1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (c) 2013, Sony Mobile Communications AB.
4 * Copyright (c) 2013, The Linux Foundation. All rights reserved.
5 */
6
7 #include <linux/delay.h>
8 #include <linux/err.h>
9 #include <linux/io.h>
10 #include <linux/module.h>
11 #include <linux/of.h>
12 #include <linux/platform_device.h>
13 #include <linux/pinctrl/machine.h>
14 #include <linux/pinctrl/pinctrl.h>
15 #include <linux/pinctrl/pinmux.h>
16 #include <linux/pinctrl/pinconf.h>
17 #include <linux/pinctrl/pinconf-generic.h>
18 #include <linux/slab.h>
19 #include <linux/gpio/driver.h>
20 #include <linux/interrupt.h>
21 #include <linux/spinlock.h>
22 #include <linux/reboot.h>
23 #include <linux/pm.h>
24 #include <linux/log2.h>
25 #include <linux/qcom_scm.h>
26
27 #include <linux/soc/qcom/irq.h>
28
29 #include "../core.h"
30 #include "../pinconf.h"
31 #include "pinctrl-msm.h"
32 #include "../pinctrl-utils.h"
33
34 #define MAX_NR_GPIO 300
35 #define MAX_NR_TILES 4
36 #define PS_HOLD_OFFSET 0x820
37
38 /**
39 * struct msm_pinctrl - state for a pinctrl-msm device
40 * @dev: device handle.
41 * @pctrl: pinctrl handle.
42 * @chip: gpiochip handle.
43 * @desc: pin controller descriptor
44 * @restart_nb: restart notifier block.
45 * @irq: parent irq for the TLMM irq_chip.
46 * @intr_target_use_scm: route irq to application cpu using scm calls
47 * @lock: Spinlock to protect register resources as well
48 * as msm_pinctrl data structures.
49 * @enabled_irqs: Bitmap of currently enabled irqs.
50 * @dual_edge_irqs: Bitmap of irqs that need sw emulated dual edge
51 * detection.
52 * @skip_wake_irqs: Skip IRQs that are handled by wakeup interrupt controller
53 * @disabled_for_mux: These IRQs were disabled because we muxed away.
54 * @soc: Reference to soc_data of platform specific data.
55 * @regs: Base addresses for the TLMM tiles.
56 * @phys_base: Physical base address
57 */
58 struct msm_pinctrl {
59 struct device *dev;
60 struct pinctrl_dev *pctrl;
61 struct gpio_chip chip;
62 struct pinctrl_desc desc;
63 struct notifier_block restart_nb;
64
65 int irq;
66
67 bool intr_target_use_scm;
68
69 raw_spinlock_t lock;
70
71 DECLARE_BITMAP(dual_edge_irqs, MAX_NR_GPIO);
72 DECLARE_BITMAP(enabled_irqs, MAX_NR_GPIO);
73 DECLARE_BITMAP(skip_wake_irqs, MAX_NR_GPIO);
74 DECLARE_BITMAP(disabled_for_mux, MAX_NR_GPIO);
75
76 const struct msm_pinctrl_soc_data *soc;
77 void __iomem *regs[MAX_NR_TILES];
78 u32 phys_base[MAX_NR_TILES];
79 };
80
81 #define MSM_ACCESSOR(name) \
82 static u32 msm_readl_##name(struct msm_pinctrl *pctrl, \
83 const struct msm_pingroup *g) \
84 { \
85 return readl(pctrl->regs[g->tile] + g->name##_reg); \
86 } \
87 static void msm_writel_##name(u32 val, struct msm_pinctrl *pctrl, \
88 const struct msm_pingroup *g) \
89 { \
90 writel(val, pctrl->regs[g->tile] + g->name##_reg); \
91 }
92
93 MSM_ACCESSOR(ctl)
MSM_ACCESSOR(io)94 MSM_ACCESSOR(io)
95 MSM_ACCESSOR(intr_cfg)
96 MSM_ACCESSOR(intr_status)
97 MSM_ACCESSOR(intr_target)
98
99 static void msm_ack_intr_status(struct msm_pinctrl *pctrl,
100 const struct msm_pingroup *g)
101 {
102 u32 val = g->intr_ack_high ? BIT(g->intr_status_bit) : 0;
103
104 msm_writel_intr_status(val, pctrl, g);
105 }
106
msm_get_groups_count(struct pinctrl_dev * pctldev)107 static int msm_get_groups_count(struct pinctrl_dev *pctldev)
108 {
109 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
110
111 return pctrl->soc->ngroups;
112 }
113
msm_get_group_name(struct pinctrl_dev * pctldev,unsigned group)114 static const char *msm_get_group_name(struct pinctrl_dev *pctldev,
115 unsigned group)
116 {
117 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
118
119 return pctrl->soc->groups[group].name;
120 }
121
msm_get_group_pins(struct pinctrl_dev * pctldev,unsigned group,const unsigned ** pins,unsigned * num_pins)122 static int msm_get_group_pins(struct pinctrl_dev *pctldev,
123 unsigned group,
124 const unsigned **pins,
125 unsigned *num_pins)
126 {
127 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
128
129 *pins = pctrl->soc->groups[group].pins;
130 *num_pins = pctrl->soc->groups[group].npins;
131 return 0;
132 }
133
134 static const struct pinctrl_ops msm_pinctrl_ops = {
135 .get_groups_count = msm_get_groups_count,
136 .get_group_name = msm_get_group_name,
137 .get_group_pins = msm_get_group_pins,
138 .dt_node_to_map = pinconf_generic_dt_node_to_map_group,
139 .dt_free_map = pinctrl_utils_free_map,
140 };
141
msm_pinmux_request(struct pinctrl_dev * pctldev,unsigned offset)142 static int msm_pinmux_request(struct pinctrl_dev *pctldev, unsigned offset)
143 {
144 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
145 struct gpio_chip *chip = &pctrl->chip;
146
147 return gpiochip_line_is_valid(chip, offset) ? 0 : -EINVAL;
148 }
149
msm_get_functions_count(struct pinctrl_dev * pctldev)150 static int msm_get_functions_count(struct pinctrl_dev *pctldev)
151 {
152 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
153
154 return pctrl->soc->nfunctions;
155 }
156
msm_get_function_name(struct pinctrl_dev * pctldev,unsigned function)157 static const char *msm_get_function_name(struct pinctrl_dev *pctldev,
158 unsigned function)
159 {
160 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
161
162 return pctrl->soc->functions[function].name;
163 }
164
msm_get_function_groups(struct pinctrl_dev * pctldev,unsigned function,const char * const ** groups,unsigned * const num_groups)165 static int msm_get_function_groups(struct pinctrl_dev *pctldev,
166 unsigned function,
167 const char * const **groups,
168 unsigned * const num_groups)
169 {
170 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
171
172 *groups = pctrl->soc->functions[function].groups;
173 *num_groups = pctrl->soc->functions[function].ngroups;
174 return 0;
175 }
176
msm_pinmux_set_mux(struct pinctrl_dev * pctldev,unsigned function,unsigned group)177 static int msm_pinmux_set_mux(struct pinctrl_dev *pctldev,
178 unsigned function,
179 unsigned group)
180 {
181 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
182 struct gpio_chip *gc = &pctrl->chip;
183 unsigned int irq = irq_find_mapping(gc->irq.domain, group);
184 struct irq_data *d = irq_get_irq_data(irq);
185 unsigned int gpio_func = pctrl->soc->gpio_func;
186 unsigned int egpio_func = pctrl->soc->egpio_func;
187 const struct msm_pingroup *g;
188 unsigned long flags;
189 u32 val, mask;
190 int i;
191
192 g = &pctrl->soc->groups[group];
193 mask = GENMASK(g->mux_bit + order_base_2(g->nfuncs) - 1, g->mux_bit);
194
195 for (i = 0; i < g->nfuncs; i++) {
196 if (g->funcs[i] == function)
197 break;
198 }
199
200 if (WARN_ON(i == g->nfuncs))
201 return -EINVAL;
202
203 /*
204 * If an GPIO interrupt is setup on this pin then we need special
205 * handling. Specifically interrupt detection logic will still see
206 * the pin twiddle even when we're muxed away.
207 *
208 * When we see a pin with an interrupt setup on it then we'll disable
209 * (mask) interrupts on it when we mux away until we mux back. Note
210 * that disable_irq() refcounts and interrupts are disabled as long as
211 * at least one disable_irq() has been called.
212 */
213 if (d && i != gpio_func &&
214 !test_and_set_bit(d->hwirq, pctrl->disabled_for_mux))
215 disable_irq(irq);
216
217 raw_spin_lock_irqsave(&pctrl->lock, flags);
218
219 val = msm_readl_ctl(pctrl, g);
220
221 if (egpio_func && i == egpio_func) {
222 if (val & BIT(g->egpio_present))
223 val &= ~BIT(g->egpio_enable);
224 } else {
225 val &= ~mask;
226 val |= i << g->mux_bit;
227 /* Claim ownership of pin if egpio capable */
228 if (egpio_func && val & BIT(g->egpio_present))
229 val |= BIT(g->egpio_enable);
230 }
231
232 msm_writel_ctl(val, pctrl, g);
233
234 raw_spin_unlock_irqrestore(&pctrl->lock, flags);
235
236 if (d && i == gpio_func &&
237 test_and_clear_bit(d->hwirq, pctrl->disabled_for_mux)) {
238 /*
239 * Clear interrupts detected while not GPIO since we only
240 * masked things.
241 */
242 if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
243 irq_chip_set_parent_state(d, IRQCHIP_STATE_PENDING, false);
244 else
245 msm_ack_intr_status(pctrl, g);
246
247 enable_irq(irq);
248 }
249
250 return 0;
251 }
252
msm_pinmux_request_gpio(struct pinctrl_dev * pctldev,struct pinctrl_gpio_range * range,unsigned offset)253 static int msm_pinmux_request_gpio(struct pinctrl_dev *pctldev,
254 struct pinctrl_gpio_range *range,
255 unsigned offset)
256 {
257 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
258 const struct msm_pingroup *g = &pctrl->soc->groups[offset];
259
260 /* No funcs? Probably ACPI so can't do anything here */
261 if (!g->nfuncs)
262 return 0;
263
264 return msm_pinmux_set_mux(pctldev, g->funcs[pctrl->soc->gpio_func], offset);
265 }
266
267 static const struct pinmux_ops msm_pinmux_ops = {
268 .request = msm_pinmux_request,
269 .get_functions_count = msm_get_functions_count,
270 .get_function_name = msm_get_function_name,
271 .get_function_groups = msm_get_function_groups,
272 .gpio_request_enable = msm_pinmux_request_gpio,
273 .set_mux = msm_pinmux_set_mux,
274 };
275
msm_config_reg(struct msm_pinctrl * pctrl,const struct msm_pingroup * g,unsigned param,unsigned * mask,unsigned * bit)276 static int msm_config_reg(struct msm_pinctrl *pctrl,
277 const struct msm_pingroup *g,
278 unsigned param,
279 unsigned *mask,
280 unsigned *bit)
281 {
282 switch (param) {
283 case PIN_CONFIG_BIAS_DISABLE:
284 case PIN_CONFIG_BIAS_PULL_DOWN:
285 case PIN_CONFIG_BIAS_BUS_HOLD:
286 case PIN_CONFIG_BIAS_PULL_UP:
287 *bit = g->pull_bit;
288 *mask = 3;
289 break;
290 case PIN_CONFIG_DRIVE_OPEN_DRAIN:
291 *bit = g->od_bit;
292 *mask = 1;
293 break;
294 case PIN_CONFIG_DRIVE_STRENGTH:
295 *bit = g->drv_bit;
296 *mask = 7;
297 break;
298 case PIN_CONFIG_OUTPUT:
299 case PIN_CONFIG_INPUT_ENABLE:
300 *bit = g->oe_bit;
301 *mask = 1;
302 break;
303 default:
304 return -ENOTSUPP;
305 }
306
307 return 0;
308 }
309
310 #define MSM_NO_PULL 0
311 #define MSM_PULL_DOWN 1
312 #define MSM_KEEPER 2
313 #define MSM_PULL_UP_NO_KEEPER 2
314 #define MSM_PULL_UP 3
315
msm_regval_to_drive(u32 val)316 static unsigned msm_regval_to_drive(u32 val)
317 {
318 return (val + 1) * 2;
319 }
320
msm_config_group_get(struct pinctrl_dev * pctldev,unsigned int group,unsigned long * config)321 static int msm_config_group_get(struct pinctrl_dev *pctldev,
322 unsigned int group,
323 unsigned long *config)
324 {
325 const struct msm_pingroup *g;
326 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
327 unsigned param = pinconf_to_config_param(*config);
328 unsigned mask;
329 unsigned arg;
330 unsigned bit;
331 int ret;
332 u32 val;
333
334 g = &pctrl->soc->groups[group];
335
336 ret = msm_config_reg(pctrl, g, param, &mask, &bit);
337 if (ret < 0)
338 return ret;
339
340 val = msm_readl_ctl(pctrl, g);
341 arg = (val >> bit) & mask;
342
343 /* Convert register value to pinconf value */
344 switch (param) {
345 case PIN_CONFIG_BIAS_DISABLE:
346 if (arg != MSM_NO_PULL)
347 return -EINVAL;
348 arg = 1;
349 break;
350 case PIN_CONFIG_BIAS_PULL_DOWN:
351 if (arg != MSM_PULL_DOWN)
352 return -EINVAL;
353 arg = 1;
354 break;
355 case PIN_CONFIG_BIAS_BUS_HOLD:
356 if (pctrl->soc->pull_no_keeper)
357 return -ENOTSUPP;
358
359 if (arg != MSM_KEEPER)
360 return -EINVAL;
361 arg = 1;
362 break;
363 case PIN_CONFIG_BIAS_PULL_UP:
364 if (pctrl->soc->pull_no_keeper)
365 arg = arg == MSM_PULL_UP_NO_KEEPER;
366 else
367 arg = arg == MSM_PULL_UP;
368 if (!arg)
369 return -EINVAL;
370 break;
371 case PIN_CONFIG_DRIVE_OPEN_DRAIN:
372 /* Pin is not open-drain */
373 if (!arg)
374 return -EINVAL;
375 arg = 1;
376 break;
377 case PIN_CONFIG_DRIVE_STRENGTH:
378 arg = msm_regval_to_drive(arg);
379 break;
380 case PIN_CONFIG_OUTPUT:
381 /* Pin is not output */
382 if (!arg)
383 return -EINVAL;
384
385 val = msm_readl_io(pctrl, g);
386 arg = !!(val & BIT(g->in_bit));
387 break;
388 case PIN_CONFIG_INPUT_ENABLE:
389 /* Pin is output */
390 if (arg)
391 return -EINVAL;
392 arg = 1;
393 break;
394 default:
395 return -ENOTSUPP;
396 }
397
398 *config = pinconf_to_config_packed(param, arg);
399
400 return 0;
401 }
402
msm_config_group_set(struct pinctrl_dev * pctldev,unsigned group,unsigned long * configs,unsigned num_configs)403 static int msm_config_group_set(struct pinctrl_dev *pctldev,
404 unsigned group,
405 unsigned long *configs,
406 unsigned num_configs)
407 {
408 const struct msm_pingroup *g;
409 struct msm_pinctrl *pctrl = pinctrl_dev_get_drvdata(pctldev);
410 unsigned long flags;
411 unsigned param;
412 unsigned mask;
413 unsigned arg;
414 unsigned bit;
415 int ret;
416 u32 val;
417 int i;
418
419 g = &pctrl->soc->groups[group];
420
421 for (i = 0; i < num_configs; i++) {
422 param = pinconf_to_config_param(configs[i]);
423 arg = pinconf_to_config_argument(configs[i]);
424
425 ret = msm_config_reg(pctrl, g, param, &mask, &bit);
426 if (ret < 0)
427 return ret;
428
429 /* Convert pinconf values to register values */
430 switch (param) {
431 case PIN_CONFIG_BIAS_DISABLE:
432 arg = MSM_NO_PULL;
433 break;
434 case PIN_CONFIG_BIAS_PULL_DOWN:
435 arg = MSM_PULL_DOWN;
436 break;
437 case PIN_CONFIG_BIAS_BUS_HOLD:
438 if (pctrl->soc->pull_no_keeper)
439 return -ENOTSUPP;
440
441 arg = MSM_KEEPER;
442 break;
443 case PIN_CONFIG_BIAS_PULL_UP:
444 if (pctrl->soc->pull_no_keeper)
445 arg = MSM_PULL_UP_NO_KEEPER;
446 else
447 arg = MSM_PULL_UP;
448 break;
449 case PIN_CONFIG_DRIVE_OPEN_DRAIN:
450 arg = 1;
451 break;
452 case PIN_CONFIG_DRIVE_STRENGTH:
453 /* Check for invalid values */
454 if (arg > 16 || arg < 2 || (arg % 2) != 0)
455 arg = -1;
456 else
457 arg = (arg / 2) - 1;
458 break;
459 case PIN_CONFIG_OUTPUT:
460 /* set output value */
461 raw_spin_lock_irqsave(&pctrl->lock, flags);
462 val = msm_readl_io(pctrl, g);
463 if (arg)
464 val |= BIT(g->out_bit);
465 else
466 val &= ~BIT(g->out_bit);
467 msm_writel_io(val, pctrl, g);
468 raw_spin_unlock_irqrestore(&pctrl->lock, flags);
469
470 /* enable output */
471 arg = 1;
472 break;
473 case PIN_CONFIG_INPUT_ENABLE:
474 /* disable output */
475 arg = 0;
476 break;
477 default:
478 dev_err(pctrl->dev, "Unsupported config parameter: %x\n",
479 param);
480 return -EINVAL;
481 }
482
483 /* Range-check user-supplied value */
484 if (arg & ~mask) {
485 dev_err(pctrl->dev, "config %x: %x is invalid\n", param, arg);
486 return -EINVAL;
487 }
488
489 raw_spin_lock_irqsave(&pctrl->lock, flags);
490 val = msm_readl_ctl(pctrl, g);
491 val &= ~(mask << bit);
492 val |= arg << bit;
493 msm_writel_ctl(val, pctrl, g);
494 raw_spin_unlock_irqrestore(&pctrl->lock, flags);
495 }
496
497 return 0;
498 }
499
500 static const struct pinconf_ops msm_pinconf_ops = {
501 .is_generic = true,
502 .pin_config_group_get = msm_config_group_get,
503 .pin_config_group_set = msm_config_group_set,
504 };
505
msm_gpio_direction_input(struct gpio_chip * chip,unsigned offset)506 static int msm_gpio_direction_input(struct gpio_chip *chip, unsigned offset)
507 {
508 const struct msm_pingroup *g;
509 struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
510 unsigned long flags;
511 u32 val;
512
513 g = &pctrl->soc->groups[offset];
514
515 raw_spin_lock_irqsave(&pctrl->lock, flags);
516
517 val = msm_readl_ctl(pctrl, g);
518 val &= ~BIT(g->oe_bit);
519 msm_writel_ctl(val, pctrl, g);
520
521 raw_spin_unlock_irqrestore(&pctrl->lock, flags);
522
523 return 0;
524 }
525
msm_gpio_direction_output(struct gpio_chip * chip,unsigned offset,int value)526 static int msm_gpio_direction_output(struct gpio_chip *chip, unsigned offset, int value)
527 {
528 const struct msm_pingroup *g;
529 struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
530 unsigned long flags;
531 u32 val;
532
533 g = &pctrl->soc->groups[offset];
534
535 raw_spin_lock_irqsave(&pctrl->lock, flags);
536
537 val = msm_readl_io(pctrl, g);
538 if (value)
539 val |= BIT(g->out_bit);
540 else
541 val &= ~BIT(g->out_bit);
542 msm_writel_io(val, pctrl, g);
543
544 val = msm_readl_ctl(pctrl, g);
545 val |= BIT(g->oe_bit);
546 msm_writel_ctl(val, pctrl, g);
547
548 raw_spin_unlock_irqrestore(&pctrl->lock, flags);
549
550 return 0;
551 }
552
msm_gpio_get_direction(struct gpio_chip * chip,unsigned int offset)553 static int msm_gpio_get_direction(struct gpio_chip *chip, unsigned int offset)
554 {
555 struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
556 const struct msm_pingroup *g;
557 u32 val;
558
559 g = &pctrl->soc->groups[offset];
560
561 val = msm_readl_ctl(pctrl, g);
562
563 return val & BIT(g->oe_bit) ? GPIO_LINE_DIRECTION_OUT :
564 GPIO_LINE_DIRECTION_IN;
565 }
566
msm_gpio_get(struct gpio_chip * chip,unsigned offset)567 static int msm_gpio_get(struct gpio_chip *chip, unsigned offset)
568 {
569 const struct msm_pingroup *g;
570 struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
571 u32 val;
572
573 g = &pctrl->soc->groups[offset];
574
575 val = msm_readl_io(pctrl, g);
576 return !!(val & BIT(g->in_bit));
577 }
578
msm_gpio_set(struct gpio_chip * chip,unsigned offset,int value)579 static void msm_gpio_set(struct gpio_chip *chip, unsigned offset, int value)
580 {
581 const struct msm_pingroup *g;
582 struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
583 unsigned long flags;
584 u32 val;
585
586 g = &pctrl->soc->groups[offset];
587
588 raw_spin_lock_irqsave(&pctrl->lock, flags);
589
590 val = msm_readl_io(pctrl, g);
591 if (value)
592 val |= BIT(g->out_bit);
593 else
594 val &= ~BIT(g->out_bit);
595 msm_writel_io(val, pctrl, g);
596
597 raw_spin_unlock_irqrestore(&pctrl->lock, flags);
598 }
599
600 #ifdef CONFIG_DEBUG_FS
601 #include <linux/seq_file.h>
602
msm_gpio_dbg_show_one(struct seq_file * s,struct pinctrl_dev * pctldev,struct gpio_chip * chip,unsigned offset,unsigned gpio)603 static void msm_gpio_dbg_show_one(struct seq_file *s,
604 struct pinctrl_dev *pctldev,
605 struct gpio_chip *chip,
606 unsigned offset,
607 unsigned gpio)
608 {
609 const struct msm_pingroup *g;
610 struct msm_pinctrl *pctrl = gpiochip_get_data(chip);
611 unsigned func;
612 int is_out;
613 int drive;
614 int pull;
615 int val;
616 int egpio_enable;
617 u32 ctl_reg, io_reg;
618
619 static const char * const pulls_keeper[] = {
620 "no pull",
621 "pull down",
622 "keeper",
623 "pull up"
624 };
625
626 static const char * const pulls_no_keeper[] = {
627 "no pull",
628 "pull down",
629 "pull up",
630 };
631
632 if (!gpiochip_line_is_valid(chip, offset))
633 return;
634
635 g = &pctrl->soc->groups[offset];
636 ctl_reg = msm_readl_ctl(pctrl, g);
637 io_reg = msm_readl_io(pctrl, g);
638
639 is_out = !!(ctl_reg & BIT(g->oe_bit));
640 func = (ctl_reg >> g->mux_bit) & 7;
641 drive = (ctl_reg >> g->drv_bit) & 7;
642 pull = (ctl_reg >> g->pull_bit) & 3;
643 egpio_enable = 0;
644 if (pctrl->soc->egpio_func && ctl_reg & BIT(g->egpio_present))
645 egpio_enable = !(ctl_reg & BIT(g->egpio_enable));
646
647 if (is_out)
648 val = !!(io_reg & BIT(g->out_bit));
649 else
650 val = !!(io_reg & BIT(g->in_bit));
651
652 if (egpio_enable) {
653 seq_printf(s, " %-8s: egpio\n", g->name);
654 return;
655 }
656
657 seq_printf(s, " %-8s: %-3s", g->name, is_out ? "out" : "in");
658 seq_printf(s, " %-4s func%d", val ? "high" : "low", func);
659 seq_printf(s, " %dmA", msm_regval_to_drive(drive));
660 if (pctrl->soc->pull_no_keeper)
661 seq_printf(s, " %s", pulls_no_keeper[pull]);
662 else
663 seq_printf(s, " %s", pulls_keeper[pull]);
664 seq_puts(s, "\n");
665 }
666
msm_gpio_dbg_show(struct seq_file * s,struct gpio_chip * chip)667 static void msm_gpio_dbg_show(struct seq_file *s, struct gpio_chip *chip)
668 {
669 unsigned gpio = chip->base;
670 unsigned i;
671
672 for (i = 0; i < chip->ngpio; i++, gpio++)
673 msm_gpio_dbg_show_one(s, NULL, chip, i, gpio);
674 }
675
676 #else
677 #define msm_gpio_dbg_show NULL
678 #endif
679
msm_gpio_init_valid_mask(struct gpio_chip * gc,unsigned long * valid_mask,unsigned int ngpios)680 static int msm_gpio_init_valid_mask(struct gpio_chip *gc,
681 unsigned long *valid_mask,
682 unsigned int ngpios)
683 {
684 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
685 int ret;
686 unsigned int len, i;
687 const int *reserved = pctrl->soc->reserved_gpios;
688 u16 *tmp;
689
690 /* Driver provided reserved list overrides DT and ACPI */
691 if (reserved) {
692 bitmap_fill(valid_mask, ngpios);
693 for (i = 0; reserved[i] >= 0; i++) {
694 if (i >= ngpios || reserved[i] >= ngpios) {
695 dev_err(pctrl->dev, "invalid list of reserved GPIOs\n");
696 return -EINVAL;
697 }
698 clear_bit(reserved[i], valid_mask);
699 }
700
701 return 0;
702 }
703
704 /* The number of GPIOs in the ACPI tables */
705 len = ret = device_property_count_u16(pctrl->dev, "gpios");
706 if (ret < 0)
707 return 0;
708
709 if (ret > ngpios)
710 return -EINVAL;
711
712 tmp = kmalloc_array(len, sizeof(*tmp), GFP_KERNEL);
713 if (!tmp)
714 return -ENOMEM;
715
716 ret = device_property_read_u16_array(pctrl->dev, "gpios", tmp, len);
717 if (ret < 0) {
718 dev_err(pctrl->dev, "could not read list of GPIOs\n");
719 goto out;
720 }
721
722 bitmap_zero(valid_mask, ngpios);
723 for (i = 0; i < len; i++)
724 set_bit(tmp[i], valid_mask);
725
726 out:
727 kfree(tmp);
728 return ret;
729 }
730
731 static const struct gpio_chip msm_gpio_template = {
732 .direction_input = msm_gpio_direction_input,
733 .direction_output = msm_gpio_direction_output,
734 .get_direction = msm_gpio_get_direction,
735 .get = msm_gpio_get,
736 .set = msm_gpio_set,
737 .request = gpiochip_generic_request,
738 .free = gpiochip_generic_free,
739 .dbg_show = msm_gpio_dbg_show,
740 };
741
742 /* For dual-edge interrupts in software, since some hardware has no
743 * such support:
744 *
745 * At appropriate moments, this function may be called to flip the polarity
746 * settings of both-edge irq lines to try and catch the next edge.
747 *
748 * The attempt is considered successful if:
749 * - the status bit goes high, indicating that an edge was caught, or
750 * - the input value of the gpio doesn't change during the attempt.
751 * If the value changes twice during the process, that would cause the first
752 * test to fail but would force the second, as two opposite
753 * transitions would cause a detection no matter the polarity setting.
754 *
755 * The do-loop tries to sledge-hammer closed the timing hole between
756 * the initial value-read and the polarity-write - if the line value changes
757 * during that window, an interrupt is lost, the new polarity setting is
758 * incorrect, and the first success test will fail, causing a retry.
759 *
760 * Algorithm comes from Google's msmgpio driver.
761 */
msm_gpio_update_dual_edge_pos(struct msm_pinctrl * pctrl,const struct msm_pingroup * g,struct irq_data * d)762 static void msm_gpio_update_dual_edge_pos(struct msm_pinctrl *pctrl,
763 const struct msm_pingroup *g,
764 struct irq_data *d)
765 {
766 int loop_limit = 100;
767 unsigned val, val2, intstat;
768 unsigned pol;
769
770 do {
771 val = msm_readl_io(pctrl, g) & BIT(g->in_bit);
772
773 pol = msm_readl_intr_cfg(pctrl, g);
774 pol ^= BIT(g->intr_polarity_bit);
775 msm_writel_intr_cfg(pol, pctrl, g);
776
777 val2 = msm_readl_io(pctrl, g) & BIT(g->in_bit);
778 intstat = msm_readl_intr_status(pctrl, g);
779 if (intstat || (val == val2))
780 return;
781 } while (loop_limit-- > 0);
782 dev_err(pctrl->dev, "dual-edge irq failed to stabilize, %#08x != %#08x\n",
783 val, val2);
784 }
785
msm_gpio_irq_mask(struct irq_data * d)786 static void msm_gpio_irq_mask(struct irq_data *d)
787 {
788 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
789 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
790 const struct msm_pingroup *g;
791 unsigned long flags;
792 u32 val;
793
794 if (d->parent_data)
795 irq_chip_mask_parent(d);
796
797 if (test_bit(d->hwirq, pctrl->skip_wake_irqs))
798 return;
799
800 g = &pctrl->soc->groups[d->hwirq];
801
802 raw_spin_lock_irqsave(&pctrl->lock, flags);
803
804 val = msm_readl_intr_cfg(pctrl, g);
805 /*
806 * There are two bits that control interrupt forwarding to the CPU. The
807 * RAW_STATUS_EN bit causes the level or edge sensed on the line to be
808 * latched into the interrupt status register when the hardware detects
809 * an irq that it's configured for (either edge for edge type or level
810 * for level type irq). The 'non-raw' status enable bit causes the
811 * hardware to assert the summary interrupt to the CPU if the latched
812 * status bit is set. There's a bug though, the edge detection logic
813 * seems to have a problem where toggling the RAW_STATUS_EN bit may
814 * cause the status bit to latch spuriously when there isn't any edge
815 * so we can't touch that bit for edge type irqs and we have to keep
816 * the bit set anyway so that edges are latched while the line is masked.
817 *
818 * To make matters more complicated, leaving the RAW_STATUS_EN bit
819 * enabled all the time causes level interrupts to re-latch into the
820 * status register because the level is still present on the line after
821 * we ack it. We clear the raw status enable bit during mask here and
822 * set the bit on unmask so the interrupt can't latch into the hardware
823 * while it's masked.
824 */
825 if (irqd_get_trigger_type(d) & IRQ_TYPE_LEVEL_MASK)
826 val &= ~BIT(g->intr_raw_status_bit);
827
828 val &= ~BIT(g->intr_enable_bit);
829 msm_writel_intr_cfg(val, pctrl, g);
830
831 clear_bit(d->hwirq, pctrl->enabled_irqs);
832
833 raw_spin_unlock_irqrestore(&pctrl->lock, flags);
834 }
835
msm_gpio_irq_unmask(struct irq_data * d)836 static void msm_gpio_irq_unmask(struct irq_data *d)
837 {
838 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
839 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
840 const struct msm_pingroup *g;
841 unsigned long flags;
842 u32 val;
843
844 if (d->parent_data)
845 irq_chip_unmask_parent(d);
846
847 if (test_bit(d->hwirq, pctrl->skip_wake_irqs))
848 return;
849
850 g = &pctrl->soc->groups[d->hwirq];
851
852 raw_spin_lock_irqsave(&pctrl->lock, flags);
853
854 val = msm_readl_intr_cfg(pctrl, g);
855 val |= BIT(g->intr_raw_status_bit);
856 val |= BIT(g->intr_enable_bit);
857 msm_writel_intr_cfg(val, pctrl, g);
858
859 set_bit(d->hwirq, pctrl->enabled_irqs);
860
861 raw_spin_unlock_irqrestore(&pctrl->lock, flags);
862 }
863
msm_gpio_irq_enable(struct irq_data * d)864 static void msm_gpio_irq_enable(struct irq_data *d)
865 {
866 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
867 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
868
869 gpiochip_enable_irq(gc, d->hwirq);
870
871 if (d->parent_data)
872 irq_chip_enable_parent(d);
873
874 if (!test_bit(d->hwirq, pctrl->skip_wake_irqs))
875 msm_gpio_irq_unmask(d);
876 }
877
msm_gpio_irq_disable(struct irq_data * d)878 static void msm_gpio_irq_disable(struct irq_data *d)
879 {
880 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
881 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
882
883 if (d->parent_data)
884 irq_chip_disable_parent(d);
885
886 if (!test_bit(d->hwirq, pctrl->skip_wake_irqs))
887 msm_gpio_irq_mask(d);
888
889 gpiochip_disable_irq(gc, d->hwirq);
890 }
891
892 /**
893 * msm_gpio_update_dual_edge_parent() - Prime next edge for IRQs handled by parent.
894 * @d: The irq dta.
895 *
896 * This is much like msm_gpio_update_dual_edge_pos() but for IRQs that are
897 * normally handled by the parent irqchip. The logic here is slightly
898 * different due to what's easy to do with our parent, but in principle it's
899 * the same.
900 */
msm_gpio_update_dual_edge_parent(struct irq_data * d)901 static void msm_gpio_update_dual_edge_parent(struct irq_data *d)
902 {
903 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
904 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
905 const struct msm_pingroup *g = &pctrl->soc->groups[d->hwirq];
906 int loop_limit = 100;
907 unsigned int val;
908 unsigned int type;
909
910 /* Read the value and make a guess about what edge we need to catch */
911 val = msm_readl_io(pctrl, g) & BIT(g->in_bit);
912 type = val ? IRQ_TYPE_EDGE_FALLING : IRQ_TYPE_EDGE_RISING;
913
914 do {
915 /* Set the parent to catch the next edge */
916 irq_chip_set_type_parent(d, type);
917
918 /*
919 * Possibly the line changed between when we last read "val"
920 * (and decided what edge we needed) and when set the edge.
921 * If the value didn't change (or changed and then changed
922 * back) then we're done.
923 */
924 val = msm_readl_io(pctrl, g) & BIT(g->in_bit);
925 if (type == IRQ_TYPE_EDGE_RISING) {
926 if (!val)
927 return;
928 type = IRQ_TYPE_EDGE_FALLING;
929 } else if (type == IRQ_TYPE_EDGE_FALLING) {
930 if (val)
931 return;
932 type = IRQ_TYPE_EDGE_RISING;
933 }
934 } while (loop_limit-- > 0);
935 dev_warn_once(pctrl->dev, "dual-edge irq failed to stabilize\n");
936 }
937
msm_gpio_irq_ack(struct irq_data * d)938 static void msm_gpio_irq_ack(struct irq_data *d)
939 {
940 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
941 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
942 const struct msm_pingroup *g;
943 unsigned long flags;
944
945 if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) {
946 if (test_bit(d->hwirq, pctrl->dual_edge_irqs))
947 msm_gpio_update_dual_edge_parent(d);
948 return;
949 }
950
951 g = &pctrl->soc->groups[d->hwirq];
952
953 raw_spin_lock_irqsave(&pctrl->lock, flags);
954
955 msm_ack_intr_status(pctrl, g);
956
957 if (test_bit(d->hwirq, pctrl->dual_edge_irqs))
958 msm_gpio_update_dual_edge_pos(pctrl, g, d);
959
960 raw_spin_unlock_irqrestore(&pctrl->lock, flags);
961 }
962
msm_gpio_irq_eoi(struct irq_data * d)963 static void msm_gpio_irq_eoi(struct irq_data *d)
964 {
965 d = d->parent_data;
966
967 if (d)
968 d->chip->irq_eoi(d);
969 }
970
msm_gpio_needs_dual_edge_parent_workaround(struct irq_data * d,unsigned int type)971 static bool msm_gpio_needs_dual_edge_parent_workaround(struct irq_data *d,
972 unsigned int type)
973 {
974 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
975 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
976
977 return type == IRQ_TYPE_EDGE_BOTH &&
978 pctrl->soc->wakeirq_dual_edge_errata && d->parent_data &&
979 test_bit(d->hwirq, pctrl->skip_wake_irqs);
980 }
981
msm_gpio_irq_set_type(struct irq_data * d,unsigned int type)982 static int msm_gpio_irq_set_type(struct irq_data *d, unsigned int type)
983 {
984 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
985 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
986 const struct msm_pingroup *g;
987 unsigned long flags;
988 bool was_enabled;
989 u32 val;
990
991 if (msm_gpio_needs_dual_edge_parent_workaround(d, type)) {
992 set_bit(d->hwirq, pctrl->dual_edge_irqs);
993 irq_set_handler_locked(d, handle_fasteoi_ack_irq);
994 msm_gpio_update_dual_edge_parent(d);
995 return 0;
996 }
997
998 if (d->parent_data)
999 irq_chip_set_type_parent(d, type);
1000
1001 if (test_bit(d->hwirq, pctrl->skip_wake_irqs)) {
1002 clear_bit(d->hwirq, pctrl->dual_edge_irqs);
1003 irq_set_handler_locked(d, handle_fasteoi_irq);
1004 return 0;
1005 }
1006
1007 g = &pctrl->soc->groups[d->hwirq];
1008
1009 raw_spin_lock_irqsave(&pctrl->lock, flags);
1010
1011 /*
1012 * For hw without possibility of detecting both edges
1013 */
1014 if (g->intr_detection_width == 1 && type == IRQ_TYPE_EDGE_BOTH)
1015 set_bit(d->hwirq, pctrl->dual_edge_irqs);
1016 else
1017 clear_bit(d->hwirq, pctrl->dual_edge_irqs);
1018
1019 /* Route interrupts to application cpu.
1020 * With intr_target_use_scm interrupts are routed to
1021 * application cpu using scm calls.
1022 */
1023 if (pctrl->intr_target_use_scm) {
1024 u32 addr = pctrl->phys_base[0] + g->intr_target_reg;
1025 int ret;
1026
1027 qcom_scm_io_readl(addr, &val);
1028
1029 val &= ~(7 << g->intr_target_bit);
1030 val |= g->intr_target_kpss_val << g->intr_target_bit;
1031
1032 ret = qcom_scm_io_writel(addr, val);
1033 if (ret)
1034 dev_err(pctrl->dev,
1035 "Failed routing %lu interrupt to Apps proc",
1036 d->hwirq);
1037 } else {
1038 val = msm_readl_intr_target(pctrl, g);
1039 val &= ~(7 << g->intr_target_bit);
1040 val |= g->intr_target_kpss_val << g->intr_target_bit;
1041 msm_writel_intr_target(val, pctrl, g);
1042 }
1043
1044 /* Update configuration for gpio.
1045 * RAW_STATUS_EN is left on for all gpio irqs. Due to the
1046 * internal circuitry of TLMM, toggling the RAW_STATUS
1047 * could cause the INTR_STATUS to be set for EDGE interrupts.
1048 */
1049 val = msm_readl_intr_cfg(pctrl, g);
1050 was_enabled = val & BIT(g->intr_raw_status_bit);
1051 val |= BIT(g->intr_raw_status_bit);
1052 if (g->intr_detection_width == 2) {
1053 val &= ~(3 << g->intr_detection_bit);
1054 val &= ~(1 << g->intr_polarity_bit);
1055 switch (type) {
1056 case IRQ_TYPE_EDGE_RISING:
1057 val |= 1 << g->intr_detection_bit;
1058 val |= BIT(g->intr_polarity_bit);
1059 break;
1060 case IRQ_TYPE_EDGE_FALLING:
1061 val |= 2 << g->intr_detection_bit;
1062 val |= BIT(g->intr_polarity_bit);
1063 break;
1064 case IRQ_TYPE_EDGE_BOTH:
1065 val |= 3 << g->intr_detection_bit;
1066 val |= BIT(g->intr_polarity_bit);
1067 break;
1068 case IRQ_TYPE_LEVEL_LOW:
1069 break;
1070 case IRQ_TYPE_LEVEL_HIGH:
1071 val |= BIT(g->intr_polarity_bit);
1072 break;
1073 }
1074 } else if (g->intr_detection_width == 1) {
1075 val &= ~(1 << g->intr_detection_bit);
1076 val &= ~(1 << g->intr_polarity_bit);
1077 switch (type) {
1078 case IRQ_TYPE_EDGE_RISING:
1079 val |= BIT(g->intr_detection_bit);
1080 val |= BIT(g->intr_polarity_bit);
1081 break;
1082 case IRQ_TYPE_EDGE_FALLING:
1083 val |= BIT(g->intr_detection_bit);
1084 break;
1085 case IRQ_TYPE_EDGE_BOTH:
1086 val |= BIT(g->intr_detection_bit);
1087 val |= BIT(g->intr_polarity_bit);
1088 break;
1089 case IRQ_TYPE_LEVEL_LOW:
1090 break;
1091 case IRQ_TYPE_LEVEL_HIGH:
1092 val |= BIT(g->intr_polarity_bit);
1093 break;
1094 }
1095 } else {
1096 BUG();
1097 }
1098 msm_writel_intr_cfg(val, pctrl, g);
1099
1100 /*
1101 * The first time we set RAW_STATUS_EN it could trigger an interrupt.
1102 * Clear the interrupt. This is safe because we have
1103 * IRQCHIP_SET_TYPE_MASKED.
1104 */
1105 if (!was_enabled)
1106 msm_ack_intr_status(pctrl, g);
1107
1108 if (test_bit(d->hwirq, pctrl->dual_edge_irqs))
1109 msm_gpio_update_dual_edge_pos(pctrl, g, d);
1110
1111 raw_spin_unlock_irqrestore(&pctrl->lock, flags);
1112
1113 if (type & (IRQ_TYPE_LEVEL_LOW | IRQ_TYPE_LEVEL_HIGH))
1114 irq_set_handler_locked(d, handle_level_irq);
1115 else if (type & (IRQ_TYPE_EDGE_FALLING | IRQ_TYPE_EDGE_RISING))
1116 irq_set_handler_locked(d, handle_edge_irq);
1117
1118 return 0;
1119 }
1120
msm_gpio_irq_set_wake(struct irq_data * d,unsigned int on)1121 static int msm_gpio_irq_set_wake(struct irq_data *d, unsigned int on)
1122 {
1123 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1124 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1125
1126 /*
1127 * While they may not wake up when the TLMM is powered off,
1128 * some GPIOs would like to wakeup the system from suspend
1129 * when TLMM is powered on. To allow that, enable the GPIO
1130 * summary line to be wakeup capable at GIC.
1131 */
1132 if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
1133 return irq_chip_set_wake_parent(d, on);
1134
1135 return irq_set_irq_wake(pctrl->irq, on);
1136 }
1137
msm_gpio_irq_reqres(struct irq_data * d)1138 static int msm_gpio_irq_reqres(struct irq_data *d)
1139 {
1140 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1141 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1142 int ret;
1143
1144 if (!try_module_get(gc->owner))
1145 return -ENODEV;
1146
1147 ret = msm_pinmux_request_gpio(pctrl->pctrl, NULL, d->hwirq);
1148 if (ret)
1149 goto out;
1150 msm_gpio_direction_input(gc, d->hwirq);
1151
1152 if (gpiochip_lock_as_irq(gc, d->hwirq)) {
1153 dev_err(gc->parent,
1154 "unable to lock HW IRQ %lu for IRQ\n",
1155 d->hwirq);
1156 ret = -EINVAL;
1157 goto out;
1158 }
1159
1160 /*
1161 * The disable / clear-enable workaround we do in msm_pinmux_set_mux()
1162 * only works if disable is not lazy since we only clear any bogus
1163 * interrupt in hardware. Explicitly mark the interrupt as UNLAZY.
1164 */
1165 irq_set_status_flags(d->irq, IRQ_DISABLE_UNLAZY);
1166
1167 return 0;
1168 out:
1169 module_put(gc->owner);
1170 return ret;
1171 }
1172
msm_gpio_irq_relres(struct irq_data * d)1173 static void msm_gpio_irq_relres(struct irq_data *d)
1174 {
1175 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1176
1177 gpiochip_unlock_as_irq(gc, d->hwirq);
1178 module_put(gc->owner);
1179 }
1180
msm_gpio_irq_set_affinity(struct irq_data * d,const struct cpumask * dest,bool force)1181 static int msm_gpio_irq_set_affinity(struct irq_data *d,
1182 const struct cpumask *dest, bool force)
1183 {
1184 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1185 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1186
1187 if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
1188 return irq_chip_set_affinity_parent(d, dest, force);
1189
1190 return -EINVAL;
1191 }
1192
msm_gpio_irq_set_vcpu_affinity(struct irq_data * d,void * vcpu_info)1193 static int msm_gpio_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1194 {
1195 struct gpio_chip *gc = irq_data_get_irq_chip_data(d);
1196 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1197
1198 if (d->parent_data && test_bit(d->hwirq, pctrl->skip_wake_irqs))
1199 return irq_chip_set_vcpu_affinity_parent(d, vcpu_info);
1200
1201 return -EINVAL;
1202 }
1203
msm_gpio_irq_handler(struct irq_desc * desc)1204 static void msm_gpio_irq_handler(struct irq_desc *desc)
1205 {
1206 struct gpio_chip *gc = irq_desc_get_handler_data(desc);
1207 const struct msm_pingroup *g;
1208 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1209 struct irq_chip *chip = irq_desc_get_chip(desc);
1210 int handled = 0;
1211 u32 val;
1212 int i;
1213
1214 chained_irq_enter(chip, desc);
1215
1216 /*
1217 * Each pin has it's own IRQ status register, so use
1218 * enabled_irq bitmap to limit the number of reads.
1219 */
1220 for_each_set_bit(i, pctrl->enabled_irqs, pctrl->chip.ngpio) {
1221 g = &pctrl->soc->groups[i];
1222 val = msm_readl_intr_status(pctrl, g);
1223 if (val & BIT(g->intr_status_bit)) {
1224 generic_handle_domain_irq(gc->irq.domain, i);
1225 handled++;
1226 }
1227 }
1228
1229 /* No interrupts were flagged */
1230 if (handled == 0)
1231 handle_bad_irq(desc);
1232
1233 chained_irq_exit(chip, desc);
1234 }
1235
msm_gpio_wakeirq(struct gpio_chip * gc,unsigned int child,unsigned int child_type,unsigned int * parent,unsigned int * parent_type)1236 static int msm_gpio_wakeirq(struct gpio_chip *gc,
1237 unsigned int child,
1238 unsigned int child_type,
1239 unsigned int *parent,
1240 unsigned int *parent_type)
1241 {
1242 struct msm_pinctrl *pctrl = gpiochip_get_data(gc);
1243 const struct msm_gpio_wakeirq_map *map;
1244 int i;
1245
1246 *parent = GPIO_NO_WAKE_IRQ;
1247 *parent_type = IRQ_TYPE_EDGE_RISING;
1248
1249 for (i = 0; i < pctrl->soc->nwakeirq_map; i++) {
1250 map = &pctrl->soc->wakeirq_map[i];
1251 if (map->gpio == child) {
1252 *parent = map->wakeirq;
1253 break;
1254 }
1255 }
1256
1257 return 0;
1258 }
1259
msm_gpio_needs_valid_mask(struct msm_pinctrl * pctrl)1260 static bool msm_gpio_needs_valid_mask(struct msm_pinctrl *pctrl)
1261 {
1262 if (pctrl->soc->reserved_gpios)
1263 return true;
1264
1265 return device_property_count_u16(pctrl->dev, "gpios") > 0;
1266 }
1267
1268 static const struct irq_chip msm_gpio_irq_chip = {
1269 .name = "msmgpio",
1270 .irq_enable = msm_gpio_irq_enable,
1271 .irq_disable = msm_gpio_irq_disable,
1272 .irq_mask = msm_gpio_irq_mask,
1273 .irq_unmask = msm_gpio_irq_unmask,
1274 .irq_ack = msm_gpio_irq_ack,
1275 .irq_eoi = msm_gpio_irq_eoi,
1276 .irq_set_type = msm_gpio_irq_set_type,
1277 .irq_set_wake = msm_gpio_irq_set_wake,
1278 .irq_request_resources = msm_gpio_irq_reqres,
1279 .irq_release_resources = msm_gpio_irq_relres,
1280 .irq_set_affinity = msm_gpio_irq_set_affinity,
1281 .irq_set_vcpu_affinity = msm_gpio_irq_set_vcpu_affinity,
1282 .flags = (IRQCHIP_MASK_ON_SUSPEND |
1283 IRQCHIP_SET_TYPE_MASKED |
1284 IRQCHIP_ENABLE_WAKEUP_ON_SUSPEND |
1285 IRQCHIP_IMMUTABLE),
1286 };
1287
msm_gpio_init(struct msm_pinctrl * pctrl)1288 static int msm_gpio_init(struct msm_pinctrl *pctrl)
1289 {
1290 struct gpio_chip *chip;
1291 struct gpio_irq_chip *girq;
1292 int i, ret;
1293 unsigned gpio, ngpio = pctrl->soc->ngpios;
1294 struct device_node *np;
1295 bool skip;
1296
1297 if (WARN_ON(ngpio > MAX_NR_GPIO))
1298 return -EINVAL;
1299
1300 chip = &pctrl->chip;
1301 chip->base = -1;
1302 chip->ngpio = ngpio;
1303 chip->label = dev_name(pctrl->dev);
1304 chip->parent = pctrl->dev;
1305 chip->owner = THIS_MODULE;
1306 if (msm_gpio_needs_valid_mask(pctrl))
1307 chip->init_valid_mask = msm_gpio_init_valid_mask;
1308
1309 np = of_parse_phandle(pctrl->dev->of_node, "wakeup-parent", 0);
1310 if (np) {
1311 chip->irq.parent_domain = irq_find_matching_host(np,
1312 DOMAIN_BUS_WAKEUP);
1313 of_node_put(np);
1314 if (!chip->irq.parent_domain)
1315 return -EPROBE_DEFER;
1316 chip->irq.child_to_parent_hwirq = msm_gpio_wakeirq;
1317 /*
1318 * Let's skip handling the GPIOs, if the parent irqchip
1319 * is handling the direct connect IRQ of the GPIO.
1320 */
1321 skip = irq_domain_qcom_handle_wakeup(chip->irq.parent_domain);
1322 for (i = 0; skip && i < pctrl->soc->nwakeirq_map; i++) {
1323 gpio = pctrl->soc->wakeirq_map[i].gpio;
1324 set_bit(gpio, pctrl->skip_wake_irqs);
1325 }
1326 }
1327
1328 girq = &chip->irq;
1329 gpio_irq_chip_set_chip(girq, &msm_gpio_irq_chip);
1330 girq->parent_handler = msm_gpio_irq_handler;
1331 girq->fwnode = pctrl->dev->fwnode;
1332 girq->num_parents = 1;
1333 girq->parents = devm_kcalloc(pctrl->dev, 1, sizeof(*girq->parents),
1334 GFP_KERNEL);
1335 if (!girq->parents)
1336 return -ENOMEM;
1337 girq->default_type = IRQ_TYPE_NONE;
1338 girq->handler = handle_bad_irq;
1339 girq->parents[0] = pctrl->irq;
1340
1341 ret = gpiochip_add_data(&pctrl->chip, pctrl);
1342 if (ret) {
1343 dev_err(pctrl->dev, "Failed register gpiochip\n");
1344 return ret;
1345 }
1346
1347 /*
1348 * For DeviceTree-supported systems, the gpio core checks the
1349 * pinctrl's device node for the "gpio-ranges" property.
1350 * If it is present, it takes care of adding the pin ranges
1351 * for the driver. In this case the driver can skip ahead.
1352 *
1353 * In order to remain compatible with older, existing DeviceTree
1354 * files which don't set the "gpio-ranges" property or systems that
1355 * utilize ACPI the driver has to call gpiochip_add_pin_range().
1356 */
1357 if (!of_property_read_bool(pctrl->dev->of_node, "gpio-ranges")) {
1358 ret = gpiochip_add_pin_range(&pctrl->chip,
1359 dev_name(pctrl->dev), 0, 0, chip->ngpio);
1360 if (ret) {
1361 dev_err(pctrl->dev, "Failed to add pin range\n");
1362 gpiochip_remove(&pctrl->chip);
1363 return ret;
1364 }
1365 }
1366
1367 return 0;
1368 }
1369
msm_ps_hold_restart(struct notifier_block * nb,unsigned long action,void * data)1370 static int msm_ps_hold_restart(struct notifier_block *nb, unsigned long action,
1371 void *data)
1372 {
1373 struct msm_pinctrl *pctrl = container_of(nb, struct msm_pinctrl, restart_nb);
1374
1375 writel(0, pctrl->regs[0] + PS_HOLD_OFFSET);
1376 mdelay(1000);
1377 return NOTIFY_DONE;
1378 }
1379
1380 static struct msm_pinctrl *poweroff_pctrl;
1381
msm_ps_hold_poweroff(void)1382 static void msm_ps_hold_poweroff(void)
1383 {
1384 msm_ps_hold_restart(&poweroff_pctrl->restart_nb, 0, NULL);
1385 }
1386
msm_pinctrl_setup_pm_reset(struct msm_pinctrl * pctrl)1387 static void msm_pinctrl_setup_pm_reset(struct msm_pinctrl *pctrl)
1388 {
1389 int i;
1390 const struct msm_function *func = pctrl->soc->functions;
1391
1392 for (i = 0; i < pctrl->soc->nfunctions; i++)
1393 if (!strcmp(func[i].name, "ps_hold")) {
1394 pctrl->restart_nb.notifier_call = msm_ps_hold_restart;
1395 pctrl->restart_nb.priority = 128;
1396 if (register_restart_handler(&pctrl->restart_nb))
1397 dev_err(pctrl->dev,
1398 "failed to setup restart handler.\n");
1399 poweroff_pctrl = pctrl;
1400 pm_power_off = msm_ps_hold_poweroff;
1401 break;
1402 }
1403 }
1404
msm_pinctrl_suspend(struct device * dev)1405 static __maybe_unused int msm_pinctrl_suspend(struct device *dev)
1406 {
1407 struct msm_pinctrl *pctrl = dev_get_drvdata(dev);
1408
1409 return pinctrl_force_sleep(pctrl->pctrl);
1410 }
1411
msm_pinctrl_resume(struct device * dev)1412 static __maybe_unused int msm_pinctrl_resume(struct device *dev)
1413 {
1414 struct msm_pinctrl *pctrl = dev_get_drvdata(dev);
1415
1416 return pinctrl_force_default(pctrl->pctrl);
1417 }
1418
1419 SIMPLE_DEV_PM_OPS(msm_pinctrl_dev_pm_ops, msm_pinctrl_suspend,
1420 msm_pinctrl_resume);
1421
1422 EXPORT_SYMBOL(msm_pinctrl_dev_pm_ops);
1423
msm_pinctrl_probe(struct platform_device * pdev,const struct msm_pinctrl_soc_data * soc_data)1424 int msm_pinctrl_probe(struct platform_device *pdev,
1425 const struct msm_pinctrl_soc_data *soc_data)
1426 {
1427 struct msm_pinctrl *pctrl;
1428 struct resource *res;
1429 int ret;
1430 int i;
1431
1432 pctrl = devm_kzalloc(&pdev->dev, sizeof(*pctrl), GFP_KERNEL);
1433 if (!pctrl)
1434 return -ENOMEM;
1435
1436 pctrl->dev = &pdev->dev;
1437 pctrl->soc = soc_data;
1438 pctrl->chip = msm_gpio_template;
1439 pctrl->intr_target_use_scm = of_device_is_compatible(
1440 pctrl->dev->of_node,
1441 "qcom,ipq8064-pinctrl");
1442
1443 raw_spin_lock_init(&pctrl->lock);
1444
1445 if (soc_data->tiles) {
1446 for (i = 0; i < soc_data->ntiles; i++) {
1447 res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1448 soc_data->tiles[i]);
1449 pctrl->regs[i] = devm_ioremap_resource(&pdev->dev, res);
1450 if (IS_ERR(pctrl->regs[i]))
1451 return PTR_ERR(pctrl->regs[i]);
1452 }
1453 } else {
1454 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1455 pctrl->regs[0] = devm_ioremap_resource(&pdev->dev, res);
1456 if (IS_ERR(pctrl->regs[0]))
1457 return PTR_ERR(pctrl->regs[0]);
1458
1459 pctrl->phys_base[0] = res->start;
1460 }
1461
1462 msm_pinctrl_setup_pm_reset(pctrl);
1463
1464 pctrl->irq = platform_get_irq(pdev, 0);
1465 if (pctrl->irq < 0)
1466 return pctrl->irq;
1467
1468 pctrl->desc.owner = THIS_MODULE;
1469 pctrl->desc.pctlops = &msm_pinctrl_ops;
1470 pctrl->desc.pmxops = &msm_pinmux_ops;
1471 pctrl->desc.confops = &msm_pinconf_ops;
1472 pctrl->desc.name = dev_name(&pdev->dev);
1473 pctrl->desc.pins = pctrl->soc->pins;
1474 pctrl->desc.npins = pctrl->soc->npins;
1475
1476 pctrl->pctrl = devm_pinctrl_register(&pdev->dev, &pctrl->desc, pctrl);
1477 if (IS_ERR(pctrl->pctrl)) {
1478 dev_err(&pdev->dev, "Couldn't register pinctrl driver\n");
1479 return PTR_ERR(pctrl->pctrl);
1480 }
1481
1482 ret = msm_gpio_init(pctrl);
1483 if (ret)
1484 return ret;
1485
1486 platform_set_drvdata(pdev, pctrl);
1487
1488 dev_dbg(&pdev->dev, "Probed Qualcomm pinctrl driver\n");
1489
1490 return 0;
1491 }
1492 EXPORT_SYMBOL(msm_pinctrl_probe);
1493
msm_pinctrl_remove(struct platform_device * pdev)1494 int msm_pinctrl_remove(struct platform_device *pdev)
1495 {
1496 struct msm_pinctrl *pctrl = platform_get_drvdata(pdev);
1497
1498 gpiochip_remove(&pctrl->chip);
1499
1500 unregister_restart_handler(&pctrl->restart_nb);
1501
1502 return 0;
1503 }
1504 EXPORT_SYMBOL(msm_pinctrl_remove);
1505
1506 MODULE_DESCRIPTION("Qualcomm Technologies, Inc. TLMM driver");
1507 MODULE_LICENSE("GPL v2");
1508