1 /* SPDX-License-Identifier: GPL-2.0-only */
2 #ifndef __KVM_HOST_H
3 #define __KVM_HOST_H
4
5
6 #include <linux/types.h>
7 #include <linux/hardirq.h>
8 #include <linux/list.h>
9 #include <linux/mutex.h>
10 #include <linux/spinlock.h>
11 #include <linux/signal.h>
12 #include <linux/sched.h>
13 #include <linux/sched/stat.h>
14 #include <linux/bug.h>
15 #include <linux/minmax.h>
16 #include <linux/mm.h>
17 #include <linux/mmu_notifier.h>
18 #include <linux/preempt.h>
19 #include <linux/msi.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/rcupdate.h>
23 #include <linux/ratelimit.h>
24 #include <linux/err.h>
25 #include <linux/irqflags.h>
26 #include <linux/context_tracking.h>
27 #include <linux/irqbypass.h>
28 #include <linux/rcuwait.h>
29 #include <linux/refcount.h>
30 #include <linux/nospec.h>
31 #include <linux/notifier.h>
32 #include <linux/ftrace.h>
33 #include <linux/hashtable.h>
34 #include <linux/instrumentation.h>
35 #include <linux/interval_tree.h>
36 #include <linux/rbtree.h>
37 #include <linux/xarray.h>
38 #include <asm/signal.h>
39
40 #include <linux/kvm.h>
41 #include <linux/kvm_para.h>
42
43 #include <linux/kvm_types.h>
44
45 #include <asm/kvm_host.h>
46 #include <linux/kvm_dirty_ring.h>
47
48 #ifndef KVM_MAX_VCPU_IDS
49 #define KVM_MAX_VCPU_IDS KVM_MAX_VCPUS
50 #endif
51
52 /*
53 * The bit 16 ~ bit 31 of kvm_memory_region::flags are internally used
54 * in kvm, other bits are visible for userspace which are defined in
55 * include/linux/kvm_h.
56 */
57 #define KVM_MEMSLOT_INVALID (1UL << 16)
58
59 /*
60 * Bit 63 of the memslot generation number is an "update in-progress flag",
61 * e.g. is temporarily set for the duration of install_new_memslots().
62 * This flag effectively creates a unique generation number that is used to
63 * mark cached memslot data, e.g. MMIO accesses, as potentially being stale,
64 * i.e. may (or may not) have come from the previous memslots generation.
65 *
66 * This is necessary because the actual memslots update is not atomic with
67 * respect to the generation number update. Updating the generation number
68 * first would allow a vCPU to cache a spte from the old memslots using the
69 * new generation number, and updating the generation number after switching
70 * to the new memslots would allow cache hits using the old generation number
71 * to reference the defunct memslots.
72 *
73 * This mechanism is used to prevent getting hits in KVM's caches while a
74 * memslot update is in-progress, and to prevent cache hits *after* updating
75 * the actual generation number against accesses that were inserted into the
76 * cache *before* the memslots were updated.
77 */
78 #define KVM_MEMSLOT_GEN_UPDATE_IN_PROGRESS BIT_ULL(63)
79
80 /* Two fragments for cross MMIO pages. */
81 #define KVM_MAX_MMIO_FRAGMENTS 2
82
83 #ifndef KVM_ADDRESS_SPACE_NUM
84 #define KVM_ADDRESS_SPACE_NUM 1
85 #endif
86
87 /*
88 * For the normal pfn, the highest 12 bits should be zero,
89 * so we can mask bit 62 ~ bit 52 to indicate the error pfn,
90 * mask bit 63 to indicate the noslot pfn.
91 */
92 #define KVM_PFN_ERR_MASK (0x7ffULL << 52)
93 #define KVM_PFN_ERR_NOSLOT_MASK (0xfffULL << 52)
94 #define KVM_PFN_NOSLOT (0x1ULL << 63)
95
96 #define KVM_PFN_ERR_FAULT (KVM_PFN_ERR_MASK)
97 #define KVM_PFN_ERR_HWPOISON (KVM_PFN_ERR_MASK + 1)
98 #define KVM_PFN_ERR_RO_FAULT (KVM_PFN_ERR_MASK + 2)
99
100 /*
101 * error pfns indicate that the gfn is in slot but faild to
102 * translate it to pfn on host.
103 */
is_error_pfn(kvm_pfn_t pfn)104 static inline bool is_error_pfn(kvm_pfn_t pfn)
105 {
106 return !!(pfn & KVM_PFN_ERR_MASK);
107 }
108
109 /*
110 * error_noslot pfns indicate that the gfn can not be
111 * translated to pfn - it is not in slot or failed to
112 * translate it to pfn.
113 */
is_error_noslot_pfn(kvm_pfn_t pfn)114 static inline bool is_error_noslot_pfn(kvm_pfn_t pfn)
115 {
116 return !!(pfn & KVM_PFN_ERR_NOSLOT_MASK);
117 }
118
119 /* noslot pfn indicates that the gfn is not in slot. */
is_noslot_pfn(kvm_pfn_t pfn)120 static inline bool is_noslot_pfn(kvm_pfn_t pfn)
121 {
122 return pfn == KVM_PFN_NOSLOT;
123 }
124
125 /*
126 * architectures with KVM_HVA_ERR_BAD other than PAGE_OFFSET (e.g. s390)
127 * provide own defines and kvm_is_error_hva
128 */
129 #ifndef KVM_HVA_ERR_BAD
130
131 #define KVM_HVA_ERR_BAD (PAGE_OFFSET)
132 #define KVM_HVA_ERR_RO_BAD (PAGE_OFFSET + PAGE_SIZE)
133
kvm_is_error_hva(unsigned long addr)134 static inline bool kvm_is_error_hva(unsigned long addr)
135 {
136 return addr >= PAGE_OFFSET;
137 }
138
139 #endif
140
141 #define KVM_ERR_PTR_BAD_PAGE (ERR_PTR(-ENOENT))
142
is_error_page(struct page * page)143 static inline bool is_error_page(struct page *page)
144 {
145 return IS_ERR(page);
146 }
147
148 #define KVM_REQUEST_MASK GENMASK(7,0)
149 #define KVM_REQUEST_NO_WAKEUP BIT(8)
150 #define KVM_REQUEST_WAIT BIT(9)
151 #define KVM_REQUEST_NO_ACTION BIT(10)
152 /*
153 * Architecture-independent vcpu->requests bit members
154 * Bits 4-7 are reserved for more arch-independent bits.
155 */
156 #define KVM_REQ_TLB_FLUSH (0 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
157 #define KVM_REQ_VM_DEAD (1 | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
158 #define KVM_REQ_UNBLOCK 2
159 #define KVM_REQ_UNHALT 3
160 #define KVM_REQUEST_ARCH_BASE 8
161
162 /*
163 * KVM_REQ_OUTSIDE_GUEST_MODE exists is purely as way to force the vCPU to
164 * OUTSIDE_GUEST_MODE. KVM_REQ_OUTSIDE_GUEST_MODE differs from a vCPU "kick"
165 * in that it ensures the vCPU has reached OUTSIDE_GUEST_MODE before continuing
166 * on. A kick only guarantees that the vCPU is on its way out, e.g. a previous
167 * kick may have set vcpu->mode to EXITING_GUEST_MODE, and so there's no
168 * guarantee the vCPU received an IPI and has actually exited guest mode.
169 */
170 #define KVM_REQ_OUTSIDE_GUEST_MODE (KVM_REQUEST_NO_ACTION | KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
171
172 #define KVM_ARCH_REQ_FLAGS(nr, flags) ({ \
173 BUILD_BUG_ON((unsigned)(nr) >= (sizeof_field(struct kvm_vcpu, requests) * 8) - KVM_REQUEST_ARCH_BASE); \
174 (unsigned)(((nr) + KVM_REQUEST_ARCH_BASE) | (flags)); \
175 })
176 #define KVM_ARCH_REQ(nr) KVM_ARCH_REQ_FLAGS(nr, 0)
177
178 bool kvm_make_vcpus_request_mask(struct kvm *kvm, unsigned int req,
179 unsigned long *vcpu_bitmap);
180 bool kvm_make_all_cpus_request(struct kvm *kvm, unsigned int req);
181 bool kvm_make_all_cpus_request_except(struct kvm *kvm, unsigned int req,
182 struct kvm_vcpu *except);
183 bool kvm_make_cpus_request_mask(struct kvm *kvm, unsigned int req,
184 unsigned long *vcpu_bitmap);
185
186 #define KVM_USERSPACE_IRQ_SOURCE_ID 0
187 #define KVM_IRQFD_RESAMPLE_IRQ_SOURCE_ID 1
188
189 extern struct mutex kvm_lock;
190 extern struct list_head vm_list;
191
192 struct kvm_io_range {
193 gpa_t addr;
194 int len;
195 struct kvm_io_device *dev;
196 };
197
198 #define NR_IOBUS_DEVS 1000
199
200 struct kvm_io_bus {
201 int dev_count;
202 int ioeventfd_count;
203 struct kvm_io_range range[];
204 };
205
206 enum kvm_bus {
207 KVM_MMIO_BUS,
208 KVM_PIO_BUS,
209 KVM_VIRTIO_CCW_NOTIFY_BUS,
210 KVM_FAST_MMIO_BUS,
211 KVM_NR_BUSES
212 };
213
214 int kvm_io_bus_write(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
215 int len, const void *val);
216 int kvm_io_bus_write_cookie(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx,
217 gpa_t addr, int len, const void *val, long cookie);
218 int kvm_io_bus_read(struct kvm_vcpu *vcpu, enum kvm_bus bus_idx, gpa_t addr,
219 int len, void *val);
220 int kvm_io_bus_register_dev(struct kvm *kvm, enum kvm_bus bus_idx, gpa_t addr,
221 int len, struct kvm_io_device *dev);
222 int kvm_io_bus_unregister_dev(struct kvm *kvm, enum kvm_bus bus_idx,
223 struct kvm_io_device *dev);
224 struct kvm_io_device *kvm_io_bus_get_dev(struct kvm *kvm, enum kvm_bus bus_idx,
225 gpa_t addr);
226
227 #ifdef CONFIG_KVM_ASYNC_PF
228 struct kvm_async_pf {
229 struct work_struct work;
230 struct list_head link;
231 struct list_head queue;
232 struct kvm_vcpu *vcpu;
233 struct mm_struct *mm;
234 gpa_t cr2_or_gpa;
235 unsigned long addr;
236 struct kvm_arch_async_pf arch;
237 bool wakeup_all;
238 bool notpresent_injected;
239 };
240
241 void kvm_clear_async_pf_completion_queue(struct kvm_vcpu *vcpu);
242 void kvm_check_async_pf_completion(struct kvm_vcpu *vcpu);
243 bool kvm_setup_async_pf(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
244 unsigned long hva, struct kvm_arch_async_pf *arch);
245 int kvm_async_pf_wakeup_all(struct kvm_vcpu *vcpu);
246 #endif
247
248 #ifdef KVM_ARCH_WANT_MMU_NOTIFIER
249 struct kvm_gfn_range {
250 struct kvm_memory_slot *slot;
251 gfn_t start;
252 gfn_t end;
253 pte_t pte;
254 bool may_block;
255 };
256 bool kvm_unmap_gfn_range(struct kvm *kvm, struct kvm_gfn_range *range);
257 bool kvm_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
258 bool kvm_test_age_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
259 bool kvm_set_spte_gfn(struct kvm *kvm, struct kvm_gfn_range *range);
260 #endif
261
262 enum {
263 OUTSIDE_GUEST_MODE,
264 IN_GUEST_MODE,
265 EXITING_GUEST_MODE,
266 READING_SHADOW_PAGE_TABLES,
267 };
268
269 #define KVM_UNMAPPED_PAGE ((void *) 0x500 + POISON_POINTER_DELTA)
270
271 struct kvm_host_map {
272 /*
273 * Only valid if the 'pfn' is managed by the host kernel (i.e. There is
274 * a 'struct page' for it. When using mem= kernel parameter some memory
275 * can be used as guest memory but they are not managed by host
276 * kernel).
277 * If 'pfn' is not managed by the host kernel, this field is
278 * initialized to KVM_UNMAPPED_PAGE.
279 */
280 struct page *page;
281 void *hva;
282 kvm_pfn_t pfn;
283 kvm_pfn_t gfn;
284 };
285
286 /*
287 * Used to check if the mapping is valid or not. Never use 'kvm_host_map'
288 * directly to check for that.
289 */
kvm_vcpu_mapped(struct kvm_host_map * map)290 static inline bool kvm_vcpu_mapped(struct kvm_host_map *map)
291 {
292 return !!map->hva;
293 }
294
kvm_vcpu_can_poll(ktime_t cur,ktime_t stop)295 static inline bool kvm_vcpu_can_poll(ktime_t cur, ktime_t stop)
296 {
297 return single_task_running() && !need_resched() && ktime_before(cur, stop);
298 }
299
300 /*
301 * Sometimes a large or cross-page mmio needs to be broken up into separate
302 * exits for userspace servicing.
303 */
304 struct kvm_mmio_fragment {
305 gpa_t gpa;
306 void *data;
307 unsigned len;
308 };
309
310 struct kvm_vcpu {
311 struct kvm *kvm;
312 #ifdef CONFIG_PREEMPT_NOTIFIERS
313 struct preempt_notifier preempt_notifier;
314 #endif
315 int cpu;
316 int vcpu_id; /* id given by userspace at creation */
317 int vcpu_idx; /* index in kvm->vcpus array */
318 int ____srcu_idx; /* Don't use this directly. You've been warned. */
319 #ifdef CONFIG_PROVE_RCU
320 int srcu_depth;
321 #endif
322 int mode;
323 u64 requests;
324 unsigned long guest_debug;
325
326 struct mutex mutex;
327 struct kvm_run *run;
328
329 #ifndef __KVM_HAVE_ARCH_WQP
330 struct rcuwait wait;
331 #endif
332 struct pid __rcu *pid;
333 int sigset_active;
334 sigset_t sigset;
335 unsigned int halt_poll_ns;
336 bool valid_wakeup;
337
338 #ifdef CONFIG_HAS_IOMEM
339 int mmio_needed;
340 int mmio_read_completed;
341 int mmio_is_write;
342 int mmio_cur_fragment;
343 int mmio_nr_fragments;
344 struct kvm_mmio_fragment mmio_fragments[KVM_MAX_MMIO_FRAGMENTS];
345 #endif
346
347 #ifdef CONFIG_KVM_ASYNC_PF
348 struct {
349 u32 queued;
350 struct list_head queue;
351 struct list_head done;
352 spinlock_t lock;
353 } async_pf;
354 #endif
355
356 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
357 /*
358 * Cpu relax intercept or pause loop exit optimization
359 * in_spin_loop: set when a vcpu does a pause loop exit
360 * or cpu relax intercepted.
361 * dy_eligible: indicates whether vcpu is eligible for directed yield.
362 */
363 struct {
364 bool in_spin_loop;
365 bool dy_eligible;
366 } spin_loop;
367 #endif
368 bool preempted;
369 bool ready;
370 struct kvm_vcpu_arch arch;
371 struct kvm_vcpu_stat stat;
372 char stats_id[KVM_STATS_NAME_SIZE];
373 struct kvm_dirty_ring dirty_ring;
374
375 /*
376 * The most recently used memslot by this vCPU and the slots generation
377 * for which it is valid.
378 * No wraparound protection is needed since generations won't overflow in
379 * thousands of years, even assuming 1M memslot operations per second.
380 */
381 struct kvm_memory_slot *last_used_slot;
382 u64 last_used_slot_gen;
383 };
384
385 /*
386 * Start accounting time towards a guest.
387 * Must be called before entering guest context.
388 */
guest_timing_enter_irqoff(void)389 static __always_inline void guest_timing_enter_irqoff(void)
390 {
391 /*
392 * This is running in ioctl context so its safe to assume that it's the
393 * stime pending cputime to flush.
394 */
395 instrumentation_begin();
396 vtime_account_guest_enter();
397 instrumentation_end();
398 }
399
400 /*
401 * Enter guest context and enter an RCU extended quiescent state.
402 *
403 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
404 * unsafe to use any code which may directly or indirectly use RCU, tracing
405 * (including IRQ flag tracing), or lockdep. All code in this period must be
406 * non-instrumentable.
407 */
guest_context_enter_irqoff(void)408 static __always_inline void guest_context_enter_irqoff(void)
409 {
410 /*
411 * KVM does not hold any references to rcu protected data when it
412 * switches CPU into a guest mode. In fact switching to a guest mode
413 * is very similar to exiting to userspace from rcu point of view. In
414 * addition CPU may stay in a guest mode for quite a long time (up to
415 * one time slice). Lets treat guest mode as quiescent state, just like
416 * we do with user-mode execution.
417 */
418 if (!context_tracking_guest_enter()) {
419 instrumentation_begin();
420 rcu_virt_note_context_switch(smp_processor_id());
421 instrumentation_end();
422 }
423 }
424
425 /*
426 * Deprecated. Architectures should move to guest_timing_enter_irqoff() and
427 * guest_state_enter_irqoff().
428 */
guest_enter_irqoff(void)429 static __always_inline void guest_enter_irqoff(void)
430 {
431 guest_timing_enter_irqoff();
432 guest_context_enter_irqoff();
433 }
434
435 /**
436 * guest_state_enter_irqoff - Fixup state when entering a guest
437 *
438 * Entry to a guest will enable interrupts, but the kernel state is interrupts
439 * disabled when this is invoked. Also tell RCU about it.
440 *
441 * 1) Trace interrupts on state
442 * 2) Invoke context tracking if enabled to adjust RCU state
443 * 3) Tell lockdep that interrupts are enabled
444 *
445 * Invoked from architecture specific code before entering a guest.
446 * Must be called with interrupts disabled and the caller must be
447 * non-instrumentable.
448 * The caller has to invoke guest_timing_enter_irqoff() before this.
449 *
450 * Note: this is analogous to exit_to_user_mode().
451 */
guest_state_enter_irqoff(void)452 static __always_inline void guest_state_enter_irqoff(void)
453 {
454 instrumentation_begin();
455 trace_hardirqs_on_prepare();
456 lockdep_hardirqs_on_prepare();
457 instrumentation_end();
458
459 guest_context_enter_irqoff();
460 lockdep_hardirqs_on(CALLER_ADDR0);
461 }
462
463 /*
464 * Exit guest context and exit an RCU extended quiescent state.
465 *
466 * Between guest_context_enter_irqoff() and guest_context_exit_irqoff() it is
467 * unsafe to use any code which may directly or indirectly use RCU, tracing
468 * (including IRQ flag tracing), or lockdep. All code in this period must be
469 * non-instrumentable.
470 */
guest_context_exit_irqoff(void)471 static __always_inline void guest_context_exit_irqoff(void)
472 {
473 context_tracking_guest_exit();
474 }
475
476 /*
477 * Stop accounting time towards a guest.
478 * Must be called after exiting guest context.
479 */
guest_timing_exit_irqoff(void)480 static __always_inline void guest_timing_exit_irqoff(void)
481 {
482 instrumentation_begin();
483 /* Flush the guest cputime we spent on the guest */
484 vtime_account_guest_exit();
485 instrumentation_end();
486 }
487
488 /*
489 * Deprecated. Architectures should move to guest_state_exit_irqoff() and
490 * guest_timing_exit_irqoff().
491 */
guest_exit_irqoff(void)492 static __always_inline void guest_exit_irqoff(void)
493 {
494 guest_context_exit_irqoff();
495 guest_timing_exit_irqoff();
496 }
497
guest_exit(void)498 static inline void guest_exit(void)
499 {
500 unsigned long flags;
501
502 local_irq_save(flags);
503 guest_exit_irqoff();
504 local_irq_restore(flags);
505 }
506
507 /**
508 * guest_state_exit_irqoff - Establish state when returning from guest mode
509 *
510 * Entry from a guest disables interrupts, but guest mode is traced as
511 * interrupts enabled. Also with NO_HZ_FULL RCU might be idle.
512 *
513 * 1) Tell lockdep that interrupts are disabled
514 * 2) Invoke context tracking if enabled to reactivate RCU
515 * 3) Trace interrupts off state
516 *
517 * Invoked from architecture specific code after exiting a guest.
518 * Must be invoked with interrupts disabled and the caller must be
519 * non-instrumentable.
520 * The caller has to invoke guest_timing_exit_irqoff() after this.
521 *
522 * Note: this is analogous to enter_from_user_mode().
523 */
guest_state_exit_irqoff(void)524 static __always_inline void guest_state_exit_irqoff(void)
525 {
526 lockdep_hardirqs_off(CALLER_ADDR0);
527 guest_context_exit_irqoff();
528
529 instrumentation_begin();
530 trace_hardirqs_off_finish();
531 instrumentation_end();
532 }
533
kvm_vcpu_exiting_guest_mode(struct kvm_vcpu * vcpu)534 static inline int kvm_vcpu_exiting_guest_mode(struct kvm_vcpu *vcpu)
535 {
536 /*
537 * The memory barrier ensures a previous write to vcpu->requests cannot
538 * be reordered with the read of vcpu->mode. It pairs with the general
539 * memory barrier following the write of vcpu->mode in VCPU RUN.
540 */
541 smp_mb__before_atomic();
542 return cmpxchg(&vcpu->mode, IN_GUEST_MODE, EXITING_GUEST_MODE);
543 }
544
545 /*
546 * Some of the bitops functions do not support too long bitmaps.
547 * This number must be determined not to exceed such limits.
548 */
549 #define KVM_MEM_MAX_NR_PAGES ((1UL << 31) - 1)
550
551 /*
552 * Since at idle each memslot belongs to two memslot sets it has to contain
553 * two embedded nodes for each data structure that it forms a part of.
554 *
555 * Two memslot sets (one active and one inactive) are necessary so the VM
556 * continues to run on one memslot set while the other is being modified.
557 *
558 * These two memslot sets normally point to the same set of memslots.
559 * They can, however, be desynchronized when performing a memslot management
560 * operation by replacing the memslot to be modified by its copy.
561 * After the operation is complete, both memslot sets once again point to
562 * the same, common set of memslot data.
563 *
564 * The memslots themselves are independent of each other so they can be
565 * individually added or deleted.
566 */
567 struct kvm_memory_slot {
568 struct hlist_node id_node[2];
569 struct interval_tree_node hva_node[2];
570 struct rb_node gfn_node[2];
571 gfn_t base_gfn;
572 unsigned long npages;
573 unsigned long *dirty_bitmap;
574 struct kvm_arch_memory_slot arch;
575 unsigned long userspace_addr;
576 u32 flags;
577 short id;
578 u16 as_id;
579 };
580
kvm_slot_dirty_track_enabled(const struct kvm_memory_slot * slot)581 static inline bool kvm_slot_dirty_track_enabled(const struct kvm_memory_slot *slot)
582 {
583 return slot->flags & KVM_MEM_LOG_DIRTY_PAGES;
584 }
585
kvm_dirty_bitmap_bytes(struct kvm_memory_slot * memslot)586 static inline unsigned long kvm_dirty_bitmap_bytes(struct kvm_memory_slot *memslot)
587 {
588 return ALIGN(memslot->npages, BITS_PER_LONG) / 8;
589 }
590
kvm_second_dirty_bitmap(struct kvm_memory_slot * memslot)591 static inline unsigned long *kvm_second_dirty_bitmap(struct kvm_memory_slot *memslot)
592 {
593 unsigned long len = kvm_dirty_bitmap_bytes(memslot);
594
595 return memslot->dirty_bitmap + len / sizeof(*memslot->dirty_bitmap);
596 }
597
598 #ifndef KVM_DIRTY_LOG_MANUAL_CAPS
599 #define KVM_DIRTY_LOG_MANUAL_CAPS KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE
600 #endif
601
602 struct kvm_s390_adapter_int {
603 u64 ind_addr;
604 u64 summary_addr;
605 u64 ind_offset;
606 u32 summary_offset;
607 u32 adapter_id;
608 };
609
610 struct kvm_hv_sint {
611 u32 vcpu;
612 u32 sint;
613 };
614
615 struct kvm_xen_evtchn {
616 u32 port;
617 u32 vcpu_id;
618 int vcpu_idx;
619 u32 priority;
620 };
621
622 struct kvm_kernel_irq_routing_entry {
623 u32 gsi;
624 u32 type;
625 int (*set)(struct kvm_kernel_irq_routing_entry *e,
626 struct kvm *kvm, int irq_source_id, int level,
627 bool line_status);
628 union {
629 struct {
630 unsigned irqchip;
631 unsigned pin;
632 } irqchip;
633 struct {
634 u32 address_lo;
635 u32 address_hi;
636 u32 data;
637 u32 flags;
638 u32 devid;
639 } msi;
640 struct kvm_s390_adapter_int adapter;
641 struct kvm_hv_sint hv_sint;
642 struct kvm_xen_evtchn xen_evtchn;
643 };
644 struct hlist_node link;
645 };
646
647 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
648 struct kvm_irq_routing_table {
649 int chip[KVM_NR_IRQCHIPS][KVM_IRQCHIP_NUM_PINS];
650 u32 nr_rt_entries;
651 /*
652 * Array indexed by gsi. Each entry contains list of irq chips
653 * the gsi is connected to.
654 */
655 struct hlist_head map[];
656 };
657 #endif
658
659 #ifndef KVM_PRIVATE_MEM_SLOTS
660 #define KVM_PRIVATE_MEM_SLOTS 0
661 #endif
662
663 #define KVM_MEM_SLOTS_NUM SHRT_MAX
664 #define KVM_USER_MEM_SLOTS (KVM_MEM_SLOTS_NUM - KVM_PRIVATE_MEM_SLOTS)
665
666 #ifndef __KVM_VCPU_MULTIPLE_ADDRESS_SPACE
kvm_arch_vcpu_memslots_id(struct kvm_vcpu * vcpu)667 static inline int kvm_arch_vcpu_memslots_id(struct kvm_vcpu *vcpu)
668 {
669 return 0;
670 }
671 #endif
672
673 struct kvm_memslots {
674 u64 generation;
675 atomic_long_t last_used_slot;
676 struct rb_root_cached hva_tree;
677 struct rb_root gfn_tree;
678 /*
679 * The mapping table from slot id to memslot.
680 *
681 * 7-bit bucket count matches the size of the old id to index array for
682 * 512 slots, while giving good performance with this slot count.
683 * Higher bucket counts bring only small performance improvements but
684 * always result in higher memory usage (even for lower memslot counts).
685 */
686 DECLARE_HASHTABLE(id_hash, 7);
687 int node_idx;
688 };
689
690 struct kvm {
691 #ifdef KVM_HAVE_MMU_RWLOCK
692 rwlock_t mmu_lock;
693 #else
694 spinlock_t mmu_lock;
695 #endif /* KVM_HAVE_MMU_RWLOCK */
696
697 struct mutex slots_lock;
698
699 /*
700 * Protects the arch-specific fields of struct kvm_memory_slots in
701 * use by the VM. To be used under the slots_lock (above) or in a
702 * kvm->srcu critical section where acquiring the slots_lock would
703 * lead to deadlock with the synchronize_srcu in
704 * install_new_memslots.
705 */
706 struct mutex slots_arch_lock;
707 struct mm_struct *mm; /* userspace tied to this vm */
708 unsigned long nr_memslot_pages;
709 /* The two memslot sets - active and inactive (per address space) */
710 struct kvm_memslots __memslots[KVM_ADDRESS_SPACE_NUM][2];
711 /* The current active memslot set for each address space */
712 struct kvm_memslots __rcu *memslots[KVM_ADDRESS_SPACE_NUM];
713 struct xarray vcpu_array;
714
715 /* Used to wait for completion of MMU notifiers. */
716 spinlock_t mn_invalidate_lock;
717 unsigned long mn_active_invalidate_count;
718 struct rcuwait mn_memslots_update_rcuwait;
719
720 /* For management / invalidation of gfn_to_pfn_caches */
721 spinlock_t gpc_lock;
722 struct list_head gpc_list;
723
724 /*
725 * created_vcpus is protected by kvm->lock, and is incremented
726 * at the beginning of KVM_CREATE_VCPU. online_vcpus is only
727 * incremented after storing the kvm_vcpu pointer in vcpus,
728 * and is accessed atomically.
729 */
730 atomic_t online_vcpus;
731 int max_vcpus;
732 int created_vcpus;
733 int last_boosted_vcpu;
734 struct list_head vm_list;
735 struct mutex lock;
736 struct kvm_io_bus __rcu *buses[KVM_NR_BUSES];
737 #ifdef CONFIG_HAVE_KVM_EVENTFD
738 struct {
739 spinlock_t lock;
740 struct list_head items;
741 struct list_head resampler_list;
742 struct mutex resampler_lock;
743 } irqfds;
744 struct list_head ioeventfds;
745 #endif
746 struct kvm_vm_stat stat;
747 struct kvm_arch arch;
748 refcount_t users_count;
749 #ifdef CONFIG_KVM_MMIO
750 struct kvm_coalesced_mmio_ring *coalesced_mmio_ring;
751 spinlock_t ring_lock;
752 struct list_head coalesced_zones;
753 #endif
754
755 struct mutex irq_lock;
756 #ifdef CONFIG_HAVE_KVM_IRQCHIP
757 /*
758 * Update side is protected by irq_lock.
759 */
760 struct kvm_irq_routing_table __rcu *irq_routing;
761 #endif
762 #ifdef CONFIG_HAVE_KVM_IRQFD
763 struct hlist_head irq_ack_notifier_list;
764 #endif
765
766 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
767 struct mmu_notifier mmu_notifier;
768 unsigned long mmu_notifier_seq;
769 long mmu_notifier_count;
770 unsigned long mmu_notifier_range_start;
771 unsigned long mmu_notifier_range_end;
772 #endif
773 struct list_head devices;
774 u64 manual_dirty_log_protect;
775 struct dentry *debugfs_dentry;
776 struct kvm_stat_data **debugfs_stat_data;
777 struct srcu_struct srcu;
778 struct srcu_struct irq_srcu;
779 pid_t userspace_pid;
780 unsigned int max_halt_poll_ns;
781 u32 dirty_ring_size;
782 bool vm_bugged;
783 bool vm_dead;
784
785 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
786 struct notifier_block pm_notifier;
787 #endif
788 char stats_id[KVM_STATS_NAME_SIZE];
789 };
790
791 #define kvm_err(fmt, ...) \
792 pr_err("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
793 #define kvm_info(fmt, ...) \
794 pr_info("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
795 #define kvm_debug(fmt, ...) \
796 pr_debug("kvm [%i]: " fmt, task_pid_nr(current), ## __VA_ARGS__)
797 #define kvm_debug_ratelimited(fmt, ...) \
798 pr_debug_ratelimited("kvm [%i]: " fmt, task_pid_nr(current), \
799 ## __VA_ARGS__)
800 #define kvm_pr_unimpl(fmt, ...) \
801 pr_err_ratelimited("kvm [%i]: " fmt, \
802 task_tgid_nr(current), ## __VA_ARGS__)
803
804 /* The guest did something we don't support. */
805 #define vcpu_unimpl(vcpu, fmt, ...) \
806 kvm_pr_unimpl("vcpu%i, guest rIP: 0x%lx " fmt, \
807 (vcpu)->vcpu_id, kvm_rip_read(vcpu), ## __VA_ARGS__)
808
809 #define vcpu_debug(vcpu, fmt, ...) \
810 kvm_debug("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
811 #define vcpu_debug_ratelimited(vcpu, fmt, ...) \
812 kvm_debug_ratelimited("vcpu%i " fmt, (vcpu)->vcpu_id, \
813 ## __VA_ARGS__)
814 #define vcpu_err(vcpu, fmt, ...) \
815 kvm_err("vcpu%i " fmt, (vcpu)->vcpu_id, ## __VA_ARGS__)
816
kvm_vm_dead(struct kvm * kvm)817 static inline void kvm_vm_dead(struct kvm *kvm)
818 {
819 kvm->vm_dead = true;
820 kvm_make_all_cpus_request(kvm, KVM_REQ_VM_DEAD);
821 }
822
kvm_vm_bugged(struct kvm * kvm)823 static inline void kvm_vm_bugged(struct kvm *kvm)
824 {
825 kvm->vm_bugged = true;
826 kvm_vm_dead(kvm);
827 }
828
829
830 #define KVM_BUG(cond, kvm, fmt...) \
831 ({ \
832 int __ret = (cond); \
833 \
834 if (WARN_ONCE(__ret && !(kvm)->vm_bugged, fmt)) \
835 kvm_vm_bugged(kvm); \
836 unlikely(__ret); \
837 })
838
839 #define KVM_BUG_ON(cond, kvm) \
840 ({ \
841 int __ret = (cond); \
842 \
843 if (WARN_ON_ONCE(__ret && !(kvm)->vm_bugged)) \
844 kvm_vm_bugged(kvm); \
845 unlikely(__ret); \
846 })
847
kvm_vcpu_srcu_read_lock(struct kvm_vcpu * vcpu)848 static inline void kvm_vcpu_srcu_read_lock(struct kvm_vcpu *vcpu)
849 {
850 #ifdef CONFIG_PROVE_RCU
851 WARN_ONCE(vcpu->srcu_depth++,
852 "KVM: Illegal vCPU srcu_idx LOCK, depth=%d", vcpu->srcu_depth - 1);
853 #endif
854 vcpu->____srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
855 }
856
kvm_vcpu_srcu_read_unlock(struct kvm_vcpu * vcpu)857 static inline void kvm_vcpu_srcu_read_unlock(struct kvm_vcpu *vcpu)
858 {
859 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->____srcu_idx);
860
861 #ifdef CONFIG_PROVE_RCU
862 WARN_ONCE(--vcpu->srcu_depth,
863 "KVM: Illegal vCPU srcu_idx UNLOCK, depth=%d", vcpu->srcu_depth);
864 #endif
865 }
866
kvm_dirty_log_manual_protect_and_init_set(struct kvm * kvm)867 static inline bool kvm_dirty_log_manual_protect_and_init_set(struct kvm *kvm)
868 {
869 return !!(kvm->manual_dirty_log_protect & KVM_DIRTY_LOG_INITIALLY_SET);
870 }
871
kvm_get_bus(struct kvm * kvm,enum kvm_bus idx)872 static inline struct kvm_io_bus *kvm_get_bus(struct kvm *kvm, enum kvm_bus idx)
873 {
874 return srcu_dereference_check(kvm->buses[idx], &kvm->srcu,
875 lockdep_is_held(&kvm->slots_lock) ||
876 !refcount_read(&kvm->users_count));
877 }
878
kvm_get_vcpu(struct kvm * kvm,int i)879 static inline struct kvm_vcpu *kvm_get_vcpu(struct kvm *kvm, int i)
880 {
881 int num_vcpus = atomic_read(&kvm->online_vcpus);
882 i = array_index_nospec(i, num_vcpus);
883
884 /* Pairs with smp_wmb() in kvm_vm_ioctl_create_vcpu. */
885 smp_rmb();
886 return xa_load(&kvm->vcpu_array, i);
887 }
888
889 #define kvm_for_each_vcpu(idx, vcpup, kvm) \
890 xa_for_each_range(&kvm->vcpu_array, idx, vcpup, 0, \
891 (atomic_read(&kvm->online_vcpus) - 1))
892
kvm_get_vcpu_by_id(struct kvm * kvm,int id)893 static inline struct kvm_vcpu *kvm_get_vcpu_by_id(struct kvm *kvm, int id)
894 {
895 struct kvm_vcpu *vcpu = NULL;
896 unsigned long i;
897
898 if (id < 0)
899 return NULL;
900 if (id < KVM_MAX_VCPUS)
901 vcpu = kvm_get_vcpu(kvm, id);
902 if (vcpu && vcpu->vcpu_id == id)
903 return vcpu;
904 kvm_for_each_vcpu(i, vcpu, kvm)
905 if (vcpu->vcpu_id == id)
906 return vcpu;
907 return NULL;
908 }
909
kvm_vcpu_get_idx(struct kvm_vcpu * vcpu)910 static inline int kvm_vcpu_get_idx(struct kvm_vcpu *vcpu)
911 {
912 return vcpu->vcpu_idx;
913 }
914
915 void kvm_destroy_vcpus(struct kvm *kvm);
916
917 void vcpu_load(struct kvm_vcpu *vcpu);
918 void vcpu_put(struct kvm_vcpu *vcpu);
919
920 #ifdef __KVM_HAVE_IOAPIC
921 void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm);
922 void kvm_arch_post_irq_routing_update(struct kvm *kvm);
923 #else
kvm_arch_post_irq_ack_notifier_list_update(struct kvm * kvm)924 static inline void kvm_arch_post_irq_ack_notifier_list_update(struct kvm *kvm)
925 {
926 }
kvm_arch_post_irq_routing_update(struct kvm * kvm)927 static inline void kvm_arch_post_irq_routing_update(struct kvm *kvm)
928 {
929 }
930 #endif
931
932 #ifdef CONFIG_HAVE_KVM_IRQFD
933 int kvm_irqfd_init(void);
934 void kvm_irqfd_exit(void);
935 #else
kvm_irqfd_init(void)936 static inline int kvm_irqfd_init(void)
937 {
938 return 0;
939 }
940
kvm_irqfd_exit(void)941 static inline void kvm_irqfd_exit(void)
942 {
943 }
944 #endif
945 int kvm_init(void *opaque, unsigned vcpu_size, unsigned vcpu_align,
946 struct module *module);
947 void kvm_exit(void);
948
949 void kvm_get_kvm(struct kvm *kvm);
950 bool kvm_get_kvm_safe(struct kvm *kvm);
951 void kvm_put_kvm(struct kvm *kvm);
952 bool file_is_kvm(struct file *file);
953 void kvm_put_kvm_no_destroy(struct kvm *kvm);
954
__kvm_memslots(struct kvm * kvm,int as_id)955 static inline struct kvm_memslots *__kvm_memslots(struct kvm *kvm, int as_id)
956 {
957 as_id = array_index_nospec(as_id, KVM_ADDRESS_SPACE_NUM);
958 return srcu_dereference_check(kvm->memslots[as_id], &kvm->srcu,
959 lockdep_is_held(&kvm->slots_lock) ||
960 !refcount_read(&kvm->users_count));
961 }
962
kvm_memslots(struct kvm * kvm)963 static inline struct kvm_memslots *kvm_memslots(struct kvm *kvm)
964 {
965 return __kvm_memslots(kvm, 0);
966 }
967
kvm_vcpu_memslots(struct kvm_vcpu * vcpu)968 static inline struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu)
969 {
970 int as_id = kvm_arch_vcpu_memslots_id(vcpu);
971
972 return __kvm_memslots(vcpu->kvm, as_id);
973 }
974
kvm_memslots_empty(struct kvm_memslots * slots)975 static inline bool kvm_memslots_empty(struct kvm_memslots *slots)
976 {
977 return RB_EMPTY_ROOT(&slots->gfn_tree);
978 }
979
980 #define kvm_for_each_memslot(memslot, bkt, slots) \
981 hash_for_each(slots->id_hash, bkt, memslot, id_node[slots->node_idx]) \
982 if (WARN_ON_ONCE(!memslot->npages)) { \
983 } else
984
985 static inline
id_to_memslot(struct kvm_memslots * slots,int id)986 struct kvm_memory_slot *id_to_memslot(struct kvm_memslots *slots, int id)
987 {
988 struct kvm_memory_slot *slot;
989 int idx = slots->node_idx;
990
991 hash_for_each_possible(slots->id_hash, slot, id_node[idx], id) {
992 if (slot->id == id)
993 return slot;
994 }
995
996 return NULL;
997 }
998
999 /* Iterator used for walking memslots that overlap a gfn range. */
1000 struct kvm_memslot_iter {
1001 struct kvm_memslots *slots;
1002 struct rb_node *node;
1003 struct kvm_memory_slot *slot;
1004 };
1005
kvm_memslot_iter_next(struct kvm_memslot_iter * iter)1006 static inline void kvm_memslot_iter_next(struct kvm_memslot_iter *iter)
1007 {
1008 iter->node = rb_next(iter->node);
1009 if (!iter->node)
1010 return;
1011
1012 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[iter->slots->node_idx]);
1013 }
1014
kvm_memslot_iter_start(struct kvm_memslot_iter * iter,struct kvm_memslots * slots,gfn_t start)1015 static inline void kvm_memslot_iter_start(struct kvm_memslot_iter *iter,
1016 struct kvm_memslots *slots,
1017 gfn_t start)
1018 {
1019 int idx = slots->node_idx;
1020 struct rb_node *tmp;
1021 struct kvm_memory_slot *slot;
1022
1023 iter->slots = slots;
1024
1025 /*
1026 * Find the so called "upper bound" of a key - the first node that has
1027 * its key strictly greater than the searched one (the start gfn in our case).
1028 */
1029 iter->node = NULL;
1030 for (tmp = slots->gfn_tree.rb_node; tmp; ) {
1031 slot = container_of(tmp, struct kvm_memory_slot, gfn_node[idx]);
1032 if (start < slot->base_gfn) {
1033 iter->node = tmp;
1034 tmp = tmp->rb_left;
1035 } else {
1036 tmp = tmp->rb_right;
1037 }
1038 }
1039
1040 /*
1041 * Find the slot with the lowest gfn that can possibly intersect with
1042 * the range, so we'll ideally have slot start <= range start
1043 */
1044 if (iter->node) {
1045 /*
1046 * A NULL previous node means that the very first slot
1047 * already has a higher start gfn.
1048 * In this case slot start > range start.
1049 */
1050 tmp = rb_prev(iter->node);
1051 if (tmp)
1052 iter->node = tmp;
1053 } else {
1054 /* a NULL node below means no slots */
1055 iter->node = rb_last(&slots->gfn_tree);
1056 }
1057
1058 if (iter->node) {
1059 iter->slot = container_of(iter->node, struct kvm_memory_slot, gfn_node[idx]);
1060
1061 /*
1062 * It is possible in the slot start < range start case that the
1063 * found slot ends before or at range start (slot end <= range start)
1064 * and so it does not overlap the requested range.
1065 *
1066 * In such non-overlapping case the next slot (if it exists) will
1067 * already have slot start > range start, otherwise the logic above
1068 * would have found it instead of the current slot.
1069 */
1070 if (iter->slot->base_gfn + iter->slot->npages <= start)
1071 kvm_memslot_iter_next(iter);
1072 }
1073 }
1074
kvm_memslot_iter_is_valid(struct kvm_memslot_iter * iter,gfn_t end)1075 static inline bool kvm_memslot_iter_is_valid(struct kvm_memslot_iter *iter, gfn_t end)
1076 {
1077 if (!iter->node)
1078 return false;
1079
1080 /*
1081 * If this slot starts beyond or at the end of the range so does
1082 * every next one
1083 */
1084 return iter->slot->base_gfn < end;
1085 }
1086
1087 /* Iterate over each memslot at least partially intersecting [start, end) range */
1088 #define kvm_for_each_memslot_in_gfn_range(iter, slots, start, end) \
1089 for (kvm_memslot_iter_start(iter, slots, start); \
1090 kvm_memslot_iter_is_valid(iter, end); \
1091 kvm_memslot_iter_next(iter))
1092
1093 /*
1094 * KVM_SET_USER_MEMORY_REGION ioctl allows the following operations:
1095 * - create a new memory slot
1096 * - delete an existing memory slot
1097 * - modify an existing memory slot
1098 * -- move it in the guest physical memory space
1099 * -- just change its flags
1100 *
1101 * Since flags can be changed by some of these operations, the following
1102 * differentiation is the best we can do for __kvm_set_memory_region():
1103 */
1104 enum kvm_mr_change {
1105 KVM_MR_CREATE,
1106 KVM_MR_DELETE,
1107 KVM_MR_MOVE,
1108 KVM_MR_FLAGS_ONLY,
1109 };
1110
1111 int kvm_set_memory_region(struct kvm *kvm,
1112 const struct kvm_userspace_memory_region *mem);
1113 int __kvm_set_memory_region(struct kvm *kvm,
1114 const struct kvm_userspace_memory_region *mem);
1115 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *slot);
1116 void kvm_arch_memslots_updated(struct kvm *kvm, u64 gen);
1117 int kvm_arch_prepare_memory_region(struct kvm *kvm,
1118 const struct kvm_memory_slot *old,
1119 struct kvm_memory_slot *new,
1120 enum kvm_mr_change change);
1121 void kvm_arch_commit_memory_region(struct kvm *kvm,
1122 struct kvm_memory_slot *old,
1123 const struct kvm_memory_slot *new,
1124 enum kvm_mr_change change);
1125 /* flush all memory translations */
1126 void kvm_arch_flush_shadow_all(struct kvm *kvm);
1127 /* flush memory translations pointing to 'slot' */
1128 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1129 struct kvm_memory_slot *slot);
1130
1131 int gfn_to_page_many_atomic(struct kvm_memory_slot *slot, gfn_t gfn,
1132 struct page **pages, int nr_pages);
1133
1134 struct page *gfn_to_page(struct kvm *kvm, gfn_t gfn);
1135 unsigned long gfn_to_hva(struct kvm *kvm, gfn_t gfn);
1136 unsigned long gfn_to_hva_prot(struct kvm *kvm, gfn_t gfn, bool *writable);
1137 unsigned long gfn_to_hva_memslot(struct kvm_memory_slot *slot, gfn_t gfn);
1138 unsigned long gfn_to_hva_memslot_prot(struct kvm_memory_slot *slot, gfn_t gfn,
1139 bool *writable);
1140 void kvm_release_page_clean(struct page *page);
1141 void kvm_release_page_dirty(struct page *page);
1142 void kvm_set_page_accessed(struct page *page);
1143
1144 kvm_pfn_t gfn_to_pfn(struct kvm *kvm, gfn_t gfn);
1145 kvm_pfn_t gfn_to_pfn_prot(struct kvm *kvm, gfn_t gfn, bool write_fault,
1146 bool *writable);
1147 kvm_pfn_t gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn);
1148 kvm_pfn_t gfn_to_pfn_memslot_atomic(const struct kvm_memory_slot *slot, gfn_t gfn);
1149 kvm_pfn_t __gfn_to_pfn_memslot(const struct kvm_memory_slot *slot, gfn_t gfn,
1150 bool atomic, bool *async, bool write_fault,
1151 bool *writable, hva_t *hva);
1152
1153 void kvm_release_pfn_clean(kvm_pfn_t pfn);
1154 void kvm_release_pfn_dirty(kvm_pfn_t pfn);
1155 void kvm_set_pfn_dirty(kvm_pfn_t pfn);
1156 void kvm_set_pfn_accessed(kvm_pfn_t pfn);
1157
1158 void kvm_release_pfn(kvm_pfn_t pfn, bool dirty);
1159 int kvm_read_guest_page(struct kvm *kvm, gfn_t gfn, void *data, int offset,
1160 int len);
1161 int kvm_read_guest(struct kvm *kvm, gpa_t gpa, void *data, unsigned long len);
1162 int kvm_read_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1163 void *data, unsigned long len);
1164 int kvm_read_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1165 void *data, unsigned int offset,
1166 unsigned long len);
1167 int kvm_write_guest_page(struct kvm *kvm, gfn_t gfn, const void *data,
1168 int offset, int len);
1169 int kvm_write_guest(struct kvm *kvm, gpa_t gpa, const void *data,
1170 unsigned long len);
1171 int kvm_write_guest_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1172 void *data, unsigned long len);
1173 int kvm_write_guest_offset_cached(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1174 void *data, unsigned int offset,
1175 unsigned long len);
1176 int kvm_gfn_to_hva_cache_init(struct kvm *kvm, struct gfn_to_hva_cache *ghc,
1177 gpa_t gpa, unsigned long len);
1178
1179 #define __kvm_get_guest(kvm, gfn, offset, v) \
1180 ({ \
1181 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1182 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1183 int __ret = -EFAULT; \
1184 \
1185 if (!kvm_is_error_hva(__addr)) \
1186 __ret = get_user(v, __uaddr); \
1187 __ret; \
1188 })
1189
1190 #define kvm_get_guest(kvm, gpa, v) \
1191 ({ \
1192 gpa_t __gpa = gpa; \
1193 struct kvm *__kvm = kvm; \
1194 \
1195 __kvm_get_guest(__kvm, __gpa >> PAGE_SHIFT, \
1196 offset_in_page(__gpa), v); \
1197 })
1198
1199 #define __kvm_put_guest(kvm, gfn, offset, v) \
1200 ({ \
1201 unsigned long __addr = gfn_to_hva(kvm, gfn); \
1202 typeof(v) __user *__uaddr = (typeof(__uaddr))(__addr + offset); \
1203 int __ret = -EFAULT; \
1204 \
1205 if (!kvm_is_error_hva(__addr)) \
1206 __ret = put_user(v, __uaddr); \
1207 if (!__ret) \
1208 mark_page_dirty(kvm, gfn); \
1209 __ret; \
1210 })
1211
1212 #define kvm_put_guest(kvm, gpa, v) \
1213 ({ \
1214 gpa_t __gpa = gpa; \
1215 struct kvm *__kvm = kvm; \
1216 \
1217 __kvm_put_guest(__kvm, __gpa >> PAGE_SHIFT, \
1218 offset_in_page(__gpa), v); \
1219 })
1220
1221 int kvm_clear_guest(struct kvm *kvm, gpa_t gpa, unsigned long len);
1222 struct kvm_memory_slot *gfn_to_memslot(struct kvm *kvm, gfn_t gfn);
1223 bool kvm_is_visible_gfn(struct kvm *kvm, gfn_t gfn);
1224 bool kvm_vcpu_is_visible_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1225 unsigned long kvm_host_page_size(struct kvm_vcpu *vcpu, gfn_t gfn);
1226 void mark_page_dirty_in_slot(struct kvm *kvm, const struct kvm_memory_slot *memslot, gfn_t gfn);
1227 void mark_page_dirty(struct kvm *kvm, gfn_t gfn);
1228
1229 struct kvm_memslots *kvm_vcpu_memslots(struct kvm_vcpu *vcpu);
1230 struct kvm_memory_slot *kvm_vcpu_gfn_to_memslot(struct kvm_vcpu *vcpu, gfn_t gfn);
1231 kvm_pfn_t kvm_vcpu_gfn_to_pfn_atomic(struct kvm_vcpu *vcpu, gfn_t gfn);
1232 kvm_pfn_t kvm_vcpu_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn);
1233 int kvm_vcpu_map(struct kvm_vcpu *vcpu, gpa_t gpa, struct kvm_host_map *map);
1234 struct page *kvm_vcpu_gfn_to_page(struct kvm_vcpu *vcpu, gfn_t gfn);
1235 void kvm_vcpu_unmap(struct kvm_vcpu *vcpu, struct kvm_host_map *map, bool dirty);
1236 unsigned long kvm_vcpu_gfn_to_hva(struct kvm_vcpu *vcpu, gfn_t gfn);
1237 unsigned long kvm_vcpu_gfn_to_hva_prot(struct kvm_vcpu *vcpu, gfn_t gfn, bool *writable);
1238 int kvm_vcpu_read_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, void *data, int offset,
1239 int len);
1240 int kvm_vcpu_read_guest_atomic(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1241 unsigned long len);
1242 int kvm_vcpu_read_guest(struct kvm_vcpu *vcpu, gpa_t gpa, void *data,
1243 unsigned long len);
1244 int kvm_vcpu_write_guest_page(struct kvm_vcpu *vcpu, gfn_t gfn, const void *data,
1245 int offset, int len);
1246 int kvm_vcpu_write_guest(struct kvm_vcpu *vcpu, gpa_t gpa, const void *data,
1247 unsigned long len);
1248 void kvm_vcpu_mark_page_dirty(struct kvm_vcpu *vcpu, gfn_t gfn);
1249
1250 /**
1251 * kvm_gfn_to_pfn_cache_init - prepare a cached kernel mapping and HPA for a
1252 * given guest physical address.
1253 *
1254 * @kvm: pointer to kvm instance.
1255 * @gpc: struct gfn_to_pfn_cache object.
1256 * @vcpu: vCPU to be used for marking pages dirty and to be woken on
1257 * invalidation.
1258 * @usage: indicates if the resulting host physical PFN is used while
1259 * the @vcpu is IN_GUEST_MODE (in which case invalidation of
1260 * the cache from MMU notifiers---but not for KVM memslot
1261 * changes!---will also force @vcpu to exit the guest and
1262 * refresh the cache); and/or if the PFN used directly
1263 * by KVM (and thus needs a kernel virtual mapping).
1264 * @gpa: guest physical address to map.
1265 * @len: sanity check; the range being access must fit a single page.
1266 *
1267 * @return: 0 for success.
1268 * -EINVAL for a mapping which would cross a page boundary.
1269 * -EFAULT for an untranslatable guest physical address.
1270 *
1271 * This primes a gfn_to_pfn_cache and links it into the @kvm's list for
1272 * invalidations to be processed. Callers are required to use
1273 * kvm_gfn_to_pfn_cache_check() to ensure that the cache is valid before
1274 * accessing the target page.
1275 */
1276 int kvm_gfn_to_pfn_cache_init(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1277 struct kvm_vcpu *vcpu, enum pfn_cache_usage usage,
1278 gpa_t gpa, unsigned long len);
1279
1280 /**
1281 * kvm_gfn_to_pfn_cache_check - check validity of a gfn_to_pfn_cache.
1282 *
1283 * @kvm: pointer to kvm instance.
1284 * @gpc: struct gfn_to_pfn_cache object.
1285 * @gpa: current guest physical address to map.
1286 * @len: sanity check; the range being access must fit a single page.
1287 *
1288 * @return: %true if the cache is still valid and the address matches.
1289 * %false if the cache is not valid.
1290 *
1291 * Callers outside IN_GUEST_MODE context should hold a read lock on @gpc->lock
1292 * while calling this function, and then continue to hold the lock until the
1293 * access is complete.
1294 *
1295 * Callers in IN_GUEST_MODE may do so without locking, although they should
1296 * still hold a read lock on kvm->scru for the memslot checks.
1297 */
1298 bool kvm_gfn_to_pfn_cache_check(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1299 gpa_t gpa, unsigned long len);
1300
1301 /**
1302 * kvm_gfn_to_pfn_cache_refresh - update a previously initialized cache.
1303 *
1304 * @kvm: pointer to kvm instance.
1305 * @gpc: struct gfn_to_pfn_cache object.
1306 * @gpa: updated guest physical address to map.
1307 * @len: sanity check; the range being access must fit a single page.
1308 *
1309 * @return: 0 for success.
1310 * -EINVAL for a mapping which would cross a page boundary.
1311 * -EFAULT for an untranslatable guest physical address.
1312 *
1313 * This will attempt to refresh a gfn_to_pfn_cache. Note that a successful
1314 * returm from this function does not mean the page can be immediately
1315 * accessed because it may have raced with an invalidation. Callers must
1316 * still lock and check the cache status, as this function does not return
1317 * with the lock still held to permit access.
1318 */
1319 int kvm_gfn_to_pfn_cache_refresh(struct kvm *kvm, struct gfn_to_pfn_cache *gpc,
1320 gpa_t gpa, unsigned long len);
1321
1322 /**
1323 * kvm_gfn_to_pfn_cache_unmap - temporarily unmap a gfn_to_pfn_cache.
1324 *
1325 * @kvm: pointer to kvm instance.
1326 * @gpc: struct gfn_to_pfn_cache object.
1327 *
1328 * This unmaps the referenced page. The cache is left in the invalid state
1329 * but at least the mapping from GPA to userspace HVA will remain cached
1330 * and can be reused on a subsequent refresh.
1331 */
1332 void kvm_gfn_to_pfn_cache_unmap(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
1333
1334 /**
1335 * kvm_gfn_to_pfn_cache_destroy - destroy and unlink a gfn_to_pfn_cache.
1336 *
1337 * @kvm: pointer to kvm instance.
1338 * @gpc: struct gfn_to_pfn_cache object.
1339 *
1340 * This removes a cache from the @kvm's list to be processed on MMU notifier
1341 * invocation.
1342 */
1343 void kvm_gfn_to_pfn_cache_destroy(struct kvm *kvm, struct gfn_to_pfn_cache *gpc);
1344
1345 void kvm_sigset_activate(struct kvm_vcpu *vcpu);
1346 void kvm_sigset_deactivate(struct kvm_vcpu *vcpu);
1347
1348 void kvm_vcpu_halt(struct kvm_vcpu *vcpu);
1349 bool kvm_vcpu_block(struct kvm_vcpu *vcpu);
1350 void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu);
1351 void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu);
1352 bool kvm_vcpu_wake_up(struct kvm_vcpu *vcpu);
1353 void kvm_vcpu_kick(struct kvm_vcpu *vcpu);
1354 int kvm_vcpu_yield_to(struct kvm_vcpu *target);
1355 void kvm_vcpu_on_spin(struct kvm_vcpu *vcpu, bool usermode_vcpu_not_eligible);
1356
1357 void kvm_flush_remote_tlbs(struct kvm *kvm);
1358
1359 #ifdef KVM_ARCH_NR_OBJS_PER_MEMORY_CACHE
1360 int kvm_mmu_topup_memory_cache(struct kvm_mmu_memory_cache *mc, int min);
1361 int kvm_mmu_memory_cache_nr_free_objects(struct kvm_mmu_memory_cache *mc);
1362 void kvm_mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc);
1363 void *kvm_mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc);
1364 #endif
1365
1366 void kvm_inc_notifier_count(struct kvm *kvm, unsigned long start,
1367 unsigned long end);
1368 void kvm_dec_notifier_count(struct kvm *kvm, unsigned long start,
1369 unsigned long end);
1370
1371 long kvm_arch_dev_ioctl(struct file *filp,
1372 unsigned int ioctl, unsigned long arg);
1373 long kvm_arch_vcpu_ioctl(struct file *filp,
1374 unsigned int ioctl, unsigned long arg);
1375 vm_fault_t kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf);
1376
1377 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext);
1378
1379 void kvm_arch_mmu_enable_log_dirty_pt_masked(struct kvm *kvm,
1380 struct kvm_memory_slot *slot,
1381 gfn_t gfn_offset,
1382 unsigned long mask);
1383 void kvm_arch_sync_dirty_log(struct kvm *kvm, struct kvm_memory_slot *memslot);
1384
1385 #ifdef CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT
1386 void kvm_arch_flush_remote_tlbs_memslot(struct kvm *kvm,
1387 const struct kvm_memory_slot *memslot);
1388 #else /* !CONFIG_KVM_GENERIC_DIRTYLOG_READ_PROTECT */
1389 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log);
1390 int kvm_get_dirty_log(struct kvm *kvm, struct kvm_dirty_log *log,
1391 int *is_dirty, struct kvm_memory_slot **memslot);
1392 #endif
1393
1394 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_level,
1395 bool line_status);
1396 int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1397 struct kvm_enable_cap *cap);
1398 long kvm_arch_vm_ioctl(struct file *filp,
1399 unsigned int ioctl, unsigned long arg);
1400
1401 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1402 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu);
1403
1404 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1405 struct kvm_translation *tr);
1406
1407 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1408 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs);
1409 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1410 struct kvm_sregs *sregs);
1411 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1412 struct kvm_sregs *sregs);
1413 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1414 struct kvm_mp_state *mp_state);
1415 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1416 struct kvm_mp_state *mp_state);
1417 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1418 struct kvm_guest_debug *dbg);
1419 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu);
1420
1421 int kvm_arch_init(void *opaque);
1422 void kvm_arch_exit(void);
1423
1424 void kvm_arch_sched_in(struct kvm_vcpu *vcpu, int cpu);
1425
1426 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu);
1427 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu);
1428 int kvm_arch_vcpu_precreate(struct kvm *kvm, unsigned int id);
1429 int kvm_arch_vcpu_create(struct kvm_vcpu *vcpu);
1430 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu);
1431 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu);
1432
1433 #ifdef CONFIG_HAVE_KVM_PM_NOTIFIER
1434 int kvm_arch_pm_notifier(struct kvm *kvm, unsigned long state);
1435 #endif
1436
1437 #ifdef __KVM_HAVE_ARCH_VCPU_DEBUGFS
1438 void kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu, struct dentry *debugfs_dentry);
1439 #endif
1440
1441 int kvm_arch_hardware_enable(void);
1442 void kvm_arch_hardware_disable(void);
1443 int kvm_arch_hardware_setup(void *opaque);
1444 void kvm_arch_hardware_unsetup(void);
1445 int kvm_arch_check_processor_compat(void *opaque);
1446 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu);
1447 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu);
1448 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu);
1449 bool kvm_arch_dy_runnable(struct kvm_vcpu *vcpu);
1450 bool kvm_arch_dy_has_pending_interrupt(struct kvm_vcpu *vcpu);
1451 int kvm_arch_post_init_vm(struct kvm *kvm);
1452 void kvm_arch_pre_destroy_vm(struct kvm *kvm);
1453 int kvm_arch_create_vm_debugfs(struct kvm *kvm);
1454
1455 #ifndef __KVM_HAVE_ARCH_VM_ALLOC
1456 /*
1457 * All architectures that want to use vzalloc currently also
1458 * need their own kvm_arch_alloc_vm implementation.
1459 */
kvm_arch_alloc_vm(void)1460 static inline struct kvm *kvm_arch_alloc_vm(void)
1461 {
1462 return kzalloc(sizeof(struct kvm), GFP_KERNEL);
1463 }
1464 #endif
1465
__kvm_arch_free_vm(struct kvm * kvm)1466 static inline void __kvm_arch_free_vm(struct kvm *kvm)
1467 {
1468 kvfree(kvm);
1469 }
1470
1471 #ifndef __KVM_HAVE_ARCH_VM_FREE
kvm_arch_free_vm(struct kvm * kvm)1472 static inline void kvm_arch_free_vm(struct kvm *kvm)
1473 {
1474 __kvm_arch_free_vm(kvm);
1475 }
1476 #endif
1477
1478 #ifndef __KVM_HAVE_ARCH_FLUSH_REMOTE_TLB
kvm_arch_flush_remote_tlb(struct kvm * kvm)1479 static inline int kvm_arch_flush_remote_tlb(struct kvm *kvm)
1480 {
1481 return -ENOTSUPP;
1482 }
1483 #endif
1484
1485 #ifdef __KVM_HAVE_ARCH_NONCOHERENT_DMA
1486 void kvm_arch_register_noncoherent_dma(struct kvm *kvm);
1487 void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm);
1488 bool kvm_arch_has_noncoherent_dma(struct kvm *kvm);
1489 #else
kvm_arch_register_noncoherent_dma(struct kvm * kvm)1490 static inline void kvm_arch_register_noncoherent_dma(struct kvm *kvm)
1491 {
1492 }
1493
kvm_arch_unregister_noncoherent_dma(struct kvm * kvm)1494 static inline void kvm_arch_unregister_noncoherent_dma(struct kvm *kvm)
1495 {
1496 }
1497
kvm_arch_has_noncoherent_dma(struct kvm * kvm)1498 static inline bool kvm_arch_has_noncoherent_dma(struct kvm *kvm)
1499 {
1500 return false;
1501 }
1502 #endif
1503 #ifdef __KVM_HAVE_ARCH_ASSIGNED_DEVICE
1504 void kvm_arch_start_assignment(struct kvm *kvm);
1505 void kvm_arch_end_assignment(struct kvm *kvm);
1506 bool kvm_arch_has_assigned_device(struct kvm *kvm);
1507 #else
kvm_arch_start_assignment(struct kvm * kvm)1508 static inline void kvm_arch_start_assignment(struct kvm *kvm)
1509 {
1510 }
1511
kvm_arch_end_assignment(struct kvm * kvm)1512 static inline void kvm_arch_end_assignment(struct kvm *kvm)
1513 {
1514 }
1515
kvm_arch_has_assigned_device(struct kvm * kvm)1516 static __always_inline bool kvm_arch_has_assigned_device(struct kvm *kvm)
1517 {
1518 return false;
1519 }
1520 #endif
1521
kvm_arch_vcpu_get_wait(struct kvm_vcpu * vcpu)1522 static inline struct rcuwait *kvm_arch_vcpu_get_wait(struct kvm_vcpu *vcpu)
1523 {
1524 #ifdef __KVM_HAVE_ARCH_WQP
1525 return vcpu->arch.waitp;
1526 #else
1527 return &vcpu->wait;
1528 #endif
1529 }
1530
1531 /*
1532 * Wake a vCPU if necessary, but don't do any stats/metadata updates. Returns
1533 * true if the vCPU was blocking and was awakened, false otherwise.
1534 */
__kvm_vcpu_wake_up(struct kvm_vcpu * vcpu)1535 static inline bool __kvm_vcpu_wake_up(struct kvm_vcpu *vcpu)
1536 {
1537 return !!rcuwait_wake_up(kvm_arch_vcpu_get_wait(vcpu));
1538 }
1539
kvm_vcpu_is_blocking(struct kvm_vcpu * vcpu)1540 static inline bool kvm_vcpu_is_blocking(struct kvm_vcpu *vcpu)
1541 {
1542 return rcuwait_active(kvm_arch_vcpu_get_wait(vcpu));
1543 }
1544
1545 #ifdef __KVM_HAVE_ARCH_INTC_INITIALIZED
1546 /*
1547 * returns true if the virtual interrupt controller is initialized and
1548 * ready to accept virtual IRQ. On some architectures the virtual interrupt
1549 * controller is dynamically instantiated and this is not always true.
1550 */
1551 bool kvm_arch_intc_initialized(struct kvm *kvm);
1552 #else
kvm_arch_intc_initialized(struct kvm * kvm)1553 static inline bool kvm_arch_intc_initialized(struct kvm *kvm)
1554 {
1555 return true;
1556 }
1557 #endif
1558
1559 #ifdef CONFIG_GUEST_PERF_EVENTS
1560 unsigned long kvm_arch_vcpu_get_ip(struct kvm_vcpu *vcpu);
1561
1562 void kvm_register_perf_callbacks(unsigned int (*pt_intr_handler)(void));
1563 void kvm_unregister_perf_callbacks(void);
1564 #else
kvm_register_perf_callbacks(void * ign)1565 static inline void kvm_register_perf_callbacks(void *ign) {}
kvm_unregister_perf_callbacks(void)1566 static inline void kvm_unregister_perf_callbacks(void) {}
1567 #endif /* CONFIG_GUEST_PERF_EVENTS */
1568
1569 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type);
1570 void kvm_arch_destroy_vm(struct kvm *kvm);
1571 void kvm_arch_sync_events(struct kvm *kvm);
1572
1573 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu);
1574
1575 bool kvm_is_reserved_pfn(kvm_pfn_t pfn);
1576 bool kvm_is_zone_device_pfn(kvm_pfn_t pfn);
1577
1578 struct kvm_irq_ack_notifier {
1579 struct hlist_node link;
1580 unsigned gsi;
1581 void (*irq_acked)(struct kvm_irq_ack_notifier *kian);
1582 };
1583
1584 int kvm_irq_map_gsi(struct kvm *kvm,
1585 struct kvm_kernel_irq_routing_entry *entries, int gsi);
1586 int kvm_irq_map_chip_pin(struct kvm *kvm, unsigned irqchip, unsigned pin);
1587
1588 int kvm_set_irq(struct kvm *kvm, int irq_source_id, u32 irq, int level,
1589 bool line_status);
1590 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *irq_entry, struct kvm *kvm,
1591 int irq_source_id, int level, bool line_status);
1592 int kvm_arch_set_irq_inatomic(struct kvm_kernel_irq_routing_entry *e,
1593 struct kvm *kvm, int irq_source_id,
1594 int level, bool line_status);
1595 bool kvm_irq_has_notifier(struct kvm *kvm, unsigned irqchip, unsigned pin);
1596 void kvm_notify_acked_gsi(struct kvm *kvm, int gsi);
1597 void kvm_notify_acked_irq(struct kvm *kvm, unsigned irqchip, unsigned pin);
1598 void kvm_register_irq_ack_notifier(struct kvm *kvm,
1599 struct kvm_irq_ack_notifier *kian);
1600 void kvm_unregister_irq_ack_notifier(struct kvm *kvm,
1601 struct kvm_irq_ack_notifier *kian);
1602 int kvm_request_irq_source_id(struct kvm *kvm);
1603 void kvm_free_irq_source_id(struct kvm *kvm, int irq_source_id);
1604 bool kvm_arch_irqfd_allowed(struct kvm *kvm, struct kvm_irqfd *args);
1605
1606 /*
1607 * Returns a pointer to the memslot if it contains gfn.
1608 * Otherwise returns NULL.
1609 */
1610 static inline struct kvm_memory_slot *
try_get_memslot(struct kvm_memory_slot * slot,gfn_t gfn)1611 try_get_memslot(struct kvm_memory_slot *slot, gfn_t gfn)
1612 {
1613 if (!slot)
1614 return NULL;
1615
1616 if (gfn >= slot->base_gfn && gfn < slot->base_gfn + slot->npages)
1617 return slot;
1618 else
1619 return NULL;
1620 }
1621
1622 /*
1623 * Returns a pointer to the memslot that contains gfn. Otherwise returns NULL.
1624 *
1625 * With "approx" set returns the memslot also when the address falls
1626 * in a hole. In that case one of the memslots bordering the hole is
1627 * returned.
1628 */
1629 static inline struct kvm_memory_slot *
search_memslots(struct kvm_memslots * slots,gfn_t gfn,bool approx)1630 search_memslots(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1631 {
1632 struct kvm_memory_slot *slot;
1633 struct rb_node *node;
1634 int idx = slots->node_idx;
1635
1636 slot = NULL;
1637 for (node = slots->gfn_tree.rb_node; node; ) {
1638 slot = container_of(node, struct kvm_memory_slot, gfn_node[idx]);
1639 if (gfn >= slot->base_gfn) {
1640 if (gfn < slot->base_gfn + slot->npages)
1641 return slot;
1642 node = node->rb_right;
1643 } else
1644 node = node->rb_left;
1645 }
1646
1647 return approx ? slot : NULL;
1648 }
1649
1650 static inline struct kvm_memory_slot *
____gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn,bool approx)1651 ____gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn, bool approx)
1652 {
1653 struct kvm_memory_slot *slot;
1654
1655 slot = (struct kvm_memory_slot *)atomic_long_read(&slots->last_used_slot);
1656 slot = try_get_memslot(slot, gfn);
1657 if (slot)
1658 return slot;
1659
1660 slot = search_memslots(slots, gfn, approx);
1661 if (slot) {
1662 atomic_long_set(&slots->last_used_slot, (unsigned long)slot);
1663 return slot;
1664 }
1665
1666 return NULL;
1667 }
1668
1669 /*
1670 * __gfn_to_memslot() and its descendants are here to allow arch code to inline
1671 * the lookups in hot paths. gfn_to_memslot() itself isn't here as an inline
1672 * because that would bloat other code too much.
1673 */
1674 static inline struct kvm_memory_slot *
__gfn_to_memslot(struct kvm_memslots * slots,gfn_t gfn)1675 __gfn_to_memslot(struct kvm_memslots *slots, gfn_t gfn)
1676 {
1677 return ____gfn_to_memslot(slots, gfn, false);
1678 }
1679
1680 static inline unsigned long
__gfn_to_hva_memslot(const struct kvm_memory_slot * slot,gfn_t gfn)1681 __gfn_to_hva_memslot(const struct kvm_memory_slot *slot, gfn_t gfn)
1682 {
1683 /*
1684 * The index was checked originally in search_memslots. To avoid
1685 * that a malicious guest builds a Spectre gadget out of e.g. page
1686 * table walks, do not let the processor speculate loads outside
1687 * the guest's registered memslots.
1688 */
1689 unsigned long offset = gfn - slot->base_gfn;
1690 offset = array_index_nospec(offset, slot->npages);
1691 return slot->userspace_addr + offset * PAGE_SIZE;
1692 }
1693
memslot_id(struct kvm * kvm,gfn_t gfn)1694 static inline int memslot_id(struct kvm *kvm, gfn_t gfn)
1695 {
1696 return gfn_to_memslot(kvm, gfn)->id;
1697 }
1698
1699 static inline gfn_t
hva_to_gfn_memslot(unsigned long hva,struct kvm_memory_slot * slot)1700 hva_to_gfn_memslot(unsigned long hva, struct kvm_memory_slot *slot)
1701 {
1702 gfn_t gfn_offset = (hva - slot->userspace_addr) >> PAGE_SHIFT;
1703
1704 return slot->base_gfn + gfn_offset;
1705 }
1706
gfn_to_gpa(gfn_t gfn)1707 static inline gpa_t gfn_to_gpa(gfn_t gfn)
1708 {
1709 return (gpa_t)gfn << PAGE_SHIFT;
1710 }
1711
gpa_to_gfn(gpa_t gpa)1712 static inline gfn_t gpa_to_gfn(gpa_t gpa)
1713 {
1714 return (gfn_t)(gpa >> PAGE_SHIFT);
1715 }
1716
pfn_to_hpa(kvm_pfn_t pfn)1717 static inline hpa_t pfn_to_hpa(kvm_pfn_t pfn)
1718 {
1719 return (hpa_t)pfn << PAGE_SHIFT;
1720 }
1721
kvm_vcpu_gpa_to_page(struct kvm_vcpu * vcpu,gpa_t gpa)1722 static inline struct page *kvm_vcpu_gpa_to_page(struct kvm_vcpu *vcpu,
1723 gpa_t gpa)
1724 {
1725 return kvm_vcpu_gfn_to_page(vcpu, gpa_to_gfn(gpa));
1726 }
1727
kvm_is_error_gpa(struct kvm * kvm,gpa_t gpa)1728 static inline bool kvm_is_error_gpa(struct kvm *kvm, gpa_t gpa)
1729 {
1730 unsigned long hva = gfn_to_hva(kvm, gpa_to_gfn(gpa));
1731
1732 return kvm_is_error_hva(hva);
1733 }
1734
1735 enum kvm_stat_kind {
1736 KVM_STAT_VM,
1737 KVM_STAT_VCPU,
1738 };
1739
1740 struct kvm_stat_data {
1741 struct kvm *kvm;
1742 const struct _kvm_stats_desc *desc;
1743 enum kvm_stat_kind kind;
1744 };
1745
1746 struct _kvm_stats_desc {
1747 struct kvm_stats_desc desc;
1748 char name[KVM_STATS_NAME_SIZE];
1749 };
1750
1751 #define STATS_DESC_COMMON(type, unit, base, exp, sz, bsz) \
1752 .flags = type | unit | base | \
1753 BUILD_BUG_ON_ZERO(type & ~KVM_STATS_TYPE_MASK) | \
1754 BUILD_BUG_ON_ZERO(unit & ~KVM_STATS_UNIT_MASK) | \
1755 BUILD_BUG_ON_ZERO(base & ~KVM_STATS_BASE_MASK), \
1756 .exponent = exp, \
1757 .size = sz, \
1758 .bucket_size = bsz
1759
1760 #define VM_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1761 { \
1762 { \
1763 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1764 .offset = offsetof(struct kvm_vm_stat, generic.stat) \
1765 }, \
1766 .name = #stat, \
1767 }
1768 #define VCPU_GENERIC_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1769 { \
1770 { \
1771 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1772 .offset = offsetof(struct kvm_vcpu_stat, generic.stat) \
1773 }, \
1774 .name = #stat, \
1775 }
1776 #define VM_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1777 { \
1778 { \
1779 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1780 .offset = offsetof(struct kvm_vm_stat, stat) \
1781 }, \
1782 .name = #stat, \
1783 }
1784 #define VCPU_STATS_DESC(stat, type, unit, base, exp, sz, bsz) \
1785 { \
1786 { \
1787 STATS_DESC_COMMON(type, unit, base, exp, sz, bsz), \
1788 .offset = offsetof(struct kvm_vcpu_stat, stat) \
1789 }, \
1790 .name = #stat, \
1791 }
1792 /* SCOPE: VM, VM_GENERIC, VCPU, VCPU_GENERIC */
1793 #define STATS_DESC(SCOPE, stat, type, unit, base, exp, sz, bsz) \
1794 SCOPE##_STATS_DESC(stat, type, unit, base, exp, sz, bsz)
1795
1796 #define STATS_DESC_CUMULATIVE(SCOPE, name, unit, base, exponent) \
1797 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_CUMULATIVE, \
1798 unit, base, exponent, 1, 0)
1799 #define STATS_DESC_INSTANT(SCOPE, name, unit, base, exponent) \
1800 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_INSTANT, \
1801 unit, base, exponent, 1, 0)
1802 #define STATS_DESC_PEAK(SCOPE, name, unit, base, exponent) \
1803 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_PEAK, \
1804 unit, base, exponent, 1, 0)
1805 #define STATS_DESC_LINEAR_HIST(SCOPE, name, unit, base, exponent, sz, bsz) \
1806 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LINEAR_HIST, \
1807 unit, base, exponent, sz, bsz)
1808 #define STATS_DESC_LOG_HIST(SCOPE, name, unit, base, exponent, sz) \
1809 STATS_DESC(SCOPE, name, KVM_STATS_TYPE_LOG_HIST, \
1810 unit, base, exponent, sz, 0)
1811
1812 /* Cumulative counter, read/write */
1813 #define STATS_DESC_COUNTER(SCOPE, name) \
1814 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_NONE, \
1815 KVM_STATS_BASE_POW10, 0)
1816 /* Instantaneous counter, read only */
1817 #define STATS_DESC_ICOUNTER(SCOPE, name) \
1818 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_NONE, \
1819 KVM_STATS_BASE_POW10, 0)
1820 /* Peak counter, read/write */
1821 #define STATS_DESC_PCOUNTER(SCOPE, name) \
1822 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_NONE, \
1823 KVM_STATS_BASE_POW10, 0)
1824
1825 /* Instantaneous boolean value, read only */
1826 #define STATS_DESC_IBOOLEAN(SCOPE, name) \
1827 STATS_DESC_INSTANT(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1828 KVM_STATS_BASE_POW10, 0)
1829 /* Peak (sticky) boolean value, read/write */
1830 #define STATS_DESC_PBOOLEAN(SCOPE, name) \
1831 STATS_DESC_PEAK(SCOPE, name, KVM_STATS_UNIT_BOOLEAN, \
1832 KVM_STATS_BASE_POW10, 0)
1833
1834 /* Cumulative time in nanosecond */
1835 #define STATS_DESC_TIME_NSEC(SCOPE, name) \
1836 STATS_DESC_CUMULATIVE(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1837 KVM_STATS_BASE_POW10, -9)
1838 /* Linear histogram for time in nanosecond */
1839 #define STATS_DESC_LINHIST_TIME_NSEC(SCOPE, name, sz, bsz) \
1840 STATS_DESC_LINEAR_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1841 KVM_STATS_BASE_POW10, -9, sz, bsz)
1842 /* Logarithmic histogram for time in nanosecond */
1843 #define STATS_DESC_LOGHIST_TIME_NSEC(SCOPE, name, sz) \
1844 STATS_DESC_LOG_HIST(SCOPE, name, KVM_STATS_UNIT_SECONDS, \
1845 KVM_STATS_BASE_POW10, -9, sz)
1846
1847 #define KVM_GENERIC_VM_STATS() \
1848 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush), \
1849 STATS_DESC_COUNTER(VM_GENERIC, remote_tlb_flush_requests)
1850
1851 #define KVM_GENERIC_VCPU_STATS() \
1852 STATS_DESC_COUNTER(VCPU_GENERIC, halt_successful_poll), \
1853 STATS_DESC_COUNTER(VCPU_GENERIC, halt_attempted_poll), \
1854 STATS_DESC_COUNTER(VCPU_GENERIC, halt_poll_invalid), \
1855 STATS_DESC_COUNTER(VCPU_GENERIC, halt_wakeup), \
1856 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_success_ns), \
1857 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_ns), \
1858 STATS_DESC_TIME_NSEC(VCPU_GENERIC, halt_wait_ns), \
1859 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_success_hist, \
1860 HALT_POLL_HIST_COUNT), \
1861 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_poll_fail_hist, \
1862 HALT_POLL_HIST_COUNT), \
1863 STATS_DESC_LOGHIST_TIME_NSEC(VCPU_GENERIC, halt_wait_hist, \
1864 HALT_POLL_HIST_COUNT), \
1865 STATS_DESC_IBOOLEAN(VCPU_GENERIC, blocking)
1866
1867 extern struct dentry *kvm_debugfs_dir;
1868
1869 ssize_t kvm_stats_read(char *id, const struct kvm_stats_header *header,
1870 const struct _kvm_stats_desc *desc,
1871 void *stats, size_t size_stats,
1872 char __user *user_buffer, size_t size, loff_t *offset);
1873
1874 /**
1875 * kvm_stats_linear_hist_update() - Update bucket value for linear histogram
1876 * statistics data.
1877 *
1878 * @data: start address of the stats data
1879 * @size: the number of bucket of the stats data
1880 * @value: the new value used to update the linear histogram's bucket
1881 * @bucket_size: the size (width) of a bucket
1882 */
kvm_stats_linear_hist_update(u64 * data,size_t size,u64 value,size_t bucket_size)1883 static inline void kvm_stats_linear_hist_update(u64 *data, size_t size,
1884 u64 value, size_t bucket_size)
1885 {
1886 size_t index = div64_u64(value, bucket_size);
1887
1888 index = min(index, size - 1);
1889 ++data[index];
1890 }
1891
1892 /**
1893 * kvm_stats_log_hist_update() - Update bucket value for logarithmic histogram
1894 * statistics data.
1895 *
1896 * @data: start address of the stats data
1897 * @size: the number of bucket of the stats data
1898 * @value: the new value used to update the logarithmic histogram's bucket
1899 */
kvm_stats_log_hist_update(u64 * data,size_t size,u64 value)1900 static inline void kvm_stats_log_hist_update(u64 *data, size_t size, u64 value)
1901 {
1902 size_t index = fls64(value);
1903
1904 index = min(index, size - 1);
1905 ++data[index];
1906 }
1907
1908 #define KVM_STATS_LINEAR_HIST_UPDATE(array, value, bsize) \
1909 kvm_stats_linear_hist_update(array, ARRAY_SIZE(array), value, bsize)
1910 #define KVM_STATS_LOG_HIST_UPDATE(array, value) \
1911 kvm_stats_log_hist_update(array, ARRAY_SIZE(array), value)
1912
1913
1914 extern const struct kvm_stats_header kvm_vm_stats_header;
1915 extern const struct _kvm_stats_desc kvm_vm_stats_desc[];
1916 extern const struct kvm_stats_header kvm_vcpu_stats_header;
1917 extern const struct _kvm_stats_desc kvm_vcpu_stats_desc[];
1918
1919 #if defined(CONFIG_MMU_NOTIFIER) && defined(KVM_ARCH_WANT_MMU_NOTIFIER)
mmu_notifier_retry(struct kvm * kvm,unsigned long mmu_seq)1920 static inline int mmu_notifier_retry(struct kvm *kvm, unsigned long mmu_seq)
1921 {
1922 if (unlikely(kvm->mmu_notifier_count))
1923 return 1;
1924 /*
1925 * Ensure the read of mmu_notifier_count happens before the read
1926 * of mmu_notifier_seq. This interacts with the smp_wmb() in
1927 * mmu_notifier_invalidate_range_end to make sure that the caller
1928 * either sees the old (non-zero) value of mmu_notifier_count or
1929 * the new (incremented) value of mmu_notifier_seq.
1930 * PowerPC Book3s HV KVM calls this under a per-page lock
1931 * rather than under kvm->mmu_lock, for scalability, so
1932 * can't rely on kvm->mmu_lock to keep things ordered.
1933 */
1934 smp_rmb();
1935 if (kvm->mmu_notifier_seq != mmu_seq)
1936 return 1;
1937 return 0;
1938 }
1939
mmu_notifier_retry_hva(struct kvm * kvm,unsigned long mmu_seq,unsigned long hva)1940 static inline int mmu_notifier_retry_hva(struct kvm *kvm,
1941 unsigned long mmu_seq,
1942 unsigned long hva)
1943 {
1944 lockdep_assert_held(&kvm->mmu_lock);
1945 /*
1946 * If mmu_notifier_count is non-zero, then the range maintained by
1947 * kvm_mmu_notifier_invalidate_range_start contains all addresses that
1948 * might be being invalidated. Note that it may include some false
1949 * positives, due to shortcuts when handing concurrent invalidations.
1950 */
1951 if (unlikely(kvm->mmu_notifier_count) &&
1952 hva >= kvm->mmu_notifier_range_start &&
1953 hva < kvm->mmu_notifier_range_end)
1954 return 1;
1955 if (kvm->mmu_notifier_seq != mmu_seq)
1956 return 1;
1957 return 0;
1958 }
1959 #endif
1960
1961 #ifdef CONFIG_HAVE_KVM_IRQ_ROUTING
1962
1963 #define KVM_MAX_IRQ_ROUTES 4096 /* might need extension/rework in the future */
1964
1965 bool kvm_arch_can_set_irq_routing(struct kvm *kvm);
1966 int kvm_set_irq_routing(struct kvm *kvm,
1967 const struct kvm_irq_routing_entry *entries,
1968 unsigned nr,
1969 unsigned flags);
1970 int kvm_set_routing_entry(struct kvm *kvm,
1971 struct kvm_kernel_irq_routing_entry *e,
1972 const struct kvm_irq_routing_entry *ue);
1973 void kvm_free_irq_routing(struct kvm *kvm);
1974
1975 #else
1976
kvm_free_irq_routing(struct kvm * kvm)1977 static inline void kvm_free_irq_routing(struct kvm *kvm) {}
1978
1979 #endif
1980
1981 int kvm_send_userspace_msi(struct kvm *kvm, struct kvm_msi *msi);
1982
1983 #ifdef CONFIG_HAVE_KVM_EVENTFD
1984
1985 void kvm_eventfd_init(struct kvm *kvm);
1986 int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args);
1987
1988 #ifdef CONFIG_HAVE_KVM_IRQFD
1989 int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args);
1990 void kvm_irqfd_release(struct kvm *kvm);
1991 void kvm_irq_routing_update(struct kvm *);
1992 #else
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)1993 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
1994 {
1995 return -EINVAL;
1996 }
1997
kvm_irqfd_release(struct kvm * kvm)1998 static inline void kvm_irqfd_release(struct kvm *kvm) {}
1999 #endif
2000
2001 #else
2002
kvm_eventfd_init(struct kvm * kvm)2003 static inline void kvm_eventfd_init(struct kvm *kvm) {}
2004
kvm_irqfd(struct kvm * kvm,struct kvm_irqfd * args)2005 static inline int kvm_irqfd(struct kvm *kvm, struct kvm_irqfd *args)
2006 {
2007 return -EINVAL;
2008 }
2009
kvm_irqfd_release(struct kvm * kvm)2010 static inline void kvm_irqfd_release(struct kvm *kvm) {}
2011
2012 #ifdef CONFIG_HAVE_KVM_IRQCHIP
kvm_irq_routing_update(struct kvm * kvm)2013 static inline void kvm_irq_routing_update(struct kvm *kvm)
2014 {
2015 }
2016 #endif
2017
kvm_ioeventfd(struct kvm * kvm,struct kvm_ioeventfd * args)2018 static inline int kvm_ioeventfd(struct kvm *kvm, struct kvm_ioeventfd *args)
2019 {
2020 return -ENOSYS;
2021 }
2022
2023 #endif /* CONFIG_HAVE_KVM_EVENTFD */
2024
2025 void kvm_arch_irq_routing_update(struct kvm *kvm);
2026
__kvm_make_request(int req,struct kvm_vcpu * vcpu)2027 static inline void __kvm_make_request(int req, struct kvm_vcpu *vcpu)
2028 {
2029 /*
2030 * Ensure the rest of the request is published to kvm_check_request's
2031 * caller. Paired with the smp_mb__after_atomic in kvm_check_request.
2032 */
2033 smp_wmb();
2034 set_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2035 }
2036
kvm_make_request(int req,struct kvm_vcpu * vcpu)2037 static __always_inline void kvm_make_request(int req, struct kvm_vcpu *vcpu)
2038 {
2039 /*
2040 * Request that don't require vCPU action should never be logged in
2041 * vcpu->requests. The vCPU won't clear the request, so it will stay
2042 * logged indefinitely and prevent the vCPU from entering the guest.
2043 */
2044 BUILD_BUG_ON(!__builtin_constant_p(req) ||
2045 (req & KVM_REQUEST_NO_ACTION));
2046
2047 __kvm_make_request(req, vcpu);
2048 }
2049
kvm_request_pending(struct kvm_vcpu * vcpu)2050 static inline bool kvm_request_pending(struct kvm_vcpu *vcpu)
2051 {
2052 return READ_ONCE(vcpu->requests);
2053 }
2054
kvm_test_request(int req,struct kvm_vcpu * vcpu)2055 static inline bool kvm_test_request(int req, struct kvm_vcpu *vcpu)
2056 {
2057 return test_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2058 }
2059
kvm_clear_request(int req,struct kvm_vcpu * vcpu)2060 static inline void kvm_clear_request(int req, struct kvm_vcpu *vcpu)
2061 {
2062 clear_bit(req & KVM_REQUEST_MASK, (void *)&vcpu->requests);
2063 }
2064
kvm_check_request(int req,struct kvm_vcpu * vcpu)2065 static inline bool kvm_check_request(int req, struct kvm_vcpu *vcpu)
2066 {
2067 if (kvm_test_request(req, vcpu)) {
2068 kvm_clear_request(req, vcpu);
2069
2070 /*
2071 * Ensure the rest of the request is visible to kvm_check_request's
2072 * caller. Paired with the smp_wmb in kvm_make_request.
2073 */
2074 smp_mb__after_atomic();
2075 return true;
2076 } else {
2077 return false;
2078 }
2079 }
2080
2081 extern bool kvm_rebooting;
2082
2083 extern unsigned int halt_poll_ns;
2084 extern unsigned int halt_poll_ns_grow;
2085 extern unsigned int halt_poll_ns_grow_start;
2086 extern unsigned int halt_poll_ns_shrink;
2087
2088 struct kvm_device {
2089 const struct kvm_device_ops *ops;
2090 struct kvm *kvm;
2091 void *private;
2092 struct list_head vm_node;
2093 };
2094
2095 /* create, destroy, and name are mandatory */
2096 struct kvm_device_ops {
2097 const char *name;
2098
2099 /*
2100 * create is called holding kvm->lock and any operations not suitable
2101 * to do while holding the lock should be deferred to init (see
2102 * below).
2103 */
2104 int (*create)(struct kvm_device *dev, u32 type);
2105
2106 /*
2107 * init is called after create if create is successful and is called
2108 * outside of holding kvm->lock.
2109 */
2110 void (*init)(struct kvm_device *dev);
2111
2112 /*
2113 * Destroy is responsible for freeing dev.
2114 *
2115 * Destroy may be called before or after destructors are called
2116 * on emulated I/O regions, depending on whether a reference is
2117 * held by a vcpu or other kvm component that gets destroyed
2118 * after the emulated I/O.
2119 */
2120 void (*destroy)(struct kvm_device *dev);
2121
2122 /*
2123 * Release is an alternative method to free the device. It is
2124 * called when the device file descriptor is closed. Once
2125 * release is called, the destroy method will not be called
2126 * anymore as the device is removed from the device list of
2127 * the VM. kvm->lock is held.
2128 */
2129 void (*release)(struct kvm_device *dev);
2130
2131 int (*set_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2132 int (*get_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2133 int (*has_attr)(struct kvm_device *dev, struct kvm_device_attr *attr);
2134 long (*ioctl)(struct kvm_device *dev, unsigned int ioctl,
2135 unsigned long arg);
2136 int (*mmap)(struct kvm_device *dev, struct vm_area_struct *vma);
2137 };
2138
2139 void kvm_device_get(struct kvm_device *dev);
2140 void kvm_device_put(struct kvm_device *dev);
2141 struct kvm_device *kvm_device_from_filp(struct file *filp);
2142 int kvm_register_device_ops(const struct kvm_device_ops *ops, u32 type);
2143 void kvm_unregister_device_ops(u32 type);
2144
2145 extern struct kvm_device_ops kvm_mpic_ops;
2146 extern struct kvm_device_ops kvm_arm_vgic_v2_ops;
2147 extern struct kvm_device_ops kvm_arm_vgic_v3_ops;
2148
2149 #ifdef CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT
2150
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2151 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2152 {
2153 vcpu->spin_loop.in_spin_loop = val;
2154 }
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2155 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2156 {
2157 vcpu->spin_loop.dy_eligible = val;
2158 }
2159
2160 #else /* !CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2161
kvm_vcpu_set_in_spin_loop(struct kvm_vcpu * vcpu,bool val)2162 static inline void kvm_vcpu_set_in_spin_loop(struct kvm_vcpu *vcpu, bool val)
2163 {
2164 }
2165
kvm_vcpu_set_dy_eligible(struct kvm_vcpu * vcpu,bool val)2166 static inline void kvm_vcpu_set_dy_eligible(struct kvm_vcpu *vcpu, bool val)
2167 {
2168 }
2169 #endif /* CONFIG_HAVE_KVM_CPU_RELAX_INTERCEPT */
2170
kvm_is_visible_memslot(struct kvm_memory_slot * memslot)2171 static inline bool kvm_is_visible_memslot(struct kvm_memory_slot *memslot)
2172 {
2173 return (memslot && memslot->id < KVM_USER_MEM_SLOTS &&
2174 !(memslot->flags & KVM_MEMSLOT_INVALID));
2175 }
2176
2177 struct kvm_vcpu *kvm_get_running_vcpu(void);
2178 struct kvm_vcpu * __percpu *kvm_get_running_vcpus(void);
2179
2180 #ifdef CONFIG_HAVE_KVM_IRQ_BYPASS
2181 bool kvm_arch_has_irq_bypass(void);
2182 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *,
2183 struct irq_bypass_producer *);
2184 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *,
2185 struct irq_bypass_producer *);
2186 void kvm_arch_irq_bypass_stop(struct irq_bypass_consumer *);
2187 void kvm_arch_irq_bypass_start(struct irq_bypass_consumer *);
2188 int kvm_arch_update_irqfd_routing(struct kvm *kvm, unsigned int host_irq,
2189 uint32_t guest_irq, bool set);
2190 bool kvm_arch_irqfd_route_changed(struct kvm_kernel_irq_routing_entry *,
2191 struct kvm_kernel_irq_routing_entry *);
2192 #endif /* CONFIG_HAVE_KVM_IRQ_BYPASS */
2193
2194 #ifdef CONFIG_HAVE_KVM_INVALID_WAKEUPS
2195 /* If we wakeup during the poll time, was it a sucessful poll? */
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2196 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2197 {
2198 return vcpu->valid_wakeup;
2199 }
2200
2201 #else
vcpu_valid_wakeup(struct kvm_vcpu * vcpu)2202 static inline bool vcpu_valid_wakeup(struct kvm_vcpu *vcpu)
2203 {
2204 return true;
2205 }
2206 #endif /* CONFIG_HAVE_KVM_INVALID_WAKEUPS */
2207
2208 #ifdef CONFIG_HAVE_KVM_NO_POLL
2209 /* Callback that tells if we must not poll */
2210 bool kvm_arch_no_poll(struct kvm_vcpu *vcpu);
2211 #else
kvm_arch_no_poll(struct kvm_vcpu * vcpu)2212 static inline bool kvm_arch_no_poll(struct kvm_vcpu *vcpu)
2213 {
2214 return false;
2215 }
2216 #endif /* CONFIG_HAVE_KVM_NO_POLL */
2217
2218 #ifdef CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL
2219 long kvm_arch_vcpu_async_ioctl(struct file *filp,
2220 unsigned int ioctl, unsigned long arg);
2221 #else
kvm_arch_vcpu_async_ioctl(struct file * filp,unsigned int ioctl,unsigned long arg)2222 static inline long kvm_arch_vcpu_async_ioctl(struct file *filp,
2223 unsigned int ioctl,
2224 unsigned long arg)
2225 {
2226 return -ENOIOCTLCMD;
2227 }
2228 #endif /* CONFIG_HAVE_KVM_VCPU_ASYNC_IOCTL */
2229
2230 void kvm_arch_mmu_notifier_invalidate_range(struct kvm *kvm,
2231 unsigned long start, unsigned long end);
2232
2233 void kvm_arch_guest_memory_reclaimed(struct kvm *kvm);
2234
2235 #ifdef CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE
2236 int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu);
2237 #else
kvm_arch_vcpu_run_pid_change(struct kvm_vcpu * vcpu)2238 static inline int kvm_arch_vcpu_run_pid_change(struct kvm_vcpu *vcpu)
2239 {
2240 return 0;
2241 }
2242 #endif /* CONFIG_HAVE_KVM_VCPU_RUN_PID_CHANGE */
2243
2244 typedef int (*kvm_vm_thread_fn_t)(struct kvm *kvm, uintptr_t data);
2245
2246 int kvm_vm_create_worker_thread(struct kvm *kvm, kvm_vm_thread_fn_t thread_fn,
2247 uintptr_t data, const char *name,
2248 struct task_struct **thread_ptr);
2249
2250 #ifdef CONFIG_KVM_XFER_TO_GUEST_WORK
kvm_handle_signal_exit(struct kvm_vcpu * vcpu)2251 static inline void kvm_handle_signal_exit(struct kvm_vcpu *vcpu)
2252 {
2253 vcpu->run->exit_reason = KVM_EXIT_INTR;
2254 vcpu->stat.signal_exits++;
2255 }
2256 #endif /* CONFIG_KVM_XFER_TO_GUEST_WORK */
2257
2258 /*
2259 * This defines how many reserved entries we want to keep before we
2260 * kick the vcpu to the userspace to avoid dirty ring full. This
2261 * value can be tuned to higher if e.g. PML is enabled on the host.
2262 */
2263 #define KVM_DIRTY_RING_RSVD_ENTRIES 64
2264
2265 /* Max number of entries allowed for each kvm dirty ring */
2266 #define KVM_DIRTY_RING_MAX_ENTRIES 65536
2267
2268 #endif
2269