1 /*
2  * fs/mpage.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  *
6  * Contains functions related to preparing and submitting BIOs which contain
7  * multiple pagecache pages.
8  *
9  * 15May2002	Andrew Morton
10  *		Initial version
11  * 27Jun2002	axboe@suse.de
12  *		use bio_add_page() to build bio's just the right size
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/mm.h>
18 #include <linux/kdev_t.h>
19 #include <linux/gfp.h>
20 #include <linux/bio.h>
21 #include <linux/fs.h>
22 #include <linux/buffer_head.h>
23 #include <linux/blkdev.h>
24 #include <linux/highmem.h>
25 #include <linux/prefetch.h>
26 #include <linux/mpage.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/cleancache.h>
31 
32 /*
33  * I/O completion handler for multipage BIOs.
34  *
35  * The mpage code never puts partial pages into a BIO (except for end-of-file).
36  * If a page does not map to a contiguous run of blocks then it simply falls
37  * back to block_read_full_page().
38  *
39  * Why is this?  If a page's completion depends on a number of different BIOs
40  * which can complete in any order (or at the same time) then determining the
41  * status of that page is hard.  See end_buffer_async_read() for the details.
42  * There is no point in duplicating all that complexity.
43  */
mpage_end_io(struct bio * bio,int err)44 static void mpage_end_io(struct bio *bio, int err)
45 {
46 	const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
47 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
48 
49 	do {
50 		struct page *page = bvec->bv_page;
51 
52 		if (--bvec >= bio->bi_io_vec)
53 			prefetchw(&bvec->bv_page->flags);
54 		if (bio_data_dir(bio) == READ) {
55 			if (uptodate) {
56 				SetPageUptodate(page);
57 			} else {
58 				ClearPageUptodate(page);
59 				SetPageError(page);
60 			}
61 			unlock_page(page);
62 		} else { /* bio_data_dir(bio) == WRITE */
63 			if (!uptodate) {
64 				SetPageError(page);
65 				if (page->mapping)
66 					set_bit(AS_EIO, &page->mapping->flags);
67 			}
68 			end_page_writeback(page);
69 		}
70 	} while (bvec >= bio->bi_io_vec);
71 	bio_put(bio);
72 }
73 
mpage_bio_submit(int rw,struct bio * bio)74 static struct bio *mpage_bio_submit(int rw, struct bio *bio)
75 {
76 	bio->bi_end_io = mpage_end_io;
77 	submit_bio(rw, bio);
78 	return NULL;
79 }
80 
81 static struct bio *
mpage_alloc(struct block_device * bdev,sector_t first_sector,int nr_vecs,gfp_t gfp_flags)82 mpage_alloc(struct block_device *bdev,
83 		sector_t first_sector, int nr_vecs,
84 		gfp_t gfp_flags)
85 {
86 	struct bio *bio;
87 
88 	bio = bio_alloc(gfp_flags, nr_vecs);
89 
90 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
91 		while (!bio && (nr_vecs /= 2))
92 			bio = bio_alloc(gfp_flags, nr_vecs);
93 	}
94 
95 	if (bio) {
96 		bio->bi_bdev = bdev;
97 		bio->bi_sector = first_sector;
98 	}
99 	return bio;
100 }
101 
102 /*
103  * support function for mpage_readpages.  The fs supplied get_block might
104  * return an up to date buffer.  This is used to map that buffer into
105  * the page, which allows readpage to avoid triggering a duplicate call
106  * to get_block.
107  *
108  * The idea is to avoid adding buffers to pages that don't already have
109  * them.  So when the buffer is up to date and the page size == block size,
110  * this marks the page up to date instead of adding new buffers.
111  */
112 static void
map_buffer_to_page(struct page * page,struct buffer_head * bh,int page_block)113 map_buffer_to_page(struct page *page, struct buffer_head *bh, int page_block)
114 {
115 	struct inode *inode = page->mapping->host;
116 	struct buffer_head *page_bh, *head;
117 	int block = 0;
118 
119 	if (!page_has_buffers(page)) {
120 		/*
121 		 * don't make any buffers if there is only one buffer on
122 		 * the page and the page just needs to be set up to date
123 		 */
124 		if (inode->i_blkbits == PAGE_CACHE_SHIFT &&
125 		    buffer_uptodate(bh)) {
126 			SetPageUptodate(page);
127 			return;
128 		}
129 		create_empty_buffers(page, 1 << inode->i_blkbits, 0);
130 	}
131 	head = page_buffers(page);
132 	page_bh = head;
133 	do {
134 		if (block == page_block) {
135 			page_bh->b_state = bh->b_state;
136 			page_bh->b_bdev = bh->b_bdev;
137 			page_bh->b_blocknr = bh->b_blocknr;
138 			break;
139 		}
140 		page_bh = page_bh->b_this_page;
141 		block++;
142 	} while (page_bh != head);
143 }
144 
145 /*
146  * This is the worker routine which does all the work of mapping the disk
147  * blocks and constructs largest possible bios, submits them for IO if the
148  * blocks are not contiguous on the disk.
149  *
150  * We pass a buffer_head back and forth and use its buffer_mapped() flag to
151  * represent the validity of its disk mapping and to decide when to do the next
152  * get_block() call.
153  */
154 static struct bio *
do_mpage_readpage(struct bio * bio,struct page * page,unsigned nr_pages,sector_t * last_block_in_bio,struct buffer_head * map_bh,unsigned long * first_logical_block,get_block_t get_block)155 do_mpage_readpage(struct bio *bio, struct page *page, unsigned nr_pages,
156 		sector_t *last_block_in_bio, struct buffer_head *map_bh,
157 		unsigned long *first_logical_block, get_block_t get_block)
158 {
159 	struct inode *inode = page->mapping->host;
160 	const unsigned blkbits = inode->i_blkbits;
161 	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
162 	const unsigned blocksize = 1 << blkbits;
163 	sector_t block_in_file;
164 	sector_t last_block;
165 	sector_t last_block_in_file;
166 	sector_t blocks[MAX_BUF_PER_PAGE];
167 	unsigned page_block;
168 	unsigned first_hole = blocks_per_page;
169 	struct block_device *bdev = NULL;
170 	int length;
171 	int fully_mapped = 1;
172 	unsigned nblocks;
173 	unsigned relative_block;
174 
175 	if (page_has_buffers(page))
176 		goto confused;
177 
178 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
179 	last_block = block_in_file + nr_pages * blocks_per_page;
180 	last_block_in_file = (i_size_read(inode) + blocksize - 1) >> blkbits;
181 	if (last_block > last_block_in_file)
182 		last_block = last_block_in_file;
183 	page_block = 0;
184 
185 	/*
186 	 * Map blocks using the result from the previous get_blocks call first.
187 	 */
188 	nblocks = map_bh->b_size >> blkbits;
189 	if (buffer_mapped(map_bh) && block_in_file > *first_logical_block &&
190 			block_in_file < (*first_logical_block + nblocks)) {
191 		unsigned map_offset = block_in_file - *first_logical_block;
192 		unsigned last = nblocks - map_offset;
193 
194 		for (relative_block = 0; ; relative_block++) {
195 			if (relative_block == last) {
196 				clear_buffer_mapped(map_bh);
197 				break;
198 			}
199 			if (page_block == blocks_per_page)
200 				break;
201 			blocks[page_block] = map_bh->b_blocknr + map_offset +
202 						relative_block;
203 			page_block++;
204 			block_in_file++;
205 		}
206 		bdev = map_bh->b_bdev;
207 	}
208 
209 	/*
210 	 * Then do more get_blocks calls until we are done with this page.
211 	 */
212 	map_bh->b_page = page;
213 	while (page_block < blocks_per_page) {
214 		map_bh->b_state = 0;
215 		map_bh->b_size = 0;
216 
217 		if (block_in_file < last_block) {
218 			map_bh->b_size = (last_block-block_in_file) << blkbits;
219 			if (get_block(inode, block_in_file, map_bh, 0))
220 				goto confused;
221 			*first_logical_block = block_in_file;
222 		}
223 
224 		if (!buffer_mapped(map_bh)) {
225 			fully_mapped = 0;
226 			if (first_hole == blocks_per_page)
227 				first_hole = page_block;
228 			page_block++;
229 			block_in_file++;
230 			continue;
231 		}
232 
233 		/* some filesystems will copy data into the page during
234 		 * the get_block call, in which case we don't want to
235 		 * read it again.  map_buffer_to_page copies the data
236 		 * we just collected from get_block into the page's buffers
237 		 * so readpage doesn't have to repeat the get_block call
238 		 */
239 		if (buffer_uptodate(map_bh)) {
240 			map_buffer_to_page(page, map_bh, page_block);
241 			goto confused;
242 		}
243 
244 		if (first_hole != blocks_per_page)
245 			goto confused;		/* hole -> non-hole */
246 
247 		/* Contiguous blocks? */
248 		if (page_block && blocks[page_block-1] != map_bh->b_blocknr-1)
249 			goto confused;
250 		nblocks = map_bh->b_size >> blkbits;
251 		for (relative_block = 0; ; relative_block++) {
252 			if (relative_block == nblocks) {
253 				clear_buffer_mapped(map_bh);
254 				break;
255 			} else if (page_block == blocks_per_page)
256 				break;
257 			blocks[page_block] = map_bh->b_blocknr+relative_block;
258 			page_block++;
259 			block_in_file++;
260 		}
261 		bdev = map_bh->b_bdev;
262 	}
263 
264 	if (first_hole != blocks_per_page) {
265 		zero_user_segment(page, first_hole << blkbits, PAGE_CACHE_SIZE);
266 		if (first_hole == 0) {
267 			SetPageUptodate(page);
268 			unlock_page(page);
269 			goto out;
270 		}
271 	} else if (fully_mapped) {
272 		SetPageMappedToDisk(page);
273 	}
274 
275 	if (fully_mapped && blocks_per_page == 1 && !PageUptodate(page) &&
276 	    cleancache_get_page(page) == 0) {
277 		SetPageUptodate(page);
278 		goto confused;
279 	}
280 
281 	/*
282 	 * This page will go to BIO.  Do we need to send this BIO off first?
283 	 */
284 	if (bio && (*last_block_in_bio != blocks[0] - 1))
285 		bio = mpage_bio_submit(READ, bio);
286 
287 alloc_new:
288 	if (bio == NULL) {
289 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
290 			  	min_t(int, nr_pages, bio_get_nr_vecs(bdev)),
291 				GFP_KERNEL);
292 		if (bio == NULL)
293 			goto confused;
294 	}
295 
296 	length = first_hole << blkbits;
297 	if (bio_add_page(bio, page, length, 0) < length) {
298 		bio = mpage_bio_submit(READ, bio);
299 		goto alloc_new;
300 	}
301 
302 	relative_block = block_in_file - *first_logical_block;
303 	nblocks = map_bh->b_size >> blkbits;
304 	if ((buffer_boundary(map_bh) && relative_block == nblocks) ||
305 	    (first_hole != blocks_per_page))
306 		bio = mpage_bio_submit(READ, bio);
307 	else
308 		*last_block_in_bio = blocks[blocks_per_page - 1];
309 out:
310 	return bio;
311 
312 confused:
313 	if (bio)
314 		bio = mpage_bio_submit(READ, bio);
315 	if (!PageUptodate(page))
316 	        block_read_full_page(page, get_block);
317 	else
318 		unlock_page(page);
319 	goto out;
320 }
321 
322 /**
323  * mpage_readpages - populate an address space with some pages & start reads against them
324  * @mapping: the address_space
325  * @pages: The address of a list_head which contains the target pages.  These
326  *   pages have their ->index populated and are otherwise uninitialised.
327  *   The page at @pages->prev has the lowest file offset, and reads should be
328  *   issued in @pages->prev to @pages->next order.
329  * @nr_pages: The number of pages at *@pages
330  * @get_block: The filesystem's block mapper function.
331  *
332  * This function walks the pages and the blocks within each page, building and
333  * emitting large BIOs.
334  *
335  * If anything unusual happens, such as:
336  *
337  * - encountering a page which has buffers
338  * - encountering a page which has a non-hole after a hole
339  * - encountering a page with non-contiguous blocks
340  *
341  * then this code just gives up and calls the buffer_head-based read function.
342  * It does handle a page which has holes at the end - that is a common case:
343  * the end-of-file on blocksize < PAGE_CACHE_SIZE setups.
344  *
345  * BH_Boundary explanation:
346  *
347  * There is a problem.  The mpage read code assembles several pages, gets all
348  * their disk mappings, and then submits them all.  That's fine, but obtaining
349  * the disk mappings may require I/O.  Reads of indirect blocks, for example.
350  *
351  * So an mpage read of the first 16 blocks of an ext2 file will cause I/O to be
352  * submitted in the following order:
353  * 	12 0 1 2 3 4 5 6 7 8 9 10 11 13 14 15 16
354  *
355  * because the indirect block has to be read to get the mappings of blocks
356  * 13,14,15,16.  Obviously, this impacts performance.
357  *
358  * So what we do it to allow the filesystem's get_block() function to set
359  * BH_Boundary when it maps block 11.  BH_Boundary says: mapping of the block
360  * after this one will require I/O against a block which is probably close to
361  * this one.  So you should push what I/O you have currently accumulated.
362  *
363  * This all causes the disk requests to be issued in the correct order.
364  */
365 int
mpage_readpages(struct address_space * mapping,struct list_head * pages,unsigned nr_pages,get_block_t get_block)366 mpage_readpages(struct address_space *mapping, struct list_head *pages,
367 				unsigned nr_pages, get_block_t get_block)
368 {
369 	struct bio *bio = NULL;
370 	unsigned page_idx;
371 	sector_t last_block_in_bio = 0;
372 	struct buffer_head map_bh;
373 	unsigned long first_logical_block = 0;
374 
375 	map_bh.b_state = 0;
376 	map_bh.b_size = 0;
377 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
378 		struct page *page = list_entry(pages->prev, struct page, lru);
379 
380 		prefetchw(&page->flags);
381 		list_del(&page->lru);
382 		if (!add_to_page_cache_lru(page, mapping,
383 					page->index, GFP_KERNEL)) {
384 			bio = do_mpage_readpage(bio, page,
385 					nr_pages - page_idx,
386 					&last_block_in_bio, &map_bh,
387 					&first_logical_block,
388 					get_block);
389 		}
390 		page_cache_release(page);
391 	}
392 	BUG_ON(!list_empty(pages));
393 	if (bio)
394 		mpage_bio_submit(READ, bio);
395 	return 0;
396 }
397 EXPORT_SYMBOL(mpage_readpages);
398 
399 /*
400  * This isn't called much at all
401  */
mpage_readpage(struct page * page,get_block_t get_block)402 int mpage_readpage(struct page *page, get_block_t get_block)
403 {
404 	struct bio *bio = NULL;
405 	sector_t last_block_in_bio = 0;
406 	struct buffer_head map_bh;
407 	unsigned long first_logical_block = 0;
408 
409 	map_bh.b_state = 0;
410 	map_bh.b_size = 0;
411 	bio = do_mpage_readpage(bio, page, 1, &last_block_in_bio,
412 			&map_bh, &first_logical_block, get_block);
413 	if (bio)
414 		mpage_bio_submit(READ, bio);
415 	return 0;
416 }
417 EXPORT_SYMBOL(mpage_readpage);
418 
419 /*
420  * Writing is not so simple.
421  *
422  * If the page has buffers then they will be used for obtaining the disk
423  * mapping.  We only support pages which are fully mapped-and-dirty, with a
424  * special case for pages which are unmapped at the end: end-of-file.
425  *
426  * If the page has no buffers (preferred) then the page is mapped here.
427  *
428  * If all blocks are found to be contiguous then the page can go into the
429  * BIO.  Otherwise fall back to the mapping's writepage().
430  *
431  * FIXME: This code wants an estimate of how many pages are still to be
432  * written, so it can intelligently allocate a suitably-sized BIO.  For now,
433  * just allocate full-size (16-page) BIOs.
434  */
435 
436 struct mpage_data {
437 	struct bio *bio;
438 	sector_t last_block_in_bio;
439 	get_block_t *get_block;
440 	unsigned use_writepage;
441 };
442 
__mpage_writepage(struct page * page,struct writeback_control * wbc,void * data)443 static int __mpage_writepage(struct page *page, struct writeback_control *wbc,
444 		      void *data)
445 {
446 	struct mpage_data *mpd = data;
447 	struct bio *bio = mpd->bio;
448 	struct address_space *mapping = page->mapping;
449 	struct inode *inode = page->mapping->host;
450 	const unsigned blkbits = inode->i_blkbits;
451 	unsigned long end_index;
452 	const unsigned blocks_per_page = PAGE_CACHE_SIZE >> blkbits;
453 	sector_t last_block;
454 	sector_t block_in_file;
455 	sector_t blocks[MAX_BUF_PER_PAGE];
456 	unsigned page_block;
457 	unsigned first_unmapped = blocks_per_page;
458 	struct block_device *bdev = NULL;
459 	int boundary = 0;
460 	sector_t boundary_block = 0;
461 	struct block_device *boundary_bdev = NULL;
462 	int length;
463 	struct buffer_head map_bh;
464 	loff_t i_size = i_size_read(inode);
465 	int ret = 0;
466 
467 	if (page_has_buffers(page)) {
468 		struct buffer_head *head = page_buffers(page);
469 		struct buffer_head *bh = head;
470 
471 		/* If they're all mapped and dirty, do it */
472 		page_block = 0;
473 		do {
474 			BUG_ON(buffer_locked(bh));
475 			if (!buffer_mapped(bh)) {
476 				/*
477 				 * unmapped dirty buffers are created by
478 				 * __set_page_dirty_buffers -> mmapped data
479 				 */
480 				if (buffer_dirty(bh))
481 					goto confused;
482 				if (first_unmapped == blocks_per_page)
483 					first_unmapped = page_block;
484 				continue;
485 			}
486 
487 			if (first_unmapped != blocks_per_page)
488 				goto confused;	/* hole -> non-hole */
489 
490 			if (!buffer_dirty(bh) || !buffer_uptodate(bh))
491 				goto confused;
492 			if (page_block) {
493 				if (bh->b_blocknr != blocks[page_block-1] + 1)
494 					goto confused;
495 			}
496 			blocks[page_block++] = bh->b_blocknr;
497 			boundary = buffer_boundary(bh);
498 			if (boundary) {
499 				boundary_block = bh->b_blocknr;
500 				boundary_bdev = bh->b_bdev;
501 			}
502 			bdev = bh->b_bdev;
503 		} while ((bh = bh->b_this_page) != head);
504 
505 		if (first_unmapped)
506 			goto page_is_mapped;
507 
508 		/*
509 		 * Page has buffers, but they are all unmapped. The page was
510 		 * created by pagein or read over a hole which was handled by
511 		 * block_read_full_page().  If this address_space is also
512 		 * using mpage_readpages then this can rarely happen.
513 		 */
514 		goto confused;
515 	}
516 
517 	/*
518 	 * The page has no buffers: map it to disk
519 	 */
520 	BUG_ON(!PageUptodate(page));
521 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
522 	last_block = (i_size - 1) >> blkbits;
523 	map_bh.b_page = page;
524 	for (page_block = 0; page_block < blocks_per_page; ) {
525 
526 		map_bh.b_state = 0;
527 		map_bh.b_size = 1 << blkbits;
528 		if (mpd->get_block(inode, block_in_file, &map_bh, 1))
529 			goto confused;
530 		if (buffer_new(&map_bh))
531 			unmap_underlying_metadata(map_bh.b_bdev,
532 						map_bh.b_blocknr);
533 		if (buffer_boundary(&map_bh)) {
534 			boundary_block = map_bh.b_blocknr;
535 			boundary_bdev = map_bh.b_bdev;
536 		}
537 		if (page_block) {
538 			if (map_bh.b_blocknr != blocks[page_block-1] + 1)
539 				goto confused;
540 		}
541 		blocks[page_block++] = map_bh.b_blocknr;
542 		boundary = buffer_boundary(&map_bh);
543 		bdev = map_bh.b_bdev;
544 		if (block_in_file == last_block)
545 			break;
546 		block_in_file++;
547 	}
548 	BUG_ON(page_block == 0);
549 
550 	first_unmapped = page_block;
551 
552 page_is_mapped:
553 	end_index = i_size >> PAGE_CACHE_SHIFT;
554 	if (page->index >= end_index) {
555 		/*
556 		 * The page straddles i_size.  It must be zeroed out on each
557 		 * and every writepage invocation because it may be mmapped.
558 		 * "A file is mapped in multiples of the page size.  For a file
559 		 * that is not a multiple of the page size, the remaining memory
560 		 * is zeroed when mapped, and writes to that region are not
561 		 * written out to the file."
562 		 */
563 		unsigned offset = i_size & (PAGE_CACHE_SIZE - 1);
564 
565 		if (page->index > end_index || !offset)
566 			goto confused;
567 		zero_user_segment(page, offset, PAGE_CACHE_SIZE);
568 	}
569 
570 	/*
571 	 * This page will go to BIO.  Do we need to send this BIO off first?
572 	 */
573 	if (bio && mpd->last_block_in_bio != blocks[0] - 1)
574 		bio = mpage_bio_submit(WRITE, bio);
575 
576 alloc_new:
577 	if (bio == NULL) {
578 		bio = mpage_alloc(bdev, blocks[0] << (blkbits - 9),
579 				bio_get_nr_vecs(bdev), GFP_NOFS|__GFP_HIGH);
580 		if (bio == NULL)
581 			goto confused;
582 	}
583 
584 	/*
585 	 * Must try to add the page before marking the buffer clean or
586 	 * the confused fail path above (OOM) will be very confused when
587 	 * it finds all bh marked clean (i.e. it will not write anything)
588 	 */
589 	length = first_unmapped << blkbits;
590 	if (bio_add_page(bio, page, length, 0) < length) {
591 		bio = mpage_bio_submit(WRITE, bio);
592 		goto alloc_new;
593 	}
594 
595 	/*
596 	 * OK, we have our BIO, so we can now mark the buffers clean.  Make
597 	 * sure to only clean buffers which we know we'll be writing.
598 	 */
599 	if (page_has_buffers(page)) {
600 		struct buffer_head *head = page_buffers(page);
601 		struct buffer_head *bh = head;
602 		unsigned buffer_counter = 0;
603 
604 		do {
605 			if (buffer_counter++ == first_unmapped)
606 				break;
607 			clear_buffer_dirty(bh);
608 			bh = bh->b_this_page;
609 		} while (bh != head);
610 
611 		/*
612 		 * we cannot drop the bh if the page is not uptodate
613 		 * or a concurrent readpage would fail to serialize with the bh
614 		 * and it would read from disk before we reach the platter.
615 		 */
616 		if (buffer_heads_over_limit && PageUptodate(page))
617 			try_to_free_buffers(page);
618 	}
619 
620 	BUG_ON(PageWriteback(page));
621 	set_page_writeback(page);
622 	unlock_page(page);
623 	if (boundary || (first_unmapped != blocks_per_page)) {
624 		bio = mpage_bio_submit(WRITE, bio);
625 		if (boundary_block) {
626 			write_boundary_block(boundary_bdev,
627 					boundary_block, 1 << blkbits);
628 		}
629 	} else {
630 		mpd->last_block_in_bio = blocks[blocks_per_page - 1];
631 	}
632 	goto out;
633 
634 confused:
635 	if (bio)
636 		bio = mpage_bio_submit(WRITE, bio);
637 
638 	if (mpd->use_writepage) {
639 		ret = mapping->a_ops->writepage(page, wbc);
640 	} else {
641 		ret = -EAGAIN;
642 		goto out;
643 	}
644 	/*
645 	 * The caller has a ref on the inode, so *mapping is stable
646 	 */
647 	mapping_set_error(mapping, ret);
648 out:
649 	mpd->bio = bio;
650 	return ret;
651 }
652 
653 /**
654  * mpage_writepages - walk the list of dirty pages of the given address space & writepage() all of them
655  * @mapping: address space structure to write
656  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
657  * @get_block: the filesystem's block mapper function.
658  *             If this is NULL then use a_ops->writepage.  Otherwise, go
659  *             direct-to-BIO.
660  *
661  * This is a library function, which implements the writepages()
662  * address_space_operation.
663  *
664  * If a page is already under I/O, generic_writepages() skips it, even
665  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
666  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
667  * and msync() need to guarantee that all the data which was dirty at the time
668  * the call was made get new I/O started against them.  If wbc->sync_mode is
669  * WB_SYNC_ALL then we were called for data integrity and we must wait for
670  * existing IO to complete.
671  */
672 int
mpage_writepages(struct address_space * mapping,struct writeback_control * wbc,get_block_t get_block)673 mpage_writepages(struct address_space *mapping,
674 		struct writeback_control *wbc, get_block_t get_block)
675 {
676 	struct blk_plug plug;
677 	int ret;
678 
679 	blk_start_plug(&plug);
680 
681 	if (!get_block)
682 		ret = generic_writepages(mapping, wbc);
683 	else {
684 		struct mpage_data mpd = {
685 			.bio = NULL,
686 			.last_block_in_bio = 0,
687 			.get_block = get_block,
688 			.use_writepage = 1,
689 		};
690 
691 		ret = write_cache_pages(mapping, wbc, __mpage_writepage, &mpd);
692 		if (mpd.bio)
693 			mpage_bio_submit(WRITE, mpd.bio);
694 	}
695 	blk_finish_plug(&plug);
696 	return ret;
697 }
698 EXPORT_SYMBOL(mpage_writepages);
699 
mpage_writepage(struct page * page,get_block_t get_block,struct writeback_control * wbc)700 int mpage_writepage(struct page *page, get_block_t get_block,
701 	struct writeback_control *wbc)
702 {
703 	struct mpage_data mpd = {
704 		.bio = NULL,
705 		.last_block_in_bio = 0,
706 		.get_block = get_block,
707 		.use_writepage = 0,
708 	};
709 	int ret = __mpage_writepage(page, wbc, &mpd);
710 	if (mpd.bio)
711 		mpage_bio_submit(WRITE, mpd.bio);
712 	return ret;
713 }
714 EXPORT_SYMBOL(mpage_writepage);
715