1 /* mpihelp-div.c  -  MPI helper functions
2  *	Copyright (C) 1994, 1996 Free Software Foundation, Inc.
3  *	Copyright (C) 1998, 1999 Free Software Foundation, Inc.
4  *
5  * This file is part of GnuPG.
6  *
7  * GnuPG is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * GnuPG is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  *
17  * You should have received a copy of the GNU General Public License
18  * along with this program; if not, write to the Free Software
19  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
20  *
21  * Note: This code is heavily based on the GNU MP Library.
22  *	 Actually it's the same code with only minor changes in the
23  *	 way the data is stored; this is to support the abstraction
24  *	 of an optional secure memory allocation which may be used
25  *	 to avoid revealing of sensitive data due to paging etc.
26  *	 The GNU MP Library itself is published under the LGPL;
27  *	 however I decided to publish this code under the plain GPL.
28  */
29 
30 #include "mpi-internal.h"
31 #include "longlong.h"
32 
33 #ifndef UMUL_TIME
34 #define UMUL_TIME 1
35 #endif
36 #ifndef UDIV_TIME
37 #define UDIV_TIME UMUL_TIME
38 #endif
39 
40 /* FIXME: We should be using invert_limb (or invert_normalized_limb)
41  * here (not udiv_qrnnd).
42  */
43 
44 mpi_limb_t
mpihelp_mod_1(mpi_ptr_t dividend_ptr,mpi_size_t dividend_size,mpi_limb_t divisor_limb)45 mpihelp_mod_1(mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
46 	      mpi_limb_t divisor_limb)
47 {
48 	mpi_size_t i;
49 	mpi_limb_t n1, n0, r;
50 	int dummy;
51 
52 	/* Botch: Should this be handled at all?  Rely on callers?  */
53 	if (!dividend_size)
54 		return 0;
55 
56 	/* If multiplication is much faster than division, and the
57 	 * dividend is large, pre-invert the divisor, and use
58 	 * only multiplications in the inner loop.
59 	 *
60 	 * This test should be read:
61 	 *   Does it ever help to use udiv_qrnnd_preinv?
62 	 *     && Does what we save compensate for the inversion overhead?
63 	 */
64 	if (UDIV_TIME > (2 * UMUL_TIME + 6)
65 	    && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) {
66 		int normalization_steps;
67 
68 		count_leading_zeros(normalization_steps, divisor_limb);
69 		if (normalization_steps) {
70 			mpi_limb_t divisor_limb_inverted;
71 
72 			divisor_limb <<= normalization_steps;
73 
74 			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
75 			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
76 			 * most significant bit (with weight 2**N) implicit.
77 			 *
78 			 * Special case for DIVISOR_LIMB == 100...000.
79 			 */
80 			if (!(divisor_limb << 1))
81 				divisor_limb_inverted = ~(mpi_limb_t) 0;
82 			else
83 				udiv_qrnnd(divisor_limb_inverted, dummy,
84 					   -divisor_limb, 0, divisor_limb);
85 
86 			n1 = dividend_ptr[dividend_size - 1];
87 			r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
88 
89 			/* Possible optimization:
90 			 * if (r == 0
91 			 * && divisor_limb > ((n1 << normalization_steps)
92 			 *                 | (dividend_ptr[dividend_size - 2] >> ...)))
93 			 * ...one division less...
94 			 */
95 			for (i = dividend_size - 2; i >= 0; i--) {
96 				n0 = dividend_ptr[i];
97 				UDIV_QRNND_PREINV(dummy, r, r,
98 						  ((n1 << normalization_steps)
99 						   | (n0 >>
100 						      (BITS_PER_MPI_LIMB -
101 						       normalization_steps))),
102 						  divisor_limb,
103 						  divisor_limb_inverted);
104 				n1 = n0;
105 			}
106 			UDIV_QRNND_PREINV(dummy, r, r,
107 					  n1 << normalization_steps,
108 					  divisor_limb, divisor_limb_inverted);
109 			return r >> normalization_steps;
110 		} else {
111 			mpi_limb_t divisor_limb_inverted;
112 
113 			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
114 			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
115 			 * most significant bit (with weight 2**N) implicit.
116 			 *
117 			 * Special case for DIVISOR_LIMB == 100...000.
118 			 */
119 			if (!(divisor_limb << 1))
120 				divisor_limb_inverted = ~(mpi_limb_t) 0;
121 			else
122 				udiv_qrnnd(divisor_limb_inverted, dummy,
123 					   -divisor_limb, 0, divisor_limb);
124 
125 			i = dividend_size - 1;
126 			r = dividend_ptr[i];
127 
128 			if (r >= divisor_limb)
129 				r = 0;
130 			else
131 				i--;
132 
133 			for (; i >= 0; i--) {
134 				n0 = dividend_ptr[i];
135 				UDIV_QRNND_PREINV(dummy, r, r,
136 						  n0, divisor_limb,
137 						  divisor_limb_inverted);
138 			}
139 			return r;
140 		}
141 	} else {
142 		if (UDIV_NEEDS_NORMALIZATION) {
143 			int normalization_steps;
144 
145 			count_leading_zeros(normalization_steps, divisor_limb);
146 			if (normalization_steps) {
147 				divisor_limb <<= normalization_steps;
148 
149 				n1 = dividend_ptr[dividend_size - 1];
150 				r = n1 >> (BITS_PER_MPI_LIMB -
151 					   normalization_steps);
152 
153 				/* Possible optimization:
154 				 * if (r == 0
155 				 * && divisor_limb > ((n1 << normalization_steps)
156 				 *                 | (dividend_ptr[dividend_size - 2] >> ...)))
157 				 * ...one division less...
158 				 */
159 				for (i = dividend_size - 2; i >= 0; i--) {
160 					n0 = dividend_ptr[i];
161 					udiv_qrnnd(dummy, r, r,
162 						   ((n1 << normalization_steps)
163 						    | (n0 >>
164 						       (BITS_PER_MPI_LIMB -
165 							normalization_steps))),
166 						   divisor_limb);
167 					n1 = n0;
168 				}
169 				udiv_qrnnd(dummy, r, r,
170 					   n1 << normalization_steps,
171 					   divisor_limb);
172 				return r >> normalization_steps;
173 			}
174 		}
175 		/* No normalization needed, either because udiv_qrnnd doesn't require
176 		 * it, or because DIVISOR_LIMB is already normalized.  */
177 		i = dividend_size - 1;
178 		r = dividend_ptr[i];
179 
180 		if (r >= divisor_limb)
181 			r = 0;
182 		else
183 			i--;
184 
185 		for (; i >= 0; i--) {
186 			n0 = dividend_ptr[i];
187 			udiv_qrnnd(dummy, r, r, n0, divisor_limb);
188 		}
189 		return r;
190 	}
191 }
192 
193 /* Divide num (NP/NSIZE) by den (DP/DSIZE) and write
194  * the NSIZE-DSIZE least significant quotient limbs at QP
195  * and the DSIZE long remainder at NP.	If QEXTRA_LIMBS is
196  * non-zero, generate that many fraction bits and append them after the
197  * other quotient limbs.
198  * Return the most significant limb of the quotient, this is always 0 or 1.
199  *
200  * Preconditions:
201  * 0. NSIZE >= DSIZE.
202  * 1. The most significant bit of the divisor must be set.
203  * 2. QP must either not overlap with the input operands at all, or
204  *    QP + DSIZE >= NP must hold true.	(This means that it's
205  *    possible to put the quotient in the high part of NUM, right after the
206  *    remainder in NUM.
207  * 3. NSIZE >= DSIZE, even if QEXTRA_LIMBS is non-zero.
208  */
209 
210 mpi_limb_t
mpihelp_divrem(mpi_ptr_t qp,mpi_size_t qextra_limbs,mpi_ptr_t np,mpi_size_t nsize,mpi_ptr_t dp,mpi_size_t dsize)211 mpihelp_divrem(mpi_ptr_t qp, mpi_size_t qextra_limbs,
212 	       mpi_ptr_t np, mpi_size_t nsize, mpi_ptr_t dp, mpi_size_t dsize)
213 {
214 	mpi_limb_t most_significant_q_limb = 0;
215 
216 	switch (dsize) {
217 	case 0:
218 		/* We are asked to divide by zero, so go ahead and do it!  (To make
219 		   the compiler not remove this statement, return the value.)  */
220 		/*
221 		 * existing clients of this function have been modified
222 		 * not to call it with dsize == 0, so this should not happen
223 		 */
224 		return 1 / dsize;
225 
226 	case 1:
227 		{
228 			mpi_size_t i;
229 			mpi_limb_t n1;
230 			mpi_limb_t d;
231 
232 			d = dp[0];
233 			n1 = np[nsize - 1];
234 
235 			if (n1 >= d) {
236 				n1 -= d;
237 				most_significant_q_limb = 1;
238 			}
239 
240 			qp += qextra_limbs;
241 			for (i = nsize - 2; i >= 0; i--)
242 				udiv_qrnnd(qp[i], n1, n1, np[i], d);
243 			qp -= qextra_limbs;
244 
245 			for (i = qextra_limbs - 1; i >= 0; i--)
246 				udiv_qrnnd(qp[i], n1, n1, 0, d);
247 
248 			np[0] = n1;
249 		}
250 		break;
251 
252 	case 2:
253 		{
254 			mpi_size_t i;
255 			mpi_limb_t n1, n0, n2;
256 			mpi_limb_t d1, d0;
257 
258 			np += nsize - 2;
259 			d1 = dp[1];
260 			d0 = dp[0];
261 			n1 = np[1];
262 			n0 = np[0];
263 
264 			if (n1 >= d1 && (n1 > d1 || n0 >= d0)) {
265 				sub_ddmmss(n1, n0, n1, n0, d1, d0);
266 				most_significant_q_limb = 1;
267 			}
268 
269 			for (i = qextra_limbs + nsize - 2 - 1; i >= 0; i--) {
270 				mpi_limb_t q;
271 				mpi_limb_t r;
272 
273 				if (i >= qextra_limbs)
274 					np--;
275 				else
276 					np[0] = 0;
277 
278 				if (n1 == d1) {
279 					/* Q should be either 111..111 or 111..110.  Need special
280 					 * treatment of this rare case as normal division would
281 					 * give overflow.  */
282 					q = ~(mpi_limb_t) 0;
283 
284 					r = n0 + d1;
285 					if (r < d1) {	/* Carry in the addition? */
286 						add_ssaaaa(n1, n0, r - d0,
287 							   np[0], 0, d0);
288 						qp[i] = q;
289 						continue;
290 					}
291 					n1 = d0 - (d0 != 0 ? 1 : 0);
292 					n0 = -d0;
293 				} else {
294 					udiv_qrnnd(q, r, n1, n0, d1);
295 					umul_ppmm(n1, n0, d0, q);
296 				}
297 
298 				n2 = np[0];
299 q_test:
300 				if (n1 > r || (n1 == r && n0 > n2)) {
301 					/* The estimated Q was too large.  */
302 					q--;
303 					sub_ddmmss(n1, n0, n1, n0, 0, d0);
304 					r += d1;
305 					if (r >= d1)	/* If not carry, test Q again.  */
306 						goto q_test;
307 				}
308 
309 				qp[i] = q;
310 				sub_ddmmss(n1, n0, r, n2, n1, n0);
311 			}
312 			np[1] = n1;
313 			np[0] = n0;
314 		}
315 		break;
316 
317 	default:
318 		{
319 			mpi_size_t i;
320 			mpi_limb_t dX, d1, n0;
321 
322 			np += nsize - dsize;
323 			dX = dp[dsize - 1];
324 			d1 = dp[dsize - 2];
325 			n0 = np[dsize - 1];
326 
327 			if (n0 >= dX) {
328 				if (n0 > dX
329 				    || mpihelp_cmp(np, dp, dsize - 1) >= 0) {
330 					mpihelp_sub_n(np, np, dp, dsize);
331 					n0 = np[dsize - 1];
332 					most_significant_q_limb = 1;
333 				}
334 			}
335 
336 			for (i = qextra_limbs + nsize - dsize - 1; i >= 0; i--) {
337 				mpi_limb_t q;
338 				mpi_limb_t n1, n2;
339 				mpi_limb_t cy_limb;
340 
341 				if (i >= qextra_limbs) {
342 					np--;
343 					n2 = np[dsize];
344 				} else {
345 					n2 = np[dsize - 1];
346 					MPN_COPY_DECR(np + 1, np, dsize - 1);
347 					np[0] = 0;
348 				}
349 
350 				if (n0 == dX) {
351 					/* This might over-estimate q, but it's probably not worth
352 					 * the extra code here to find out.  */
353 					q = ~(mpi_limb_t) 0;
354 				} else {
355 					mpi_limb_t r;
356 
357 					udiv_qrnnd(q, r, n0, np[dsize - 1], dX);
358 					umul_ppmm(n1, n0, d1, q);
359 
360 					while (n1 > r
361 					       || (n1 == r
362 						   && n0 > np[dsize - 2])) {
363 						q--;
364 						r += dX;
365 						if (r < dX)	/* I.e. "carry in previous addition?" */
366 							break;
367 						n1 -= n0 < d1;
368 						n0 -= d1;
369 					}
370 				}
371 
372 				/* Possible optimization: We already have (q * n0) and (1 * n1)
373 				 * after the calculation of q.  Taking advantage of that, we
374 				 * could make this loop make two iterations less.  */
375 				cy_limb = mpihelp_submul_1(np, dp, dsize, q);
376 
377 				if (n2 != cy_limb) {
378 					mpihelp_add_n(np, np, dp, dsize);
379 					q--;
380 				}
381 
382 				qp[i] = q;
383 				n0 = np[dsize - 1];
384 			}
385 		}
386 	}
387 
388 	return most_significant_q_limb;
389 }
390 
391 /****************
392  * Divide (DIVIDEND_PTR,,DIVIDEND_SIZE) by DIVISOR_LIMB.
393  * Write DIVIDEND_SIZE limbs of quotient at QUOT_PTR.
394  * Return the single-limb remainder.
395  * There are no constraints on the value of the divisor.
396  *
397  * QUOT_PTR and DIVIDEND_PTR might point to the same limb.
398  */
399 
400 mpi_limb_t
mpihelp_divmod_1(mpi_ptr_t quot_ptr,mpi_ptr_t dividend_ptr,mpi_size_t dividend_size,mpi_limb_t divisor_limb)401 mpihelp_divmod_1(mpi_ptr_t quot_ptr,
402 		 mpi_ptr_t dividend_ptr, mpi_size_t dividend_size,
403 		 mpi_limb_t divisor_limb)
404 {
405 	mpi_size_t i;
406 	mpi_limb_t n1, n0, r;
407 	int dummy;
408 
409 	if (!dividend_size)
410 		return 0;
411 
412 	/* If multiplication is much faster than division, and the
413 	 * dividend is large, pre-invert the divisor, and use
414 	 * only multiplications in the inner loop.
415 	 *
416 	 * This test should be read:
417 	 * Does it ever help to use udiv_qrnnd_preinv?
418 	 * && Does what we save compensate for the inversion overhead?
419 	 */
420 	if (UDIV_TIME > (2 * UMUL_TIME + 6)
421 	    && (UDIV_TIME - (2 * UMUL_TIME + 6)) * dividend_size > UDIV_TIME) {
422 		int normalization_steps;
423 
424 		count_leading_zeros(normalization_steps, divisor_limb);
425 		if (normalization_steps) {
426 			mpi_limb_t divisor_limb_inverted;
427 
428 			divisor_limb <<= normalization_steps;
429 
430 			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
431 			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
432 			 * most significant bit (with weight 2**N) implicit.
433 			 */
434 			/* Special case for DIVISOR_LIMB == 100...000.  */
435 			if (!(divisor_limb << 1))
436 				divisor_limb_inverted = ~(mpi_limb_t) 0;
437 			else
438 				udiv_qrnnd(divisor_limb_inverted, dummy,
439 					   -divisor_limb, 0, divisor_limb);
440 
441 			n1 = dividend_ptr[dividend_size - 1];
442 			r = n1 >> (BITS_PER_MPI_LIMB - normalization_steps);
443 
444 			/* Possible optimization:
445 			 * if (r == 0
446 			 * && divisor_limb > ((n1 << normalization_steps)
447 			 *                 | (dividend_ptr[dividend_size - 2] >> ...)))
448 			 * ...one division less...
449 			 */
450 			for (i = dividend_size - 2; i >= 0; i--) {
451 				n0 = dividend_ptr[i];
452 				UDIV_QRNND_PREINV(quot_ptr[i + 1], r, r,
453 						  ((n1 << normalization_steps)
454 						   | (n0 >>
455 						      (BITS_PER_MPI_LIMB -
456 						       normalization_steps))),
457 						  divisor_limb,
458 						  divisor_limb_inverted);
459 				n1 = n0;
460 			}
461 			UDIV_QRNND_PREINV(quot_ptr[0], r, r,
462 					  n1 << normalization_steps,
463 					  divisor_limb, divisor_limb_inverted);
464 			return r >> normalization_steps;
465 		} else {
466 			mpi_limb_t divisor_limb_inverted;
467 
468 			/* Compute (2**2N - 2**N * DIVISOR_LIMB) / DIVISOR_LIMB.  The
469 			 * result is a (N+1)-bit approximation to 1/DIVISOR_LIMB, with the
470 			 * most significant bit (with weight 2**N) implicit.
471 			 */
472 			/* Special case for DIVISOR_LIMB == 100...000.  */
473 			if (!(divisor_limb << 1))
474 				divisor_limb_inverted = ~(mpi_limb_t) 0;
475 			else
476 				udiv_qrnnd(divisor_limb_inverted, dummy,
477 					   -divisor_limb, 0, divisor_limb);
478 
479 			i = dividend_size - 1;
480 			r = dividend_ptr[i];
481 
482 			if (r >= divisor_limb)
483 				r = 0;
484 			else
485 				quot_ptr[i--] = 0;
486 
487 			for (; i >= 0; i--) {
488 				n0 = dividend_ptr[i];
489 				UDIV_QRNND_PREINV(quot_ptr[i], r, r,
490 						  n0, divisor_limb,
491 						  divisor_limb_inverted);
492 			}
493 			return r;
494 		}
495 	} else {
496 		if (UDIV_NEEDS_NORMALIZATION) {
497 			int normalization_steps;
498 
499 			count_leading_zeros(normalization_steps, divisor_limb);
500 			if (normalization_steps) {
501 				divisor_limb <<= normalization_steps;
502 
503 				n1 = dividend_ptr[dividend_size - 1];
504 				r = n1 >> (BITS_PER_MPI_LIMB -
505 					   normalization_steps);
506 
507 				/* Possible optimization:
508 				 * if (r == 0
509 				 * && divisor_limb > ((n1 << normalization_steps)
510 				 *                 | (dividend_ptr[dividend_size - 2] >> ...)))
511 				 * ...one division less...
512 				 */
513 				for (i = dividend_size - 2; i >= 0; i--) {
514 					n0 = dividend_ptr[i];
515 					udiv_qrnnd(quot_ptr[i + 1], r, r,
516 						   ((n1 << normalization_steps)
517 						    | (n0 >>
518 						       (BITS_PER_MPI_LIMB -
519 							normalization_steps))),
520 						   divisor_limb);
521 					n1 = n0;
522 				}
523 				udiv_qrnnd(quot_ptr[0], r, r,
524 					   n1 << normalization_steps,
525 					   divisor_limb);
526 				return r >> normalization_steps;
527 			}
528 		}
529 		/* No normalization needed, either because udiv_qrnnd doesn't require
530 		 * it, or because DIVISOR_LIMB is already normalized.  */
531 		i = dividend_size - 1;
532 		r = dividend_ptr[i];
533 
534 		if (r >= divisor_limb)
535 			r = 0;
536 		else
537 			quot_ptr[i--] = 0;
538 
539 		for (; i >= 0; i--) {
540 			n0 = dividend_ptr[i];
541 			udiv_qrnnd(quot_ptr[i], r, r, n0, divisor_limb);
542 		}
543 		return r;
544 	}
545 }
546