1 /*
2  *  linux/fs/namespace.c
3  *
4  * (C) Copyright Al Viro 2000, 2001
5  *	Released under GPL v2.
6  *
7  * Based on code from fs/super.c, copyright Linus Torvalds and others.
8  * Heavily rewritten.
9  */
10 
11 #include <linux/config.h>
12 #include <linux/slab.h>
13 #include <linux/smp_lock.h>
14 #include <linux/init.h>
15 #include <linux/quotaops.h>
16 #include <linux/acct.h>
17 #include <linux/module.h>
18 
19 #include <asm/uaccess.h>
20 
21 #include <linux/seq_file.h>
22 #include <linux/namespace.h>
23 
24 struct vfsmount *do_kern_mount(const char *type, int flags, char *name, void *data);
25 int do_remount_sb(struct super_block *sb, int flags, void * data);
26 void kill_super(struct super_block *sb);
27 extern int __init init_rootfs(void);
28 
29 static struct list_head *mount_hashtable;
30 static int hash_mask, hash_bits;
31 static kmem_cache_t *mnt_cache;
32 
hash(struct vfsmount * mnt,struct dentry * dentry)33 static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
34 {
35 	unsigned long tmp = ((unsigned long) mnt / L1_CACHE_BYTES);
36 	tmp += ((unsigned long) dentry / L1_CACHE_BYTES);
37 	tmp = tmp + (tmp >> hash_bits);
38 	return tmp & hash_mask;
39 }
40 
alloc_vfsmnt(char * name)41 struct vfsmount *alloc_vfsmnt(char *name)
42 {
43 	struct vfsmount *mnt = kmem_cache_alloc(mnt_cache, GFP_KERNEL);
44 	if (mnt) {
45 		memset(mnt, 0, sizeof(struct vfsmount));
46 		atomic_set(&mnt->mnt_count,1);
47 		INIT_LIST_HEAD(&mnt->mnt_hash);
48 		INIT_LIST_HEAD(&mnt->mnt_child);
49 		INIT_LIST_HEAD(&mnt->mnt_mounts);
50 		INIT_LIST_HEAD(&mnt->mnt_list);
51 		if (name) {
52 			int size = strlen(name)+1;
53 			char * newname = kmalloc(size, GFP_KERNEL);
54 			if (newname) {
55 				memcpy(newname, name, size);
56 				mnt->mnt_devname = newname;
57 			}
58 		}
59 	}
60 	return mnt;
61 }
62 
free_vfsmnt(struct vfsmount * mnt)63 void free_vfsmnt(struct vfsmount *mnt)
64 {
65 	if (mnt->mnt_devname)
66 		kfree(mnt->mnt_devname);
67 	kmem_cache_free(mnt_cache, mnt);
68 }
69 
lookup_mnt(struct vfsmount * mnt,struct dentry * dentry)70 struct vfsmount *lookup_mnt(struct vfsmount *mnt, struct dentry *dentry)
71 {
72 	struct list_head * head = mount_hashtable + hash(mnt, dentry);
73 	struct list_head * tmp = head;
74 	struct vfsmount *p;
75 
76 	for (;;) {
77 		tmp = tmp->next;
78 		p = NULL;
79 		if (tmp == head)
80 			break;
81 		p = list_entry(tmp, struct vfsmount, mnt_hash);
82 		if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry)
83 			break;
84 	}
85 	return p;
86 }
87 
check_mnt(struct vfsmount * mnt)88 static int check_mnt(struct vfsmount *mnt)
89 {
90 	spin_lock(&dcache_lock);
91 	while (mnt->mnt_parent != mnt)
92 		mnt = mnt->mnt_parent;
93 	spin_unlock(&dcache_lock);
94 	return mnt == current->namespace->root;
95 }
96 
detach_mnt(struct vfsmount * mnt,struct nameidata * old_nd)97 static void detach_mnt(struct vfsmount *mnt, struct nameidata *old_nd)
98 {
99 	old_nd->dentry = mnt->mnt_mountpoint;
100 	old_nd->mnt = mnt->mnt_parent;
101 	mnt->mnt_parent = mnt;
102 	mnt->mnt_mountpoint = mnt->mnt_root;
103 	list_del_init(&mnt->mnt_child);
104 	list_del_init(&mnt->mnt_hash);
105 	old_nd->dentry->d_mounted--;
106 }
107 
attach_mnt(struct vfsmount * mnt,struct nameidata * nd)108 static void attach_mnt(struct vfsmount *mnt, struct nameidata *nd)
109 {
110 	mnt->mnt_parent = mntget(nd->mnt);
111 	mnt->mnt_mountpoint = dget(nd->dentry);
112 	list_add(&mnt->mnt_hash, mount_hashtable+hash(nd->mnt, nd->dentry));
113 	list_add_tail(&mnt->mnt_child, &nd->mnt->mnt_mounts);
114 	nd->dentry->d_mounted++;
115 }
116 
next_mnt(struct vfsmount * p,struct vfsmount * root)117 static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
118 {
119 	struct list_head *next = p->mnt_mounts.next;
120 	if (next == &p->mnt_mounts) {
121 		while (1) {
122 			if (p == root)
123 				return NULL;
124 			next = p->mnt_child.next;
125 			if (next != &p->mnt_parent->mnt_mounts)
126 				break;
127 			p = p->mnt_parent;
128 		}
129 	}
130 	return list_entry(next, struct vfsmount, mnt_child);
131 }
132 
133 static struct vfsmount *
clone_mnt(struct vfsmount * old,struct dentry * root)134 clone_mnt(struct vfsmount *old, struct dentry *root)
135 {
136 	struct super_block *sb = old->mnt_sb;
137 	struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
138 
139 	if (mnt) {
140 		mnt->mnt_flags = old->mnt_flags;
141 		atomic_inc(&sb->s_active);
142 		mnt->mnt_sb = sb;
143 		mnt->mnt_root = dget(root);
144 		mnt->mnt_mountpoint = mnt->mnt_root;
145 		mnt->mnt_parent = mnt;
146 	}
147 	return mnt;
148 }
149 
__mntput(struct vfsmount * mnt)150 void __mntput(struct vfsmount *mnt)
151 {
152 	struct super_block *sb = mnt->mnt_sb;
153 	dput(mnt->mnt_root);
154 	free_vfsmnt(mnt);
155 	kill_super(sb);
156 }
157 
158 /* iterator */
m_start(struct seq_file * m,loff_t * pos)159 static void *m_start(struct seq_file *m, loff_t *pos)
160 {
161 	struct namespace *n = m->private;
162 	struct list_head *p;
163 	loff_t l = *pos;
164 
165 	down_read(&n->sem);
166 	list_for_each(p, &n->list)
167 		if (!l--)
168 			return list_entry(p, struct vfsmount, mnt_list);
169 	return NULL;
170 }
171 
m_next(struct seq_file * m,void * v,loff_t * pos)172 static void *m_next(struct seq_file *m, void *v, loff_t *pos)
173 {
174 	struct namespace *n = m->private;
175 	struct list_head *p = ((struct vfsmount *)v)->mnt_list.next;
176 	(*pos)++;
177 	return p==&n->list ? NULL : list_entry(p, struct vfsmount, mnt_list);
178 }
179 
m_stop(struct seq_file * m,void * v)180 static void m_stop(struct seq_file *m, void *v)
181 {
182 	struct namespace *n = m->private;
183 	up_read(&n->sem);
184 }
185 
mangle(struct seq_file * m,const char * s)186 static inline void mangle(struct seq_file *m, const char *s)
187 {
188 	seq_escape(m, s, " \t\n\\");
189 }
190 
show_vfsmnt(struct seq_file * m,void * v)191 static int show_vfsmnt(struct seq_file *m, void *v)
192 {
193 	struct vfsmount *mnt = v;
194 	int err = 0;
195 	static struct proc_fs_info {
196 		int flag;
197 		char *str;
198 	} fs_info[] = {
199 		{ MS_SYNCHRONOUS, ",sync" },
200 		{ MS_MANDLOCK, ",mand" },
201 		{ MS_NOATIME, ",noatime" },
202 		{ MS_NODIRATIME, ",nodiratime" },
203 		{ 0, NULL }
204 	};
205 	static struct proc_fs_info mnt_info[] = {
206 		{ MNT_NOSUID, ",nosuid" },
207 		{ MNT_NODEV, ",nodev" },
208 		{ MNT_NOEXEC, ",noexec" },
209 		{ 0, NULL }
210 	};
211 	struct proc_fs_info *fs_infop;
212 	char *path_buf, *path;
213 
214 	path_buf = (char *) __get_free_page(GFP_KERNEL);
215 	if (!path_buf)
216 		return -ENOMEM;
217 	path = d_path(mnt->mnt_root, mnt, path_buf, PAGE_SIZE);
218 	if (IS_ERR(path)) {
219 		free_page((unsigned long) path_buf);
220 		return PTR_ERR(path);
221 	}
222 
223 	mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
224 	seq_putc(m, ' ');
225 	mangle(m, path);
226 	free_page((unsigned long) path_buf);
227 	seq_putc(m, ' ');
228 	mangle(m, mnt->mnt_sb->s_type->name);
229 	seq_puts(m, mnt->mnt_sb->s_flags & MS_RDONLY ? " ro" : " rw");
230 	for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
231 		if (mnt->mnt_sb->s_flags & fs_infop->flag)
232 			seq_puts(m, fs_infop->str);
233 	}
234 	for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
235 		if (mnt->mnt_flags & fs_infop->flag)
236 			seq_puts(m, fs_infop->str);
237 	}
238 	if (mnt->mnt_sb->s_op->show_options)
239 		err = mnt->mnt_sb->s_op->show_options(m, mnt);
240 	seq_puts(m, " 0 0\n");
241 	return err;
242 }
243 
244 struct seq_operations mounts_op = {
245 	start:	m_start,
246 	next:	m_next,
247 	stop:	m_stop,
248 	show:	show_vfsmnt
249 };
250 
251 /*
252  * Doesn't take quota and stuff into account. IOW, in some cases it will
253  * give false negatives. The main reason why it's here is that we need
254  * a non-destructive way to look for easily umountable filesystems.
255  */
may_umount(struct vfsmount * mnt)256 int may_umount(struct vfsmount *mnt)
257 {
258 	if (atomic_read(&mnt->mnt_count) > 2)
259 		return -EBUSY;
260 	return 0;
261 }
262 
umount_tree(struct vfsmount * mnt)263 void umount_tree(struct vfsmount *mnt)
264 {
265 	struct vfsmount *p;
266 	LIST_HEAD(kill);
267 
268 	for (p = mnt; p; p = next_mnt(p, mnt)) {
269 		list_del(&p->mnt_list);
270 		list_add(&p->mnt_list, &kill);
271 	}
272 
273 	while (!list_empty(&kill)) {
274 		mnt = list_entry(kill.next, struct vfsmount, mnt_list);
275 		list_del_init(&mnt->mnt_list);
276 		if (mnt->mnt_parent == mnt) {
277 			spin_unlock(&dcache_lock);
278 		} else {
279 			struct nameidata old_nd;
280 			detach_mnt(mnt, &old_nd);
281 			spin_unlock(&dcache_lock);
282 			path_release(&old_nd);
283 		}
284 		mntput(mnt);
285 		spin_lock(&dcache_lock);
286 	}
287 }
288 
do_umount(struct vfsmount * mnt,int flags)289 static int do_umount(struct vfsmount *mnt, int flags)
290 {
291 	struct super_block * sb = mnt->mnt_sb;
292 	int retval = 0;
293 
294 	/*
295 	 * If we may have to abort operations to get out of this
296 	 * mount, and they will themselves hold resources we must
297 	 * allow the fs to do things. In the Unix tradition of
298 	 * 'Gee thats tricky lets do it in userspace' the umount_begin
299 	 * might fail to complete on the first run through as other tasks
300 	 * must return, and the like. Thats for the mount program to worry
301 	 * about for the moment.
302 	 */
303 
304 	lock_kernel();
305 	if( (flags&MNT_FORCE) && sb->s_op->umount_begin)
306 		sb->s_op->umount_begin(sb);
307 	unlock_kernel();
308 
309 	/*
310 	 * No sense to grab the lock for this test, but test itself looks
311 	 * somewhat bogus. Suggestions for better replacement?
312 	 * Ho-hum... In principle, we might treat that as umount + switch
313 	 * to rootfs. GC would eventually take care of the old vfsmount.
314 	 * Actually it makes sense, especially if rootfs would contain a
315 	 * /reboot - static binary that would close all descriptors and
316 	 * call reboot(9). Then init(8) could umount root and exec /reboot.
317 	 */
318 	if (mnt == current->fs->rootmnt && !(flags & MNT_DETACH)) {
319 		/*
320 		 * Special case for "unmounting" root ...
321 		 * we just try to remount it readonly.
322 		 */
323 		down_write(&sb->s_umount);
324 		if (!(sb->s_flags & MS_RDONLY)) {
325 			lock_kernel();
326 			retval = do_remount_sb(sb, MS_RDONLY, 0);
327 			unlock_kernel();
328 		}
329 		up_write(&sb->s_umount);
330 		return retval;
331 	}
332 
333 	down_write(&current->namespace->sem);
334 	spin_lock(&dcache_lock);
335 
336 	if (atomic_read(&sb->s_active) == 1) {
337 		/* last instance - try to be smart */
338 		spin_unlock(&dcache_lock);
339 		lock_kernel();
340 		DQUOT_OFF(sb);
341 		acct_auto_close(sb->s_dev);
342 		unlock_kernel();
343 		spin_lock(&dcache_lock);
344 	}
345 	retval = -EBUSY;
346 	if (atomic_read(&mnt->mnt_count) == 2 || flags & MNT_DETACH) {
347 		if (!list_empty(&mnt->mnt_list))
348 			umount_tree(mnt);
349 		retval = 0;
350 	}
351 	spin_unlock(&dcache_lock);
352 	up_write(&current->namespace->sem);
353 	return retval;
354 }
355 
356 /*
357  * Now umount can handle mount points as well as block devices.
358  * This is important for filesystems which use unnamed block devices.
359  *
360  * We now support a flag for forced unmount like the other 'big iron'
361  * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
362  */
363 
sys_umount(char * name,int flags)364 asmlinkage long sys_umount(char * name, int flags)
365 {
366 	struct nameidata nd;
367 	int retval;
368 
369 	retval = __user_walk(name, LOOKUP_POSITIVE|LOOKUP_FOLLOW, &nd);
370 	if (retval)
371 		goto out;
372 	retval = -EINVAL;
373 	if (nd.dentry != nd.mnt->mnt_root)
374 		goto dput_and_out;
375 	if (!check_mnt(nd.mnt))
376 		goto dput_and_out;
377 
378 	retval = -EPERM;
379 	if (!capable(CAP_SYS_ADMIN))
380 		goto dput_and_out;
381 
382 	retval = do_umount(nd.mnt, flags);
383 dput_and_out:
384 	path_release(&nd);
385 out:
386 	return retval;
387 }
388 
389 /*
390  *	The 2.0 compatible umount. No flags.
391  */
392 
sys_oldumount(char * name)393 asmlinkage long sys_oldumount(char * name)
394 {
395 	return sys_umount(name,0);
396 }
397 
mount_is_safe(struct nameidata * nd)398 static int mount_is_safe(struct nameidata *nd)
399 {
400 	if (capable(CAP_SYS_ADMIN))
401 		return 0;
402 	return -EPERM;
403 #ifdef notyet
404 	if (S_ISLNK(nd->dentry->d_inode->i_mode))
405 		return -EPERM;
406 	if (nd->dentry->d_inode->i_mode & S_ISVTX) {
407 		if (current->uid != nd->dentry->d_inode->i_uid)
408 			return -EPERM;
409 	}
410 	if (permission(nd->dentry->d_inode, MAY_WRITE))
411 		return -EPERM;
412 	return 0;
413 #endif
414 }
415 
copy_tree(struct vfsmount * mnt,struct dentry * dentry)416 static struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry)
417 {
418 	struct vfsmount *p, *next, *q, *res;
419 	struct nameidata nd;
420 
421 	p = mnt;
422 	res = nd.mnt = q = clone_mnt(p, dentry);
423 	if (!q)
424 		goto Enomem;
425 	q->mnt_parent = q;
426 	q->mnt_mountpoint = p->mnt_mountpoint;
427 
428 	while ( (next = next_mnt(p, mnt)) != NULL) {
429 		while (p != next->mnt_parent) {
430 			p = p->mnt_parent;
431 			q = q->mnt_parent;
432 		}
433 		p = next;
434 		nd.mnt = q;
435 		nd.dentry = p->mnt_mountpoint;
436 		q = clone_mnt(p, p->mnt_root);
437 		if (!q)
438 			goto Enomem;
439 		spin_lock(&dcache_lock);
440 		list_add_tail(&q->mnt_list, &res->mnt_list);
441 		attach_mnt(q, &nd);
442 		spin_unlock(&dcache_lock);
443 	}
444 	return res;
445 Enomem:
446 	if (res) {
447 		spin_lock(&dcache_lock);
448 		umount_tree(res);
449 		spin_unlock(&dcache_lock);
450 	}
451 	return NULL;
452 }
453 
graft_tree(struct vfsmount * mnt,struct nameidata * nd)454 static int graft_tree(struct vfsmount *mnt, struct nameidata *nd)
455 {
456 	int err;
457 	if (mnt->mnt_sb->s_flags & MS_NOUSER)
458 		return -EINVAL;
459 
460 	if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
461 	      S_ISDIR(mnt->mnt_root->d_inode->i_mode))
462 		return -ENOTDIR;
463 
464 	err = -ENOENT;
465 	down(&nd->dentry->d_inode->i_zombie);
466 	if (IS_DEADDIR(nd->dentry->d_inode))
467 		goto out_unlock;
468 
469 	spin_lock(&dcache_lock);
470 	if (IS_ROOT(nd->dentry) || !d_unhashed(nd->dentry)) {
471 		struct list_head head;
472 		attach_mnt(mnt, nd);
473 		list_add_tail(&head, &mnt->mnt_list);
474 		list_splice(&head, current->namespace->list.prev);
475 		mntget(mnt);
476 		err = 0;
477 	}
478 	spin_unlock(&dcache_lock);
479 out_unlock:
480 	up(&nd->dentry->d_inode->i_zombie);
481 	return err;
482 }
483 
484 /*
485  * do loopback mount.
486  */
do_loopback(struct nameidata * nd,char * old_name,int recurse)487 static int do_loopback(struct nameidata *nd, char *old_name, int recurse)
488 {
489 	struct nameidata old_nd;
490 	struct vfsmount *mnt = NULL;
491 	int err = mount_is_safe(nd);
492 	if (err)
493 		return err;
494 	if (!old_name || !*old_name)
495 		return -EINVAL;
496 	err = path_lookup(old_name, LOOKUP_POSITIVE|LOOKUP_FOLLOW, &old_nd);
497 	if (err)
498 		return err;
499 
500 	down_write(&current->namespace->sem);
501 	err = -EINVAL;
502 	if (check_mnt(nd->mnt) && (!recurse || check_mnt(old_nd.mnt))) {
503 		err = -ENOMEM;
504 		if (recurse)
505 			mnt = copy_tree(old_nd.mnt, old_nd.dentry);
506 		else
507 			mnt = clone_mnt(old_nd.mnt, old_nd.dentry);
508 	}
509 
510 	if (mnt) {
511 		err = graft_tree(mnt, nd);
512 		if (err) {
513 			spin_lock(&dcache_lock);
514 			umount_tree(mnt);
515 			spin_unlock(&dcache_lock);
516 		} else
517 			mntput(mnt);
518 	}
519 
520 	up_write(&current->namespace->sem);
521 	path_release(&old_nd);
522 	return err;
523 }
524 
525 /*
526  * change filesystem flags. dir should be a physical root of filesystem.
527  * If you've mounted a non-root directory somewhere and want to do remount
528  * on it - tough luck.
529  */
530 
do_remount(struct nameidata * nd,int flags,int mnt_flags,void * data)531 static int do_remount(struct nameidata *nd,int flags,int mnt_flags,void *data)
532 {
533 	int err;
534 	struct super_block * sb = nd->mnt->mnt_sb;
535 
536 	if (!capable(CAP_SYS_ADMIN))
537 		return -EPERM;
538 
539 	if (!check_mnt(nd->mnt))
540 		return -EINVAL;
541 
542 	if (nd->dentry != nd->mnt->mnt_root)
543 		return -EINVAL;
544 
545 	down_write(&sb->s_umount);
546 	err = do_remount_sb(sb, flags, data);
547 	if (!err)
548 		nd->mnt->mnt_flags=mnt_flags;
549 	up_write(&sb->s_umount);
550 	return err;
551 }
552 
do_move_mount(struct nameidata * nd,char * old_name)553 static int do_move_mount(struct nameidata *nd, char *old_name)
554 {
555 	struct nameidata old_nd, parent_nd;
556 	struct vfsmount *p;
557 	int err = 0;
558 	if (!capable(CAP_SYS_ADMIN))
559 		return -EPERM;
560 	if (!old_name || !*old_name)
561 		return -EINVAL;
562 	err = path_lookup(old_name, LOOKUP_POSITIVE|LOOKUP_FOLLOW, &old_nd);
563 	if (err)
564 		return err;
565 
566 	down_write(&current->namespace->sem);
567 	while(d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
568 		;
569 	err = -EINVAL;
570 	if (!check_mnt(nd->mnt) || !check_mnt(old_nd.mnt))
571 		goto out;
572 
573 	err = -ENOENT;
574 	down(&nd->dentry->d_inode->i_zombie);
575 	if (IS_DEADDIR(nd->dentry->d_inode))
576 		goto out1;
577 
578 	spin_lock(&dcache_lock);
579 	if (!IS_ROOT(nd->dentry) && d_unhashed(nd->dentry))
580 		goto out2;
581 
582 	err = -EINVAL;
583 	if (old_nd.dentry != old_nd.mnt->mnt_root)
584 		goto out2;
585 
586 	if (old_nd.mnt == old_nd.mnt->mnt_parent)
587 		goto out2;
588 
589 	if (S_ISDIR(nd->dentry->d_inode->i_mode) !=
590 	      S_ISDIR(old_nd.dentry->d_inode->i_mode))
591 		goto out2;
592 
593 	err = -ELOOP;
594 	for (p = nd->mnt; p->mnt_parent!=p; p = p->mnt_parent)
595 		if (p == old_nd.mnt)
596 			goto out2;
597 	err = 0;
598 
599 	detach_mnt(old_nd.mnt, &parent_nd);
600 	attach_mnt(old_nd.mnt, nd);
601 out2:
602 	spin_unlock(&dcache_lock);
603 out1:
604 	up(&nd->dentry->d_inode->i_zombie);
605 out:
606 	up_write(&current->namespace->sem);
607 	if (!err)
608 		path_release(&parent_nd);
609 	path_release(&old_nd);
610 	return err;
611 }
612 
do_add_mount(struct nameidata * nd,char * type,int flags,int mnt_flags,char * name,void * data)613 static int do_add_mount(struct nameidata *nd, char *type, int flags,
614 			int mnt_flags, char *name, void *data)
615 {
616 	struct vfsmount *mnt;
617 	int err;
618 
619 	if (!type || !memchr(type, 0, PAGE_SIZE))
620 		return -EINVAL;
621 
622 	/* we need capabilities... */
623 	if (!capable(CAP_SYS_ADMIN))
624 		return -EPERM;
625 
626 	mnt = do_kern_mount(type, flags, name, data);
627 	err = PTR_ERR(mnt);
628 	if (IS_ERR(mnt))
629 		goto out;
630 
631 	down_write(&current->namespace->sem);
632 	/* Something was mounted here while we slept */
633 	while(d_mountpoint(nd->dentry) && follow_down(&nd->mnt, &nd->dentry))
634 		;
635 	err = -EINVAL;
636 	if (!check_mnt(nd->mnt))
637 		goto unlock;
638 
639 	/* Refuse the same filesystem on the same mount point */
640 	err = -EBUSY;
641 	if (nd->mnt->mnt_sb == mnt->mnt_sb && nd->mnt->mnt_root == nd->dentry)
642 		goto unlock;
643 
644 	mnt->mnt_flags = mnt_flags;
645 	err = graft_tree(mnt, nd);
646 unlock:
647 	up_write(&current->namespace->sem);
648 	mntput(mnt);
649 out:
650 	return err;
651 }
652 
copy_mount_options(const void * data,unsigned long * where)653 static int copy_mount_options (const void *data, unsigned long *where)
654 {
655 	int i;
656 	unsigned long page;
657 	unsigned long size;
658 
659 	*where = 0;
660 	if (!data)
661 		return 0;
662 
663 	if (!(page = __get_free_page(GFP_KERNEL)))
664 		return -ENOMEM;
665 
666 	/* We only care that *some* data at the address the user
667 	 * gave us is valid.  Just in case, we'll zero
668 	 * the remainder of the page.
669 	 */
670 	/* copy_from_user cannot cross TASK_SIZE ! */
671 	size = TASK_SIZE - (unsigned long)data;
672 	if (size > PAGE_SIZE)
673 		size = PAGE_SIZE;
674 
675 	i = size - copy_from_user((void *)page, data, size);
676 	if (!i) {
677 		free_page(page);
678 		return -EFAULT;
679 	}
680 	if (i != PAGE_SIZE)
681 		memset((char *)page + i, 0, PAGE_SIZE - i);
682 	*where = page;
683 	return 0;
684 }
685 
686 /*
687  * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
688  * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
689  *
690  * data is a (void *) that can point to any structure up to
691  * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
692  * information (or be NULL).
693  *
694  * Pre-0.97 versions of mount() didn't have a flags word.
695  * When the flags word was introduced its top half was required
696  * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
697  * Therefore, if this magic number is present, it carries no information
698  * and must be discarded.
699  */
do_mount(char * dev_name,char * dir_name,char * type_page,unsigned long flags,void * data_page)700 long do_mount(char * dev_name, char * dir_name, char *type_page,
701 		  unsigned long flags, void *data_page)
702 {
703 	struct nameidata nd;
704 	int retval = 0;
705 	int mnt_flags = 0;
706 
707 	/* Discard magic */
708 	if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
709 		flags &= ~MS_MGC_MSK;
710 
711 	/* Basic sanity checks */
712 
713 	if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
714 		return -EINVAL;
715 	if (dev_name && !memchr(dev_name, 0, PAGE_SIZE))
716 		return -EINVAL;
717 
718 	if (data_page)
719 		((char *)data_page)[PAGE_SIZE - 1] = 0;
720 
721 	/* Separate the per-mountpoint flags */
722 	if (flags & MS_NOSUID)
723 		mnt_flags |= MNT_NOSUID;
724 	if (flags & MS_NODEV)
725 		mnt_flags |= MNT_NODEV;
726 	if (flags & MS_NOEXEC)
727 		mnt_flags |= MNT_NOEXEC;
728 	flags &= ~(MS_NOSUID|MS_NOEXEC|MS_NODEV);
729 
730 	/* ... and get the mountpoint */
731 	retval = path_lookup(dir_name, LOOKUP_FOLLOW|LOOKUP_POSITIVE, &nd);
732 	if (retval)
733 		return retval;
734 
735 	if (flags & MS_REMOUNT)
736 		retval = do_remount(&nd, flags & ~MS_REMOUNT, mnt_flags,
737 				    data_page);
738 	else if (flags & MS_BIND)
739 		retval = do_loopback(&nd, dev_name, flags & MS_REC);
740 	else if (flags & MS_MOVE)
741 		retval = do_move_mount(&nd, dev_name);
742 	else
743 		retval = do_add_mount(&nd, type_page, flags, mnt_flags,
744 				      dev_name, data_page);
745 	path_release(&nd);
746 	return retval;
747 }
748 
copy_namespace(int flags,struct task_struct * tsk)749 int copy_namespace(int flags, struct task_struct *tsk)
750 {
751 	struct namespace *namespace = tsk->namespace;
752 	struct namespace *new_ns;
753 	struct vfsmount *rootmnt = NULL, *pwdmnt = NULL, *altrootmnt = NULL;
754 	struct fs_struct *fs = tsk->fs;
755 
756 	if (!namespace)
757 		return 0;
758 
759 	get_namespace(namespace);
760 
761 	if (! (flags & CLONE_NEWNS))
762 		return 0;
763 
764 	if (!capable(CAP_SYS_ADMIN)) {
765 		put_namespace(namespace);
766 		return -EPERM;
767 	}
768 
769 	new_ns = kmalloc(sizeof(struct namespace), GFP_KERNEL);
770 	if (!new_ns)
771 		goto out;
772 
773 	atomic_set(&new_ns->count, 1);
774 	init_rwsem(&new_ns->sem);
775 	new_ns->root = NULL;
776 	INIT_LIST_HEAD(&new_ns->list);
777 
778 	down_write(&tsk->namespace->sem);
779 	/* First pass: copy the tree topology */
780 	new_ns->root = copy_tree(namespace->root, namespace->root->mnt_root);
781 	spin_lock(&dcache_lock);
782 	list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
783 	spin_unlock(&dcache_lock);
784 
785 	/* Second pass: switch the tsk->fs->* elements */
786 	if (fs) {
787 		struct vfsmount *p, *q;
788 		write_lock(&fs->lock);
789 
790 		p = namespace->root;
791 		q = new_ns->root;
792 		while (p) {
793 			if (p == fs->rootmnt) {
794 				rootmnt = p;
795 				fs->rootmnt = mntget(q);
796 			}
797 			if (p == fs->pwdmnt) {
798 				pwdmnt = p;
799 				fs->pwdmnt = mntget(q);
800 			}
801 			if (p == fs->altrootmnt) {
802 				altrootmnt = p;
803 				fs->altrootmnt = mntget(q);
804 			}
805 			p = next_mnt(p, namespace->root);
806 			q = next_mnt(q, new_ns->root);
807 		}
808 		write_unlock(&fs->lock);
809 	}
810 	up_write(&tsk->namespace->sem);
811 
812 	tsk->namespace = new_ns;
813 
814 	if (rootmnt)
815 		mntput(rootmnt);
816 	if (pwdmnt)
817 		mntput(pwdmnt);
818 	if (altrootmnt)
819 		mntput(altrootmnt);
820 
821 	put_namespace(namespace);
822 	return 0;
823 
824 out:
825 	put_namespace(namespace);
826 	return -ENOMEM;
827 }
828 
sys_mount(char * dev_name,char * dir_name,char * type,unsigned long flags,void * data)829 asmlinkage long sys_mount(char * dev_name, char * dir_name, char * type,
830 			  unsigned long flags, void * data)
831 {
832 	int retval;
833 	unsigned long data_page;
834 	unsigned long type_page;
835 	unsigned long dev_page;
836 	char *dir_page;
837 
838 	retval = copy_mount_options (type, &type_page);
839 	if (retval < 0)
840 		return retval;
841 
842 	dir_page = getname(dir_name);
843 	retval = PTR_ERR(dir_page);
844 	if (IS_ERR(dir_page))
845 		goto out1;
846 
847 	retval = copy_mount_options (dev_name, &dev_page);
848 	if (retval < 0)
849 		goto out2;
850 
851 	retval = copy_mount_options (data, &data_page);
852 	if (retval < 0)
853 		goto out3;
854 
855 	lock_kernel();
856 	retval = do_mount((char*)dev_page, dir_page, (char*)type_page,
857 			  flags, (void*)data_page);
858 	unlock_kernel();
859 	free_page(data_page);
860 
861 out3:
862 	free_page(dev_page);
863 out2:
864 	putname(dir_page);
865 out1:
866 	free_page(type_page);
867 	return retval;
868 }
869 
chroot_fs_refs(struct nameidata * old_nd,struct nameidata * new_nd)870 static void chroot_fs_refs(struct nameidata *old_nd, struct nameidata *new_nd)
871 {
872 	struct task_struct *p;
873 	struct fs_struct *fs;
874 
875 	read_lock(&tasklist_lock);
876 	for_each_task(p) {
877 		task_lock(p);
878 		fs = p->fs;
879 		if (fs) {
880 			atomic_inc(&fs->count);
881 			task_unlock(p);
882 			if (fs->root==old_nd->dentry&&fs->rootmnt==old_nd->mnt)
883 				set_fs_root(fs, new_nd->mnt, new_nd->dentry);
884 			if (fs->pwd==old_nd->dentry&&fs->pwdmnt==old_nd->mnt)
885 				set_fs_pwd(fs, new_nd->mnt, new_nd->dentry);
886 			put_fs_struct(fs);
887 		} else
888 			task_unlock(p);
889 	}
890 	read_unlock(&tasklist_lock);
891 }
892 
893 /*
894  * Moves the current root to put_root, and sets root/cwd of all processes
895  * which had them on the old root to new_root.
896  *
897  * Note:
898  *  - we don't move root/cwd if they are not at the root (reason: if something
899  *    cared enough to change them, it's probably wrong to force them elsewhere)
900  *  - it's okay to pick a root that isn't the root of a file system, e.g.
901  *    /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
902  *    though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
903  *    first.
904  */
905 
sys_pivot_root(const char * new_root,const char * put_old)906 asmlinkage long sys_pivot_root(const char *new_root, const char *put_old)
907 {
908 	struct vfsmount *tmp;
909 	struct nameidata new_nd, old_nd, parent_nd, root_parent, user_nd;
910 	int error;
911 
912 	if (!capable(CAP_SYS_ADMIN))
913 		return -EPERM;
914 
915 	lock_kernel();
916 
917 	error = __user_walk(new_root, LOOKUP_POSITIVE|LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &new_nd);
918 	if (error)
919 		goto out0;
920 	error = -EINVAL;
921 	if (!check_mnt(new_nd.mnt))
922 		goto out1;
923 
924 	error = __user_walk(put_old, LOOKUP_POSITIVE|LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &old_nd);
925 	if (error)
926 		goto out1;
927 
928 	read_lock(&current->fs->lock);
929 	user_nd.mnt = mntget(current->fs->rootmnt);
930 	user_nd.dentry = dget(current->fs->root);
931 	read_unlock(&current->fs->lock);
932 	down_write(&current->namespace->sem);
933 	down(&old_nd.dentry->d_inode->i_zombie);
934 	error = -EINVAL;
935 	if (!check_mnt(user_nd.mnt))
936 		goto out2;
937 	error = -ENOENT;
938 	if (IS_DEADDIR(new_nd.dentry->d_inode))
939 		goto out2;
940 	if (d_unhashed(new_nd.dentry) && !IS_ROOT(new_nd.dentry))
941 		goto out2;
942 	if (d_unhashed(old_nd.dentry) && !IS_ROOT(old_nd.dentry))
943 		goto out2;
944 	error = -EBUSY;
945 	if (new_nd.mnt == user_nd.mnt || old_nd.mnt == user_nd.mnt)
946 		goto out2; /* loop */
947 	error = -EINVAL;
948 	if (user_nd.mnt->mnt_root != user_nd.dentry)
949 		goto out2;
950 	if (new_nd.mnt->mnt_root != new_nd.dentry)
951 		goto out2; /* not a mountpoint */
952 	tmp = old_nd.mnt; /* make sure we can reach put_old from new_root */
953 	spin_lock(&dcache_lock);
954 	if (tmp != new_nd.mnt) {
955 		for (;;) {
956 			if (tmp->mnt_parent == tmp)
957 				goto out3;
958 			if (tmp->mnt_parent == new_nd.mnt)
959 				break;
960 			tmp = tmp->mnt_parent;
961 		}
962 		if (!is_subdir(tmp->mnt_mountpoint, new_nd.dentry))
963 			goto out3;
964 	} else if (!is_subdir(old_nd.dentry, new_nd.dentry))
965 		goto out3;
966 	detach_mnt(new_nd.mnt, &parent_nd);
967 	detach_mnt(user_nd.mnt, &root_parent);
968 	attach_mnt(user_nd.mnt, &old_nd);
969 	attach_mnt(new_nd.mnt, &root_parent);
970 	spin_unlock(&dcache_lock);
971 	chroot_fs_refs(&user_nd, &new_nd);
972 	error = 0;
973 	path_release(&root_parent);
974 	path_release(&parent_nd);
975 out2:
976 	up(&old_nd.dentry->d_inode->i_zombie);
977 	up_write(&current->namespace->sem);
978 	path_release(&user_nd);
979 	path_release(&old_nd);
980 out1:
981 	path_release(&new_nd);
982 out0:
983 	unlock_kernel();
984 	return error;
985 out3:
986 	spin_unlock(&dcache_lock);
987 	goto out2;
988 }
989 
init_mount_tree(void)990 static void __init init_mount_tree(void)
991 {
992 	struct vfsmount *mnt;
993 	struct namespace *namespace;
994 	struct task_struct *p;
995 
996 	mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
997 	if (IS_ERR(mnt))
998 		panic("Can't create rootfs");
999 	namespace = kmalloc(sizeof(*namespace), GFP_KERNEL);
1000 	if (!namespace)
1001 		panic("Can't allocate initial namespace");
1002 	atomic_set(&namespace->count, 1);
1003 	INIT_LIST_HEAD(&namespace->list);
1004 	init_rwsem(&namespace->sem);
1005 	list_add(&mnt->mnt_list, &namespace->list);
1006 	namespace->root = mnt;
1007 
1008 	init_task.namespace = namespace;
1009 	read_lock(&tasklist_lock);
1010 	for_each_task(p) {
1011 		get_namespace(namespace);
1012 		p->namespace = namespace;
1013 	}
1014 	read_unlock(&tasklist_lock);
1015 
1016 	set_fs_pwd(current->fs, namespace->root, namespace->root->mnt_root);
1017 	set_fs_root(current->fs, namespace->root, namespace->root->mnt_root);
1018 }
1019 
mnt_init(unsigned long mempages)1020 void __init mnt_init(unsigned long mempages)
1021 {
1022 	struct list_head *d;
1023 	unsigned long order;
1024 	unsigned int nr_hash;
1025 	int i;
1026 
1027 	mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct vfsmount),
1028 					0, SLAB_HWCACHE_ALIGN, NULL, NULL);
1029 	if (!mnt_cache)
1030 		panic("Cannot create vfsmount cache");
1031 
1032 	/* using single pointer list heads would save half of the hash table. */
1033 	order = 0;
1034 	mount_hashtable = (struct list_head *)
1035 		__get_free_pages(GFP_ATOMIC, order);
1036 
1037 	if (!mount_hashtable)
1038 		panic("Failed to allocate mount hash table\n");
1039 
1040 	/*
1041 	 * Find the power-of-two list-heads that can fit into the allocation..
1042 	 * We don't guarantee that "sizeof(struct list_head)" is necessarily
1043 	 * a power-of-two.
1044 	 */
1045 	nr_hash = (1UL << order) * PAGE_SIZE / sizeof(struct list_head);
1046 	hash_bits = 0;
1047 	do {
1048 		hash_bits++;
1049 	} while ((nr_hash >> hash_bits) != 0);
1050 	hash_bits--;
1051 
1052 	/*
1053 	 * Re-calculate the actual number of entries and the mask
1054 	 * from the number of bits we can fit.
1055 	 */
1056 	nr_hash = 1UL << hash_bits;
1057 	hash_mask = nr_hash-1;
1058 
1059 	printk(KERN_INFO "Mount cache hash table entries: %d"
1060 		" (order: %ld, %ld bytes)\n",
1061 		nr_hash, order, (PAGE_SIZE << order));
1062 
1063 	/* And initialize the newly allocated array */
1064 	d = mount_hashtable;
1065 	i = nr_hash;
1066 	do {
1067 		INIT_LIST_HEAD(d);
1068 		d++;
1069 		i--;
1070 	} while (i);
1071 	init_rootfs();
1072 	init_mount_tree();
1073 }
1074