211 * properties/fields.
212 */
213 struct mtd_part {
214 struct list_head node;
215 u64 offset;
216 u64 size;
217 u32 flags;
218 };
219
220 /**
221 * struct mtd_master - MTD master specific fields
222 *
223 * @partitions_lock: lock protecting accesses to the partition list. Protects
224 * not only the master partition list, but also all
225 * sub-partitions.
226 * @suspended: et to 1 when the device is suspended, 0 otherwise
227 *
228 * This struct is embedded in mtd_info and contains master-specific
229 * properties/fields. The master is the root MTD device from the MTD partition
230 * point of view.
231 */
232 struct mtd_master {
233 struct mutex partitions_lock;
234 struct mutex chrdev_lock;
235 unsigned int suspended : 1;
236 };
237
238 struct mtd_info {
239 u_char type;
240 uint32_t flags;
241 uint64_t size; // Total size of the MTD
242
243 /* "Major" erase size for the device. Naïve users may take this
244 * to be the only erase size available, or may use the more detailed
245 * information below if they desire
246 */
247 uint32_t erasesize;
248 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even
249 * though individual bits can be cleared), in case of NAND flash it is
250 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR
251 * it is of ECC block size, etc. It is illegal to have writesize = 0.
252 * Any driver registering a struct mtd_info must ensure a writesize of
253 * 1 or larger.
254 */
255 uint32_t writesize;
256
257 /*
258 * Size of the write buffer used by the MTD. MTD devices having a write
259 * buffer can write multiple writesize chunks at a time. E.g. while
260 * writing 4 * writesize bytes to a device with 2 * writesize bytes
261 * buffer the MTD driver can (but doesn't have to) do 2 writesize
262 * operations, but not 4. Currently, all NANDs have writebufsize
263 * equivalent to writesize (NAND page size). Some NOR flashes do have
264 * writebufsize greater than writesize.
265 */
266 uint32_t writebufsize;
267
268 uint32_t oobsize; // Amount of OOB data per block (e.g. 16)
269 uint32_t oobavail; // Available OOB bytes per block
270
271 /*
272 * If erasesize is a power of 2 then the shift is stored in
273 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize.
274 */
275 unsigned int erasesize_shift;
276 unsigned int writesize_shift;
277 /* Masks based on erasesize_shift and writesize_shift */
278 unsigned int erasesize_mask;
279 unsigned int writesize_mask;
280
281 /*
282 * read ops return -EUCLEAN if max number of bitflips corrected on any
283 * one region comprising an ecc step equals or exceeds this value.
284 * Settable by driver, else defaults to ecc_strength. User can override
285 * in sysfs. N.B. The meaning of the -EUCLEAN return code has changed;
286 * see Documentation/ABI/testing/sysfs-class-mtd for more detail.
287 */
288 unsigned int bitflip_threshold;
289
290 /* Kernel-only stuff starts here. */
291 const char *name;
292 int index;
293
294 /* OOB layout description */
295 const struct mtd_ooblayout_ops *ooblayout;
296
297 /* NAND pairing scheme, only provided for MLC/TLC NANDs */
298 const struct mtd_pairing_scheme *pairing;
299
300 /* the ecc step size. */
301 unsigned int ecc_step_size;
302
303 /* max number of correctible bit errors per ecc step */
304 unsigned int ecc_strength;
305
306 /* Data for variable erase regions. If numeraseregions is zero,
307 * it means that the whole device has erasesize as given above.
308 */
309 int numeraseregions;
310 struct mtd_erase_region_info *eraseregions;
311
312 /*
313 * Do not call via these pointers, use corresponding mtd_*()
314 * wrappers instead.
315 */
316 int (*_erase) (struct mtd_info *mtd, struct erase_info *instr);
317 int (*_point) (struct mtd_info *mtd, loff_t from, size_t len,
318 size_t *retlen, void **virt, resource_size_t *phys);
319 int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len);
320 int (*_read) (struct mtd_info *mtd, loff_t from, size_t len,
321 size_t *retlen, u_char *buf);
322 int (*_write) (struct mtd_info *mtd, loff_t to, size_t len,
323 size_t *retlen, const u_char *buf);
324 int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len,
325 size_t *retlen, const u_char *buf);
326 int (*_read_oob) (struct mtd_info *mtd, loff_t from,
327 struct mtd_oob_ops *ops);
328 int (*_write_oob) (struct mtd_info *mtd, loff_t to,
329 struct mtd_oob_ops *ops);
330 int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len,
331 size_t *retlen, struct otp_info *buf);
332 int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from,
333 size_t len, size_t *retlen, u_char *buf);
334 int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len,
335 size_t *retlen, struct otp_info *buf);
336 int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from,
337 size_t len, size_t *retlen, u_char *buf);
338 int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to,
339 size_t len, size_t *retlen,
340 const u_char *buf);
341 int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from,
342 size_t len);
343 int (*_erase_user_prot_reg) (struct mtd_info *mtd, loff_t from,
344 size_t len);
345 int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs,
346 unsigned long count, loff_t to, size_t *retlen);
347 void (*_sync) (struct mtd_info *mtd);
348 int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
349 int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
350 int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
351 int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs);
352 int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs);
353 int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs);
354 int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len);
355 int (*_suspend) (struct mtd_info *mtd);
356 void (*_resume) (struct mtd_info *mtd);
357 void (*_reboot) (struct mtd_info *mtd);
358 /*
359 * If the driver is something smart, like UBI, it may need to maintain
360 * its own reference counting. The below functions are only for driver.
361 */
362 int (*_get_device) (struct mtd_info *mtd);
363 void (*_put_device) (struct mtd_info *mtd);
364
365 /*
366 * flag indicates a panic write, low level drivers can take appropriate
367 * action if required to ensure writes go through
368 */
369 bool oops_panic_write;
370
371 struct notifier_block reboot_notifier; /* default mode before reboot */
372
373 /* ECC status information */
374 struct mtd_ecc_stats ecc_stats;
375 /* Subpage shift (NAND) */
376 int subpage_sft;
377
378 void *priv;
379
380 struct module *owner;
381 struct device dev;
382 int usecount;
383 struct mtd_debug_info dbg;
384 struct nvmem_device *nvmem;
385 struct nvmem_device *otp_user_nvmem;
386 struct nvmem_device *otp_factory_nvmem;
387
388 /*
389 * Parent device from the MTD partition point of view.
390 *
391 * MTD masters do not have any parent, MTD partitions do. The parent
392 * MTD device can itself be a partition.
393 */
394 struct mtd_info *parent;
395
396 /* List of partitions attached to this MTD device */
397 struct list_head partitions;
398
399 struct mtd_part part;
400 struct mtd_master master;
401 };
402
mtd_get_master(struct mtd_info * mtd)403 static inline struct mtd_info *mtd_get_master(struct mtd_info *mtd)
404 {
405 while (mtd->parent)
406 mtd = mtd->parent;
407
408 return mtd;
409 }
410
mtd_get_master_ofs(struct mtd_info * mtd,u64 ofs)411 static inline u64 mtd_get_master_ofs(struct mtd_info *mtd, u64 ofs)
412 {
413 while (mtd->parent) {
414 ofs += mtd->part.offset;
415 mtd = mtd->parent;
416 }
417
418 return ofs;
419 }
420
mtd_is_partition(const struct mtd_info * mtd)421 static inline bool mtd_is_partition(const struct mtd_info *mtd)
422 {
423 return mtd->parent;
424 }
425
mtd_has_partitions(const struct mtd_info * mtd)426 static inline bool mtd_has_partitions(const struct mtd_info *mtd)
427 {
428 return !list_empty(&mtd->partitions);
429 }
430
431 int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
432 struct mtd_oob_region *oobecc);
433 int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
434 int *section,
435 struct mtd_oob_region *oobregion);
436 int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
437 const u8 *oobbuf, int start, int nbytes);
438 int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
439 u8 *oobbuf, int start, int nbytes);
440 int mtd_ooblayout_free(struct mtd_info *mtd, int section,
441 struct mtd_oob_region *oobfree);
442 int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
443 const u8 *oobbuf, int start, int nbytes);
444 int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
445 u8 *oobbuf, int start, int nbytes);
446 int mtd_ooblayout_count_freebytes(struct mtd_info *mtd);
447 int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd);
448
mtd_set_ooblayout(struct mtd_info * mtd,const struct mtd_ooblayout_ops * ooblayout)449 static inline void mtd_set_ooblayout(struct mtd_info *mtd,
450 const struct mtd_ooblayout_ops *ooblayout)
451 {
452 mtd->ooblayout = ooblayout;
453 }
454
mtd_set_pairing_scheme(struct mtd_info * mtd,const struct mtd_pairing_scheme * pairing)455 static inline void mtd_set_pairing_scheme(struct mtd_info *mtd,
456 const struct mtd_pairing_scheme *pairing)
457 {
458 mtd->pairing = pairing;
459 }
460
mtd_set_of_node(struct mtd_info * mtd,struct device_node * np)461 static inline void mtd_set_of_node(struct mtd_info *mtd,
462 struct device_node *np)
463 {
464 mtd->dev.of_node = np;
465 if (!mtd->name)
466 of_property_read_string(np, "label", &mtd->name);
467 }
468
mtd_get_of_node(struct mtd_info * mtd)469 static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd)
470 {
471 return dev_of_node(&mtd->dev);
472 }
473
mtd_oobavail(struct mtd_info * mtd,struct mtd_oob_ops * ops)474 static inline u32 mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops)
475 {
476 return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize;
477 }
478
mtd_max_bad_blocks(struct mtd_info * mtd,loff_t ofs,size_t len)479 static inline int mtd_max_bad_blocks(struct mtd_info *mtd,
480 loff_t ofs, size_t len)
481 {
482 struct mtd_info *master = mtd_get_master(mtd);
483
484 if (!master->_max_bad_blocks)
485 return -ENOTSUPP;
486
487 if (mtd->size < (len + ofs) || ofs < 0)
488 return -EINVAL;
489
490 return master->_max_bad_blocks(master, mtd_get_master_ofs(mtd, ofs),
491 len);
492 }
493
494 int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
495 struct mtd_pairing_info *info);
496 int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
497 const struct mtd_pairing_info *info);
498 int mtd_pairing_groups(struct mtd_info *mtd);
499 int mtd_erase(struct mtd_info *mtd, struct erase_info *instr);
500 int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
501 void **virt, resource_size_t *phys);
502 int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
503 unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
504 unsigned long offset, unsigned long flags);
505 int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
506 u_char *buf);
507 int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
508 const u_char *buf);
509 int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
510 const u_char *buf);
511
512 int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops);
513 int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops);
514
515 int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
516 struct otp_info *buf);
517 int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
518 size_t *retlen, u_char *buf);
519 int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
520 struct otp_info *buf);
521 int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
522 size_t *retlen, u_char *buf);
523 int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
524 size_t *retlen, const u_char *buf);
525 int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len);
526 int mtd_erase_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len);
527
528 int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
529 unsigned long count, loff_t to, size_t *retlen);
530
mtd_sync(struct mtd_info * mtd)531 static inline void mtd_sync(struct mtd_info *mtd)
532 {
533 struct mtd_info *master = mtd_get_master(mtd);
534
535 if (master->_sync)
536 master->_sync(master);
537 }
538
539 int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
540 int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
541 int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
542 int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs);
543 int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs);
544 int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs);
545
mtd_suspend(struct mtd_info * mtd)546 static inline int mtd_suspend(struct mtd_info *mtd)
547 {
548 struct mtd_info *master = mtd_get_master(mtd);
549 int ret;
550
551 if (master->master.suspended)
552 return 0;
553
554 ret = master->_suspend ? master->_suspend(master) : 0;
555 if (ret)
556 return ret;
557
558 master->master.suspended = 1;
559 return 0;
560 }
561
mtd_resume(struct mtd_info * mtd)562 static inline void mtd_resume(struct mtd_info *mtd)
563 {
564 struct mtd_info *master = mtd_get_master(mtd);
565
566 if (!master->master.suspended)
567 return;
568
569 if (master->_resume)
570 master->_resume(master);
571
572 master->master.suspended = 0;
573 }
574
mtd_div_by_eb(uint64_t sz,struct mtd_info * mtd)575 static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd)
576 {
577 if (mtd->erasesize_shift)
578 return sz >> mtd->erasesize_shift;
579 do_div(sz, mtd->erasesize);
580 return sz;
581 }
582
mtd_mod_by_eb(uint64_t sz,struct mtd_info * mtd)583 static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd)
584 {
585 if (mtd->erasesize_shift)
586 return sz & mtd->erasesize_mask;
587 return do_div(sz, mtd->erasesize);
588 }
589
590 /**
591 * mtd_align_erase_req - Adjust an erase request to align things on eraseblock
592 * boundaries.
593 * @mtd: the MTD device this erase request applies on
594 * @req: the erase request to adjust
595 *
596 * This function will adjust @req->addr and @req->len to align them on
597 * @mtd->erasesize. Of course we expect @mtd->erasesize to be != 0.
598 */
mtd_align_erase_req(struct mtd_info * mtd,struct erase_info * req)599 static inline void mtd_align_erase_req(struct mtd_info *mtd,
600 struct erase_info *req)
601 {
602 u32 mod;
603
604 if (WARN_ON(!mtd->erasesize))
605 return;
606
607 mod = mtd_mod_by_eb(req->addr, mtd);
608 if (mod) {
609 req->addr -= mod;
610 req->len += mod;
611 }
612
613 mod = mtd_mod_by_eb(req->addr + req->len, mtd);
614 if (mod)
615 req->len += mtd->erasesize - mod;
616 }
617
mtd_div_by_ws(uint64_t sz,struct mtd_info * mtd)618 static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd)
619 {
620 if (mtd->writesize_shift)
621 return sz >> mtd->writesize_shift;
622 do_div(sz, mtd->writesize);
623 return sz;
624 }
625
mtd_mod_by_ws(uint64_t sz,struct mtd_info * mtd)626 static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd)
627 {
628 if (mtd->writesize_shift)
629 return sz & mtd->writesize_mask;
630 return do_div(sz, mtd->writesize);
631 }
632
mtd_wunit_per_eb(struct mtd_info * mtd)633 static inline int mtd_wunit_per_eb(struct mtd_info *mtd)
634 {
635 struct mtd_info *master = mtd_get_master(mtd);
636
637 return master->erasesize / mtd->writesize;
638 }
639
mtd_offset_to_wunit(struct mtd_info * mtd,loff_t offs)640 static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs)
641 {
642 return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd);
643 }
644
mtd_wunit_to_offset(struct mtd_info * mtd,loff_t base,int wunit)645 static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base,
646 int wunit)
647 {
648 return base + (wunit * mtd->writesize);
649 }
650
651
mtd_has_oob(const struct mtd_info * mtd)652 static inline int mtd_has_oob(const struct mtd_info *mtd)
653 {
654 struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd);
655
656 return master->_read_oob && master->_write_oob;
657 }
658
mtd_type_is_nand(const struct mtd_info * mtd)659 static inline int mtd_type_is_nand(const struct mtd_info *mtd)
660 {
661 return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH;
662 }
663
mtd_can_have_bb(const struct mtd_info * mtd)664 static inline int mtd_can_have_bb(const struct mtd_info *mtd)
665 {
666 struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd);
667
668 return !!master->_block_isbad;
669 }
670
671 /* Kernel-side ioctl definitions */
672
673 struct mtd_partition;
674 struct mtd_part_parser_data;
675
676 extern int mtd_device_parse_register(struct mtd_info *mtd,
677 const char * const *part_probe_types,
678 struct mtd_part_parser_data *parser_data,
679 const struct mtd_partition *defparts,
680 int defnr_parts);
681 #define mtd_device_register(master, parts, nr_parts) \
682 mtd_device_parse_register(master, NULL, NULL, parts, nr_parts)
683 extern int mtd_device_unregister(struct mtd_info *master);
684 extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
685 extern int __get_mtd_device(struct mtd_info *mtd);
686 extern void __put_mtd_device(struct mtd_info *mtd);
687 extern struct mtd_info *of_get_mtd_device_by_node(struct device_node *np);
688 extern struct mtd_info *get_mtd_device_nm(const char *name);
689 extern void put_mtd_device(struct mtd_info *mtd);
690
691
692 struct mtd_notifier {
693 void (*add)(struct mtd_info *mtd);
694 void (*remove)(struct mtd_info *mtd);
695 struct list_head list;
696 };
697
698
699 extern void register_mtd_user (struct mtd_notifier *new);
700 extern int unregister_mtd_user (struct mtd_notifier *old);
701 void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size);
702
mtd_is_bitflip(int err)703 static inline int mtd_is_bitflip(int err) {
704 return err == -EUCLEAN;
705 }
706
mtd_is_eccerr(int err)707 static inline int mtd_is_eccerr(int err) {
708 return err == -EBADMSG;
709 }
710
mtd_is_bitflip_or_eccerr(int err)711 static inline int mtd_is_bitflip_or_eccerr(int err) {
712 return mtd_is_bitflip(err) || mtd_is_eccerr(err);
713 }
714
715 unsigned mtd_mmap_capabilities(struct mtd_info *mtd);
716
717 #ifdef CONFIG_DEBUG_FS
718 bool mtd_check_expert_analysis_mode(void);
719 #else
mtd_check_expert_analysis_mode(void)720 static inline bool mtd_check_expert_analysis_mode(void) { return false; }
721 #endif
722
723
724 #endif /* __MTD_MTD_H__ */
725