1 /*
2  * PowerPC64 port by Mike Corrigan and Dave Engebretsen
3  *   {mikejc|engebret}@us.ibm.com
4  *
5  *    Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
6  *
7  * SMP scalability work:
8  *    Copyright (C) 2001 Anton Blanchard <anton@au.ibm.com>, IBM
9  *
10  *    Module name: htab.c
11  *
12  *    Description:
13  *      PowerPC Hashed Page Table functions
14  *
15  * This program is free software; you can redistribute it and/or
16  * modify it under the terms of the GNU General Public License
17  * as published by the Free Software Foundation; either version
18  * 2 of the License, or (at your option) any later version.
19  */
20 
21 #undef DEBUG
22 #undef DEBUG_LOW
23 
24 #include <linux/spinlock.h>
25 #include <linux/errno.h>
26 #include <linux/sched.h>
27 #include <linux/proc_fs.h>
28 #include <linux/stat.h>
29 #include <linux/sysctl.h>
30 #include <linux/ctype.h>
31 #include <linux/cache.h>
32 #include <linux/init.h>
33 #include <linux/signal.h>
34 #include <linux/memblock.h>
35 
36 #include <asm/processor.h>
37 #include <asm/pgtable.h>
38 #include <asm/mmu.h>
39 #include <asm/mmu_context.h>
40 #include <asm/page.h>
41 #include <asm/types.h>
42 #include <asm/system.h>
43 #include <asm/uaccess.h>
44 #include <asm/machdep.h>
45 #include <asm/prom.h>
46 #include <asm/abs_addr.h>
47 #include <asm/tlbflush.h>
48 #include <asm/io.h>
49 #include <asm/eeh.h>
50 #include <asm/tlb.h>
51 #include <asm/cacheflush.h>
52 #include <asm/cputable.h>
53 #include <asm/sections.h>
54 #include <asm/spu.h>
55 #include <asm/udbg.h>
56 
57 #ifdef DEBUG
58 #define DBG(fmt...) udbg_printf(fmt)
59 #else
60 #define DBG(fmt...)
61 #endif
62 
63 #ifdef DEBUG_LOW
64 #define DBG_LOW(fmt...) udbg_printf(fmt)
65 #else
66 #define DBG_LOW(fmt...)
67 #endif
68 
69 #define KB (1024)
70 #define MB (1024*KB)
71 #define GB (1024L*MB)
72 
73 /*
74  * Note:  pte   --> Linux PTE
75  *        HPTE  --> PowerPC Hashed Page Table Entry
76  *
77  * Execution context:
78  *   htab_initialize is called with the MMU off (of course), but
79  *   the kernel has been copied down to zero so it can directly
80  *   reference global data.  At this point it is very difficult
81  *   to print debug info.
82  *
83  */
84 
85 #ifdef CONFIG_U3_DART
86 extern unsigned long dart_tablebase;
87 #endif /* CONFIG_U3_DART */
88 
89 static unsigned long _SDR1;
90 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT];
91 
92 struct hash_pte *htab_address;
93 unsigned long htab_size_bytes;
94 unsigned long htab_hash_mask;
95 EXPORT_SYMBOL_GPL(htab_hash_mask);
96 int mmu_linear_psize = MMU_PAGE_4K;
97 int mmu_virtual_psize = MMU_PAGE_4K;
98 int mmu_vmalloc_psize = MMU_PAGE_4K;
99 #ifdef CONFIG_SPARSEMEM_VMEMMAP
100 int mmu_vmemmap_psize = MMU_PAGE_4K;
101 #endif
102 int mmu_io_psize = MMU_PAGE_4K;
103 int mmu_kernel_ssize = MMU_SEGSIZE_256M;
104 int mmu_highuser_ssize = MMU_SEGSIZE_256M;
105 u16 mmu_slb_size = 64;
106 EXPORT_SYMBOL_GPL(mmu_slb_size);
107 #ifdef CONFIG_HUGETLB_PAGE
108 unsigned int HPAGE_SHIFT;
109 #endif
110 #ifdef CONFIG_PPC_64K_PAGES
111 int mmu_ci_restrictions;
112 #endif
113 #ifdef CONFIG_DEBUG_PAGEALLOC
114 static u8 *linear_map_hash_slots;
115 static unsigned long linear_map_hash_count;
116 static DEFINE_SPINLOCK(linear_map_hash_lock);
117 #endif /* CONFIG_DEBUG_PAGEALLOC */
118 
119 /* There are definitions of page sizes arrays to be used when none
120  * is provided by the firmware.
121  */
122 
123 /* Pre-POWER4 CPUs (4k pages only)
124  */
125 static struct mmu_psize_def mmu_psize_defaults_old[] = {
126 	[MMU_PAGE_4K] = {
127 		.shift	= 12,
128 		.sllp	= 0,
129 		.penc	= 0,
130 		.avpnm	= 0,
131 		.tlbiel = 0,
132 	},
133 };
134 
135 /* POWER4, GPUL, POWER5
136  *
137  * Support for 16Mb large pages
138  */
139 static struct mmu_psize_def mmu_psize_defaults_gp[] = {
140 	[MMU_PAGE_4K] = {
141 		.shift	= 12,
142 		.sllp	= 0,
143 		.penc	= 0,
144 		.avpnm	= 0,
145 		.tlbiel = 1,
146 	},
147 	[MMU_PAGE_16M] = {
148 		.shift	= 24,
149 		.sllp	= SLB_VSID_L,
150 		.penc	= 0,
151 		.avpnm	= 0x1UL,
152 		.tlbiel = 0,
153 	},
154 };
155 
htab_convert_pte_flags(unsigned long pteflags)156 static unsigned long htab_convert_pte_flags(unsigned long pteflags)
157 {
158 	unsigned long rflags = pteflags & 0x1fa;
159 
160 	/* _PAGE_EXEC -> NOEXEC */
161 	if ((pteflags & _PAGE_EXEC) == 0)
162 		rflags |= HPTE_R_N;
163 
164 	/* PP bits. PAGE_USER is already PP bit 0x2, so we only
165 	 * need to add in 0x1 if it's a read-only user page
166 	 */
167 	if ((pteflags & _PAGE_USER) && !((pteflags & _PAGE_RW) &&
168 					 (pteflags & _PAGE_DIRTY)))
169 		rflags |= 1;
170 
171 	/* Always add C */
172 	return rflags | HPTE_R_C;
173 }
174 
htab_bolt_mapping(unsigned long vstart,unsigned long vend,unsigned long pstart,unsigned long prot,int psize,int ssize)175 int htab_bolt_mapping(unsigned long vstart, unsigned long vend,
176 		      unsigned long pstart, unsigned long prot,
177 		      int psize, int ssize)
178 {
179 	unsigned long vaddr, paddr;
180 	unsigned int step, shift;
181 	int ret = 0;
182 
183 	shift = mmu_psize_defs[psize].shift;
184 	step = 1 << shift;
185 
186 	prot = htab_convert_pte_flags(prot);
187 
188 	DBG("htab_bolt_mapping(%lx..%lx -> %lx (%lx,%d,%d)\n",
189 	    vstart, vend, pstart, prot, psize, ssize);
190 
191 	for (vaddr = vstart, paddr = pstart; vaddr < vend;
192 	     vaddr += step, paddr += step) {
193 		unsigned long hash, hpteg;
194 		unsigned long vsid = get_kernel_vsid(vaddr, ssize);
195 		unsigned long va = hpt_va(vaddr, vsid, ssize);
196 		unsigned long tprot = prot;
197 
198 		/* Make kernel text executable */
199 		if (overlaps_kernel_text(vaddr, vaddr + step))
200 			tprot &= ~HPTE_R_N;
201 
202 		hash = hpt_hash(va, shift, ssize);
203 		hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
204 
205 		BUG_ON(!ppc_md.hpte_insert);
206 		ret = ppc_md.hpte_insert(hpteg, va, paddr, tprot,
207 					 HPTE_V_BOLTED, psize, ssize);
208 
209 		if (ret < 0)
210 			break;
211 #ifdef CONFIG_DEBUG_PAGEALLOC
212 		if ((paddr >> PAGE_SHIFT) < linear_map_hash_count)
213 			linear_map_hash_slots[paddr >> PAGE_SHIFT] = ret | 0x80;
214 #endif /* CONFIG_DEBUG_PAGEALLOC */
215 	}
216 	return ret < 0 ? ret : 0;
217 }
218 
219 #ifdef CONFIG_MEMORY_HOTPLUG
htab_remove_mapping(unsigned long vstart,unsigned long vend,int psize,int ssize)220 static int htab_remove_mapping(unsigned long vstart, unsigned long vend,
221 		      int psize, int ssize)
222 {
223 	unsigned long vaddr;
224 	unsigned int step, shift;
225 
226 	shift = mmu_psize_defs[psize].shift;
227 	step = 1 << shift;
228 
229 	if (!ppc_md.hpte_removebolted) {
230 		printk(KERN_WARNING "Platform doesn't implement "
231 				"hpte_removebolted\n");
232 		return -EINVAL;
233 	}
234 
235 	for (vaddr = vstart; vaddr < vend; vaddr += step)
236 		ppc_md.hpte_removebolted(vaddr, psize, ssize);
237 
238 	return 0;
239 }
240 #endif /* CONFIG_MEMORY_HOTPLUG */
241 
htab_dt_scan_seg_sizes(unsigned long node,const char * uname,int depth,void * data)242 static int __init htab_dt_scan_seg_sizes(unsigned long node,
243 					 const char *uname, int depth,
244 					 void *data)
245 {
246 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
247 	u32 *prop;
248 	unsigned long size = 0;
249 
250 	/* We are scanning "cpu" nodes only */
251 	if (type == NULL || strcmp(type, "cpu") != 0)
252 		return 0;
253 
254 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,processor-segment-sizes",
255 					  &size);
256 	if (prop == NULL)
257 		return 0;
258 	for (; size >= 4; size -= 4, ++prop) {
259 		if (prop[0] == 40) {
260 			DBG("1T segment support detected\n");
261 			cur_cpu_spec->cpu_features |= CPU_FTR_1T_SEGMENT;
262 			return 1;
263 		}
264 	}
265 	cur_cpu_spec->cpu_features &= ~CPU_FTR_NO_SLBIE_B;
266 	return 0;
267 }
268 
htab_init_seg_sizes(void)269 static void __init htab_init_seg_sizes(void)
270 {
271 	of_scan_flat_dt(htab_dt_scan_seg_sizes, NULL);
272 }
273 
htab_dt_scan_page_sizes(unsigned long node,const char * uname,int depth,void * data)274 static int __init htab_dt_scan_page_sizes(unsigned long node,
275 					  const char *uname, int depth,
276 					  void *data)
277 {
278 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
279 	u32 *prop;
280 	unsigned long size = 0;
281 
282 	/* We are scanning "cpu" nodes only */
283 	if (type == NULL || strcmp(type, "cpu") != 0)
284 		return 0;
285 
286 	prop = (u32 *)of_get_flat_dt_prop(node,
287 					  "ibm,segment-page-sizes", &size);
288 	if (prop != NULL) {
289 		DBG("Page sizes from device-tree:\n");
290 		size /= 4;
291 		cur_cpu_spec->cpu_features &= ~(CPU_FTR_16M_PAGE);
292 		while(size > 0) {
293 			unsigned int shift = prop[0];
294 			unsigned int slbenc = prop[1];
295 			unsigned int lpnum = prop[2];
296 			unsigned int lpenc = 0;
297 			struct mmu_psize_def *def;
298 			int idx = -1;
299 
300 			size -= 3; prop += 3;
301 			while(size > 0 && lpnum) {
302 				if (prop[0] == shift)
303 					lpenc = prop[1];
304 				prop += 2; size -= 2;
305 				lpnum--;
306 			}
307 			switch(shift) {
308 			case 0xc:
309 				idx = MMU_PAGE_4K;
310 				break;
311 			case 0x10:
312 				idx = MMU_PAGE_64K;
313 				break;
314 			case 0x14:
315 				idx = MMU_PAGE_1M;
316 				break;
317 			case 0x18:
318 				idx = MMU_PAGE_16M;
319 				cur_cpu_spec->cpu_features |= CPU_FTR_16M_PAGE;
320 				break;
321 			case 0x22:
322 				idx = MMU_PAGE_16G;
323 				break;
324 			}
325 			if (idx < 0)
326 				continue;
327 			def = &mmu_psize_defs[idx];
328 			def->shift = shift;
329 			if (shift <= 23)
330 				def->avpnm = 0;
331 			else
332 				def->avpnm = (1 << (shift - 23)) - 1;
333 			def->sllp = slbenc;
334 			def->penc = lpenc;
335 			/* We don't know for sure what's up with tlbiel, so
336 			 * for now we only set it for 4K and 64K pages
337 			 */
338 			if (idx == MMU_PAGE_4K || idx == MMU_PAGE_64K)
339 				def->tlbiel = 1;
340 			else
341 				def->tlbiel = 0;
342 
343 			DBG(" %d: shift=%02x, sllp=%04lx, avpnm=%08lx, "
344 			    "tlbiel=%d, penc=%d\n",
345 			    idx, shift, def->sllp, def->avpnm, def->tlbiel,
346 			    def->penc);
347 		}
348 		return 1;
349 	}
350 	return 0;
351 }
352 
353 #ifdef CONFIG_HUGETLB_PAGE
354 /* Scan for 16G memory blocks that have been set aside for huge pages
355  * and reserve those blocks for 16G huge pages.
356  */
htab_dt_scan_hugepage_blocks(unsigned long node,const char * uname,int depth,void * data)357 static int __init htab_dt_scan_hugepage_blocks(unsigned long node,
358 					const char *uname, int depth,
359 					void *data) {
360 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
361 	unsigned long *addr_prop;
362 	u32 *page_count_prop;
363 	unsigned int expected_pages;
364 	long unsigned int phys_addr;
365 	long unsigned int block_size;
366 
367 	/* We are scanning "memory" nodes only */
368 	if (type == NULL || strcmp(type, "memory") != 0)
369 		return 0;
370 
371 	/* This property is the log base 2 of the number of virtual pages that
372 	 * will represent this memory block. */
373 	page_count_prop = of_get_flat_dt_prop(node, "ibm,expected#pages", NULL);
374 	if (page_count_prop == NULL)
375 		return 0;
376 	expected_pages = (1 << page_count_prop[0]);
377 	addr_prop = of_get_flat_dt_prop(node, "reg", NULL);
378 	if (addr_prop == NULL)
379 		return 0;
380 	phys_addr = addr_prop[0];
381 	block_size = addr_prop[1];
382 	if (block_size != (16 * GB))
383 		return 0;
384 	printk(KERN_INFO "Huge page(16GB) memory: "
385 			"addr = 0x%lX size = 0x%lX pages = %d\n",
386 			phys_addr, block_size, expected_pages);
387 	if (phys_addr + (16 * GB) <= memblock_end_of_DRAM()) {
388 		memblock_reserve(phys_addr, block_size * expected_pages);
389 		add_gpage(phys_addr, block_size, expected_pages);
390 	}
391 	return 0;
392 }
393 #endif /* CONFIG_HUGETLB_PAGE */
394 
htab_init_page_sizes(void)395 static void __init htab_init_page_sizes(void)
396 {
397 	int rc;
398 
399 	/* Default to 4K pages only */
400 	memcpy(mmu_psize_defs, mmu_psize_defaults_old,
401 	       sizeof(mmu_psize_defaults_old));
402 
403 	/*
404 	 * Try to find the available page sizes in the device-tree
405 	 */
406 	rc = of_scan_flat_dt(htab_dt_scan_page_sizes, NULL);
407 	if (rc != 0)  /* Found */
408 		goto found;
409 
410 	/*
411 	 * Not in the device-tree, let's fallback on known size
412 	 * list for 16M capable GP & GR
413 	 */
414 	if (cpu_has_feature(CPU_FTR_16M_PAGE))
415 		memcpy(mmu_psize_defs, mmu_psize_defaults_gp,
416 		       sizeof(mmu_psize_defaults_gp));
417  found:
418 #ifndef CONFIG_DEBUG_PAGEALLOC
419 	/*
420 	 * Pick a size for the linear mapping. Currently, we only support
421 	 * 16M, 1M and 4K which is the default
422 	 */
423 	if (mmu_psize_defs[MMU_PAGE_16M].shift)
424 		mmu_linear_psize = MMU_PAGE_16M;
425 	else if (mmu_psize_defs[MMU_PAGE_1M].shift)
426 		mmu_linear_psize = MMU_PAGE_1M;
427 #endif /* CONFIG_DEBUG_PAGEALLOC */
428 
429 #ifdef CONFIG_PPC_64K_PAGES
430 	/*
431 	 * Pick a size for the ordinary pages. Default is 4K, we support
432 	 * 64K for user mappings and vmalloc if supported by the processor.
433 	 * We only use 64k for ioremap if the processor
434 	 * (and firmware) support cache-inhibited large pages.
435 	 * If not, we use 4k and set mmu_ci_restrictions so that
436 	 * hash_page knows to switch processes that use cache-inhibited
437 	 * mappings to 4k pages.
438 	 */
439 	if (mmu_psize_defs[MMU_PAGE_64K].shift) {
440 		mmu_virtual_psize = MMU_PAGE_64K;
441 		mmu_vmalloc_psize = MMU_PAGE_64K;
442 		if (mmu_linear_psize == MMU_PAGE_4K)
443 			mmu_linear_psize = MMU_PAGE_64K;
444 		if (cpu_has_feature(CPU_FTR_CI_LARGE_PAGE)) {
445 			/*
446 			 * Don't use 64k pages for ioremap on pSeries, since
447 			 * that would stop us accessing the HEA ethernet.
448 			 */
449 			if (!machine_is(pseries))
450 				mmu_io_psize = MMU_PAGE_64K;
451 		} else
452 			mmu_ci_restrictions = 1;
453 	}
454 #endif /* CONFIG_PPC_64K_PAGES */
455 
456 #ifdef CONFIG_SPARSEMEM_VMEMMAP
457 	/* We try to use 16M pages for vmemmap if that is supported
458 	 * and we have at least 1G of RAM at boot
459 	 */
460 	if (mmu_psize_defs[MMU_PAGE_16M].shift &&
461 	    memblock_phys_mem_size() >= 0x40000000)
462 		mmu_vmemmap_psize = MMU_PAGE_16M;
463 	else if (mmu_psize_defs[MMU_PAGE_64K].shift)
464 		mmu_vmemmap_psize = MMU_PAGE_64K;
465 	else
466 		mmu_vmemmap_psize = MMU_PAGE_4K;
467 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
468 
469 	printk(KERN_DEBUG "Page orders: linear mapping = %d, "
470 	       "virtual = %d, io = %d"
471 #ifdef CONFIG_SPARSEMEM_VMEMMAP
472 	       ", vmemmap = %d"
473 #endif
474 	       "\n",
475 	       mmu_psize_defs[mmu_linear_psize].shift,
476 	       mmu_psize_defs[mmu_virtual_psize].shift,
477 	       mmu_psize_defs[mmu_io_psize].shift
478 #ifdef CONFIG_SPARSEMEM_VMEMMAP
479 	       ,mmu_psize_defs[mmu_vmemmap_psize].shift
480 #endif
481 	       );
482 
483 #ifdef CONFIG_HUGETLB_PAGE
484 	/* Reserve 16G huge page memory sections for huge pages */
485 	of_scan_flat_dt(htab_dt_scan_hugepage_blocks, NULL);
486 #endif /* CONFIG_HUGETLB_PAGE */
487 }
488 
htab_dt_scan_pftsize(unsigned long node,const char * uname,int depth,void * data)489 static int __init htab_dt_scan_pftsize(unsigned long node,
490 				       const char *uname, int depth,
491 				       void *data)
492 {
493 	char *type = of_get_flat_dt_prop(node, "device_type", NULL);
494 	u32 *prop;
495 
496 	/* We are scanning "cpu" nodes only */
497 	if (type == NULL || strcmp(type, "cpu") != 0)
498 		return 0;
499 
500 	prop = (u32 *)of_get_flat_dt_prop(node, "ibm,pft-size", NULL);
501 	if (prop != NULL) {
502 		/* pft_size[0] is the NUMA CEC cookie */
503 		ppc64_pft_size = prop[1];
504 		return 1;
505 	}
506 	return 0;
507 }
508 
htab_get_table_size(void)509 static unsigned long __init htab_get_table_size(void)
510 {
511 	unsigned long mem_size, rnd_mem_size, pteg_count, psize;
512 
513 	/* If hash size isn't already provided by the platform, we try to
514 	 * retrieve it from the device-tree. If it's not there neither, we
515 	 * calculate it now based on the total RAM size
516 	 */
517 	if (ppc64_pft_size == 0)
518 		of_scan_flat_dt(htab_dt_scan_pftsize, NULL);
519 	if (ppc64_pft_size)
520 		return 1UL << ppc64_pft_size;
521 
522 	/* round mem_size up to next power of 2 */
523 	mem_size = memblock_phys_mem_size();
524 	rnd_mem_size = 1UL << __ilog2(mem_size);
525 	if (rnd_mem_size < mem_size)
526 		rnd_mem_size <<= 1;
527 
528 	/* # pages / 2 */
529 	psize = mmu_psize_defs[mmu_virtual_psize].shift;
530 	pteg_count = max(rnd_mem_size >> (psize + 1), 1UL << 11);
531 
532 	return pteg_count << 7;
533 }
534 
535 #ifdef CONFIG_MEMORY_HOTPLUG
create_section_mapping(unsigned long start,unsigned long end)536 void create_section_mapping(unsigned long start, unsigned long end)
537 {
538 	BUG_ON(htab_bolt_mapping(start, end, __pa(start),
539 				 pgprot_val(PAGE_KERNEL), mmu_linear_psize,
540 				 mmu_kernel_ssize));
541 }
542 
remove_section_mapping(unsigned long start,unsigned long end)543 int remove_section_mapping(unsigned long start, unsigned long end)
544 {
545 	return htab_remove_mapping(start, end, mmu_linear_psize,
546 			mmu_kernel_ssize);
547 }
548 #endif /* CONFIG_MEMORY_HOTPLUG */
549 
make_bl(unsigned int * insn_addr,void * func)550 static inline void make_bl(unsigned int *insn_addr, void *func)
551 {
552 	unsigned long funcp = *((unsigned long *)func);
553 	int offset = funcp - (unsigned long)insn_addr;
554 
555 	*insn_addr = (unsigned int)(0x48000001 | (offset & 0x03fffffc));
556 	flush_icache_range((unsigned long)insn_addr, 4+
557 			   (unsigned long)insn_addr);
558 }
559 
htab_finish_init(void)560 static void __init htab_finish_init(void)
561 {
562 	extern unsigned int *htab_call_hpte_insert1;
563 	extern unsigned int *htab_call_hpte_insert2;
564 	extern unsigned int *htab_call_hpte_remove;
565 	extern unsigned int *htab_call_hpte_updatepp;
566 
567 #ifdef CONFIG_PPC_HAS_HASH_64K
568 	extern unsigned int *ht64_call_hpte_insert1;
569 	extern unsigned int *ht64_call_hpte_insert2;
570 	extern unsigned int *ht64_call_hpte_remove;
571 	extern unsigned int *ht64_call_hpte_updatepp;
572 
573 	make_bl(ht64_call_hpte_insert1, ppc_md.hpte_insert);
574 	make_bl(ht64_call_hpte_insert2, ppc_md.hpte_insert);
575 	make_bl(ht64_call_hpte_remove, ppc_md.hpte_remove);
576 	make_bl(ht64_call_hpte_updatepp, ppc_md.hpte_updatepp);
577 #endif /* CONFIG_PPC_HAS_HASH_64K */
578 
579 	make_bl(htab_call_hpte_insert1, ppc_md.hpte_insert);
580 	make_bl(htab_call_hpte_insert2, ppc_md.hpte_insert);
581 	make_bl(htab_call_hpte_remove, ppc_md.hpte_remove);
582 	make_bl(htab_call_hpte_updatepp, ppc_md.hpte_updatepp);
583 }
584 
htab_initialize(void)585 static void __init htab_initialize(void)
586 {
587 	unsigned long table;
588 	unsigned long pteg_count;
589 	unsigned long prot;
590 	unsigned long base = 0, size = 0, limit;
591 	struct memblock_region *reg;
592 
593 	DBG(" -> htab_initialize()\n");
594 
595 	/* Initialize segment sizes */
596 	htab_init_seg_sizes();
597 
598 	/* Initialize page sizes */
599 	htab_init_page_sizes();
600 
601 	if (cpu_has_feature(CPU_FTR_1T_SEGMENT)) {
602 		mmu_kernel_ssize = MMU_SEGSIZE_1T;
603 		mmu_highuser_ssize = MMU_SEGSIZE_1T;
604 		printk(KERN_INFO "Using 1TB segments\n");
605 	}
606 
607 	/*
608 	 * Calculate the required size of the htab.  We want the number of
609 	 * PTEGs to equal one half the number of real pages.
610 	 */
611 	htab_size_bytes = htab_get_table_size();
612 	pteg_count = htab_size_bytes >> 7;
613 
614 	htab_hash_mask = pteg_count - 1;
615 
616 	if (firmware_has_feature(FW_FEATURE_LPAR)) {
617 		/* Using a hypervisor which owns the htab */
618 		htab_address = NULL;
619 		_SDR1 = 0;
620 	} else {
621 		/* Find storage for the HPT.  Must be contiguous in
622 		 * the absolute address space. On cell we want it to be
623 		 * in the first 2 Gig so we can use it for IOMMU hacks.
624 		 */
625 		if (machine_is(cell))
626 			limit = 0x80000000;
627 		else
628 			limit = MEMBLOCK_ALLOC_ANYWHERE;
629 
630 		table = memblock_alloc_base(htab_size_bytes, htab_size_bytes, limit);
631 
632 		DBG("Hash table allocated at %lx, size: %lx\n", table,
633 		    htab_size_bytes);
634 
635 		htab_address = abs_to_virt(table);
636 
637 		/* htab absolute addr + encoded htabsize */
638 		_SDR1 = table + __ilog2(pteg_count) - 11;
639 
640 		/* Initialize the HPT with no entries */
641 		memset((void *)table, 0, htab_size_bytes);
642 
643 		/* Set SDR1 */
644 		mtspr(SPRN_SDR1, _SDR1);
645 	}
646 
647 	prot = pgprot_val(PAGE_KERNEL);
648 
649 #ifdef CONFIG_DEBUG_PAGEALLOC
650 	linear_map_hash_count = memblock_end_of_DRAM() >> PAGE_SHIFT;
651 	linear_map_hash_slots = __va(memblock_alloc_base(linear_map_hash_count,
652 						    1, ppc64_rma_size));
653 	memset(linear_map_hash_slots, 0, linear_map_hash_count);
654 #endif /* CONFIG_DEBUG_PAGEALLOC */
655 
656 	/* On U3 based machines, we need to reserve the DART area and
657 	 * _NOT_ map it to avoid cache paradoxes as it's remapped non
658 	 * cacheable later on
659 	 */
660 
661 	/* create bolted the linear mapping in the hash table */
662 	for_each_memblock(memory, reg) {
663 		base = (unsigned long)__va(reg->base);
664 		size = reg->size;
665 
666 		DBG("creating mapping for region: %lx..%lx (prot: %lx)\n",
667 		    base, size, prot);
668 
669 #ifdef CONFIG_U3_DART
670 		/* Do not map the DART space. Fortunately, it will be aligned
671 		 * in such a way that it will not cross two memblock regions and
672 		 * will fit within a single 16Mb page.
673 		 * The DART space is assumed to be a full 16Mb region even if
674 		 * we only use 2Mb of that space. We will use more of it later
675 		 * for AGP GART. We have to use a full 16Mb large page.
676 		 */
677 		DBG("DART base: %lx\n", dart_tablebase);
678 
679 		if (dart_tablebase != 0 && dart_tablebase >= base
680 		    && dart_tablebase < (base + size)) {
681 			unsigned long dart_table_end = dart_tablebase + 16 * MB;
682 			if (base != dart_tablebase)
683 				BUG_ON(htab_bolt_mapping(base, dart_tablebase,
684 							__pa(base), prot,
685 							mmu_linear_psize,
686 							mmu_kernel_ssize));
687 			if ((base + size) > dart_table_end)
688 				BUG_ON(htab_bolt_mapping(dart_tablebase+16*MB,
689 							base + size,
690 							__pa(dart_table_end),
691 							 prot,
692 							 mmu_linear_psize,
693 							 mmu_kernel_ssize));
694 			continue;
695 		}
696 #endif /* CONFIG_U3_DART */
697 		BUG_ON(htab_bolt_mapping(base, base + size, __pa(base),
698 				prot, mmu_linear_psize, mmu_kernel_ssize));
699 	}
700 	memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
701 
702 	/*
703 	 * If we have a memory_limit and we've allocated TCEs then we need to
704 	 * explicitly map the TCE area at the top of RAM. We also cope with the
705 	 * case that the TCEs start below memory_limit.
706 	 * tce_alloc_start/end are 16MB aligned so the mapping should work
707 	 * for either 4K or 16MB pages.
708 	 */
709 	if (tce_alloc_start) {
710 		tce_alloc_start = (unsigned long)__va(tce_alloc_start);
711 		tce_alloc_end = (unsigned long)__va(tce_alloc_end);
712 
713 		if (base + size >= tce_alloc_start)
714 			tce_alloc_start = base + size + 1;
715 
716 		BUG_ON(htab_bolt_mapping(tce_alloc_start, tce_alloc_end,
717 					 __pa(tce_alloc_start), prot,
718 					 mmu_linear_psize, mmu_kernel_ssize));
719 	}
720 
721 	htab_finish_init();
722 
723 	DBG(" <- htab_initialize()\n");
724 }
725 #undef KB
726 #undef MB
727 
early_init_mmu(void)728 void __init early_init_mmu(void)
729 {
730 	/* Setup initial STAB address in the PACA */
731 	get_paca()->stab_real = __pa((u64)&initial_stab);
732 	get_paca()->stab_addr = (u64)&initial_stab;
733 
734 	/* Initialize the MMU Hash table and create the linear mapping
735 	 * of memory. Has to be done before stab/slb initialization as
736 	 * this is currently where the page size encoding is obtained
737 	 */
738 	htab_initialize();
739 
740 	/* Initialize stab / SLB management except on iSeries
741 	 */
742 	if (cpu_has_feature(CPU_FTR_SLB))
743 		slb_initialize();
744 	else if (!firmware_has_feature(FW_FEATURE_ISERIES))
745 		stab_initialize(get_paca()->stab_real);
746 }
747 
748 #ifdef CONFIG_SMP
early_init_mmu_secondary(void)749 void __cpuinit early_init_mmu_secondary(void)
750 {
751 	/* Initialize hash table for that CPU */
752 	if (!firmware_has_feature(FW_FEATURE_LPAR))
753 		mtspr(SPRN_SDR1, _SDR1);
754 
755 	/* Initialize STAB/SLB. We use a virtual address as it works
756 	 * in real mode on pSeries and we want a virtual address on
757 	 * iSeries anyway
758 	 */
759 	if (cpu_has_feature(CPU_FTR_SLB))
760 		slb_initialize();
761 	else
762 		stab_initialize(get_paca()->stab_addr);
763 }
764 #endif /* CONFIG_SMP */
765 
766 /*
767  * Called by asm hashtable.S for doing lazy icache flush
768  */
hash_page_do_lazy_icache(unsigned int pp,pte_t pte,int trap)769 unsigned int hash_page_do_lazy_icache(unsigned int pp, pte_t pte, int trap)
770 {
771 	struct page *page;
772 
773 	if (!pfn_valid(pte_pfn(pte)))
774 		return pp;
775 
776 	page = pte_page(pte);
777 
778 	/* page is dirty */
779 	if (!test_bit(PG_arch_1, &page->flags) && !PageReserved(page)) {
780 		if (trap == 0x400) {
781 			flush_dcache_icache_page(page);
782 			set_bit(PG_arch_1, &page->flags);
783 		} else
784 			pp |= HPTE_R_N;
785 	}
786 	return pp;
787 }
788 
789 #ifdef CONFIG_PPC_MM_SLICES
get_paca_psize(unsigned long addr)790 unsigned int get_paca_psize(unsigned long addr)
791 {
792 	unsigned long index, slices;
793 
794 	if (addr < SLICE_LOW_TOP) {
795 		slices = get_paca()->context.low_slices_psize;
796 		index = GET_LOW_SLICE_INDEX(addr);
797 	} else {
798 		slices = get_paca()->context.high_slices_psize;
799 		index = GET_HIGH_SLICE_INDEX(addr);
800 	}
801 	return (slices >> (index * 4)) & 0xF;
802 }
803 
804 #else
get_paca_psize(unsigned long addr)805 unsigned int get_paca_psize(unsigned long addr)
806 {
807 	return get_paca()->context.user_psize;
808 }
809 #endif
810 
811 /*
812  * Demote a segment to using 4k pages.
813  * For now this makes the whole process use 4k pages.
814  */
815 #ifdef CONFIG_PPC_64K_PAGES
demote_segment_4k(struct mm_struct * mm,unsigned long addr)816 void demote_segment_4k(struct mm_struct *mm, unsigned long addr)
817 {
818 	if (get_slice_psize(mm, addr) == MMU_PAGE_4K)
819 		return;
820 	slice_set_range_psize(mm, addr, 1, MMU_PAGE_4K);
821 #ifdef CONFIG_SPU_BASE
822 	spu_flush_all_slbs(mm);
823 #endif
824 	if (get_paca_psize(addr) != MMU_PAGE_4K) {
825 		get_paca()->context = mm->context;
826 		slb_flush_and_rebolt();
827 	}
828 }
829 #endif /* CONFIG_PPC_64K_PAGES */
830 
831 #ifdef CONFIG_PPC_SUBPAGE_PROT
832 /*
833  * This looks up a 2-bit protection code for a 4k subpage of a 64k page.
834  * Userspace sets the subpage permissions using the subpage_prot system call.
835  *
836  * Result is 0: full permissions, _PAGE_RW: read-only,
837  * _PAGE_USER or _PAGE_USER|_PAGE_RW: no access.
838  */
subpage_protection(struct mm_struct * mm,unsigned long ea)839 static int subpage_protection(struct mm_struct *mm, unsigned long ea)
840 {
841 	struct subpage_prot_table *spt = &mm->context.spt;
842 	u32 spp = 0;
843 	u32 **sbpm, *sbpp;
844 
845 	if (ea >= spt->maxaddr)
846 		return 0;
847 	if (ea < 0x100000000) {
848 		/* addresses below 4GB use spt->low_prot */
849 		sbpm = spt->low_prot;
850 	} else {
851 		sbpm = spt->protptrs[ea >> SBP_L3_SHIFT];
852 		if (!sbpm)
853 			return 0;
854 	}
855 	sbpp = sbpm[(ea >> SBP_L2_SHIFT) & (SBP_L2_COUNT - 1)];
856 	if (!sbpp)
857 		return 0;
858 	spp = sbpp[(ea >> PAGE_SHIFT) & (SBP_L1_COUNT - 1)];
859 
860 	/* extract 2-bit bitfield for this 4k subpage */
861 	spp >>= 30 - 2 * ((ea >> 12) & 0xf);
862 
863 	/* turn 0,1,2,3 into combination of _PAGE_USER and _PAGE_RW */
864 	spp = ((spp & 2) ? _PAGE_USER : 0) | ((spp & 1) ? _PAGE_RW : 0);
865 	return spp;
866 }
867 
868 #else /* CONFIG_PPC_SUBPAGE_PROT */
subpage_protection(struct mm_struct * mm,unsigned long ea)869 static inline int subpage_protection(struct mm_struct *mm, unsigned long ea)
870 {
871 	return 0;
872 }
873 #endif
874 
hash_failure_debug(unsigned long ea,unsigned long access,unsigned long vsid,unsigned long trap,int ssize,int psize,unsigned long pte)875 void hash_failure_debug(unsigned long ea, unsigned long access,
876 			unsigned long vsid, unsigned long trap,
877 			int ssize, int psize, unsigned long pte)
878 {
879 	if (!printk_ratelimit())
880 		return;
881 	pr_info("mm: Hashing failure ! EA=0x%lx access=0x%lx current=%s\n",
882 		ea, access, current->comm);
883 	pr_info("    trap=0x%lx vsid=0x%lx ssize=%d psize=%d pte=0x%lx\n",
884 		trap, vsid, ssize, psize, pte);
885 }
886 
887 /* Result code is:
888  *  0 - handled
889  *  1 - normal page fault
890  * -1 - critical hash insertion error
891  * -2 - access not permitted by subpage protection mechanism
892  */
hash_page(unsigned long ea,unsigned long access,unsigned long trap)893 int hash_page(unsigned long ea, unsigned long access, unsigned long trap)
894 {
895 	pgd_t *pgdir;
896 	unsigned long vsid;
897 	struct mm_struct *mm;
898 	pte_t *ptep;
899 	unsigned hugeshift;
900 	const struct cpumask *tmp;
901 	int rc, user_region = 0, local = 0;
902 	int psize, ssize;
903 
904 	DBG_LOW("hash_page(ea=%016lx, access=%lx, trap=%lx\n",
905 		ea, access, trap);
906 
907 	if ((ea & ~REGION_MASK) >= PGTABLE_RANGE) {
908 		DBG_LOW(" out of pgtable range !\n");
909  		return 1;
910 	}
911 
912 	/* Get region & vsid */
913  	switch (REGION_ID(ea)) {
914 	case USER_REGION_ID:
915 		user_region = 1;
916 		mm = current->mm;
917 		if (! mm) {
918 			DBG_LOW(" user region with no mm !\n");
919 			return 1;
920 		}
921 		psize = get_slice_psize(mm, ea);
922 		ssize = user_segment_size(ea);
923 		vsid = get_vsid(mm->context.id, ea, ssize);
924 		break;
925 	case VMALLOC_REGION_ID:
926 		mm = &init_mm;
927 		vsid = get_kernel_vsid(ea, mmu_kernel_ssize);
928 		if (ea < VMALLOC_END)
929 			psize = mmu_vmalloc_psize;
930 		else
931 			psize = mmu_io_psize;
932 		ssize = mmu_kernel_ssize;
933 		break;
934 	default:
935 		/* Not a valid range
936 		 * Send the problem up to do_page_fault
937 		 */
938 		return 1;
939 	}
940 	DBG_LOW(" mm=%p, mm->pgdir=%p, vsid=%016lx\n", mm, mm->pgd, vsid);
941 
942 	/* Get pgdir */
943 	pgdir = mm->pgd;
944 	if (pgdir == NULL)
945 		return 1;
946 
947 	/* Check CPU locality */
948 	tmp = cpumask_of(smp_processor_id());
949 	if (user_region && cpumask_equal(mm_cpumask(mm), tmp))
950 		local = 1;
951 
952 #ifndef CONFIG_PPC_64K_PAGES
953 	/* If we use 4K pages and our psize is not 4K, then we might
954 	 * be hitting a special driver mapping, and need to align the
955 	 * address before we fetch the PTE.
956 	 *
957 	 * It could also be a hugepage mapping, in which case this is
958 	 * not necessary, but it's not harmful, either.
959 	 */
960 	if (psize != MMU_PAGE_4K)
961 		ea &= ~((1ul << mmu_psize_defs[psize].shift) - 1);
962 #endif /* CONFIG_PPC_64K_PAGES */
963 
964 	/* Get PTE and page size from page tables */
965 	ptep = find_linux_pte_or_hugepte(pgdir, ea, &hugeshift);
966 	if (ptep == NULL || !pte_present(*ptep)) {
967 		DBG_LOW(" no PTE !\n");
968 		return 1;
969 	}
970 
971 	/* Add _PAGE_PRESENT to the required access perm */
972 	access |= _PAGE_PRESENT;
973 
974 	/* Pre-check access permissions (will be re-checked atomically
975 	 * in __hash_page_XX but this pre-check is a fast path
976 	 */
977 	if (access & ~pte_val(*ptep)) {
978 		DBG_LOW(" no access !\n");
979 		return 1;
980 	}
981 
982 #ifdef CONFIG_HUGETLB_PAGE
983 	if (hugeshift)
984 		return __hash_page_huge(ea, access, vsid, ptep, trap, local,
985 					ssize, hugeshift, psize);
986 #endif /* CONFIG_HUGETLB_PAGE */
987 
988 #ifndef CONFIG_PPC_64K_PAGES
989 	DBG_LOW(" i-pte: %016lx\n", pte_val(*ptep));
990 #else
991 	DBG_LOW(" i-pte: %016lx %016lx\n", pte_val(*ptep),
992 		pte_val(*(ptep + PTRS_PER_PTE)));
993 #endif
994 	/* Do actual hashing */
995 #ifdef CONFIG_PPC_64K_PAGES
996 	/* If _PAGE_4K_PFN is set, make sure this is a 4k segment */
997 	if ((pte_val(*ptep) & _PAGE_4K_PFN) && psize == MMU_PAGE_64K) {
998 		demote_segment_4k(mm, ea);
999 		psize = MMU_PAGE_4K;
1000 	}
1001 
1002 	/* If this PTE is non-cacheable and we have restrictions on
1003 	 * using non cacheable large pages, then we switch to 4k
1004 	 */
1005 	if (mmu_ci_restrictions && psize == MMU_PAGE_64K &&
1006 	    (pte_val(*ptep) & _PAGE_NO_CACHE)) {
1007 		if (user_region) {
1008 			demote_segment_4k(mm, ea);
1009 			psize = MMU_PAGE_4K;
1010 		} else if (ea < VMALLOC_END) {
1011 			/*
1012 			 * some driver did a non-cacheable mapping
1013 			 * in vmalloc space, so switch vmalloc
1014 			 * to 4k pages
1015 			 */
1016 			printk(KERN_ALERT "Reducing vmalloc segment "
1017 			       "to 4kB pages because of "
1018 			       "non-cacheable mapping\n");
1019 			psize = mmu_vmalloc_psize = MMU_PAGE_4K;
1020 #ifdef CONFIG_SPU_BASE
1021 			spu_flush_all_slbs(mm);
1022 #endif
1023 		}
1024 	}
1025 	if (user_region) {
1026 		if (psize != get_paca_psize(ea)) {
1027 			get_paca()->context = mm->context;
1028 			slb_flush_and_rebolt();
1029 		}
1030 	} else if (get_paca()->vmalloc_sllp !=
1031 		   mmu_psize_defs[mmu_vmalloc_psize].sllp) {
1032 		get_paca()->vmalloc_sllp =
1033 			mmu_psize_defs[mmu_vmalloc_psize].sllp;
1034 		slb_vmalloc_update();
1035 	}
1036 #endif /* CONFIG_PPC_64K_PAGES */
1037 
1038 #ifdef CONFIG_PPC_HAS_HASH_64K
1039 	if (psize == MMU_PAGE_64K)
1040 		rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1041 	else
1042 #endif /* CONFIG_PPC_HAS_HASH_64K */
1043 	{
1044 		int spp = subpage_protection(mm, ea);
1045 		if (access & spp)
1046 			rc = -2;
1047 		else
1048 			rc = __hash_page_4K(ea, access, vsid, ptep, trap,
1049 					    local, ssize, spp);
1050 	}
1051 
1052 	/* Dump some info in case of hash insertion failure, they should
1053 	 * never happen so it is really useful to know if/when they do
1054 	 */
1055 	if (rc == -1)
1056 		hash_failure_debug(ea, access, vsid, trap, ssize, psize,
1057 				   pte_val(*ptep));
1058 #ifndef CONFIG_PPC_64K_PAGES
1059 	DBG_LOW(" o-pte: %016lx\n", pte_val(*ptep));
1060 #else
1061 	DBG_LOW(" o-pte: %016lx %016lx\n", pte_val(*ptep),
1062 		pte_val(*(ptep + PTRS_PER_PTE)));
1063 #endif
1064 	DBG_LOW(" -> rc=%d\n", rc);
1065 	return rc;
1066 }
1067 EXPORT_SYMBOL_GPL(hash_page);
1068 
hash_preload(struct mm_struct * mm,unsigned long ea,unsigned long access,unsigned long trap)1069 void hash_preload(struct mm_struct *mm, unsigned long ea,
1070 		  unsigned long access, unsigned long trap)
1071 {
1072 	unsigned long vsid;
1073 	pgd_t *pgdir;
1074 	pte_t *ptep;
1075 	unsigned long flags;
1076 	int rc, ssize, local = 0;
1077 
1078 	BUG_ON(REGION_ID(ea) != USER_REGION_ID);
1079 
1080 #ifdef CONFIG_PPC_MM_SLICES
1081 	/* We only prefault standard pages for now */
1082 	if (unlikely(get_slice_psize(mm, ea) != mm->context.user_psize))
1083 		return;
1084 #endif
1085 
1086 	DBG_LOW("hash_preload(mm=%p, mm->pgdir=%p, ea=%016lx, access=%lx,"
1087 		" trap=%lx\n", mm, mm->pgd, ea, access, trap);
1088 
1089 	/* Get Linux PTE if available */
1090 	pgdir = mm->pgd;
1091 	if (pgdir == NULL)
1092 		return;
1093 	ptep = find_linux_pte(pgdir, ea);
1094 	if (!ptep)
1095 		return;
1096 
1097 #ifdef CONFIG_PPC_64K_PAGES
1098 	/* If either _PAGE_4K_PFN or _PAGE_NO_CACHE is set (and we are on
1099 	 * a 64K kernel), then we don't preload, hash_page() will take
1100 	 * care of it once we actually try to access the page.
1101 	 * That way we don't have to duplicate all of the logic for segment
1102 	 * page size demotion here
1103 	 */
1104 	if (pte_val(*ptep) & (_PAGE_4K_PFN | _PAGE_NO_CACHE))
1105 		return;
1106 #endif /* CONFIG_PPC_64K_PAGES */
1107 
1108 	/* Get VSID */
1109 	ssize = user_segment_size(ea);
1110 	vsid = get_vsid(mm->context.id, ea, ssize);
1111 
1112 	/* Hash doesn't like irqs */
1113 	local_irq_save(flags);
1114 
1115 	/* Is that local to this CPU ? */
1116 	if (cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1117 		local = 1;
1118 
1119 	/* Hash it in */
1120 #ifdef CONFIG_PPC_HAS_HASH_64K
1121 	if (mm->context.user_psize == MMU_PAGE_64K)
1122 		rc = __hash_page_64K(ea, access, vsid, ptep, trap, local, ssize);
1123 	else
1124 #endif /* CONFIG_PPC_HAS_HASH_64K */
1125 		rc = __hash_page_4K(ea, access, vsid, ptep, trap, local, ssize,
1126 				    subpage_protection(mm, ea));
1127 
1128 	/* Dump some info in case of hash insertion failure, they should
1129 	 * never happen so it is really useful to know if/when they do
1130 	 */
1131 	if (rc == -1)
1132 		hash_failure_debug(ea, access, vsid, trap, ssize,
1133 				   mm->context.user_psize, pte_val(*ptep));
1134 
1135 	local_irq_restore(flags);
1136 }
1137 
1138 /* WARNING: This is called from hash_low_64.S, if you change this prototype,
1139  *          do not forget to update the assembly call site !
1140  */
flush_hash_page(unsigned long va,real_pte_t pte,int psize,int ssize,int local)1141 void flush_hash_page(unsigned long va, real_pte_t pte, int psize, int ssize,
1142 		     int local)
1143 {
1144 	unsigned long hash, index, shift, hidx, slot;
1145 
1146 	DBG_LOW("flush_hash_page(va=%016lx)\n", va);
1147 	pte_iterate_hashed_subpages(pte, psize, va, index, shift) {
1148 		hash = hpt_hash(va, shift, ssize);
1149 		hidx = __rpte_to_hidx(pte, index);
1150 		if (hidx & _PTEIDX_SECONDARY)
1151 			hash = ~hash;
1152 		slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1153 		slot += hidx & _PTEIDX_GROUP_IX;
1154 		DBG_LOW(" sub %ld: hash=%lx, hidx=%lx\n", index, slot, hidx);
1155 		ppc_md.hpte_invalidate(slot, va, psize, ssize, local);
1156 	} pte_iterate_hashed_end();
1157 }
1158 
flush_hash_range(unsigned long number,int local)1159 void flush_hash_range(unsigned long number, int local)
1160 {
1161 	if (ppc_md.flush_hash_range)
1162 		ppc_md.flush_hash_range(number, local);
1163 	else {
1164 		int i;
1165 		struct ppc64_tlb_batch *batch =
1166 			&__get_cpu_var(ppc64_tlb_batch);
1167 
1168 		for (i = 0; i < number; i++)
1169 			flush_hash_page(batch->vaddr[i], batch->pte[i],
1170 					batch->psize, batch->ssize, local);
1171 	}
1172 }
1173 
1174 /*
1175  * low_hash_fault is called when we the low level hash code failed
1176  * to instert a PTE due to an hypervisor error
1177  */
low_hash_fault(struct pt_regs * regs,unsigned long address,int rc)1178 void low_hash_fault(struct pt_regs *regs, unsigned long address, int rc)
1179 {
1180 	if (user_mode(regs)) {
1181 #ifdef CONFIG_PPC_SUBPAGE_PROT
1182 		if (rc == -2)
1183 			_exception(SIGSEGV, regs, SEGV_ACCERR, address);
1184 		else
1185 #endif
1186 			_exception(SIGBUS, regs, BUS_ADRERR, address);
1187 	} else
1188 		bad_page_fault(regs, address, SIGBUS);
1189 }
1190 
1191 #ifdef CONFIG_DEBUG_PAGEALLOC
kernel_map_linear_page(unsigned long vaddr,unsigned long lmi)1192 static void kernel_map_linear_page(unsigned long vaddr, unsigned long lmi)
1193 {
1194 	unsigned long hash, hpteg;
1195 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1196 	unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1197 	unsigned long mode = htab_convert_pte_flags(PAGE_KERNEL);
1198 	int ret;
1199 
1200 	hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1201 	hpteg = ((hash & htab_hash_mask) * HPTES_PER_GROUP);
1202 
1203 	ret = ppc_md.hpte_insert(hpteg, va, __pa(vaddr),
1204 				 mode, HPTE_V_BOLTED,
1205 				 mmu_linear_psize, mmu_kernel_ssize);
1206 	BUG_ON (ret < 0);
1207 	spin_lock(&linear_map_hash_lock);
1208 	BUG_ON(linear_map_hash_slots[lmi] & 0x80);
1209 	linear_map_hash_slots[lmi] = ret | 0x80;
1210 	spin_unlock(&linear_map_hash_lock);
1211 }
1212 
kernel_unmap_linear_page(unsigned long vaddr,unsigned long lmi)1213 static void kernel_unmap_linear_page(unsigned long vaddr, unsigned long lmi)
1214 {
1215 	unsigned long hash, hidx, slot;
1216 	unsigned long vsid = get_kernel_vsid(vaddr, mmu_kernel_ssize);
1217 	unsigned long va = hpt_va(vaddr, vsid, mmu_kernel_ssize);
1218 
1219 	hash = hpt_hash(va, PAGE_SHIFT, mmu_kernel_ssize);
1220 	spin_lock(&linear_map_hash_lock);
1221 	BUG_ON(!(linear_map_hash_slots[lmi] & 0x80));
1222 	hidx = linear_map_hash_slots[lmi] & 0x7f;
1223 	linear_map_hash_slots[lmi] = 0;
1224 	spin_unlock(&linear_map_hash_lock);
1225 	if (hidx & _PTEIDX_SECONDARY)
1226 		hash = ~hash;
1227 	slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1228 	slot += hidx & _PTEIDX_GROUP_IX;
1229 	ppc_md.hpte_invalidate(slot, va, mmu_linear_psize, mmu_kernel_ssize, 0);
1230 }
1231 
kernel_map_pages(struct page * page,int numpages,int enable)1232 void kernel_map_pages(struct page *page, int numpages, int enable)
1233 {
1234 	unsigned long flags, vaddr, lmi;
1235 	int i;
1236 
1237 	local_irq_save(flags);
1238 	for (i = 0; i < numpages; i++, page++) {
1239 		vaddr = (unsigned long)page_address(page);
1240 		lmi = __pa(vaddr) >> PAGE_SHIFT;
1241 		if (lmi >= linear_map_hash_count)
1242 			continue;
1243 		if (enable)
1244 			kernel_map_linear_page(vaddr, lmi);
1245 		else
1246 			kernel_unmap_linear_page(vaddr, lmi);
1247 	}
1248 	local_irq_restore(flags);
1249 }
1250 #endif /* CONFIG_DEBUG_PAGEALLOC */
1251 
setup_initial_memory_limit(phys_addr_t first_memblock_base,phys_addr_t first_memblock_size)1252 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
1253 				phys_addr_t first_memblock_size)
1254 {
1255 	/* We don't currently support the first MEMBLOCK not mapping 0
1256 	 * physical on those processors
1257 	 */
1258 	BUG_ON(first_memblock_base != 0);
1259 
1260 	/* On LPAR systems, the first entry is our RMA region,
1261 	 * non-LPAR 64-bit hash MMU systems don't have a limitation
1262 	 * on real mode access, but using the first entry works well
1263 	 * enough. We also clamp it to 1G to avoid some funky things
1264 	 * such as RTAS bugs etc...
1265 	 */
1266 	ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
1267 
1268 	/* Finally limit subsequent allocations */
1269 	memblock_set_current_limit(ppc64_rma_size);
1270 }
1271