1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/core.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
7 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
8 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 */
10 #include <linux/module.h>
11 #include <linux/init.h>
12 #include <linux/interrupt.h>
13 #include <linux/completion.h>
14 #include <linux/device.h>
15 #include <linux/delay.h>
16 #include <linux/pagemap.h>
17 #include <linux/err.h>
18 #include <linux/leds.h>
19 #include <linux/scatterlist.h>
20 #include <linux/log2.h>
21 #include <linux/pm_runtime.h>
22 #include <linux/pm_wakeup.h>
23 #include <linux/suspend.h>
24 #include <linux/fault-inject.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
27 #include <linux/of.h>
28
29 #include <linux/mmc/card.h>
30 #include <linux/mmc/host.h>
31 #include <linux/mmc/mmc.h>
32 #include <linux/mmc/sd.h>
33 #include <linux/mmc/slot-gpio.h>
34
35 #define CREATE_TRACE_POINTS
36 #include <trace/events/mmc.h>
37
38 #include "core.h"
39 #include "card.h"
40 #include "crypto.h"
41 #include "bus.h"
42 #include "host.h"
43 #include "sdio_bus.h"
44 #include "pwrseq.h"
45
46 #include "mmc_ops.h"
47 #include "sd_ops.h"
48 #include "sdio_ops.h"
49
50 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
51 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
52 #define SD_DISCARD_TIMEOUT_MS (250)
53
54 static const unsigned freqs[] = { 400000, 300000, 200000, 100000 };
55
56 /*
57 * Enabling software CRCs on the data blocks can be a significant (30%)
58 * performance cost, and for other reasons may not always be desired.
59 * So we allow it it to be disabled.
60 */
61 bool use_spi_crc = 1;
62 module_param(use_spi_crc, bool, 0);
63
mmc_schedule_delayed_work(struct delayed_work * work,unsigned long delay)64 static int mmc_schedule_delayed_work(struct delayed_work *work,
65 unsigned long delay)
66 {
67 /*
68 * We use the system_freezable_wq, because of two reasons.
69 * First, it allows several works (not the same work item) to be
70 * executed simultaneously. Second, the queue becomes frozen when
71 * userspace becomes frozen during system PM.
72 */
73 return queue_delayed_work(system_freezable_wq, work, delay);
74 }
75
76 #ifdef CONFIG_FAIL_MMC_REQUEST
77
78 /*
79 * Internal function. Inject random data errors.
80 * If mmc_data is NULL no errors are injected.
81 */
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)82 static void mmc_should_fail_request(struct mmc_host *host,
83 struct mmc_request *mrq)
84 {
85 struct mmc_command *cmd = mrq->cmd;
86 struct mmc_data *data = mrq->data;
87 static const int data_errors[] = {
88 -ETIMEDOUT,
89 -EILSEQ,
90 -EIO,
91 };
92
93 if (!data)
94 return;
95
96 if ((cmd && cmd->error) || data->error ||
97 !should_fail(&host->fail_mmc_request, data->blksz * data->blocks))
98 return;
99
100 data->error = data_errors[prandom_u32_max(ARRAY_SIZE(data_errors))];
101 data->bytes_xfered = prandom_u32_max(data->bytes_xfered >> 9) << 9;
102 }
103
104 #else /* CONFIG_FAIL_MMC_REQUEST */
105
mmc_should_fail_request(struct mmc_host * host,struct mmc_request * mrq)106 static inline void mmc_should_fail_request(struct mmc_host *host,
107 struct mmc_request *mrq)
108 {
109 }
110
111 #endif /* CONFIG_FAIL_MMC_REQUEST */
112
mmc_complete_cmd(struct mmc_request * mrq)113 static inline void mmc_complete_cmd(struct mmc_request *mrq)
114 {
115 if (mrq->cap_cmd_during_tfr && !completion_done(&mrq->cmd_completion))
116 complete_all(&mrq->cmd_completion);
117 }
118
mmc_command_done(struct mmc_host * host,struct mmc_request * mrq)119 void mmc_command_done(struct mmc_host *host, struct mmc_request *mrq)
120 {
121 if (!mrq->cap_cmd_during_tfr)
122 return;
123
124 mmc_complete_cmd(mrq);
125
126 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
127 mmc_hostname(host), mrq->cmd->opcode);
128 }
129 EXPORT_SYMBOL(mmc_command_done);
130
131 /**
132 * mmc_request_done - finish processing an MMC request
133 * @host: MMC host which completed request
134 * @mrq: MMC request which request
135 *
136 * MMC drivers should call this function when they have completed
137 * their processing of a request.
138 */
mmc_request_done(struct mmc_host * host,struct mmc_request * mrq)139 void mmc_request_done(struct mmc_host *host, struct mmc_request *mrq)
140 {
141 struct mmc_command *cmd = mrq->cmd;
142 int err = cmd->error;
143
144 /* Flag re-tuning needed on CRC errors */
145 if (cmd->opcode != MMC_SEND_TUNING_BLOCK &&
146 cmd->opcode != MMC_SEND_TUNING_BLOCK_HS200 &&
147 !host->retune_crc_disable &&
148 (err == -EILSEQ || (mrq->sbc && mrq->sbc->error == -EILSEQ) ||
149 (mrq->data && mrq->data->error == -EILSEQ) ||
150 (mrq->stop && mrq->stop->error == -EILSEQ)))
151 mmc_retune_needed(host);
152
153 if (err && cmd->retries && mmc_host_is_spi(host)) {
154 if (cmd->resp[0] & R1_SPI_ILLEGAL_COMMAND)
155 cmd->retries = 0;
156 }
157
158 if (host->ongoing_mrq == mrq)
159 host->ongoing_mrq = NULL;
160
161 mmc_complete_cmd(mrq);
162
163 trace_mmc_request_done(host, mrq);
164
165 /*
166 * We list various conditions for the command to be considered
167 * properly done:
168 *
169 * - There was no error, OK fine then
170 * - We are not doing some kind of retry
171 * - The card was removed (...so just complete everything no matter
172 * if there are errors or retries)
173 */
174 if (!err || !cmd->retries || mmc_card_removed(host->card)) {
175 mmc_should_fail_request(host, mrq);
176
177 if (!host->ongoing_mrq)
178 led_trigger_event(host->led, LED_OFF);
179
180 if (mrq->sbc) {
181 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
182 mmc_hostname(host), mrq->sbc->opcode,
183 mrq->sbc->error,
184 mrq->sbc->resp[0], mrq->sbc->resp[1],
185 mrq->sbc->resp[2], mrq->sbc->resp[3]);
186 }
187
188 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
189 mmc_hostname(host), cmd->opcode, err,
190 cmd->resp[0], cmd->resp[1],
191 cmd->resp[2], cmd->resp[3]);
192
193 if (mrq->data) {
194 pr_debug("%s: %d bytes transferred: %d\n",
195 mmc_hostname(host),
196 mrq->data->bytes_xfered, mrq->data->error);
197 }
198
199 if (mrq->stop) {
200 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
201 mmc_hostname(host), mrq->stop->opcode,
202 mrq->stop->error,
203 mrq->stop->resp[0], mrq->stop->resp[1],
204 mrq->stop->resp[2], mrq->stop->resp[3]);
205 }
206 }
207 /*
208 * Request starter must handle retries - see
209 * mmc_wait_for_req_done().
210 */
211 if (mrq->done)
212 mrq->done(mrq);
213 }
214
215 EXPORT_SYMBOL(mmc_request_done);
216
__mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)217 static void __mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
218 {
219 int err;
220
221 /* Assumes host controller has been runtime resumed by mmc_claim_host */
222 err = mmc_retune(host);
223 if (err) {
224 mrq->cmd->error = err;
225 mmc_request_done(host, mrq);
226 return;
227 }
228
229 /*
230 * For sdio rw commands we must wait for card busy otherwise some
231 * sdio devices won't work properly.
232 * And bypass I/O abort, reset and bus suspend operations.
233 */
234 if (sdio_is_io_busy(mrq->cmd->opcode, mrq->cmd->arg) &&
235 host->ops->card_busy) {
236 int tries = 500; /* Wait aprox 500ms at maximum */
237
238 while (host->ops->card_busy(host) && --tries)
239 mmc_delay(1);
240
241 if (tries == 0) {
242 mrq->cmd->error = -EBUSY;
243 mmc_request_done(host, mrq);
244 return;
245 }
246 }
247
248 if (mrq->cap_cmd_during_tfr) {
249 host->ongoing_mrq = mrq;
250 /*
251 * Retry path could come through here without having waiting on
252 * cmd_completion, so ensure it is reinitialised.
253 */
254 reinit_completion(&mrq->cmd_completion);
255 }
256
257 trace_mmc_request_start(host, mrq);
258
259 if (host->cqe_on)
260 host->cqe_ops->cqe_off(host);
261
262 host->ops->request(host, mrq);
263 }
264
mmc_mrq_pr_debug(struct mmc_host * host,struct mmc_request * mrq,bool cqe)265 static void mmc_mrq_pr_debug(struct mmc_host *host, struct mmc_request *mrq,
266 bool cqe)
267 {
268 if (mrq->sbc) {
269 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
270 mmc_hostname(host), mrq->sbc->opcode,
271 mrq->sbc->arg, mrq->sbc->flags);
272 }
273
274 if (mrq->cmd) {
275 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
276 mmc_hostname(host), cqe ? "CQE direct " : "",
277 mrq->cmd->opcode, mrq->cmd->arg, mrq->cmd->flags);
278 } else if (cqe) {
279 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
280 mmc_hostname(host), mrq->tag, mrq->data->blk_addr);
281 }
282
283 if (mrq->data) {
284 pr_debug("%s: blksz %d blocks %d flags %08x "
285 "tsac %d ms nsac %d\n",
286 mmc_hostname(host), mrq->data->blksz,
287 mrq->data->blocks, mrq->data->flags,
288 mrq->data->timeout_ns / 1000000,
289 mrq->data->timeout_clks);
290 }
291
292 if (mrq->stop) {
293 pr_debug("%s: CMD%u arg %08x flags %08x\n",
294 mmc_hostname(host), mrq->stop->opcode,
295 mrq->stop->arg, mrq->stop->flags);
296 }
297 }
298
mmc_mrq_prep(struct mmc_host * host,struct mmc_request * mrq)299 static int mmc_mrq_prep(struct mmc_host *host, struct mmc_request *mrq)
300 {
301 unsigned int i, sz = 0;
302 struct scatterlist *sg;
303
304 if (mrq->cmd) {
305 mrq->cmd->error = 0;
306 mrq->cmd->mrq = mrq;
307 mrq->cmd->data = mrq->data;
308 }
309 if (mrq->sbc) {
310 mrq->sbc->error = 0;
311 mrq->sbc->mrq = mrq;
312 }
313 if (mrq->data) {
314 if (mrq->data->blksz > host->max_blk_size ||
315 mrq->data->blocks > host->max_blk_count ||
316 mrq->data->blocks * mrq->data->blksz > host->max_req_size)
317 return -EINVAL;
318
319 for_each_sg(mrq->data->sg, sg, mrq->data->sg_len, i)
320 sz += sg->length;
321 if (sz != mrq->data->blocks * mrq->data->blksz)
322 return -EINVAL;
323
324 mrq->data->error = 0;
325 mrq->data->mrq = mrq;
326 if (mrq->stop) {
327 mrq->data->stop = mrq->stop;
328 mrq->stop->error = 0;
329 mrq->stop->mrq = mrq;
330 }
331 }
332
333 return 0;
334 }
335
mmc_start_request(struct mmc_host * host,struct mmc_request * mrq)336 int mmc_start_request(struct mmc_host *host, struct mmc_request *mrq)
337 {
338 int err;
339
340 init_completion(&mrq->cmd_completion);
341
342 mmc_retune_hold(host);
343
344 if (mmc_card_removed(host->card))
345 return -ENOMEDIUM;
346
347 mmc_mrq_pr_debug(host, mrq, false);
348
349 WARN_ON(!host->claimed);
350
351 err = mmc_mrq_prep(host, mrq);
352 if (err)
353 return err;
354
355 led_trigger_event(host->led, LED_FULL);
356 __mmc_start_request(host, mrq);
357
358 return 0;
359 }
360 EXPORT_SYMBOL(mmc_start_request);
361
mmc_wait_done(struct mmc_request * mrq)362 static void mmc_wait_done(struct mmc_request *mrq)
363 {
364 complete(&mrq->completion);
365 }
366
mmc_wait_ongoing_tfr_cmd(struct mmc_host * host)367 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host *host)
368 {
369 struct mmc_request *ongoing_mrq = READ_ONCE(host->ongoing_mrq);
370
371 /*
372 * If there is an ongoing transfer, wait for the command line to become
373 * available.
374 */
375 if (ongoing_mrq && !completion_done(&ongoing_mrq->cmd_completion))
376 wait_for_completion(&ongoing_mrq->cmd_completion);
377 }
378
__mmc_start_req(struct mmc_host * host,struct mmc_request * mrq)379 static int __mmc_start_req(struct mmc_host *host, struct mmc_request *mrq)
380 {
381 int err;
382
383 mmc_wait_ongoing_tfr_cmd(host);
384
385 init_completion(&mrq->completion);
386 mrq->done = mmc_wait_done;
387
388 err = mmc_start_request(host, mrq);
389 if (err) {
390 mrq->cmd->error = err;
391 mmc_complete_cmd(mrq);
392 complete(&mrq->completion);
393 }
394
395 return err;
396 }
397
mmc_wait_for_req_done(struct mmc_host * host,struct mmc_request * mrq)398 void mmc_wait_for_req_done(struct mmc_host *host, struct mmc_request *mrq)
399 {
400 struct mmc_command *cmd;
401
402 while (1) {
403 wait_for_completion(&mrq->completion);
404
405 cmd = mrq->cmd;
406
407 if (!cmd->error || !cmd->retries ||
408 mmc_card_removed(host->card))
409 break;
410
411 mmc_retune_recheck(host);
412
413 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
414 mmc_hostname(host), cmd->opcode, cmd->error);
415 cmd->retries--;
416 cmd->error = 0;
417 __mmc_start_request(host, mrq);
418 }
419
420 mmc_retune_release(host);
421 }
422 EXPORT_SYMBOL(mmc_wait_for_req_done);
423
424 /*
425 * mmc_cqe_start_req - Start a CQE request.
426 * @host: MMC host to start the request
427 * @mrq: request to start
428 *
429 * Start the request, re-tuning if needed and it is possible. Returns an error
430 * code if the request fails to start or -EBUSY if CQE is busy.
431 */
mmc_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)432 int mmc_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
433 {
434 int err;
435
436 /*
437 * CQE cannot process re-tuning commands. Caller must hold retuning
438 * while CQE is in use. Re-tuning can happen here only when CQE has no
439 * active requests i.e. this is the first. Note, re-tuning will call
440 * ->cqe_off().
441 */
442 err = mmc_retune(host);
443 if (err)
444 goto out_err;
445
446 mrq->host = host;
447
448 mmc_mrq_pr_debug(host, mrq, true);
449
450 err = mmc_mrq_prep(host, mrq);
451 if (err)
452 goto out_err;
453
454 err = host->cqe_ops->cqe_request(host, mrq);
455 if (err)
456 goto out_err;
457
458 trace_mmc_request_start(host, mrq);
459
460 return 0;
461
462 out_err:
463 if (mrq->cmd) {
464 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
465 mmc_hostname(host), mrq->cmd->opcode, err);
466 } else {
467 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
468 mmc_hostname(host), mrq->tag, err);
469 }
470 return err;
471 }
472 EXPORT_SYMBOL(mmc_cqe_start_req);
473
474 /**
475 * mmc_cqe_request_done - CQE has finished processing an MMC request
476 * @host: MMC host which completed request
477 * @mrq: MMC request which completed
478 *
479 * CQE drivers should call this function when they have completed
480 * their processing of a request.
481 */
mmc_cqe_request_done(struct mmc_host * host,struct mmc_request * mrq)482 void mmc_cqe_request_done(struct mmc_host *host, struct mmc_request *mrq)
483 {
484 mmc_should_fail_request(host, mrq);
485
486 /* Flag re-tuning needed on CRC errors */
487 if ((mrq->cmd && mrq->cmd->error == -EILSEQ) ||
488 (mrq->data && mrq->data->error == -EILSEQ))
489 mmc_retune_needed(host);
490
491 trace_mmc_request_done(host, mrq);
492
493 if (mrq->cmd) {
494 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
495 mmc_hostname(host), mrq->cmd->opcode, mrq->cmd->error);
496 } else {
497 pr_debug("%s: CQE transfer done tag %d\n",
498 mmc_hostname(host), mrq->tag);
499 }
500
501 if (mrq->data) {
502 pr_debug("%s: %d bytes transferred: %d\n",
503 mmc_hostname(host),
504 mrq->data->bytes_xfered, mrq->data->error);
505 }
506
507 mrq->done(mrq);
508 }
509 EXPORT_SYMBOL(mmc_cqe_request_done);
510
511 /**
512 * mmc_cqe_post_req - CQE post process of a completed MMC request
513 * @host: MMC host
514 * @mrq: MMC request to be processed
515 */
mmc_cqe_post_req(struct mmc_host * host,struct mmc_request * mrq)516 void mmc_cqe_post_req(struct mmc_host *host, struct mmc_request *mrq)
517 {
518 if (host->cqe_ops->cqe_post_req)
519 host->cqe_ops->cqe_post_req(host, mrq);
520 }
521 EXPORT_SYMBOL(mmc_cqe_post_req);
522
523 /* Arbitrary 1 second timeout */
524 #define MMC_CQE_RECOVERY_TIMEOUT 1000
525
526 /*
527 * mmc_cqe_recovery - Recover from CQE errors.
528 * @host: MMC host to recover
529 *
530 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
531 * in eMMC, and discarding the queue in CQE. CQE must call
532 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
533 * fails to discard its queue.
534 */
mmc_cqe_recovery(struct mmc_host * host)535 int mmc_cqe_recovery(struct mmc_host *host)
536 {
537 struct mmc_command cmd;
538 int err;
539
540 mmc_retune_hold_now(host);
541
542 /*
543 * Recovery is expected seldom, if at all, but it reduces performance,
544 * so make sure it is not completely silent.
545 */
546 pr_warn("%s: running CQE recovery\n", mmc_hostname(host));
547
548 host->cqe_ops->cqe_recovery_start(host);
549
550 memset(&cmd, 0, sizeof(cmd));
551 cmd.opcode = MMC_STOP_TRANSMISSION;
552 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
553 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
554 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
555 mmc_wait_for_cmd(host, &cmd, 0);
556
557 memset(&cmd, 0, sizeof(cmd));
558 cmd.opcode = MMC_CMDQ_TASK_MGMT;
559 cmd.arg = 1; /* Discard entire queue */
560 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
561 cmd.flags &= ~MMC_RSP_CRC; /* Ignore CRC */
562 cmd.busy_timeout = MMC_CQE_RECOVERY_TIMEOUT;
563 err = mmc_wait_for_cmd(host, &cmd, 0);
564
565 host->cqe_ops->cqe_recovery_finish(host);
566
567 mmc_retune_release(host);
568
569 return err;
570 }
571 EXPORT_SYMBOL(mmc_cqe_recovery);
572
573 /**
574 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
575 * @host: MMC host
576 * @mrq: MMC request
577 *
578 * mmc_is_req_done() is used with requests that have
579 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
580 * starting a request and before waiting for it to complete. That is,
581 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
582 * and before mmc_wait_for_req_done(). If it is called at other times the
583 * result is not meaningful.
584 */
mmc_is_req_done(struct mmc_host * host,struct mmc_request * mrq)585 bool mmc_is_req_done(struct mmc_host *host, struct mmc_request *mrq)
586 {
587 return completion_done(&mrq->completion);
588 }
589 EXPORT_SYMBOL(mmc_is_req_done);
590
591 /**
592 * mmc_wait_for_req - start a request and wait for completion
593 * @host: MMC host to start command
594 * @mrq: MMC request to start
595 *
596 * Start a new MMC custom command request for a host, and wait
597 * for the command to complete. In the case of 'cap_cmd_during_tfr'
598 * requests, the transfer is ongoing and the caller can issue further
599 * commands that do not use the data lines, and then wait by calling
600 * mmc_wait_for_req_done().
601 * Does not attempt to parse the response.
602 */
mmc_wait_for_req(struct mmc_host * host,struct mmc_request * mrq)603 void mmc_wait_for_req(struct mmc_host *host, struct mmc_request *mrq)
604 {
605 __mmc_start_req(host, mrq);
606
607 if (!mrq->cap_cmd_during_tfr)
608 mmc_wait_for_req_done(host, mrq);
609 }
610 EXPORT_SYMBOL(mmc_wait_for_req);
611
612 /**
613 * mmc_wait_for_cmd - start a command and wait for completion
614 * @host: MMC host to start command
615 * @cmd: MMC command to start
616 * @retries: maximum number of retries
617 *
618 * Start a new MMC command for a host, and wait for the command
619 * to complete. Return any error that occurred while the command
620 * was executing. Do not attempt to parse the response.
621 */
mmc_wait_for_cmd(struct mmc_host * host,struct mmc_command * cmd,int retries)622 int mmc_wait_for_cmd(struct mmc_host *host, struct mmc_command *cmd, int retries)
623 {
624 struct mmc_request mrq = {};
625
626 WARN_ON(!host->claimed);
627
628 memset(cmd->resp, 0, sizeof(cmd->resp));
629 cmd->retries = retries;
630
631 mrq.cmd = cmd;
632 cmd->data = NULL;
633
634 mmc_wait_for_req(host, &mrq);
635
636 return cmd->error;
637 }
638
639 EXPORT_SYMBOL(mmc_wait_for_cmd);
640
641 /**
642 * mmc_set_data_timeout - set the timeout for a data command
643 * @data: data phase for command
644 * @card: the MMC card associated with the data transfer
645 *
646 * Computes the data timeout parameters according to the
647 * correct algorithm given the card type.
648 */
mmc_set_data_timeout(struct mmc_data * data,const struct mmc_card * card)649 void mmc_set_data_timeout(struct mmc_data *data, const struct mmc_card *card)
650 {
651 unsigned int mult;
652
653 /*
654 * SDIO cards only define an upper 1 s limit on access.
655 */
656 if (mmc_card_sdio(card)) {
657 data->timeout_ns = 1000000000;
658 data->timeout_clks = 0;
659 return;
660 }
661
662 /*
663 * SD cards use a 100 multiplier rather than 10
664 */
665 mult = mmc_card_sd(card) ? 100 : 10;
666
667 /*
668 * Scale up the multiplier (and therefore the timeout) by
669 * the r2w factor for writes.
670 */
671 if (data->flags & MMC_DATA_WRITE)
672 mult <<= card->csd.r2w_factor;
673
674 data->timeout_ns = card->csd.taac_ns * mult;
675 data->timeout_clks = card->csd.taac_clks * mult;
676
677 /*
678 * SD cards also have an upper limit on the timeout.
679 */
680 if (mmc_card_sd(card)) {
681 unsigned int timeout_us, limit_us;
682
683 timeout_us = data->timeout_ns / 1000;
684 if (card->host->ios.clock)
685 timeout_us += data->timeout_clks * 1000 /
686 (card->host->ios.clock / 1000);
687
688 if (data->flags & MMC_DATA_WRITE)
689 /*
690 * The MMC spec "It is strongly recommended
691 * for hosts to implement more than 500ms
692 * timeout value even if the card indicates
693 * the 250ms maximum busy length." Even the
694 * previous value of 300ms is known to be
695 * insufficient for some cards.
696 */
697 limit_us = 3000000;
698 else
699 limit_us = 100000;
700
701 /*
702 * SDHC cards always use these fixed values.
703 */
704 if (timeout_us > limit_us) {
705 data->timeout_ns = limit_us * 1000;
706 data->timeout_clks = 0;
707 }
708
709 /* assign limit value if invalid */
710 if (timeout_us == 0)
711 data->timeout_ns = limit_us * 1000;
712 }
713
714 /*
715 * Some cards require longer data read timeout than indicated in CSD.
716 * Address this by setting the read timeout to a "reasonably high"
717 * value. For the cards tested, 600ms has proven enough. If necessary,
718 * this value can be increased if other problematic cards require this.
719 */
720 if (mmc_card_long_read_time(card) && data->flags & MMC_DATA_READ) {
721 data->timeout_ns = 600000000;
722 data->timeout_clks = 0;
723 }
724
725 /*
726 * Some cards need very high timeouts if driven in SPI mode.
727 * The worst observed timeout was 900ms after writing a
728 * continuous stream of data until the internal logic
729 * overflowed.
730 */
731 if (mmc_host_is_spi(card->host)) {
732 if (data->flags & MMC_DATA_WRITE) {
733 if (data->timeout_ns < 1000000000)
734 data->timeout_ns = 1000000000; /* 1s */
735 } else {
736 if (data->timeout_ns < 100000000)
737 data->timeout_ns = 100000000; /* 100ms */
738 }
739 }
740 }
741 EXPORT_SYMBOL(mmc_set_data_timeout);
742
743 /*
744 * Allow claiming an already claimed host if the context is the same or there is
745 * no context but the task is the same.
746 */
mmc_ctx_matches(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)747 static inline bool mmc_ctx_matches(struct mmc_host *host, struct mmc_ctx *ctx,
748 struct task_struct *task)
749 {
750 return host->claimer == ctx ||
751 (!ctx && task && host->claimer->task == task);
752 }
753
mmc_ctx_set_claimer(struct mmc_host * host,struct mmc_ctx * ctx,struct task_struct * task)754 static inline void mmc_ctx_set_claimer(struct mmc_host *host,
755 struct mmc_ctx *ctx,
756 struct task_struct *task)
757 {
758 if (!host->claimer) {
759 if (ctx)
760 host->claimer = ctx;
761 else
762 host->claimer = &host->default_ctx;
763 }
764 if (task)
765 host->claimer->task = task;
766 }
767
768 /**
769 * __mmc_claim_host - exclusively claim a host
770 * @host: mmc host to claim
771 * @ctx: context that claims the host or NULL in which case the default
772 * context will be used
773 * @abort: whether or not the operation should be aborted
774 *
775 * Claim a host for a set of operations. If @abort is non null and
776 * dereference a non-zero value then this will return prematurely with
777 * that non-zero value without acquiring the lock. Returns zero
778 * with the lock held otherwise.
779 */
__mmc_claim_host(struct mmc_host * host,struct mmc_ctx * ctx,atomic_t * abort)780 int __mmc_claim_host(struct mmc_host *host, struct mmc_ctx *ctx,
781 atomic_t *abort)
782 {
783 struct task_struct *task = ctx ? NULL : current;
784 DECLARE_WAITQUEUE(wait, current);
785 unsigned long flags;
786 int stop;
787 bool pm = false;
788
789 might_sleep();
790
791 add_wait_queue(&host->wq, &wait);
792 spin_lock_irqsave(&host->lock, flags);
793 while (1) {
794 set_current_state(TASK_UNINTERRUPTIBLE);
795 stop = abort ? atomic_read(abort) : 0;
796 if (stop || !host->claimed || mmc_ctx_matches(host, ctx, task))
797 break;
798 spin_unlock_irqrestore(&host->lock, flags);
799 schedule();
800 spin_lock_irqsave(&host->lock, flags);
801 }
802 set_current_state(TASK_RUNNING);
803 if (!stop) {
804 host->claimed = 1;
805 mmc_ctx_set_claimer(host, ctx, task);
806 host->claim_cnt += 1;
807 if (host->claim_cnt == 1)
808 pm = true;
809 } else
810 wake_up(&host->wq);
811 spin_unlock_irqrestore(&host->lock, flags);
812 remove_wait_queue(&host->wq, &wait);
813
814 if (pm)
815 pm_runtime_get_sync(mmc_dev(host));
816
817 return stop;
818 }
819 EXPORT_SYMBOL(__mmc_claim_host);
820
821 /**
822 * mmc_release_host - release a host
823 * @host: mmc host to release
824 *
825 * Release a MMC host, allowing others to claim the host
826 * for their operations.
827 */
mmc_release_host(struct mmc_host * host)828 void mmc_release_host(struct mmc_host *host)
829 {
830 unsigned long flags;
831
832 WARN_ON(!host->claimed);
833
834 spin_lock_irqsave(&host->lock, flags);
835 if (--host->claim_cnt) {
836 /* Release for nested claim */
837 spin_unlock_irqrestore(&host->lock, flags);
838 } else {
839 host->claimed = 0;
840 host->claimer->task = NULL;
841 host->claimer = NULL;
842 spin_unlock_irqrestore(&host->lock, flags);
843 wake_up(&host->wq);
844 pm_runtime_mark_last_busy(mmc_dev(host));
845 if (host->caps & MMC_CAP_SYNC_RUNTIME_PM)
846 pm_runtime_put_sync_suspend(mmc_dev(host));
847 else
848 pm_runtime_put_autosuspend(mmc_dev(host));
849 }
850 }
851 EXPORT_SYMBOL(mmc_release_host);
852
853 /*
854 * This is a helper function, which fetches a runtime pm reference for the
855 * card device and also claims the host.
856 */
mmc_get_card(struct mmc_card * card,struct mmc_ctx * ctx)857 void mmc_get_card(struct mmc_card *card, struct mmc_ctx *ctx)
858 {
859 pm_runtime_get_sync(&card->dev);
860 __mmc_claim_host(card->host, ctx, NULL);
861 }
862 EXPORT_SYMBOL(mmc_get_card);
863
864 /*
865 * This is a helper function, which releases the host and drops the runtime
866 * pm reference for the card device.
867 */
mmc_put_card(struct mmc_card * card,struct mmc_ctx * ctx)868 void mmc_put_card(struct mmc_card *card, struct mmc_ctx *ctx)
869 {
870 struct mmc_host *host = card->host;
871
872 WARN_ON(ctx && host->claimer != ctx);
873
874 mmc_release_host(host);
875 pm_runtime_mark_last_busy(&card->dev);
876 pm_runtime_put_autosuspend(&card->dev);
877 }
878 EXPORT_SYMBOL(mmc_put_card);
879
880 /*
881 * Internal function that does the actual ios call to the host driver,
882 * optionally printing some debug output.
883 */
mmc_set_ios(struct mmc_host * host)884 static inline void mmc_set_ios(struct mmc_host *host)
885 {
886 struct mmc_ios *ios = &host->ios;
887
888 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
889 "width %u timing %u\n",
890 mmc_hostname(host), ios->clock, ios->bus_mode,
891 ios->power_mode, ios->chip_select, ios->vdd,
892 1 << ios->bus_width, ios->timing);
893
894 host->ops->set_ios(host, ios);
895 }
896
897 /*
898 * Control chip select pin on a host.
899 */
mmc_set_chip_select(struct mmc_host * host,int mode)900 void mmc_set_chip_select(struct mmc_host *host, int mode)
901 {
902 host->ios.chip_select = mode;
903 mmc_set_ios(host);
904 }
905
906 /*
907 * Sets the host clock to the highest possible frequency that
908 * is below "hz".
909 */
mmc_set_clock(struct mmc_host * host,unsigned int hz)910 void mmc_set_clock(struct mmc_host *host, unsigned int hz)
911 {
912 WARN_ON(hz && hz < host->f_min);
913
914 if (hz > host->f_max)
915 hz = host->f_max;
916
917 host->ios.clock = hz;
918 mmc_set_ios(host);
919 }
920
mmc_execute_tuning(struct mmc_card * card)921 int mmc_execute_tuning(struct mmc_card *card)
922 {
923 struct mmc_host *host = card->host;
924 u32 opcode;
925 int err;
926
927 if (!host->ops->execute_tuning)
928 return 0;
929
930 if (host->cqe_on)
931 host->cqe_ops->cqe_off(host);
932
933 if (mmc_card_mmc(card))
934 opcode = MMC_SEND_TUNING_BLOCK_HS200;
935 else
936 opcode = MMC_SEND_TUNING_BLOCK;
937
938 err = host->ops->execute_tuning(host, opcode);
939 if (!err) {
940 mmc_retune_clear(host);
941 mmc_retune_enable(host);
942 return 0;
943 }
944
945 /* Only print error when we don't check for card removal */
946 if (!host->detect_change) {
947 pr_err("%s: tuning execution failed: %d\n",
948 mmc_hostname(host), err);
949 mmc_debugfs_err_stats_inc(host, MMC_ERR_TUNING);
950 }
951
952 return err;
953 }
954
955 /*
956 * Change the bus mode (open drain/push-pull) of a host.
957 */
mmc_set_bus_mode(struct mmc_host * host,unsigned int mode)958 void mmc_set_bus_mode(struct mmc_host *host, unsigned int mode)
959 {
960 host->ios.bus_mode = mode;
961 mmc_set_ios(host);
962 }
963
964 /*
965 * Change data bus width of a host.
966 */
mmc_set_bus_width(struct mmc_host * host,unsigned int width)967 void mmc_set_bus_width(struct mmc_host *host, unsigned int width)
968 {
969 host->ios.bus_width = width;
970 mmc_set_ios(host);
971 }
972
973 /*
974 * Set initial state after a power cycle or a hw_reset.
975 */
mmc_set_initial_state(struct mmc_host * host)976 void mmc_set_initial_state(struct mmc_host *host)
977 {
978 if (host->cqe_on)
979 host->cqe_ops->cqe_off(host);
980
981 mmc_retune_disable(host);
982
983 if (mmc_host_is_spi(host))
984 host->ios.chip_select = MMC_CS_HIGH;
985 else
986 host->ios.chip_select = MMC_CS_DONTCARE;
987 host->ios.bus_mode = MMC_BUSMODE_PUSHPULL;
988 host->ios.bus_width = MMC_BUS_WIDTH_1;
989 host->ios.timing = MMC_TIMING_LEGACY;
990 host->ios.drv_type = 0;
991 host->ios.enhanced_strobe = false;
992
993 /*
994 * Make sure we are in non-enhanced strobe mode before we
995 * actually enable it in ext_csd.
996 */
997 if ((host->caps2 & MMC_CAP2_HS400_ES) &&
998 host->ops->hs400_enhanced_strobe)
999 host->ops->hs400_enhanced_strobe(host, &host->ios);
1000
1001 mmc_set_ios(host);
1002
1003 mmc_crypto_set_initial_state(host);
1004 }
1005
1006 /**
1007 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1008 * @vdd: voltage (mV)
1009 * @low_bits: prefer low bits in boundary cases
1010 *
1011 * This function returns the OCR bit number according to the provided @vdd
1012 * value. If conversion is not possible a negative errno value returned.
1013 *
1014 * Depending on the @low_bits flag the function prefers low or high OCR bits
1015 * on boundary voltages. For example,
1016 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1017 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1018 *
1019 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1020 */
mmc_vdd_to_ocrbitnum(int vdd,bool low_bits)1021 static int mmc_vdd_to_ocrbitnum(int vdd, bool low_bits)
1022 {
1023 const int max_bit = ilog2(MMC_VDD_35_36);
1024 int bit;
1025
1026 if (vdd < 1650 || vdd > 3600)
1027 return -EINVAL;
1028
1029 if (vdd >= 1650 && vdd <= 1950)
1030 return ilog2(MMC_VDD_165_195);
1031
1032 if (low_bits)
1033 vdd -= 1;
1034
1035 /* Base 2000 mV, step 100 mV, bit's base 8. */
1036 bit = (vdd - 2000) / 100 + 8;
1037 if (bit > max_bit)
1038 return max_bit;
1039 return bit;
1040 }
1041
1042 /**
1043 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1044 * @vdd_min: minimum voltage value (mV)
1045 * @vdd_max: maximum voltage value (mV)
1046 *
1047 * This function returns the OCR mask bits according to the provided @vdd_min
1048 * and @vdd_max values. If conversion is not possible the function returns 0.
1049 *
1050 * Notes wrt boundary cases:
1051 * This function sets the OCR bits for all boundary voltages, for example
1052 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1053 * MMC_VDD_34_35 mask.
1054 */
mmc_vddrange_to_ocrmask(int vdd_min,int vdd_max)1055 u32 mmc_vddrange_to_ocrmask(int vdd_min, int vdd_max)
1056 {
1057 u32 mask = 0;
1058
1059 if (vdd_max < vdd_min)
1060 return 0;
1061
1062 /* Prefer high bits for the boundary vdd_max values. */
1063 vdd_max = mmc_vdd_to_ocrbitnum(vdd_max, false);
1064 if (vdd_max < 0)
1065 return 0;
1066
1067 /* Prefer low bits for the boundary vdd_min values. */
1068 vdd_min = mmc_vdd_to_ocrbitnum(vdd_min, true);
1069 if (vdd_min < 0)
1070 return 0;
1071
1072 /* Fill the mask, from max bit to min bit. */
1073 while (vdd_max >= vdd_min)
1074 mask |= 1 << vdd_max--;
1075
1076 return mask;
1077 }
1078
mmc_of_get_func_num(struct device_node * node)1079 static int mmc_of_get_func_num(struct device_node *node)
1080 {
1081 u32 reg;
1082 int ret;
1083
1084 ret = of_property_read_u32(node, "reg", ®);
1085 if (ret < 0)
1086 return ret;
1087
1088 return reg;
1089 }
1090
mmc_of_find_child_device(struct mmc_host * host,unsigned func_num)1091 struct device_node *mmc_of_find_child_device(struct mmc_host *host,
1092 unsigned func_num)
1093 {
1094 struct device_node *node;
1095
1096 if (!host->parent || !host->parent->of_node)
1097 return NULL;
1098
1099 for_each_child_of_node(host->parent->of_node, node) {
1100 if (mmc_of_get_func_num(node) == func_num)
1101 return node;
1102 }
1103
1104 return NULL;
1105 }
1106
1107 /*
1108 * Mask off any voltages we don't support and select
1109 * the lowest voltage
1110 */
mmc_select_voltage(struct mmc_host * host,u32 ocr)1111 u32 mmc_select_voltage(struct mmc_host *host, u32 ocr)
1112 {
1113 int bit;
1114
1115 /*
1116 * Sanity check the voltages that the card claims to
1117 * support.
1118 */
1119 if (ocr & 0x7F) {
1120 dev_warn(mmc_dev(host),
1121 "card claims to support voltages below defined range\n");
1122 ocr &= ~0x7F;
1123 }
1124
1125 ocr &= host->ocr_avail;
1126 if (!ocr) {
1127 dev_warn(mmc_dev(host), "no support for card's volts\n");
1128 return 0;
1129 }
1130
1131 if (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) {
1132 bit = ffs(ocr) - 1;
1133 ocr &= 3 << bit;
1134 mmc_power_cycle(host, ocr);
1135 } else {
1136 bit = fls(ocr) - 1;
1137 /*
1138 * The bit variable represents the highest voltage bit set in
1139 * the OCR register.
1140 * To keep a range of 2 values (e.g. 3.2V/3.3V and 3.3V/3.4V),
1141 * we must shift the mask '3' with (bit - 1).
1142 */
1143 ocr &= 3 << (bit - 1);
1144 if (bit != host->ios.vdd)
1145 dev_warn(mmc_dev(host), "exceeding card's volts\n");
1146 }
1147
1148 return ocr;
1149 }
1150
mmc_set_signal_voltage(struct mmc_host * host,int signal_voltage)1151 int mmc_set_signal_voltage(struct mmc_host *host, int signal_voltage)
1152 {
1153 int err = 0;
1154 int old_signal_voltage = host->ios.signal_voltage;
1155
1156 host->ios.signal_voltage = signal_voltage;
1157 if (host->ops->start_signal_voltage_switch)
1158 err = host->ops->start_signal_voltage_switch(host, &host->ios);
1159
1160 if (err)
1161 host->ios.signal_voltage = old_signal_voltage;
1162
1163 return err;
1164
1165 }
1166
mmc_set_initial_signal_voltage(struct mmc_host * host)1167 void mmc_set_initial_signal_voltage(struct mmc_host *host)
1168 {
1169 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1170 if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330))
1171 dev_dbg(mmc_dev(host), "Initial signal voltage of 3.3v\n");
1172 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1173 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.8v\n");
1174 else if (!mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120))
1175 dev_dbg(mmc_dev(host), "Initial signal voltage of 1.2v\n");
1176 }
1177
mmc_host_set_uhs_voltage(struct mmc_host * host)1178 int mmc_host_set_uhs_voltage(struct mmc_host *host)
1179 {
1180 u32 clock;
1181
1182 /*
1183 * During a signal voltage level switch, the clock must be gated
1184 * for 5 ms according to the SD spec
1185 */
1186 clock = host->ios.clock;
1187 host->ios.clock = 0;
1188 mmc_set_ios(host);
1189
1190 if (mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180))
1191 return -EAGAIN;
1192
1193 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1194 mmc_delay(10);
1195 host->ios.clock = clock;
1196 mmc_set_ios(host);
1197
1198 return 0;
1199 }
1200
mmc_set_uhs_voltage(struct mmc_host * host,u32 ocr)1201 int mmc_set_uhs_voltage(struct mmc_host *host, u32 ocr)
1202 {
1203 struct mmc_command cmd = {};
1204 int err = 0;
1205
1206 /*
1207 * If we cannot switch voltages, return failure so the caller
1208 * can continue without UHS mode
1209 */
1210 if (!host->ops->start_signal_voltage_switch)
1211 return -EPERM;
1212 if (!host->ops->card_busy)
1213 pr_warn("%s: cannot verify signal voltage switch\n",
1214 mmc_hostname(host));
1215
1216 cmd.opcode = SD_SWITCH_VOLTAGE;
1217 cmd.arg = 0;
1218 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1219
1220 err = mmc_wait_for_cmd(host, &cmd, 0);
1221 if (err)
1222 goto power_cycle;
1223
1224 if (!mmc_host_is_spi(host) && (cmd.resp[0] & R1_ERROR))
1225 return -EIO;
1226
1227 /*
1228 * The card should drive cmd and dat[0:3] low immediately
1229 * after the response of cmd11, but wait 1 ms to be sure
1230 */
1231 mmc_delay(1);
1232 if (host->ops->card_busy && !host->ops->card_busy(host)) {
1233 err = -EAGAIN;
1234 goto power_cycle;
1235 }
1236
1237 if (mmc_host_set_uhs_voltage(host)) {
1238 /*
1239 * Voltages may not have been switched, but we've already
1240 * sent CMD11, so a power cycle is required anyway
1241 */
1242 err = -EAGAIN;
1243 goto power_cycle;
1244 }
1245
1246 /* Wait for at least 1 ms according to spec */
1247 mmc_delay(1);
1248
1249 /*
1250 * Failure to switch is indicated by the card holding
1251 * dat[0:3] low
1252 */
1253 if (host->ops->card_busy && host->ops->card_busy(host))
1254 err = -EAGAIN;
1255
1256 power_cycle:
1257 if (err) {
1258 pr_debug("%s: Signal voltage switch failed, "
1259 "power cycling card\n", mmc_hostname(host));
1260 mmc_power_cycle(host, ocr);
1261 }
1262
1263 return err;
1264 }
1265
1266 /*
1267 * Select timing parameters for host.
1268 */
mmc_set_timing(struct mmc_host * host,unsigned int timing)1269 void mmc_set_timing(struct mmc_host *host, unsigned int timing)
1270 {
1271 host->ios.timing = timing;
1272 mmc_set_ios(host);
1273 }
1274
1275 /*
1276 * Select appropriate driver type for host.
1277 */
mmc_set_driver_type(struct mmc_host * host,unsigned int drv_type)1278 void mmc_set_driver_type(struct mmc_host *host, unsigned int drv_type)
1279 {
1280 host->ios.drv_type = drv_type;
1281 mmc_set_ios(host);
1282 }
1283
mmc_select_drive_strength(struct mmc_card * card,unsigned int max_dtr,int card_drv_type,int * drv_type)1284 int mmc_select_drive_strength(struct mmc_card *card, unsigned int max_dtr,
1285 int card_drv_type, int *drv_type)
1286 {
1287 struct mmc_host *host = card->host;
1288 int host_drv_type = SD_DRIVER_TYPE_B;
1289
1290 *drv_type = 0;
1291
1292 if (!host->ops->select_drive_strength)
1293 return 0;
1294
1295 /* Use SD definition of driver strength for hosts */
1296 if (host->caps & MMC_CAP_DRIVER_TYPE_A)
1297 host_drv_type |= SD_DRIVER_TYPE_A;
1298
1299 if (host->caps & MMC_CAP_DRIVER_TYPE_C)
1300 host_drv_type |= SD_DRIVER_TYPE_C;
1301
1302 if (host->caps & MMC_CAP_DRIVER_TYPE_D)
1303 host_drv_type |= SD_DRIVER_TYPE_D;
1304
1305 /*
1306 * The drive strength that the hardware can support
1307 * depends on the board design. Pass the appropriate
1308 * information and let the hardware specific code
1309 * return what is possible given the options
1310 */
1311 return host->ops->select_drive_strength(card, max_dtr,
1312 host_drv_type,
1313 card_drv_type,
1314 drv_type);
1315 }
1316
1317 /*
1318 * Apply power to the MMC stack. This is a two-stage process.
1319 * First, we enable power to the card without the clock running.
1320 * We then wait a bit for the power to stabilise. Finally,
1321 * enable the bus drivers and clock to the card.
1322 *
1323 * We must _NOT_ enable the clock prior to power stablising.
1324 *
1325 * If a host does all the power sequencing itself, ignore the
1326 * initial MMC_POWER_UP stage.
1327 */
mmc_power_up(struct mmc_host * host,u32 ocr)1328 void mmc_power_up(struct mmc_host *host, u32 ocr)
1329 {
1330 if (host->ios.power_mode == MMC_POWER_ON)
1331 return;
1332
1333 mmc_pwrseq_pre_power_on(host);
1334
1335 host->ios.vdd = fls(ocr) - 1;
1336 host->ios.power_mode = MMC_POWER_UP;
1337 /* Set initial state and call mmc_set_ios */
1338 mmc_set_initial_state(host);
1339
1340 mmc_set_initial_signal_voltage(host);
1341
1342 /*
1343 * This delay should be sufficient to allow the power supply
1344 * to reach the minimum voltage.
1345 */
1346 mmc_delay(host->ios.power_delay_ms);
1347
1348 mmc_pwrseq_post_power_on(host);
1349
1350 host->ios.clock = host->f_init;
1351
1352 host->ios.power_mode = MMC_POWER_ON;
1353 mmc_set_ios(host);
1354
1355 /*
1356 * This delay must be at least 74 clock sizes, or 1 ms, or the
1357 * time required to reach a stable voltage.
1358 */
1359 mmc_delay(host->ios.power_delay_ms);
1360 }
1361
mmc_power_off(struct mmc_host * host)1362 void mmc_power_off(struct mmc_host *host)
1363 {
1364 if (host->ios.power_mode == MMC_POWER_OFF)
1365 return;
1366
1367 mmc_pwrseq_power_off(host);
1368
1369 host->ios.clock = 0;
1370 host->ios.vdd = 0;
1371
1372 host->ios.power_mode = MMC_POWER_OFF;
1373 /* Set initial state and call mmc_set_ios */
1374 mmc_set_initial_state(host);
1375
1376 /*
1377 * Some configurations, such as the 802.11 SDIO card in the OLPC
1378 * XO-1.5, require a short delay after poweroff before the card
1379 * can be successfully turned on again.
1380 */
1381 mmc_delay(1);
1382 }
1383
mmc_power_cycle(struct mmc_host * host,u32 ocr)1384 void mmc_power_cycle(struct mmc_host *host, u32 ocr)
1385 {
1386 mmc_power_off(host);
1387 /* Wait at least 1 ms according to SD spec */
1388 mmc_delay(1);
1389 mmc_power_up(host, ocr);
1390 }
1391
1392 /*
1393 * Assign a mmc bus handler to a host. Only one bus handler may control a
1394 * host at any given time.
1395 */
mmc_attach_bus(struct mmc_host * host,const struct mmc_bus_ops * ops)1396 void mmc_attach_bus(struct mmc_host *host, const struct mmc_bus_ops *ops)
1397 {
1398 host->bus_ops = ops;
1399 }
1400
1401 /*
1402 * Remove the current bus handler from a host.
1403 */
mmc_detach_bus(struct mmc_host * host)1404 void mmc_detach_bus(struct mmc_host *host)
1405 {
1406 host->bus_ops = NULL;
1407 }
1408
_mmc_detect_change(struct mmc_host * host,unsigned long delay,bool cd_irq)1409 void _mmc_detect_change(struct mmc_host *host, unsigned long delay, bool cd_irq)
1410 {
1411 /*
1412 * Prevent system sleep for 5s to allow user space to consume the
1413 * corresponding uevent. This is especially useful, when CD irq is used
1414 * as a system wakeup, but doesn't hurt in other cases.
1415 */
1416 if (cd_irq && !(host->caps & MMC_CAP_NEEDS_POLL))
1417 __pm_wakeup_event(host->ws, 5000);
1418
1419 host->detect_change = 1;
1420 mmc_schedule_delayed_work(&host->detect, delay);
1421 }
1422
1423 /**
1424 * mmc_detect_change - process change of state on a MMC socket
1425 * @host: host which changed state.
1426 * @delay: optional delay to wait before detection (jiffies)
1427 *
1428 * MMC drivers should call this when they detect a card has been
1429 * inserted or removed. The MMC layer will confirm that any
1430 * present card is still functional, and initialize any newly
1431 * inserted.
1432 */
mmc_detect_change(struct mmc_host * host,unsigned long delay)1433 void mmc_detect_change(struct mmc_host *host, unsigned long delay)
1434 {
1435 _mmc_detect_change(host, delay, true);
1436 }
1437 EXPORT_SYMBOL(mmc_detect_change);
1438
mmc_init_erase(struct mmc_card * card)1439 void mmc_init_erase(struct mmc_card *card)
1440 {
1441 unsigned int sz;
1442
1443 if (is_power_of_2(card->erase_size))
1444 card->erase_shift = ffs(card->erase_size) - 1;
1445 else
1446 card->erase_shift = 0;
1447
1448 /*
1449 * It is possible to erase an arbitrarily large area of an SD or MMC
1450 * card. That is not desirable because it can take a long time
1451 * (minutes) potentially delaying more important I/O, and also the
1452 * timeout calculations become increasingly hugely over-estimated.
1453 * Consequently, 'pref_erase' is defined as a guide to limit erases
1454 * to that size and alignment.
1455 *
1456 * For SD cards that define Allocation Unit size, limit erases to one
1457 * Allocation Unit at a time.
1458 * For MMC, have a stab at ai good value and for modern cards it will
1459 * end up being 4MiB. Note that if the value is too small, it can end
1460 * up taking longer to erase. Also note, erase_size is already set to
1461 * High Capacity Erase Size if available when this function is called.
1462 */
1463 if (mmc_card_sd(card) && card->ssr.au) {
1464 card->pref_erase = card->ssr.au;
1465 card->erase_shift = ffs(card->ssr.au) - 1;
1466 } else if (card->erase_size) {
1467 sz = (card->csd.capacity << (card->csd.read_blkbits - 9)) >> 11;
1468 if (sz < 128)
1469 card->pref_erase = 512 * 1024 / 512;
1470 else if (sz < 512)
1471 card->pref_erase = 1024 * 1024 / 512;
1472 else if (sz < 1024)
1473 card->pref_erase = 2 * 1024 * 1024 / 512;
1474 else
1475 card->pref_erase = 4 * 1024 * 1024 / 512;
1476 if (card->pref_erase < card->erase_size)
1477 card->pref_erase = card->erase_size;
1478 else {
1479 sz = card->pref_erase % card->erase_size;
1480 if (sz)
1481 card->pref_erase += card->erase_size - sz;
1482 }
1483 } else
1484 card->pref_erase = 0;
1485 }
1486
is_trim_arg(unsigned int arg)1487 static bool is_trim_arg(unsigned int arg)
1488 {
1489 return (arg & MMC_TRIM_OR_DISCARD_ARGS) && arg != MMC_DISCARD_ARG;
1490 }
1491
mmc_mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1492 static unsigned int mmc_mmc_erase_timeout(struct mmc_card *card,
1493 unsigned int arg, unsigned int qty)
1494 {
1495 unsigned int erase_timeout;
1496
1497 if (arg == MMC_DISCARD_ARG ||
1498 (arg == MMC_TRIM_ARG && card->ext_csd.rev >= 6)) {
1499 erase_timeout = card->ext_csd.trim_timeout;
1500 } else if (card->ext_csd.erase_group_def & 1) {
1501 /* High Capacity Erase Group Size uses HC timeouts */
1502 if (arg == MMC_TRIM_ARG)
1503 erase_timeout = card->ext_csd.trim_timeout;
1504 else
1505 erase_timeout = card->ext_csd.hc_erase_timeout;
1506 } else {
1507 /* CSD Erase Group Size uses write timeout */
1508 unsigned int mult = (10 << card->csd.r2w_factor);
1509 unsigned int timeout_clks = card->csd.taac_clks * mult;
1510 unsigned int timeout_us;
1511
1512 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1513 if (card->csd.taac_ns < 1000000)
1514 timeout_us = (card->csd.taac_ns * mult) / 1000;
1515 else
1516 timeout_us = (card->csd.taac_ns / 1000) * mult;
1517
1518 /*
1519 * ios.clock is only a target. The real clock rate might be
1520 * less but not that much less, so fudge it by multiplying by 2.
1521 */
1522 timeout_clks <<= 1;
1523 timeout_us += (timeout_clks * 1000) /
1524 (card->host->ios.clock / 1000);
1525
1526 erase_timeout = timeout_us / 1000;
1527
1528 /*
1529 * Theoretically, the calculation could underflow so round up
1530 * to 1ms in that case.
1531 */
1532 if (!erase_timeout)
1533 erase_timeout = 1;
1534 }
1535
1536 /* Multiplier for secure operations */
1537 if (arg & MMC_SECURE_ARGS) {
1538 if (arg == MMC_SECURE_ERASE_ARG)
1539 erase_timeout *= card->ext_csd.sec_erase_mult;
1540 else
1541 erase_timeout *= card->ext_csd.sec_trim_mult;
1542 }
1543
1544 erase_timeout *= qty;
1545
1546 /*
1547 * Ensure at least a 1 second timeout for SPI as per
1548 * 'mmc_set_data_timeout()'
1549 */
1550 if (mmc_host_is_spi(card->host) && erase_timeout < 1000)
1551 erase_timeout = 1000;
1552
1553 return erase_timeout;
1554 }
1555
mmc_sd_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1556 static unsigned int mmc_sd_erase_timeout(struct mmc_card *card,
1557 unsigned int arg,
1558 unsigned int qty)
1559 {
1560 unsigned int erase_timeout;
1561
1562 /* for DISCARD none of the below calculation applies.
1563 * the busy timeout is 250msec per discard command.
1564 */
1565 if (arg == SD_DISCARD_ARG)
1566 return SD_DISCARD_TIMEOUT_MS;
1567
1568 if (card->ssr.erase_timeout) {
1569 /* Erase timeout specified in SD Status Register (SSR) */
1570 erase_timeout = card->ssr.erase_timeout * qty +
1571 card->ssr.erase_offset;
1572 } else {
1573 /*
1574 * Erase timeout not specified in SD Status Register (SSR) so
1575 * use 250ms per write block.
1576 */
1577 erase_timeout = 250 * qty;
1578 }
1579
1580 /* Must not be less than 1 second */
1581 if (erase_timeout < 1000)
1582 erase_timeout = 1000;
1583
1584 return erase_timeout;
1585 }
1586
mmc_erase_timeout(struct mmc_card * card,unsigned int arg,unsigned int qty)1587 static unsigned int mmc_erase_timeout(struct mmc_card *card,
1588 unsigned int arg,
1589 unsigned int qty)
1590 {
1591 if (mmc_card_sd(card))
1592 return mmc_sd_erase_timeout(card, arg, qty);
1593 else
1594 return mmc_mmc_erase_timeout(card, arg, qty);
1595 }
1596
mmc_do_erase(struct mmc_card * card,unsigned int from,unsigned int to,unsigned int arg)1597 static int mmc_do_erase(struct mmc_card *card, unsigned int from,
1598 unsigned int to, unsigned int arg)
1599 {
1600 struct mmc_command cmd = {};
1601 unsigned int qty = 0, busy_timeout = 0;
1602 bool use_r1b_resp;
1603 int err;
1604
1605 mmc_retune_hold(card->host);
1606
1607 /*
1608 * qty is used to calculate the erase timeout which depends on how many
1609 * erase groups (or allocation units in SD terminology) are affected.
1610 * We count erasing part of an erase group as one erase group.
1611 * For SD, the allocation units are always a power of 2. For MMC, the
1612 * erase group size is almost certainly also power of 2, but it does not
1613 * seem to insist on that in the JEDEC standard, so we fall back to
1614 * division in that case. SD may not specify an allocation unit size,
1615 * in which case the timeout is based on the number of write blocks.
1616 *
1617 * Note that the timeout for secure trim 2 will only be correct if the
1618 * number of erase groups specified is the same as the total of all
1619 * preceding secure trim 1 commands. Since the power may have been
1620 * lost since the secure trim 1 commands occurred, it is generally
1621 * impossible to calculate the secure trim 2 timeout correctly.
1622 */
1623 if (card->erase_shift)
1624 qty += ((to >> card->erase_shift) -
1625 (from >> card->erase_shift)) + 1;
1626 else if (mmc_card_sd(card))
1627 qty += to - from + 1;
1628 else
1629 qty += ((to / card->erase_size) -
1630 (from / card->erase_size)) + 1;
1631
1632 if (!mmc_card_blockaddr(card)) {
1633 from <<= 9;
1634 to <<= 9;
1635 }
1636
1637 if (mmc_card_sd(card))
1638 cmd.opcode = SD_ERASE_WR_BLK_START;
1639 else
1640 cmd.opcode = MMC_ERASE_GROUP_START;
1641 cmd.arg = from;
1642 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1643 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1644 if (err) {
1645 pr_err("mmc_erase: group start error %d, "
1646 "status %#x\n", err, cmd.resp[0]);
1647 err = -EIO;
1648 goto out;
1649 }
1650
1651 memset(&cmd, 0, sizeof(struct mmc_command));
1652 if (mmc_card_sd(card))
1653 cmd.opcode = SD_ERASE_WR_BLK_END;
1654 else
1655 cmd.opcode = MMC_ERASE_GROUP_END;
1656 cmd.arg = to;
1657 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1658 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1659 if (err) {
1660 pr_err("mmc_erase: group end error %d, status %#x\n",
1661 err, cmd.resp[0]);
1662 err = -EIO;
1663 goto out;
1664 }
1665
1666 memset(&cmd, 0, sizeof(struct mmc_command));
1667 cmd.opcode = MMC_ERASE;
1668 cmd.arg = arg;
1669 busy_timeout = mmc_erase_timeout(card, arg, qty);
1670 use_r1b_resp = mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout);
1671
1672 err = mmc_wait_for_cmd(card->host, &cmd, 0);
1673 if (err) {
1674 pr_err("mmc_erase: erase error %d, status %#x\n",
1675 err, cmd.resp[0]);
1676 err = -EIO;
1677 goto out;
1678 }
1679
1680 if (mmc_host_is_spi(card->host))
1681 goto out;
1682
1683 /*
1684 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
1685 * shall be avoided.
1686 */
1687 if ((card->host->caps & MMC_CAP_WAIT_WHILE_BUSY) && use_r1b_resp)
1688 goto out;
1689
1690 /* Let's poll to find out when the erase operation completes. */
1691 err = mmc_poll_for_busy(card, busy_timeout, false, MMC_BUSY_ERASE);
1692
1693 out:
1694 mmc_retune_release(card->host);
1695 return err;
1696 }
1697
mmc_align_erase_size(struct mmc_card * card,unsigned int * from,unsigned int * to,unsigned int nr)1698 static unsigned int mmc_align_erase_size(struct mmc_card *card,
1699 unsigned int *from,
1700 unsigned int *to,
1701 unsigned int nr)
1702 {
1703 unsigned int from_new = *from, nr_new = nr, rem;
1704
1705 /*
1706 * When the 'card->erase_size' is power of 2, we can use round_up/down()
1707 * to align the erase size efficiently.
1708 */
1709 if (is_power_of_2(card->erase_size)) {
1710 unsigned int temp = from_new;
1711
1712 from_new = round_up(temp, card->erase_size);
1713 rem = from_new - temp;
1714
1715 if (nr_new > rem)
1716 nr_new -= rem;
1717 else
1718 return 0;
1719
1720 nr_new = round_down(nr_new, card->erase_size);
1721 } else {
1722 rem = from_new % card->erase_size;
1723 if (rem) {
1724 rem = card->erase_size - rem;
1725 from_new += rem;
1726 if (nr_new > rem)
1727 nr_new -= rem;
1728 else
1729 return 0;
1730 }
1731
1732 rem = nr_new % card->erase_size;
1733 if (rem)
1734 nr_new -= rem;
1735 }
1736
1737 if (nr_new == 0)
1738 return 0;
1739
1740 *to = from_new + nr_new;
1741 *from = from_new;
1742
1743 return nr_new;
1744 }
1745
1746 /**
1747 * mmc_erase - erase sectors.
1748 * @card: card to erase
1749 * @from: first sector to erase
1750 * @nr: number of sectors to erase
1751 * @arg: erase command argument
1752 *
1753 * Caller must claim host before calling this function.
1754 */
mmc_erase(struct mmc_card * card,unsigned int from,unsigned int nr,unsigned int arg)1755 int mmc_erase(struct mmc_card *card, unsigned int from, unsigned int nr,
1756 unsigned int arg)
1757 {
1758 unsigned int rem, to = from + nr;
1759 int err;
1760
1761 if (!(card->csd.cmdclass & CCC_ERASE))
1762 return -EOPNOTSUPP;
1763
1764 if (!card->erase_size)
1765 return -EOPNOTSUPP;
1766
1767 if (mmc_card_sd(card) && arg != SD_ERASE_ARG && arg != SD_DISCARD_ARG)
1768 return -EOPNOTSUPP;
1769
1770 if (mmc_card_mmc(card) && (arg & MMC_SECURE_ARGS) &&
1771 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN))
1772 return -EOPNOTSUPP;
1773
1774 if (mmc_card_mmc(card) && is_trim_arg(arg) &&
1775 !(card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN))
1776 return -EOPNOTSUPP;
1777
1778 if (arg == MMC_SECURE_ERASE_ARG) {
1779 if (from % card->erase_size || nr % card->erase_size)
1780 return -EINVAL;
1781 }
1782
1783 if (arg == MMC_ERASE_ARG)
1784 nr = mmc_align_erase_size(card, &from, &to, nr);
1785
1786 if (nr == 0)
1787 return 0;
1788
1789 if (to <= from)
1790 return -EINVAL;
1791
1792 /* 'from' and 'to' are inclusive */
1793 to -= 1;
1794
1795 /*
1796 * Special case where only one erase-group fits in the timeout budget:
1797 * If the region crosses an erase-group boundary on this particular
1798 * case, we will be trimming more than one erase-group which, does not
1799 * fit in the timeout budget of the controller, so we need to split it
1800 * and call mmc_do_erase() twice if necessary. This special case is
1801 * identified by the card->eg_boundary flag.
1802 */
1803 rem = card->erase_size - (from % card->erase_size);
1804 if ((arg & MMC_TRIM_OR_DISCARD_ARGS) && card->eg_boundary && nr > rem) {
1805 err = mmc_do_erase(card, from, from + rem - 1, arg);
1806 from += rem;
1807 if ((err) || (to <= from))
1808 return err;
1809 }
1810
1811 return mmc_do_erase(card, from, to, arg);
1812 }
1813 EXPORT_SYMBOL(mmc_erase);
1814
mmc_can_erase(struct mmc_card * card)1815 int mmc_can_erase(struct mmc_card *card)
1816 {
1817 if (card->csd.cmdclass & CCC_ERASE && card->erase_size)
1818 return 1;
1819 return 0;
1820 }
1821 EXPORT_SYMBOL(mmc_can_erase);
1822
mmc_can_trim(struct mmc_card * card)1823 int mmc_can_trim(struct mmc_card *card)
1824 {
1825 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_GB_CL_EN) &&
1826 (!(card->quirks & MMC_QUIRK_TRIM_BROKEN)))
1827 return 1;
1828 return 0;
1829 }
1830 EXPORT_SYMBOL(mmc_can_trim);
1831
mmc_can_discard(struct mmc_card * card)1832 int mmc_can_discard(struct mmc_card *card)
1833 {
1834 /*
1835 * As there's no way to detect the discard support bit at v4.5
1836 * use the s/w feature support filed.
1837 */
1838 if (card->ext_csd.feature_support & MMC_DISCARD_FEATURE)
1839 return 1;
1840 return 0;
1841 }
1842 EXPORT_SYMBOL(mmc_can_discard);
1843
mmc_can_sanitize(struct mmc_card * card)1844 int mmc_can_sanitize(struct mmc_card *card)
1845 {
1846 if (!mmc_can_trim(card) && !mmc_can_erase(card))
1847 return 0;
1848 if (card->ext_csd.sec_feature_support & EXT_CSD_SEC_SANITIZE)
1849 return 1;
1850 return 0;
1851 }
1852
mmc_can_secure_erase_trim(struct mmc_card * card)1853 int mmc_can_secure_erase_trim(struct mmc_card *card)
1854 {
1855 if ((card->ext_csd.sec_feature_support & EXT_CSD_SEC_ER_EN) &&
1856 !(card->quirks & MMC_QUIRK_SEC_ERASE_TRIM_BROKEN))
1857 return 1;
1858 return 0;
1859 }
1860 EXPORT_SYMBOL(mmc_can_secure_erase_trim);
1861
mmc_erase_group_aligned(struct mmc_card * card,unsigned int from,unsigned int nr)1862 int mmc_erase_group_aligned(struct mmc_card *card, unsigned int from,
1863 unsigned int nr)
1864 {
1865 if (!card->erase_size)
1866 return 0;
1867 if (from % card->erase_size || nr % card->erase_size)
1868 return 0;
1869 return 1;
1870 }
1871 EXPORT_SYMBOL(mmc_erase_group_aligned);
1872
mmc_do_calc_max_discard(struct mmc_card * card,unsigned int arg)1873 static unsigned int mmc_do_calc_max_discard(struct mmc_card *card,
1874 unsigned int arg)
1875 {
1876 struct mmc_host *host = card->host;
1877 unsigned int max_discard, x, y, qty = 0, max_qty, min_qty, timeout;
1878 unsigned int last_timeout = 0;
1879 unsigned int max_busy_timeout = host->max_busy_timeout ?
1880 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS;
1881
1882 if (card->erase_shift) {
1883 max_qty = UINT_MAX >> card->erase_shift;
1884 min_qty = card->pref_erase >> card->erase_shift;
1885 } else if (mmc_card_sd(card)) {
1886 max_qty = UINT_MAX;
1887 min_qty = card->pref_erase;
1888 } else {
1889 max_qty = UINT_MAX / card->erase_size;
1890 min_qty = card->pref_erase / card->erase_size;
1891 }
1892
1893 /*
1894 * We should not only use 'host->max_busy_timeout' as the limitation
1895 * when deciding the max discard sectors. We should set a balance value
1896 * to improve the erase speed, and it can not get too long timeout at
1897 * the same time.
1898 *
1899 * Here we set 'card->pref_erase' as the minimal discard sectors no
1900 * matter what size of 'host->max_busy_timeout', but if the
1901 * 'host->max_busy_timeout' is large enough for more discard sectors,
1902 * then we can continue to increase the max discard sectors until we
1903 * get a balance value. In cases when the 'host->max_busy_timeout'
1904 * isn't specified, use the default max erase timeout.
1905 */
1906 do {
1907 y = 0;
1908 for (x = 1; x && x <= max_qty && max_qty - x >= qty; x <<= 1) {
1909 timeout = mmc_erase_timeout(card, arg, qty + x);
1910
1911 if (qty + x > min_qty && timeout > max_busy_timeout)
1912 break;
1913
1914 if (timeout < last_timeout)
1915 break;
1916 last_timeout = timeout;
1917 y = x;
1918 }
1919 qty += y;
1920 } while (y);
1921
1922 if (!qty)
1923 return 0;
1924
1925 /*
1926 * When specifying a sector range to trim, chances are we might cross
1927 * an erase-group boundary even if the amount of sectors is less than
1928 * one erase-group.
1929 * If we can only fit one erase-group in the controller timeout budget,
1930 * we have to care that erase-group boundaries are not crossed by a
1931 * single trim operation. We flag that special case with "eg_boundary".
1932 * In all other cases we can just decrement qty and pretend that we
1933 * always touch (qty + 1) erase-groups as a simple optimization.
1934 */
1935 if (qty == 1)
1936 card->eg_boundary = 1;
1937 else
1938 qty--;
1939
1940 /* Convert qty to sectors */
1941 if (card->erase_shift)
1942 max_discard = qty << card->erase_shift;
1943 else if (mmc_card_sd(card))
1944 max_discard = qty + 1;
1945 else
1946 max_discard = qty * card->erase_size;
1947
1948 return max_discard;
1949 }
1950
mmc_calc_max_discard(struct mmc_card * card)1951 unsigned int mmc_calc_max_discard(struct mmc_card *card)
1952 {
1953 struct mmc_host *host = card->host;
1954 unsigned int max_discard, max_trim;
1955
1956 /*
1957 * Without erase_group_def set, MMC erase timeout depends on clock
1958 * frequence which can change. In that case, the best choice is
1959 * just the preferred erase size.
1960 */
1961 if (mmc_card_mmc(card) && !(card->ext_csd.erase_group_def & 1))
1962 return card->pref_erase;
1963
1964 max_discard = mmc_do_calc_max_discard(card, MMC_ERASE_ARG);
1965 if (mmc_can_trim(card)) {
1966 max_trim = mmc_do_calc_max_discard(card, MMC_TRIM_ARG);
1967 if (max_trim < max_discard || max_discard == 0)
1968 max_discard = max_trim;
1969 } else if (max_discard < card->erase_size) {
1970 max_discard = 0;
1971 }
1972 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
1973 mmc_hostname(host), max_discard, host->max_busy_timeout ?
1974 host->max_busy_timeout : MMC_ERASE_TIMEOUT_MS);
1975 return max_discard;
1976 }
1977 EXPORT_SYMBOL(mmc_calc_max_discard);
1978
mmc_card_is_blockaddr(struct mmc_card * card)1979 bool mmc_card_is_blockaddr(struct mmc_card *card)
1980 {
1981 return card ? mmc_card_blockaddr(card) : false;
1982 }
1983 EXPORT_SYMBOL(mmc_card_is_blockaddr);
1984
mmc_set_blocklen(struct mmc_card * card,unsigned int blocklen)1985 int mmc_set_blocklen(struct mmc_card *card, unsigned int blocklen)
1986 {
1987 struct mmc_command cmd = {};
1988
1989 if (mmc_card_blockaddr(card) || mmc_card_ddr52(card) ||
1990 mmc_card_hs400(card) || mmc_card_hs400es(card))
1991 return 0;
1992
1993 cmd.opcode = MMC_SET_BLOCKLEN;
1994 cmd.arg = blocklen;
1995 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1996 return mmc_wait_for_cmd(card->host, &cmd, 5);
1997 }
1998 EXPORT_SYMBOL(mmc_set_blocklen);
1999
mmc_hw_reset_for_init(struct mmc_host * host)2000 static void mmc_hw_reset_for_init(struct mmc_host *host)
2001 {
2002 mmc_pwrseq_reset(host);
2003
2004 if (!(host->caps & MMC_CAP_HW_RESET) || !host->ops->card_hw_reset)
2005 return;
2006 host->ops->card_hw_reset(host);
2007 }
2008
2009 /**
2010 * mmc_hw_reset - reset the card in hardware
2011 * @card: card to be reset
2012 *
2013 * Hard reset the card. This function is only for upper layers, like the
2014 * block layer or card drivers. You cannot use it in host drivers (struct
2015 * mmc_card might be gone then).
2016 *
2017 * Return: 0 on success, -errno on failure
2018 */
mmc_hw_reset(struct mmc_card * card)2019 int mmc_hw_reset(struct mmc_card *card)
2020 {
2021 struct mmc_host *host = card->host;
2022 int ret;
2023
2024 ret = host->bus_ops->hw_reset(host);
2025 if (ret < 0)
2026 pr_warn("%s: tried to HW reset card, got error %d\n",
2027 mmc_hostname(host), ret);
2028
2029 return ret;
2030 }
2031 EXPORT_SYMBOL(mmc_hw_reset);
2032
mmc_sw_reset(struct mmc_card * card)2033 int mmc_sw_reset(struct mmc_card *card)
2034 {
2035 struct mmc_host *host = card->host;
2036 int ret;
2037
2038 if (!host->bus_ops->sw_reset)
2039 return -EOPNOTSUPP;
2040
2041 ret = host->bus_ops->sw_reset(host);
2042 if (ret)
2043 pr_warn("%s: tried to SW reset card, got error %d\n",
2044 mmc_hostname(host), ret);
2045
2046 return ret;
2047 }
2048 EXPORT_SYMBOL(mmc_sw_reset);
2049
mmc_rescan_try_freq(struct mmc_host * host,unsigned freq)2050 static int mmc_rescan_try_freq(struct mmc_host *host, unsigned freq)
2051 {
2052 host->f_init = freq;
2053
2054 pr_debug("%s: %s: trying to init card at %u Hz\n",
2055 mmc_hostname(host), __func__, host->f_init);
2056
2057 mmc_power_up(host, host->ocr_avail);
2058
2059 /*
2060 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2061 * do a hardware reset if possible.
2062 */
2063 mmc_hw_reset_for_init(host);
2064
2065 /*
2066 * sdio_reset sends CMD52 to reset card. Since we do not know
2067 * if the card is being re-initialized, just send it. CMD52
2068 * should be ignored by SD/eMMC cards.
2069 * Skip it if we already know that we do not support SDIO commands
2070 */
2071 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2072 sdio_reset(host);
2073
2074 mmc_go_idle(host);
2075
2076 if (!(host->caps2 & MMC_CAP2_NO_SD)) {
2077 if (mmc_send_if_cond_pcie(host, host->ocr_avail))
2078 goto out;
2079 if (mmc_card_sd_express(host))
2080 return 0;
2081 }
2082
2083 /* Order's important: probe SDIO, then SD, then MMC */
2084 if (!(host->caps2 & MMC_CAP2_NO_SDIO))
2085 if (!mmc_attach_sdio(host))
2086 return 0;
2087
2088 if (!(host->caps2 & MMC_CAP2_NO_SD))
2089 if (!mmc_attach_sd(host))
2090 return 0;
2091
2092 if (!(host->caps2 & MMC_CAP2_NO_MMC))
2093 if (!mmc_attach_mmc(host))
2094 return 0;
2095
2096 out:
2097 mmc_power_off(host);
2098 return -EIO;
2099 }
2100
_mmc_detect_card_removed(struct mmc_host * host)2101 int _mmc_detect_card_removed(struct mmc_host *host)
2102 {
2103 int ret;
2104
2105 if (!host->card || mmc_card_removed(host->card))
2106 return 1;
2107
2108 ret = host->bus_ops->alive(host);
2109
2110 /*
2111 * Card detect status and alive check may be out of sync if card is
2112 * removed slowly, when card detect switch changes while card/slot
2113 * pads are still contacted in hardware (refer to "SD Card Mechanical
2114 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2115 * detect work 200ms later for this case.
2116 */
2117 if (!ret && host->ops->get_cd && !host->ops->get_cd(host)) {
2118 mmc_detect_change(host, msecs_to_jiffies(200));
2119 pr_debug("%s: card removed too slowly\n", mmc_hostname(host));
2120 }
2121
2122 if (ret) {
2123 mmc_card_set_removed(host->card);
2124 pr_debug("%s: card remove detected\n", mmc_hostname(host));
2125 }
2126
2127 return ret;
2128 }
2129
mmc_detect_card_removed(struct mmc_host * host)2130 int mmc_detect_card_removed(struct mmc_host *host)
2131 {
2132 struct mmc_card *card = host->card;
2133 int ret;
2134
2135 WARN_ON(!host->claimed);
2136
2137 if (!card)
2138 return 1;
2139
2140 if (!mmc_card_is_removable(host))
2141 return 0;
2142
2143 ret = mmc_card_removed(card);
2144 /*
2145 * The card will be considered unchanged unless we have been asked to
2146 * detect a change or host requires polling to provide card detection.
2147 */
2148 if (!host->detect_change && !(host->caps & MMC_CAP_NEEDS_POLL))
2149 return ret;
2150
2151 host->detect_change = 0;
2152 if (!ret) {
2153 ret = _mmc_detect_card_removed(host);
2154 if (ret && (host->caps & MMC_CAP_NEEDS_POLL)) {
2155 /*
2156 * Schedule a detect work as soon as possible to let a
2157 * rescan handle the card removal.
2158 */
2159 cancel_delayed_work(&host->detect);
2160 _mmc_detect_change(host, 0, false);
2161 }
2162 }
2163
2164 return ret;
2165 }
2166 EXPORT_SYMBOL(mmc_detect_card_removed);
2167
mmc_card_alternative_gpt_sector(struct mmc_card * card,sector_t * gpt_sector)2168 int mmc_card_alternative_gpt_sector(struct mmc_card *card, sector_t *gpt_sector)
2169 {
2170 unsigned int boot_sectors_num;
2171
2172 if ((!(card->host->caps2 & MMC_CAP2_ALT_GPT_TEGRA)))
2173 return -EOPNOTSUPP;
2174
2175 /* filter out unrelated cards */
2176 if (card->ext_csd.rev < 3 ||
2177 !mmc_card_mmc(card) ||
2178 !mmc_card_is_blockaddr(card) ||
2179 mmc_card_is_removable(card->host))
2180 return -ENOENT;
2181
2182 /*
2183 * eMMC storage has two special boot partitions in addition to the
2184 * main one. NVIDIA's bootloader linearizes eMMC boot0->boot1->main
2185 * accesses, this means that the partition table addresses are shifted
2186 * by the size of boot partitions. In accordance with the eMMC
2187 * specification, the boot partition size is calculated as follows:
2188 *
2189 * boot partition size = 128K byte x BOOT_SIZE_MULT
2190 *
2191 * Calculate number of sectors occupied by the both boot partitions.
2192 */
2193 boot_sectors_num = card->ext_csd.raw_boot_mult * SZ_128K /
2194 SZ_512 * MMC_NUM_BOOT_PARTITION;
2195
2196 /* Defined by NVIDIA and used by Android devices. */
2197 *gpt_sector = card->ext_csd.sectors - boot_sectors_num - 1;
2198
2199 return 0;
2200 }
2201 EXPORT_SYMBOL(mmc_card_alternative_gpt_sector);
2202
mmc_rescan(struct work_struct * work)2203 void mmc_rescan(struct work_struct *work)
2204 {
2205 struct mmc_host *host =
2206 container_of(work, struct mmc_host, detect.work);
2207 int i;
2208
2209 if (host->rescan_disable)
2210 return;
2211
2212 /* If there is a non-removable card registered, only scan once */
2213 if (!mmc_card_is_removable(host) && host->rescan_entered)
2214 return;
2215 host->rescan_entered = 1;
2216
2217 if (host->trigger_card_event && host->ops->card_event) {
2218 mmc_claim_host(host);
2219 host->ops->card_event(host);
2220 mmc_release_host(host);
2221 host->trigger_card_event = false;
2222 }
2223
2224 /* Verify a registered card to be functional, else remove it. */
2225 if (host->bus_ops)
2226 host->bus_ops->detect(host);
2227
2228 host->detect_change = 0;
2229
2230 /* if there still is a card present, stop here */
2231 if (host->bus_ops != NULL)
2232 goto out;
2233
2234 mmc_claim_host(host);
2235 if (mmc_card_is_removable(host) && host->ops->get_cd &&
2236 host->ops->get_cd(host) == 0) {
2237 mmc_power_off(host);
2238 mmc_release_host(host);
2239 goto out;
2240 }
2241
2242 /* If an SD express card is present, then leave it as is. */
2243 if (mmc_card_sd_express(host)) {
2244 mmc_release_host(host);
2245 goto out;
2246 }
2247
2248 for (i = 0; i < ARRAY_SIZE(freqs); i++) {
2249 unsigned int freq = freqs[i];
2250 if (freq > host->f_max) {
2251 if (i + 1 < ARRAY_SIZE(freqs))
2252 continue;
2253 freq = host->f_max;
2254 }
2255 if (!mmc_rescan_try_freq(host, max(freq, host->f_min)))
2256 break;
2257 if (freqs[i] <= host->f_min)
2258 break;
2259 }
2260
2261 /*
2262 * Ignore the command timeout errors observed during
2263 * the card init as those are excepted.
2264 */
2265 host->err_stats[MMC_ERR_CMD_TIMEOUT] = 0;
2266 mmc_release_host(host);
2267
2268 out:
2269 if (host->caps & MMC_CAP_NEEDS_POLL)
2270 mmc_schedule_delayed_work(&host->detect, HZ);
2271 }
2272
mmc_start_host(struct mmc_host * host)2273 void mmc_start_host(struct mmc_host *host)
2274 {
2275 host->f_init = max(min(freqs[0], host->f_max), host->f_min);
2276 host->rescan_disable = 0;
2277
2278 if (!(host->caps2 & MMC_CAP2_NO_PRESCAN_POWERUP)) {
2279 mmc_claim_host(host);
2280 mmc_power_up(host, host->ocr_avail);
2281 mmc_release_host(host);
2282 }
2283
2284 mmc_gpiod_request_cd_irq(host);
2285 _mmc_detect_change(host, 0, false);
2286 }
2287
__mmc_stop_host(struct mmc_host * host)2288 void __mmc_stop_host(struct mmc_host *host)
2289 {
2290 if (host->slot.cd_irq >= 0) {
2291 mmc_gpio_set_cd_wake(host, false);
2292 disable_irq(host->slot.cd_irq);
2293 }
2294
2295 host->rescan_disable = 1;
2296 cancel_delayed_work_sync(&host->detect);
2297 }
2298
mmc_stop_host(struct mmc_host * host)2299 void mmc_stop_host(struct mmc_host *host)
2300 {
2301 __mmc_stop_host(host);
2302
2303 /* clear pm flags now and let card drivers set them as needed */
2304 host->pm_flags = 0;
2305
2306 if (host->bus_ops) {
2307 /* Calling bus_ops->remove() with a claimed host can deadlock */
2308 host->bus_ops->remove(host);
2309 mmc_claim_host(host);
2310 mmc_detach_bus(host);
2311 mmc_power_off(host);
2312 mmc_release_host(host);
2313 return;
2314 }
2315
2316 mmc_claim_host(host);
2317 mmc_power_off(host);
2318 mmc_release_host(host);
2319 }
2320
mmc_init(void)2321 static int __init mmc_init(void)
2322 {
2323 int ret;
2324
2325 ret = mmc_register_bus();
2326 if (ret)
2327 return ret;
2328
2329 ret = mmc_register_host_class();
2330 if (ret)
2331 goto unregister_bus;
2332
2333 ret = sdio_register_bus();
2334 if (ret)
2335 goto unregister_host_class;
2336
2337 return 0;
2338
2339 unregister_host_class:
2340 mmc_unregister_host_class();
2341 unregister_bus:
2342 mmc_unregister_bus();
2343 return ret;
2344 }
2345
mmc_exit(void)2346 static void __exit mmc_exit(void)
2347 {
2348 sdio_unregister_bus();
2349 mmc_unregister_host_class();
2350 mmc_unregister_bus();
2351 }
2352
2353 subsys_initcall(mmc_init);
2354 module_exit(mmc_exit);
2355
2356 MODULE_LICENSE("GPL");
2357