1 /*
2  *  linux/kernel/timer.c
3  *
4  *  Kernel internal timers, basic process system calls
5  *
6  *  Copyright (C) 1991, 1992  Linus Torvalds
7  *
8  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
9  *
10  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
11  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
12  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13  *              serialize accesses to xtime/lost_ticks).
14  *                              Copyright (C) 1998  Andrea Arcangeli
15  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
16  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
17  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
18  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
19  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20  */
21 
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
43 
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include <asm/div64.h>
47 #include <asm/timex.h>
48 #include <asm/io.h>
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/timer.h>
52 
53 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54 
55 EXPORT_SYMBOL(jiffies_64);
56 
57 /*
58  * per-CPU timer vector definitions:
59  */
60 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62 #define TVN_SIZE (1 << TVN_BITS)
63 #define TVR_SIZE (1 << TVR_BITS)
64 #define TVN_MASK (TVN_SIZE - 1)
65 #define TVR_MASK (TVR_SIZE - 1)
66 #define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
67 
68 struct tvec {
69 	struct list_head vec[TVN_SIZE];
70 };
71 
72 struct tvec_root {
73 	struct list_head vec[TVR_SIZE];
74 };
75 
76 struct tvec_base {
77 	spinlock_t lock;
78 	struct timer_list *running_timer;
79 	unsigned long timer_jiffies;
80 	unsigned long next_timer;
81 	struct tvec_root tv1;
82 	struct tvec tv2;
83 	struct tvec tv3;
84 	struct tvec tv4;
85 	struct tvec tv5;
86 } ____cacheline_aligned;
87 
88 struct tvec_base boot_tvec_bases;
89 EXPORT_SYMBOL(boot_tvec_bases);
90 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
91 
92 /* Functions below help us manage 'deferrable' flag */
tbase_get_deferrable(struct tvec_base * base)93 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
94 {
95 	return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
96 }
97 
tbase_get_base(struct tvec_base * base)98 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
99 {
100 	return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
101 }
102 
timer_set_deferrable(struct timer_list * timer)103 static inline void timer_set_deferrable(struct timer_list *timer)
104 {
105 	timer->base = TBASE_MAKE_DEFERRED(timer->base);
106 }
107 
108 static inline void
timer_set_base(struct timer_list * timer,struct tvec_base * new_base)109 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
110 {
111 	timer->base = (struct tvec_base *)((unsigned long)(new_base) |
112 				      tbase_get_deferrable(timer->base));
113 }
114 
round_jiffies_common(unsigned long j,int cpu,bool force_up)115 static unsigned long round_jiffies_common(unsigned long j, int cpu,
116 		bool force_up)
117 {
118 	int rem;
119 	unsigned long original = j;
120 
121 	/*
122 	 * We don't want all cpus firing their timers at once hitting the
123 	 * same lock or cachelines, so we skew each extra cpu with an extra
124 	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
125 	 * already did this.
126 	 * The skew is done by adding 3*cpunr, then round, then subtract this
127 	 * extra offset again.
128 	 */
129 	j += cpu * 3;
130 
131 	rem = j % HZ;
132 
133 	/*
134 	 * If the target jiffie is just after a whole second (which can happen
135 	 * due to delays of the timer irq, long irq off times etc etc) then
136 	 * we should round down to the whole second, not up. Use 1/4th second
137 	 * as cutoff for this rounding as an extreme upper bound for this.
138 	 * But never round down if @force_up is set.
139 	 */
140 	if (rem < HZ/4 && !force_up) /* round down */
141 		j = j - rem;
142 	else /* round up */
143 		j = j - rem + HZ;
144 
145 	/* now that we have rounded, subtract the extra skew again */
146 	j -= cpu * 3;
147 
148 	/*
149 	 * Make sure j is still in the future. Otherwise return the
150 	 * unmodified value.
151 	 */
152 	return time_is_after_jiffies(j) ? j : original;
153 }
154 
155 /**
156  * __round_jiffies - function to round jiffies to a full second
157  * @j: the time in (absolute) jiffies that should be rounded
158  * @cpu: the processor number on which the timeout will happen
159  *
160  * __round_jiffies() rounds an absolute time in the future (in jiffies)
161  * up or down to (approximately) full seconds. This is useful for timers
162  * for which the exact time they fire does not matter too much, as long as
163  * they fire approximately every X seconds.
164  *
165  * By rounding these timers to whole seconds, all such timers will fire
166  * at the same time, rather than at various times spread out. The goal
167  * of this is to have the CPU wake up less, which saves power.
168  *
169  * The exact rounding is skewed for each processor to avoid all
170  * processors firing at the exact same time, which could lead
171  * to lock contention or spurious cache line bouncing.
172  *
173  * The return value is the rounded version of the @j parameter.
174  */
__round_jiffies(unsigned long j,int cpu)175 unsigned long __round_jiffies(unsigned long j, int cpu)
176 {
177 	return round_jiffies_common(j, cpu, false);
178 }
179 EXPORT_SYMBOL_GPL(__round_jiffies);
180 
181 /**
182  * __round_jiffies_relative - function to round jiffies to a full second
183  * @j: the time in (relative) jiffies that should be rounded
184  * @cpu: the processor number on which the timeout will happen
185  *
186  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
187  * up or down to (approximately) full seconds. This is useful for timers
188  * for which the exact time they fire does not matter too much, as long as
189  * they fire approximately every X seconds.
190  *
191  * By rounding these timers to whole seconds, all such timers will fire
192  * at the same time, rather than at various times spread out. The goal
193  * of this is to have the CPU wake up less, which saves power.
194  *
195  * The exact rounding is skewed for each processor to avoid all
196  * processors firing at the exact same time, which could lead
197  * to lock contention or spurious cache line bouncing.
198  *
199  * The return value is the rounded version of the @j parameter.
200  */
__round_jiffies_relative(unsigned long j,int cpu)201 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
202 {
203 	unsigned long j0 = jiffies;
204 
205 	/* Use j0 because jiffies might change while we run */
206 	return round_jiffies_common(j + j0, cpu, false) - j0;
207 }
208 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
209 
210 /**
211  * round_jiffies - function to round jiffies to a full second
212  * @j: the time in (absolute) jiffies that should be rounded
213  *
214  * round_jiffies() rounds an absolute time in the future (in jiffies)
215  * up or down to (approximately) full seconds. This is useful for timers
216  * for which the exact time they fire does not matter too much, as long as
217  * they fire approximately every X seconds.
218  *
219  * By rounding these timers to whole seconds, all such timers will fire
220  * at the same time, rather than at various times spread out. The goal
221  * of this is to have the CPU wake up less, which saves power.
222  *
223  * The return value is the rounded version of the @j parameter.
224  */
round_jiffies(unsigned long j)225 unsigned long round_jiffies(unsigned long j)
226 {
227 	return round_jiffies_common(j, raw_smp_processor_id(), false);
228 }
229 EXPORT_SYMBOL_GPL(round_jiffies);
230 
231 /**
232  * round_jiffies_relative - function to round jiffies to a full second
233  * @j: the time in (relative) jiffies that should be rounded
234  *
235  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
236  * up or down to (approximately) full seconds. This is useful for timers
237  * for which the exact time they fire does not matter too much, as long as
238  * they fire approximately every X seconds.
239  *
240  * By rounding these timers to whole seconds, all such timers will fire
241  * at the same time, rather than at various times spread out. The goal
242  * of this is to have the CPU wake up less, which saves power.
243  *
244  * The return value is the rounded version of the @j parameter.
245  */
round_jiffies_relative(unsigned long j)246 unsigned long round_jiffies_relative(unsigned long j)
247 {
248 	return __round_jiffies_relative(j, raw_smp_processor_id());
249 }
250 EXPORT_SYMBOL_GPL(round_jiffies_relative);
251 
252 /**
253  * __round_jiffies_up - function to round jiffies up to a full second
254  * @j: the time in (absolute) jiffies that should be rounded
255  * @cpu: the processor number on which the timeout will happen
256  *
257  * This is the same as __round_jiffies() except that it will never
258  * round down.  This is useful for timeouts for which the exact time
259  * of firing does not matter too much, as long as they don't fire too
260  * early.
261  */
__round_jiffies_up(unsigned long j,int cpu)262 unsigned long __round_jiffies_up(unsigned long j, int cpu)
263 {
264 	return round_jiffies_common(j, cpu, true);
265 }
266 EXPORT_SYMBOL_GPL(__round_jiffies_up);
267 
268 /**
269  * __round_jiffies_up_relative - function to round jiffies up to a full second
270  * @j: the time in (relative) jiffies that should be rounded
271  * @cpu: the processor number on which the timeout will happen
272  *
273  * This is the same as __round_jiffies_relative() except that it will never
274  * round down.  This is useful for timeouts for which the exact time
275  * of firing does not matter too much, as long as they don't fire too
276  * early.
277  */
__round_jiffies_up_relative(unsigned long j,int cpu)278 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
279 {
280 	unsigned long j0 = jiffies;
281 
282 	/* Use j0 because jiffies might change while we run */
283 	return round_jiffies_common(j + j0, cpu, true) - j0;
284 }
285 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
286 
287 /**
288  * round_jiffies_up - function to round jiffies up to a full second
289  * @j: the time in (absolute) jiffies that should be rounded
290  *
291  * This is the same as round_jiffies() except that it will never
292  * round down.  This is useful for timeouts for which the exact time
293  * of firing does not matter too much, as long as they don't fire too
294  * early.
295  */
round_jiffies_up(unsigned long j)296 unsigned long round_jiffies_up(unsigned long j)
297 {
298 	return round_jiffies_common(j, raw_smp_processor_id(), true);
299 }
300 EXPORT_SYMBOL_GPL(round_jiffies_up);
301 
302 /**
303  * round_jiffies_up_relative - function to round jiffies up to a full second
304  * @j: the time in (relative) jiffies that should be rounded
305  *
306  * This is the same as round_jiffies_relative() except that it will never
307  * round down.  This is useful for timeouts for which the exact time
308  * of firing does not matter too much, as long as they don't fire too
309  * early.
310  */
round_jiffies_up_relative(unsigned long j)311 unsigned long round_jiffies_up_relative(unsigned long j)
312 {
313 	return __round_jiffies_up_relative(j, raw_smp_processor_id());
314 }
315 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
316 
317 /**
318  * set_timer_slack - set the allowed slack for a timer
319  * @timer: the timer to be modified
320  * @slack_hz: the amount of time (in jiffies) allowed for rounding
321  *
322  * Set the amount of time, in jiffies, that a certain timer has
323  * in terms of slack. By setting this value, the timer subsystem
324  * will schedule the actual timer somewhere between
325  * the time mod_timer() asks for, and that time plus the slack.
326  *
327  * By setting the slack to -1, a percentage of the delay is used
328  * instead.
329  */
set_timer_slack(struct timer_list * timer,int slack_hz)330 void set_timer_slack(struct timer_list *timer, int slack_hz)
331 {
332 	timer->slack = slack_hz;
333 }
334 EXPORT_SYMBOL_GPL(set_timer_slack);
335 
internal_add_timer(struct tvec_base * base,struct timer_list * timer)336 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
337 {
338 	unsigned long expires = timer->expires;
339 	unsigned long idx = expires - base->timer_jiffies;
340 	struct list_head *vec;
341 
342 	if (idx < TVR_SIZE) {
343 		int i = expires & TVR_MASK;
344 		vec = base->tv1.vec + i;
345 	} else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
346 		int i = (expires >> TVR_BITS) & TVN_MASK;
347 		vec = base->tv2.vec + i;
348 	} else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
349 		int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
350 		vec = base->tv3.vec + i;
351 	} else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
352 		int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
353 		vec = base->tv4.vec + i;
354 	} else if ((signed long) idx < 0) {
355 		/*
356 		 * Can happen if you add a timer with expires == jiffies,
357 		 * or you set a timer to go off in the past
358 		 */
359 		vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
360 	} else {
361 		int i;
362 		/* If the timeout is larger than MAX_TVAL (on 64-bit
363 		 * architectures or with CONFIG_BASE_SMALL=1) then we
364 		 * use the maximum timeout.
365 		 */
366 		if (idx > MAX_TVAL) {
367 			idx = MAX_TVAL;
368 			expires = idx + base->timer_jiffies;
369 		}
370 		i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
371 		vec = base->tv5.vec + i;
372 	}
373 	/*
374 	 * Timers are FIFO:
375 	 */
376 	list_add_tail(&timer->entry, vec);
377 }
378 
379 #ifdef CONFIG_TIMER_STATS
__timer_stats_timer_set_start_info(struct timer_list * timer,void * addr)380 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
381 {
382 	if (timer->start_site)
383 		return;
384 
385 	timer->start_site = addr;
386 	memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
387 	timer->start_pid = current->pid;
388 }
389 
timer_stats_account_timer(struct timer_list * timer)390 static void timer_stats_account_timer(struct timer_list *timer)
391 {
392 	unsigned int flag = 0;
393 
394 	if (likely(!timer->start_site))
395 		return;
396 	if (unlikely(tbase_get_deferrable(timer->base)))
397 		flag |= TIMER_STATS_FLAG_DEFERRABLE;
398 
399 	timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
400 				 timer->function, timer->start_comm, flag);
401 }
402 
403 #else
timer_stats_account_timer(struct timer_list * timer)404 static void timer_stats_account_timer(struct timer_list *timer) {}
405 #endif
406 
407 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
408 
409 static struct debug_obj_descr timer_debug_descr;
410 
timer_debug_hint(void * addr)411 static void *timer_debug_hint(void *addr)
412 {
413 	return ((struct timer_list *) addr)->function;
414 }
415 
416 /*
417  * fixup_init is called when:
418  * - an active object is initialized
419  */
timer_fixup_init(void * addr,enum debug_obj_state state)420 static int timer_fixup_init(void *addr, enum debug_obj_state state)
421 {
422 	struct timer_list *timer = addr;
423 
424 	switch (state) {
425 	case ODEBUG_STATE_ACTIVE:
426 		del_timer_sync(timer);
427 		debug_object_init(timer, &timer_debug_descr);
428 		return 1;
429 	default:
430 		return 0;
431 	}
432 }
433 
434 /* Stub timer callback for improperly used timers. */
stub_timer(unsigned long data)435 static void stub_timer(unsigned long data)
436 {
437 	WARN_ON(1);
438 }
439 
440 /*
441  * fixup_activate is called when:
442  * - an active object is activated
443  * - an unknown object is activated (might be a statically initialized object)
444  */
timer_fixup_activate(void * addr,enum debug_obj_state state)445 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
446 {
447 	struct timer_list *timer = addr;
448 
449 	switch (state) {
450 
451 	case ODEBUG_STATE_NOTAVAILABLE:
452 		/*
453 		 * This is not really a fixup. The timer was
454 		 * statically initialized. We just make sure that it
455 		 * is tracked in the object tracker.
456 		 */
457 		if (timer->entry.next == NULL &&
458 		    timer->entry.prev == TIMER_ENTRY_STATIC) {
459 			debug_object_init(timer, &timer_debug_descr);
460 			debug_object_activate(timer, &timer_debug_descr);
461 			return 0;
462 		} else {
463 			setup_timer(timer, stub_timer, 0);
464 			return 1;
465 		}
466 		return 0;
467 
468 	case ODEBUG_STATE_ACTIVE:
469 		WARN_ON(1);
470 
471 	default:
472 		return 0;
473 	}
474 }
475 
476 /*
477  * fixup_free is called when:
478  * - an active object is freed
479  */
timer_fixup_free(void * addr,enum debug_obj_state state)480 static int timer_fixup_free(void *addr, enum debug_obj_state state)
481 {
482 	struct timer_list *timer = addr;
483 
484 	switch (state) {
485 	case ODEBUG_STATE_ACTIVE:
486 		del_timer_sync(timer);
487 		debug_object_free(timer, &timer_debug_descr);
488 		return 1;
489 	default:
490 		return 0;
491 	}
492 }
493 
494 /*
495  * fixup_assert_init is called when:
496  * - an untracked/uninit-ed object is found
497  */
timer_fixup_assert_init(void * addr,enum debug_obj_state state)498 static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
499 {
500 	struct timer_list *timer = addr;
501 
502 	switch (state) {
503 	case ODEBUG_STATE_NOTAVAILABLE:
504 		if (timer->entry.prev == TIMER_ENTRY_STATIC) {
505 			/*
506 			 * This is not really a fixup. The timer was
507 			 * statically initialized. We just make sure that it
508 			 * is tracked in the object tracker.
509 			 */
510 			debug_object_init(timer, &timer_debug_descr);
511 			return 0;
512 		} else {
513 			setup_timer(timer, stub_timer, 0);
514 			return 1;
515 		}
516 	default:
517 		return 0;
518 	}
519 }
520 
521 static struct debug_obj_descr timer_debug_descr = {
522 	.name			= "timer_list",
523 	.debug_hint		= timer_debug_hint,
524 	.fixup_init		= timer_fixup_init,
525 	.fixup_activate		= timer_fixup_activate,
526 	.fixup_free		= timer_fixup_free,
527 	.fixup_assert_init	= timer_fixup_assert_init,
528 };
529 
debug_timer_init(struct timer_list * timer)530 static inline void debug_timer_init(struct timer_list *timer)
531 {
532 	debug_object_init(timer, &timer_debug_descr);
533 }
534 
debug_timer_activate(struct timer_list * timer)535 static inline void debug_timer_activate(struct timer_list *timer)
536 {
537 	debug_object_activate(timer, &timer_debug_descr);
538 }
539 
debug_timer_deactivate(struct timer_list * timer)540 static inline void debug_timer_deactivate(struct timer_list *timer)
541 {
542 	debug_object_deactivate(timer, &timer_debug_descr);
543 }
544 
debug_timer_free(struct timer_list * timer)545 static inline void debug_timer_free(struct timer_list *timer)
546 {
547 	debug_object_free(timer, &timer_debug_descr);
548 }
549 
debug_timer_assert_init(struct timer_list * timer)550 static inline void debug_timer_assert_init(struct timer_list *timer)
551 {
552 	debug_object_assert_init(timer, &timer_debug_descr);
553 }
554 
555 static void __init_timer(struct timer_list *timer,
556 			 const char *name,
557 			 struct lock_class_key *key);
558 
init_timer_on_stack_key(struct timer_list * timer,const char * name,struct lock_class_key * key)559 void init_timer_on_stack_key(struct timer_list *timer,
560 			     const char *name,
561 			     struct lock_class_key *key)
562 {
563 	debug_object_init_on_stack(timer, &timer_debug_descr);
564 	__init_timer(timer, name, key);
565 }
566 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
567 
destroy_timer_on_stack(struct timer_list * timer)568 void destroy_timer_on_stack(struct timer_list *timer)
569 {
570 	debug_object_free(timer, &timer_debug_descr);
571 }
572 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
573 
574 #else
debug_timer_init(struct timer_list * timer)575 static inline void debug_timer_init(struct timer_list *timer) { }
debug_timer_activate(struct timer_list * timer)576 static inline void debug_timer_activate(struct timer_list *timer) { }
debug_timer_deactivate(struct timer_list * timer)577 static inline void debug_timer_deactivate(struct timer_list *timer) { }
debug_timer_assert_init(struct timer_list * timer)578 static inline void debug_timer_assert_init(struct timer_list *timer) { }
579 #endif
580 
debug_init(struct timer_list * timer)581 static inline void debug_init(struct timer_list *timer)
582 {
583 	debug_timer_init(timer);
584 	trace_timer_init(timer);
585 }
586 
587 static inline void
debug_activate(struct timer_list * timer,unsigned long expires)588 debug_activate(struct timer_list *timer, unsigned long expires)
589 {
590 	debug_timer_activate(timer);
591 	trace_timer_start(timer, expires);
592 }
593 
debug_deactivate(struct timer_list * timer)594 static inline void debug_deactivate(struct timer_list *timer)
595 {
596 	debug_timer_deactivate(timer);
597 	trace_timer_cancel(timer);
598 }
599 
debug_assert_init(struct timer_list * timer)600 static inline void debug_assert_init(struct timer_list *timer)
601 {
602 	debug_timer_assert_init(timer);
603 }
604 
__init_timer(struct timer_list * timer,const char * name,struct lock_class_key * key)605 static void __init_timer(struct timer_list *timer,
606 			 const char *name,
607 			 struct lock_class_key *key)
608 {
609 	timer->entry.next = NULL;
610 	timer->base = __raw_get_cpu_var(tvec_bases);
611 	timer->slack = -1;
612 #ifdef CONFIG_TIMER_STATS
613 	timer->start_site = NULL;
614 	timer->start_pid = -1;
615 	memset(timer->start_comm, 0, TASK_COMM_LEN);
616 #endif
617 	lockdep_init_map(&timer->lockdep_map, name, key, 0);
618 }
619 
setup_deferrable_timer_on_stack_key(struct timer_list * timer,const char * name,struct lock_class_key * key,void (* function)(unsigned long),unsigned long data)620 void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
621 					 const char *name,
622 					 struct lock_class_key *key,
623 					 void (*function)(unsigned long),
624 					 unsigned long data)
625 {
626 	timer->function = function;
627 	timer->data = data;
628 	init_timer_on_stack_key(timer, name, key);
629 	timer_set_deferrable(timer);
630 }
631 EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
632 
633 /**
634  * init_timer_key - initialize a timer
635  * @timer: the timer to be initialized
636  * @name: name of the timer
637  * @key: lockdep class key of the fake lock used for tracking timer
638  *       sync lock dependencies
639  *
640  * init_timer_key() must be done to a timer prior calling *any* of the
641  * other timer functions.
642  */
init_timer_key(struct timer_list * timer,const char * name,struct lock_class_key * key)643 void init_timer_key(struct timer_list *timer,
644 		    const char *name,
645 		    struct lock_class_key *key)
646 {
647 	debug_init(timer);
648 	__init_timer(timer, name, key);
649 }
650 EXPORT_SYMBOL(init_timer_key);
651 
init_timer_deferrable_key(struct timer_list * timer,const char * name,struct lock_class_key * key)652 void init_timer_deferrable_key(struct timer_list *timer,
653 			       const char *name,
654 			       struct lock_class_key *key)
655 {
656 	init_timer_key(timer, name, key);
657 	timer_set_deferrable(timer);
658 }
659 EXPORT_SYMBOL(init_timer_deferrable_key);
660 
detach_timer(struct timer_list * timer,int clear_pending)661 static inline void detach_timer(struct timer_list *timer,
662 				int clear_pending)
663 {
664 	struct list_head *entry = &timer->entry;
665 
666 	debug_deactivate(timer);
667 
668 	__list_del(entry->prev, entry->next);
669 	if (clear_pending)
670 		entry->next = NULL;
671 	entry->prev = LIST_POISON2;
672 }
673 
674 /*
675  * We are using hashed locking: holding per_cpu(tvec_bases).lock
676  * means that all timers which are tied to this base via timer->base are
677  * locked, and the base itself is locked too.
678  *
679  * So __run_timers/migrate_timers can safely modify all timers which could
680  * be found on ->tvX lists.
681  *
682  * When the timer's base is locked, and the timer removed from list, it is
683  * possible to set timer->base = NULL and drop the lock: the timer remains
684  * locked.
685  */
lock_timer_base(struct timer_list * timer,unsigned long * flags)686 static struct tvec_base *lock_timer_base(struct timer_list *timer,
687 					unsigned long *flags)
688 	__acquires(timer->base->lock)
689 {
690 	struct tvec_base *base;
691 
692 	for (;;) {
693 		struct tvec_base *prelock_base = timer->base;
694 		base = tbase_get_base(prelock_base);
695 		if (likely(base != NULL)) {
696 			spin_lock_irqsave(&base->lock, *flags);
697 			if (likely(prelock_base == timer->base))
698 				return base;
699 			/* The timer has migrated to another CPU */
700 			spin_unlock_irqrestore(&base->lock, *flags);
701 		}
702 		cpu_relax();
703 	}
704 }
705 
706 static inline int
__mod_timer(struct timer_list * timer,unsigned long expires,bool pending_only,int pinned)707 __mod_timer(struct timer_list *timer, unsigned long expires,
708 						bool pending_only, int pinned)
709 {
710 	struct tvec_base *base, *new_base;
711 	unsigned long flags;
712 	int ret = 0 , cpu;
713 
714 	timer_stats_timer_set_start_info(timer);
715 	BUG_ON(!timer->function);
716 
717 	base = lock_timer_base(timer, &flags);
718 
719 	if (timer_pending(timer)) {
720 		detach_timer(timer, 0);
721 		if (timer->expires == base->next_timer &&
722 		    !tbase_get_deferrable(timer->base))
723 			base->next_timer = base->timer_jiffies;
724 		ret = 1;
725 	} else {
726 		if (pending_only)
727 			goto out_unlock;
728 	}
729 
730 	debug_activate(timer, expires);
731 
732 	cpu = smp_processor_id();
733 
734 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
735 	if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
736 		cpu = get_nohz_timer_target();
737 #endif
738 	new_base = per_cpu(tvec_bases, cpu);
739 
740 	if (base != new_base) {
741 		/*
742 		 * We are trying to schedule the timer on the local CPU.
743 		 * However we can't change timer's base while it is running,
744 		 * otherwise del_timer_sync() can't detect that the timer's
745 		 * handler yet has not finished. This also guarantees that
746 		 * the timer is serialized wrt itself.
747 		 */
748 		if (likely(base->running_timer != timer)) {
749 			/* See the comment in lock_timer_base() */
750 			timer_set_base(timer, NULL);
751 			spin_unlock(&base->lock);
752 			base = new_base;
753 			spin_lock(&base->lock);
754 			timer_set_base(timer, base);
755 		}
756 	}
757 
758 	timer->expires = expires;
759 	if (time_before(timer->expires, base->next_timer) &&
760 	    !tbase_get_deferrable(timer->base))
761 		base->next_timer = timer->expires;
762 	internal_add_timer(base, timer);
763 
764 out_unlock:
765 	spin_unlock_irqrestore(&base->lock, flags);
766 
767 	return ret;
768 }
769 
770 /**
771  * mod_timer_pending - modify a pending timer's timeout
772  * @timer: the pending timer to be modified
773  * @expires: new timeout in jiffies
774  *
775  * mod_timer_pending() is the same for pending timers as mod_timer(),
776  * but will not re-activate and modify already deleted timers.
777  *
778  * It is useful for unserialized use of timers.
779  */
mod_timer_pending(struct timer_list * timer,unsigned long expires)780 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
781 {
782 	return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
783 }
784 EXPORT_SYMBOL(mod_timer_pending);
785 
786 /*
787  * Decide where to put the timer while taking the slack into account
788  *
789  * Algorithm:
790  *   1) calculate the maximum (absolute) time
791  *   2) calculate the highest bit where the expires and new max are different
792  *   3) use this bit to make a mask
793  *   4) use the bitmask to round down the maximum time, so that all last
794  *      bits are zeros
795  */
796 static inline
apply_slack(struct timer_list * timer,unsigned long expires)797 unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
798 {
799 	unsigned long expires_limit, mask;
800 	int bit;
801 
802 	if (timer->slack >= 0) {
803 		expires_limit = expires + timer->slack;
804 	} else {
805 		long delta = expires - jiffies;
806 
807 		if (delta < 256)
808 			return expires;
809 
810 		expires_limit = expires + delta / 256;
811 	}
812 	mask = expires ^ expires_limit;
813 	if (mask == 0)
814 		return expires;
815 
816 	bit = find_last_bit(&mask, BITS_PER_LONG);
817 
818 	mask = (1UL << bit) - 1;
819 
820 	expires_limit = expires_limit & ~(mask);
821 
822 	return expires_limit;
823 }
824 
825 /**
826  * mod_timer - modify a timer's timeout
827  * @timer: the timer to be modified
828  * @expires: new timeout in jiffies
829  *
830  * mod_timer() is a more efficient way to update the expire field of an
831  * active timer (if the timer is inactive it will be activated)
832  *
833  * mod_timer(timer, expires) is equivalent to:
834  *
835  *     del_timer(timer); timer->expires = expires; add_timer(timer);
836  *
837  * Note that if there are multiple unserialized concurrent users of the
838  * same timer, then mod_timer() is the only safe way to modify the timeout,
839  * since add_timer() cannot modify an already running timer.
840  *
841  * The function returns whether it has modified a pending timer or not.
842  * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
843  * active timer returns 1.)
844  */
mod_timer(struct timer_list * timer,unsigned long expires)845 int mod_timer(struct timer_list *timer, unsigned long expires)
846 {
847 	expires = apply_slack(timer, expires);
848 
849 	/*
850 	 * This is a common optimization triggered by the
851 	 * networking code - if the timer is re-modified
852 	 * to be the same thing then just return:
853 	 */
854 	if (timer_pending(timer) && timer->expires == expires)
855 		return 1;
856 
857 	return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
858 }
859 EXPORT_SYMBOL(mod_timer);
860 
861 /**
862  * mod_timer_pinned - modify a timer's timeout
863  * @timer: the timer to be modified
864  * @expires: new timeout in jiffies
865  *
866  * mod_timer_pinned() is a way to update the expire field of an
867  * active timer (if the timer is inactive it will be activated)
868  * and not allow the timer to be migrated to a different CPU.
869  *
870  * mod_timer_pinned(timer, expires) is equivalent to:
871  *
872  *     del_timer(timer); timer->expires = expires; add_timer(timer);
873  */
mod_timer_pinned(struct timer_list * timer,unsigned long expires)874 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
875 {
876 	if (timer->expires == expires && timer_pending(timer))
877 		return 1;
878 
879 	return __mod_timer(timer, expires, false, TIMER_PINNED);
880 }
881 EXPORT_SYMBOL(mod_timer_pinned);
882 
883 /**
884  * add_timer - start a timer
885  * @timer: the timer to be added
886  *
887  * The kernel will do a ->function(->data) callback from the
888  * timer interrupt at the ->expires point in the future. The
889  * current time is 'jiffies'.
890  *
891  * The timer's ->expires, ->function (and if the handler uses it, ->data)
892  * fields must be set prior calling this function.
893  *
894  * Timers with an ->expires field in the past will be executed in the next
895  * timer tick.
896  */
add_timer(struct timer_list * timer)897 void add_timer(struct timer_list *timer)
898 {
899 	BUG_ON(timer_pending(timer));
900 	mod_timer(timer, timer->expires);
901 }
902 EXPORT_SYMBOL(add_timer);
903 
904 /**
905  * add_timer_on - start a timer on a particular CPU
906  * @timer: the timer to be added
907  * @cpu: the CPU to start it on
908  *
909  * This is not very scalable on SMP. Double adds are not possible.
910  */
add_timer_on(struct timer_list * timer,int cpu)911 void add_timer_on(struct timer_list *timer, int cpu)
912 {
913 	struct tvec_base *base = per_cpu(tvec_bases, cpu);
914 	unsigned long flags;
915 
916 	timer_stats_timer_set_start_info(timer);
917 	BUG_ON(timer_pending(timer) || !timer->function);
918 	spin_lock_irqsave(&base->lock, flags);
919 	timer_set_base(timer, base);
920 	debug_activate(timer, timer->expires);
921 	if (time_before(timer->expires, base->next_timer) &&
922 	    !tbase_get_deferrable(timer->base))
923 		base->next_timer = timer->expires;
924 	internal_add_timer(base, timer);
925 	/*
926 	 * Check whether the other CPU is idle and needs to be
927 	 * triggered to reevaluate the timer wheel when nohz is
928 	 * active. We are protected against the other CPU fiddling
929 	 * with the timer by holding the timer base lock. This also
930 	 * makes sure that a CPU on the way to idle can not evaluate
931 	 * the timer wheel.
932 	 */
933 	wake_up_idle_cpu(cpu);
934 	spin_unlock_irqrestore(&base->lock, flags);
935 }
936 EXPORT_SYMBOL_GPL(add_timer_on);
937 
938 /**
939  * del_timer - deactive a timer.
940  * @timer: the timer to be deactivated
941  *
942  * del_timer() deactivates a timer - this works on both active and inactive
943  * timers.
944  *
945  * The function returns whether it has deactivated a pending timer or not.
946  * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
947  * active timer returns 1.)
948  */
del_timer(struct timer_list * timer)949 int del_timer(struct timer_list *timer)
950 {
951 	struct tvec_base *base;
952 	unsigned long flags;
953 	int ret = 0;
954 
955 	debug_assert_init(timer);
956 
957 	timer_stats_timer_clear_start_info(timer);
958 	if (timer_pending(timer)) {
959 		base = lock_timer_base(timer, &flags);
960 		if (timer_pending(timer)) {
961 			detach_timer(timer, 1);
962 			if (timer->expires == base->next_timer &&
963 			    !tbase_get_deferrable(timer->base))
964 				base->next_timer = base->timer_jiffies;
965 			ret = 1;
966 		}
967 		spin_unlock_irqrestore(&base->lock, flags);
968 	}
969 
970 	return ret;
971 }
972 EXPORT_SYMBOL(del_timer);
973 
974 /**
975  * try_to_del_timer_sync - Try to deactivate a timer
976  * @timer: timer do del
977  *
978  * This function tries to deactivate a timer. Upon successful (ret >= 0)
979  * exit the timer is not queued and the handler is not running on any CPU.
980  */
try_to_del_timer_sync(struct timer_list * timer)981 int try_to_del_timer_sync(struct timer_list *timer)
982 {
983 	struct tvec_base *base;
984 	unsigned long flags;
985 	int ret = -1;
986 
987 	debug_assert_init(timer);
988 
989 	base = lock_timer_base(timer, &flags);
990 
991 	if (base->running_timer == timer)
992 		goto out;
993 
994 	timer_stats_timer_clear_start_info(timer);
995 	ret = 0;
996 	if (timer_pending(timer)) {
997 		detach_timer(timer, 1);
998 		if (timer->expires == base->next_timer &&
999 		    !tbase_get_deferrable(timer->base))
1000 			base->next_timer = base->timer_jiffies;
1001 		ret = 1;
1002 	}
1003 out:
1004 	spin_unlock_irqrestore(&base->lock, flags);
1005 
1006 	return ret;
1007 }
1008 EXPORT_SYMBOL(try_to_del_timer_sync);
1009 
1010 #ifdef CONFIG_SMP
1011 /**
1012  * del_timer_sync - deactivate a timer and wait for the handler to finish.
1013  * @timer: the timer to be deactivated
1014  *
1015  * This function only differs from del_timer() on SMP: besides deactivating
1016  * the timer it also makes sure the handler has finished executing on other
1017  * CPUs.
1018  *
1019  * Synchronization rules: Callers must prevent restarting of the timer,
1020  * otherwise this function is meaningless. It must not be called from
1021  * interrupt contexts. The caller must not hold locks which would prevent
1022  * completion of the timer's handler. The timer's handler must not call
1023  * add_timer_on(). Upon exit the timer is not queued and the handler is
1024  * not running on any CPU.
1025  *
1026  * Note: You must not hold locks that are held in interrupt context
1027  *   while calling this function. Even if the lock has nothing to do
1028  *   with the timer in question.  Here's why:
1029  *
1030  *    CPU0                             CPU1
1031  *    ----                             ----
1032  *                                   <SOFTIRQ>
1033  *                                   call_timer_fn();
1034  *                                     base->running_timer = mytimer;
1035  *  spin_lock_irq(somelock);
1036  *                                     <IRQ>
1037  *                                        spin_lock(somelock);
1038  *  del_timer_sync(mytimer);
1039  *   while (base->running_timer == mytimer);
1040  *
1041  * Now del_timer_sync() will never return and never release somelock.
1042  * The interrupt on the other CPU is waiting to grab somelock but
1043  * it has interrupted the softirq that CPU0 is waiting to finish.
1044  *
1045  * The function returns whether it has deactivated a pending timer or not.
1046  */
del_timer_sync(struct timer_list * timer)1047 int del_timer_sync(struct timer_list *timer)
1048 {
1049 #ifdef CONFIG_LOCKDEP
1050 	unsigned long flags;
1051 
1052 	/*
1053 	 * If lockdep gives a backtrace here, please reference
1054 	 * the synchronization rules above.
1055 	 */
1056 	local_irq_save(flags);
1057 	lock_map_acquire(&timer->lockdep_map);
1058 	lock_map_release(&timer->lockdep_map);
1059 	local_irq_restore(flags);
1060 #endif
1061 	/*
1062 	 * don't use it in hardirq context, because it
1063 	 * could lead to deadlock.
1064 	 */
1065 	WARN_ON(in_irq());
1066 	for (;;) {
1067 		int ret = try_to_del_timer_sync(timer);
1068 		if (ret >= 0)
1069 			return ret;
1070 		cpu_relax();
1071 	}
1072 }
1073 EXPORT_SYMBOL(del_timer_sync);
1074 #endif
1075 
cascade(struct tvec_base * base,struct tvec * tv,int index)1076 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1077 {
1078 	/* cascade all the timers from tv up one level */
1079 	struct timer_list *timer, *tmp;
1080 	struct list_head tv_list;
1081 
1082 	list_replace_init(tv->vec + index, &tv_list);
1083 
1084 	/*
1085 	 * We are removing _all_ timers from the list, so we
1086 	 * don't have to detach them individually.
1087 	 */
1088 	list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1089 		BUG_ON(tbase_get_base(timer->base) != base);
1090 		internal_add_timer(base, timer);
1091 	}
1092 
1093 	return index;
1094 }
1095 
call_timer_fn(struct timer_list * timer,void (* fn)(unsigned long),unsigned long data)1096 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1097 			  unsigned long data)
1098 {
1099 	int preempt_count = preempt_count();
1100 
1101 #ifdef CONFIG_LOCKDEP
1102 	/*
1103 	 * It is permissible to free the timer from inside the
1104 	 * function that is called from it, this we need to take into
1105 	 * account for lockdep too. To avoid bogus "held lock freed"
1106 	 * warnings as well as problems when looking into
1107 	 * timer->lockdep_map, make a copy and use that here.
1108 	 */
1109 	struct lockdep_map lockdep_map = timer->lockdep_map;
1110 #endif
1111 	/*
1112 	 * Couple the lock chain with the lock chain at
1113 	 * del_timer_sync() by acquiring the lock_map around the fn()
1114 	 * call here and in del_timer_sync().
1115 	 */
1116 	lock_map_acquire(&lockdep_map);
1117 
1118 	trace_timer_expire_entry(timer);
1119 	fn(data);
1120 	trace_timer_expire_exit(timer);
1121 
1122 	lock_map_release(&lockdep_map);
1123 
1124 	if (preempt_count != preempt_count()) {
1125 		WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1126 			  fn, preempt_count, preempt_count());
1127 		/*
1128 		 * Restore the preempt count. That gives us a decent
1129 		 * chance to survive and extract information. If the
1130 		 * callback kept a lock held, bad luck, but not worse
1131 		 * than the BUG() we had.
1132 		 */
1133 		preempt_count() = preempt_count;
1134 	}
1135 }
1136 
1137 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1138 
1139 /**
1140  * __run_timers - run all expired timers (if any) on this CPU.
1141  * @base: the timer vector to be processed.
1142  *
1143  * This function cascades all vectors and executes all expired timer
1144  * vectors.
1145  */
__run_timers(struct tvec_base * base)1146 static inline void __run_timers(struct tvec_base *base)
1147 {
1148 	struct timer_list *timer;
1149 
1150 	spin_lock_irq(&base->lock);
1151 	while (time_after_eq(jiffies, base->timer_jiffies)) {
1152 		struct list_head work_list;
1153 		struct list_head *head = &work_list;
1154 		int index = base->timer_jiffies & TVR_MASK;
1155 
1156 		/*
1157 		 * Cascade timers:
1158 		 */
1159 		if (!index &&
1160 			(!cascade(base, &base->tv2, INDEX(0))) &&
1161 				(!cascade(base, &base->tv3, INDEX(1))) &&
1162 					!cascade(base, &base->tv4, INDEX(2)))
1163 			cascade(base, &base->tv5, INDEX(3));
1164 		++base->timer_jiffies;
1165 		list_replace_init(base->tv1.vec + index, &work_list);
1166 		while (!list_empty(head)) {
1167 			void (*fn)(unsigned long);
1168 			unsigned long data;
1169 
1170 			timer = list_first_entry(head, struct timer_list,entry);
1171 			fn = timer->function;
1172 			data = timer->data;
1173 
1174 			timer_stats_account_timer(timer);
1175 
1176 			base->running_timer = timer;
1177 			detach_timer(timer, 1);
1178 
1179 			spin_unlock_irq(&base->lock);
1180 			call_timer_fn(timer, fn, data);
1181 			spin_lock_irq(&base->lock);
1182 		}
1183 	}
1184 	base->running_timer = NULL;
1185 	spin_unlock_irq(&base->lock);
1186 }
1187 
1188 #ifdef CONFIG_NO_HZ
1189 /*
1190  * Find out when the next timer event is due to happen. This
1191  * is used on S/390 to stop all activity when a CPU is idle.
1192  * This function needs to be called with interrupts disabled.
1193  */
__next_timer_interrupt(struct tvec_base * base)1194 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1195 {
1196 	unsigned long timer_jiffies = base->timer_jiffies;
1197 	unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1198 	int index, slot, array, found = 0;
1199 	struct timer_list *nte;
1200 	struct tvec *varray[4];
1201 
1202 	/* Look for timer events in tv1. */
1203 	index = slot = timer_jiffies & TVR_MASK;
1204 	do {
1205 		list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1206 			if (tbase_get_deferrable(nte->base))
1207 				continue;
1208 
1209 			found = 1;
1210 			expires = nte->expires;
1211 			/* Look at the cascade bucket(s)? */
1212 			if (!index || slot < index)
1213 				goto cascade;
1214 			return expires;
1215 		}
1216 		slot = (slot + 1) & TVR_MASK;
1217 	} while (slot != index);
1218 
1219 cascade:
1220 	/* Calculate the next cascade event */
1221 	if (index)
1222 		timer_jiffies += TVR_SIZE - index;
1223 	timer_jiffies >>= TVR_BITS;
1224 
1225 	/* Check tv2-tv5. */
1226 	varray[0] = &base->tv2;
1227 	varray[1] = &base->tv3;
1228 	varray[2] = &base->tv4;
1229 	varray[3] = &base->tv5;
1230 
1231 	for (array = 0; array < 4; array++) {
1232 		struct tvec *varp = varray[array];
1233 
1234 		index = slot = timer_jiffies & TVN_MASK;
1235 		do {
1236 			list_for_each_entry(nte, varp->vec + slot, entry) {
1237 				if (tbase_get_deferrable(nte->base))
1238 					continue;
1239 
1240 				found = 1;
1241 				if (time_before(nte->expires, expires))
1242 					expires = nte->expires;
1243 			}
1244 			/*
1245 			 * Do we still search for the first timer or are
1246 			 * we looking up the cascade buckets ?
1247 			 */
1248 			if (found) {
1249 				/* Look at the cascade bucket(s)? */
1250 				if (!index || slot < index)
1251 					break;
1252 				return expires;
1253 			}
1254 			slot = (slot + 1) & TVN_MASK;
1255 		} while (slot != index);
1256 
1257 		if (index)
1258 			timer_jiffies += TVN_SIZE - index;
1259 		timer_jiffies >>= TVN_BITS;
1260 	}
1261 	return expires;
1262 }
1263 
1264 /*
1265  * Check, if the next hrtimer event is before the next timer wheel
1266  * event:
1267  */
cmp_next_hrtimer_event(unsigned long now,unsigned long expires)1268 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1269 					    unsigned long expires)
1270 {
1271 	ktime_t hr_delta = hrtimer_get_next_event();
1272 	struct timespec tsdelta;
1273 	unsigned long delta;
1274 
1275 	if (hr_delta.tv64 == KTIME_MAX)
1276 		return expires;
1277 
1278 	/*
1279 	 * Expired timer available, let it expire in the next tick
1280 	 */
1281 	if (hr_delta.tv64 <= 0)
1282 		return now + 1;
1283 
1284 	tsdelta = ktime_to_timespec(hr_delta);
1285 	delta = timespec_to_jiffies(&tsdelta);
1286 
1287 	/*
1288 	 * Limit the delta to the max value, which is checked in
1289 	 * tick_nohz_stop_sched_tick():
1290 	 */
1291 	if (delta > NEXT_TIMER_MAX_DELTA)
1292 		delta = NEXT_TIMER_MAX_DELTA;
1293 
1294 	/*
1295 	 * Take rounding errors in to account and make sure, that it
1296 	 * expires in the next tick. Otherwise we go into an endless
1297 	 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1298 	 * the timer softirq
1299 	 */
1300 	if (delta < 1)
1301 		delta = 1;
1302 	now += delta;
1303 	if (time_before(now, expires))
1304 		return now;
1305 	return expires;
1306 }
1307 
1308 /**
1309  * get_next_timer_interrupt - return the jiffy of the next pending timer
1310  * @now: current time (in jiffies)
1311  */
get_next_timer_interrupt(unsigned long now)1312 unsigned long get_next_timer_interrupt(unsigned long now)
1313 {
1314 	struct tvec_base *base = __this_cpu_read(tvec_bases);
1315 	unsigned long expires;
1316 
1317 	/*
1318 	 * Pretend that there is no timer pending if the cpu is offline.
1319 	 * Possible pending timers will be migrated later to an active cpu.
1320 	 */
1321 	if (cpu_is_offline(smp_processor_id()))
1322 		return now + NEXT_TIMER_MAX_DELTA;
1323 	spin_lock(&base->lock);
1324 	if (time_before_eq(base->next_timer, base->timer_jiffies))
1325 		base->next_timer = __next_timer_interrupt(base);
1326 	expires = base->next_timer;
1327 	spin_unlock(&base->lock);
1328 
1329 	if (time_before_eq(expires, now))
1330 		return now;
1331 
1332 	return cmp_next_hrtimer_event(now, expires);
1333 }
1334 #endif
1335 
1336 /*
1337  * Called from the timer interrupt handler to charge one tick to the current
1338  * process.  user_tick is 1 if the tick is user time, 0 for system.
1339  */
update_process_times(int user_tick)1340 void update_process_times(int user_tick)
1341 {
1342 	struct task_struct *p = current;
1343 	int cpu = smp_processor_id();
1344 
1345 	/* Note: this timer irq context must be accounted for as well. */
1346 	account_process_tick(p, user_tick);
1347 	run_local_timers();
1348 	rcu_check_callbacks(cpu, user_tick);
1349 	printk_tick();
1350 #ifdef CONFIG_IRQ_WORK
1351 	if (in_irq())
1352 		irq_work_run();
1353 #endif
1354 	scheduler_tick();
1355 	run_posix_cpu_timers(p);
1356 }
1357 
1358 /*
1359  * This function runs timers and the timer-tq in bottom half context.
1360  */
run_timer_softirq(struct softirq_action * h)1361 static void run_timer_softirq(struct softirq_action *h)
1362 {
1363 	struct tvec_base *base = __this_cpu_read(tvec_bases);
1364 
1365 	hrtimer_run_pending();
1366 
1367 	if (time_after_eq(jiffies, base->timer_jiffies))
1368 		__run_timers(base);
1369 }
1370 
1371 /*
1372  * Called by the local, per-CPU timer interrupt on SMP.
1373  */
run_local_timers(void)1374 void run_local_timers(void)
1375 {
1376 	hrtimer_run_queues();
1377 	raise_softirq(TIMER_SOFTIRQ);
1378 }
1379 
1380 #ifdef __ARCH_WANT_SYS_ALARM
1381 
1382 /*
1383  * For backwards compatibility?  This can be done in libc so Alpha
1384  * and all newer ports shouldn't need it.
1385  */
SYSCALL_DEFINE1(alarm,unsigned int,seconds)1386 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1387 {
1388 	return alarm_setitimer(seconds);
1389 }
1390 
1391 #endif
1392 
1393 #ifndef __alpha__
1394 
1395 /*
1396  * The Alpha uses getxpid, getxuid, and getxgid instead.  Maybe this
1397  * should be moved into arch/i386 instead?
1398  */
1399 
1400 /**
1401  * sys_getpid - return the thread group id of the current process
1402  *
1403  * Note, despite the name, this returns the tgid not the pid.  The tgid and
1404  * the pid are identical unless CLONE_THREAD was specified on clone() in
1405  * which case the tgid is the same in all threads of the same group.
1406  *
1407  * This is SMP safe as current->tgid does not change.
1408  */
SYSCALL_DEFINE0(getpid)1409 SYSCALL_DEFINE0(getpid)
1410 {
1411 	return task_tgid_vnr(current);
1412 }
1413 
1414 /*
1415  * Accessing ->real_parent is not SMP-safe, it could
1416  * change from under us. However, we can use a stale
1417  * value of ->real_parent under rcu_read_lock(), see
1418  * release_task()->call_rcu(delayed_put_task_struct).
1419  */
SYSCALL_DEFINE0(getppid)1420 SYSCALL_DEFINE0(getppid)
1421 {
1422 	int pid;
1423 
1424 	rcu_read_lock();
1425 	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
1426 	rcu_read_unlock();
1427 
1428 	return pid;
1429 }
1430 
SYSCALL_DEFINE0(getuid)1431 SYSCALL_DEFINE0(getuid)
1432 {
1433 	/* Only we change this so SMP safe */
1434 	return current_uid();
1435 }
1436 
SYSCALL_DEFINE0(geteuid)1437 SYSCALL_DEFINE0(geteuid)
1438 {
1439 	/* Only we change this so SMP safe */
1440 	return current_euid();
1441 }
1442 
SYSCALL_DEFINE0(getgid)1443 SYSCALL_DEFINE0(getgid)
1444 {
1445 	/* Only we change this so SMP safe */
1446 	return current_gid();
1447 }
1448 
SYSCALL_DEFINE0(getegid)1449 SYSCALL_DEFINE0(getegid)
1450 {
1451 	/* Only we change this so SMP safe */
1452 	return  current_egid();
1453 }
1454 
1455 #endif
1456 
process_timeout(unsigned long __data)1457 static void process_timeout(unsigned long __data)
1458 {
1459 	wake_up_process((struct task_struct *)__data);
1460 }
1461 
1462 /**
1463  * schedule_timeout - sleep until timeout
1464  * @timeout: timeout value in jiffies
1465  *
1466  * Make the current task sleep until @timeout jiffies have
1467  * elapsed. The routine will return immediately unless
1468  * the current task state has been set (see set_current_state()).
1469  *
1470  * You can set the task state as follows -
1471  *
1472  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1473  * pass before the routine returns. The routine will return 0
1474  *
1475  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1476  * delivered to the current task. In this case the remaining time
1477  * in jiffies will be returned, or 0 if the timer expired in time
1478  *
1479  * The current task state is guaranteed to be TASK_RUNNING when this
1480  * routine returns.
1481  *
1482  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1483  * the CPU away without a bound on the timeout. In this case the return
1484  * value will be %MAX_SCHEDULE_TIMEOUT.
1485  *
1486  * In all cases the return value is guaranteed to be non-negative.
1487  */
schedule_timeout(signed long timeout)1488 signed long __sched schedule_timeout(signed long timeout)
1489 {
1490 	struct timer_list timer;
1491 	unsigned long expire;
1492 
1493 	switch (timeout)
1494 	{
1495 	case MAX_SCHEDULE_TIMEOUT:
1496 		/*
1497 		 * These two special cases are useful to be comfortable
1498 		 * in the caller. Nothing more. We could take
1499 		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1500 		 * but I' d like to return a valid offset (>=0) to allow
1501 		 * the caller to do everything it want with the retval.
1502 		 */
1503 		schedule();
1504 		goto out;
1505 	default:
1506 		/*
1507 		 * Another bit of PARANOID. Note that the retval will be
1508 		 * 0 since no piece of kernel is supposed to do a check
1509 		 * for a negative retval of schedule_timeout() (since it
1510 		 * should never happens anyway). You just have the printk()
1511 		 * that will tell you if something is gone wrong and where.
1512 		 */
1513 		if (timeout < 0) {
1514 			printk(KERN_ERR "schedule_timeout: wrong timeout "
1515 				"value %lx\n", timeout);
1516 			dump_stack();
1517 			current->state = TASK_RUNNING;
1518 			goto out;
1519 		}
1520 	}
1521 
1522 	expire = timeout + jiffies;
1523 
1524 	setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1525 	__mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1526 	schedule();
1527 	del_singleshot_timer_sync(&timer);
1528 
1529 	/* Remove the timer from the object tracker */
1530 	destroy_timer_on_stack(&timer);
1531 
1532 	timeout = expire - jiffies;
1533 
1534  out:
1535 	return timeout < 0 ? 0 : timeout;
1536 }
1537 EXPORT_SYMBOL(schedule_timeout);
1538 
1539 /*
1540  * We can use __set_current_state() here because schedule_timeout() calls
1541  * schedule() unconditionally.
1542  */
schedule_timeout_interruptible(signed long timeout)1543 signed long __sched schedule_timeout_interruptible(signed long timeout)
1544 {
1545 	__set_current_state(TASK_INTERRUPTIBLE);
1546 	return schedule_timeout(timeout);
1547 }
1548 EXPORT_SYMBOL(schedule_timeout_interruptible);
1549 
schedule_timeout_killable(signed long timeout)1550 signed long __sched schedule_timeout_killable(signed long timeout)
1551 {
1552 	__set_current_state(TASK_KILLABLE);
1553 	return schedule_timeout(timeout);
1554 }
1555 EXPORT_SYMBOL(schedule_timeout_killable);
1556 
schedule_timeout_uninterruptible(signed long timeout)1557 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1558 {
1559 	__set_current_state(TASK_UNINTERRUPTIBLE);
1560 	return schedule_timeout(timeout);
1561 }
1562 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1563 
1564 /* Thread ID - the internal kernel "pid" */
SYSCALL_DEFINE0(gettid)1565 SYSCALL_DEFINE0(gettid)
1566 {
1567 	return task_pid_vnr(current);
1568 }
1569 
1570 /**
1571  * do_sysinfo - fill in sysinfo struct
1572  * @info: pointer to buffer to fill
1573  */
do_sysinfo(struct sysinfo * info)1574 int do_sysinfo(struct sysinfo *info)
1575 {
1576 	unsigned long mem_total, sav_total;
1577 	unsigned int mem_unit, bitcount;
1578 	struct timespec tp;
1579 
1580 	memset(info, 0, sizeof(struct sysinfo));
1581 
1582 	ktime_get_ts(&tp);
1583 	monotonic_to_bootbased(&tp);
1584 	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1585 
1586 	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1587 
1588 	info->procs = nr_threads;
1589 
1590 	si_meminfo(info);
1591 	si_swapinfo(info);
1592 
1593 	/*
1594 	 * If the sum of all the available memory (i.e. ram + swap)
1595 	 * is less than can be stored in a 32 bit unsigned long then
1596 	 * we can be binary compatible with 2.2.x kernels.  If not,
1597 	 * well, in that case 2.2.x was broken anyways...
1598 	 *
1599 	 *  -Erik Andersen <andersee@debian.org>
1600 	 */
1601 
1602 	mem_total = info->totalram + info->totalswap;
1603 	if (mem_total < info->totalram || mem_total < info->totalswap)
1604 		goto out;
1605 	bitcount = 0;
1606 	mem_unit = info->mem_unit;
1607 	while (mem_unit > 1) {
1608 		bitcount++;
1609 		mem_unit >>= 1;
1610 		sav_total = mem_total;
1611 		mem_total <<= 1;
1612 		if (mem_total < sav_total)
1613 			goto out;
1614 	}
1615 
1616 	/*
1617 	 * If mem_total did not overflow, multiply all memory values by
1618 	 * info->mem_unit and set it to 1.  This leaves things compatible
1619 	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1620 	 * kernels...
1621 	 */
1622 
1623 	info->mem_unit = 1;
1624 	info->totalram <<= bitcount;
1625 	info->freeram <<= bitcount;
1626 	info->sharedram <<= bitcount;
1627 	info->bufferram <<= bitcount;
1628 	info->totalswap <<= bitcount;
1629 	info->freeswap <<= bitcount;
1630 	info->totalhigh <<= bitcount;
1631 	info->freehigh <<= bitcount;
1632 
1633 out:
1634 	return 0;
1635 }
1636 
SYSCALL_DEFINE1(sysinfo,struct sysinfo __user *,info)1637 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1638 {
1639 	struct sysinfo val;
1640 
1641 	do_sysinfo(&val);
1642 
1643 	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1644 		return -EFAULT;
1645 
1646 	return 0;
1647 }
1648 
init_timers_cpu(int cpu)1649 static int __cpuinit init_timers_cpu(int cpu)
1650 {
1651 	int j;
1652 	struct tvec_base *base;
1653 	static char __cpuinitdata tvec_base_done[NR_CPUS];
1654 
1655 	if (!tvec_base_done[cpu]) {
1656 		static char boot_done;
1657 
1658 		if (boot_done) {
1659 			/*
1660 			 * The APs use this path later in boot
1661 			 */
1662 			base = kmalloc_node(sizeof(*base),
1663 						GFP_KERNEL | __GFP_ZERO,
1664 						cpu_to_node(cpu));
1665 			if (!base)
1666 				return -ENOMEM;
1667 
1668 			/* Make sure that tvec_base is 2 byte aligned */
1669 			if (tbase_get_deferrable(base)) {
1670 				WARN_ON(1);
1671 				kfree(base);
1672 				return -ENOMEM;
1673 			}
1674 			per_cpu(tvec_bases, cpu) = base;
1675 		} else {
1676 			/*
1677 			 * This is for the boot CPU - we use compile-time
1678 			 * static initialisation because per-cpu memory isn't
1679 			 * ready yet and because the memory allocators are not
1680 			 * initialised either.
1681 			 */
1682 			boot_done = 1;
1683 			base = &boot_tvec_bases;
1684 		}
1685 		spin_lock_init(&base->lock);
1686 		tvec_base_done[cpu] = 1;
1687 	} else {
1688 		base = per_cpu(tvec_bases, cpu);
1689 	}
1690 
1691 
1692 	for (j = 0; j < TVN_SIZE; j++) {
1693 		INIT_LIST_HEAD(base->tv5.vec + j);
1694 		INIT_LIST_HEAD(base->tv4.vec + j);
1695 		INIT_LIST_HEAD(base->tv3.vec + j);
1696 		INIT_LIST_HEAD(base->tv2.vec + j);
1697 	}
1698 	for (j = 0; j < TVR_SIZE; j++)
1699 		INIT_LIST_HEAD(base->tv1.vec + j);
1700 
1701 	base->timer_jiffies = jiffies;
1702 	base->next_timer = base->timer_jiffies;
1703 	return 0;
1704 }
1705 
1706 #ifdef CONFIG_HOTPLUG_CPU
migrate_timer_list(struct tvec_base * new_base,struct list_head * head)1707 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1708 {
1709 	struct timer_list *timer;
1710 
1711 	while (!list_empty(head)) {
1712 		timer = list_first_entry(head, struct timer_list, entry);
1713 		detach_timer(timer, 0);
1714 		timer_set_base(timer, new_base);
1715 		if (time_before(timer->expires, new_base->next_timer) &&
1716 		    !tbase_get_deferrable(timer->base))
1717 			new_base->next_timer = timer->expires;
1718 		internal_add_timer(new_base, timer);
1719 	}
1720 }
1721 
migrate_timers(int cpu)1722 static void __cpuinit migrate_timers(int cpu)
1723 {
1724 	struct tvec_base *old_base;
1725 	struct tvec_base *new_base;
1726 	int i;
1727 
1728 	BUG_ON(cpu_online(cpu));
1729 	old_base = per_cpu(tvec_bases, cpu);
1730 	new_base = get_cpu_var(tvec_bases);
1731 	/*
1732 	 * The caller is globally serialized and nobody else
1733 	 * takes two locks at once, deadlock is not possible.
1734 	 */
1735 	spin_lock_irq(&new_base->lock);
1736 	spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1737 
1738 	BUG_ON(old_base->running_timer);
1739 
1740 	for (i = 0; i < TVR_SIZE; i++)
1741 		migrate_timer_list(new_base, old_base->tv1.vec + i);
1742 	for (i = 0; i < TVN_SIZE; i++) {
1743 		migrate_timer_list(new_base, old_base->tv2.vec + i);
1744 		migrate_timer_list(new_base, old_base->tv3.vec + i);
1745 		migrate_timer_list(new_base, old_base->tv4.vec + i);
1746 		migrate_timer_list(new_base, old_base->tv5.vec + i);
1747 	}
1748 
1749 	spin_unlock(&old_base->lock);
1750 	spin_unlock_irq(&new_base->lock);
1751 	put_cpu_var(tvec_bases);
1752 }
1753 #endif /* CONFIG_HOTPLUG_CPU */
1754 
timer_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1755 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1756 				unsigned long action, void *hcpu)
1757 {
1758 	long cpu = (long)hcpu;
1759 	int err;
1760 
1761 	switch(action) {
1762 	case CPU_UP_PREPARE:
1763 	case CPU_UP_PREPARE_FROZEN:
1764 		err = init_timers_cpu(cpu);
1765 		if (err < 0)
1766 			return notifier_from_errno(err);
1767 		break;
1768 #ifdef CONFIG_HOTPLUG_CPU
1769 	case CPU_DEAD:
1770 	case CPU_DEAD_FROZEN:
1771 		migrate_timers(cpu);
1772 		break;
1773 #endif
1774 	default:
1775 		break;
1776 	}
1777 	return NOTIFY_OK;
1778 }
1779 
1780 static struct notifier_block __cpuinitdata timers_nb = {
1781 	.notifier_call	= timer_cpu_notify,
1782 };
1783 
1784 
init_timers(void)1785 void __init init_timers(void)
1786 {
1787 	int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1788 				(void *)(long)smp_processor_id());
1789 
1790 	init_timer_stats();
1791 
1792 	BUG_ON(err != NOTIFY_OK);
1793 	register_cpu_notifier(&timers_nb);
1794 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1795 }
1796 
1797 /**
1798  * msleep - sleep safely even with waitqueue interruptions
1799  * @msecs: Time in milliseconds to sleep for
1800  */
msleep(unsigned int msecs)1801 void msleep(unsigned int msecs)
1802 {
1803 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1804 
1805 	while (timeout)
1806 		timeout = schedule_timeout_uninterruptible(timeout);
1807 }
1808 
1809 EXPORT_SYMBOL(msleep);
1810 
1811 /**
1812  * msleep_interruptible - sleep waiting for signals
1813  * @msecs: Time in milliseconds to sleep for
1814  */
msleep_interruptible(unsigned int msecs)1815 unsigned long msleep_interruptible(unsigned int msecs)
1816 {
1817 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1818 
1819 	while (timeout && !signal_pending(current))
1820 		timeout = schedule_timeout_interruptible(timeout);
1821 	return jiffies_to_msecs(timeout);
1822 }
1823 
1824 EXPORT_SYMBOL(msleep_interruptible);
1825 
do_usleep_range(unsigned long min,unsigned long max)1826 static int __sched do_usleep_range(unsigned long min, unsigned long max)
1827 {
1828 	ktime_t kmin;
1829 	unsigned long delta;
1830 
1831 	kmin = ktime_set(0, min * NSEC_PER_USEC);
1832 	delta = (max - min) * NSEC_PER_USEC;
1833 	return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1834 }
1835 
1836 /**
1837  * usleep_range - Drop in replacement for udelay where wakeup is flexible
1838  * @min: Minimum time in usecs to sleep
1839  * @max: Maximum time in usecs to sleep
1840  */
usleep_range(unsigned long min,unsigned long max)1841 void usleep_range(unsigned long min, unsigned long max)
1842 {
1843 	__set_current_state(TASK_UNINTERRUPTIBLE);
1844 	do_usleep_range(min, max);
1845 }
1846 EXPORT_SYMBOL(usleep_range);
1847