1 /*
2  *  linux/kernel/time.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  *
6  *  This file contains the interface functions for the various
7  *  time related system calls: time, stime, gettimeofday, settimeofday,
8  *			       adjtime
9  */
10 /*
11  * Modification history kernel/time.c
12  *
13  * 1993-09-02    Philip Gladstone
14  *      Created file with time related functions from sched.c and adjtimex()
15  * 1993-10-08    Torsten Duwe
16  *      adjtime interface update and CMOS clock write code
17  * 1995-08-13    Torsten Duwe
18  *      kernel PLL updated to 1994-12-13 specs (rfc-1589)
19  * 1999-01-16    Ulrich Windl
20  *	Introduced error checking for many cases in adjtimex().
21  *	Updated NTP code according to technical memorandum Jan '96
22  *	"A Kernel Model for Precision Timekeeping" by Dave Mills
23  *	Allow time_constant larger than MAXTC(6) for NTP v4 (MAXTC == 10)
24  *	(Even though the technical memorandum forbids it)
25  * 2004-07-14	 Christoph Lameter
26  *	Added getnstimeofday to allow the posix timer functions to return
27  *	with nanosecond accuracy
28  */
29 
30 #include <linux/module.h>
31 #include <linux/timex.h>
32 #include <linux/capability.h>
33 #include <linux/clocksource.h>
34 #include <linux/errno.h>
35 #include <linux/syscalls.h>
36 #include <linux/security.h>
37 #include <linux/fs.h>
38 #include <linux/math64.h>
39 #include <linux/ptrace.h>
40 
41 #include <asm/uaccess.h>
42 #include <asm/unistd.h>
43 
44 #include "timeconst.h"
45 
46 /*
47  * The timezone where the local system is located.  Used as a default by some
48  * programs who obtain this value by using gettimeofday.
49  */
50 struct timezone sys_tz;
51 
52 EXPORT_SYMBOL(sys_tz);
53 
54 #ifdef __ARCH_WANT_SYS_TIME
55 
56 /*
57  * sys_time() can be implemented in user-level using
58  * sys_gettimeofday().  Is this for backwards compatibility?  If so,
59  * why not move it into the appropriate arch directory (for those
60  * architectures that need it).
61  */
SYSCALL_DEFINE1(time,time_t __user *,tloc)62 SYSCALL_DEFINE1(time, time_t __user *, tloc)
63 {
64 	time_t i = get_seconds();
65 
66 	if (tloc) {
67 		if (put_user(i,tloc))
68 			return -EFAULT;
69 	}
70 	force_successful_syscall_return();
71 	return i;
72 }
73 
74 /*
75  * sys_stime() can be implemented in user-level using
76  * sys_settimeofday().  Is this for backwards compatibility?  If so,
77  * why not move it into the appropriate arch directory (for those
78  * architectures that need it).
79  */
80 
SYSCALL_DEFINE1(stime,time_t __user *,tptr)81 SYSCALL_DEFINE1(stime, time_t __user *, tptr)
82 {
83 	struct timespec tv;
84 	int err;
85 
86 	if (get_user(tv.tv_sec, tptr))
87 		return -EFAULT;
88 
89 	tv.tv_nsec = 0;
90 
91 	err = security_settime(&tv, NULL);
92 	if (err)
93 		return err;
94 
95 	do_settimeofday(&tv);
96 	return 0;
97 }
98 
99 #endif /* __ARCH_WANT_SYS_TIME */
100 
SYSCALL_DEFINE2(gettimeofday,struct timeval __user *,tv,struct timezone __user *,tz)101 SYSCALL_DEFINE2(gettimeofday, struct timeval __user *, tv,
102 		struct timezone __user *, tz)
103 {
104 	if (likely(tv != NULL)) {
105 		struct timeval ktv;
106 		do_gettimeofday(&ktv);
107 		if (copy_to_user(tv, &ktv, sizeof(ktv)))
108 			return -EFAULT;
109 	}
110 	if (unlikely(tz != NULL)) {
111 		if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
112 			return -EFAULT;
113 	}
114 	return 0;
115 }
116 
117 /*
118  * Adjust the time obtained from the CMOS to be UTC time instead of
119  * local time.
120  *
121  * This is ugly, but preferable to the alternatives.  Otherwise we
122  * would either need to write a program to do it in /etc/rc (and risk
123  * confusion if the program gets run more than once; it would also be
124  * hard to make the program warp the clock precisely n hours)  or
125  * compile in the timezone information into the kernel.  Bad, bad....
126  *
127  *						- TYT, 1992-01-01
128  *
129  * The best thing to do is to keep the CMOS clock in universal time (UTC)
130  * as real UNIX machines always do it. This avoids all headaches about
131  * daylight saving times and warping kernel clocks.
132  */
warp_clock(void)133 static inline void warp_clock(void)
134 {
135 	struct timespec adjust;
136 
137 	adjust = current_kernel_time();
138 	adjust.tv_sec += sys_tz.tz_minuteswest * 60;
139 	do_settimeofday(&adjust);
140 }
141 
142 /*
143  * In case for some reason the CMOS clock has not already been running
144  * in UTC, but in some local time: The first time we set the timezone,
145  * we will warp the clock so that it is ticking UTC time instead of
146  * local time. Presumably, if someone is setting the timezone then we
147  * are running in an environment where the programs understand about
148  * timezones. This should be done at boot time in the /etc/rc script,
149  * as soon as possible, so that the clock can be set right. Otherwise,
150  * various programs will get confused when the clock gets warped.
151  */
152 
do_sys_settimeofday(const struct timespec * tv,const struct timezone * tz)153 int do_sys_settimeofday(const struct timespec *tv, const struct timezone *tz)
154 {
155 	static int firsttime = 1;
156 	int error = 0;
157 
158 	if (tv && !timespec_valid(tv))
159 		return -EINVAL;
160 
161 	error = security_settime(tv, tz);
162 	if (error)
163 		return error;
164 
165 	if (tz) {
166 		/* SMP safe, global irq locking makes it work. */
167 		sys_tz = *tz;
168 		update_vsyscall_tz();
169 		if (firsttime) {
170 			firsttime = 0;
171 			if (!tv)
172 				warp_clock();
173 		}
174 	}
175 	if (tv)
176 	{
177 		/* SMP safe, again the code in arch/foo/time.c should
178 		 * globally block out interrupts when it runs.
179 		 */
180 		return do_settimeofday(tv);
181 	}
182 	return 0;
183 }
184 
SYSCALL_DEFINE2(settimeofday,struct timeval __user *,tv,struct timezone __user *,tz)185 SYSCALL_DEFINE2(settimeofday, struct timeval __user *, tv,
186 		struct timezone __user *, tz)
187 {
188 	struct timeval user_tv;
189 	struct timespec	new_ts;
190 	struct timezone new_tz;
191 
192 	if (tv) {
193 		if (copy_from_user(&user_tv, tv, sizeof(*tv)))
194 			return -EFAULT;
195 		new_ts.tv_sec = user_tv.tv_sec;
196 		new_ts.tv_nsec = user_tv.tv_usec * NSEC_PER_USEC;
197 	}
198 	if (tz) {
199 		if (copy_from_user(&new_tz, tz, sizeof(*tz)))
200 			return -EFAULT;
201 	}
202 
203 	return do_sys_settimeofday(tv ? &new_ts : NULL, tz ? &new_tz : NULL);
204 }
205 
SYSCALL_DEFINE1(adjtimex,struct timex __user *,txc_p)206 SYSCALL_DEFINE1(adjtimex, struct timex __user *, txc_p)
207 {
208 	struct timex txc;		/* Local copy of parameter */
209 	int ret;
210 
211 	/* Copy the user data space into the kernel copy
212 	 * structure. But bear in mind that the structures
213 	 * may change
214 	 */
215 	if(copy_from_user(&txc, txc_p, sizeof(struct timex)))
216 		return -EFAULT;
217 	ret = do_adjtimex(&txc);
218 	return copy_to_user(txc_p, &txc, sizeof(struct timex)) ? -EFAULT : ret;
219 }
220 
221 /**
222  * current_fs_time - Return FS time
223  * @sb: Superblock.
224  *
225  * Return the current time truncated to the time granularity supported by
226  * the fs.
227  */
current_fs_time(struct super_block * sb)228 struct timespec current_fs_time(struct super_block *sb)
229 {
230 	struct timespec now = current_kernel_time();
231 	return timespec_trunc(now, sb->s_time_gran);
232 }
233 EXPORT_SYMBOL(current_fs_time);
234 
235 /*
236  * Convert jiffies to milliseconds and back.
237  *
238  * Avoid unnecessary multiplications/divisions in the
239  * two most common HZ cases:
240  */
jiffies_to_msecs(const unsigned long j)241 inline unsigned int jiffies_to_msecs(const unsigned long j)
242 {
243 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
244 	return (MSEC_PER_SEC / HZ) * j;
245 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
246 	return (j + (HZ / MSEC_PER_SEC) - 1)/(HZ / MSEC_PER_SEC);
247 #else
248 # if BITS_PER_LONG == 32
249 	return (HZ_TO_MSEC_MUL32 * j) >> HZ_TO_MSEC_SHR32;
250 # else
251 	return (j * HZ_TO_MSEC_NUM) / HZ_TO_MSEC_DEN;
252 # endif
253 #endif
254 }
255 EXPORT_SYMBOL(jiffies_to_msecs);
256 
jiffies_to_usecs(const unsigned long j)257 inline unsigned int jiffies_to_usecs(const unsigned long j)
258 {
259 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
260 	return (USEC_PER_SEC / HZ) * j;
261 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
262 	return (j + (HZ / USEC_PER_SEC) - 1)/(HZ / USEC_PER_SEC);
263 #else
264 # if BITS_PER_LONG == 32
265 	return (HZ_TO_USEC_MUL32 * j) >> HZ_TO_USEC_SHR32;
266 # else
267 	return (j * HZ_TO_USEC_NUM) / HZ_TO_USEC_DEN;
268 # endif
269 #endif
270 }
271 EXPORT_SYMBOL(jiffies_to_usecs);
272 
273 /**
274  * timespec_trunc - Truncate timespec to a granularity
275  * @t: Timespec
276  * @gran: Granularity in ns.
277  *
278  * Truncate a timespec to a granularity. gran must be smaller than a second.
279  * Always rounds down.
280  *
281  * This function should be only used for timestamps returned by
282  * current_kernel_time() or CURRENT_TIME, not with do_gettimeofday() because
283  * it doesn't handle the better resolution of the latter.
284  */
timespec_trunc(struct timespec t,unsigned gran)285 struct timespec timespec_trunc(struct timespec t, unsigned gran)
286 {
287 	/*
288 	 * Division is pretty slow so avoid it for common cases.
289 	 * Currently current_kernel_time() never returns better than
290 	 * jiffies resolution. Exploit that.
291 	 */
292 	if (gran <= jiffies_to_usecs(1) * 1000) {
293 		/* nothing */
294 	} else if (gran == 1000000000) {
295 		t.tv_nsec = 0;
296 	} else {
297 		t.tv_nsec -= t.tv_nsec % gran;
298 	}
299 	return t;
300 }
301 EXPORT_SYMBOL(timespec_trunc);
302 
303 /* Converts Gregorian date to seconds since 1970-01-01 00:00:00.
304  * Assumes input in normal date format, i.e. 1980-12-31 23:59:59
305  * => year=1980, mon=12, day=31, hour=23, min=59, sec=59.
306  *
307  * [For the Julian calendar (which was used in Russia before 1917,
308  * Britain & colonies before 1752, anywhere else before 1582,
309  * and is still in use by some communities) leave out the
310  * -year/100+year/400 terms, and add 10.]
311  *
312  * This algorithm was first published by Gauss (I think).
313  *
314  * WARNING: this function will overflow on 2106-02-07 06:28:16 on
315  * machines where long is 32-bit! (However, as time_t is signed, we
316  * will already get problems at other places on 2038-01-19 03:14:08)
317  */
318 unsigned long
mktime(const unsigned int year0,const unsigned int mon0,const unsigned int day,const unsigned int hour,const unsigned int min,const unsigned int sec)319 mktime(const unsigned int year0, const unsigned int mon0,
320        const unsigned int day, const unsigned int hour,
321        const unsigned int min, const unsigned int sec)
322 {
323 	unsigned int mon = mon0, year = year0;
324 
325 	/* 1..12 -> 11,12,1..10 */
326 	if (0 >= (int) (mon -= 2)) {
327 		mon += 12;	/* Puts Feb last since it has leap day */
328 		year -= 1;
329 	}
330 
331 	return ((((unsigned long)
332 		  (year/4 - year/100 + year/400 + 367*mon/12 + day) +
333 		  year*365 - 719499
334 	    )*24 + hour /* now have hours */
335 	  )*60 + min /* now have minutes */
336 	)*60 + sec; /* finally seconds */
337 }
338 
339 EXPORT_SYMBOL(mktime);
340 
341 /**
342  * set_normalized_timespec - set timespec sec and nsec parts and normalize
343  *
344  * @ts:		pointer to timespec variable to be set
345  * @sec:	seconds to set
346  * @nsec:	nanoseconds to set
347  *
348  * Set seconds and nanoseconds field of a timespec variable and
349  * normalize to the timespec storage format
350  *
351  * Note: The tv_nsec part is always in the range of
352  *	0 <= tv_nsec < NSEC_PER_SEC
353  * For negative values only the tv_sec field is negative !
354  */
set_normalized_timespec(struct timespec * ts,time_t sec,s64 nsec)355 void set_normalized_timespec(struct timespec *ts, time_t sec, s64 nsec)
356 {
357 	while (nsec >= NSEC_PER_SEC) {
358 		/*
359 		 * The following asm() prevents the compiler from
360 		 * optimising this loop into a modulo operation. See
361 		 * also __iter_div_u64_rem() in include/linux/time.h
362 		 */
363 		asm("" : "+rm"(nsec));
364 		nsec -= NSEC_PER_SEC;
365 		++sec;
366 	}
367 	while (nsec < 0) {
368 		asm("" : "+rm"(nsec));
369 		nsec += NSEC_PER_SEC;
370 		--sec;
371 	}
372 	ts->tv_sec = sec;
373 	ts->tv_nsec = nsec;
374 }
375 EXPORT_SYMBOL(set_normalized_timespec);
376 
377 /**
378  * ns_to_timespec - Convert nanoseconds to timespec
379  * @nsec:       the nanoseconds value to be converted
380  *
381  * Returns the timespec representation of the nsec parameter.
382  */
ns_to_timespec(const s64 nsec)383 struct timespec ns_to_timespec(const s64 nsec)
384 {
385 	struct timespec ts;
386 	s32 rem;
387 
388 	if (!nsec)
389 		return (struct timespec) {0, 0};
390 
391 	ts.tv_sec = div_s64_rem(nsec, NSEC_PER_SEC, &rem);
392 	if (unlikely(rem < 0)) {
393 		ts.tv_sec--;
394 		rem += NSEC_PER_SEC;
395 	}
396 	ts.tv_nsec = rem;
397 
398 	return ts;
399 }
400 EXPORT_SYMBOL(ns_to_timespec);
401 
402 /**
403  * ns_to_timeval - Convert nanoseconds to timeval
404  * @nsec:       the nanoseconds value to be converted
405  *
406  * Returns the timeval representation of the nsec parameter.
407  */
ns_to_timeval(const s64 nsec)408 struct timeval ns_to_timeval(const s64 nsec)
409 {
410 	struct timespec ts = ns_to_timespec(nsec);
411 	struct timeval tv;
412 
413 	tv.tv_sec = ts.tv_sec;
414 	tv.tv_usec = (suseconds_t) ts.tv_nsec / 1000;
415 
416 	return tv;
417 }
418 EXPORT_SYMBOL(ns_to_timeval);
419 
420 /*
421  * When we convert to jiffies then we interpret incoming values
422  * the following way:
423  *
424  * - negative values mean 'infinite timeout' (MAX_JIFFY_OFFSET)
425  *
426  * - 'too large' values [that would result in larger than
427  *   MAX_JIFFY_OFFSET values] mean 'infinite timeout' too.
428  *
429  * - all other values are converted to jiffies by either multiplying
430  *   the input value by a factor or dividing it with a factor
431  *
432  * We must also be careful about 32-bit overflows.
433  */
msecs_to_jiffies(const unsigned int m)434 unsigned long msecs_to_jiffies(const unsigned int m)
435 {
436 	/*
437 	 * Negative value, means infinite timeout:
438 	 */
439 	if ((int)m < 0)
440 		return MAX_JIFFY_OFFSET;
441 
442 #if HZ <= MSEC_PER_SEC && !(MSEC_PER_SEC % HZ)
443 	/*
444 	 * HZ is equal to or smaller than 1000, and 1000 is a nice
445 	 * round multiple of HZ, divide with the factor between them,
446 	 * but round upwards:
447 	 */
448 	return (m + (MSEC_PER_SEC / HZ) - 1) / (MSEC_PER_SEC / HZ);
449 #elif HZ > MSEC_PER_SEC && !(HZ % MSEC_PER_SEC)
450 	/*
451 	 * HZ is larger than 1000, and HZ is a nice round multiple of
452 	 * 1000 - simply multiply with the factor between them.
453 	 *
454 	 * But first make sure the multiplication result cannot
455 	 * overflow:
456 	 */
457 	if (m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
458 		return MAX_JIFFY_OFFSET;
459 
460 	return m * (HZ / MSEC_PER_SEC);
461 #else
462 	/*
463 	 * Generic case - multiply, round and divide. But first
464 	 * check that if we are doing a net multiplication, that
465 	 * we wouldn't overflow:
466 	 */
467 	if (HZ > MSEC_PER_SEC && m > jiffies_to_msecs(MAX_JIFFY_OFFSET))
468 		return MAX_JIFFY_OFFSET;
469 
470 	return (MSEC_TO_HZ_MUL32 * m + MSEC_TO_HZ_ADJ32)
471 		>> MSEC_TO_HZ_SHR32;
472 #endif
473 }
474 EXPORT_SYMBOL(msecs_to_jiffies);
475 
usecs_to_jiffies(const unsigned int u)476 unsigned long usecs_to_jiffies(const unsigned int u)
477 {
478 	if (u > jiffies_to_usecs(MAX_JIFFY_OFFSET))
479 		return MAX_JIFFY_OFFSET;
480 #if HZ <= USEC_PER_SEC && !(USEC_PER_SEC % HZ)
481 	return (u + (USEC_PER_SEC / HZ) - 1) / (USEC_PER_SEC / HZ);
482 #elif HZ > USEC_PER_SEC && !(HZ % USEC_PER_SEC)
483 	return u * (HZ / USEC_PER_SEC);
484 #else
485 	return (USEC_TO_HZ_MUL32 * u + USEC_TO_HZ_ADJ32)
486 		>> USEC_TO_HZ_SHR32;
487 #endif
488 }
489 EXPORT_SYMBOL(usecs_to_jiffies);
490 
491 /*
492  * The TICK_NSEC - 1 rounds up the value to the next resolution.  Note
493  * that a remainder subtract here would not do the right thing as the
494  * resolution values don't fall on second boundries.  I.e. the line:
495  * nsec -= nsec % TICK_NSEC; is NOT a correct resolution rounding.
496  *
497  * Rather, we just shift the bits off the right.
498  *
499  * The >> (NSEC_JIFFIE_SC - SEC_JIFFIE_SC) converts the scaled nsec
500  * value to a scaled second value.
501  */
502 unsigned long
timespec_to_jiffies(const struct timespec * value)503 timespec_to_jiffies(const struct timespec *value)
504 {
505 	unsigned long sec = value->tv_sec;
506 	long nsec = value->tv_nsec + TICK_NSEC - 1;
507 
508 	if (sec >= MAX_SEC_IN_JIFFIES){
509 		sec = MAX_SEC_IN_JIFFIES;
510 		nsec = 0;
511 	}
512 	return (((u64)sec * SEC_CONVERSION) +
513 		(((u64)nsec * NSEC_CONVERSION) >>
514 		 (NSEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
515 
516 }
517 EXPORT_SYMBOL(timespec_to_jiffies);
518 
519 void
jiffies_to_timespec(const unsigned long jiffies,struct timespec * value)520 jiffies_to_timespec(const unsigned long jiffies, struct timespec *value)
521 {
522 	/*
523 	 * Convert jiffies to nanoseconds and separate with
524 	 * one divide.
525 	 */
526 	u32 rem;
527 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
528 				    NSEC_PER_SEC, &rem);
529 	value->tv_nsec = rem;
530 }
531 EXPORT_SYMBOL(jiffies_to_timespec);
532 
533 /* Same for "timeval"
534  *
535  * Well, almost.  The problem here is that the real system resolution is
536  * in nanoseconds and the value being converted is in micro seconds.
537  * Also for some machines (those that use HZ = 1024, in-particular),
538  * there is a LARGE error in the tick size in microseconds.
539 
540  * The solution we use is to do the rounding AFTER we convert the
541  * microsecond part.  Thus the USEC_ROUND, the bits to be shifted off.
542  * Instruction wise, this should cost only an additional add with carry
543  * instruction above the way it was done above.
544  */
545 unsigned long
timeval_to_jiffies(const struct timeval * value)546 timeval_to_jiffies(const struct timeval *value)
547 {
548 	unsigned long sec = value->tv_sec;
549 	long usec = value->tv_usec;
550 
551 	if (sec >= MAX_SEC_IN_JIFFIES){
552 		sec = MAX_SEC_IN_JIFFIES;
553 		usec = 0;
554 	}
555 	return (((u64)sec * SEC_CONVERSION) +
556 		(((u64)usec * USEC_CONVERSION + USEC_ROUND) >>
557 		 (USEC_JIFFIE_SC - SEC_JIFFIE_SC))) >> SEC_JIFFIE_SC;
558 }
559 EXPORT_SYMBOL(timeval_to_jiffies);
560 
jiffies_to_timeval(const unsigned long jiffies,struct timeval * value)561 void jiffies_to_timeval(const unsigned long jiffies, struct timeval *value)
562 {
563 	/*
564 	 * Convert jiffies to nanoseconds and separate with
565 	 * one divide.
566 	 */
567 	u32 rem;
568 
569 	value->tv_sec = div_u64_rem((u64)jiffies * TICK_NSEC,
570 				    NSEC_PER_SEC, &rem);
571 	value->tv_usec = rem / NSEC_PER_USEC;
572 }
573 EXPORT_SYMBOL(jiffies_to_timeval);
574 
575 /*
576  * Convert jiffies/jiffies_64 to clock_t and back.
577  */
jiffies_to_clock_t(long x)578 clock_t jiffies_to_clock_t(long x)
579 {
580 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
581 # if HZ < USER_HZ
582 	return x * (USER_HZ / HZ);
583 # else
584 	return x / (HZ / USER_HZ);
585 # endif
586 #else
587 	return div_u64((u64)x * TICK_NSEC, NSEC_PER_SEC / USER_HZ);
588 #endif
589 }
590 EXPORT_SYMBOL(jiffies_to_clock_t);
591 
clock_t_to_jiffies(unsigned long x)592 unsigned long clock_t_to_jiffies(unsigned long x)
593 {
594 #if (HZ % USER_HZ)==0
595 	if (x >= ~0UL / (HZ / USER_HZ))
596 		return ~0UL;
597 	return x * (HZ / USER_HZ);
598 #else
599 	/* Don't worry about loss of precision here .. */
600 	if (x >= ~0UL / HZ * USER_HZ)
601 		return ~0UL;
602 
603 	/* .. but do try to contain it here */
604 	return div_u64((u64)x * HZ, USER_HZ);
605 #endif
606 }
607 EXPORT_SYMBOL(clock_t_to_jiffies);
608 
jiffies_64_to_clock_t(u64 x)609 u64 jiffies_64_to_clock_t(u64 x)
610 {
611 #if (TICK_NSEC % (NSEC_PER_SEC / USER_HZ)) == 0
612 # if HZ < USER_HZ
613 	x = div_u64(x * USER_HZ, HZ);
614 # elif HZ > USER_HZ
615 	x = div_u64(x, HZ / USER_HZ);
616 # else
617 	/* Nothing to do */
618 # endif
619 #else
620 	/*
621 	 * There are better ways that don't overflow early,
622 	 * but even this doesn't overflow in hundreds of years
623 	 * in 64 bits, so..
624 	 */
625 	x = div_u64(x * TICK_NSEC, (NSEC_PER_SEC / USER_HZ));
626 #endif
627 	return x;
628 }
629 EXPORT_SYMBOL(jiffies_64_to_clock_t);
630 
nsec_to_clock_t(u64 x)631 u64 nsec_to_clock_t(u64 x)
632 {
633 #if (NSEC_PER_SEC % USER_HZ) == 0
634 	return div_u64(x, NSEC_PER_SEC / USER_HZ);
635 #elif (USER_HZ % 512) == 0
636 	return div_u64(x * USER_HZ / 512, NSEC_PER_SEC / 512);
637 #else
638 	/*
639          * max relative error 5.7e-8 (1.8s per year) for USER_HZ <= 1024,
640          * overflow after 64.99 years.
641          * exact for HZ=60, 72, 90, 120, 144, 180, 300, 600, 900, ...
642          */
643 	return div_u64(x * 9, (9ull * NSEC_PER_SEC + (USER_HZ / 2)) / USER_HZ);
644 #endif
645 }
646 
647 /**
648  * nsecs_to_jiffies64 - Convert nsecs in u64 to jiffies64
649  *
650  * @n:	nsecs in u64
651  *
652  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
653  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
654  * for scheduler, not for use in device drivers to calculate timeout value.
655  *
656  * note:
657  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
658  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
659  */
nsecs_to_jiffies64(u64 n)660 u64 nsecs_to_jiffies64(u64 n)
661 {
662 #if (NSEC_PER_SEC % HZ) == 0
663 	/* Common case, HZ = 100, 128, 200, 250, 256, 500, 512, 1000 etc. */
664 	return div_u64(n, NSEC_PER_SEC / HZ);
665 #elif (HZ % 512) == 0
666 	/* overflow after 292 years if HZ = 1024 */
667 	return div_u64(n * HZ / 512, NSEC_PER_SEC / 512);
668 #else
669 	/*
670 	 * Generic case - optimized for cases where HZ is a multiple of 3.
671 	 * overflow after 64.99 years, exact for HZ = 60, 72, 90, 120 etc.
672 	 */
673 	return div_u64(n * 9, (9ull * NSEC_PER_SEC + HZ / 2) / HZ);
674 #endif
675 }
676 
677 /**
678  * nsecs_to_jiffies - Convert nsecs in u64 to jiffies
679  *
680  * @n:	nsecs in u64
681  *
682  * Unlike {m,u}secs_to_jiffies, type of input is not unsigned int but u64.
683  * And this doesn't return MAX_JIFFY_OFFSET since this function is designed
684  * for scheduler, not for use in device drivers to calculate timeout value.
685  *
686  * note:
687  *   NSEC_PER_SEC = 10^9 = (5^9 * 2^9) = (1953125 * 512)
688  *   ULLONG_MAX ns = 18446744073.709551615 secs = about 584 years
689  */
nsecs_to_jiffies(u64 n)690 unsigned long nsecs_to_jiffies(u64 n)
691 {
692 	return (unsigned long)nsecs_to_jiffies64(n);
693 }
694 
695 /*
696  * Add two timespec values and do a safety check for overflow.
697  * It's assumed that both values are valid (>= 0)
698  */
timespec_add_safe(const struct timespec lhs,const struct timespec rhs)699 struct timespec timespec_add_safe(const struct timespec lhs,
700 				  const struct timespec rhs)
701 {
702 	struct timespec res;
703 
704 	set_normalized_timespec(&res, lhs.tv_sec + rhs.tv_sec,
705 				lhs.tv_nsec + rhs.tv_nsec);
706 
707 	if (res.tv_sec < lhs.tv_sec || res.tv_sec < rhs.tv_sec)
708 		res.tv_sec = TIME_T_MAX;
709 
710 	return res;
711 }
712