1 /*
2 * linux/kernel/timer.c
3 *
4 * Kernel internal timers, basic process system calls
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22 #include <linux/kernel_stat.h>
23 #include <linux/export.h>
24 #include <linux/interrupt.h>
25 #include <linux/percpu.h>
26 #include <linux/init.h>
27 #include <linux/mm.h>
28 #include <linux/swap.h>
29 #include <linux/pid_namespace.h>
30 #include <linux/notifier.h>
31 #include <linux/thread_info.h>
32 #include <linux/time.h>
33 #include <linux/jiffies.h>
34 #include <linux/posix-timers.h>
35 #include <linux/cpu.h>
36 #include <linux/syscalls.h>
37 #include <linux/delay.h>
38 #include <linux/tick.h>
39 #include <linux/kallsyms.h>
40 #include <linux/irq_work.h>
41 #include <linux/sched.h>
42 #include <linux/slab.h>
43
44 #include <asm/uaccess.h>
45 #include <asm/unistd.h>
46 #include <asm/div64.h>
47 #include <asm/timex.h>
48 #include <asm/io.h>
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/timer.h>
52
53 u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
54
55 EXPORT_SYMBOL(jiffies_64);
56
57 /*
58 * per-CPU timer vector definitions:
59 */
60 #define TVN_BITS (CONFIG_BASE_SMALL ? 4 : 6)
61 #define TVR_BITS (CONFIG_BASE_SMALL ? 6 : 8)
62 #define TVN_SIZE (1 << TVN_BITS)
63 #define TVR_SIZE (1 << TVR_BITS)
64 #define TVN_MASK (TVN_SIZE - 1)
65 #define TVR_MASK (TVR_SIZE - 1)
66 #define MAX_TVAL ((unsigned long)((1ULL << (TVR_BITS + 4*TVN_BITS)) - 1))
67
68 struct tvec {
69 struct list_head vec[TVN_SIZE];
70 };
71
72 struct tvec_root {
73 struct list_head vec[TVR_SIZE];
74 };
75
76 struct tvec_base {
77 spinlock_t lock;
78 struct timer_list *running_timer;
79 unsigned long timer_jiffies;
80 unsigned long next_timer;
81 struct tvec_root tv1;
82 struct tvec tv2;
83 struct tvec tv3;
84 struct tvec tv4;
85 struct tvec tv5;
86 } ____cacheline_aligned;
87
88 struct tvec_base boot_tvec_bases;
89 EXPORT_SYMBOL(boot_tvec_bases);
90 static DEFINE_PER_CPU(struct tvec_base *, tvec_bases) = &boot_tvec_bases;
91
92 /* Functions below help us manage 'deferrable' flag */
tbase_get_deferrable(struct tvec_base * base)93 static inline unsigned int tbase_get_deferrable(struct tvec_base *base)
94 {
95 return ((unsigned int)(unsigned long)base & TBASE_DEFERRABLE_FLAG);
96 }
97
tbase_get_base(struct tvec_base * base)98 static inline struct tvec_base *tbase_get_base(struct tvec_base *base)
99 {
100 return ((struct tvec_base *)((unsigned long)base & ~TBASE_DEFERRABLE_FLAG));
101 }
102
timer_set_deferrable(struct timer_list * timer)103 static inline void timer_set_deferrable(struct timer_list *timer)
104 {
105 timer->base = TBASE_MAKE_DEFERRED(timer->base);
106 }
107
108 static inline void
timer_set_base(struct timer_list * timer,struct tvec_base * new_base)109 timer_set_base(struct timer_list *timer, struct tvec_base *new_base)
110 {
111 timer->base = (struct tvec_base *)((unsigned long)(new_base) |
112 tbase_get_deferrable(timer->base));
113 }
114
round_jiffies_common(unsigned long j,int cpu,bool force_up)115 static unsigned long round_jiffies_common(unsigned long j, int cpu,
116 bool force_up)
117 {
118 int rem;
119 unsigned long original = j;
120
121 /*
122 * We don't want all cpus firing their timers at once hitting the
123 * same lock or cachelines, so we skew each extra cpu with an extra
124 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
125 * already did this.
126 * The skew is done by adding 3*cpunr, then round, then subtract this
127 * extra offset again.
128 */
129 j += cpu * 3;
130
131 rem = j % HZ;
132
133 /*
134 * If the target jiffie is just after a whole second (which can happen
135 * due to delays of the timer irq, long irq off times etc etc) then
136 * we should round down to the whole second, not up. Use 1/4th second
137 * as cutoff for this rounding as an extreme upper bound for this.
138 * But never round down if @force_up is set.
139 */
140 if (rem < HZ/4 && !force_up) /* round down */
141 j = j - rem;
142 else /* round up */
143 j = j - rem + HZ;
144
145 /* now that we have rounded, subtract the extra skew again */
146 j -= cpu * 3;
147
148 /*
149 * Make sure j is still in the future. Otherwise return the
150 * unmodified value.
151 */
152 return time_is_after_jiffies(j) ? j : original;
153 }
154
155 /**
156 * __round_jiffies - function to round jiffies to a full second
157 * @j: the time in (absolute) jiffies that should be rounded
158 * @cpu: the processor number on which the timeout will happen
159 *
160 * __round_jiffies() rounds an absolute time in the future (in jiffies)
161 * up or down to (approximately) full seconds. This is useful for timers
162 * for which the exact time they fire does not matter too much, as long as
163 * they fire approximately every X seconds.
164 *
165 * By rounding these timers to whole seconds, all such timers will fire
166 * at the same time, rather than at various times spread out. The goal
167 * of this is to have the CPU wake up less, which saves power.
168 *
169 * The exact rounding is skewed for each processor to avoid all
170 * processors firing at the exact same time, which could lead
171 * to lock contention or spurious cache line bouncing.
172 *
173 * The return value is the rounded version of the @j parameter.
174 */
__round_jiffies(unsigned long j,int cpu)175 unsigned long __round_jiffies(unsigned long j, int cpu)
176 {
177 return round_jiffies_common(j, cpu, false);
178 }
179 EXPORT_SYMBOL_GPL(__round_jiffies);
180
181 /**
182 * __round_jiffies_relative - function to round jiffies to a full second
183 * @j: the time in (relative) jiffies that should be rounded
184 * @cpu: the processor number on which the timeout will happen
185 *
186 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
187 * up or down to (approximately) full seconds. This is useful for timers
188 * for which the exact time they fire does not matter too much, as long as
189 * they fire approximately every X seconds.
190 *
191 * By rounding these timers to whole seconds, all such timers will fire
192 * at the same time, rather than at various times spread out. The goal
193 * of this is to have the CPU wake up less, which saves power.
194 *
195 * The exact rounding is skewed for each processor to avoid all
196 * processors firing at the exact same time, which could lead
197 * to lock contention or spurious cache line bouncing.
198 *
199 * The return value is the rounded version of the @j parameter.
200 */
__round_jiffies_relative(unsigned long j,int cpu)201 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
202 {
203 unsigned long j0 = jiffies;
204
205 /* Use j0 because jiffies might change while we run */
206 return round_jiffies_common(j + j0, cpu, false) - j0;
207 }
208 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
209
210 /**
211 * round_jiffies - function to round jiffies to a full second
212 * @j: the time in (absolute) jiffies that should be rounded
213 *
214 * round_jiffies() rounds an absolute time in the future (in jiffies)
215 * up or down to (approximately) full seconds. This is useful for timers
216 * for which the exact time they fire does not matter too much, as long as
217 * they fire approximately every X seconds.
218 *
219 * By rounding these timers to whole seconds, all such timers will fire
220 * at the same time, rather than at various times spread out. The goal
221 * of this is to have the CPU wake up less, which saves power.
222 *
223 * The return value is the rounded version of the @j parameter.
224 */
round_jiffies(unsigned long j)225 unsigned long round_jiffies(unsigned long j)
226 {
227 return round_jiffies_common(j, raw_smp_processor_id(), false);
228 }
229 EXPORT_SYMBOL_GPL(round_jiffies);
230
231 /**
232 * round_jiffies_relative - function to round jiffies to a full second
233 * @j: the time in (relative) jiffies that should be rounded
234 *
235 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
236 * up or down to (approximately) full seconds. This is useful for timers
237 * for which the exact time they fire does not matter too much, as long as
238 * they fire approximately every X seconds.
239 *
240 * By rounding these timers to whole seconds, all such timers will fire
241 * at the same time, rather than at various times spread out. The goal
242 * of this is to have the CPU wake up less, which saves power.
243 *
244 * The return value is the rounded version of the @j parameter.
245 */
round_jiffies_relative(unsigned long j)246 unsigned long round_jiffies_relative(unsigned long j)
247 {
248 return __round_jiffies_relative(j, raw_smp_processor_id());
249 }
250 EXPORT_SYMBOL_GPL(round_jiffies_relative);
251
252 /**
253 * __round_jiffies_up - function to round jiffies up to a full second
254 * @j: the time in (absolute) jiffies that should be rounded
255 * @cpu: the processor number on which the timeout will happen
256 *
257 * This is the same as __round_jiffies() except that it will never
258 * round down. This is useful for timeouts for which the exact time
259 * of firing does not matter too much, as long as they don't fire too
260 * early.
261 */
__round_jiffies_up(unsigned long j,int cpu)262 unsigned long __round_jiffies_up(unsigned long j, int cpu)
263 {
264 return round_jiffies_common(j, cpu, true);
265 }
266 EXPORT_SYMBOL_GPL(__round_jiffies_up);
267
268 /**
269 * __round_jiffies_up_relative - function to round jiffies up to a full second
270 * @j: the time in (relative) jiffies that should be rounded
271 * @cpu: the processor number on which the timeout will happen
272 *
273 * This is the same as __round_jiffies_relative() except that it will never
274 * round down. This is useful for timeouts for which the exact time
275 * of firing does not matter too much, as long as they don't fire too
276 * early.
277 */
__round_jiffies_up_relative(unsigned long j,int cpu)278 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
279 {
280 unsigned long j0 = jiffies;
281
282 /* Use j0 because jiffies might change while we run */
283 return round_jiffies_common(j + j0, cpu, true) - j0;
284 }
285 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
286
287 /**
288 * round_jiffies_up - function to round jiffies up to a full second
289 * @j: the time in (absolute) jiffies that should be rounded
290 *
291 * This is the same as round_jiffies() except that it will never
292 * round down. This is useful for timeouts for which the exact time
293 * of firing does not matter too much, as long as they don't fire too
294 * early.
295 */
round_jiffies_up(unsigned long j)296 unsigned long round_jiffies_up(unsigned long j)
297 {
298 return round_jiffies_common(j, raw_smp_processor_id(), true);
299 }
300 EXPORT_SYMBOL_GPL(round_jiffies_up);
301
302 /**
303 * round_jiffies_up_relative - function to round jiffies up to a full second
304 * @j: the time in (relative) jiffies that should be rounded
305 *
306 * This is the same as round_jiffies_relative() except that it will never
307 * round down. This is useful for timeouts for which the exact time
308 * of firing does not matter too much, as long as they don't fire too
309 * early.
310 */
round_jiffies_up_relative(unsigned long j)311 unsigned long round_jiffies_up_relative(unsigned long j)
312 {
313 return __round_jiffies_up_relative(j, raw_smp_processor_id());
314 }
315 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
316
317 /**
318 * set_timer_slack - set the allowed slack for a timer
319 * @timer: the timer to be modified
320 * @slack_hz: the amount of time (in jiffies) allowed for rounding
321 *
322 * Set the amount of time, in jiffies, that a certain timer has
323 * in terms of slack. By setting this value, the timer subsystem
324 * will schedule the actual timer somewhere between
325 * the time mod_timer() asks for, and that time plus the slack.
326 *
327 * By setting the slack to -1, a percentage of the delay is used
328 * instead.
329 */
set_timer_slack(struct timer_list * timer,int slack_hz)330 void set_timer_slack(struct timer_list *timer, int slack_hz)
331 {
332 timer->slack = slack_hz;
333 }
334 EXPORT_SYMBOL_GPL(set_timer_slack);
335
internal_add_timer(struct tvec_base * base,struct timer_list * timer)336 static void internal_add_timer(struct tvec_base *base, struct timer_list *timer)
337 {
338 unsigned long expires = timer->expires;
339 unsigned long idx = expires - base->timer_jiffies;
340 struct list_head *vec;
341
342 if (idx < TVR_SIZE) {
343 int i = expires & TVR_MASK;
344 vec = base->tv1.vec + i;
345 } else if (idx < 1 << (TVR_BITS + TVN_BITS)) {
346 int i = (expires >> TVR_BITS) & TVN_MASK;
347 vec = base->tv2.vec + i;
348 } else if (idx < 1 << (TVR_BITS + 2 * TVN_BITS)) {
349 int i = (expires >> (TVR_BITS + TVN_BITS)) & TVN_MASK;
350 vec = base->tv3.vec + i;
351 } else if (idx < 1 << (TVR_BITS + 3 * TVN_BITS)) {
352 int i = (expires >> (TVR_BITS + 2 * TVN_BITS)) & TVN_MASK;
353 vec = base->tv4.vec + i;
354 } else if ((signed long) idx < 0) {
355 /*
356 * Can happen if you add a timer with expires == jiffies,
357 * or you set a timer to go off in the past
358 */
359 vec = base->tv1.vec + (base->timer_jiffies & TVR_MASK);
360 } else {
361 int i;
362 /* If the timeout is larger than MAX_TVAL (on 64-bit
363 * architectures or with CONFIG_BASE_SMALL=1) then we
364 * use the maximum timeout.
365 */
366 if (idx > MAX_TVAL) {
367 idx = MAX_TVAL;
368 expires = idx + base->timer_jiffies;
369 }
370 i = (expires >> (TVR_BITS + 3 * TVN_BITS)) & TVN_MASK;
371 vec = base->tv5.vec + i;
372 }
373 /*
374 * Timers are FIFO:
375 */
376 list_add_tail(&timer->entry, vec);
377 }
378
379 #ifdef CONFIG_TIMER_STATS
__timer_stats_timer_set_start_info(struct timer_list * timer,void * addr)380 void __timer_stats_timer_set_start_info(struct timer_list *timer, void *addr)
381 {
382 if (timer->start_site)
383 return;
384
385 timer->start_site = addr;
386 memcpy(timer->start_comm, current->comm, TASK_COMM_LEN);
387 timer->start_pid = current->pid;
388 }
389
timer_stats_account_timer(struct timer_list * timer)390 static void timer_stats_account_timer(struct timer_list *timer)
391 {
392 unsigned int flag = 0;
393
394 if (likely(!timer->start_site))
395 return;
396 if (unlikely(tbase_get_deferrable(timer->base)))
397 flag |= TIMER_STATS_FLAG_DEFERRABLE;
398
399 timer_stats_update_stats(timer, timer->start_pid, timer->start_site,
400 timer->function, timer->start_comm, flag);
401 }
402
403 #else
timer_stats_account_timer(struct timer_list * timer)404 static void timer_stats_account_timer(struct timer_list *timer) {}
405 #endif
406
407 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
408
409 static struct debug_obj_descr timer_debug_descr;
410
timer_debug_hint(void * addr)411 static void *timer_debug_hint(void *addr)
412 {
413 return ((struct timer_list *) addr)->function;
414 }
415
416 /*
417 * fixup_init is called when:
418 * - an active object is initialized
419 */
timer_fixup_init(void * addr,enum debug_obj_state state)420 static int timer_fixup_init(void *addr, enum debug_obj_state state)
421 {
422 struct timer_list *timer = addr;
423
424 switch (state) {
425 case ODEBUG_STATE_ACTIVE:
426 del_timer_sync(timer);
427 debug_object_init(timer, &timer_debug_descr);
428 return 1;
429 default:
430 return 0;
431 }
432 }
433
434 /* Stub timer callback for improperly used timers. */
stub_timer(unsigned long data)435 static void stub_timer(unsigned long data)
436 {
437 WARN_ON(1);
438 }
439
440 /*
441 * fixup_activate is called when:
442 * - an active object is activated
443 * - an unknown object is activated (might be a statically initialized object)
444 */
timer_fixup_activate(void * addr,enum debug_obj_state state)445 static int timer_fixup_activate(void *addr, enum debug_obj_state state)
446 {
447 struct timer_list *timer = addr;
448
449 switch (state) {
450
451 case ODEBUG_STATE_NOTAVAILABLE:
452 /*
453 * This is not really a fixup. The timer was
454 * statically initialized. We just make sure that it
455 * is tracked in the object tracker.
456 */
457 if (timer->entry.next == NULL &&
458 timer->entry.prev == TIMER_ENTRY_STATIC) {
459 debug_object_init(timer, &timer_debug_descr);
460 debug_object_activate(timer, &timer_debug_descr);
461 return 0;
462 } else {
463 setup_timer(timer, stub_timer, 0);
464 return 1;
465 }
466 return 0;
467
468 case ODEBUG_STATE_ACTIVE:
469 WARN_ON(1);
470
471 default:
472 return 0;
473 }
474 }
475
476 /*
477 * fixup_free is called when:
478 * - an active object is freed
479 */
timer_fixup_free(void * addr,enum debug_obj_state state)480 static int timer_fixup_free(void *addr, enum debug_obj_state state)
481 {
482 struct timer_list *timer = addr;
483
484 switch (state) {
485 case ODEBUG_STATE_ACTIVE:
486 del_timer_sync(timer);
487 debug_object_free(timer, &timer_debug_descr);
488 return 1;
489 default:
490 return 0;
491 }
492 }
493
494 /*
495 * fixup_assert_init is called when:
496 * - an untracked/uninit-ed object is found
497 */
timer_fixup_assert_init(void * addr,enum debug_obj_state state)498 static int timer_fixup_assert_init(void *addr, enum debug_obj_state state)
499 {
500 struct timer_list *timer = addr;
501
502 switch (state) {
503 case ODEBUG_STATE_NOTAVAILABLE:
504 if (timer->entry.prev == TIMER_ENTRY_STATIC) {
505 /*
506 * This is not really a fixup. The timer was
507 * statically initialized. We just make sure that it
508 * is tracked in the object tracker.
509 */
510 debug_object_init(timer, &timer_debug_descr);
511 return 0;
512 } else {
513 setup_timer(timer, stub_timer, 0);
514 return 1;
515 }
516 default:
517 return 0;
518 }
519 }
520
521 static struct debug_obj_descr timer_debug_descr = {
522 .name = "timer_list",
523 .debug_hint = timer_debug_hint,
524 .fixup_init = timer_fixup_init,
525 .fixup_activate = timer_fixup_activate,
526 .fixup_free = timer_fixup_free,
527 .fixup_assert_init = timer_fixup_assert_init,
528 };
529
debug_timer_init(struct timer_list * timer)530 static inline void debug_timer_init(struct timer_list *timer)
531 {
532 debug_object_init(timer, &timer_debug_descr);
533 }
534
debug_timer_activate(struct timer_list * timer)535 static inline void debug_timer_activate(struct timer_list *timer)
536 {
537 debug_object_activate(timer, &timer_debug_descr);
538 }
539
debug_timer_deactivate(struct timer_list * timer)540 static inline void debug_timer_deactivate(struct timer_list *timer)
541 {
542 debug_object_deactivate(timer, &timer_debug_descr);
543 }
544
debug_timer_free(struct timer_list * timer)545 static inline void debug_timer_free(struct timer_list *timer)
546 {
547 debug_object_free(timer, &timer_debug_descr);
548 }
549
debug_timer_assert_init(struct timer_list * timer)550 static inline void debug_timer_assert_init(struct timer_list *timer)
551 {
552 debug_object_assert_init(timer, &timer_debug_descr);
553 }
554
555 static void __init_timer(struct timer_list *timer,
556 const char *name,
557 struct lock_class_key *key);
558
init_timer_on_stack_key(struct timer_list * timer,const char * name,struct lock_class_key * key)559 void init_timer_on_stack_key(struct timer_list *timer,
560 const char *name,
561 struct lock_class_key *key)
562 {
563 debug_object_init_on_stack(timer, &timer_debug_descr);
564 __init_timer(timer, name, key);
565 }
566 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
567
destroy_timer_on_stack(struct timer_list * timer)568 void destroy_timer_on_stack(struct timer_list *timer)
569 {
570 debug_object_free(timer, &timer_debug_descr);
571 }
572 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
573
574 #else
debug_timer_init(struct timer_list * timer)575 static inline void debug_timer_init(struct timer_list *timer) { }
debug_timer_activate(struct timer_list * timer)576 static inline void debug_timer_activate(struct timer_list *timer) { }
debug_timer_deactivate(struct timer_list * timer)577 static inline void debug_timer_deactivate(struct timer_list *timer) { }
debug_timer_assert_init(struct timer_list * timer)578 static inline void debug_timer_assert_init(struct timer_list *timer) { }
579 #endif
580
debug_init(struct timer_list * timer)581 static inline void debug_init(struct timer_list *timer)
582 {
583 debug_timer_init(timer);
584 trace_timer_init(timer);
585 }
586
587 static inline void
debug_activate(struct timer_list * timer,unsigned long expires)588 debug_activate(struct timer_list *timer, unsigned long expires)
589 {
590 debug_timer_activate(timer);
591 trace_timer_start(timer, expires);
592 }
593
debug_deactivate(struct timer_list * timer)594 static inline void debug_deactivate(struct timer_list *timer)
595 {
596 debug_timer_deactivate(timer);
597 trace_timer_cancel(timer);
598 }
599
debug_assert_init(struct timer_list * timer)600 static inline void debug_assert_init(struct timer_list *timer)
601 {
602 debug_timer_assert_init(timer);
603 }
604
__init_timer(struct timer_list * timer,const char * name,struct lock_class_key * key)605 static void __init_timer(struct timer_list *timer,
606 const char *name,
607 struct lock_class_key *key)
608 {
609 timer->entry.next = NULL;
610 timer->base = __raw_get_cpu_var(tvec_bases);
611 timer->slack = -1;
612 #ifdef CONFIG_TIMER_STATS
613 timer->start_site = NULL;
614 timer->start_pid = -1;
615 memset(timer->start_comm, 0, TASK_COMM_LEN);
616 #endif
617 lockdep_init_map(&timer->lockdep_map, name, key, 0);
618 }
619
setup_deferrable_timer_on_stack_key(struct timer_list * timer,const char * name,struct lock_class_key * key,void (* function)(unsigned long),unsigned long data)620 void setup_deferrable_timer_on_stack_key(struct timer_list *timer,
621 const char *name,
622 struct lock_class_key *key,
623 void (*function)(unsigned long),
624 unsigned long data)
625 {
626 timer->function = function;
627 timer->data = data;
628 init_timer_on_stack_key(timer, name, key);
629 timer_set_deferrable(timer);
630 }
631 EXPORT_SYMBOL_GPL(setup_deferrable_timer_on_stack_key);
632
633 /**
634 * init_timer_key - initialize a timer
635 * @timer: the timer to be initialized
636 * @name: name of the timer
637 * @key: lockdep class key of the fake lock used for tracking timer
638 * sync lock dependencies
639 *
640 * init_timer_key() must be done to a timer prior calling *any* of the
641 * other timer functions.
642 */
init_timer_key(struct timer_list * timer,const char * name,struct lock_class_key * key)643 void init_timer_key(struct timer_list *timer,
644 const char *name,
645 struct lock_class_key *key)
646 {
647 debug_init(timer);
648 __init_timer(timer, name, key);
649 }
650 EXPORT_SYMBOL(init_timer_key);
651
init_timer_deferrable_key(struct timer_list * timer,const char * name,struct lock_class_key * key)652 void init_timer_deferrable_key(struct timer_list *timer,
653 const char *name,
654 struct lock_class_key *key)
655 {
656 init_timer_key(timer, name, key);
657 timer_set_deferrable(timer);
658 }
659 EXPORT_SYMBOL(init_timer_deferrable_key);
660
detach_timer(struct timer_list * timer,int clear_pending)661 static inline void detach_timer(struct timer_list *timer,
662 int clear_pending)
663 {
664 struct list_head *entry = &timer->entry;
665
666 debug_deactivate(timer);
667
668 __list_del(entry->prev, entry->next);
669 if (clear_pending)
670 entry->next = NULL;
671 entry->prev = LIST_POISON2;
672 }
673
674 /*
675 * We are using hashed locking: holding per_cpu(tvec_bases).lock
676 * means that all timers which are tied to this base via timer->base are
677 * locked, and the base itself is locked too.
678 *
679 * So __run_timers/migrate_timers can safely modify all timers which could
680 * be found on ->tvX lists.
681 *
682 * When the timer's base is locked, and the timer removed from list, it is
683 * possible to set timer->base = NULL and drop the lock: the timer remains
684 * locked.
685 */
lock_timer_base(struct timer_list * timer,unsigned long * flags)686 static struct tvec_base *lock_timer_base(struct timer_list *timer,
687 unsigned long *flags)
688 __acquires(timer->base->lock)
689 {
690 struct tvec_base *base;
691
692 for (;;) {
693 struct tvec_base *prelock_base = timer->base;
694 base = tbase_get_base(prelock_base);
695 if (likely(base != NULL)) {
696 spin_lock_irqsave(&base->lock, *flags);
697 if (likely(prelock_base == timer->base))
698 return base;
699 /* The timer has migrated to another CPU */
700 spin_unlock_irqrestore(&base->lock, *flags);
701 }
702 cpu_relax();
703 }
704 }
705
706 static inline int
__mod_timer(struct timer_list * timer,unsigned long expires,bool pending_only,int pinned)707 __mod_timer(struct timer_list *timer, unsigned long expires,
708 bool pending_only, int pinned)
709 {
710 struct tvec_base *base, *new_base;
711 unsigned long flags;
712 int ret = 0 , cpu;
713
714 timer_stats_timer_set_start_info(timer);
715 BUG_ON(!timer->function);
716
717 base = lock_timer_base(timer, &flags);
718
719 if (timer_pending(timer)) {
720 detach_timer(timer, 0);
721 if (timer->expires == base->next_timer &&
722 !tbase_get_deferrable(timer->base))
723 base->next_timer = base->timer_jiffies;
724 ret = 1;
725 } else {
726 if (pending_only)
727 goto out_unlock;
728 }
729
730 debug_activate(timer, expires);
731
732 cpu = smp_processor_id();
733
734 #if defined(CONFIG_NO_HZ) && defined(CONFIG_SMP)
735 if (!pinned && get_sysctl_timer_migration() && idle_cpu(cpu))
736 cpu = get_nohz_timer_target();
737 #endif
738 new_base = per_cpu(tvec_bases, cpu);
739
740 if (base != new_base) {
741 /*
742 * We are trying to schedule the timer on the local CPU.
743 * However we can't change timer's base while it is running,
744 * otherwise del_timer_sync() can't detect that the timer's
745 * handler yet has not finished. This also guarantees that
746 * the timer is serialized wrt itself.
747 */
748 if (likely(base->running_timer != timer)) {
749 /* See the comment in lock_timer_base() */
750 timer_set_base(timer, NULL);
751 spin_unlock(&base->lock);
752 base = new_base;
753 spin_lock(&base->lock);
754 timer_set_base(timer, base);
755 }
756 }
757
758 timer->expires = expires;
759 if (time_before(timer->expires, base->next_timer) &&
760 !tbase_get_deferrable(timer->base))
761 base->next_timer = timer->expires;
762 internal_add_timer(base, timer);
763
764 out_unlock:
765 spin_unlock_irqrestore(&base->lock, flags);
766
767 return ret;
768 }
769
770 /**
771 * mod_timer_pending - modify a pending timer's timeout
772 * @timer: the pending timer to be modified
773 * @expires: new timeout in jiffies
774 *
775 * mod_timer_pending() is the same for pending timers as mod_timer(),
776 * but will not re-activate and modify already deleted timers.
777 *
778 * It is useful for unserialized use of timers.
779 */
mod_timer_pending(struct timer_list * timer,unsigned long expires)780 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
781 {
782 return __mod_timer(timer, expires, true, TIMER_NOT_PINNED);
783 }
784 EXPORT_SYMBOL(mod_timer_pending);
785
786 /*
787 * Decide where to put the timer while taking the slack into account
788 *
789 * Algorithm:
790 * 1) calculate the maximum (absolute) time
791 * 2) calculate the highest bit where the expires and new max are different
792 * 3) use this bit to make a mask
793 * 4) use the bitmask to round down the maximum time, so that all last
794 * bits are zeros
795 */
796 static inline
apply_slack(struct timer_list * timer,unsigned long expires)797 unsigned long apply_slack(struct timer_list *timer, unsigned long expires)
798 {
799 unsigned long expires_limit, mask;
800 int bit;
801
802 if (timer->slack >= 0) {
803 expires_limit = expires + timer->slack;
804 } else {
805 long delta = expires - jiffies;
806
807 if (delta < 256)
808 return expires;
809
810 expires_limit = expires + delta / 256;
811 }
812 mask = expires ^ expires_limit;
813 if (mask == 0)
814 return expires;
815
816 bit = find_last_bit(&mask, BITS_PER_LONG);
817
818 mask = (1UL << bit) - 1;
819
820 expires_limit = expires_limit & ~(mask);
821
822 return expires_limit;
823 }
824
825 /**
826 * mod_timer - modify a timer's timeout
827 * @timer: the timer to be modified
828 * @expires: new timeout in jiffies
829 *
830 * mod_timer() is a more efficient way to update the expire field of an
831 * active timer (if the timer is inactive it will be activated)
832 *
833 * mod_timer(timer, expires) is equivalent to:
834 *
835 * del_timer(timer); timer->expires = expires; add_timer(timer);
836 *
837 * Note that if there are multiple unserialized concurrent users of the
838 * same timer, then mod_timer() is the only safe way to modify the timeout,
839 * since add_timer() cannot modify an already running timer.
840 *
841 * The function returns whether it has modified a pending timer or not.
842 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
843 * active timer returns 1.)
844 */
mod_timer(struct timer_list * timer,unsigned long expires)845 int mod_timer(struct timer_list *timer, unsigned long expires)
846 {
847 expires = apply_slack(timer, expires);
848
849 /*
850 * This is a common optimization triggered by the
851 * networking code - if the timer is re-modified
852 * to be the same thing then just return:
853 */
854 if (timer_pending(timer) && timer->expires == expires)
855 return 1;
856
857 return __mod_timer(timer, expires, false, TIMER_NOT_PINNED);
858 }
859 EXPORT_SYMBOL(mod_timer);
860
861 /**
862 * mod_timer_pinned - modify a timer's timeout
863 * @timer: the timer to be modified
864 * @expires: new timeout in jiffies
865 *
866 * mod_timer_pinned() is a way to update the expire field of an
867 * active timer (if the timer is inactive it will be activated)
868 * and not allow the timer to be migrated to a different CPU.
869 *
870 * mod_timer_pinned(timer, expires) is equivalent to:
871 *
872 * del_timer(timer); timer->expires = expires; add_timer(timer);
873 */
mod_timer_pinned(struct timer_list * timer,unsigned long expires)874 int mod_timer_pinned(struct timer_list *timer, unsigned long expires)
875 {
876 if (timer->expires == expires && timer_pending(timer))
877 return 1;
878
879 return __mod_timer(timer, expires, false, TIMER_PINNED);
880 }
881 EXPORT_SYMBOL(mod_timer_pinned);
882
883 /**
884 * add_timer - start a timer
885 * @timer: the timer to be added
886 *
887 * The kernel will do a ->function(->data) callback from the
888 * timer interrupt at the ->expires point in the future. The
889 * current time is 'jiffies'.
890 *
891 * The timer's ->expires, ->function (and if the handler uses it, ->data)
892 * fields must be set prior calling this function.
893 *
894 * Timers with an ->expires field in the past will be executed in the next
895 * timer tick.
896 */
add_timer(struct timer_list * timer)897 void add_timer(struct timer_list *timer)
898 {
899 BUG_ON(timer_pending(timer));
900 mod_timer(timer, timer->expires);
901 }
902 EXPORT_SYMBOL(add_timer);
903
904 /**
905 * add_timer_on - start a timer on a particular CPU
906 * @timer: the timer to be added
907 * @cpu: the CPU to start it on
908 *
909 * This is not very scalable on SMP. Double adds are not possible.
910 */
add_timer_on(struct timer_list * timer,int cpu)911 void add_timer_on(struct timer_list *timer, int cpu)
912 {
913 struct tvec_base *base = per_cpu(tvec_bases, cpu);
914 unsigned long flags;
915
916 timer_stats_timer_set_start_info(timer);
917 BUG_ON(timer_pending(timer) || !timer->function);
918 spin_lock_irqsave(&base->lock, flags);
919 timer_set_base(timer, base);
920 debug_activate(timer, timer->expires);
921 if (time_before(timer->expires, base->next_timer) &&
922 !tbase_get_deferrable(timer->base))
923 base->next_timer = timer->expires;
924 internal_add_timer(base, timer);
925 /*
926 * Check whether the other CPU is idle and needs to be
927 * triggered to reevaluate the timer wheel when nohz is
928 * active. We are protected against the other CPU fiddling
929 * with the timer by holding the timer base lock. This also
930 * makes sure that a CPU on the way to idle can not evaluate
931 * the timer wheel.
932 */
933 wake_up_idle_cpu(cpu);
934 spin_unlock_irqrestore(&base->lock, flags);
935 }
936 EXPORT_SYMBOL_GPL(add_timer_on);
937
938 /**
939 * del_timer - deactive a timer.
940 * @timer: the timer to be deactivated
941 *
942 * del_timer() deactivates a timer - this works on both active and inactive
943 * timers.
944 *
945 * The function returns whether it has deactivated a pending timer or not.
946 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
947 * active timer returns 1.)
948 */
del_timer(struct timer_list * timer)949 int del_timer(struct timer_list *timer)
950 {
951 struct tvec_base *base;
952 unsigned long flags;
953 int ret = 0;
954
955 debug_assert_init(timer);
956
957 timer_stats_timer_clear_start_info(timer);
958 if (timer_pending(timer)) {
959 base = lock_timer_base(timer, &flags);
960 if (timer_pending(timer)) {
961 detach_timer(timer, 1);
962 if (timer->expires == base->next_timer &&
963 !tbase_get_deferrable(timer->base))
964 base->next_timer = base->timer_jiffies;
965 ret = 1;
966 }
967 spin_unlock_irqrestore(&base->lock, flags);
968 }
969
970 return ret;
971 }
972 EXPORT_SYMBOL(del_timer);
973
974 /**
975 * try_to_del_timer_sync - Try to deactivate a timer
976 * @timer: timer do del
977 *
978 * This function tries to deactivate a timer. Upon successful (ret >= 0)
979 * exit the timer is not queued and the handler is not running on any CPU.
980 */
try_to_del_timer_sync(struct timer_list * timer)981 int try_to_del_timer_sync(struct timer_list *timer)
982 {
983 struct tvec_base *base;
984 unsigned long flags;
985 int ret = -1;
986
987 debug_assert_init(timer);
988
989 base = lock_timer_base(timer, &flags);
990
991 if (base->running_timer == timer)
992 goto out;
993
994 timer_stats_timer_clear_start_info(timer);
995 ret = 0;
996 if (timer_pending(timer)) {
997 detach_timer(timer, 1);
998 if (timer->expires == base->next_timer &&
999 !tbase_get_deferrable(timer->base))
1000 base->next_timer = base->timer_jiffies;
1001 ret = 1;
1002 }
1003 out:
1004 spin_unlock_irqrestore(&base->lock, flags);
1005
1006 return ret;
1007 }
1008 EXPORT_SYMBOL(try_to_del_timer_sync);
1009
1010 #ifdef CONFIG_SMP
1011 /**
1012 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1013 * @timer: the timer to be deactivated
1014 *
1015 * This function only differs from del_timer() on SMP: besides deactivating
1016 * the timer it also makes sure the handler has finished executing on other
1017 * CPUs.
1018 *
1019 * Synchronization rules: Callers must prevent restarting of the timer,
1020 * otherwise this function is meaningless. It must not be called from
1021 * interrupt contexts. The caller must not hold locks which would prevent
1022 * completion of the timer's handler. The timer's handler must not call
1023 * add_timer_on(). Upon exit the timer is not queued and the handler is
1024 * not running on any CPU.
1025 *
1026 * Note: You must not hold locks that are held in interrupt context
1027 * while calling this function. Even if the lock has nothing to do
1028 * with the timer in question. Here's why:
1029 *
1030 * CPU0 CPU1
1031 * ---- ----
1032 * <SOFTIRQ>
1033 * call_timer_fn();
1034 * base->running_timer = mytimer;
1035 * spin_lock_irq(somelock);
1036 * <IRQ>
1037 * spin_lock(somelock);
1038 * del_timer_sync(mytimer);
1039 * while (base->running_timer == mytimer);
1040 *
1041 * Now del_timer_sync() will never return and never release somelock.
1042 * The interrupt on the other CPU is waiting to grab somelock but
1043 * it has interrupted the softirq that CPU0 is waiting to finish.
1044 *
1045 * The function returns whether it has deactivated a pending timer or not.
1046 */
del_timer_sync(struct timer_list * timer)1047 int del_timer_sync(struct timer_list *timer)
1048 {
1049 #ifdef CONFIG_LOCKDEP
1050 unsigned long flags;
1051
1052 /*
1053 * If lockdep gives a backtrace here, please reference
1054 * the synchronization rules above.
1055 */
1056 local_irq_save(flags);
1057 lock_map_acquire(&timer->lockdep_map);
1058 lock_map_release(&timer->lockdep_map);
1059 local_irq_restore(flags);
1060 #endif
1061 /*
1062 * don't use it in hardirq context, because it
1063 * could lead to deadlock.
1064 */
1065 WARN_ON(in_irq());
1066 for (;;) {
1067 int ret = try_to_del_timer_sync(timer);
1068 if (ret >= 0)
1069 return ret;
1070 cpu_relax();
1071 }
1072 }
1073 EXPORT_SYMBOL(del_timer_sync);
1074 #endif
1075
cascade(struct tvec_base * base,struct tvec * tv,int index)1076 static int cascade(struct tvec_base *base, struct tvec *tv, int index)
1077 {
1078 /* cascade all the timers from tv up one level */
1079 struct timer_list *timer, *tmp;
1080 struct list_head tv_list;
1081
1082 list_replace_init(tv->vec + index, &tv_list);
1083
1084 /*
1085 * We are removing _all_ timers from the list, so we
1086 * don't have to detach them individually.
1087 */
1088 list_for_each_entry_safe(timer, tmp, &tv_list, entry) {
1089 BUG_ON(tbase_get_base(timer->base) != base);
1090 internal_add_timer(base, timer);
1091 }
1092
1093 return index;
1094 }
1095
call_timer_fn(struct timer_list * timer,void (* fn)(unsigned long),unsigned long data)1096 static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long),
1097 unsigned long data)
1098 {
1099 int preempt_count = preempt_count();
1100
1101 #ifdef CONFIG_LOCKDEP
1102 /*
1103 * It is permissible to free the timer from inside the
1104 * function that is called from it, this we need to take into
1105 * account for lockdep too. To avoid bogus "held lock freed"
1106 * warnings as well as problems when looking into
1107 * timer->lockdep_map, make a copy and use that here.
1108 */
1109 struct lockdep_map lockdep_map = timer->lockdep_map;
1110 #endif
1111 /*
1112 * Couple the lock chain with the lock chain at
1113 * del_timer_sync() by acquiring the lock_map around the fn()
1114 * call here and in del_timer_sync().
1115 */
1116 lock_map_acquire(&lockdep_map);
1117
1118 trace_timer_expire_entry(timer);
1119 fn(data);
1120 trace_timer_expire_exit(timer);
1121
1122 lock_map_release(&lockdep_map);
1123
1124 if (preempt_count != preempt_count()) {
1125 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
1126 fn, preempt_count, preempt_count());
1127 /*
1128 * Restore the preempt count. That gives us a decent
1129 * chance to survive and extract information. If the
1130 * callback kept a lock held, bad luck, but not worse
1131 * than the BUG() we had.
1132 */
1133 preempt_count() = preempt_count;
1134 }
1135 }
1136
1137 #define INDEX(N) ((base->timer_jiffies >> (TVR_BITS + (N) * TVN_BITS)) & TVN_MASK)
1138
1139 /**
1140 * __run_timers - run all expired timers (if any) on this CPU.
1141 * @base: the timer vector to be processed.
1142 *
1143 * This function cascades all vectors and executes all expired timer
1144 * vectors.
1145 */
__run_timers(struct tvec_base * base)1146 static inline void __run_timers(struct tvec_base *base)
1147 {
1148 struct timer_list *timer;
1149
1150 spin_lock_irq(&base->lock);
1151 while (time_after_eq(jiffies, base->timer_jiffies)) {
1152 struct list_head work_list;
1153 struct list_head *head = &work_list;
1154 int index = base->timer_jiffies & TVR_MASK;
1155
1156 /*
1157 * Cascade timers:
1158 */
1159 if (!index &&
1160 (!cascade(base, &base->tv2, INDEX(0))) &&
1161 (!cascade(base, &base->tv3, INDEX(1))) &&
1162 !cascade(base, &base->tv4, INDEX(2)))
1163 cascade(base, &base->tv5, INDEX(3));
1164 ++base->timer_jiffies;
1165 list_replace_init(base->tv1.vec + index, &work_list);
1166 while (!list_empty(head)) {
1167 void (*fn)(unsigned long);
1168 unsigned long data;
1169
1170 timer = list_first_entry(head, struct timer_list,entry);
1171 fn = timer->function;
1172 data = timer->data;
1173
1174 timer_stats_account_timer(timer);
1175
1176 base->running_timer = timer;
1177 detach_timer(timer, 1);
1178
1179 spin_unlock_irq(&base->lock);
1180 call_timer_fn(timer, fn, data);
1181 spin_lock_irq(&base->lock);
1182 }
1183 }
1184 base->running_timer = NULL;
1185 spin_unlock_irq(&base->lock);
1186 }
1187
1188 #ifdef CONFIG_NO_HZ
1189 /*
1190 * Find out when the next timer event is due to happen. This
1191 * is used on S/390 to stop all activity when a CPU is idle.
1192 * This function needs to be called with interrupts disabled.
1193 */
__next_timer_interrupt(struct tvec_base * base)1194 static unsigned long __next_timer_interrupt(struct tvec_base *base)
1195 {
1196 unsigned long timer_jiffies = base->timer_jiffies;
1197 unsigned long expires = timer_jiffies + NEXT_TIMER_MAX_DELTA;
1198 int index, slot, array, found = 0;
1199 struct timer_list *nte;
1200 struct tvec *varray[4];
1201
1202 /* Look for timer events in tv1. */
1203 index = slot = timer_jiffies & TVR_MASK;
1204 do {
1205 list_for_each_entry(nte, base->tv1.vec + slot, entry) {
1206 if (tbase_get_deferrable(nte->base))
1207 continue;
1208
1209 found = 1;
1210 expires = nte->expires;
1211 /* Look at the cascade bucket(s)? */
1212 if (!index || slot < index)
1213 goto cascade;
1214 return expires;
1215 }
1216 slot = (slot + 1) & TVR_MASK;
1217 } while (slot != index);
1218
1219 cascade:
1220 /* Calculate the next cascade event */
1221 if (index)
1222 timer_jiffies += TVR_SIZE - index;
1223 timer_jiffies >>= TVR_BITS;
1224
1225 /* Check tv2-tv5. */
1226 varray[0] = &base->tv2;
1227 varray[1] = &base->tv3;
1228 varray[2] = &base->tv4;
1229 varray[3] = &base->tv5;
1230
1231 for (array = 0; array < 4; array++) {
1232 struct tvec *varp = varray[array];
1233
1234 index = slot = timer_jiffies & TVN_MASK;
1235 do {
1236 list_for_each_entry(nte, varp->vec + slot, entry) {
1237 if (tbase_get_deferrable(nte->base))
1238 continue;
1239
1240 found = 1;
1241 if (time_before(nte->expires, expires))
1242 expires = nte->expires;
1243 }
1244 /*
1245 * Do we still search for the first timer or are
1246 * we looking up the cascade buckets ?
1247 */
1248 if (found) {
1249 /* Look at the cascade bucket(s)? */
1250 if (!index || slot < index)
1251 break;
1252 return expires;
1253 }
1254 slot = (slot + 1) & TVN_MASK;
1255 } while (slot != index);
1256
1257 if (index)
1258 timer_jiffies += TVN_SIZE - index;
1259 timer_jiffies >>= TVN_BITS;
1260 }
1261 return expires;
1262 }
1263
1264 /*
1265 * Check, if the next hrtimer event is before the next timer wheel
1266 * event:
1267 */
cmp_next_hrtimer_event(unsigned long now,unsigned long expires)1268 static unsigned long cmp_next_hrtimer_event(unsigned long now,
1269 unsigned long expires)
1270 {
1271 ktime_t hr_delta = hrtimer_get_next_event();
1272 struct timespec tsdelta;
1273 unsigned long delta;
1274
1275 if (hr_delta.tv64 == KTIME_MAX)
1276 return expires;
1277
1278 /*
1279 * Expired timer available, let it expire in the next tick
1280 */
1281 if (hr_delta.tv64 <= 0)
1282 return now + 1;
1283
1284 tsdelta = ktime_to_timespec(hr_delta);
1285 delta = timespec_to_jiffies(&tsdelta);
1286
1287 /*
1288 * Limit the delta to the max value, which is checked in
1289 * tick_nohz_stop_sched_tick():
1290 */
1291 if (delta > NEXT_TIMER_MAX_DELTA)
1292 delta = NEXT_TIMER_MAX_DELTA;
1293
1294 /*
1295 * Take rounding errors in to account and make sure, that it
1296 * expires in the next tick. Otherwise we go into an endless
1297 * ping pong due to tick_nohz_stop_sched_tick() retriggering
1298 * the timer softirq
1299 */
1300 if (delta < 1)
1301 delta = 1;
1302 now += delta;
1303 if (time_before(now, expires))
1304 return now;
1305 return expires;
1306 }
1307
1308 /**
1309 * get_next_timer_interrupt - return the jiffy of the next pending timer
1310 * @now: current time (in jiffies)
1311 */
get_next_timer_interrupt(unsigned long now)1312 unsigned long get_next_timer_interrupt(unsigned long now)
1313 {
1314 struct tvec_base *base = __this_cpu_read(tvec_bases);
1315 unsigned long expires;
1316
1317 /*
1318 * Pretend that there is no timer pending if the cpu is offline.
1319 * Possible pending timers will be migrated later to an active cpu.
1320 */
1321 if (cpu_is_offline(smp_processor_id()))
1322 return now + NEXT_TIMER_MAX_DELTA;
1323 spin_lock(&base->lock);
1324 if (time_before_eq(base->next_timer, base->timer_jiffies))
1325 base->next_timer = __next_timer_interrupt(base);
1326 expires = base->next_timer;
1327 spin_unlock(&base->lock);
1328
1329 if (time_before_eq(expires, now))
1330 return now;
1331
1332 return cmp_next_hrtimer_event(now, expires);
1333 }
1334 #endif
1335
1336 /*
1337 * Called from the timer interrupt handler to charge one tick to the current
1338 * process. user_tick is 1 if the tick is user time, 0 for system.
1339 */
update_process_times(int user_tick)1340 void update_process_times(int user_tick)
1341 {
1342 struct task_struct *p = current;
1343 int cpu = smp_processor_id();
1344
1345 /* Note: this timer irq context must be accounted for as well. */
1346 account_process_tick(p, user_tick);
1347 run_local_timers();
1348 rcu_check_callbacks(cpu, user_tick);
1349 printk_tick();
1350 #ifdef CONFIG_IRQ_WORK
1351 if (in_irq())
1352 irq_work_run();
1353 #endif
1354 scheduler_tick();
1355 run_posix_cpu_timers(p);
1356 }
1357
1358 /*
1359 * This function runs timers and the timer-tq in bottom half context.
1360 */
run_timer_softirq(struct softirq_action * h)1361 static void run_timer_softirq(struct softirq_action *h)
1362 {
1363 struct tvec_base *base = __this_cpu_read(tvec_bases);
1364
1365 hrtimer_run_pending();
1366
1367 if (time_after_eq(jiffies, base->timer_jiffies))
1368 __run_timers(base);
1369 }
1370
1371 /*
1372 * Called by the local, per-CPU timer interrupt on SMP.
1373 */
run_local_timers(void)1374 void run_local_timers(void)
1375 {
1376 hrtimer_run_queues();
1377 raise_softirq(TIMER_SOFTIRQ);
1378 }
1379
1380 #ifdef __ARCH_WANT_SYS_ALARM
1381
1382 /*
1383 * For backwards compatibility? This can be done in libc so Alpha
1384 * and all newer ports shouldn't need it.
1385 */
SYSCALL_DEFINE1(alarm,unsigned int,seconds)1386 SYSCALL_DEFINE1(alarm, unsigned int, seconds)
1387 {
1388 return alarm_setitimer(seconds);
1389 }
1390
1391 #endif
1392
1393 #ifndef __alpha__
1394
1395 /*
1396 * The Alpha uses getxpid, getxuid, and getxgid instead. Maybe this
1397 * should be moved into arch/i386 instead?
1398 */
1399
1400 /**
1401 * sys_getpid - return the thread group id of the current process
1402 *
1403 * Note, despite the name, this returns the tgid not the pid. The tgid and
1404 * the pid are identical unless CLONE_THREAD was specified on clone() in
1405 * which case the tgid is the same in all threads of the same group.
1406 *
1407 * This is SMP safe as current->tgid does not change.
1408 */
SYSCALL_DEFINE0(getpid)1409 SYSCALL_DEFINE0(getpid)
1410 {
1411 return task_tgid_vnr(current);
1412 }
1413
1414 /*
1415 * Accessing ->real_parent is not SMP-safe, it could
1416 * change from under us. However, we can use a stale
1417 * value of ->real_parent under rcu_read_lock(), see
1418 * release_task()->call_rcu(delayed_put_task_struct).
1419 */
SYSCALL_DEFINE0(getppid)1420 SYSCALL_DEFINE0(getppid)
1421 {
1422 int pid;
1423
1424 rcu_read_lock();
1425 pid = task_tgid_vnr(rcu_dereference(current->real_parent));
1426 rcu_read_unlock();
1427
1428 return pid;
1429 }
1430
SYSCALL_DEFINE0(getuid)1431 SYSCALL_DEFINE0(getuid)
1432 {
1433 /* Only we change this so SMP safe */
1434 return current_uid();
1435 }
1436
SYSCALL_DEFINE0(geteuid)1437 SYSCALL_DEFINE0(geteuid)
1438 {
1439 /* Only we change this so SMP safe */
1440 return current_euid();
1441 }
1442
SYSCALL_DEFINE0(getgid)1443 SYSCALL_DEFINE0(getgid)
1444 {
1445 /* Only we change this so SMP safe */
1446 return current_gid();
1447 }
1448
SYSCALL_DEFINE0(getegid)1449 SYSCALL_DEFINE0(getegid)
1450 {
1451 /* Only we change this so SMP safe */
1452 return current_egid();
1453 }
1454
1455 #endif
1456
process_timeout(unsigned long __data)1457 static void process_timeout(unsigned long __data)
1458 {
1459 wake_up_process((struct task_struct *)__data);
1460 }
1461
1462 /**
1463 * schedule_timeout - sleep until timeout
1464 * @timeout: timeout value in jiffies
1465 *
1466 * Make the current task sleep until @timeout jiffies have
1467 * elapsed. The routine will return immediately unless
1468 * the current task state has been set (see set_current_state()).
1469 *
1470 * You can set the task state as follows -
1471 *
1472 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
1473 * pass before the routine returns. The routine will return 0
1474 *
1475 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
1476 * delivered to the current task. In this case the remaining time
1477 * in jiffies will be returned, or 0 if the timer expired in time
1478 *
1479 * The current task state is guaranteed to be TASK_RUNNING when this
1480 * routine returns.
1481 *
1482 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1483 * the CPU away without a bound on the timeout. In this case the return
1484 * value will be %MAX_SCHEDULE_TIMEOUT.
1485 *
1486 * In all cases the return value is guaranteed to be non-negative.
1487 */
schedule_timeout(signed long timeout)1488 signed long __sched schedule_timeout(signed long timeout)
1489 {
1490 struct timer_list timer;
1491 unsigned long expire;
1492
1493 switch (timeout)
1494 {
1495 case MAX_SCHEDULE_TIMEOUT:
1496 /*
1497 * These two special cases are useful to be comfortable
1498 * in the caller. Nothing more. We could take
1499 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1500 * but I' d like to return a valid offset (>=0) to allow
1501 * the caller to do everything it want with the retval.
1502 */
1503 schedule();
1504 goto out;
1505 default:
1506 /*
1507 * Another bit of PARANOID. Note that the retval will be
1508 * 0 since no piece of kernel is supposed to do a check
1509 * for a negative retval of schedule_timeout() (since it
1510 * should never happens anyway). You just have the printk()
1511 * that will tell you if something is gone wrong and where.
1512 */
1513 if (timeout < 0) {
1514 printk(KERN_ERR "schedule_timeout: wrong timeout "
1515 "value %lx\n", timeout);
1516 dump_stack();
1517 current->state = TASK_RUNNING;
1518 goto out;
1519 }
1520 }
1521
1522 expire = timeout + jiffies;
1523
1524 setup_timer_on_stack(&timer, process_timeout, (unsigned long)current);
1525 __mod_timer(&timer, expire, false, TIMER_NOT_PINNED);
1526 schedule();
1527 del_singleshot_timer_sync(&timer);
1528
1529 /* Remove the timer from the object tracker */
1530 destroy_timer_on_stack(&timer);
1531
1532 timeout = expire - jiffies;
1533
1534 out:
1535 return timeout < 0 ? 0 : timeout;
1536 }
1537 EXPORT_SYMBOL(schedule_timeout);
1538
1539 /*
1540 * We can use __set_current_state() here because schedule_timeout() calls
1541 * schedule() unconditionally.
1542 */
schedule_timeout_interruptible(signed long timeout)1543 signed long __sched schedule_timeout_interruptible(signed long timeout)
1544 {
1545 __set_current_state(TASK_INTERRUPTIBLE);
1546 return schedule_timeout(timeout);
1547 }
1548 EXPORT_SYMBOL(schedule_timeout_interruptible);
1549
schedule_timeout_killable(signed long timeout)1550 signed long __sched schedule_timeout_killable(signed long timeout)
1551 {
1552 __set_current_state(TASK_KILLABLE);
1553 return schedule_timeout(timeout);
1554 }
1555 EXPORT_SYMBOL(schedule_timeout_killable);
1556
schedule_timeout_uninterruptible(signed long timeout)1557 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1558 {
1559 __set_current_state(TASK_UNINTERRUPTIBLE);
1560 return schedule_timeout(timeout);
1561 }
1562 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1563
1564 /* Thread ID - the internal kernel "pid" */
SYSCALL_DEFINE0(gettid)1565 SYSCALL_DEFINE0(gettid)
1566 {
1567 return task_pid_vnr(current);
1568 }
1569
1570 /**
1571 * do_sysinfo - fill in sysinfo struct
1572 * @info: pointer to buffer to fill
1573 */
do_sysinfo(struct sysinfo * info)1574 int do_sysinfo(struct sysinfo *info)
1575 {
1576 unsigned long mem_total, sav_total;
1577 unsigned int mem_unit, bitcount;
1578 struct timespec tp;
1579
1580 memset(info, 0, sizeof(struct sysinfo));
1581
1582 ktime_get_ts(&tp);
1583 monotonic_to_bootbased(&tp);
1584 info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
1585
1586 get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
1587
1588 info->procs = nr_threads;
1589
1590 si_meminfo(info);
1591 si_swapinfo(info);
1592
1593 /*
1594 * If the sum of all the available memory (i.e. ram + swap)
1595 * is less than can be stored in a 32 bit unsigned long then
1596 * we can be binary compatible with 2.2.x kernels. If not,
1597 * well, in that case 2.2.x was broken anyways...
1598 *
1599 * -Erik Andersen <andersee@debian.org>
1600 */
1601
1602 mem_total = info->totalram + info->totalswap;
1603 if (mem_total < info->totalram || mem_total < info->totalswap)
1604 goto out;
1605 bitcount = 0;
1606 mem_unit = info->mem_unit;
1607 while (mem_unit > 1) {
1608 bitcount++;
1609 mem_unit >>= 1;
1610 sav_total = mem_total;
1611 mem_total <<= 1;
1612 if (mem_total < sav_total)
1613 goto out;
1614 }
1615
1616 /*
1617 * If mem_total did not overflow, multiply all memory values by
1618 * info->mem_unit and set it to 1. This leaves things compatible
1619 * with 2.2.x, and also retains compatibility with earlier 2.4.x
1620 * kernels...
1621 */
1622
1623 info->mem_unit = 1;
1624 info->totalram <<= bitcount;
1625 info->freeram <<= bitcount;
1626 info->sharedram <<= bitcount;
1627 info->bufferram <<= bitcount;
1628 info->totalswap <<= bitcount;
1629 info->freeswap <<= bitcount;
1630 info->totalhigh <<= bitcount;
1631 info->freehigh <<= bitcount;
1632
1633 out:
1634 return 0;
1635 }
1636
SYSCALL_DEFINE1(sysinfo,struct sysinfo __user *,info)1637 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
1638 {
1639 struct sysinfo val;
1640
1641 do_sysinfo(&val);
1642
1643 if (copy_to_user(info, &val, sizeof(struct sysinfo)))
1644 return -EFAULT;
1645
1646 return 0;
1647 }
1648
init_timers_cpu(int cpu)1649 static int __cpuinit init_timers_cpu(int cpu)
1650 {
1651 int j;
1652 struct tvec_base *base;
1653 static char __cpuinitdata tvec_base_done[NR_CPUS];
1654
1655 if (!tvec_base_done[cpu]) {
1656 static char boot_done;
1657
1658 if (boot_done) {
1659 /*
1660 * The APs use this path later in boot
1661 */
1662 base = kmalloc_node(sizeof(*base),
1663 GFP_KERNEL | __GFP_ZERO,
1664 cpu_to_node(cpu));
1665 if (!base)
1666 return -ENOMEM;
1667
1668 /* Make sure that tvec_base is 2 byte aligned */
1669 if (tbase_get_deferrable(base)) {
1670 WARN_ON(1);
1671 kfree(base);
1672 return -ENOMEM;
1673 }
1674 per_cpu(tvec_bases, cpu) = base;
1675 } else {
1676 /*
1677 * This is for the boot CPU - we use compile-time
1678 * static initialisation because per-cpu memory isn't
1679 * ready yet and because the memory allocators are not
1680 * initialised either.
1681 */
1682 boot_done = 1;
1683 base = &boot_tvec_bases;
1684 }
1685 spin_lock_init(&base->lock);
1686 tvec_base_done[cpu] = 1;
1687 } else {
1688 base = per_cpu(tvec_bases, cpu);
1689 }
1690
1691
1692 for (j = 0; j < TVN_SIZE; j++) {
1693 INIT_LIST_HEAD(base->tv5.vec + j);
1694 INIT_LIST_HEAD(base->tv4.vec + j);
1695 INIT_LIST_HEAD(base->tv3.vec + j);
1696 INIT_LIST_HEAD(base->tv2.vec + j);
1697 }
1698 for (j = 0; j < TVR_SIZE; j++)
1699 INIT_LIST_HEAD(base->tv1.vec + j);
1700
1701 base->timer_jiffies = jiffies;
1702 base->next_timer = base->timer_jiffies;
1703 return 0;
1704 }
1705
1706 #ifdef CONFIG_HOTPLUG_CPU
migrate_timer_list(struct tvec_base * new_base,struct list_head * head)1707 static void migrate_timer_list(struct tvec_base *new_base, struct list_head *head)
1708 {
1709 struct timer_list *timer;
1710
1711 while (!list_empty(head)) {
1712 timer = list_first_entry(head, struct timer_list, entry);
1713 detach_timer(timer, 0);
1714 timer_set_base(timer, new_base);
1715 if (time_before(timer->expires, new_base->next_timer) &&
1716 !tbase_get_deferrable(timer->base))
1717 new_base->next_timer = timer->expires;
1718 internal_add_timer(new_base, timer);
1719 }
1720 }
1721
migrate_timers(int cpu)1722 static void __cpuinit migrate_timers(int cpu)
1723 {
1724 struct tvec_base *old_base;
1725 struct tvec_base *new_base;
1726 int i;
1727
1728 BUG_ON(cpu_online(cpu));
1729 old_base = per_cpu(tvec_bases, cpu);
1730 new_base = get_cpu_var(tvec_bases);
1731 /*
1732 * The caller is globally serialized and nobody else
1733 * takes two locks at once, deadlock is not possible.
1734 */
1735 spin_lock_irq(&new_base->lock);
1736 spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
1737
1738 BUG_ON(old_base->running_timer);
1739
1740 for (i = 0; i < TVR_SIZE; i++)
1741 migrate_timer_list(new_base, old_base->tv1.vec + i);
1742 for (i = 0; i < TVN_SIZE; i++) {
1743 migrate_timer_list(new_base, old_base->tv2.vec + i);
1744 migrate_timer_list(new_base, old_base->tv3.vec + i);
1745 migrate_timer_list(new_base, old_base->tv4.vec + i);
1746 migrate_timer_list(new_base, old_base->tv5.vec + i);
1747 }
1748
1749 spin_unlock(&old_base->lock);
1750 spin_unlock_irq(&new_base->lock);
1751 put_cpu_var(tvec_bases);
1752 }
1753 #endif /* CONFIG_HOTPLUG_CPU */
1754
timer_cpu_notify(struct notifier_block * self,unsigned long action,void * hcpu)1755 static int __cpuinit timer_cpu_notify(struct notifier_block *self,
1756 unsigned long action, void *hcpu)
1757 {
1758 long cpu = (long)hcpu;
1759 int err;
1760
1761 switch(action) {
1762 case CPU_UP_PREPARE:
1763 case CPU_UP_PREPARE_FROZEN:
1764 err = init_timers_cpu(cpu);
1765 if (err < 0)
1766 return notifier_from_errno(err);
1767 break;
1768 #ifdef CONFIG_HOTPLUG_CPU
1769 case CPU_DEAD:
1770 case CPU_DEAD_FROZEN:
1771 migrate_timers(cpu);
1772 break;
1773 #endif
1774 default:
1775 break;
1776 }
1777 return NOTIFY_OK;
1778 }
1779
1780 static struct notifier_block __cpuinitdata timers_nb = {
1781 .notifier_call = timer_cpu_notify,
1782 };
1783
1784
init_timers(void)1785 void __init init_timers(void)
1786 {
1787 int err = timer_cpu_notify(&timers_nb, (unsigned long)CPU_UP_PREPARE,
1788 (void *)(long)smp_processor_id());
1789
1790 init_timer_stats();
1791
1792 BUG_ON(err != NOTIFY_OK);
1793 register_cpu_notifier(&timers_nb);
1794 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1795 }
1796
1797 /**
1798 * msleep - sleep safely even with waitqueue interruptions
1799 * @msecs: Time in milliseconds to sleep for
1800 */
msleep(unsigned int msecs)1801 void msleep(unsigned int msecs)
1802 {
1803 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1804
1805 while (timeout)
1806 timeout = schedule_timeout_uninterruptible(timeout);
1807 }
1808
1809 EXPORT_SYMBOL(msleep);
1810
1811 /**
1812 * msleep_interruptible - sleep waiting for signals
1813 * @msecs: Time in milliseconds to sleep for
1814 */
msleep_interruptible(unsigned int msecs)1815 unsigned long msleep_interruptible(unsigned int msecs)
1816 {
1817 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1818
1819 while (timeout && !signal_pending(current))
1820 timeout = schedule_timeout_interruptible(timeout);
1821 return jiffies_to_msecs(timeout);
1822 }
1823
1824 EXPORT_SYMBOL(msleep_interruptible);
1825
do_usleep_range(unsigned long min,unsigned long max)1826 static int __sched do_usleep_range(unsigned long min, unsigned long max)
1827 {
1828 ktime_t kmin;
1829 unsigned long delta;
1830
1831 kmin = ktime_set(0, min * NSEC_PER_USEC);
1832 delta = (max - min) * NSEC_PER_USEC;
1833 return schedule_hrtimeout_range(&kmin, delta, HRTIMER_MODE_REL);
1834 }
1835
1836 /**
1837 * usleep_range - Drop in replacement for udelay where wakeup is flexible
1838 * @min: Minimum time in usecs to sleep
1839 * @max: Maximum time in usecs to sleep
1840 */
usleep_range(unsigned long min,unsigned long max)1841 void usleep_range(unsigned long min, unsigned long max)
1842 {
1843 __set_current_state(TASK_UNINTERRUPTIBLE);
1844 do_usleep_range(min, max);
1845 }
1846 EXPORT_SYMBOL(usleep_range);
1847