1 /*
2 * linux/fs/super.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 *
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
12 *
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
14 *
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
21 */
22
23 #include <linux/export.h>
24 #include <linux/slab.h>
25 #include <linux/acct.h>
26 #include <linux/blkdev.h>
27 #include <linux/mount.h>
28 #include <linux/security.h>
29 #include <linux/writeback.h> /* for the emergency remount stuff */
30 #include <linux/idr.h>
31 #include <linux/mutex.h>
32 #include <linux/backing-dev.h>
33 #include <linux/rculist_bl.h>
34 #include <linux/cleancache.h>
35 #include <linux/fsnotify.h>
36 #include "internal.h"
37
38
39 LIST_HEAD(super_blocks);
40 DEFINE_SPINLOCK(sb_lock);
41
42 /*
43 * One thing we have to be careful of with a per-sb shrinker is that we don't
44 * drop the last active reference to the superblock from within the shrinker.
45 * If that happens we could trigger unregistering the shrinker from within the
46 * shrinker path and that leads to deadlock on the shrinker_rwsem. Hence we
47 * take a passive reference to the superblock to avoid this from occurring.
48 */
prune_super(struct shrinker * shrink,struct shrink_control * sc)49 static int prune_super(struct shrinker *shrink, struct shrink_control *sc)
50 {
51 struct super_block *sb;
52 int fs_objects = 0;
53 int total_objects;
54
55 sb = container_of(shrink, struct super_block, s_shrink);
56
57 /*
58 * Deadlock avoidance. We may hold various FS locks, and we don't want
59 * to recurse into the FS that called us in clear_inode() and friends..
60 */
61 if (sc->nr_to_scan && !(sc->gfp_mask & __GFP_FS))
62 return -1;
63
64 if (!grab_super_passive(sb))
65 return !sc->nr_to_scan ? 0 : -1;
66
67 if (sb->s_op && sb->s_op->nr_cached_objects)
68 fs_objects = sb->s_op->nr_cached_objects(sb);
69
70 total_objects = sb->s_nr_dentry_unused +
71 sb->s_nr_inodes_unused + fs_objects + 1;
72
73 if (sc->nr_to_scan) {
74 int dentries;
75 int inodes;
76
77 /* proportion the scan between the caches */
78 dentries = (sc->nr_to_scan * sb->s_nr_dentry_unused) /
79 total_objects;
80 inodes = (sc->nr_to_scan * sb->s_nr_inodes_unused) /
81 total_objects;
82 if (fs_objects)
83 fs_objects = (sc->nr_to_scan * fs_objects) /
84 total_objects;
85 /*
86 * prune the dcache first as the icache is pinned by it, then
87 * prune the icache, followed by the filesystem specific caches
88 */
89 prune_dcache_sb(sb, dentries);
90 prune_icache_sb(sb, inodes);
91
92 if (fs_objects && sb->s_op->free_cached_objects) {
93 sb->s_op->free_cached_objects(sb, fs_objects);
94 fs_objects = sb->s_op->nr_cached_objects(sb);
95 }
96 total_objects = sb->s_nr_dentry_unused +
97 sb->s_nr_inodes_unused + fs_objects;
98 }
99
100 total_objects = (total_objects / 100) * sysctl_vfs_cache_pressure;
101 drop_super(sb);
102 return total_objects;
103 }
104
105 /**
106 * alloc_super - create new superblock
107 * @type: filesystem type superblock should belong to
108 *
109 * Allocates and initializes a new &struct super_block. alloc_super()
110 * returns a pointer new superblock or %NULL if allocation had failed.
111 */
alloc_super(struct file_system_type * type)112 static struct super_block *alloc_super(struct file_system_type *type)
113 {
114 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
115 static const struct super_operations default_op;
116
117 if (s) {
118 if (security_sb_alloc(s)) {
119 kfree(s);
120 s = NULL;
121 goto out;
122 }
123 #ifdef CONFIG_SMP
124 s->s_files = alloc_percpu(struct list_head);
125 if (!s->s_files) {
126 security_sb_free(s);
127 kfree(s);
128 s = NULL;
129 goto out;
130 } else {
131 int i;
132
133 for_each_possible_cpu(i)
134 INIT_LIST_HEAD(per_cpu_ptr(s->s_files, i));
135 }
136 #else
137 INIT_LIST_HEAD(&s->s_files);
138 #endif
139 s->s_bdi = &default_backing_dev_info;
140 INIT_HLIST_NODE(&s->s_instances);
141 INIT_HLIST_BL_HEAD(&s->s_anon);
142 INIT_LIST_HEAD(&s->s_inodes);
143 INIT_LIST_HEAD(&s->s_dentry_lru);
144 INIT_LIST_HEAD(&s->s_inode_lru);
145 spin_lock_init(&s->s_inode_lru_lock);
146 INIT_LIST_HEAD(&s->s_mounts);
147 init_rwsem(&s->s_umount);
148 mutex_init(&s->s_lock);
149 lockdep_set_class(&s->s_umount, &type->s_umount_key);
150 /*
151 * The locking rules for s_lock are up to the
152 * filesystem. For example ext3fs has different
153 * lock ordering than usbfs:
154 */
155 lockdep_set_class(&s->s_lock, &type->s_lock_key);
156 /*
157 * sget() can have s_umount recursion.
158 *
159 * When it cannot find a suitable sb, it allocates a new
160 * one (this one), and tries again to find a suitable old
161 * one.
162 *
163 * In case that succeeds, it will acquire the s_umount
164 * lock of the old one. Since these are clearly distrinct
165 * locks, and this object isn't exposed yet, there's no
166 * risk of deadlocks.
167 *
168 * Annotate this by putting this lock in a different
169 * subclass.
170 */
171 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
172 s->s_count = 1;
173 atomic_set(&s->s_active, 1);
174 mutex_init(&s->s_vfs_rename_mutex);
175 lockdep_set_class(&s->s_vfs_rename_mutex, &type->s_vfs_rename_key);
176 mutex_init(&s->s_dquot.dqio_mutex);
177 mutex_init(&s->s_dquot.dqonoff_mutex);
178 init_rwsem(&s->s_dquot.dqptr_sem);
179 init_waitqueue_head(&s->s_wait_unfrozen);
180 s->s_maxbytes = MAX_NON_LFS;
181 s->s_op = &default_op;
182 s->s_time_gran = 1000000000;
183 s->cleancache_poolid = -1;
184
185 s->s_shrink.seeks = DEFAULT_SEEKS;
186 s->s_shrink.shrink = prune_super;
187 s->s_shrink.batch = 1024;
188 }
189 out:
190 return s;
191 }
192
193 /**
194 * destroy_super - frees a superblock
195 * @s: superblock to free
196 *
197 * Frees a superblock.
198 */
destroy_super(struct super_block * s)199 static inline void destroy_super(struct super_block *s)
200 {
201 #ifdef CONFIG_SMP
202 free_percpu(s->s_files);
203 #endif
204 security_sb_free(s);
205 WARN_ON(!list_empty(&s->s_mounts));
206 kfree(s->s_subtype);
207 kfree(s->s_options);
208 kfree(s);
209 }
210
211 /* Superblock refcounting */
212
213 /*
214 * Drop a superblock's refcount. The caller must hold sb_lock.
215 */
__put_super(struct super_block * sb)216 static void __put_super(struct super_block *sb)
217 {
218 if (!--sb->s_count) {
219 list_del_init(&sb->s_list);
220 destroy_super(sb);
221 }
222 }
223
224 /**
225 * put_super - drop a temporary reference to superblock
226 * @sb: superblock in question
227 *
228 * Drops a temporary reference, frees superblock if there's no
229 * references left.
230 */
put_super(struct super_block * sb)231 static void put_super(struct super_block *sb)
232 {
233 spin_lock(&sb_lock);
234 __put_super(sb);
235 spin_unlock(&sb_lock);
236 }
237
238
239 /**
240 * deactivate_locked_super - drop an active reference to superblock
241 * @s: superblock to deactivate
242 *
243 * Drops an active reference to superblock, converting it into a temprory
244 * one if there is no other active references left. In that case we
245 * tell fs driver to shut it down and drop the temporary reference we
246 * had just acquired.
247 *
248 * Caller holds exclusive lock on superblock; that lock is released.
249 */
deactivate_locked_super(struct super_block * s)250 void deactivate_locked_super(struct super_block *s)
251 {
252 struct file_system_type *fs = s->s_type;
253 if (atomic_dec_and_test(&s->s_active)) {
254 cleancache_invalidate_fs(s);
255 fs->kill_sb(s);
256
257 /* caches are now gone, we can safely kill the shrinker now */
258 unregister_shrinker(&s->s_shrink);
259
260 /*
261 * We need to call rcu_barrier so all the delayed rcu free
262 * inodes are flushed before we release the fs module.
263 */
264 rcu_barrier();
265 put_filesystem(fs);
266 put_super(s);
267 } else {
268 up_write(&s->s_umount);
269 }
270 }
271
272 EXPORT_SYMBOL(deactivate_locked_super);
273
274 /**
275 * deactivate_super - drop an active reference to superblock
276 * @s: superblock to deactivate
277 *
278 * Variant of deactivate_locked_super(), except that superblock is *not*
279 * locked by caller. If we are going to drop the final active reference,
280 * lock will be acquired prior to that.
281 */
deactivate_super(struct super_block * s)282 void deactivate_super(struct super_block *s)
283 {
284 if (!atomic_add_unless(&s->s_active, -1, 1)) {
285 down_write(&s->s_umount);
286 deactivate_locked_super(s);
287 }
288 }
289
290 EXPORT_SYMBOL(deactivate_super);
291
292 /**
293 * grab_super - acquire an active reference
294 * @s: reference we are trying to make active
295 *
296 * Tries to acquire an active reference. grab_super() is used when we
297 * had just found a superblock in super_blocks or fs_type->fs_supers
298 * and want to turn it into a full-blown active reference. grab_super()
299 * is called with sb_lock held and drops it. Returns 1 in case of
300 * success, 0 if we had failed (superblock contents was already dead or
301 * dying when grab_super() had been called). Note that this is only
302 * called for superblocks not in rundown mode (== ones still on ->fs_supers
303 * of their type), so increment of ->s_count is OK here.
304 */
grab_super(struct super_block * s)305 static int grab_super(struct super_block *s) __releases(sb_lock)
306 {
307 s->s_count++;
308 spin_unlock(&sb_lock);
309 down_write(&s->s_umount);
310 if ((s->s_flags & MS_BORN) && atomic_inc_not_zero(&s->s_active)) {
311 put_super(s);
312 return 1;
313 }
314 up_write(&s->s_umount);
315 put_super(s);
316 return 0;
317 }
318
319 /*
320 * grab_super_passive - acquire a passive reference
321 * @s: reference we are trying to grab
322 *
323 * Tries to acquire a passive reference. This is used in places where we
324 * cannot take an active reference but we need to ensure that the
325 * superblock does not go away while we are working on it. It returns
326 * false if a reference was not gained, and returns true with the s_umount
327 * lock held in read mode if a reference is gained. On successful return,
328 * the caller must drop the s_umount lock and the passive reference when
329 * done.
330 */
grab_super_passive(struct super_block * sb)331 bool grab_super_passive(struct super_block *sb)
332 {
333 spin_lock(&sb_lock);
334 if (hlist_unhashed(&sb->s_instances)) {
335 spin_unlock(&sb_lock);
336 return false;
337 }
338
339 sb->s_count++;
340 spin_unlock(&sb_lock);
341
342 if (down_read_trylock(&sb->s_umount)) {
343 if (sb->s_root && (sb->s_flags & MS_BORN))
344 return true;
345 up_read(&sb->s_umount);
346 }
347
348 put_super(sb);
349 return false;
350 }
351
352 /*
353 * Superblock locking. We really ought to get rid of these two.
354 */
lock_super(struct super_block * sb)355 void lock_super(struct super_block * sb)
356 {
357 mutex_lock(&sb->s_lock);
358 }
359
unlock_super(struct super_block * sb)360 void unlock_super(struct super_block * sb)
361 {
362 mutex_unlock(&sb->s_lock);
363 }
364
365 EXPORT_SYMBOL(lock_super);
366 EXPORT_SYMBOL(unlock_super);
367
368 /**
369 * generic_shutdown_super - common helper for ->kill_sb()
370 * @sb: superblock to kill
371 *
372 * generic_shutdown_super() does all fs-independent work on superblock
373 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
374 * that need destruction out of superblock, call generic_shutdown_super()
375 * and release aforementioned objects. Note: dentries and inodes _are_
376 * taken care of and do not need specific handling.
377 *
378 * Upon calling this function, the filesystem may no longer alter or
379 * rearrange the set of dentries belonging to this super_block, nor may it
380 * change the attachments of dentries to inodes.
381 */
generic_shutdown_super(struct super_block * sb)382 void generic_shutdown_super(struct super_block *sb)
383 {
384 const struct super_operations *sop = sb->s_op;
385
386 if (sb->s_root) {
387 shrink_dcache_for_umount(sb);
388 sync_filesystem(sb);
389 sb->s_flags &= ~MS_ACTIVE;
390
391 fsnotify_unmount_inodes(&sb->s_inodes);
392
393 evict_inodes(sb);
394
395 if (sop->put_super)
396 sop->put_super(sb);
397
398 if (!list_empty(&sb->s_inodes)) {
399 printk("VFS: Busy inodes after unmount of %s. "
400 "Self-destruct in 5 seconds. Have a nice day...\n",
401 sb->s_id);
402 }
403 }
404 spin_lock(&sb_lock);
405 /* should be initialized for __put_super_and_need_restart() */
406 hlist_del_init(&sb->s_instances);
407 spin_unlock(&sb_lock);
408 up_write(&sb->s_umount);
409 }
410
411 EXPORT_SYMBOL(generic_shutdown_super);
412
413 /**
414 * sget - find or create a superblock
415 * @type: filesystem type superblock should belong to
416 * @test: comparison callback
417 * @set: setup callback
418 * @data: argument to each of them
419 */
sget(struct file_system_type * type,int (* test)(struct super_block *,void *),int (* set)(struct super_block *,void *),void * data)420 struct super_block *sget(struct file_system_type *type,
421 int (*test)(struct super_block *,void *),
422 int (*set)(struct super_block *,void *),
423 void *data)
424 {
425 struct super_block *s = NULL;
426 struct hlist_node *node;
427 struct super_block *old;
428 int err;
429
430 retry:
431 spin_lock(&sb_lock);
432 if (test) {
433 hlist_for_each_entry(old, node, &type->fs_supers, s_instances) {
434 if (!test(old, data))
435 continue;
436 if (!grab_super(old))
437 goto retry;
438 if (s) {
439 up_write(&s->s_umount);
440 destroy_super(s);
441 s = NULL;
442 }
443 return old;
444 }
445 }
446 if (!s) {
447 spin_unlock(&sb_lock);
448 s = alloc_super(type);
449 if (!s)
450 return ERR_PTR(-ENOMEM);
451 goto retry;
452 }
453
454 err = set(s, data);
455 if (err) {
456 spin_unlock(&sb_lock);
457 up_write(&s->s_umount);
458 destroy_super(s);
459 return ERR_PTR(err);
460 }
461 s->s_type = type;
462 strlcpy(s->s_id, type->name, sizeof(s->s_id));
463 list_add_tail(&s->s_list, &super_blocks);
464 hlist_add_head(&s->s_instances, &type->fs_supers);
465 spin_unlock(&sb_lock);
466 get_filesystem(type);
467 register_shrinker(&s->s_shrink);
468 return s;
469 }
470
471 EXPORT_SYMBOL(sget);
472
drop_super(struct super_block * sb)473 void drop_super(struct super_block *sb)
474 {
475 up_read(&sb->s_umount);
476 put_super(sb);
477 }
478
479 EXPORT_SYMBOL(drop_super);
480
481 /**
482 * sync_supers - helper for periodic superblock writeback
483 *
484 * Call the write_super method if present on all dirty superblocks in
485 * the system. This is for the periodic writeback used by most older
486 * filesystems. For data integrity superblock writeback use
487 * sync_filesystems() instead.
488 *
489 * Note: check the dirty flag before waiting, so we don't
490 * hold up the sync while mounting a device. (The newly
491 * mounted device won't need syncing.)
492 */
sync_supers(void)493 void sync_supers(void)
494 {
495 struct super_block *sb, *p = NULL;
496
497 spin_lock(&sb_lock);
498 list_for_each_entry(sb, &super_blocks, s_list) {
499 if (hlist_unhashed(&sb->s_instances))
500 continue;
501 if (sb->s_op->write_super && sb->s_dirt) {
502 sb->s_count++;
503 spin_unlock(&sb_lock);
504
505 down_read(&sb->s_umount);
506 if (sb->s_root && sb->s_dirt && (sb->s_flags & MS_BORN))
507 sb->s_op->write_super(sb);
508 up_read(&sb->s_umount);
509
510 spin_lock(&sb_lock);
511 if (p)
512 __put_super(p);
513 p = sb;
514 }
515 }
516 if (p)
517 __put_super(p);
518 spin_unlock(&sb_lock);
519 }
520
521 /**
522 * iterate_supers - call function for all active superblocks
523 * @f: function to call
524 * @arg: argument to pass to it
525 *
526 * Scans the superblock list and calls given function, passing it
527 * locked superblock and given argument.
528 */
iterate_supers(void (* f)(struct super_block *,void *),void * arg)529 void iterate_supers(void (*f)(struct super_block *, void *), void *arg)
530 {
531 struct super_block *sb, *p = NULL;
532
533 spin_lock(&sb_lock);
534 list_for_each_entry(sb, &super_blocks, s_list) {
535 if (hlist_unhashed(&sb->s_instances))
536 continue;
537 sb->s_count++;
538 spin_unlock(&sb_lock);
539
540 down_read(&sb->s_umount);
541 if (sb->s_root && (sb->s_flags & MS_BORN))
542 f(sb, arg);
543 up_read(&sb->s_umount);
544
545 spin_lock(&sb_lock);
546 if (p)
547 __put_super(p);
548 p = sb;
549 }
550 if (p)
551 __put_super(p);
552 spin_unlock(&sb_lock);
553 }
554
555 /**
556 * iterate_supers_type - call function for superblocks of given type
557 * @type: fs type
558 * @f: function to call
559 * @arg: argument to pass to it
560 *
561 * Scans the superblock list and calls given function, passing it
562 * locked superblock and given argument.
563 */
iterate_supers_type(struct file_system_type * type,void (* f)(struct super_block *,void *),void * arg)564 void iterate_supers_type(struct file_system_type *type,
565 void (*f)(struct super_block *, void *), void *arg)
566 {
567 struct super_block *sb, *p = NULL;
568 struct hlist_node *node;
569
570 spin_lock(&sb_lock);
571 hlist_for_each_entry(sb, node, &type->fs_supers, s_instances) {
572 sb->s_count++;
573 spin_unlock(&sb_lock);
574
575 down_read(&sb->s_umount);
576 if (sb->s_root && (sb->s_flags & MS_BORN))
577 f(sb, arg);
578 up_read(&sb->s_umount);
579
580 spin_lock(&sb_lock);
581 if (p)
582 __put_super(p);
583 p = sb;
584 }
585 if (p)
586 __put_super(p);
587 spin_unlock(&sb_lock);
588 }
589
590 EXPORT_SYMBOL(iterate_supers_type);
591
592 /**
593 * get_super - get the superblock of a device
594 * @bdev: device to get the superblock for
595 *
596 * Scans the superblock list and finds the superblock of the file system
597 * mounted on the device given. %NULL is returned if no match is found.
598 */
599
get_super(struct block_device * bdev)600 struct super_block *get_super(struct block_device *bdev)
601 {
602 struct super_block *sb;
603
604 if (!bdev)
605 return NULL;
606
607 spin_lock(&sb_lock);
608 rescan:
609 list_for_each_entry(sb, &super_blocks, s_list) {
610 if (hlist_unhashed(&sb->s_instances))
611 continue;
612 if (sb->s_bdev == bdev) {
613 sb->s_count++;
614 spin_unlock(&sb_lock);
615 down_read(&sb->s_umount);
616 /* still alive? */
617 if (sb->s_root && (sb->s_flags & MS_BORN))
618 return sb;
619 up_read(&sb->s_umount);
620 /* nope, got unmounted */
621 spin_lock(&sb_lock);
622 __put_super(sb);
623 goto rescan;
624 }
625 }
626 spin_unlock(&sb_lock);
627 return NULL;
628 }
629
630 EXPORT_SYMBOL(get_super);
631
632 /**
633 * get_super_thawed - get thawed superblock of a device
634 * @bdev: device to get the superblock for
635 *
636 * Scans the superblock list and finds the superblock of the file system
637 * mounted on the device. The superblock is returned once it is thawed
638 * (or immediately if it was not frozen). %NULL is returned if no match
639 * is found.
640 */
get_super_thawed(struct block_device * bdev)641 struct super_block *get_super_thawed(struct block_device *bdev)
642 {
643 while (1) {
644 struct super_block *s = get_super(bdev);
645 if (!s || s->s_frozen == SB_UNFROZEN)
646 return s;
647 up_read(&s->s_umount);
648 vfs_check_frozen(s, SB_FREEZE_WRITE);
649 put_super(s);
650 }
651 }
652 EXPORT_SYMBOL(get_super_thawed);
653
654 /**
655 * get_active_super - get an active reference to the superblock of a device
656 * @bdev: device to get the superblock for
657 *
658 * Scans the superblock list and finds the superblock of the file system
659 * mounted on the device given. Returns the superblock with an active
660 * reference or %NULL if none was found.
661 */
get_active_super(struct block_device * bdev)662 struct super_block *get_active_super(struct block_device *bdev)
663 {
664 struct super_block *sb;
665
666 if (!bdev)
667 return NULL;
668
669 restart:
670 spin_lock(&sb_lock);
671 list_for_each_entry(sb, &super_blocks, s_list) {
672 if (hlist_unhashed(&sb->s_instances))
673 continue;
674 if (sb->s_bdev == bdev) {
675 if (!grab_super(sb))
676 goto restart;
677 up_write(&sb->s_umount);
678 return sb;
679 }
680 }
681 spin_unlock(&sb_lock);
682 return NULL;
683 }
684
user_get_super(dev_t dev)685 struct super_block *user_get_super(dev_t dev)
686 {
687 struct super_block *sb;
688
689 spin_lock(&sb_lock);
690 rescan:
691 list_for_each_entry(sb, &super_blocks, s_list) {
692 if (hlist_unhashed(&sb->s_instances))
693 continue;
694 if (sb->s_dev == dev) {
695 sb->s_count++;
696 spin_unlock(&sb_lock);
697 down_read(&sb->s_umount);
698 /* still alive? */
699 if (sb->s_root && (sb->s_flags & MS_BORN))
700 return sb;
701 up_read(&sb->s_umount);
702 /* nope, got unmounted */
703 spin_lock(&sb_lock);
704 __put_super(sb);
705 goto rescan;
706 }
707 }
708 spin_unlock(&sb_lock);
709 return NULL;
710 }
711
712 /**
713 * do_remount_sb - asks filesystem to change mount options.
714 * @sb: superblock in question
715 * @flags: numeric part of options
716 * @data: the rest of options
717 * @force: whether or not to force the change
718 *
719 * Alters the mount options of a mounted file system.
720 */
do_remount_sb(struct super_block * sb,int flags,void * data,int force)721 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
722 {
723 int retval;
724 int remount_ro;
725
726 if (sb->s_frozen != SB_UNFROZEN)
727 return -EBUSY;
728
729 #ifdef CONFIG_BLOCK
730 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
731 return -EACCES;
732 #endif
733
734 if (flags & MS_RDONLY)
735 acct_auto_close(sb);
736 shrink_dcache_sb(sb);
737 sync_filesystem(sb);
738
739 remount_ro = (flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY);
740
741 /* If we are remounting RDONLY and current sb is read/write,
742 make sure there are no rw files opened */
743 if (remount_ro) {
744 if (force) {
745 mark_files_ro(sb);
746 } else {
747 retval = sb_prepare_remount_readonly(sb);
748 if (retval)
749 return retval;
750 }
751 }
752
753 if (sb->s_op->remount_fs) {
754 retval = sb->s_op->remount_fs(sb, &flags, data);
755 if (retval) {
756 if (!force)
757 goto cancel_readonly;
758 /* If forced remount, go ahead despite any errors */
759 WARN(1, "forced remount of a %s fs returned %i\n",
760 sb->s_type->name, retval);
761 }
762 }
763 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
764 /* Needs to be ordered wrt mnt_is_readonly() */
765 smp_wmb();
766 sb->s_readonly_remount = 0;
767
768 /*
769 * Some filesystems modify their metadata via some other path than the
770 * bdev buffer cache (eg. use a private mapping, or directories in
771 * pagecache, etc). Also file data modifications go via their own
772 * mappings. So If we try to mount readonly then copy the filesystem
773 * from bdev, we could get stale data, so invalidate it to give a best
774 * effort at coherency.
775 */
776 if (remount_ro && sb->s_bdev)
777 invalidate_bdev(sb->s_bdev);
778 return 0;
779
780 cancel_readonly:
781 sb->s_readonly_remount = 0;
782 return retval;
783 }
784
do_emergency_remount(struct work_struct * work)785 static void do_emergency_remount(struct work_struct *work)
786 {
787 struct super_block *sb, *p = NULL;
788
789 spin_lock(&sb_lock);
790 list_for_each_entry(sb, &super_blocks, s_list) {
791 if (hlist_unhashed(&sb->s_instances))
792 continue;
793 sb->s_count++;
794 spin_unlock(&sb_lock);
795 down_write(&sb->s_umount);
796 if (sb->s_root && sb->s_bdev && (sb->s_flags & MS_BORN) &&
797 !(sb->s_flags & MS_RDONLY)) {
798 /*
799 * What lock protects sb->s_flags??
800 */
801 do_remount_sb(sb, MS_RDONLY, NULL, 1);
802 }
803 up_write(&sb->s_umount);
804 spin_lock(&sb_lock);
805 if (p)
806 __put_super(p);
807 p = sb;
808 }
809 if (p)
810 __put_super(p);
811 spin_unlock(&sb_lock);
812 kfree(work);
813 printk("Emergency Remount complete\n");
814 }
815
emergency_remount(void)816 void emergency_remount(void)
817 {
818 struct work_struct *work;
819
820 work = kmalloc(sizeof(*work), GFP_ATOMIC);
821 if (work) {
822 INIT_WORK(work, do_emergency_remount);
823 schedule_work(work);
824 }
825 }
826
827 /*
828 * Unnamed block devices are dummy devices used by virtual
829 * filesystems which don't use real block-devices. -- jrs
830 */
831
832 static DEFINE_IDA(unnamed_dev_ida);
833 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
834 static int unnamed_dev_start = 0; /* don't bother trying below it */
835
get_anon_bdev(dev_t * p)836 int get_anon_bdev(dev_t *p)
837 {
838 int dev;
839 int error;
840
841 retry:
842 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
843 return -ENOMEM;
844 spin_lock(&unnamed_dev_lock);
845 error = ida_get_new_above(&unnamed_dev_ida, unnamed_dev_start, &dev);
846 if (!error)
847 unnamed_dev_start = dev + 1;
848 spin_unlock(&unnamed_dev_lock);
849 if (error == -EAGAIN)
850 /* We raced and lost with another CPU. */
851 goto retry;
852 else if (error)
853 return -EAGAIN;
854
855 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
856 spin_lock(&unnamed_dev_lock);
857 ida_remove(&unnamed_dev_ida, dev);
858 if (unnamed_dev_start > dev)
859 unnamed_dev_start = dev;
860 spin_unlock(&unnamed_dev_lock);
861 return -EMFILE;
862 }
863 *p = MKDEV(0, dev & MINORMASK);
864 return 0;
865 }
866 EXPORT_SYMBOL(get_anon_bdev);
867
free_anon_bdev(dev_t dev)868 void free_anon_bdev(dev_t dev)
869 {
870 int slot = MINOR(dev);
871 spin_lock(&unnamed_dev_lock);
872 ida_remove(&unnamed_dev_ida, slot);
873 if (slot < unnamed_dev_start)
874 unnamed_dev_start = slot;
875 spin_unlock(&unnamed_dev_lock);
876 }
877 EXPORT_SYMBOL(free_anon_bdev);
878
set_anon_super(struct super_block * s,void * data)879 int set_anon_super(struct super_block *s, void *data)
880 {
881 int error = get_anon_bdev(&s->s_dev);
882 if (!error)
883 s->s_bdi = &noop_backing_dev_info;
884 return error;
885 }
886
887 EXPORT_SYMBOL(set_anon_super);
888
kill_anon_super(struct super_block * sb)889 void kill_anon_super(struct super_block *sb)
890 {
891 dev_t dev = sb->s_dev;
892 generic_shutdown_super(sb);
893 free_anon_bdev(dev);
894 }
895
896 EXPORT_SYMBOL(kill_anon_super);
897
kill_litter_super(struct super_block * sb)898 void kill_litter_super(struct super_block *sb)
899 {
900 if (sb->s_root)
901 d_genocide(sb->s_root);
902 kill_anon_super(sb);
903 }
904
905 EXPORT_SYMBOL(kill_litter_super);
906
ns_test_super(struct super_block * sb,void * data)907 static int ns_test_super(struct super_block *sb, void *data)
908 {
909 return sb->s_fs_info == data;
910 }
911
ns_set_super(struct super_block * sb,void * data)912 static int ns_set_super(struct super_block *sb, void *data)
913 {
914 sb->s_fs_info = data;
915 return set_anon_super(sb, NULL);
916 }
917
mount_ns(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))918 struct dentry *mount_ns(struct file_system_type *fs_type, int flags,
919 void *data, int (*fill_super)(struct super_block *, void *, int))
920 {
921 struct super_block *sb;
922
923 sb = sget(fs_type, ns_test_super, ns_set_super, data);
924 if (IS_ERR(sb))
925 return ERR_CAST(sb);
926
927 if (!sb->s_root) {
928 int err;
929 sb->s_flags = flags;
930 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
931 if (err) {
932 deactivate_locked_super(sb);
933 return ERR_PTR(err);
934 }
935
936 sb->s_flags |= MS_ACTIVE;
937 }
938
939 return dget(sb->s_root);
940 }
941
942 EXPORT_SYMBOL(mount_ns);
943
944 #ifdef CONFIG_BLOCK
set_bdev_super(struct super_block * s,void * data)945 static int set_bdev_super(struct super_block *s, void *data)
946 {
947 s->s_bdev = data;
948 s->s_dev = s->s_bdev->bd_dev;
949
950 /*
951 * We set the bdi here to the queue backing, file systems can
952 * overwrite this in ->fill_super()
953 */
954 s->s_bdi = &bdev_get_queue(s->s_bdev)->backing_dev_info;
955 return 0;
956 }
957
test_bdev_super(struct super_block * s,void * data)958 static int test_bdev_super(struct super_block *s, void *data)
959 {
960 return (void *)s->s_bdev == data;
961 }
962
mount_bdev(struct file_system_type * fs_type,int flags,const char * dev_name,void * data,int (* fill_super)(struct super_block *,void *,int))963 struct dentry *mount_bdev(struct file_system_type *fs_type,
964 int flags, const char *dev_name, void *data,
965 int (*fill_super)(struct super_block *, void *, int))
966 {
967 struct block_device *bdev;
968 struct super_block *s;
969 fmode_t mode = FMODE_READ | FMODE_EXCL;
970 int error = 0;
971
972 if (!(flags & MS_RDONLY))
973 mode |= FMODE_WRITE;
974
975 bdev = blkdev_get_by_path(dev_name, mode, fs_type);
976 if (IS_ERR(bdev))
977 return ERR_CAST(bdev);
978
979 /*
980 * once the super is inserted into the list by sget, s_umount
981 * will protect the lockfs code from trying to start a snapshot
982 * while we are mounting
983 */
984 mutex_lock(&bdev->bd_fsfreeze_mutex);
985 if (bdev->bd_fsfreeze_count > 0) {
986 mutex_unlock(&bdev->bd_fsfreeze_mutex);
987 error = -EBUSY;
988 goto error_bdev;
989 }
990 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
991 mutex_unlock(&bdev->bd_fsfreeze_mutex);
992 if (IS_ERR(s))
993 goto error_s;
994
995 if (s->s_root) {
996 if ((flags ^ s->s_flags) & MS_RDONLY) {
997 deactivate_locked_super(s);
998 error = -EBUSY;
999 goto error_bdev;
1000 }
1001
1002 /*
1003 * s_umount nests inside bd_mutex during
1004 * __invalidate_device(). blkdev_put() acquires
1005 * bd_mutex and can't be called under s_umount. Drop
1006 * s_umount temporarily. This is safe as we're
1007 * holding an active reference.
1008 */
1009 up_write(&s->s_umount);
1010 blkdev_put(bdev, mode);
1011 down_write(&s->s_umount);
1012 } else {
1013 char b[BDEVNAME_SIZE];
1014
1015 s->s_flags = flags | MS_NOSEC;
1016 s->s_mode = mode;
1017 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1018 sb_set_blocksize(s, block_size(bdev));
1019 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1020 if (error) {
1021 deactivate_locked_super(s);
1022 goto error;
1023 }
1024
1025 s->s_flags |= MS_ACTIVE;
1026 bdev->bd_super = s;
1027 }
1028
1029 return dget(s->s_root);
1030
1031 error_s:
1032 error = PTR_ERR(s);
1033 error_bdev:
1034 blkdev_put(bdev, mode);
1035 error:
1036 return ERR_PTR(error);
1037 }
1038 EXPORT_SYMBOL(mount_bdev);
1039
kill_block_super(struct super_block * sb)1040 void kill_block_super(struct super_block *sb)
1041 {
1042 struct block_device *bdev = sb->s_bdev;
1043 fmode_t mode = sb->s_mode;
1044
1045 bdev->bd_super = NULL;
1046 generic_shutdown_super(sb);
1047 sync_blockdev(bdev);
1048 WARN_ON_ONCE(!(mode & FMODE_EXCL));
1049 blkdev_put(bdev, mode | FMODE_EXCL);
1050 }
1051
1052 EXPORT_SYMBOL(kill_block_super);
1053 #endif
1054
mount_nodev(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1055 struct dentry *mount_nodev(struct file_system_type *fs_type,
1056 int flags, void *data,
1057 int (*fill_super)(struct super_block *, void *, int))
1058 {
1059 int error;
1060 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
1061
1062 if (IS_ERR(s))
1063 return ERR_CAST(s);
1064
1065 s->s_flags = flags;
1066
1067 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1068 if (error) {
1069 deactivate_locked_super(s);
1070 return ERR_PTR(error);
1071 }
1072 s->s_flags |= MS_ACTIVE;
1073 return dget(s->s_root);
1074 }
1075 EXPORT_SYMBOL(mount_nodev);
1076
compare_single(struct super_block * s,void * p)1077 static int compare_single(struct super_block *s, void *p)
1078 {
1079 return 1;
1080 }
1081
mount_single(struct file_system_type * fs_type,int flags,void * data,int (* fill_super)(struct super_block *,void *,int))1082 struct dentry *mount_single(struct file_system_type *fs_type,
1083 int flags, void *data,
1084 int (*fill_super)(struct super_block *, void *, int))
1085 {
1086 struct super_block *s;
1087 int error;
1088
1089 s = sget(fs_type, compare_single, set_anon_super, NULL);
1090 if (IS_ERR(s))
1091 return ERR_CAST(s);
1092 if (!s->s_root) {
1093 s->s_flags = flags;
1094 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
1095 if (error) {
1096 deactivate_locked_super(s);
1097 return ERR_PTR(error);
1098 }
1099 s->s_flags |= MS_ACTIVE;
1100 } else {
1101 do_remount_sb(s, flags, data, 0);
1102 }
1103 return dget(s->s_root);
1104 }
1105 EXPORT_SYMBOL(mount_single);
1106
1107 struct dentry *
mount_fs(struct file_system_type * type,int flags,const char * name,void * data)1108 mount_fs(struct file_system_type *type, int flags, const char *name, void *data)
1109 {
1110 struct dentry *root;
1111 struct super_block *sb;
1112 char *secdata = NULL;
1113 int error = -ENOMEM;
1114
1115 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
1116 secdata = alloc_secdata();
1117 if (!secdata)
1118 goto out;
1119
1120 error = security_sb_copy_data(data, secdata);
1121 if (error)
1122 goto out_free_secdata;
1123 }
1124
1125 root = type->mount(type, flags, name, data);
1126 if (IS_ERR(root)) {
1127 error = PTR_ERR(root);
1128 goto out_free_secdata;
1129 }
1130 sb = root->d_sb;
1131 BUG_ON(!sb);
1132 WARN_ON(!sb->s_bdi);
1133 WARN_ON(sb->s_bdi == &default_backing_dev_info);
1134 sb->s_flags |= MS_BORN;
1135
1136 error = security_sb_kern_mount(sb, flags, secdata);
1137 if (error)
1138 goto out_sb;
1139
1140 /*
1141 * filesystems should never set s_maxbytes larger than MAX_LFS_FILESIZE
1142 * but s_maxbytes was an unsigned long long for many releases. Throw
1143 * this warning for a little while to try and catch filesystems that
1144 * violate this rule.
1145 */
1146 WARN((sb->s_maxbytes < 0), "%s set sb->s_maxbytes to "
1147 "negative value (%lld)\n", type->name, sb->s_maxbytes);
1148
1149 up_write(&sb->s_umount);
1150 free_secdata(secdata);
1151 return root;
1152 out_sb:
1153 dput(root);
1154 deactivate_locked_super(sb);
1155 out_free_secdata:
1156 free_secdata(secdata);
1157 out:
1158 return ERR_PTR(error);
1159 }
1160
1161 /**
1162 * freeze_super - lock the filesystem and force it into a consistent state
1163 * @sb: the super to lock
1164 *
1165 * Syncs the super to make sure the filesystem is consistent and calls the fs's
1166 * freeze_fs. Subsequent calls to this without first thawing the fs will return
1167 * -EBUSY.
1168 */
freeze_super(struct super_block * sb)1169 int freeze_super(struct super_block *sb)
1170 {
1171 int ret;
1172
1173 atomic_inc(&sb->s_active);
1174 down_write(&sb->s_umount);
1175 if (sb->s_frozen) {
1176 deactivate_locked_super(sb);
1177 return -EBUSY;
1178 }
1179
1180 if (!(sb->s_flags & MS_BORN)) {
1181 up_write(&sb->s_umount);
1182 return 0; /* sic - it's "nothing to do" */
1183 }
1184
1185 if (sb->s_flags & MS_RDONLY) {
1186 sb->s_frozen = SB_FREEZE_TRANS;
1187 smp_wmb();
1188 up_write(&sb->s_umount);
1189 return 0;
1190 }
1191
1192 sb->s_frozen = SB_FREEZE_WRITE;
1193 smp_wmb();
1194
1195 sync_filesystem(sb);
1196
1197 sb->s_frozen = SB_FREEZE_TRANS;
1198 smp_wmb();
1199
1200 sync_blockdev(sb->s_bdev);
1201 if (sb->s_op->freeze_fs) {
1202 ret = sb->s_op->freeze_fs(sb);
1203 if (ret) {
1204 printk(KERN_ERR
1205 "VFS:Filesystem freeze failed\n");
1206 sb->s_frozen = SB_UNFROZEN;
1207 smp_wmb();
1208 wake_up(&sb->s_wait_unfrozen);
1209 deactivate_locked_super(sb);
1210 return ret;
1211 }
1212 }
1213 up_write(&sb->s_umount);
1214 return 0;
1215 }
1216 EXPORT_SYMBOL(freeze_super);
1217
1218 /**
1219 * thaw_super -- unlock filesystem
1220 * @sb: the super to thaw
1221 *
1222 * Unlocks the filesystem and marks it writeable again after freeze_super().
1223 */
thaw_super(struct super_block * sb)1224 int thaw_super(struct super_block *sb)
1225 {
1226 int error;
1227
1228 down_write(&sb->s_umount);
1229 if (sb->s_frozen == SB_UNFROZEN) {
1230 up_write(&sb->s_umount);
1231 return -EINVAL;
1232 }
1233
1234 if (sb->s_flags & MS_RDONLY)
1235 goto out;
1236
1237 if (sb->s_op->unfreeze_fs) {
1238 error = sb->s_op->unfreeze_fs(sb);
1239 if (error) {
1240 printk(KERN_ERR
1241 "VFS:Filesystem thaw failed\n");
1242 sb->s_frozen = SB_FREEZE_TRANS;
1243 up_write(&sb->s_umount);
1244 return error;
1245 }
1246 }
1247
1248 out:
1249 sb->s_frozen = SB_UNFROZEN;
1250 smp_wmb();
1251 wake_up(&sb->s_wait_unfrozen);
1252 deactivate_locked_super(sb);
1253
1254 return 0;
1255 }
1256 EXPORT_SYMBOL(thaw_super);
1257