1 /*
2 * (C) Copyright Linus Torvalds 1999
3 * (C) Copyright Johannes Erdfelt 1999-2001
4 * (C) Copyright Andreas Gal 1999
5 * (C) Copyright Gregory P. Smith 1999
6 * (C) Copyright Deti Fliegl 1999
7 * (C) Copyright Randy Dunlap 2000
8 * (C) Copyright David Brownell 2000-2002
9 *
10 * This program is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
17 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software Foundation,
22 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/module.h>
26 #include <linux/version.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/completion.h>
30 #include <linux/utsname.h>
31 #include <linux/mm.h>
32 #include <asm/io.h>
33 #include <linux/device.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/mutex.h>
36 #include <asm/irq.h>
37 #include <asm/byteorder.h>
38 #include <asm/unaligned.h>
39 #include <linux/platform_device.h>
40 #include <linux/workqueue.h>
41
42 #include <linux/usb.h>
43 #include <linux/usb/hcd.h>
44
45 #include "usb.h"
46
47
48 /*-------------------------------------------------------------------------*/
49
50 /*
51 * USB Host Controller Driver framework
52 *
53 * Plugs into usbcore (usb_bus) and lets HCDs share code, minimizing
54 * HCD-specific behaviors/bugs.
55 *
56 * This does error checks, tracks devices and urbs, and delegates to a
57 * "hc_driver" only for code (and data) that really needs to know about
58 * hardware differences. That includes root hub registers, i/o queues,
59 * and so on ... but as little else as possible.
60 *
61 * Shared code includes most of the "root hub" code (these are emulated,
62 * though each HC's hardware works differently) and PCI glue, plus request
63 * tracking overhead. The HCD code should only block on spinlocks or on
64 * hardware handshaking; blocking on software events (such as other kernel
65 * threads releasing resources, or completing actions) is all generic.
66 *
67 * Happens the USB 2.0 spec says this would be invisible inside the "USBD",
68 * and includes mostly a "HCDI" (HCD Interface) along with some APIs used
69 * only by the hub driver ... and that neither should be seen or used by
70 * usb client device drivers.
71 *
72 * Contributors of ideas or unattributed patches include: David Brownell,
73 * Roman Weissgaerber, Rory Bolt, Greg Kroah-Hartman, ...
74 *
75 * HISTORY:
76 * 2002-02-21 Pull in most of the usb_bus support from usb.c; some
77 * associated cleanup. "usb_hcd" still != "usb_bus".
78 * 2001-12-12 Initial patch version for Linux 2.5.1 kernel.
79 */
80
81 /*-------------------------------------------------------------------------*/
82
83 /* Keep track of which host controller drivers are loaded */
84 unsigned long usb_hcds_loaded;
85 EXPORT_SYMBOL_GPL(usb_hcds_loaded);
86
87 /* host controllers we manage */
88 LIST_HEAD (usb_bus_list);
89 EXPORT_SYMBOL_GPL (usb_bus_list);
90
91 /* used when allocating bus numbers */
92 #define USB_MAXBUS 64
93 struct usb_busmap {
94 unsigned long busmap [USB_MAXBUS / (8*sizeof (unsigned long))];
95 };
96 static struct usb_busmap busmap;
97
98 /* used when updating list of hcds */
99 DEFINE_MUTEX(usb_bus_list_lock); /* exported only for usbfs */
100 EXPORT_SYMBOL_GPL (usb_bus_list_lock);
101
102 /* used for controlling access to virtual root hubs */
103 static DEFINE_SPINLOCK(hcd_root_hub_lock);
104
105 /* used when updating an endpoint's URB list */
106 static DEFINE_SPINLOCK(hcd_urb_list_lock);
107
108 /* used to protect against unlinking URBs after the device is gone */
109 static DEFINE_SPINLOCK(hcd_urb_unlink_lock);
110
111 /* wait queue for synchronous unlinks */
112 DECLARE_WAIT_QUEUE_HEAD(usb_kill_urb_queue);
113
is_root_hub(struct usb_device * udev)114 static inline int is_root_hub(struct usb_device *udev)
115 {
116 return (udev->parent == NULL);
117 }
118
119 /*-------------------------------------------------------------------------*/
120
121 /*
122 * Sharable chunks of root hub code.
123 */
124
125 /*-------------------------------------------------------------------------*/
126
127 #define KERNEL_REL ((LINUX_VERSION_CODE >> 16) & 0x0ff)
128 #define KERNEL_VER ((LINUX_VERSION_CODE >> 8) & 0x0ff)
129
130 /* usb 3.0 root hub device descriptor */
131 static const u8 usb3_rh_dev_descriptor[18] = {
132 0x12, /* __u8 bLength; */
133 0x01, /* __u8 bDescriptorType; Device */
134 0x00, 0x03, /* __le16 bcdUSB; v3.0 */
135
136 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
137 0x00, /* __u8 bDeviceSubClass; */
138 0x03, /* __u8 bDeviceProtocol; USB 3.0 hub */
139 0x09, /* __u8 bMaxPacketSize0; 2^9 = 512 Bytes */
140
141 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
142 0x03, 0x00, /* __le16 idProduct; device 0x0003 */
143 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
144
145 0x03, /* __u8 iManufacturer; */
146 0x02, /* __u8 iProduct; */
147 0x01, /* __u8 iSerialNumber; */
148 0x01 /* __u8 bNumConfigurations; */
149 };
150
151 /* usb 2.0 root hub device descriptor */
152 static const u8 usb2_rh_dev_descriptor [18] = {
153 0x12, /* __u8 bLength; */
154 0x01, /* __u8 bDescriptorType; Device */
155 0x00, 0x02, /* __le16 bcdUSB; v2.0 */
156
157 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
158 0x00, /* __u8 bDeviceSubClass; */
159 0x00, /* __u8 bDeviceProtocol; [ usb 2.0 no TT ] */
160 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
161
162 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
163 0x02, 0x00, /* __le16 idProduct; device 0x0002 */
164 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
165
166 0x03, /* __u8 iManufacturer; */
167 0x02, /* __u8 iProduct; */
168 0x01, /* __u8 iSerialNumber; */
169 0x01 /* __u8 bNumConfigurations; */
170 };
171
172 /* no usb 2.0 root hub "device qualifier" descriptor: one speed only */
173
174 /* usb 1.1 root hub device descriptor */
175 static const u8 usb11_rh_dev_descriptor [18] = {
176 0x12, /* __u8 bLength; */
177 0x01, /* __u8 bDescriptorType; Device */
178 0x10, 0x01, /* __le16 bcdUSB; v1.1 */
179
180 0x09, /* __u8 bDeviceClass; HUB_CLASSCODE */
181 0x00, /* __u8 bDeviceSubClass; */
182 0x00, /* __u8 bDeviceProtocol; [ low/full speeds only ] */
183 0x40, /* __u8 bMaxPacketSize0; 64 Bytes */
184
185 0x6b, 0x1d, /* __le16 idVendor; Linux Foundation */
186 0x01, 0x00, /* __le16 idProduct; device 0x0001 */
187 KERNEL_VER, KERNEL_REL, /* __le16 bcdDevice */
188
189 0x03, /* __u8 iManufacturer; */
190 0x02, /* __u8 iProduct; */
191 0x01, /* __u8 iSerialNumber; */
192 0x01 /* __u8 bNumConfigurations; */
193 };
194
195
196 /*-------------------------------------------------------------------------*/
197
198 /* Configuration descriptors for our root hubs */
199
200 static const u8 fs_rh_config_descriptor [] = {
201
202 /* one configuration */
203 0x09, /* __u8 bLength; */
204 0x02, /* __u8 bDescriptorType; Configuration */
205 0x19, 0x00, /* __le16 wTotalLength; */
206 0x01, /* __u8 bNumInterfaces; (1) */
207 0x01, /* __u8 bConfigurationValue; */
208 0x00, /* __u8 iConfiguration; */
209 0xc0, /* __u8 bmAttributes;
210 Bit 7: must be set,
211 6: Self-powered,
212 5: Remote wakeup,
213 4..0: resvd */
214 0x00, /* __u8 MaxPower; */
215
216 /* USB 1.1:
217 * USB 2.0, single TT organization (mandatory):
218 * one interface, protocol 0
219 *
220 * USB 2.0, multiple TT organization (optional):
221 * two interfaces, protocols 1 (like single TT)
222 * and 2 (multiple TT mode) ... config is
223 * sometimes settable
224 * NOT IMPLEMENTED
225 */
226
227 /* one interface */
228 0x09, /* __u8 if_bLength; */
229 0x04, /* __u8 if_bDescriptorType; Interface */
230 0x00, /* __u8 if_bInterfaceNumber; */
231 0x00, /* __u8 if_bAlternateSetting; */
232 0x01, /* __u8 if_bNumEndpoints; */
233 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
234 0x00, /* __u8 if_bInterfaceSubClass; */
235 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
236 0x00, /* __u8 if_iInterface; */
237
238 /* one endpoint (status change endpoint) */
239 0x07, /* __u8 ep_bLength; */
240 0x05, /* __u8 ep_bDescriptorType; Endpoint */
241 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
242 0x03, /* __u8 ep_bmAttributes; Interrupt */
243 0x02, 0x00, /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8) */
244 0xff /* __u8 ep_bInterval; (255ms -- usb 2.0 spec) */
245 };
246
247 static const u8 hs_rh_config_descriptor [] = {
248
249 /* one configuration */
250 0x09, /* __u8 bLength; */
251 0x02, /* __u8 bDescriptorType; Configuration */
252 0x19, 0x00, /* __le16 wTotalLength; */
253 0x01, /* __u8 bNumInterfaces; (1) */
254 0x01, /* __u8 bConfigurationValue; */
255 0x00, /* __u8 iConfiguration; */
256 0xc0, /* __u8 bmAttributes;
257 Bit 7: must be set,
258 6: Self-powered,
259 5: Remote wakeup,
260 4..0: resvd */
261 0x00, /* __u8 MaxPower; */
262
263 /* USB 1.1:
264 * USB 2.0, single TT organization (mandatory):
265 * one interface, protocol 0
266 *
267 * USB 2.0, multiple TT organization (optional):
268 * two interfaces, protocols 1 (like single TT)
269 * and 2 (multiple TT mode) ... config is
270 * sometimes settable
271 * NOT IMPLEMENTED
272 */
273
274 /* one interface */
275 0x09, /* __u8 if_bLength; */
276 0x04, /* __u8 if_bDescriptorType; Interface */
277 0x00, /* __u8 if_bInterfaceNumber; */
278 0x00, /* __u8 if_bAlternateSetting; */
279 0x01, /* __u8 if_bNumEndpoints; */
280 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
281 0x00, /* __u8 if_bInterfaceSubClass; */
282 0x00, /* __u8 if_bInterfaceProtocol; [usb1.1 or single tt] */
283 0x00, /* __u8 if_iInterface; */
284
285 /* one endpoint (status change endpoint) */
286 0x07, /* __u8 ep_bLength; */
287 0x05, /* __u8 ep_bDescriptorType; Endpoint */
288 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
289 0x03, /* __u8 ep_bmAttributes; Interrupt */
290 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
291 * see hub.c:hub_configure() for details. */
292 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
293 0x0c /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
294 };
295
296 static const u8 ss_rh_config_descriptor[] = {
297 /* one configuration */
298 0x09, /* __u8 bLength; */
299 0x02, /* __u8 bDescriptorType; Configuration */
300 0x1f, 0x00, /* __le16 wTotalLength; */
301 0x01, /* __u8 bNumInterfaces; (1) */
302 0x01, /* __u8 bConfigurationValue; */
303 0x00, /* __u8 iConfiguration; */
304 0xc0, /* __u8 bmAttributes;
305 Bit 7: must be set,
306 6: Self-powered,
307 5: Remote wakeup,
308 4..0: resvd */
309 0x00, /* __u8 MaxPower; */
310
311 /* one interface */
312 0x09, /* __u8 if_bLength; */
313 0x04, /* __u8 if_bDescriptorType; Interface */
314 0x00, /* __u8 if_bInterfaceNumber; */
315 0x00, /* __u8 if_bAlternateSetting; */
316 0x01, /* __u8 if_bNumEndpoints; */
317 0x09, /* __u8 if_bInterfaceClass; HUB_CLASSCODE */
318 0x00, /* __u8 if_bInterfaceSubClass; */
319 0x00, /* __u8 if_bInterfaceProtocol; */
320 0x00, /* __u8 if_iInterface; */
321
322 /* one endpoint (status change endpoint) */
323 0x07, /* __u8 ep_bLength; */
324 0x05, /* __u8 ep_bDescriptorType; Endpoint */
325 0x81, /* __u8 ep_bEndpointAddress; IN Endpoint 1 */
326 0x03, /* __u8 ep_bmAttributes; Interrupt */
327 /* __le16 ep_wMaxPacketSize; 1 + (MAX_ROOT_PORTS / 8)
328 * see hub.c:hub_configure() for details. */
329 (USB_MAXCHILDREN + 1 + 7) / 8, 0x00,
330 0x0c, /* __u8 ep_bInterval; (256ms -- usb 2.0 spec) */
331
332 /* one SuperSpeed endpoint companion descriptor */
333 0x06, /* __u8 ss_bLength */
334 0x30, /* __u8 ss_bDescriptorType; SuperSpeed EP Companion */
335 0x00, /* __u8 ss_bMaxBurst; allows 1 TX between ACKs */
336 0x00, /* __u8 ss_bmAttributes; 1 packet per service interval */
337 0x02, 0x00 /* __le16 ss_wBytesPerInterval; 15 bits for max 15 ports */
338 };
339
340 /*-------------------------------------------------------------------------*/
341
342 /**
343 * ascii2desc() - Helper routine for producing UTF-16LE string descriptors
344 * @s: Null-terminated ASCII (actually ISO-8859-1) string
345 * @buf: Buffer for USB string descriptor (header + UTF-16LE)
346 * @len: Length (in bytes; may be odd) of descriptor buffer.
347 *
348 * The return value is the number of bytes filled in: 2 + 2*strlen(s) or
349 * buflen, whichever is less.
350 *
351 * USB String descriptors can contain at most 126 characters; input
352 * strings longer than that are truncated.
353 */
354 static unsigned
ascii2desc(char const * s,u8 * buf,unsigned len)355 ascii2desc(char const *s, u8 *buf, unsigned len)
356 {
357 unsigned n, t = 2 + 2*strlen(s);
358
359 if (t > 254)
360 t = 254; /* Longest possible UTF string descriptor */
361 if (len > t)
362 len = t;
363
364 t += USB_DT_STRING << 8; /* Now t is first 16 bits to store */
365
366 n = len;
367 while (n--) {
368 *buf++ = t;
369 if (!n--)
370 break;
371 *buf++ = t >> 8;
372 t = (unsigned char)*s++;
373 }
374 return len;
375 }
376
377 /**
378 * rh_string() - provides string descriptors for root hub
379 * @id: the string ID number (0: langids, 1: serial #, 2: product, 3: vendor)
380 * @hcd: the host controller for this root hub
381 * @data: buffer for output packet
382 * @len: length of the provided buffer
383 *
384 * Produces either a manufacturer, product or serial number string for the
385 * virtual root hub device.
386 * Returns the number of bytes filled in: the length of the descriptor or
387 * of the provided buffer, whichever is less.
388 */
389 static unsigned
rh_string(int id,struct usb_hcd const * hcd,u8 * data,unsigned len)390 rh_string(int id, struct usb_hcd const *hcd, u8 *data, unsigned len)
391 {
392 char buf[100];
393 char const *s;
394 static char const langids[4] = {4, USB_DT_STRING, 0x09, 0x04};
395
396 // language ids
397 switch (id) {
398 case 0:
399 /* Array of LANGID codes (0x0409 is MSFT-speak for "en-us") */
400 /* See http://www.usb.org/developers/docs/USB_LANGIDs.pdf */
401 if (len > 4)
402 len = 4;
403 memcpy(data, langids, len);
404 return len;
405 case 1:
406 /* Serial number */
407 s = hcd->self.bus_name;
408 break;
409 case 2:
410 /* Product name */
411 s = hcd->product_desc;
412 break;
413 case 3:
414 /* Manufacturer */
415 snprintf (buf, sizeof buf, "%s %s %s", init_utsname()->sysname,
416 init_utsname()->release, hcd->driver->description);
417 s = buf;
418 break;
419 default:
420 /* Can't happen; caller guarantees it */
421 return 0;
422 }
423
424 return ascii2desc(s, data, len);
425 }
426
427
428 /* Root hub control transfers execute synchronously */
rh_call_control(struct usb_hcd * hcd,struct urb * urb)429 static int rh_call_control (struct usb_hcd *hcd, struct urb *urb)
430 {
431 struct usb_ctrlrequest *cmd;
432 u16 typeReq, wValue, wIndex, wLength;
433 u8 *ubuf = urb->transfer_buffer;
434 u8 tbuf [sizeof (struct usb_hub_descriptor)]
435 __attribute__((aligned(4)));
436 const u8 *bufp = tbuf;
437 unsigned len = 0;
438 int status;
439 u8 patch_wakeup = 0;
440 u8 patch_protocol = 0;
441
442 might_sleep();
443
444 spin_lock_irq(&hcd_root_hub_lock);
445 status = usb_hcd_link_urb_to_ep(hcd, urb);
446 spin_unlock_irq(&hcd_root_hub_lock);
447 if (status)
448 return status;
449 urb->hcpriv = hcd; /* Indicate it's queued */
450
451 cmd = (struct usb_ctrlrequest *) urb->setup_packet;
452 typeReq = (cmd->bRequestType << 8) | cmd->bRequest;
453 wValue = le16_to_cpu (cmd->wValue);
454 wIndex = le16_to_cpu (cmd->wIndex);
455 wLength = le16_to_cpu (cmd->wLength);
456
457 if (wLength > urb->transfer_buffer_length)
458 goto error;
459
460 urb->actual_length = 0;
461 switch (typeReq) {
462
463 /* DEVICE REQUESTS */
464
465 /* The root hub's remote wakeup enable bit is implemented using
466 * driver model wakeup flags. If this system supports wakeup
467 * through USB, userspace may change the default "allow wakeup"
468 * policy through sysfs or these calls.
469 *
470 * Most root hubs support wakeup from downstream devices, for
471 * runtime power management (disabling USB clocks and reducing
472 * VBUS power usage). However, not all of them do so; silicon,
473 * board, and BIOS bugs here are not uncommon, so these can't
474 * be treated quite like external hubs.
475 *
476 * Likewise, not all root hubs will pass wakeup events upstream,
477 * to wake up the whole system. So don't assume root hub and
478 * controller capabilities are identical.
479 */
480
481 case DeviceRequest | USB_REQ_GET_STATUS:
482 tbuf [0] = (device_may_wakeup(&hcd->self.root_hub->dev)
483 << USB_DEVICE_REMOTE_WAKEUP)
484 | (1 << USB_DEVICE_SELF_POWERED);
485 tbuf [1] = 0;
486 len = 2;
487 break;
488 case DeviceOutRequest | USB_REQ_CLEAR_FEATURE:
489 if (wValue == USB_DEVICE_REMOTE_WAKEUP)
490 device_set_wakeup_enable(&hcd->self.root_hub->dev, 0);
491 else
492 goto error;
493 break;
494 case DeviceOutRequest | USB_REQ_SET_FEATURE:
495 if (device_can_wakeup(&hcd->self.root_hub->dev)
496 && wValue == USB_DEVICE_REMOTE_WAKEUP)
497 device_set_wakeup_enable(&hcd->self.root_hub->dev, 1);
498 else
499 goto error;
500 break;
501 case DeviceRequest | USB_REQ_GET_CONFIGURATION:
502 tbuf [0] = 1;
503 len = 1;
504 /* FALLTHROUGH */
505 case DeviceOutRequest | USB_REQ_SET_CONFIGURATION:
506 break;
507 case DeviceRequest | USB_REQ_GET_DESCRIPTOR:
508 switch (wValue & 0xff00) {
509 case USB_DT_DEVICE << 8:
510 switch (hcd->speed) {
511 case HCD_USB3:
512 bufp = usb3_rh_dev_descriptor;
513 break;
514 case HCD_USB2:
515 bufp = usb2_rh_dev_descriptor;
516 break;
517 case HCD_USB11:
518 bufp = usb11_rh_dev_descriptor;
519 break;
520 default:
521 goto error;
522 }
523 len = 18;
524 if (hcd->has_tt)
525 patch_protocol = 1;
526 break;
527 case USB_DT_CONFIG << 8:
528 switch (hcd->speed) {
529 case HCD_USB3:
530 bufp = ss_rh_config_descriptor;
531 len = sizeof ss_rh_config_descriptor;
532 break;
533 case HCD_USB2:
534 bufp = hs_rh_config_descriptor;
535 len = sizeof hs_rh_config_descriptor;
536 break;
537 case HCD_USB11:
538 bufp = fs_rh_config_descriptor;
539 len = sizeof fs_rh_config_descriptor;
540 break;
541 default:
542 goto error;
543 }
544 if (device_can_wakeup(&hcd->self.root_hub->dev))
545 patch_wakeup = 1;
546 break;
547 case USB_DT_STRING << 8:
548 if ((wValue & 0xff) < 4)
549 urb->actual_length = rh_string(wValue & 0xff,
550 hcd, ubuf, wLength);
551 else /* unsupported IDs --> "protocol stall" */
552 goto error;
553 break;
554 default:
555 goto error;
556 }
557 break;
558 case DeviceRequest | USB_REQ_GET_INTERFACE:
559 tbuf [0] = 0;
560 len = 1;
561 /* FALLTHROUGH */
562 case DeviceOutRequest | USB_REQ_SET_INTERFACE:
563 break;
564 case DeviceOutRequest | USB_REQ_SET_ADDRESS:
565 // wValue == urb->dev->devaddr
566 dev_dbg (hcd->self.controller, "root hub device address %d\n",
567 wValue);
568 break;
569
570 /* INTERFACE REQUESTS (no defined feature/status flags) */
571
572 /* ENDPOINT REQUESTS */
573
574 case EndpointRequest | USB_REQ_GET_STATUS:
575 // ENDPOINT_HALT flag
576 tbuf [0] = 0;
577 tbuf [1] = 0;
578 len = 2;
579 /* FALLTHROUGH */
580 case EndpointOutRequest | USB_REQ_CLEAR_FEATURE:
581 case EndpointOutRequest | USB_REQ_SET_FEATURE:
582 dev_dbg (hcd->self.controller, "no endpoint features yet\n");
583 break;
584
585 /* CLASS REQUESTS (and errors) */
586
587 default:
588 /* non-generic request */
589 switch (typeReq) {
590 case GetHubStatus:
591 case GetPortStatus:
592 len = 4;
593 break;
594 case GetHubDescriptor:
595 len = sizeof (struct usb_hub_descriptor);
596 break;
597 }
598 status = hcd->driver->hub_control (hcd,
599 typeReq, wValue, wIndex,
600 tbuf, wLength);
601 break;
602 error:
603 /* "protocol stall" on error */
604 status = -EPIPE;
605 }
606
607 if (status) {
608 len = 0;
609 if (status != -EPIPE) {
610 dev_dbg (hcd->self.controller,
611 "CTRL: TypeReq=0x%x val=0x%x "
612 "idx=0x%x len=%d ==> %d\n",
613 typeReq, wValue, wIndex,
614 wLength, status);
615 }
616 }
617 if (len) {
618 if (urb->transfer_buffer_length < len)
619 len = urb->transfer_buffer_length;
620 urb->actual_length = len;
621 // always USB_DIR_IN, toward host
622 memcpy (ubuf, bufp, len);
623
624 /* report whether RH hardware supports remote wakeup */
625 if (patch_wakeup &&
626 len > offsetof (struct usb_config_descriptor,
627 bmAttributes))
628 ((struct usb_config_descriptor *)ubuf)->bmAttributes
629 |= USB_CONFIG_ATT_WAKEUP;
630
631 /* report whether RH hardware has an integrated TT */
632 if (patch_protocol &&
633 len > offsetof(struct usb_device_descriptor,
634 bDeviceProtocol))
635 ((struct usb_device_descriptor *) ubuf)->
636 bDeviceProtocol = 1;
637 }
638
639 /* any errors get returned through the urb completion */
640 spin_lock_irq(&hcd_root_hub_lock);
641 usb_hcd_unlink_urb_from_ep(hcd, urb);
642
643 /* This peculiar use of spinlocks echoes what real HC drivers do.
644 * Avoiding calls to local_irq_disable/enable makes the code
645 * RT-friendly.
646 */
647 spin_unlock(&hcd_root_hub_lock);
648 usb_hcd_giveback_urb(hcd, urb, status);
649 spin_lock(&hcd_root_hub_lock);
650
651 spin_unlock_irq(&hcd_root_hub_lock);
652 return 0;
653 }
654
655 /*-------------------------------------------------------------------------*/
656
657 /*
658 * Root Hub interrupt transfers are polled using a timer if the
659 * driver requests it; otherwise the driver is responsible for
660 * calling usb_hcd_poll_rh_status() when an event occurs.
661 *
662 * Completions are called in_interrupt(), but they may or may not
663 * be in_irq().
664 */
usb_hcd_poll_rh_status(struct usb_hcd * hcd)665 void usb_hcd_poll_rh_status(struct usb_hcd *hcd)
666 {
667 struct urb *urb;
668 int length;
669 unsigned long flags;
670 char buffer[6]; /* Any root hubs with > 31 ports? */
671
672 if (unlikely(!hcd->rh_pollable))
673 return;
674 if (!hcd->uses_new_polling && !hcd->status_urb)
675 return;
676
677 length = hcd->driver->hub_status_data(hcd, buffer);
678 if (length > 0) {
679
680 /* try to complete the status urb */
681 spin_lock_irqsave(&hcd_root_hub_lock, flags);
682 urb = hcd->status_urb;
683 if (urb) {
684 clear_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
685 hcd->status_urb = NULL;
686 urb->actual_length = length;
687 memcpy(urb->transfer_buffer, buffer, length);
688
689 usb_hcd_unlink_urb_from_ep(hcd, urb);
690 spin_unlock(&hcd_root_hub_lock);
691 usb_hcd_giveback_urb(hcd, urb, 0);
692 spin_lock(&hcd_root_hub_lock);
693 } else {
694 length = 0;
695 set_bit(HCD_FLAG_POLL_PENDING, &hcd->flags);
696 }
697 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
698 }
699
700 /* The USB 2.0 spec says 256 ms. This is close enough and won't
701 * exceed that limit if HZ is 100. The math is more clunky than
702 * maybe expected, this is to make sure that all timers for USB devices
703 * fire at the same time to give the CPU a break in between */
704 if (hcd->uses_new_polling ? HCD_POLL_RH(hcd) :
705 (length == 0 && hcd->status_urb != NULL))
706 mod_timer (&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
707 }
708 EXPORT_SYMBOL_GPL(usb_hcd_poll_rh_status);
709
710 /* timer callback */
rh_timer_func(unsigned long _hcd)711 static void rh_timer_func (unsigned long _hcd)
712 {
713 usb_hcd_poll_rh_status((struct usb_hcd *) _hcd);
714 }
715
716 /*-------------------------------------------------------------------------*/
717
rh_queue_status(struct usb_hcd * hcd,struct urb * urb)718 static int rh_queue_status (struct usb_hcd *hcd, struct urb *urb)
719 {
720 int retval;
721 unsigned long flags;
722 unsigned len = 1 + (urb->dev->maxchild / 8);
723
724 spin_lock_irqsave (&hcd_root_hub_lock, flags);
725 if (hcd->status_urb || urb->transfer_buffer_length < len) {
726 dev_dbg (hcd->self.controller, "not queuing rh status urb\n");
727 retval = -EINVAL;
728 goto done;
729 }
730
731 retval = usb_hcd_link_urb_to_ep(hcd, urb);
732 if (retval)
733 goto done;
734
735 hcd->status_urb = urb;
736 urb->hcpriv = hcd; /* indicate it's queued */
737 if (!hcd->uses_new_polling)
738 mod_timer(&hcd->rh_timer, (jiffies/(HZ/4) + 1) * (HZ/4));
739
740 /* If a status change has already occurred, report it ASAP */
741 else if (HCD_POLL_PENDING(hcd))
742 mod_timer(&hcd->rh_timer, jiffies);
743 retval = 0;
744 done:
745 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
746 return retval;
747 }
748
rh_urb_enqueue(struct usb_hcd * hcd,struct urb * urb)749 static int rh_urb_enqueue (struct usb_hcd *hcd, struct urb *urb)
750 {
751 if (usb_endpoint_xfer_int(&urb->ep->desc))
752 return rh_queue_status (hcd, urb);
753 if (usb_endpoint_xfer_control(&urb->ep->desc))
754 return rh_call_control (hcd, urb);
755 return -EINVAL;
756 }
757
758 /*-------------------------------------------------------------------------*/
759
760 /* Unlinks of root-hub control URBs are legal, but they don't do anything
761 * since these URBs always execute synchronously.
762 */
usb_rh_urb_dequeue(struct usb_hcd * hcd,struct urb * urb,int status)763 static int usb_rh_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
764 {
765 unsigned long flags;
766 int rc;
767
768 spin_lock_irqsave(&hcd_root_hub_lock, flags);
769 rc = usb_hcd_check_unlink_urb(hcd, urb, status);
770 if (rc)
771 goto done;
772
773 if (usb_endpoint_num(&urb->ep->desc) == 0) { /* Control URB */
774 ; /* Do nothing */
775
776 } else { /* Status URB */
777 if (!hcd->uses_new_polling)
778 del_timer (&hcd->rh_timer);
779 if (urb == hcd->status_urb) {
780 hcd->status_urb = NULL;
781 usb_hcd_unlink_urb_from_ep(hcd, urb);
782
783 spin_unlock(&hcd_root_hub_lock);
784 usb_hcd_giveback_urb(hcd, urb, status);
785 spin_lock(&hcd_root_hub_lock);
786 }
787 }
788 done:
789 spin_unlock_irqrestore(&hcd_root_hub_lock, flags);
790 return rc;
791 }
792
793
794
795 /*
796 * Show & store the current value of authorized_default
797 */
usb_host_authorized_default_show(struct device * dev,struct device_attribute * attr,char * buf)798 static ssize_t usb_host_authorized_default_show(struct device *dev,
799 struct device_attribute *attr,
800 char *buf)
801 {
802 struct usb_device *rh_usb_dev = to_usb_device(dev);
803 struct usb_bus *usb_bus = rh_usb_dev->bus;
804 struct usb_hcd *usb_hcd;
805
806 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
807 return -ENODEV;
808 usb_hcd = bus_to_hcd(usb_bus);
809 return snprintf(buf, PAGE_SIZE, "%u\n", usb_hcd->authorized_default);
810 }
811
usb_host_authorized_default_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t size)812 static ssize_t usb_host_authorized_default_store(struct device *dev,
813 struct device_attribute *attr,
814 const char *buf, size_t size)
815 {
816 ssize_t result;
817 unsigned val;
818 struct usb_device *rh_usb_dev = to_usb_device(dev);
819 struct usb_bus *usb_bus = rh_usb_dev->bus;
820 struct usb_hcd *usb_hcd;
821
822 if (usb_bus == NULL) /* FIXME: not sure if this case is possible */
823 return -ENODEV;
824 usb_hcd = bus_to_hcd(usb_bus);
825 result = sscanf(buf, "%u\n", &val);
826 if (result == 1) {
827 usb_hcd->authorized_default = val? 1 : 0;
828 result = size;
829 }
830 else
831 result = -EINVAL;
832 return result;
833 }
834
835 static DEVICE_ATTR(authorized_default, 0644,
836 usb_host_authorized_default_show,
837 usb_host_authorized_default_store);
838
839
840 /* Group all the USB bus attributes */
841 static struct attribute *usb_bus_attrs[] = {
842 &dev_attr_authorized_default.attr,
843 NULL,
844 };
845
846 static struct attribute_group usb_bus_attr_group = {
847 .name = NULL, /* we want them in the same directory */
848 .attrs = usb_bus_attrs,
849 };
850
851
852
853 /*-------------------------------------------------------------------------*/
854
855 /**
856 * usb_bus_init - shared initialization code
857 * @bus: the bus structure being initialized
858 *
859 * This code is used to initialize a usb_bus structure, memory for which is
860 * separately managed.
861 */
usb_bus_init(struct usb_bus * bus)862 static void usb_bus_init (struct usb_bus *bus)
863 {
864 memset (&bus->devmap, 0, sizeof(struct usb_devmap));
865
866 bus->devnum_next = 1;
867
868 bus->root_hub = NULL;
869 bus->busnum = -1;
870 bus->bandwidth_allocated = 0;
871 bus->bandwidth_int_reqs = 0;
872 bus->bandwidth_isoc_reqs = 0;
873
874 INIT_LIST_HEAD (&bus->bus_list);
875 }
876
877 /*-------------------------------------------------------------------------*/
878
879 /**
880 * usb_register_bus - registers the USB host controller with the usb core
881 * @bus: pointer to the bus to register
882 * Context: !in_interrupt()
883 *
884 * Assigns a bus number, and links the controller into usbcore data
885 * structures so that it can be seen by scanning the bus list.
886 */
usb_register_bus(struct usb_bus * bus)887 static int usb_register_bus(struct usb_bus *bus)
888 {
889 int result = -E2BIG;
890 int busnum;
891
892 mutex_lock(&usb_bus_list_lock);
893 busnum = find_next_zero_bit (busmap.busmap, USB_MAXBUS, 1);
894 if (busnum >= USB_MAXBUS) {
895 printk (KERN_ERR "%s: too many buses\n", usbcore_name);
896 goto error_find_busnum;
897 }
898 set_bit (busnum, busmap.busmap);
899 bus->busnum = busnum;
900
901 /* Add it to the local list of buses */
902 list_add (&bus->bus_list, &usb_bus_list);
903 mutex_unlock(&usb_bus_list_lock);
904
905 usb_notify_add_bus(bus);
906
907 dev_info (bus->controller, "new USB bus registered, assigned bus "
908 "number %d\n", bus->busnum);
909 return 0;
910
911 error_find_busnum:
912 mutex_unlock(&usb_bus_list_lock);
913 return result;
914 }
915
916 /**
917 * usb_deregister_bus - deregisters the USB host controller
918 * @bus: pointer to the bus to deregister
919 * Context: !in_interrupt()
920 *
921 * Recycles the bus number, and unlinks the controller from usbcore data
922 * structures so that it won't be seen by scanning the bus list.
923 */
usb_deregister_bus(struct usb_bus * bus)924 static void usb_deregister_bus (struct usb_bus *bus)
925 {
926 dev_info (bus->controller, "USB bus %d deregistered\n", bus->busnum);
927
928 /*
929 * NOTE: make sure that all the devices are removed by the
930 * controller code, as well as having it call this when cleaning
931 * itself up
932 */
933 mutex_lock(&usb_bus_list_lock);
934 list_del (&bus->bus_list);
935 mutex_unlock(&usb_bus_list_lock);
936
937 usb_notify_remove_bus(bus);
938
939 clear_bit (bus->busnum, busmap.busmap);
940 }
941
942 /**
943 * register_root_hub - called by usb_add_hcd() to register a root hub
944 * @hcd: host controller for this root hub
945 *
946 * This function registers the root hub with the USB subsystem. It sets up
947 * the device properly in the device tree and then calls usb_new_device()
948 * to register the usb device. It also assigns the root hub's USB address
949 * (always 1).
950 */
register_root_hub(struct usb_hcd * hcd)951 static int register_root_hub(struct usb_hcd *hcd)
952 {
953 struct device *parent_dev = hcd->self.controller;
954 struct usb_device *usb_dev = hcd->self.root_hub;
955 const int devnum = 1;
956 int retval;
957
958 usb_dev->devnum = devnum;
959 usb_dev->bus->devnum_next = devnum + 1;
960 memset (&usb_dev->bus->devmap.devicemap, 0,
961 sizeof usb_dev->bus->devmap.devicemap);
962 set_bit (devnum, usb_dev->bus->devmap.devicemap);
963 usb_set_device_state(usb_dev, USB_STATE_ADDRESS);
964
965 mutex_lock(&usb_bus_list_lock);
966
967 usb_dev->ep0.desc.wMaxPacketSize = cpu_to_le16(64);
968 retval = usb_get_device_descriptor(usb_dev, USB_DT_DEVICE_SIZE);
969 if (retval != sizeof usb_dev->descriptor) {
970 mutex_unlock(&usb_bus_list_lock);
971 dev_dbg (parent_dev, "can't read %s device descriptor %d\n",
972 dev_name(&usb_dev->dev), retval);
973 return (retval < 0) ? retval : -EMSGSIZE;
974 }
975
976 retval = usb_new_device (usb_dev);
977 if (retval) {
978 dev_err (parent_dev, "can't register root hub for %s, %d\n",
979 dev_name(&usb_dev->dev), retval);
980 }
981 mutex_unlock(&usb_bus_list_lock);
982
983 if (retval == 0) {
984 spin_lock_irq (&hcd_root_hub_lock);
985 hcd->rh_registered = 1;
986 spin_unlock_irq (&hcd_root_hub_lock);
987
988 /* Did the HC die before the root hub was registered? */
989 if (HCD_DEAD(hcd) || hcd->state == HC_STATE_HALT)
990 usb_hc_died (hcd); /* This time clean up */
991 }
992
993 return retval;
994 }
995
996
997 /*-------------------------------------------------------------------------*/
998
999 /**
1000 * usb_calc_bus_time - approximate periodic transaction time in nanoseconds
1001 * @speed: from dev->speed; USB_SPEED_{LOW,FULL,HIGH}
1002 * @is_input: true iff the transaction sends data to the host
1003 * @isoc: true for isochronous transactions, false for interrupt ones
1004 * @bytecount: how many bytes in the transaction.
1005 *
1006 * Returns approximate bus time in nanoseconds for a periodic transaction.
1007 * See USB 2.0 spec section 5.11.3; only periodic transfers need to be
1008 * scheduled in software, this function is only used for such scheduling.
1009 */
usb_calc_bus_time(int speed,int is_input,int isoc,int bytecount)1010 long usb_calc_bus_time (int speed, int is_input, int isoc, int bytecount)
1011 {
1012 unsigned long tmp;
1013
1014 switch (speed) {
1015 case USB_SPEED_LOW: /* INTR only */
1016 if (is_input) {
1017 tmp = (67667L * (31L + 10L * BitTime (bytecount))) / 1000L;
1018 return (64060L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1019 } else {
1020 tmp = (66700L * (31L + 10L * BitTime (bytecount))) / 1000L;
1021 return (64107L + (2 * BW_HUB_LS_SETUP) + BW_HOST_DELAY + tmp);
1022 }
1023 case USB_SPEED_FULL: /* ISOC or INTR */
1024 if (isoc) {
1025 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1026 return (((is_input) ? 7268L : 6265L) + BW_HOST_DELAY + tmp);
1027 } else {
1028 tmp = (8354L * (31L + 10L * BitTime (bytecount))) / 1000L;
1029 return (9107L + BW_HOST_DELAY + tmp);
1030 }
1031 case USB_SPEED_HIGH: /* ISOC or INTR */
1032 // FIXME adjust for input vs output
1033 if (isoc)
1034 tmp = HS_NSECS_ISO (bytecount);
1035 else
1036 tmp = HS_NSECS (bytecount);
1037 return tmp;
1038 default:
1039 pr_debug ("%s: bogus device speed!\n", usbcore_name);
1040 return -1;
1041 }
1042 }
1043 EXPORT_SYMBOL_GPL(usb_calc_bus_time);
1044
1045
1046 /*-------------------------------------------------------------------------*/
1047
1048 /*
1049 * Generic HC operations.
1050 */
1051
1052 /*-------------------------------------------------------------------------*/
1053
1054 /**
1055 * usb_hcd_link_urb_to_ep - add an URB to its endpoint queue
1056 * @hcd: host controller to which @urb was submitted
1057 * @urb: URB being submitted
1058 *
1059 * Host controller drivers should call this routine in their enqueue()
1060 * method. The HCD's private spinlock must be held and interrupts must
1061 * be disabled. The actions carried out here are required for URB
1062 * submission, as well as for endpoint shutdown and for usb_kill_urb.
1063 *
1064 * Returns 0 for no error, otherwise a negative error code (in which case
1065 * the enqueue() method must fail). If no error occurs but enqueue() fails
1066 * anyway, it must call usb_hcd_unlink_urb_from_ep() before releasing
1067 * the private spinlock and returning.
1068 */
usb_hcd_link_urb_to_ep(struct usb_hcd * hcd,struct urb * urb)1069 int usb_hcd_link_urb_to_ep(struct usb_hcd *hcd, struct urb *urb)
1070 {
1071 int rc = 0;
1072
1073 spin_lock(&hcd_urb_list_lock);
1074
1075 /* Check that the URB isn't being killed */
1076 if (unlikely(atomic_read(&urb->reject))) {
1077 rc = -EPERM;
1078 goto done;
1079 }
1080
1081 if (unlikely(!urb->ep->enabled)) {
1082 rc = -ENOENT;
1083 goto done;
1084 }
1085
1086 if (unlikely(!urb->dev->can_submit)) {
1087 rc = -EHOSTUNREACH;
1088 goto done;
1089 }
1090
1091 /*
1092 * Check the host controller's state and add the URB to the
1093 * endpoint's queue.
1094 */
1095 if (HCD_RH_RUNNING(hcd)) {
1096 urb->unlinked = 0;
1097 list_add_tail(&urb->urb_list, &urb->ep->urb_list);
1098 } else {
1099 rc = -ESHUTDOWN;
1100 goto done;
1101 }
1102 done:
1103 spin_unlock(&hcd_urb_list_lock);
1104 return rc;
1105 }
1106 EXPORT_SYMBOL_GPL(usb_hcd_link_urb_to_ep);
1107
1108 /**
1109 * usb_hcd_check_unlink_urb - check whether an URB may be unlinked
1110 * @hcd: host controller to which @urb was submitted
1111 * @urb: URB being checked for unlinkability
1112 * @status: error code to store in @urb if the unlink succeeds
1113 *
1114 * Host controller drivers should call this routine in their dequeue()
1115 * method. The HCD's private spinlock must be held and interrupts must
1116 * be disabled. The actions carried out here are required for making
1117 * sure than an unlink is valid.
1118 *
1119 * Returns 0 for no error, otherwise a negative error code (in which case
1120 * the dequeue() method must fail). The possible error codes are:
1121 *
1122 * -EIDRM: @urb was not submitted or has already completed.
1123 * The completion function may not have been called yet.
1124 *
1125 * -EBUSY: @urb has already been unlinked.
1126 */
usb_hcd_check_unlink_urb(struct usb_hcd * hcd,struct urb * urb,int status)1127 int usb_hcd_check_unlink_urb(struct usb_hcd *hcd, struct urb *urb,
1128 int status)
1129 {
1130 struct list_head *tmp;
1131
1132 /* insist the urb is still queued */
1133 list_for_each(tmp, &urb->ep->urb_list) {
1134 if (tmp == &urb->urb_list)
1135 break;
1136 }
1137 if (tmp != &urb->urb_list)
1138 return -EIDRM;
1139
1140 /* Any status except -EINPROGRESS means something already started to
1141 * unlink this URB from the hardware. So there's no more work to do.
1142 */
1143 if (urb->unlinked)
1144 return -EBUSY;
1145 urb->unlinked = status;
1146
1147 /* IRQ setup can easily be broken so that USB controllers
1148 * never get completion IRQs ... maybe even the ones we need to
1149 * finish unlinking the initial failed usb_set_address()
1150 * or device descriptor fetch.
1151 */
1152 if (!HCD_SAW_IRQ(hcd) && !is_root_hub(urb->dev)) {
1153 dev_warn(hcd->self.controller, "Unlink after no-IRQ? "
1154 "Controller is probably using the wrong IRQ.\n");
1155 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
1156 if (hcd->shared_hcd)
1157 set_bit(HCD_FLAG_SAW_IRQ, &hcd->shared_hcd->flags);
1158 }
1159
1160 return 0;
1161 }
1162 EXPORT_SYMBOL_GPL(usb_hcd_check_unlink_urb);
1163
1164 /**
1165 * usb_hcd_unlink_urb_from_ep - remove an URB from its endpoint queue
1166 * @hcd: host controller to which @urb was submitted
1167 * @urb: URB being unlinked
1168 *
1169 * Host controller drivers should call this routine before calling
1170 * usb_hcd_giveback_urb(). The HCD's private spinlock must be held and
1171 * interrupts must be disabled. The actions carried out here are required
1172 * for URB completion.
1173 */
usb_hcd_unlink_urb_from_ep(struct usb_hcd * hcd,struct urb * urb)1174 void usb_hcd_unlink_urb_from_ep(struct usb_hcd *hcd, struct urb *urb)
1175 {
1176 /* clear all state linking urb to this dev (and hcd) */
1177 spin_lock(&hcd_urb_list_lock);
1178 list_del_init(&urb->urb_list);
1179 spin_unlock(&hcd_urb_list_lock);
1180 }
1181 EXPORT_SYMBOL_GPL(usb_hcd_unlink_urb_from_ep);
1182
1183 /*
1184 * Some usb host controllers can only perform dma using a small SRAM area.
1185 * The usb core itself is however optimized for host controllers that can dma
1186 * using regular system memory - like pci devices doing bus mastering.
1187 *
1188 * To support host controllers with limited dma capabilites we provide dma
1189 * bounce buffers. This feature can be enabled using the HCD_LOCAL_MEM flag.
1190 * For this to work properly the host controller code must first use the
1191 * function dma_declare_coherent_memory() to point out which memory area
1192 * that should be used for dma allocations.
1193 *
1194 * The HCD_LOCAL_MEM flag then tells the usb code to allocate all data for
1195 * dma using dma_alloc_coherent() which in turn allocates from the memory
1196 * area pointed out with dma_declare_coherent_memory().
1197 *
1198 * So, to summarize...
1199 *
1200 * - We need "local" memory, canonical example being
1201 * a small SRAM on a discrete controller being the
1202 * only memory that the controller can read ...
1203 * (a) "normal" kernel memory is no good, and
1204 * (b) there's not enough to share
1205 *
1206 * - The only *portable* hook for such stuff in the
1207 * DMA framework is dma_declare_coherent_memory()
1208 *
1209 * - So we use that, even though the primary requirement
1210 * is that the memory be "local" (hence addressible
1211 * by that device), not "coherent".
1212 *
1213 */
1214
hcd_alloc_coherent(struct usb_bus * bus,gfp_t mem_flags,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1215 static int hcd_alloc_coherent(struct usb_bus *bus,
1216 gfp_t mem_flags, dma_addr_t *dma_handle,
1217 void **vaddr_handle, size_t size,
1218 enum dma_data_direction dir)
1219 {
1220 unsigned char *vaddr;
1221
1222 if (*vaddr_handle == NULL) {
1223 WARN_ON_ONCE(1);
1224 return -EFAULT;
1225 }
1226
1227 vaddr = hcd_buffer_alloc(bus, size + sizeof(vaddr),
1228 mem_flags, dma_handle);
1229 if (!vaddr)
1230 return -ENOMEM;
1231
1232 /*
1233 * Store the virtual address of the buffer at the end
1234 * of the allocated dma buffer. The size of the buffer
1235 * may be uneven so use unaligned functions instead
1236 * of just rounding up. It makes sense to optimize for
1237 * memory footprint over access speed since the amount
1238 * of memory available for dma may be limited.
1239 */
1240 put_unaligned((unsigned long)*vaddr_handle,
1241 (unsigned long *)(vaddr + size));
1242
1243 if (dir == DMA_TO_DEVICE)
1244 memcpy(vaddr, *vaddr_handle, size);
1245
1246 *vaddr_handle = vaddr;
1247 return 0;
1248 }
1249
hcd_free_coherent(struct usb_bus * bus,dma_addr_t * dma_handle,void ** vaddr_handle,size_t size,enum dma_data_direction dir)1250 static void hcd_free_coherent(struct usb_bus *bus, dma_addr_t *dma_handle,
1251 void **vaddr_handle, size_t size,
1252 enum dma_data_direction dir)
1253 {
1254 unsigned char *vaddr = *vaddr_handle;
1255
1256 vaddr = (void *)get_unaligned((unsigned long *)(vaddr + size));
1257
1258 if (dir == DMA_FROM_DEVICE)
1259 memcpy(vaddr, *vaddr_handle, size);
1260
1261 hcd_buffer_free(bus, size + sizeof(vaddr), *vaddr_handle, *dma_handle);
1262
1263 *vaddr_handle = vaddr;
1264 *dma_handle = 0;
1265 }
1266
usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd * hcd,struct urb * urb)1267 void usb_hcd_unmap_urb_setup_for_dma(struct usb_hcd *hcd, struct urb *urb)
1268 {
1269 if (urb->transfer_flags & URB_SETUP_MAP_SINGLE)
1270 dma_unmap_single(hcd->self.controller,
1271 urb->setup_dma,
1272 sizeof(struct usb_ctrlrequest),
1273 DMA_TO_DEVICE);
1274 else if (urb->transfer_flags & URB_SETUP_MAP_LOCAL)
1275 hcd_free_coherent(urb->dev->bus,
1276 &urb->setup_dma,
1277 (void **) &urb->setup_packet,
1278 sizeof(struct usb_ctrlrequest),
1279 DMA_TO_DEVICE);
1280
1281 /* Make it safe to call this routine more than once */
1282 urb->transfer_flags &= ~(URB_SETUP_MAP_SINGLE | URB_SETUP_MAP_LOCAL);
1283 }
1284 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_setup_for_dma);
1285
unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1286 static void unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1287 {
1288 if (hcd->driver->unmap_urb_for_dma)
1289 hcd->driver->unmap_urb_for_dma(hcd, urb);
1290 else
1291 usb_hcd_unmap_urb_for_dma(hcd, urb);
1292 }
1293
usb_hcd_unmap_urb_for_dma(struct usb_hcd * hcd,struct urb * urb)1294 void usb_hcd_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
1295 {
1296 enum dma_data_direction dir;
1297
1298 usb_hcd_unmap_urb_setup_for_dma(hcd, urb);
1299
1300 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1301 if (urb->transfer_flags & URB_DMA_MAP_SG)
1302 dma_unmap_sg(hcd->self.controller,
1303 urb->sg,
1304 urb->num_sgs,
1305 dir);
1306 else if (urb->transfer_flags & URB_DMA_MAP_PAGE)
1307 dma_unmap_page(hcd->self.controller,
1308 urb->transfer_dma,
1309 urb->transfer_buffer_length,
1310 dir);
1311 else if (urb->transfer_flags & URB_DMA_MAP_SINGLE)
1312 dma_unmap_single(hcd->self.controller,
1313 urb->transfer_dma,
1314 urb->transfer_buffer_length,
1315 dir);
1316 else if (urb->transfer_flags & URB_MAP_LOCAL)
1317 hcd_free_coherent(urb->dev->bus,
1318 &urb->transfer_dma,
1319 &urb->transfer_buffer,
1320 urb->transfer_buffer_length,
1321 dir);
1322
1323 /* Make it safe to call this routine more than once */
1324 urb->transfer_flags &= ~(URB_DMA_MAP_SG | URB_DMA_MAP_PAGE |
1325 URB_DMA_MAP_SINGLE | URB_MAP_LOCAL);
1326 }
1327 EXPORT_SYMBOL_GPL(usb_hcd_unmap_urb_for_dma);
1328
map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1329 static int map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1330 gfp_t mem_flags)
1331 {
1332 if (hcd->driver->map_urb_for_dma)
1333 return hcd->driver->map_urb_for_dma(hcd, urb, mem_flags);
1334 else
1335 return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1336 }
1337
usb_hcd_map_urb_for_dma(struct usb_hcd * hcd,struct urb * urb,gfp_t mem_flags)1338 int usb_hcd_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1339 gfp_t mem_flags)
1340 {
1341 enum dma_data_direction dir;
1342 int ret = 0;
1343
1344 /* Map the URB's buffers for DMA access.
1345 * Lower level HCD code should use *_dma exclusively,
1346 * unless it uses pio or talks to another transport,
1347 * or uses the provided scatter gather list for bulk.
1348 */
1349
1350 if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1351 if (hcd->self.uses_pio_for_control)
1352 return ret;
1353 if (hcd->self.uses_dma) {
1354 urb->setup_dma = dma_map_single(
1355 hcd->self.controller,
1356 urb->setup_packet,
1357 sizeof(struct usb_ctrlrequest),
1358 DMA_TO_DEVICE);
1359 if (dma_mapping_error(hcd->self.controller,
1360 urb->setup_dma))
1361 return -EAGAIN;
1362 urb->transfer_flags |= URB_SETUP_MAP_SINGLE;
1363 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1364 ret = hcd_alloc_coherent(
1365 urb->dev->bus, mem_flags,
1366 &urb->setup_dma,
1367 (void **)&urb->setup_packet,
1368 sizeof(struct usb_ctrlrequest),
1369 DMA_TO_DEVICE);
1370 if (ret)
1371 return ret;
1372 urb->transfer_flags |= URB_SETUP_MAP_LOCAL;
1373 }
1374 }
1375
1376 dir = usb_urb_dir_in(urb) ? DMA_FROM_DEVICE : DMA_TO_DEVICE;
1377 if (urb->transfer_buffer_length != 0
1378 && !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)) {
1379 if (hcd->self.uses_dma) {
1380 if (urb->num_sgs) {
1381 int n = dma_map_sg(
1382 hcd->self.controller,
1383 urb->sg,
1384 urb->num_sgs,
1385 dir);
1386 if (n <= 0)
1387 ret = -EAGAIN;
1388 else
1389 urb->transfer_flags |= URB_DMA_MAP_SG;
1390 if (n != urb->num_sgs) {
1391 urb->num_sgs = n;
1392 urb->transfer_flags |=
1393 URB_DMA_SG_COMBINED;
1394 }
1395 } else if (urb->sg) {
1396 struct scatterlist *sg = urb->sg;
1397 urb->transfer_dma = dma_map_page(
1398 hcd->self.controller,
1399 sg_page(sg),
1400 sg->offset,
1401 urb->transfer_buffer_length,
1402 dir);
1403 if (dma_mapping_error(hcd->self.controller,
1404 urb->transfer_dma))
1405 ret = -EAGAIN;
1406 else
1407 urb->transfer_flags |= URB_DMA_MAP_PAGE;
1408 } else {
1409 urb->transfer_dma = dma_map_single(
1410 hcd->self.controller,
1411 urb->transfer_buffer,
1412 urb->transfer_buffer_length,
1413 dir);
1414 if (dma_mapping_error(hcd->self.controller,
1415 urb->transfer_dma))
1416 ret = -EAGAIN;
1417 else
1418 urb->transfer_flags |= URB_DMA_MAP_SINGLE;
1419 }
1420 } else if (hcd->driver->flags & HCD_LOCAL_MEM) {
1421 ret = hcd_alloc_coherent(
1422 urb->dev->bus, mem_flags,
1423 &urb->transfer_dma,
1424 &urb->transfer_buffer,
1425 urb->transfer_buffer_length,
1426 dir);
1427 if (ret == 0)
1428 urb->transfer_flags |= URB_MAP_LOCAL;
1429 }
1430 if (ret && (urb->transfer_flags & (URB_SETUP_MAP_SINGLE |
1431 URB_SETUP_MAP_LOCAL)))
1432 usb_hcd_unmap_urb_for_dma(hcd, urb);
1433 }
1434 return ret;
1435 }
1436 EXPORT_SYMBOL_GPL(usb_hcd_map_urb_for_dma);
1437
1438 /*-------------------------------------------------------------------------*/
1439
1440 /* may be called in any context with a valid urb->dev usecount
1441 * caller surrenders "ownership" of urb
1442 * expects usb_submit_urb() to have sanity checked and conditioned all
1443 * inputs in the urb
1444 */
usb_hcd_submit_urb(struct urb * urb,gfp_t mem_flags)1445 int usb_hcd_submit_urb (struct urb *urb, gfp_t mem_flags)
1446 {
1447 int status;
1448 struct usb_hcd *hcd = bus_to_hcd(urb->dev->bus);
1449
1450 /* increment urb's reference count as part of giving it to the HCD
1451 * (which will control it). HCD guarantees that it either returns
1452 * an error or calls giveback(), but not both.
1453 */
1454 usb_get_urb(urb);
1455 atomic_inc(&urb->use_count);
1456 atomic_inc(&urb->dev->urbnum);
1457 usbmon_urb_submit(&hcd->self, urb);
1458
1459 /* NOTE requirements on root-hub callers (usbfs and the hub
1460 * driver, for now): URBs' urb->transfer_buffer must be
1461 * valid and usb_buffer_{sync,unmap}() not be needed, since
1462 * they could clobber root hub response data. Also, control
1463 * URBs must be submitted in process context with interrupts
1464 * enabled.
1465 */
1466
1467 if (is_root_hub(urb->dev)) {
1468 status = rh_urb_enqueue(hcd, urb);
1469 } else {
1470 status = map_urb_for_dma(hcd, urb, mem_flags);
1471 if (likely(status == 0)) {
1472 status = hcd->driver->urb_enqueue(hcd, urb, mem_flags);
1473 if (unlikely(status))
1474 unmap_urb_for_dma(hcd, urb);
1475 }
1476 }
1477
1478 if (unlikely(status)) {
1479 usbmon_urb_submit_error(&hcd->self, urb, status);
1480 urb->hcpriv = NULL;
1481 INIT_LIST_HEAD(&urb->urb_list);
1482 atomic_dec(&urb->use_count);
1483 atomic_dec(&urb->dev->urbnum);
1484 if (atomic_read(&urb->reject))
1485 wake_up(&usb_kill_urb_queue);
1486 usb_put_urb(urb);
1487 }
1488 return status;
1489 }
1490
1491 /*-------------------------------------------------------------------------*/
1492
1493 /* this makes the hcd giveback() the urb more quickly, by kicking it
1494 * off hardware queues (which may take a while) and returning it as
1495 * soon as practical. we've already set up the urb's return status,
1496 * but we can't know if the callback completed already.
1497 */
unlink1(struct usb_hcd * hcd,struct urb * urb,int status)1498 static int unlink1(struct usb_hcd *hcd, struct urb *urb, int status)
1499 {
1500 int value;
1501
1502 if (is_root_hub(urb->dev))
1503 value = usb_rh_urb_dequeue(hcd, urb, status);
1504 else {
1505
1506 /* The only reason an HCD might fail this call is if
1507 * it has not yet fully queued the urb to begin with.
1508 * Such failures should be harmless. */
1509 value = hcd->driver->urb_dequeue(hcd, urb, status);
1510 }
1511 return value;
1512 }
1513
1514 /*
1515 * called in any context
1516 *
1517 * caller guarantees urb won't be recycled till both unlink()
1518 * and the urb's completion function return
1519 */
usb_hcd_unlink_urb(struct urb * urb,int status)1520 int usb_hcd_unlink_urb (struct urb *urb, int status)
1521 {
1522 struct usb_hcd *hcd;
1523 int retval = -EIDRM;
1524 unsigned long flags;
1525
1526 /* Prevent the device and bus from going away while
1527 * the unlink is carried out. If they are already gone
1528 * then urb->use_count must be 0, since disconnected
1529 * devices can't have any active URBs.
1530 */
1531 spin_lock_irqsave(&hcd_urb_unlink_lock, flags);
1532 if (atomic_read(&urb->use_count) > 0) {
1533 retval = 0;
1534 usb_get_dev(urb->dev);
1535 }
1536 spin_unlock_irqrestore(&hcd_urb_unlink_lock, flags);
1537 if (retval == 0) {
1538 hcd = bus_to_hcd(urb->dev->bus);
1539 retval = unlink1(hcd, urb, status);
1540 usb_put_dev(urb->dev);
1541 }
1542
1543 if (retval == 0)
1544 retval = -EINPROGRESS;
1545 else if (retval != -EIDRM && retval != -EBUSY)
1546 dev_dbg(&urb->dev->dev, "hcd_unlink_urb %p fail %d\n",
1547 urb, retval);
1548 return retval;
1549 }
1550
1551 /*-------------------------------------------------------------------------*/
1552
1553 /**
1554 * usb_hcd_giveback_urb - return URB from HCD to device driver
1555 * @hcd: host controller returning the URB
1556 * @urb: urb being returned to the USB device driver.
1557 * @status: completion status code for the URB.
1558 * Context: in_interrupt()
1559 *
1560 * This hands the URB from HCD to its USB device driver, using its
1561 * completion function. The HCD has freed all per-urb resources
1562 * (and is done using urb->hcpriv). It also released all HCD locks;
1563 * the device driver won't cause problems if it frees, modifies,
1564 * or resubmits this URB.
1565 *
1566 * If @urb was unlinked, the value of @status will be overridden by
1567 * @urb->unlinked. Erroneous short transfers are detected in case
1568 * the HCD hasn't checked for them.
1569 */
usb_hcd_giveback_urb(struct usb_hcd * hcd,struct urb * urb,int status)1570 void usb_hcd_giveback_urb(struct usb_hcd *hcd, struct urb *urb, int status)
1571 {
1572 urb->hcpriv = NULL;
1573 if (unlikely(urb->unlinked))
1574 status = urb->unlinked;
1575 else if (unlikely((urb->transfer_flags & URB_SHORT_NOT_OK) &&
1576 urb->actual_length < urb->transfer_buffer_length &&
1577 !status))
1578 status = -EREMOTEIO;
1579
1580 unmap_urb_for_dma(hcd, urb);
1581 usbmon_urb_complete(&hcd->self, urb, status);
1582 usb_unanchor_urb(urb);
1583
1584 /* pass ownership to the completion handler */
1585 urb->status = status;
1586 urb->complete (urb);
1587 atomic_dec (&urb->use_count);
1588 if (unlikely(atomic_read(&urb->reject)))
1589 wake_up (&usb_kill_urb_queue);
1590 usb_put_urb (urb);
1591 }
1592 EXPORT_SYMBOL_GPL(usb_hcd_giveback_urb);
1593
1594 /*-------------------------------------------------------------------------*/
1595
1596 /* Cancel all URBs pending on this endpoint and wait for the endpoint's
1597 * queue to drain completely. The caller must first insure that no more
1598 * URBs can be submitted for this endpoint.
1599 */
usb_hcd_flush_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1600 void usb_hcd_flush_endpoint(struct usb_device *udev,
1601 struct usb_host_endpoint *ep)
1602 {
1603 struct usb_hcd *hcd;
1604 struct urb *urb;
1605
1606 if (!ep)
1607 return;
1608 might_sleep();
1609 hcd = bus_to_hcd(udev->bus);
1610
1611 /* No more submits can occur */
1612 spin_lock_irq(&hcd_urb_list_lock);
1613 rescan:
1614 list_for_each_entry (urb, &ep->urb_list, urb_list) {
1615 int is_in;
1616
1617 if (urb->unlinked)
1618 continue;
1619 usb_get_urb (urb);
1620 is_in = usb_urb_dir_in(urb);
1621 spin_unlock(&hcd_urb_list_lock);
1622
1623 /* kick hcd */
1624 unlink1(hcd, urb, -ESHUTDOWN);
1625 dev_dbg (hcd->self.controller,
1626 "shutdown urb %p ep%d%s%s\n",
1627 urb, usb_endpoint_num(&ep->desc),
1628 is_in ? "in" : "out",
1629 ({ char *s;
1630
1631 switch (usb_endpoint_type(&ep->desc)) {
1632 case USB_ENDPOINT_XFER_CONTROL:
1633 s = ""; break;
1634 case USB_ENDPOINT_XFER_BULK:
1635 s = "-bulk"; break;
1636 case USB_ENDPOINT_XFER_INT:
1637 s = "-intr"; break;
1638 default:
1639 s = "-iso"; break;
1640 };
1641 s;
1642 }));
1643 usb_put_urb (urb);
1644
1645 /* list contents may have changed */
1646 spin_lock(&hcd_urb_list_lock);
1647 goto rescan;
1648 }
1649 spin_unlock_irq(&hcd_urb_list_lock);
1650
1651 /* Wait until the endpoint queue is completely empty */
1652 while (!list_empty (&ep->urb_list)) {
1653 spin_lock_irq(&hcd_urb_list_lock);
1654
1655 /* The list may have changed while we acquired the spinlock */
1656 urb = NULL;
1657 if (!list_empty (&ep->urb_list)) {
1658 urb = list_entry (ep->urb_list.prev, struct urb,
1659 urb_list);
1660 usb_get_urb (urb);
1661 }
1662 spin_unlock_irq(&hcd_urb_list_lock);
1663
1664 if (urb) {
1665 usb_kill_urb (urb);
1666 usb_put_urb (urb);
1667 }
1668 }
1669 }
1670
1671 /**
1672 * usb_hcd_alloc_bandwidth - check whether a new bandwidth setting exceeds
1673 * the bus bandwidth
1674 * @udev: target &usb_device
1675 * @new_config: new configuration to install
1676 * @cur_alt: the current alternate interface setting
1677 * @new_alt: alternate interface setting that is being installed
1678 *
1679 * To change configurations, pass in the new configuration in new_config,
1680 * and pass NULL for cur_alt and new_alt.
1681 *
1682 * To reset a device's configuration (put the device in the ADDRESSED state),
1683 * pass in NULL for new_config, cur_alt, and new_alt.
1684 *
1685 * To change alternate interface settings, pass in NULL for new_config,
1686 * pass in the current alternate interface setting in cur_alt,
1687 * and pass in the new alternate interface setting in new_alt.
1688 *
1689 * Returns an error if the requested bandwidth change exceeds the
1690 * bus bandwidth or host controller internal resources.
1691 */
usb_hcd_alloc_bandwidth(struct usb_device * udev,struct usb_host_config * new_config,struct usb_host_interface * cur_alt,struct usb_host_interface * new_alt)1692 int usb_hcd_alloc_bandwidth(struct usb_device *udev,
1693 struct usb_host_config *new_config,
1694 struct usb_host_interface *cur_alt,
1695 struct usb_host_interface *new_alt)
1696 {
1697 int num_intfs, i, j;
1698 struct usb_host_interface *alt = NULL;
1699 int ret = 0;
1700 struct usb_hcd *hcd;
1701 struct usb_host_endpoint *ep;
1702
1703 hcd = bus_to_hcd(udev->bus);
1704 if (!hcd->driver->check_bandwidth)
1705 return 0;
1706
1707 /* Configuration is being removed - set configuration 0 */
1708 if (!new_config && !cur_alt) {
1709 for (i = 1; i < 16; ++i) {
1710 ep = udev->ep_out[i];
1711 if (ep)
1712 hcd->driver->drop_endpoint(hcd, udev, ep);
1713 ep = udev->ep_in[i];
1714 if (ep)
1715 hcd->driver->drop_endpoint(hcd, udev, ep);
1716 }
1717 hcd->driver->check_bandwidth(hcd, udev);
1718 return 0;
1719 }
1720 /* Check if the HCD says there's enough bandwidth. Enable all endpoints
1721 * each interface's alt setting 0 and ask the HCD to check the bandwidth
1722 * of the bus. There will always be bandwidth for endpoint 0, so it's
1723 * ok to exclude it.
1724 */
1725 if (new_config) {
1726 num_intfs = new_config->desc.bNumInterfaces;
1727 /* Remove endpoints (except endpoint 0, which is always on the
1728 * schedule) from the old config from the schedule
1729 */
1730 for (i = 1; i < 16; ++i) {
1731 ep = udev->ep_out[i];
1732 if (ep) {
1733 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1734 if (ret < 0)
1735 goto reset;
1736 }
1737 ep = udev->ep_in[i];
1738 if (ep) {
1739 ret = hcd->driver->drop_endpoint(hcd, udev, ep);
1740 if (ret < 0)
1741 goto reset;
1742 }
1743 }
1744 for (i = 0; i < num_intfs; ++i) {
1745 struct usb_host_interface *first_alt;
1746 int iface_num;
1747
1748 first_alt = &new_config->intf_cache[i]->altsetting[0];
1749 iface_num = first_alt->desc.bInterfaceNumber;
1750 /* Set up endpoints for alternate interface setting 0 */
1751 alt = usb_find_alt_setting(new_config, iface_num, 0);
1752 if (!alt)
1753 /* No alt setting 0? Pick the first setting. */
1754 alt = first_alt;
1755
1756 for (j = 0; j < alt->desc.bNumEndpoints; j++) {
1757 ret = hcd->driver->add_endpoint(hcd, udev, &alt->endpoint[j]);
1758 if (ret < 0)
1759 goto reset;
1760 }
1761 }
1762 }
1763 if (cur_alt && new_alt) {
1764 struct usb_interface *iface = usb_ifnum_to_if(udev,
1765 cur_alt->desc.bInterfaceNumber);
1766
1767 if (iface->resetting_device) {
1768 /*
1769 * The USB core just reset the device, so the xHCI host
1770 * and the device will think alt setting 0 is installed.
1771 * However, the USB core will pass in the alternate
1772 * setting installed before the reset as cur_alt. Dig
1773 * out the alternate setting 0 structure, or the first
1774 * alternate setting if a broken device doesn't have alt
1775 * setting 0.
1776 */
1777 cur_alt = usb_altnum_to_altsetting(iface, 0);
1778 if (!cur_alt)
1779 cur_alt = &iface->altsetting[0];
1780 }
1781
1782 /* Drop all the endpoints in the current alt setting */
1783 for (i = 0; i < cur_alt->desc.bNumEndpoints; i++) {
1784 ret = hcd->driver->drop_endpoint(hcd, udev,
1785 &cur_alt->endpoint[i]);
1786 if (ret < 0)
1787 goto reset;
1788 }
1789 /* Add all the endpoints in the new alt setting */
1790 for (i = 0; i < new_alt->desc.bNumEndpoints; i++) {
1791 ret = hcd->driver->add_endpoint(hcd, udev,
1792 &new_alt->endpoint[i]);
1793 if (ret < 0)
1794 goto reset;
1795 }
1796 }
1797 ret = hcd->driver->check_bandwidth(hcd, udev);
1798 reset:
1799 if (ret < 0)
1800 hcd->driver->reset_bandwidth(hcd, udev);
1801 return ret;
1802 }
1803
1804 /* Disables the endpoint: synchronizes with the hcd to make sure all
1805 * endpoint state is gone from hardware. usb_hcd_flush_endpoint() must
1806 * have been called previously. Use for set_configuration, set_interface,
1807 * driver removal, physical disconnect.
1808 *
1809 * example: a qh stored in ep->hcpriv, holding state related to endpoint
1810 * type, maxpacket size, toggle, halt status, and scheduling.
1811 */
usb_hcd_disable_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1812 void usb_hcd_disable_endpoint(struct usb_device *udev,
1813 struct usb_host_endpoint *ep)
1814 {
1815 struct usb_hcd *hcd;
1816
1817 might_sleep();
1818 hcd = bus_to_hcd(udev->bus);
1819 if (hcd->driver->endpoint_disable)
1820 hcd->driver->endpoint_disable(hcd, ep);
1821 }
1822
1823 /**
1824 * usb_hcd_reset_endpoint - reset host endpoint state
1825 * @udev: USB device.
1826 * @ep: the endpoint to reset.
1827 *
1828 * Resets any host endpoint state such as the toggle bit, sequence
1829 * number and current window.
1830 */
usb_hcd_reset_endpoint(struct usb_device * udev,struct usb_host_endpoint * ep)1831 void usb_hcd_reset_endpoint(struct usb_device *udev,
1832 struct usb_host_endpoint *ep)
1833 {
1834 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1835
1836 if (hcd->driver->endpoint_reset)
1837 hcd->driver->endpoint_reset(hcd, ep);
1838 else {
1839 int epnum = usb_endpoint_num(&ep->desc);
1840 int is_out = usb_endpoint_dir_out(&ep->desc);
1841 int is_control = usb_endpoint_xfer_control(&ep->desc);
1842
1843 usb_settoggle(udev, epnum, is_out, 0);
1844 if (is_control)
1845 usb_settoggle(udev, epnum, !is_out, 0);
1846 }
1847 }
1848
1849 /**
1850 * usb_alloc_streams - allocate bulk endpoint stream IDs.
1851 * @interface: alternate setting that includes all endpoints.
1852 * @eps: array of endpoints that need streams.
1853 * @num_eps: number of endpoints in the array.
1854 * @num_streams: number of streams to allocate.
1855 * @mem_flags: flags hcd should use to allocate memory.
1856 *
1857 * Sets up a group of bulk endpoints to have num_streams stream IDs available.
1858 * Drivers may queue multiple transfers to different stream IDs, which may
1859 * complete in a different order than they were queued.
1860 */
usb_alloc_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,unsigned int num_streams,gfp_t mem_flags)1861 int usb_alloc_streams(struct usb_interface *interface,
1862 struct usb_host_endpoint **eps, unsigned int num_eps,
1863 unsigned int num_streams, gfp_t mem_flags)
1864 {
1865 struct usb_hcd *hcd;
1866 struct usb_device *dev;
1867 int i;
1868
1869 dev = interface_to_usbdev(interface);
1870 hcd = bus_to_hcd(dev->bus);
1871 if (!hcd->driver->alloc_streams || !hcd->driver->free_streams)
1872 return -EINVAL;
1873 if (dev->speed != USB_SPEED_SUPER)
1874 return -EINVAL;
1875
1876 /* Streams only apply to bulk endpoints. */
1877 for (i = 0; i < num_eps; i++)
1878 if (!usb_endpoint_xfer_bulk(&eps[i]->desc))
1879 return -EINVAL;
1880
1881 return hcd->driver->alloc_streams(hcd, dev, eps, num_eps,
1882 num_streams, mem_flags);
1883 }
1884 EXPORT_SYMBOL_GPL(usb_alloc_streams);
1885
1886 /**
1887 * usb_free_streams - free bulk endpoint stream IDs.
1888 * @interface: alternate setting that includes all endpoints.
1889 * @eps: array of endpoints to remove streams from.
1890 * @num_eps: number of endpoints in the array.
1891 * @mem_flags: flags hcd should use to allocate memory.
1892 *
1893 * Reverts a group of bulk endpoints back to not using stream IDs.
1894 * Can fail if we are given bad arguments, or HCD is broken.
1895 */
usb_free_streams(struct usb_interface * interface,struct usb_host_endpoint ** eps,unsigned int num_eps,gfp_t mem_flags)1896 void usb_free_streams(struct usb_interface *interface,
1897 struct usb_host_endpoint **eps, unsigned int num_eps,
1898 gfp_t mem_flags)
1899 {
1900 struct usb_hcd *hcd;
1901 struct usb_device *dev;
1902 int i;
1903
1904 dev = interface_to_usbdev(interface);
1905 hcd = bus_to_hcd(dev->bus);
1906 if (dev->speed != USB_SPEED_SUPER)
1907 return;
1908
1909 /* Streams only apply to bulk endpoints. */
1910 for (i = 0; i < num_eps; i++)
1911 if (!eps[i] || !usb_endpoint_xfer_bulk(&eps[i]->desc))
1912 return;
1913
1914 hcd->driver->free_streams(hcd, dev, eps, num_eps, mem_flags);
1915 }
1916 EXPORT_SYMBOL_GPL(usb_free_streams);
1917
1918 /* Protect against drivers that try to unlink URBs after the device
1919 * is gone, by waiting until all unlinks for @udev are finished.
1920 * Since we don't currently track URBs by device, simply wait until
1921 * nothing is running in the locked region of usb_hcd_unlink_urb().
1922 */
usb_hcd_synchronize_unlinks(struct usb_device * udev)1923 void usb_hcd_synchronize_unlinks(struct usb_device *udev)
1924 {
1925 spin_lock_irq(&hcd_urb_unlink_lock);
1926 spin_unlock_irq(&hcd_urb_unlink_lock);
1927 }
1928
1929 /*-------------------------------------------------------------------------*/
1930
1931 /* called in any context */
usb_hcd_get_frame_number(struct usb_device * udev)1932 int usb_hcd_get_frame_number (struct usb_device *udev)
1933 {
1934 struct usb_hcd *hcd = bus_to_hcd(udev->bus);
1935
1936 if (!HCD_RH_RUNNING(hcd))
1937 return -ESHUTDOWN;
1938 return hcd->driver->get_frame_number (hcd);
1939 }
1940
1941 /*-------------------------------------------------------------------------*/
1942
1943 #ifdef CONFIG_PM
1944
hcd_bus_suspend(struct usb_device * rhdev,pm_message_t msg)1945 int hcd_bus_suspend(struct usb_device *rhdev, pm_message_t msg)
1946 {
1947 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1948 int status;
1949 int old_state = hcd->state;
1950
1951 dev_dbg(&rhdev->dev, "bus %s%s\n",
1952 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "suspend");
1953 if (HCD_DEAD(hcd)) {
1954 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "suspend");
1955 return 0;
1956 }
1957
1958 if (!hcd->driver->bus_suspend) {
1959 status = -ENOENT;
1960 } else {
1961 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1962 hcd->state = HC_STATE_QUIESCING;
1963 status = hcd->driver->bus_suspend(hcd);
1964 }
1965 if (status == 0) {
1966 usb_set_device_state(rhdev, USB_STATE_SUSPENDED);
1967 hcd->state = HC_STATE_SUSPENDED;
1968 } else {
1969 spin_lock_irq(&hcd_root_hub_lock);
1970 if (!HCD_DEAD(hcd)) {
1971 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
1972 hcd->state = old_state;
1973 }
1974 spin_unlock_irq(&hcd_root_hub_lock);
1975 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
1976 "suspend", status);
1977 }
1978 return status;
1979 }
1980
hcd_bus_resume(struct usb_device * rhdev,pm_message_t msg)1981 int hcd_bus_resume(struct usb_device *rhdev, pm_message_t msg)
1982 {
1983 struct usb_hcd *hcd = container_of(rhdev->bus, struct usb_hcd, self);
1984 int status;
1985 int old_state = hcd->state;
1986
1987 dev_dbg(&rhdev->dev, "usb %s%s\n",
1988 (msg.event & PM_EVENT_AUTO ? "auto-" : ""), "resume");
1989 if (HCD_DEAD(hcd)) {
1990 dev_dbg(&rhdev->dev, "skipped %s of dead bus\n", "resume");
1991 return 0;
1992 }
1993 if (!hcd->driver->bus_resume)
1994 return -ENOENT;
1995 if (HCD_RH_RUNNING(hcd))
1996 return 0;
1997
1998 hcd->state = HC_STATE_RESUMING;
1999 status = hcd->driver->bus_resume(hcd);
2000 clear_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2001 if (status == 0) {
2002 /* TRSMRCY = 10 msec */
2003 msleep(10);
2004 spin_lock_irq(&hcd_root_hub_lock);
2005 if (!HCD_DEAD(hcd)) {
2006 usb_set_device_state(rhdev, rhdev->actconfig
2007 ? USB_STATE_CONFIGURED
2008 : USB_STATE_ADDRESS);
2009 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2010 hcd->state = HC_STATE_RUNNING;
2011 }
2012 spin_unlock_irq(&hcd_root_hub_lock);
2013 } else {
2014 hcd->state = old_state;
2015 dev_dbg(&rhdev->dev, "bus %s fail, err %d\n",
2016 "resume", status);
2017 if (status != -ESHUTDOWN)
2018 usb_hc_died(hcd);
2019 }
2020 return status;
2021 }
2022
2023 #endif /* CONFIG_PM */
2024
2025 #ifdef CONFIG_USB_SUSPEND
2026
2027 /* Workqueue routine for root-hub remote wakeup */
hcd_resume_work(struct work_struct * work)2028 static void hcd_resume_work(struct work_struct *work)
2029 {
2030 struct usb_hcd *hcd = container_of(work, struct usb_hcd, wakeup_work);
2031 struct usb_device *udev = hcd->self.root_hub;
2032
2033 usb_lock_device(udev);
2034 usb_remote_wakeup(udev);
2035 usb_unlock_device(udev);
2036 }
2037
2038 /**
2039 * usb_hcd_resume_root_hub - called by HCD to resume its root hub
2040 * @hcd: host controller for this root hub
2041 *
2042 * The USB host controller calls this function when its root hub is
2043 * suspended (with the remote wakeup feature enabled) and a remote
2044 * wakeup request is received. The routine submits a workqueue request
2045 * to resume the root hub (that is, manage its downstream ports again).
2046 */
usb_hcd_resume_root_hub(struct usb_hcd * hcd)2047 void usb_hcd_resume_root_hub (struct usb_hcd *hcd)
2048 {
2049 unsigned long flags;
2050
2051 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2052 if (hcd->rh_registered) {
2053 set_bit(HCD_FLAG_WAKEUP_PENDING, &hcd->flags);
2054 queue_work(pm_wq, &hcd->wakeup_work);
2055 }
2056 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2057 }
2058 EXPORT_SYMBOL_GPL(usb_hcd_resume_root_hub);
2059
2060 #endif /* CONFIG_USB_SUSPEND */
2061
2062 /*-------------------------------------------------------------------------*/
2063
2064 #ifdef CONFIG_USB_OTG
2065
2066 /**
2067 * usb_bus_start_enum - start immediate enumeration (for OTG)
2068 * @bus: the bus (must use hcd framework)
2069 * @port_num: 1-based number of port; usually bus->otg_port
2070 * Context: in_interrupt()
2071 *
2072 * Starts enumeration, with an immediate reset followed later by
2073 * khubd identifying and possibly configuring the device.
2074 * This is needed by OTG controller drivers, where it helps meet
2075 * HNP protocol timing requirements for starting a port reset.
2076 */
usb_bus_start_enum(struct usb_bus * bus,unsigned port_num)2077 int usb_bus_start_enum(struct usb_bus *bus, unsigned port_num)
2078 {
2079 struct usb_hcd *hcd;
2080 int status = -EOPNOTSUPP;
2081
2082 /* NOTE: since HNP can't start by grabbing the bus's address0_sem,
2083 * boards with root hubs hooked up to internal devices (instead of
2084 * just the OTG port) may need more attention to resetting...
2085 */
2086 hcd = container_of (bus, struct usb_hcd, self);
2087 if (port_num && hcd->driver->start_port_reset)
2088 status = hcd->driver->start_port_reset(hcd, port_num);
2089
2090 /* run khubd shortly after (first) root port reset finishes;
2091 * it may issue others, until at least 50 msecs have passed.
2092 */
2093 if (status == 0)
2094 mod_timer(&hcd->rh_timer, jiffies + msecs_to_jiffies(10));
2095 return status;
2096 }
2097 EXPORT_SYMBOL_GPL(usb_bus_start_enum);
2098
2099 #endif
2100
2101 /*-------------------------------------------------------------------------*/
2102
2103 /**
2104 * usb_hcd_irq - hook IRQs to HCD framework (bus glue)
2105 * @irq: the IRQ being raised
2106 * @__hcd: pointer to the HCD whose IRQ is being signaled
2107 *
2108 * If the controller isn't HALTed, calls the driver's irq handler.
2109 * Checks whether the controller is now dead.
2110 */
usb_hcd_irq(int irq,void * __hcd)2111 irqreturn_t usb_hcd_irq (int irq, void *__hcd)
2112 {
2113 struct usb_hcd *hcd = __hcd;
2114 unsigned long flags;
2115 irqreturn_t rc;
2116
2117 /* IRQF_DISABLED doesn't work correctly with shared IRQs
2118 * when the first handler doesn't use it. So let's just
2119 * assume it's never used.
2120 */
2121 local_irq_save(flags);
2122
2123 if (unlikely(HCD_DEAD(hcd) || !HCD_HW_ACCESSIBLE(hcd))) {
2124 rc = IRQ_NONE;
2125 } else if (hcd->driver->irq(hcd) == IRQ_NONE) {
2126 rc = IRQ_NONE;
2127 } else {
2128 set_bit(HCD_FLAG_SAW_IRQ, &hcd->flags);
2129 if (hcd->shared_hcd)
2130 set_bit(HCD_FLAG_SAW_IRQ, &hcd->shared_hcd->flags);
2131
2132 if (unlikely(hcd->state == HC_STATE_HALT))
2133 usb_hc_died(hcd);
2134 rc = IRQ_HANDLED;
2135 }
2136
2137 local_irq_restore(flags);
2138 return rc;
2139 }
2140 EXPORT_SYMBOL_GPL(usb_hcd_irq);
2141
2142 /*-------------------------------------------------------------------------*/
2143
2144 /**
2145 * usb_hc_died - report abnormal shutdown of a host controller (bus glue)
2146 * @hcd: pointer to the HCD representing the controller
2147 *
2148 * This is called by bus glue to report a USB host controller that died
2149 * while operations may still have been pending. It's called automatically
2150 * by the PCI glue, so only glue for non-PCI busses should need to call it.
2151 *
2152 * Only call this function with the primary HCD.
2153 */
usb_hc_died(struct usb_hcd * hcd)2154 void usb_hc_died (struct usb_hcd *hcd)
2155 {
2156 unsigned long flags;
2157
2158 dev_err (hcd->self.controller, "HC died; cleaning up\n");
2159
2160 spin_lock_irqsave (&hcd_root_hub_lock, flags);
2161 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2162 set_bit(HCD_FLAG_DEAD, &hcd->flags);
2163 if (hcd->rh_registered) {
2164 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2165
2166 /* make khubd clean up old urbs and devices */
2167 usb_set_device_state (hcd->self.root_hub,
2168 USB_STATE_NOTATTACHED);
2169 usb_kick_khubd (hcd->self.root_hub);
2170 }
2171 if (usb_hcd_is_primary_hcd(hcd) && hcd->shared_hcd) {
2172 hcd = hcd->shared_hcd;
2173 if (hcd->rh_registered) {
2174 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2175
2176 /* make khubd clean up old urbs and devices */
2177 usb_set_device_state(hcd->self.root_hub,
2178 USB_STATE_NOTATTACHED);
2179 usb_kick_khubd(hcd->self.root_hub);
2180 }
2181 }
2182 spin_unlock_irqrestore (&hcd_root_hub_lock, flags);
2183 /* Make sure that the other roothub is also deallocated. */
2184 }
2185 EXPORT_SYMBOL_GPL (usb_hc_died);
2186
2187 /*-------------------------------------------------------------------------*/
2188
2189 /**
2190 * usb_create_shared_hcd - create and initialize an HCD structure
2191 * @driver: HC driver that will use this hcd
2192 * @dev: device for this HC, stored in hcd->self.controller
2193 * @bus_name: value to store in hcd->self.bus_name
2194 * @primary_hcd: a pointer to the usb_hcd structure that is sharing the
2195 * PCI device. Only allocate certain resources for the primary HCD
2196 * Context: !in_interrupt()
2197 *
2198 * Allocate a struct usb_hcd, with extra space at the end for the
2199 * HC driver's private data. Initialize the generic members of the
2200 * hcd structure.
2201 *
2202 * If memory is unavailable, returns NULL.
2203 */
usb_create_shared_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name,struct usb_hcd * primary_hcd)2204 struct usb_hcd *usb_create_shared_hcd(const struct hc_driver *driver,
2205 struct device *dev, const char *bus_name,
2206 struct usb_hcd *primary_hcd)
2207 {
2208 struct usb_hcd *hcd;
2209
2210 hcd = kzalloc(sizeof(*hcd) + driver->hcd_priv_size, GFP_KERNEL);
2211 if (!hcd) {
2212 dev_dbg (dev, "hcd alloc failed\n");
2213 return NULL;
2214 }
2215 if (primary_hcd == NULL) {
2216 hcd->bandwidth_mutex = kmalloc(sizeof(*hcd->bandwidth_mutex),
2217 GFP_KERNEL);
2218 if (!hcd->bandwidth_mutex) {
2219 kfree(hcd);
2220 dev_dbg(dev, "hcd bandwidth mutex alloc failed\n");
2221 return NULL;
2222 }
2223 mutex_init(hcd->bandwidth_mutex);
2224 dev_set_drvdata(dev, hcd);
2225 } else {
2226 hcd->bandwidth_mutex = primary_hcd->bandwidth_mutex;
2227 hcd->primary_hcd = primary_hcd;
2228 primary_hcd->primary_hcd = primary_hcd;
2229 hcd->shared_hcd = primary_hcd;
2230 primary_hcd->shared_hcd = hcd;
2231 }
2232
2233 kref_init(&hcd->kref);
2234
2235 usb_bus_init(&hcd->self);
2236 hcd->self.controller = dev;
2237 hcd->self.bus_name = bus_name;
2238 hcd->self.uses_dma = (dev->dma_mask != NULL);
2239
2240 init_timer(&hcd->rh_timer);
2241 hcd->rh_timer.function = rh_timer_func;
2242 hcd->rh_timer.data = (unsigned long) hcd;
2243 #ifdef CONFIG_USB_SUSPEND
2244 INIT_WORK(&hcd->wakeup_work, hcd_resume_work);
2245 #endif
2246
2247 hcd->driver = driver;
2248 hcd->speed = driver->flags & HCD_MASK;
2249 hcd->product_desc = (driver->product_desc) ? driver->product_desc :
2250 "USB Host Controller";
2251 return hcd;
2252 }
2253 EXPORT_SYMBOL_GPL(usb_create_shared_hcd);
2254
2255 /**
2256 * usb_create_hcd - create and initialize an HCD structure
2257 * @driver: HC driver that will use this hcd
2258 * @dev: device for this HC, stored in hcd->self.controller
2259 * @bus_name: value to store in hcd->self.bus_name
2260 * Context: !in_interrupt()
2261 *
2262 * Allocate a struct usb_hcd, with extra space at the end for the
2263 * HC driver's private data. Initialize the generic members of the
2264 * hcd structure.
2265 *
2266 * If memory is unavailable, returns NULL.
2267 */
usb_create_hcd(const struct hc_driver * driver,struct device * dev,const char * bus_name)2268 struct usb_hcd *usb_create_hcd(const struct hc_driver *driver,
2269 struct device *dev, const char *bus_name)
2270 {
2271 return usb_create_shared_hcd(driver, dev, bus_name, NULL);
2272 }
2273 EXPORT_SYMBOL_GPL(usb_create_hcd);
2274
2275 /*
2276 * Roothubs that share one PCI device must also share the bandwidth mutex.
2277 * Don't deallocate the bandwidth_mutex until the last shared usb_hcd is
2278 * deallocated.
2279 *
2280 * Make sure to only deallocate the bandwidth_mutex when the primary HCD is
2281 * freed. When hcd_release() is called for the non-primary HCD, set the
2282 * primary_hcd's shared_hcd pointer to null (since the non-primary HCD will be
2283 * freed shortly).
2284 */
hcd_release(struct kref * kref)2285 static void hcd_release (struct kref *kref)
2286 {
2287 struct usb_hcd *hcd = container_of (kref, struct usb_hcd, kref);
2288
2289 if (usb_hcd_is_primary_hcd(hcd))
2290 kfree(hcd->bandwidth_mutex);
2291 else
2292 hcd->shared_hcd->shared_hcd = NULL;
2293 kfree(hcd);
2294 }
2295
usb_get_hcd(struct usb_hcd * hcd)2296 struct usb_hcd *usb_get_hcd (struct usb_hcd *hcd)
2297 {
2298 if (hcd)
2299 kref_get (&hcd->kref);
2300 return hcd;
2301 }
2302 EXPORT_SYMBOL_GPL(usb_get_hcd);
2303
usb_put_hcd(struct usb_hcd * hcd)2304 void usb_put_hcd (struct usb_hcd *hcd)
2305 {
2306 if (hcd)
2307 kref_put (&hcd->kref, hcd_release);
2308 }
2309 EXPORT_SYMBOL_GPL(usb_put_hcd);
2310
usb_hcd_is_primary_hcd(struct usb_hcd * hcd)2311 int usb_hcd_is_primary_hcd(struct usb_hcd *hcd)
2312 {
2313 if (!hcd->primary_hcd)
2314 return 1;
2315 return hcd == hcd->primary_hcd;
2316 }
2317 EXPORT_SYMBOL_GPL(usb_hcd_is_primary_hcd);
2318
usb_hcd_request_irqs(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2319 static int usb_hcd_request_irqs(struct usb_hcd *hcd,
2320 unsigned int irqnum, unsigned long irqflags)
2321 {
2322 int retval;
2323
2324 if (hcd->driver->irq) {
2325
2326 /* IRQF_DISABLED doesn't work as advertised when used together
2327 * with IRQF_SHARED. As usb_hcd_irq() will always disable
2328 * interrupts we can remove it here.
2329 */
2330 if (irqflags & IRQF_SHARED)
2331 irqflags &= ~IRQF_DISABLED;
2332
2333 snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
2334 hcd->driver->description, hcd->self.busnum);
2335 retval = request_irq(irqnum, &usb_hcd_irq, irqflags,
2336 hcd->irq_descr, hcd);
2337 if (retval != 0) {
2338 dev_err(hcd->self.controller,
2339 "request interrupt %d failed\n",
2340 irqnum);
2341 return retval;
2342 }
2343 hcd->irq = irqnum;
2344 dev_info(hcd->self.controller, "irq %d, %s 0x%08llx\n", irqnum,
2345 (hcd->driver->flags & HCD_MEMORY) ?
2346 "io mem" : "io base",
2347 (unsigned long long)hcd->rsrc_start);
2348 } else {
2349 hcd->irq = -1;
2350 if (hcd->rsrc_start)
2351 dev_info(hcd->self.controller, "%s 0x%08llx\n",
2352 (hcd->driver->flags & HCD_MEMORY) ?
2353 "io mem" : "io base",
2354 (unsigned long long)hcd->rsrc_start);
2355 }
2356 return 0;
2357 }
2358
2359 /**
2360 * usb_add_hcd - finish generic HCD structure initialization and register
2361 * @hcd: the usb_hcd structure to initialize
2362 * @irqnum: Interrupt line to allocate
2363 * @irqflags: Interrupt type flags
2364 *
2365 * Finish the remaining parts of generic HCD initialization: allocate the
2366 * buffers of consistent memory, register the bus, request the IRQ line,
2367 * and call the driver's reset() and start() routines.
2368 */
usb_add_hcd(struct usb_hcd * hcd,unsigned int irqnum,unsigned long irqflags)2369 int usb_add_hcd(struct usb_hcd *hcd,
2370 unsigned int irqnum, unsigned long irqflags)
2371 {
2372 int retval;
2373 struct usb_device *rhdev;
2374
2375 dev_info(hcd->self.controller, "%s\n", hcd->product_desc);
2376
2377 hcd->authorized_default = hcd->wireless? 0 : 1;
2378 set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
2379
2380 /* HC is in reset state, but accessible. Now do the one-time init,
2381 * bottom up so that hcds can customize the root hubs before khubd
2382 * starts talking to them. (Note, bus id is assigned early too.)
2383 */
2384 if ((retval = hcd_buffer_create(hcd)) != 0) {
2385 dev_dbg(hcd->self.controller, "pool alloc failed\n");
2386 return retval;
2387 }
2388
2389 if ((retval = usb_register_bus(&hcd->self)) < 0)
2390 goto err_register_bus;
2391
2392 if ((rhdev = usb_alloc_dev(NULL, &hcd->self, 0)) == NULL) {
2393 dev_err(hcd->self.controller, "unable to allocate root hub\n");
2394 retval = -ENOMEM;
2395 goto err_allocate_root_hub;
2396 }
2397 hcd->self.root_hub = rhdev;
2398
2399 switch (hcd->speed) {
2400 case HCD_USB11:
2401 rhdev->speed = USB_SPEED_FULL;
2402 break;
2403 case HCD_USB2:
2404 rhdev->speed = USB_SPEED_HIGH;
2405 break;
2406 case HCD_USB3:
2407 rhdev->speed = USB_SPEED_SUPER;
2408 break;
2409 default:
2410 goto err_set_rh_speed;
2411 }
2412
2413 /* wakeup flag init defaults to "everything works" for root hubs,
2414 * but drivers can override it in reset() if needed, along with
2415 * recording the overall controller's system wakeup capability.
2416 */
2417 device_init_wakeup(&rhdev->dev, 1);
2418
2419 /* HCD_FLAG_RH_RUNNING doesn't matter until the root hub is
2420 * registered. But since the controller can die at any time,
2421 * let's initialize the flag before touching the hardware.
2422 */
2423 set_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2424
2425 /* "reset" is misnamed; its role is now one-time init. the controller
2426 * should already have been reset (and boot firmware kicked off etc).
2427 */
2428 if (hcd->driver->reset && (retval = hcd->driver->reset(hcd)) < 0) {
2429 dev_err(hcd->self.controller, "can't setup\n");
2430 goto err_hcd_driver_setup;
2431 }
2432 hcd->rh_pollable = 1;
2433
2434 /* NOTE: root hub and controller capabilities may not be the same */
2435 if (device_can_wakeup(hcd->self.controller)
2436 && device_can_wakeup(&hcd->self.root_hub->dev))
2437 dev_dbg(hcd->self.controller, "supports USB remote wakeup\n");
2438
2439 /* enable irqs just before we start the controller */
2440 if (usb_hcd_is_primary_hcd(hcd)) {
2441 retval = usb_hcd_request_irqs(hcd, irqnum, irqflags);
2442 if (retval)
2443 goto err_request_irq;
2444 }
2445
2446 hcd->state = HC_STATE_RUNNING;
2447 retval = hcd->driver->start(hcd);
2448 if (retval < 0) {
2449 dev_err(hcd->self.controller, "startup error %d\n", retval);
2450 goto err_hcd_driver_start;
2451 }
2452
2453 /* starting here, usbcore will pay attention to this root hub */
2454 rhdev->bus_mA = min(500u, hcd->power_budget);
2455 if ((retval = register_root_hub(hcd)) != 0)
2456 goto err_register_root_hub;
2457
2458 retval = sysfs_create_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2459 if (retval < 0) {
2460 printk(KERN_ERR "Cannot register USB bus sysfs attributes: %d\n",
2461 retval);
2462 goto error_create_attr_group;
2463 }
2464 if (hcd->uses_new_polling && HCD_POLL_RH(hcd))
2465 usb_hcd_poll_rh_status(hcd);
2466 return retval;
2467
2468 error_create_attr_group:
2469 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2470 if (HC_IS_RUNNING(hcd->state))
2471 hcd->state = HC_STATE_QUIESCING;
2472 spin_lock_irq(&hcd_root_hub_lock);
2473 hcd->rh_registered = 0;
2474 spin_unlock_irq(&hcd_root_hub_lock);
2475
2476 #ifdef CONFIG_USB_SUSPEND
2477 cancel_work_sync(&hcd->wakeup_work);
2478 #endif
2479 mutex_lock(&usb_bus_list_lock);
2480 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2481 mutex_unlock(&usb_bus_list_lock);
2482 err_register_root_hub:
2483 hcd->rh_pollable = 0;
2484 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2485 del_timer_sync(&hcd->rh_timer);
2486 hcd->driver->stop(hcd);
2487 hcd->state = HC_STATE_HALT;
2488 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2489 del_timer_sync(&hcd->rh_timer);
2490 err_hcd_driver_start:
2491 if (usb_hcd_is_primary_hcd(hcd) && hcd->irq >= 0)
2492 free_irq(irqnum, hcd);
2493 err_request_irq:
2494 err_hcd_driver_setup:
2495 err_set_rh_speed:
2496 usb_put_dev(hcd->self.root_hub);
2497 err_allocate_root_hub:
2498 usb_deregister_bus(&hcd->self);
2499 err_register_bus:
2500 hcd_buffer_destroy(hcd);
2501 return retval;
2502 }
2503 EXPORT_SYMBOL_GPL(usb_add_hcd);
2504
2505 /**
2506 * usb_remove_hcd - shutdown processing for generic HCDs
2507 * @hcd: the usb_hcd structure to remove
2508 * Context: !in_interrupt()
2509 *
2510 * Disconnects the root hub, then reverses the effects of usb_add_hcd(),
2511 * invoking the HCD's stop() method.
2512 */
usb_remove_hcd(struct usb_hcd * hcd)2513 void usb_remove_hcd(struct usb_hcd *hcd)
2514 {
2515 struct usb_device *rhdev = hcd->self.root_hub;
2516
2517 dev_info(hcd->self.controller, "remove, state %x\n", hcd->state);
2518
2519 usb_get_dev(rhdev);
2520 sysfs_remove_group(&rhdev->dev.kobj, &usb_bus_attr_group);
2521
2522 clear_bit(HCD_FLAG_RH_RUNNING, &hcd->flags);
2523 if (HC_IS_RUNNING (hcd->state))
2524 hcd->state = HC_STATE_QUIESCING;
2525
2526 dev_dbg(hcd->self.controller, "roothub graceful disconnect\n");
2527 spin_lock_irq (&hcd_root_hub_lock);
2528 hcd->rh_registered = 0;
2529 spin_unlock_irq (&hcd_root_hub_lock);
2530
2531 #ifdef CONFIG_USB_SUSPEND
2532 cancel_work_sync(&hcd->wakeup_work);
2533 #endif
2534
2535 mutex_lock(&usb_bus_list_lock);
2536 usb_disconnect(&rhdev); /* Sets rhdev to NULL */
2537 mutex_unlock(&usb_bus_list_lock);
2538
2539 /* Prevent any more root-hub status calls from the timer.
2540 * The HCD might still restart the timer (if a port status change
2541 * interrupt occurs), but usb_hcd_poll_rh_status() won't invoke
2542 * the hub_status_data() callback.
2543 */
2544 hcd->rh_pollable = 0;
2545 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2546 del_timer_sync(&hcd->rh_timer);
2547
2548 hcd->driver->stop(hcd);
2549 hcd->state = HC_STATE_HALT;
2550
2551 /* In case the HCD restarted the timer, stop it again. */
2552 clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
2553 del_timer_sync(&hcd->rh_timer);
2554
2555 if (usb_hcd_is_primary_hcd(hcd)) {
2556 if (hcd->irq >= 0)
2557 free_irq(hcd->irq, hcd);
2558 }
2559
2560 usb_put_dev(hcd->self.root_hub);
2561 usb_deregister_bus(&hcd->self);
2562 hcd_buffer_destroy(hcd);
2563 }
2564 EXPORT_SYMBOL_GPL(usb_remove_hcd);
2565
2566 void
usb_hcd_platform_shutdown(struct platform_device * dev)2567 usb_hcd_platform_shutdown(struct platform_device* dev)
2568 {
2569 struct usb_hcd *hcd = platform_get_drvdata(dev);
2570
2571 if (hcd->driver->shutdown)
2572 hcd->driver->shutdown(hcd);
2573 }
2574 EXPORT_SYMBOL_GPL(usb_hcd_platform_shutdown);
2575
2576 /*-------------------------------------------------------------------------*/
2577
2578 #if defined(CONFIG_USB_MON) || defined(CONFIG_USB_MON_MODULE)
2579
2580 struct usb_mon_operations *mon_ops;
2581
2582 /*
2583 * The registration is unlocked.
2584 * We do it this way because we do not want to lock in hot paths.
2585 *
2586 * Notice that the code is minimally error-proof. Because usbmon needs
2587 * symbols from usbcore, usbcore gets referenced and cannot be unloaded first.
2588 */
2589
usb_mon_register(struct usb_mon_operations * ops)2590 int usb_mon_register (struct usb_mon_operations *ops)
2591 {
2592
2593 if (mon_ops)
2594 return -EBUSY;
2595
2596 mon_ops = ops;
2597 mb();
2598 return 0;
2599 }
2600 EXPORT_SYMBOL_GPL (usb_mon_register);
2601
usb_mon_deregister(void)2602 void usb_mon_deregister (void)
2603 {
2604
2605 if (mon_ops == NULL) {
2606 printk(KERN_ERR "USB: monitor was not registered\n");
2607 return;
2608 }
2609 mon_ops = NULL;
2610 mb();
2611 }
2612 EXPORT_SYMBOL_GPL (usb_mon_deregister);
2613
2614 #endif /* CONFIG_USB_MON || CONFIG_USB_MON_MODULE */
2615