1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2014 Felix Fietkau <nbd@openwrt.org>
4 * Copyright (C) 2015 Jakub Kicinski <kubakici@wp.pl>
5 */
6
7 #include "mt7601u.h"
8 #include "trace.h"
9 #include <linux/etherdevice.h>
10
mt7601u_set_macaddr(struct mt7601u_dev * dev,const u8 * addr)11 void mt7601u_set_macaddr(struct mt7601u_dev *dev, const u8 *addr)
12 {
13 ether_addr_copy(dev->macaddr, addr);
14
15 if (!is_valid_ether_addr(dev->macaddr)) {
16 eth_random_addr(dev->macaddr);
17 dev_info(dev->dev,
18 "Invalid MAC address, using random address %pM\n",
19 dev->macaddr);
20 }
21
22 mt76_wr(dev, MT_MAC_ADDR_DW0, get_unaligned_le32(dev->macaddr));
23 mt76_wr(dev, MT_MAC_ADDR_DW1, get_unaligned_le16(dev->macaddr + 4) |
24 FIELD_PREP(MT_MAC_ADDR_DW1_U2ME_MASK, 0xff));
25 }
26
27 static void
mt76_mac_process_tx_rate(struct ieee80211_tx_rate * txrate,u16 rate)28 mt76_mac_process_tx_rate(struct ieee80211_tx_rate *txrate, u16 rate)
29 {
30 u8 idx = FIELD_GET(MT_TXWI_RATE_MCS, rate);
31
32 txrate->idx = 0;
33 txrate->flags = 0;
34 txrate->count = 1;
35
36 switch (FIELD_GET(MT_TXWI_RATE_PHY_MODE, rate)) {
37 case MT_PHY_TYPE_OFDM:
38 txrate->idx = idx + 4;
39 return;
40 case MT_PHY_TYPE_CCK:
41 if (idx >= 8)
42 idx -= 8;
43
44 txrate->idx = idx;
45 return;
46 case MT_PHY_TYPE_HT_GF:
47 txrate->flags |= IEEE80211_TX_RC_GREEN_FIELD;
48 fallthrough;
49 case MT_PHY_TYPE_HT:
50 txrate->flags |= IEEE80211_TX_RC_MCS;
51 txrate->idx = idx;
52 break;
53 default:
54 WARN_ON(1);
55 return;
56 }
57
58 if (FIELD_GET(MT_TXWI_RATE_BW, rate) == MT_PHY_BW_40)
59 txrate->flags |= IEEE80211_TX_RC_40_MHZ_WIDTH;
60
61 if (rate & MT_TXWI_RATE_SGI)
62 txrate->flags |= IEEE80211_TX_RC_SHORT_GI;
63 }
64
65 static void
mt76_mac_fill_tx_status(struct mt7601u_dev * dev,struct ieee80211_tx_info * info,struct mt76_tx_status * st)66 mt76_mac_fill_tx_status(struct mt7601u_dev *dev, struct ieee80211_tx_info *info,
67 struct mt76_tx_status *st)
68 {
69 struct ieee80211_tx_rate *rate = info->status.rates;
70 int cur_idx, last_rate;
71 int i;
72
73 last_rate = min_t(int, st->retry, IEEE80211_TX_MAX_RATES - 1);
74 mt76_mac_process_tx_rate(&rate[last_rate], st->rate);
75 if (last_rate < IEEE80211_TX_MAX_RATES - 1)
76 rate[last_rate + 1].idx = -1;
77
78 cur_idx = rate[last_rate].idx + st->retry;
79 for (i = 0; i <= last_rate; i++) {
80 rate[i].flags = rate[last_rate].flags;
81 rate[i].idx = max_t(int, 0, cur_idx - i);
82 rate[i].count = 1;
83 }
84
85 if (last_rate > 0)
86 rate[last_rate - 1].count = st->retry + 1 - last_rate;
87
88 info->status.ampdu_len = 1;
89 info->status.ampdu_ack_len = st->success;
90
91 if (st->is_probe)
92 info->flags |= IEEE80211_TX_CTL_RATE_CTRL_PROBE;
93
94 if (st->aggr)
95 info->flags |= IEEE80211_TX_CTL_AMPDU |
96 IEEE80211_TX_STAT_AMPDU;
97
98 if (!st->ack_req)
99 info->flags |= IEEE80211_TX_CTL_NO_ACK;
100 else if (st->success)
101 info->flags |= IEEE80211_TX_STAT_ACK;
102 }
103
mt76_mac_tx_rate_val(struct mt7601u_dev * dev,const struct ieee80211_tx_rate * rate,u8 * nss_val)104 u16 mt76_mac_tx_rate_val(struct mt7601u_dev *dev,
105 const struct ieee80211_tx_rate *rate, u8 *nss_val)
106 {
107 u16 rateval;
108 u8 phy, rate_idx;
109 u8 nss = 1;
110 u8 bw = 0;
111
112 if (rate->flags & IEEE80211_TX_RC_MCS) {
113 rate_idx = rate->idx;
114 nss = 1 + (rate->idx >> 3);
115 phy = MT_PHY_TYPE_HT;
116 if (rate->flags & IEEE80211_TX_RC_GREEN_FIELD)
117 phy = MT_PHY_TYPE_HT_GF;
118 if (rate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
119 bw = 1;
120 } else {
121 const struct ieee80211_rate *r;
122 int band = dev->chandef.chan->band;
123 u16 val;
124
125 r = &dev->hw->wiphy->bands[band]->bitrates[rate->idx];
126 if (rate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
127 val = r->hw_value_short;
128 else
129 val = r->hw_value;
130
131 phy = val >> 8;
132 rate_idx = val & 0xff;
133 bw = 0;
134 }
135
136 rateval = FIELD_PREP(MT_RXWI_RATE_MCS, rate_idx);
137 rateval |= FIELD_PREP(MT_RXWI_RATE_PHY, phy);
138 rateval |= FIELD_PREP(MT_RXWI_RATE_BW, bw);
139 if (rate->flags & IEEE80211_TX_RC_SHORT_GI)
140 rateval |= MT_RXWI_RATE_SGI;
141
142 *nss_val = nss;
143 return rateval;
144 }
145
mt76_mac_wcid_set_rate(struct mt7601u_dev * dev,struct mt76_wcid * wcid,const struct ieee80211_tx_rate * rate)146 void mt76_mac_wcid_set_rate(struct mt7601u_dev *dev, struct mt76_wcid *wcid,
147 const struct ieee80211_tx_rate *rate)
148 {
149 unsigned long flags;
150
151 spin_lock_irqsave(&dev->lock, flags);
152 wcid->tx_rate = mt76_mac_tx_rate_val(dev, rate, &wcid->tx_rate_nss);
153 wcid->tx_rate_set = true;
154 spin_unlock_irqrestore(&dev->lock, flags);
155 }
156
mt7601u_mac_fetch_tx_status(struct mt7601u_dev * dev)157 struct mt76_tx_status mt7601u_mac_fetch_tx_status(struct mt7601u_dev *dev)
158 {
159 struct mt76_tx_status stat = {};
160 u32 val;
161
162 val = mt7601u_rr(dev, MT_TX_STAT_FIFO);
163 stat.valid = !!(val & MT_TX_STAT_FIFO_VALID);
164 stat.success = !!(val & MT_TX_STAT_FIFO_SUCCESS);
165 stat.aggr = !!(val & MT_TX_STAT_FIFO_AGGR);
166 stat.ack_req = !!(val & MT_TX_STAT_FIFO_ACKREQ);
167 stat.pktid = FIELD_GET(MT_TX_STAT_FIFO_PID_TYPE, val);
168 stat.wcid = FIELD_GET(MT_TX_STAT_FIFO_WCID, val);
169 stat.rate = FIELD_GET(MT_TX_STAT_FIFO_RATE, val);
170
171 return stat;
172 }
173
mt76_send_tx_status(struct mt7601u_dev * dev,struct mt76_tx_status * stat)174 void mt76_send_tx_status(struct mt7601u_dev *dev, struct mt76_tx_status *stat)
175 {
176 struct ieee80211_tx_info info = {};
177 struct ieee80211_sta *sta = NULL;
178 struct mt76_wcid *wcid = NULL;
179 void *msta;
180
181 rcu_read_lock();
182 if (stat->wcid < ARRAY_SIZE(dev->wcid))
183 wcid = rcu_dereference(dev->wcid[stat->wcid]);
184
185 if (wcid) {
186 msta = container_of(wcid, struct mt76_sta, wcid);
187 sta = container_of(msta, struct ieee80211_sta,
188 drv_priv);
189 }
190
191 mt76_mac_fill_tx_status(dev, &info, stat);
192
193 spin_lock_bh(&dev->mac_lock);
194 ieee80211_tx_status_noskb(dev->hw, sta, &info);
195 spin_unlock_bh(&dev->mac_lock);
196
197 rcu_read_unlock();
198 }
199
mt7601u_mac_set_protection(struct mt7601u_dev * dev,bool legacy_prot,int ht_mode)200 void mt7601u_mac_set_protection(struct mt7601u_dev *dev, bool legacy_prot,
201 int ht_mode)
202 {
203 int mode = ht_mode & IEEE80211_HT_OP_MODE_PROTECTION;
204 bool non_gf = !!(ht_mode & IEEE80211_HT_OP_MODE_NON_GF_STA_PRSNT);
205 u32 prot[6];
206 bool ht_rts[4] = {};
207 int i;
208
209 prot[0] = MT_PROT_NAV_SHORT |
210 MT_PROT_TXOP_ALLOW_ALL |
211 MT_PROT_RTS_THR_EN;
212 prot[1] = prot[0];
213 if (legacy_prot)
214 prot[1] |= MT_PROT_CTRL_CTS2SELF;
215
216 prot[2] = prot[4] = MT_PROT_NAV_SHORT | MT_PROT_TXOP_ALLOW_BW20;
217 prot[3] = prot[5] = MT_PROT_NAV_SHORT | MT_PROT_TXOP_ALLOW_ALL;
218
219 if (legacy_prot) {
220 prot[2] |= MT_PROT_RATE_CCK_11;
221 prot[3] |= MT_PROT_RATE_CCK_11;
222 prot[4] |= MT_PROT_RATE_CCK_11;
223 prot[5] |= MT_PROT_RATE_CCK_11;
224 } else {
225 prot[2] |= MT_PROT_RATE_OFDM_24;
226 prot[3] |= MT_PROT_RATE_DUP_OFDM_24;
227 prot[4] |= MT_PROT_RATE_OFDM_24;
228 prot[5] |= MT_PROT_RATE_DUP_OFDM_24;
229 }
230
231 switch (mode) {
232 case IEEE80211_HT_OP_MODE_PROTECTION_NONE:
233 break;
234
235 case IEEE80211_HT_OP_MODE_PROTECTION_NONMEMBER:
236 ht_rts[0] = ht_rts[1] = ht_rts[2] = ht_rts[3] = true;
237 break;
238
239 case IEEE80211_HT_OP_MODE_PROTECTION_20MHZ:
240 ht_rts[1] = ht_rts[3] = true;
241 break;
242
243 case IEEE80211_HT_OP_MODE_PROTECTION_NONHT_MIXED:
244 ht_rts[0] = ht_rts[1] = ht_rts[2] = ht_rts[3] = true;
245 break;
246 }
247
248 if (non_gf)
249 ht_rts[2] = ht_rts[3] = true;
250
251 for (i = 0; i < 4; i++)
252 if (ht_rts[i])
253 prot[i + 2] |= MT_PROT_CTRL_RTS_CTS;
254
255 for (i = 0; i < 6; i++)
256 mt7601u_wr(dev, MT_CCK_PROT_CFG + i * 4, prot[i]);
257 }
258
mt7601u_mac_set_short_preamble(struct mt7601u_dev * dev,bool short_preamb)259 void mt7601u_mac_set_short_preamble(struct mt7601u_dev *dev, bool short_preamb)
260 {
261 if (short_preamb)
262 mt76_set(dev, MT_AUTO_RSP_CFG, MT_AUTO_RSP_PREAMB_SHORT);
263 else
264 mt76_clear(dev, MT_AUTO_RSP_CFG, MT_AUTO_RSP_PREAMB_SHORT);
265 }
266
mt7601u_mac_config_tsf(struct mt7601u_dev * dev,bool enable,int interval)267 void mt7601u_mac_config_tsf(struct mt7601u_dev *dev, bool enable, int interval)
268 {
269 u32 val = mt7601u_rr(dev, MT_BEACON_TIME_CFG);
270
271 val &= ~(MT_BEACON_TIME_CFG_TIMER_EN |
272 MT_BEACON_TIME_CFG_SYNC_MODE |
273 MT_BEACON_TIME_CFG_TBTT_EN);
274
275 if (!enable) {
276 mt7601u_wr(dev, MT_BEACON_TIME_CFG, val);
277 return;
278 }
279
280 val &= ~MT_BEACON_TIME_CFG_INTVAL;
281 val |= FIELD_PREP(MT_BEACON_TIME_CFG_INTVAL, interval << 4) |
282 MT_BEACON_TIME_CFG_TIMER_EN |
283 MT_BEACON_TIME_CFG_SYNC_MODE |
284 MT_BEACON_TIME_CFG_TBTT_EN;
285 }
286
mt7601u_check_mac_err(struct mt7601u_dev * dev)287 static void mt7601u_check_mac_err(struct mt7601u_dev *dev)
288 {
289 u32 val = mt7601u_rr(dev, 0x10f4);
290
291 if (!(val & BIT(29)) || !(val & (BIT(7) | BIT(5))))
292 return;
293
294 dev_err(dev->dev, "Error: MAC specific condition occurred\n");
295
296 mt76_set(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_RESET_CSR);
297 udelay(10);
298 mt76_clear(dev, MT_MAC_SYS_CTRL, MT_MAC_SYS_CTRL_RESET_CSR);
299 }
300
mt7601u_mac_work(struct work_struct * work)301 void mt7601u_mac_work(struct work_struct *work)
302 {
303 struct mt7601u_dev *dev = container_of(work, struct mt7601u_dev,
304 mac_work.work);
305 struct {
306 u32 addr_base;
307 u32 span;
308 u64 *stat_base;
309 } spans[] = {
310 { MT_RX_STA_CNT0, 3, dev->stats.rx_stat },
311 { MT_TX_STA_CNT0, 3, dev->stats.tx_stat },
312 { MT_TX_AGG_STAT, 1, dev->stats.aggr_stat },
313 { MT_MPDU_DENSITY_CNT, 1, dev->stats.zero_len_del },
314 { MT_TX_AGG_CNT_BASE0, 8, &dev->stats.aggr_n[0] },
315 { MT_TX_AGG_CNT_BASE1, 8, &dev->stats.aggr_n[16] },
316 };
317 u32 sum, n;
318 int i, j, k;
319
320 /* Note: using MCU_RANDOM_READ is actually slower then reading all the
321 * registers by hand. MCU takes ca. 20ms to complete read of 24
322 * registers while reading them one by one will takes roughly
323 * 24*200us =~ 5ms.
324 */
325
326 k = 0;
327 n = 0;
328 sum = 0;
329 for (i = 0; i < ARRAY_SIZE(spans); i++)
330 for (j = 0; j < spans[i].span; j++) {
331 u32 val = mt7601u_rr(dev, spans[i].addr_base + j * 4);
332
333 spans[i].stat_base[j * 2] += val & 0xffff;
334 spans[i].stat_base[j * 2 + 1] += val >> 16;
335
336 /* Calculate average AMPDU length */
337 if (spans[i].addr_base != MT_TX_AGG_CNT_BASE0 &&
338 spans[i].addr_base != MT_TX_AGG_CNT_BASE1)
339 continue;
340
341 n += (val >> 16) + (val & 0xffff);
342 sum += (val & 0xffff) * (1 + k * 2) +
343 (val >> 16) * (2 + k * 2);
344 k++;
345 }
346
347 atomic_set(&dev->avg_ampdu_len, n ? DIV_ROUND_CLOSEST(sum, n) : 1);
348
349 mt7601u_check_mac_err(dev);
350
351 ieee80211_queue_delayed_work(dev->hw, &dev->mac_work, 10 * HZ);
352 }
353
354 void
mt7601u_mac_wcid_setup(struct mt7601u_dev * dev,u8 idx,u8 vif_idx,u8 * mac)355 mt7601u_mac_wcid_setup(struct mt7601u_dev *dev, u8 idx, u8 vif_idx, u8 *mac)
356 {
357 u8 zmac[ETH_ALEN] = {};
358 u32 attr;
359
360 attr = FIELD_PREP(MT_WCID_ATTR_BSS_IDX, vif_idx & 7) |
361 FIELD_PREP(MT_WCID_ATTR_BSS_IDX_EXT, !!(vif_idx & 8));
362
363 mt76_wr(dev, MT_WCID_ATTR(idx), attr);
364
365 if (mac)
366 memcpy(zmac, mac, sizeof(zmac));
367
368 mt7601u_addr_wr(dev, MT_WCID_ADDR(idx), zmac);
369 }
370
mt7601u_mac_set_ampdu_factor(struct mt7601u_dev * dev)371 void mt7601u_mac_set_ampdu_factor(struct mt7601u_dev *dev)
372 {
373 struct ieee80211_sta *sta;
374 struct mt76_wcid *wcid;
375 void *msta;
376 u8 min_factor = 3;
377 int i;
378
379 rcu_read_lock();
380 for (i = 0; i < ARRAY_SIZE(dev->wcid); i++) {
381 wcid = rcu_dereference(dev->wcid[i]);
382 if (!wcid)
383 continue;
384
385 msta = container_of(wcid, struct mt76_sta, wcid);
386 sta = container_of(msta, struct ieee80211_sta, drv_priv);
387
388 min_factor = min(min_factor, sta->deflink.ht_cap.ampdu_factor);
389 }
390 rcu_read_unlock();
391
392 mt7601u_wr(dev, MT_MAX_LEN_CFG, 0xa0fff |
393 FIELD_PREP(MT_MAX_LEN_CFG_AMPDU, min_factor));
394 }
395
396 static void
mt76_mac_process_rate(struct ieee80211_rx_status * status,u16 rate)397 mt76_mac_process_rate(struct ieee80211_rx_status *status, u16 rate)
398 {
399 u8 idx = FIELD_GET(MT_RXWI_RATE_MCS, rate);
400
401 switch (FIELD_GET(MT_RXWI_RATE_PHY, rate)) {
402 case MT_PHY_TYPE_OFDM:
403 if (WARN_ON(idx >= 8))
404 idx = 0;
405 idx += 4;
406
407 status->rate_idx = idx;
408 return;
409 case MT_PHY_TYPE_CCK:
410 if (idx >= 8) {
411 idx -= 8;
412 status->enc_flags |= RX_ENC_FLAG_SHORTPRE;
413 }
414
415 if (WARN_ON(idx >= 4))
416 idx = 0;
417
418 status->rate_idx = idx;
419 return;
420 case MT_PHY_TYPE_HT_GF:
421 status->enc_flags |= RX_ENC_FLAG_HT_GF;
422 fallthrough;
423 case MT_PHY_TYPE_HT:
424 status->encoding = RX_ENC_HT;
425 status->rate_idx = idx;
426 break;
427 default:
428 WARN_ON(1);
429 return;
430 }
431
432 if (rate & MT_RXWI_RATE_SGI)
433 status->enc_flags |= RX_ENC_FLAG_SHORT_GI;
434
435 if (rate & MT_RXWI_RATE_STBC)
436 status->enc_flags |= 1 << RX_ENC_FLAG_STBC_SHIFT;
437
438 if (rate & MT_RXWI_RATE_BW)
439 status->bw = RATE_INFO_BW_40;
440 }
441
442 static void
mt7601u_rx_monitor_beacon(struct mt7601u_dev * dev,struct mt7601u_rxwi * rxwi,u16 rate,int rssi)443 mt7601u_rx_monitor_beacon(struct mt7601u_dev *dev, struct mt7601u_rxwi *rxwi,
444 u16 rate, int rssi)
445 {
446 dev->bcn_freq_off = rxwi->freq_off;
447 dev->bcn_phy_mode = FIELD_GET(MT_RXWI_RATE_PHY, rate);
448 ewma_rssi_add(&dev->avg_rssi, -rssi);
449 }
450
451 static int
mt7601u_rx_is_our_beacon(struct mt7601u_dev * dev,u8 * data)452 mt7601u_rx_is_our_beacon(struct mt7601u_dev *dev, u8 *data)
453 {
454 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)data;
455
456 return ieee80211_is_beacon(hdr->frame_control) &&
457 ether_addr_equal(hdr->addr2, dev->ap_bssid);
458 }
459
mt76_mac_process_rx(struct mt7601u_dev * dev,struct sk_buff * skb,u8 * data,void * rxi)460 u32 mt76_mac_process_rx(struct mt7601u_dev *dev, struct sk_buff *skb,
461 u8 *data, void *rxi)
462 {
463 struct ieee80211_rx_status *status = IEEE80211_SKB_RXCB(skb);
464 struct mt7601u_rxwi *rxwi = rxi;
465 u32 len, ctl = le32_to_cpu(rxwi->ctl);
466 u16 rate = le16_to_cpu(rxwi->rate);
467 int rssi;
468
469 len = FIELD_GET(MT_RXWI_CTL_MPDU_LEN, ctl);
470 if (len < 10)
471 return 0;
472
473 if (rxwi->rxinfo & cpu_to_le32(MT_RXINFO_DECRYPT)) {
474 status->flag |= RX_FLAG_DECRYPTED;
475 status->flag |= RX_FLAG_MMIC_STRIPPED;
476 status->flag |= RX_FLAG_MIC_STRIPPED;
477 status->flag |= RX_FLAG_ICV_STRIPPED;
478 status->flag |= RX_FLAG_IV_STRIPPED;
479 }
480 /* let mac80211 take care of PN validation since apparently
481 * the hardware does not support it
482 */
483 if (rxwi->rxinfo & cpu_to_le32(MT_RXINFO_PN_LEN))
484 status->flag &= ~RX_FLAG_IV_STRIPPED;
485
486 status->chains = BIT(0);
487 rssi = mt7601u_phy_get_rssi(dev, rxwi, rate);
488 status->chain_signal[0] = status->signal = rssi;
489 status->freq = dev->chandef.chan->center_freq;
490 status->band = dev->chandef.chan->band;
491
492 mt76_mac_process_rate(status, rate);
493
494 spin_lock_bh(&dev->con_mon_lock);
495 if (mt7601u_rx_is_our_beacon(dev, data))
496 mt7601u_rx_monitor_beacon(dev, rxwi, rate, rssi);
497 else if (rxwi->rxinfo & cpu_to_le32(MT_RXINFO_U2M))
498 ewma_rssi_add(&dev->avg_rssi, -rssi);
499 spin_unlock_bh(&dev->con_mon_lock);
500
501 return len;
502 }
503
504 static enum mt76_cipher_type
mt76_mac_get_key_info(struct ieee80211_key_conf * key,u8 * key_data)505 mt76_mac_get_key_info(struct ieee80211_key_conf *key, u8 *key_data)
506 {
507 memset(key_data, 0, 32);
508 if (!key)
509 return MT_CIPHER_NONE;
510
511 if (key->keylen > 32)
512 return MT_CIPHER_NONE;
513
514 memcpy(key_data, key->key, key->keylen);
515
516 switch (key->cipher) {
517 case WLAN_CIPHER_SUITE_WEP40:
518 return MT_CIPHER_WEP40;
519 case WLAN_CIPHER_SUITE_WEP104:
520 return MT_CIPHER_WEP104;
521 case WLAN_CIPHER_SUITE_TKIP:
522 return MT_CIPHER_TKIP;
523 case WLAN_CIPHER_SUITE_CCMP:
524 return MT_CIPHER_AES_CCMP;
525 default:
526 return MT_CIPHER_NONE;
527 }
528 }
529
mt76_mac_wcid_set_key(struct mt7601u_dev * dev,u8 idx,struct ieee80211_key_conf * key)530 int mt76_mac_wcid_set_key(struct mt7601u_dev *dev, u8 idx,
531 struct ieee80211_key_conf *key)
532 {
533 enum mt76_cipher_type cipher;
534 u8 key_data[32];
535 u8 iv_data[8];
536 u32 val;
537
538 cipher = mt76_mac_get_key_info(key, key_data);
539 if (cipher == MT_CIPHER_NONE && key)
540 return -EINVAL;
541
542 trace_set_key(dev, idx);
543
544 mt7601u_wr_copy(dev, MT_WCID_KEY(idx), key_data, sizeof(key_data));
545
546 memset(iv_data, 0, sizeof(iv_data));
547 if (key) {
548 iv_data[3] = key->keyidx << 6;
549 if (cipher >= MT_CIPHER_TKIP) {
550 /* Note: start with 1 to comply with spec,
551 * (see comment on common/cmm_wpa.c:4291).
552 */
553 iv_data[0] |= 1;
554 iv_data[3] |= 0x20;
555 }
556 }
557 mt7601u_wr_copy(dev, MT_WCID_IV(idx), iv_data, sizeof(iv_data));
558
559 val = mt7601u_rr(dev, MT_WCID_ATTR(idx));
560 val &= ~MT_WCID_ATTR_PKEY_MODE & ~MT_WCID_ATTR_PKEY_MODE_EXT;
561 val |= FIELD_PREP(MT_WCID_ATTR_PKEY_MODE, cipher & 7) |
562 FIELD_PREP(MT_WCID_ATTR_PKEY_MODE_EXT, cipher >> 3);
563 val &= ~MT_WCID_ATTR_PAIRWISE;
564 val |= MT_WCID_ATTR_PAIRWISE *
565 !!(key && key->flags & IEEE80211_KEY_FLAG_PAIRWISE);
566 mt7601u_wr(dev, MT_WCID_ATTR(idx), val);
567
568 return 0;
569 }
570
mt76_mac_shared_key_setup(struct mt7601u_dev * dev,u8 vif_idx,u8 key_idx,struct ieee80211_key_conf * key)571 int mt76_mac_shared_key_setup(struct mt7601u_dev *dev, u8 vif_idx, u8 key_idx,
572 struct ieee80211_key_conf *key)
573 {
574 enum mt76_cipher_type cipher;
575 u8 key_data[32];
576 u32 val;
577
578 cipher = mt76_mac_get_key_info(key, key_data);
579 if (cipher == MT_CIPHER_NONE && key)
580 return -EINVAL;
581
582 trace_set_shared_key(dev, vif_idx, key_idx);
583
584 mt7601u_wr_copy(dev, MT_SKEY(vif_idx, key_idx),
585 key_data, sizeof(key_data));
586
587 val = mt76_rr(dev, MT_SKEY_MODE(vif_idx));
588 val &= ~(MT_SKEY_MODE_MASK << MT_SKEY_MODE_SHIFT(vif_idx, key_idx));
589 val |= cipher << MT_SKEY_MODE_SHIFT(vif_idx, key_idx);
590 mt76_wr(dev, MT_SKEY_MODE(vif_idx), val);
591
592 return 0;
593 }
594