1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block driver for media (i.e., flash cards)
4 *
5 * Copyright 2002 Hewlett-Packard Company
6 * Copyright 2005-2008 Pierre Ossman
7 *
8 * Use consistent with the GNU GPL is permitted,
9 * provided that this copyright notice is
10 * preserved in its entirety in all copies and derived works.
11 *
12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 *
16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 *
18 * Author: Andrew Christian
19 * 28 May 2002
20 */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string_helpers.h>
37 #include <linux/delay.h>
38 #include <linux/capability.h>
39 #include <linux/compat.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/idr.h>
42 #include <linux/debugfs.h>
43
44 #include <linux/mmc/ioctl.h>
45 #include <linux/mmc/card.h>
46 #include <linux/mmc/host.h>
47 #include <linux/mmc/mmc.h>
48 #include <linux/mmc/sd.h>
49
50 #include <linux/uaccess.h>
51
52 #include "queue.h"
53 #include "block.h"
54 #include "core.h"
55 #include "card.h"
56 #include "crypto.h"
57 #include "host.h"
58 #include "bus.h"
59 #include "mmc_ops.h"
60 #include "quirks.h"
61 #include "sd_ops.h"
62
63 MODULE_ALIAS("mmc:block");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "mmcblk."
68
69 /*
70 * Set a 10 second timeout for polling write request busy state. Note, mmc core
71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
72 * second software timer to timeout the whole request, so 10 seconds should be
73 * ample.
74 */
75 #define MMC_BLK_TIMEOUT_MS (10 * 1000)
76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
78
79 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
80 (rq_data_dir(req) == WRITE))
81 static DEFINE_MUTEX(block_mutex);
82
83 /*
84 * The defaults come from config options but can be overriden by module
85 * or bootarg options.
86 */
87 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
88
89 /*
90 * We've only got one major, so number of mmcblk devices is
91 * limited to (1 << 20) / number of minors per device. It is also
92 * limited by the MAX_DEVICES below.
93 */
94 static int max_devices;
95
96 #define MAX_DEVICES 256
97
98 static DEFINE_IDA(mmc_blk_ida);
99 static DEFINE_IDA(mmc_rpmb_ida);
100
101 struct mmc_blk_busy_data {
102 struct mmc_card *card;
103 u32 status;
104 };
105
106 /*
107 * There is one mmc_blk_data per slot.
108 */
109 struct mmc_blk_data {
110 struct device *parent;
111 struct gendisk *disk;
112 struct mmc_queue queue;
113 struct list_head part;
114 struct list_head rpmbs;
115
116 unsigned int flags;
117 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
118 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
119
120 struct kref kref;
121 unsigned int read_only;
122 unsigned int part_type;
123 unsigned int reset_done;
124 #define MMC_BLK_READ BIT(0)
125 #define MMC_BLK_WRITE BIT(1)
126 #define MMC_BLK_DISCARD BIT(2)
127 #define MMC_BLK_SECDISCARD BIT(3)
128 #define MMC_BLK_CQE_RECOVERY BIT(4)
129 #define MMC_BLK_TRIM BIT(5)
130
131 /*
132 * Only set in main mmc_blk_data associated
133 * with mmc_card with dev_set_drvdata, and keeps
134 * track of the current selected device partition.
135 */
136 unsigned int part_curr;
137 int area_type;
138
139 /* debugfs files (only in main mmc_blk_data) */
140 struct dentry *status_dentry;
141 struct dentry *ext_csd_dentry;
142 };
143
144 /* Device type for RPMB character devices */
145 static dev_t mmc_rpmb_devt;
146
147 /* Bus type for RPMB character devices */
148 static struct bus_type mmc_rpmb_bus_type = {
149 .name = "mmc_rpmb",
150 };
151
152 /**
153 * struct mmc_rpmb_data - special RPMB device type for these areas
154 * @dev: the device for the RPMB area
155 * @chrdev: character device for the RPMB area
156 * @id: unique device ID number
157 * @part_index: partition index (0 on first)
158 * @md: parent MMC block device
159 * @node: list item, so we can put this device on a list
160 */
161 struct mmc_rpmb_data {
162 struct device dev;
163 struct cdev chrdev;
164 int id;
165 unsigned int part_index;
166 struct mmc_blk_data *md;
167 struct list_head node;
168 };
169
170 static DEFINE_MUTEX(open_lock);
171
172 module_param(perdev_minors, int, 0444);
173 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
174
175 static inline int mmc_blk_part_switch(struct mmc_card *card,
176 unsigned int part_type);
177 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
178 struct mmc_card *card,
179 int recovery_mode,
180 struct mmc_queue *mq);
181 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
182
mmc_blk_get(struct gendisk * disk)183 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
184 {
185 struct mmc_blk_data *md;
186
187 mutex_lock(&open_lock);
188 md = disk->private_data;
189 if (md && !kref_get_unless_zero(&md->kref))
190 md = NULL;
191 mutex_unlock(&open_lock);
192
193 return md;
194 }
195
mmc_get_devidx(struct gendisk * disk)196 static inline int mmc_get_devidx(struct gendisk *disk)
197 {
198 int devidx = disk->first_minor / perdev_minors;
199 return devidx;
200 }
201
mmc_blk_kref_release(struct kref * ref)202 static void mmc_blk_kref_release(struct kref *ref)
203 {
204 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
205 int devidx;
206
207 devidx = mmc_get_devidx(md->disk);
208 ida_simple_remove(&mmc_blk_ida, devidx);
209
210 mutex_lock(&open_lock);
211 md->disk->private_data = NULL;
212 mutex_unlock(&open_lock);
213
214 put_disk(md->disk);
215 kfree(md);
216 }
217
mmc_blk_put(struct mmc_blk_data * md)218 static void mmc_blk_put(struct mmc_blk_data *md)
219 {
220 kref_put(&md->kref, mmc_blk_kref_release);
221 }
222
power_ro_lock_show(struct device * dev,struct device_attribute * attr,char * buf)223 static ssize_t power_ro_lock_show(struct device *dev,
224 struct device_attribute *attr, char *buf)
225 {
226 int ret;
227 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
228 struct mmc_card *card = md->queue.card;
229 int locked = 0;
230
231 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
232 locked = 2;
233 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
234 locked = 1;
235
236 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
237
238 mmc_blk_put(md);
239
240 return ret;
241 }
242
power_ro_lock_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)243 static ssize_t power_ro_lock_store(struct device *dev,
244 struct device_attribute *attr, const char *buf, size_t count)
245 {
246 int ret;
247 struct mmc_blk_data *md, *part_md;
248 struct mmc_queue *mq;
249 struct request *req;
250 unsigned long set;
251
252 if (kstrtoul(buf, 0, &set))
253 return -EINVAL;
254
255 if (set != 1)
256 return count;
257
258 md = mmc_blk_get(dev_to_disk(dev));
259 mq = &md->queue;
260
261 /* Dispatch locking to the block layer */
262 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
263 if (IS_ERR(req)) {
264 count = PTR_ERR(req);
265 goto out_put;
266 }
267 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
268 blk_execute_rq(req, false);
269 ret = req_to_mmc_queue_req(req)->drv_op_result;
270 blk_mq_free_request(req);
271
272 if (!ret) {
273 pr_info("%s: Locking boot partition ro until next power on\n",
274 md->disk->disk_name);
275 set_disk_ro(md->disk, 1);
276
277 list_for_each_entry(part_md, &md->part, part)
278 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
279 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
280 set_disk_ro(part_md->disk, 1);
281 }
282 }
283 out_put:
284 mmc_blk_put(md);
285 return count;
286 }
287
288 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
289 power_ro_lock_show, power_ro_lock_store);
290
force_ro_show(struct device * dev,struct device_attribute * attr,char * buf)291 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
292 char *buf)
293 {
294 int ret;
295 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
296
297 ret = snprintf(buf, PAGE_SIZE, "%d\n",
298 get_disk_ro(dev_to_disk(dev)) ^
299 md->read_only);
300 mmc_blk_put(md);
301 return ret;
302 }
303
force_ro_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)304 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
305 const char *buf, size_t count)
306 {
307 int ret;
308 char *end;
309 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
310 unsigned long set = simple_strtoul(buf, &end, 0);
311 if (end == buf) {
312 ret = -EINVAL;
313 goto out;
314 }
315
316 set_disk_ro(dev_to_disk(dev), set || md->read_only);
317 ret = count;
318 out:
319 mmc_blk_put(md);
320 return ret;
321 }
322
323 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
324
325 static struct attribute *mmc_disk_attrs[] = {
326 &dev_attr_force_ro.attr,
327 &dev_attr_ro_lock_until_next_power_on.attr,
328 NULL,
329 };
330
mmc_disk_attrs_is_visible(struct kobject * kobj,struct attribute * a,int n)331 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
332 struct attribute *a, int n)
333 {
334 struct device *dev = kobj_to_dev(kobj);
335 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
336 umode_t mode = a->mode;
337
338 if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
339 (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
340 md->queue.card->ext_csd.boot_ro_lockable) {
341 mode = S_IRUGO;
342 if (!(md->queue.card->ext_csd.boot_ro_lock &
343 EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
344 mode |= S_IWUSR;
345 }
346
347 mmc_blk_put(md);
348 return mode;
349 }
350
351 static const struct attribute_group mmc_disk_attr_group = {
352 .is_visible = mmc_disk_attrs_is_visible,
353 .attrs = mmc_disk_attrs,
354 };
355
356 static const struct attribute_group *mmc_disk_attr_groups[] = {
357 &mmc_disk_attr_group,
358 NULL,
359 };
360
mmc_blk_open(struct block_device * bdev,fmode_t mode)361 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
362 {
363 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
364 int ret = -ENXIO;
365
366 mutex_lock(&block_mutex);
367 if (md) {
368 ret = 0;
369 if ((mode & FMODE_WRITE) && md->read_only) {
370 mmc_blk_put(md);
371 ret = -EROFS;
372 }
373 }
374 mutex_unlock(&block_mutex);
375
376 return ret;
377 }
378
mmc_blk_release(struct gendisk * disk,fmode_t mode)379 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
380 {
381 struct mmc_blk_data *md = disk->private_data;
382
383 mutex_lock(&block_mutex);
384 mmc_blk_put(md);
385 mutex_unlock(&block_mutex);
386 }
387
388 static int
mmc_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)389 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
390 {
391 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
392 geo->heads = 4;
393 geo->sectors = 16;
394 return 0;
395 }
396
397 struct mmc_blk_ioc_data {
398 struct mmc_ioc_cmd ic;
399 unsigned char *buf;
400 u64 buf_bytes;
401 struct mmc_rpmb_data *rpmb;
402 };
403
mmc_blk_ioctl_copy_from_user(struct mmc_ioc_cmd __user * user)404 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
405 struct mmc_ioc_cmd __user *user)
406 {
407 struct mmc_blk_ioc_data *idata;
408 int err;
409
410 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
411 if (!idata) {
412 err = -ENOMEM;
413 goto out;
414 }
415
416 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
417 err = -EFAULT;
418 goto idata_err;
419 }
420
421 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
422 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
423 err = -EOVERFLOW;
424 goto idata_err;
425 }
426
427 if (!idata->buf_bytes) {
428 idata->buf = NULL;
429 return idata;
430 }
431
432 idata->buf = memdup_user((void __user *)(unsigned long)
433 idata->ic.data_ptr, idata->buf_bytes);
434 if (IS_ERR(idata->buf)) {
435 err = PTR_ERR(idata->buf);
436 goto idata_err;
437 }
438
439 return idata;
440
441 idata_err:
442 kfree(idata);
443 out:
444 return ERR_PTR(err);
445 }
446
mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user * ic_ptr,struct mmc_blk_ioc_data * idata)447 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
448 struct mmc_blk_ioc_data *idata)
449 {
450 struct mmc_ioc_cmd *ic = &idata->ic;
451
452 if (copy_to_user(&(ic_ptr->response), ic->response,
453 sizeof(ic->response)))
454 return -EFAULT;
455
456 if (!idata->ic.write_flag) {
457 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
458 idata->buf, idata->buf_bytes))
459 return -EFAULT;
460 }
461
462 return 0;
463 }
464
__mmc_blk_ioctl_cmd(struct mmc_card * card,struct mmc_blk_data * md,struct mmc_blk_ioc_data * idata)465 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
466 struct mmc_blk_ioc_data *idata)
467 {
468 struct mmc_command cmd = {}, sbc = {};
469 struct mmc_data data = {};
470 struct mmc_request mrq = {};
471 struct scatterlist sg;
472 int err;
473 unsigned int target_part;
474
475 if (!card || !md || !idata)
476 return -EINVAL;
477
478 /*
479 * The RPMB accesses comes in from the character device, so we
480 * need to target these explicitly. Else we just target the
481 * partition type for the block device the ioctl() was issued
482 * on.
483 */
484 if (idata->rpmb) {
485 /* Support multiple RPMB partitions */
486 target_part = idata->rpmb->part_index;
487 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
488 } else {
489 target_part = md->part_type;
490 }
491
492 cmd.opcode = idata->ic.opcode;
493 cmd.arg = idata->ic.arg;
494 cmd.flags = idata->ic.flags;
495
496 if (idata->buf_bytes) {
497 data.sg = &sg;
498 data.sg_len = 1;
499 data.blksz = idata->ic.blksz;
500 data.blocks = idata->ic.blocks;
501
502 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
503
504 if (idata->ic.write_flag)
505 data.flags = MMC_DATA_WRITE;
506 else
507 data.flags = MMC_DATA_READ;
508
509 /* data.flags must already be set before doing this. */
510 mmc_set_data_timeout(&data, card);
511
512 /* Allow overriding the timeout_ns for empirical tuning. */
513 if (idata->ic.data_timeout_ns)
514 data.timeout_ns = idata->ic.data_timeout_ns;
515
516 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
517 /*
518 * Pretend this is a data transfer and rely on the
519 * host driver to compute timeout. When all host
520 * drivers support cmd.cmd_timeout for R1B, this
521 * can be changed to:
522 *
523 * mrq.data = NULL;
524 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
525 */
526 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
527 }
528
529 mrq.data = &data;
530 }
531
532 mrq.cmd = &cmd;
533
534 err = mmc_blk_part_switch(card, target_part);
535 if (err)
536 return err;
537
538 if (idata->ic.is_acmd) {
539 err = mmc_app_cmd(card->host, card);
540 if (err)
541 return err;
542 }
543
544 if (idata->rpmb) {
545 sbc.opcode = MMC_SET_BLOCK_COUNT;
546 /*
547 * We don't do any blockcount validation because the max size
548 * may be increased by a future standard. We just copy the
549 * 'Reliable Write' bit here.
550 */
551 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
552 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
553 mrq.sbc = &sbc;
554 }
555
556 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
557 (cmd.opcode == MMC_SWITCH))
558 return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
559
560 mmc_wait_for_req(card->host, &mrq);
561 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
562
563 if (cmd.error) {
564 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
565 __func__, cmd.error);
566 return cmd.error;
567 }
568 if (data.error) {
569 dev_err(mmc_dev(card->host), "%s: data error %d\n",
570 __func__, data.error);
571 return data.error;
572 }
573
574 /*
575 * Make sure the cache of the PARTITION_CONFIG register and
576 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
577 * changed it successfully.
578 */
579 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
580 (cmd.opcode == MMC_SWITCH)) {
581 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
582 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
583
584 /*
585 * Update cache so the next mmc_blk_part_switch call operates
586 * on up-to-date data.
587 */
588 card->ext_csd.part_config = value;
589 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
590 }
591
592 /*
593 * Make sure to update CACHE_CTRL in case it was changed. The cache
594 * will get turned back on if the card is re-initialized, e.g.
595 * suspend/resume or hw reset in recovery.
596 */
597 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
598 (cmd.opcode == MMC_SWITCH)) {
599 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
600
601 card->ext_csd.cache_ctrl = value;
602 }
603
604 /*
605 * According to the SD specs, some commands require a delay after
606 * issuing the command.
607 */
608 if (idata->ic.postsleep_min_us)
609 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
610
611 if (idata->rpmb || (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
612 /*
613 * Ensure RPMB/R1B command has completed by polling CMD13 "Send Status". Here we
614 * allow to override the default timeout value if a custom timeout is specified.
615 */
616 err = mmc_poll_for_busy(card, idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS,
617 false, MMC_BUSY_IO);
618 }
619
620 return err;
621 }
622
mmc_blk_ioctl_cmd(struct mmc_blk_data * md,struct mmc_ioc_cmd __user * ic_ptr,struct mmc_rpmb_data * rpmb)623 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
624 struct mmc_ioc_cmd __user *ic_ptr,
625 struct mmc_rpmb_data *rpmb)
626 {
627 struct mmc_blk_ioc_data *idata;
628 struct mmc_blk_ioc_data *idatas[1];
629 struct mmc_queue *mq;
630 struct mmc_card *card;
631 int err = 0, ioc_err = 0;
632 struct request *req;
633
634 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
635 if (IS_ERR(idata))
636 return PTR_ERR(idata);
637 /* This will be NULL on non-RPMB ioctl():s */
638 idata->rpmb = rpmb;
639
640 card = md->queue.card;
641 if (IS_ERR(card)) {
642 err = PTR_ERR(card);
643 goto cmd_done;
644 }
645
646 /*
647 * Dispatch the ioctl() into the block request queue.
648 */
649 mq = &md->queue;
650 req = blk_mq_alloc_request(mq->queue,
651 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
652 if (IS_ERR(req)) {
653 err = PTR_ERR(req);
654 goto cmd_done;
655 }
656 idatas[0] = idata;
657 req_to_mmc_queue_req(req)->drv_op =
658 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
659 req_to_mmc_queue_req(req)->drv_op_data = idatas;
660 req_to_mmc_queue_req(req)->ioc_count = 1;
661 blk_execute_rq(req, false);
662 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
663 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
664 blk_mq_free_request(req);
665
666 cmd_done:
667 kfree(idata->buf);
668 kfree(idata);
669 return ioc_err ? ioc_err : err;
670 }
671
mmc_blk_ioctl_multi_cmd(struct mmc_blk_data * md,struct mmc_ioc_multi_cmd __user * user,struct mmc_rpmb_data * rpmb)672 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
673 struct mmc_ioc_multi_cmd __user *user,
674 struct mmc_rpmb_data *rpmb)
675 {
676 struct mmc_blk_ioc_data **idata = NULL;
677 struct mmc_ioc_cmd __user *cmds = user->cmds;
678 struct mmc_card *card;
679 struct mmc_queue *mq;
680 int err = 0, ioc_err = 0;
681 __u64 num_of_cmds;
682 unsigned int i, n;
683 struct request *req;
684
685 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
686 sizeof(num_of_cmds)))
687 return -EFAULT;
688
689 if (!num_of_cmds)
690 return 0;
691
692 if (num_of_cmds > MMC_IOC_MAX_CMDS)
693 return -EINVAL;
694
695 n = num_of_cmds;
696 idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
697 if (!idata)
698 return -ENOMEM;
699
700 for (i = 0; i < n; i++) {
701 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
702 if (IS_ERR(idata[i])) {
703 err = PTR_ERR(idata[i]);
704 n = i;
705 goto cmd_err;
706 }
707 /* This will be NULL on non-RPMB ioctl():s */
708 idata[i]->rpmb = rpmb;
709 }
710
711 card = md->queue.card;
712 if (IS_ERR(card)) {
713 err = PTR_ERR(card);
714 goto cmd_err;
715 }
716
717
718 /*
719 * Dispatch the ioctl()s into the block request queue.
720 */
721 mq = &md->queue;
722 req = blk_mq_alloc_request(mq->queue,
723 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
724 if (IS_ERR(req)) {
725 err = PTR_ERR(req);
726 goto cmd_err;
727 }
728 req_to_mmc_queue_req(req)->drv_op =
729 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
730 req_to_mmc_queue_req(req)->drv_op_data = idata;
731 req_to_mmc_queue_req(req)->ioc_count = n;
732 blk_execute_rq(req, false);
733 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
734
735 /* copy to user if data and response */
736 for (i = 0; i < n && !err; i++)
737 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
738
739 blk_mq_free_request(req);
740
741 cmd_err:
742 for (i = 0; i < n; i++) {
743 kfree(idata[i]->buf);
744 kfree(idata[i]);
745 }
746 kfree(idata);
747 return ioc_err ? ioc_err : err;
748 }
749
mmc_blk_check_blkdev(struct block_device * bdev)750 static int mmc_blk_check_blkdev(struct block_device *bdev)
751 {
752 /*
753 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
754 * whole block device, not on a partition. This prevents overspray
755 * between sibling partitions.
756 */
757 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
758 return -EPERM;
759 return 0;
760 }
761
mmc_blk_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)762 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
763 unsigned int cmd, unsigned long arg)
764 {
765 struct mmc_blk_data *md;
766 int ret;
767
768 switch (cmd) {
769 case MMC_IOC_CMD:
770 ret = mmc_blk_check_blkdev(bdev);
771 if (ret)
772 return ret;
773 md = mmc_blk_get(bdev->bd_disk);
774 if (!md)
775 return -EINVAL;
776 ret = mmc_blk_ioctl_cmd(md,
777 (struct mmc_ioc_cmd __user *)arg,
778 NULL);
779 mmc_blk_put(md);
780 return ret;
781 case MMC_IOC_MULTI_CMD:
782 ret = mmc_blk_check_blkdev(bdev);
783 if (ret)
784 return ret;
785 md = mmc_blk_get(bdev->bd_disk);
786 if (!md)
787 return -EINVAL;
788 ret = mmc_blk_ioctl_multi_cmd(md,
789 (struct mmc_ioc_multi_cmd __user *)arg,
790 NULL);
791 mmc_blk_put(md);
792 return ret;
793 default:
794 return -EINVAL;
795 }
796 }
797
798 #ifdef CONFIG_COMPAT
mmc_blk_compat_ioctl(struct block_device * bdev,fmode_t mode,unsigned int cmd,unsigned long arg)799 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
800 unsigned int cmd, unsigned long arg)
801 {
802 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
803 }
804 #endif
805
mmc_blk_alternative_gpt_sector(struct gendisk * disk,sector_t * sector)806 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
807 sector_t *sector)
808 {
809 struct mmc_blk_data *md;
810 int ret;
811
812 md = mmc_blk_get(disk);
813 if (!md)
814 return -EINVAL;
815
816 if (md->queue.card)
817 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
818 else
819 ret = -ENODEV;
820
821 mmc_blk_put(md);
822
823 return ret;
824 }
825
826 static const struct block_device_operations mmc_bdops = {
827 .open = mmc_blk_open,
828 .release = mmc_blk_release,
829 .getgeo = mmc_blk_getgeo,
830 .owner = THIS_MODULE,
831 .ioctl = mmc_blk_ioctl,
832 #ifdef CONFIG_COMPAT
833 .compat_ioctl = mmc_blk_compat_ioctl,
834 #endif
835 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector,
836 };
837
mmc_blk_part_switch_pre(struct mmc_card * card,unsigned int part_type)838 static int mmc_blk_part_switch_pre(struct mmc_card *card,
839 unsigned int part_type)
840 {
841 int ret = 0;
842
843 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
844 if (card->ext_csd.cmdq_en) {
845 ret = mmc_cmdq_disable(card);
846 if (ret)
847 return ret;
848 }
849 mmc_retune_pause(card->host);
850 }
851
852 return ret;
853 }
854
mmc_blk_part_switch_post(struct mmc_card * card,unsigned int part_type)855 static int mmc_blk_part_switch_post(struct mmc_card *card,
856 unsigned int part_type)
857 {
858 int ret = 0;
859
860 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
861 mmc_retune_unpause(card->host);
862 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
863 ret = mmc_cmdq_enable(card);
864 }
865
866 return ret;
867 }
868
mmc_blk_part_switch(struct mmc_card * card,unsigned int part_type)869 static inline int mmc_blk_part_switch(struct mmc_card *card,
870 unsigned int part_type)
871 {
872 int ret = 0;
873 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
874
875 if (main_md->part_curr == part_type)
876 return 0;
877
878 if (mmc_card_mmc(card)) {
879 u8 part_config = card->ext_csd.part_config;
880
881 ret = mmc_blk_part_switch_pre(card, part_type);
882 if (ret)
883 return ret;
884
885 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
886 part_config |= part_type;
887
888 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
889 EXT_CSD_PART_CONFIG, part_config,
890 card->ext_csd.part_time);
891 if (ret) {
892 mmc_blk_part_switch_post(card, part_type);
893 return ret;
894 }
895
896 card->ext_csd.part_config = part_config;
897
898 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
899 }
900
901 main_md->part_curr = part_type;
902 return ret;
903 }
904
mmc_sd_num_wr_blocks(struct mmc_card * card,u32 * written_blocks)905 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
906 {
907 int err;
908 u32 result;
909 __be32 *blocks;
910
911 struct mmc_request mrq = {};
912 struct mmc_command cmd = {};
913 struct mmc_data data = {};
914
915 struct scatterlist sg;
916
917 cmd.opcode = MMC_APP_CMD;
918 cmd.arg = card->rca << 16;
919 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
920
921 err = mmc_wait_for_cmd(card->host, &cmd, 0);
922 if (err)
923 return err;
924 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
925 return -EIO;
926
927 memset(&cmd, 0, sizeof(struct mmc_command));
928
929 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
930 cmd.arg = 0;
931 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
932
933 data.blksz = 4;
934 data.blocks = 1;
935 data.flags = MMC_DATA_READ;
936 data.sg = &sg;
937 data.sg_len = 1;
938 mmc_set_data_timeout(&data, card);
939
940 mrq.cmd = &cmd;
941 mrq.data = &data;
942
943 blocks = kmalloc(4, GFP_KERNEL);
944 if (!blocks)
945 return -ENOMEM;
946
947 sg_init_one(&sg, blocks, 4);
948
949 mmc_wait_for_req(card->host, &mrq);
950
951 result = ntohl(*blocks);
952 kfree(blocks);
953
954 if (cmd.error || data.error)
955 return -EIO;
956
957 *written_blocks = result;
958
959 return 0;
960 }
961
mmc_blk_clock_khz(struct mmc_host * host)962 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
963 {
964 if (host->actual_clock)
965 return host->actual_clock / 1000;
966
967 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
968 if (host->ios.clock)
969 return host->ios.clock / 2000;
970
971 /* How can there be no clock */
972 WARN_ON_ONCE(1);
973 return 100; /* 100 kHz is minimum possible value */
974 }
975
mmc_blk_data_timeout_ms(struct mmc_host * host,struct mmc_data * data)976 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
977 struct mmc_data *data)
978 {
979 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
980 unsigned int khz;
981
982 if (data->timeout_clks) {
983 khz = mmc_blk_clock_khz(host);
984 ms += DIV_ROUND_UP(data->timeout_clks, khz);
985 }
986
987 return ms;
988 }
989
mmc_blk_reset(struct mmc_blk_data * md,struct mmc_host * host,int type)990 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
991 int type)
992 {
993 int err;
994
995 if (md->reset_done & type)
996 return -EEXIST;
997
998 md->reset_done |= type;
999 err = mmc_hw_reset(host->card);
1000 /* Ensure we switch back to the correct partition */
1001 if (err) {
1002 struct mmc_blk_data *main_md =
1003 dev_get_drvdata(&host->card->dev);
1004 int part_err;
1005
1006 main_md->part_curr = main_md->part_type;
1007 part_err = mmc_blk_part_switch(host->card, md->part_type);
1008 if (part_err) {
1009 /*
1010 * We have failed to get back into the correct
1011 * partition, so we need to abort the whole request.
1012 */
1013 return -ENODEV;
1014 }
1015 }
1016 return err;
1017 }
1018
mmc_blk_reset_success(struct mmc_blk_data * md,int type)1019 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1020 {
1021 md->reset_done &= ~type;
1022 }
1023
1024 /*
1025 * The non-block commands come back from the block layer after it queued it and
1026 * processed it with all other requests and then they get issued in this
1027 * function.
1028 */
mmc_blk_issue_drv_op(struct mmc_queue * mq,struct request * req)1029 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1030 {
1031 struct mmc_queue_req *mq_rq;
1032 struct mmc_card *card = mq->card;
1033 struct mmc_blk_data *md = mq->blkdata;
1034 struct mmc_blk_ioc_data **idata;
1035 bool rpmb_ioctl;
1036 u8 **ext_csd;
1037 u32 status;
1038 int ret;
1039 int i;
1040
1041 mq_rq = req_to_mmc_queue_req(req);
1042 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1043
1044 switch (mq_rq->drv_op) {
1045 case MMC_DRV_OP_IOCTL:
1046 if (card->ext_csd.cmdq_en) {
1047 ret = mmc_cmdq_disable(card);
1048 if (ret)
1049 break;
1050 }
1051 fallthrough;
1052 case MMC_DRV_OP_IOCTL_RPMB:
1053 idata = mq_rq->drv_op_data;
1054 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1055 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1056 if (ret)
1057 break;
1058 }
1059 /* Always switch back to main area after RPMB access */
1060 if (rpmb_ioctl)
1061 mmc_blk_part_switch(card, 0);
1062 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1063 mmc_cmdq_enable(card);
1064 break;
1065 case MMC_DRV_OP_BOOT_WP:
1066 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1067 card->ext_csd.boot_ro_lock |
1068 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1069 card->ext_csd.part_time);
1070 if (ret)
1071 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1072 md->disk->disk_name, ret);
1073 else
1074 card->ext_csd.boot_ro_lock |=
1075 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1076 break;
1077 case MMC_DRV_OP_GET_CARD_STATUS:
1078 ret = mmc_send_status(card, &status);
1079 if (!ret)
1080 ret = status;
1081 break;
1082 case MMC_DRV_OP_GET_EXT_CSD:
1083 ext_csd = mq_rq->drv_op_data;
1084 ret = mmc_get_ext_csd(card, ext_csd);
1085 break;
1086 default:
1087 pr_err("%s: unknown driver specific operation\n",
1088 md->disk->disk_name);
1089 ret = -EINVAL;
1090 break;
1091 }
1092 mq_rq->drv_op_result = ret;
1093 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1094 }
1095
mmc_blk_issue_erase_rq(struct mmc_queue * mq,struct request * req,int type,unsigned int erase_arg)1096 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1097 int type, unsigned int erase_arg)
1098 {
1099 struct mmc_blk_data *md = mq->blkdata;
1100 struct mmc_card *card = md->queue.card;
1101 unsigned int from, nr;
1102 int err = 0;
1103 blk_status_t status = BLK_STS_OK;
1104
1105 if (!mmc_can_erase(card)) {
1106 status = BLK_STS_NOTSUPP;
1107 goto fail;
1108 }
1109
1110 from = blk_rq_pos(req);
1111 nr = blk_rq_sectors(req);
1112
1113 do {
1114 err = 0;
1115 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1116 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1117 INAND_CMD38_ARG_EXT_CSD,
1118 erase_arg == MMC_TRIM_ARG ?
1119 INAND_CMD38_ARG_TRIM :
1120 INAND_CMD38_ARG_ERASE,
1121 card->ext_csd.generic_cmd6_time);
1122 }
1123 if (!err)
1124 err = mmc_erase(card, from, nr, erase_arg);
1125 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1126 if (err)
1127 status = BLK_STS_IOERR;
1128 else
1129 mmc_blk_reset_success(md, type);
1130 fail:
1131 blk_mq_end_request(req, status);
1132 }
1133
mmc_blk_issue_trim_rq(struct mmc_queue * mq,struct request * req)1134 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1135 {
1136 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1137 }
1138
mmc_blk_issue_discard_rq(struct mmc_queue * mq,struct request * req)1139 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1140 {
1141 struct mmc_blk_data *md = mq->blkdata;
1142 struct mmc_card *card = md->queue.card;
1143
1144 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, card->erase_arg);
1145 }
1146
mmc_blk_issue_secdiscard_rq(struct mmc_queue * mq,struct request * req)1147 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1148 struct request *req)
1149 {
1150 struct mmc_blk_data *md = mq->blkdata;
1151 struct mmc_card *card = md->queue.card;
1152 unsigned int from, nr, arg;
1153 int err = 0, type = MMC_BLK_SECDISCARD;
1154 blk_status_t status = BLK_STS_OK;
1155
1156 if (!(mmc_can_secure_erase_trim(card))) {
1157 status = BLK_STS_NOTSUPP;
1158 goto out;
1159 }
1160
1161 from = blk_rq_pos(req);
1162 nr = blk_rq_sectors(req);
1163
1164 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1165 arg = MMC_SECURE_TRIM1_ARG;
1166 else
1167 arg = MMC_SECURE_ERASE_ARG;
1168
1169 retry:
1170 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1171 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1172 INAND_CMD38_ARG_EXT_CSD,
1173 arg == MMC_SECURE_TRIM1_ARG ?
1174 INAND_CMD38_ARG_SECTRIM1 :
1175 INAND_CMD38_ARG_SECERASE,
1176 card->ext_csd.generic_cmd6_time);
1177 if (err)
1178 goto out_retry;
1179 }
1180
1181 err = mmc_erase(card, from, nr, arg);
1182 if (err == -EIO)
1183 goto out_retry;
1184 if (err) {
1185 status = BLK_STS_IOERR;
1186 goto out;
1187 }
1188
1189 if (arg == MMC_SECURE_TRIM1_ARG) {
1190 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1191 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1192 INAND_CMD38_ARG_EXT_CSD,
1193 INAND_CMD38_ARG_SECTRIM2,
1194 card->ext_csd.generic_cmd6_time);
1195 if (err)
1196 goto out_retry;
1197 }
1198
1199 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1200 if (err == -EIO)
1201 goto out_retry;
1202 if (err) {
1203 status = BLK_STS_IOERR;
1204 goto out;
1205 }
1206 }
1207
1208 out_retry:
1209 if (err && !mmc_blk_reset(md, card->host, type))
1210 goto retry;
1211 if (!err)
1212 mmc_blk_reset_success(md, type);
1213 out:
1214 blk_mq_end_request(req, status);
1215 }
1216
mmc_blk_issue_flush(struct mmc_queue * mq,struct request * req)1217 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1218 {
1219 struct mmc_blk_data *md = mq->blkdata;
1220 struct mmc_card *card = md->queue.card;
1221 int ret = 0;
1222
1223 ret = mmc_flush_cache(card->host);
1224 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1225 }
1226
1227 /*
1228 * Reformat current write as a reliable write, supporting
1229 * both legacy and the enhanced reliable write MMC cards.
1230 * In each transfer we'll handle only as much as a single
1231 * reliable write can handle, thus finish the request in
1232 * partial completions.
1233 */
mmc_apply_rel_rw(struct mmc_blk_request * brq,struct mmc_card * card,struct request * req)1234 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1235 struct mmc_card *card,
1236 struct request *req)
1237 {
1238 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1239 /* Legacy mode imposes restrictions on transfers. */
1240 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1241 brq->data.blocks = 1;
1242
1243 if (brq->data.blocks > card->ext_csd.rel_sectors)
1244 brq->data.blocks = card->ext_csd.rel_sectors;
1245 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1246 brq->data.blocks = 1;
1247 }
1248 }
1249
1250 #define CMD_ERRORS_EXCL_OOR \
1251 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1252 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1253 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1254 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1255 R1_CC_ERROR | /* Card controller error */ \
1256 R1_ERROR) /* General/unknown error */
1257
1258 #define CMD_ERRORS \
1259 (CMD_ERRORS_EXCL_OOR | \
1260 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1261
mmc_blk_eval_resp_error(struct mmc_blk_request * brq)1262 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1263 {
1264 u32 val;
1265
1266 /*
1267 * Per the SD specification(physical layer version 4.10)[1],
1268 * section 4.3.3, it explicitly states that "When the last
1269 * block of user area is read using CMD18, the host should
1270 * ignore OUT_OF_RANGE error that may occur even the sequence
1271 * is correct". And JESD84-B51 for eMMC also has a similar
1272 * statement on section 6.8.3.
1273 *
1274 * Multiple block read/write could be done by either predefined
1275 * method, namely CMD23, or open-ending mode. For open-ending mode,
1276 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1277 *
1278 * However the spec[1] doesn't tell us whether we should also
1279 * ignore that for predefined method. But per the spec[1], section
1280 * 4.15 Set Block Count Command, it says"If illegal block count
1281 * is set, out of range error will be indicated during read/write
1282 * operation (For example, data transfer is stopped at user area
1283 * boundary)." In another word, we could expect a out of range error
1284 * in the response for the following CMD18/25. And if argument of
1285 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1286 * we could also expect to get a -ETIMEDOUT or any error number from
1287 * the host drivers due to missing data response(for write)/data(for
1288 * read), as the cards will stop the data transfer by itself per the
1289 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1290 */
1291
1292 if (!brq->stop.error) {
1293 bool oor_with_open_end;
1294 /* If there is no error yet, check R1 response */
1295
1296 val = brq->stop.resp[0] & CMD_ERRORS;
1297 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1298
1299 if (val && !oor_with_open_end)
1300 brq->stop.error = -EIO;
1301 }
1302 }
1303
mmc_blk_data_prep(struct mmc_queue * mq,struct mmc_queue_req * mqrq,int recovery_mode,bool * do_rel_wr_p,bool * do_data_tag_p)1304 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1305 int recovery_mode, bool *do_rel_wr_p,
1306 bool *do_data_tag_p)
1307 {
1308 struct mmc_blk_data *md = mq->blkdata;
1309 struct mmc_card *card = md->queue.card;
1310 struct mmc_blk_request *brq = &mqrq->brq;
1311 struct request *req = mmc_queue_req_to_req(mqrq);
1312 bool do_rel_wr, do_data_tag;
1313
1314 /*
1315 * Reliable writes are used to implement Forced Unit Access and
1316 * are supported only on MMCs.
1317 */
1318 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1319 rq_data_dir(req) == WRITE &&
1320 (md->flags & MMC_BLK_REL_WR);
1321
1322 memset(brq, 0, sizeof(struct mmc_blk_request));
1323
1324 mmc_crypto_prepare_req(mqrq);
1325
1326 brq->mrq.data = &brq->data;
1327 brq->mrq.tag = req->tag;
1328
1329 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1330 brq->stop.arg = 0;
1331
1332 if (rq_data_dir(req) == READ) {
1333 brq->data.flags = MMC_DATA_READ;
1334 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1335 } else {
1336 brq->data.flags = MMC_DATA_WRITE;
1337 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1338 }
1339
1340 brq->data.blksz = 512;
1341 brq->data.blocks = blk_rq_sectors(req);
1342 brq->data.blk_addr = blk_rq_pos(req);
1343
1344 /*
1345 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1346 * The eMMC will give "high" priority tasks priority over "simple"
1347 * priority tasks. Here we always set "simple" priority by not setting
1348 * MMC_DATA_PRIO.
1349 */
1350
1351 /*
1352 * The block layer doesn't support all sector count
1353 * restrictions, so we need to be prepared for too big
1354 * requests.
1355 */
1356 if (brq->data.blocks > card->host->max_blk_count)
1357 brq->data.blocks = card->host->max_blk_count;
1358
1359 if (brq->data.blocks > 1) {
1360 /*
1361 * Some SD cards in SPI mode return a CRC error or even lock up
1362 * completely when trying to read the last block using a
1363 * multiblock read command.
1364 */
1365 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1366 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1367 get_capacity(md->disk)))
1368 brq->data.blocks--;
1369
1370 /*
1371 * After a read error, we redo the request one (native) sector
1372 * at a time in order to accurately determine which
1373 * sectors can be read successfully.
1374 */
1375 if (recovery_mode)
1376 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1377
1378 /*
1379 * Some controllers have HW issues while operating
1380 * in multiple I/O mode
1381 */
1382 if (card->host->ops->multi_io_quirk)
1383 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1384 (rq_data_dir(req) == READ) ?
1385 MMC_DATA_READ : MMC_DATA_WRITE,
1386 brq->data.blocks);
1387 }
1388
1389 if (do_rel_wr) {
1390 mmc_apply_rel_rw(brq, card, req);
1391 brq->data.flags |= MMC_DATA_REL_WR;
1392 }
1393
1394 /*
1395 * Data tag is used only during writing meta data to speed
1396 * up write and any subsequent read of this meta data
1397 */
1398 do_data_tag = card->ext_csd.data_tag_unit_size &&
1399 (req->cmd_flags & REQ_META) &&
1400 (rq_data_dir(req) == WRITE) &&
1401 ((brq->data.blocks * brq->data.blksz) >=
1402 card->ext_csd.data_tag_unit_size);
1403
1404 if (do_data_tag)
1405 brq->data.flags |= MMC_DATA_DAT_TAG;
1406
1407 mmc_set_data_timeout(&brq->data, card);
1408
1409 brq->data.sg = mqrq->sg;
1410 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1411
1412 /*
1413 * Adjust the sg list so it is the same size as the
1414 * request.
1415 */
1416 if (brq->data.blocks != blk_rq_sectors(req)) {
1417 int i, data_size = brq->data.blocks << 9;
1418 struct scatterlist *sg;
1419
1420 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1421 data_size -= sg->length;
1422 if (data_size <= 0) {
1423 sg->length += data_size;
1424 i++;
1425 break;
1426 }
1427 }
1428 brq->data.sg_len = i;
1429 }
1430
1431 if (do_rel_wr_p)
1432 *do_rel_wr_p = do_rel_wr;
1433
1434 if (do_data_tag_p)
1435 *do_data_tag_p = do_data_tag;
1436 }
1437
1438 #define MMC_CQE_RETRIES 2
1439
mmc_blk_cqe_complete_rq(struct mmc_queue * mq,struct request * req)1440 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1441 {
1442 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1443 struct mmc_request *mrq = &mqrq->brq.mrq;
1444 struct request_queue *q = req->q;
1445 struct mmc_host *host = mq->card->host;
1446 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1447 unsigned long flags;
1448 bool put_card;
1449 int err;
1450
1451 mmc_cqe_post_req(host, mrq);
1452
1453 if (mrq->cmd && mrq->cmd->error)
1454 err = mrq->cmd->error;
1455 else if (mrq->data && mrq->data->error)
1456 err = mrq->data->error;
1457 else
1458 err = 0;
1459
1460 if (err) {
1461 if (mqrq->retries++ < MMC_CQE_RETRIES)
1462 blk_mq_requeue_request(req, true);
1463 else
1464 blk_mq_end_request(req, BLK_STS_IOERR);
1465 } else if (mrq->data) {
1466 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1467 blk_mq_requeue_request(req, true);
1468 else
1469 __blk_mq_end_request(req, BLK_STS_OK);
1470 } else {
1471 blk_mq_end_request(req, BLK_STS_OK);
1472 }
1473
1474 spin_lock_irqsave(&mq->lock, flags);
1475
1476 mq->in_flight[issue_type] -= 1;
1477
1478 put_card = (mmc_tot_in_flight(mq) == 0);
1479
1480 mmc_cqe_check_busy(mq);
1481
1482 spin_unlock_irqrestore(&mq->lock, flags);
1483
1484 if (!mq->cqe_busy)
1485 blk_mq_run_hw_queues(q, true);
1486
1487 if (put_card)
1488 mmc_put_card(mq->card, &mq->ctx);
1489 }
1490
mmc_blk_cqe_recovery(struct mmc_queue * mq)1491 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1492 {
1493 struct mmc_card *card = mq->card;
1494 struct mmc_host *host = card->host;
1495 int err;
1496
1497 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1498
1499 err = mmc_cqe_recovery(host);
1500 if (err)
1501 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1502 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1503
1504 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1505 }
1506
mmc_blk_cqe_req_done(struct mmc_request * mrq)1507 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1508 {
1509 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1510 brq.mrq);
1511 struct request *req = mmc_queue_req_to_req(mqrq);
1512 struct request_queue *q = req->q;
1513 struct mmc_queue *mq = q->queuedata;
1514
1515 /*
1516 * Block layer timeouts race with completions which means the normal
1517 * completion path cannot be used during recovery.
1518 */
1519 if (mq->in_recovery)
1520 mmc_blk_cqe_complete_rq(mq, req);
1521 else if (likely(!blk_should_fake_timeout(req->q)))
1522 blk_mq_complete_request(req);
1523 }
1524
mmc_blk_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)1525 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1526 {
1527 mrq->done = mmc_blk_cqe_req_done;
1528 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1529
1530 return mmc_cqe_start_req(host, mrq);
1531 }
1532
mmc_blk_cqe_prep_dcmd(struct mmc_queue_req * mqrq,struct request * req)1533 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1534 struct request *req)
1535 {
1536 struct mmc_blk_request *brq = &mqrq->brq;
1537
1538 memset(brq, 0, sizeof(*brq));
1539
1540 brq->mrq.cmd = &brq->cmd;
1541 brq->mrq.tag = req->tag;
1542
1543 return &brq->mrq;
1544 }
1545
mmc_blk_cqe_issue_flush(struct mmc_queue * mq,struct request * req)1546 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1547 {
1548 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1549 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1550
1551 mrq->cmd->opcode = MMC_SWITCH;
1552 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1553 (EXT_CSD_FLUSH_CACHE << 16) |
1554 (1 << 8) |
1555 EXT_CSD_CMD_SET_NORMAL;
1556 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1557
1558 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1559 }
1560
mmc_blk_hsq_issue_rw_rq(struct mmc_queue * mq,struct request * req)1561 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1562 {
1563 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1564 struct mmc_host *host = mq->card->host;
1565 int err;
1566
1567 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1568 mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1569 mmc_pre_req(host, &mqrq->brq.mrq);
1570
1571 err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1572 if (err)
1573 mmc_post_req(host, &mqrq->brq.mrq, err);
1574
1575 return err;
1576 }
1577
mmc_blk_cqe_issue_rw_rq(struct mmc_queue * mq,struct request * req)1578 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1579 {
1580 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1581 struct mmc_host *host = mq->card->host;
1582
1583 if (host->hsq_enabled)
1584 return mmc_blk_hsq_issue_rw_rq(mq, req);
1585
1586 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1587
1588 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1589 }
1590
mmc_blk_rw_rq_prep(struct mmc_queue_req * mqrq,struct mmc_card * card,int recovery_mode,struct mmc_queue * mq)1591 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1592 struct mmc_card *card,
1593 int recovery_mode,
1594 struct mmc_queue *mq)
1595 {
1596 u32 readcmd, writecmd;
1597 struct mmc_blk_request *brq = &mqrq->brq;
1598 struct request *req = mmc_queue_req_to_req(mqrq);
1599 struct mmc_blk_data *md = mq->blkdata;
1600 bool do_rel_wr, do_data_tag;
1601
1602 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1603
1604 brq->mrq.cmd = &brq->cmd;
1605
1606 brq->cmd.arg = blk_rq_pos(req);
1607 if (!mmc_card_blockaddr(card))
1608 brq->cmd.arg <<= 9;
1609 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1610
1611 if (brq->data.blocks > 1 || do_rel_wr) {
1612 /* SPI multiblock writes terminate using a special
1613 * token, not a STOP_TRANSMISSION request.
1614 */
1615 if (!mmc_host_is_spi(card->host) ||
1616 rq_data_dir(req) == READ)
1617 brq->mrq.stop = &brq->stop;
1618 readcmd = MMC_READ_MULTIPLE_BLOCK;
1619 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1620 } else {
1621 brq->mrq.stop = NULL;
1622 readcmd = MMC_READ_SINGLE_BLOCK;
1623 writecmd = MMC_WRITE_BLOCK;
1624 }
1625 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1626
1627 /*
1628 * Pre-defined multi-block transfers are preferable to
1629 * open ended-ones (and necessary for reliable writes).
1630 * However, it is not sufficient to just send CMD23,
1631 * and avoid the final CMD12, as on an error condition
1632 * CMD12 (stop) needs to be sent anyway. This, coupled
1633 * with Auto-CMD23 enhancements provided by some
1634 * hosts, means that the complexity of dealing
1635 * with this is best left to the host. If CMD23 is
1636 * supported by card and host, we'll fill sbc in and let
1637 * the host deal with handling it correctly. This means
1638 * that for hosts that don't expose MMC_CAP_CMD23, no
1639 * change of behavior will be observed.
1640 *
1641 * N.B: Some MMC cards experience perf degradation.
1642 * We'll avoid using CMD23-bounded multiblock writes for
1643 * these, while retaining features like reliable writes.
1644 */
1645 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1646 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1647 do_data_tag)) {
1648 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1649 brq->sbc.arg = brq->data.blocks |
1650 (do_rel_wr ? (1 << 31) : 0) |
1651 (do_data_tag ? (1 << 29) : 0);
1652 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1653 brq->mrq.sbc = &brq->sbc;
1654 }
1655 }
1656
1657 #define MMC_MAX_RETRIES 5
1658 #define MMC_DATA_RETRIES 2
1659 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1660
mmc_blk_send_stop(struct mmc_card * card,unsigned int timeout)1661 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1662 {
1663 struct mmc_command cmd = {
1664 .opcode = MMC_STOP_TRANSMISSION,
1665 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1666 /* Some hosts wait for busy anyway, so provide a busy timeout */
1667 .busy_timeout = timeout,
1668 };
1669
1670 return mmc_wait_for_cmd(card->host, &cmd, 5);
1671 }
1672
mmc_blk_fix_state(struct mmc_card * card,struct request * req)1673 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1674 {
1675 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1676 struct mmc_blk_request *brq = &mqrq->brq;
1677 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1678 int err;
1679
1680 mmc_retune_hold_now(card->host);
1681
1682 mmc_blk_send_stop(card, timeout);
1683
1684 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1685
1686 mmc_retune_release(card->host);
1687
1688 return err;
1689 }
1690
1691 #define MMC_READ_SINGLE_RETRIES 2
1692
1693 /* Single (native) sector read during recovery */
mmc_blk_read_single(struct mmc_queue * mq,struct request * req)1694 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1695 {
1696 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1697 struct mmc_request *mrq = &mqrq->brq.mrq;
1698 struct mmc_card *card = mq->card;
1699 struct mmc_host *host = card->host;
1700 blk_status_t error = BLK_STS_OK;
1701 size_t bytes_per_read = queue_physical_block_size(mq->queue);
1702
1703 do {
1704 u32 status;
1705 int err;
1706 int retries = 0;
1707
1708 while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1709 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1710
1711 mmc_wait_for_req(host, mrq);
1712
1713 err = mmc_send_status(card, &status);
1714 if (err)
1715 goto error_exit;
1716
1717 if (!mmc_host_is_spi(host) &&
1718 !mmc_ready_for_data(status)) {
1719 err = mmc_blk_fix_state(card, req);
1720 if (err)
1721 goto error_exit;
1722 }
1723
1724 if (!mrq->cmd->error)
1725 break;
1726 }
1727
1728 if (mrq->cmd->error ||
1729 mrq->data->error ||
1730 (!mmc_host_is_spi(host) &&
1731 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1732 error = BLK_STS_IOERR;
1733 else
1734 error = BLK_STS_OK;
1735
1736 } while (blk_update_request(req, error, bytes_per_read));
1737
1738 return;
1739
1740 error_exit:
1741 mrq->data->bytes_xfered = 0;
1742 blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1743 /* Let it try the remaining request again */
1744 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1745 mqrq->retries = MMC_MAX_RETRIES - 1;
1746 }
1747
mmc_blk_oor_valid(struct mmc_blk_request * brq)1748 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1749 {
1750 return !!brq->mrq.sbc;
1751 }
1752
mmc_blk_stop_err_bits(struct mmc_blk_request * brq)1753 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1754 {
1755 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1756 }
1757
1758 /*
1759 * Check for errors the host controller driver might not have seen such as
1760 * response mode errors or invalid card state.
1761 */
mmc_blk_status_error(struct request * req,u32 status)1762 static bool mmc_blk_status_error(struct request *req, u32 status)
1763 {
1764 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1765 struct mmc_blk_request *brq = &mqrq->brq;
1766 struct mmc_queue *mq = req->q->queuedata;
1767 u32 stop_err_bits;
1768
1769 if (mmc_host_is_spi(mq->card->host))
1770 return false;
1771
1772 stop_err_bits = mmc_blk_stop_err_bits(brq);
1773
1774 return brq->cmd.resp[0] & CMD_ERRORS ||
1775 brq->stop.resp[0] & stop_err_bits ||
1776 status & stop_err_bits ||
1777 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1778 }
1779
mmc_blk_cmd_started(struct mmc_blk_request * brq)1780 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1781 {
1782 return !brq->sbc.error && !brq->cmd.error &&
1783 !(brq->cmd.resp[0] & CMD_ERRORS);
1784 }
1785
1786 /*
1787 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1788 * policy:
1789 * 1. A request that has transferred at least some data is considered
1790 * successful and will be requeued if there is remaining data to
1791 * transfer.
1792 * 2. Otherwise the number of retries is incremented and the request
1793 * will be requeued if there are remaining retries.
1794 * 3. Otherwise the request will be errored out.
1795 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1796 * mqrq->retries. So there are only 4 possible actions here:
1797 * 1. do not accept the bytes_xfered value i.e. set it to zero
1798 * 2. change mqrq->retries to determine the number of retries
1799 * 3. try to reset the card
1800 * 4. read one sector at a time
1801 */
mmc_blk_mq_rw_recovery(struct mmc_queue * mq,struct request * req)1802 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1803 {
1804 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1805 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1806 struct mmc_blk_request *brq = &mqrq->brq;
1807 struct mmc_blk_data *md = mq->blkdata;
1808 struct mmc_card *card = mq->card;
1809 u32 status;
1810 u32 blocks;
1811 int err;
1812
1813 /*
1814 * Some errors the host driver might not have seen. Set the number of
1815 * bytes transferred to zero in that case.
1816 */
1817 err = __mmc_send_status(card, &status, 0);
1818 if (err || mmc_blk_status_error(req, status))
1819 brq->data.bytes_xfered = 0;
1820
1821 mmc_retune_release(card->host);
1822
1823 /*
1824 * Try again to get the status. This also provides an opportunity for
1825 * re-tuning.
1826 */
1827 if (err)
1828 err = __mmc_send_status(card, &status, 0);
1829
1830 /*
1831 * Nothing more to do after the number of bytes transferred has been
1832 * updated and there is no card.
1833 */
1834 if (err && mmc_detect_card_removed(card->host))
1835 return;
1836
1837 /* Try to get back to "tran" state */
1838 if (!mmc_host_is_spi(mq->card->host) &&
1839 (err || !mmc_ready_for_data(status)))
1840 err = mmc_blk_fix_state(mq->card, req);
1841
1842 /*
1843 * Special case for SD cards where the card might record the number of
1844 * blocks written.
1845 */
1846 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1847 rq_data_dir(req) == WRITE) {
1848 if (mmc_sd_num_wr_blocks(card, &blocks))
1849 brq->data.bytes_xfered = 0;
1850 else
1851 brq->data.bytes_xfered = blocks << 9;
1852 }
1853
1854 /* Reset if the card is in a bad state */
1855 if (!mmc_host_is_spi(mq->card->host) &&
1856 err && mmc_blk_reset(md, card->host, type)) {
1857 pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1858 mqrq->retries = MMC_NO_RETRIES;
1859 return;
1860 }
1861
1862 /*
1863 * If anything was done, just return and if there is anything remaining
1864 * on the request it will get requeued.
1865 */
1866 if (brq->data.bytes_xfered)
1867 return;
1868
1869 /* Reset before last retry */
1870 if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1871 mmc_blk_reset(md, card->host, type);
1872
1873 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1874 if (brq->sbc.error || brq->cmd.error)
1875 return;
1876
1877 /* Reduce the remaining retries for data errors */
1878 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1879 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1880 return;
1881 }
1882
1883 if (rq_data_dir(req) == READ && brq->data.blocks >
1884 queue_physical_block_size(mq->queue) >> 9) {
1885 /* Read one (native) sector at a time */
1886 mmc_blk_read_single(mq, req);
1887 return;
1888 }
1889 }
1890
mmc_blk_rq_error(struct mmc_blk_request * brq)1891 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1892 {
1893 mmc_blk_eval_resp_error(brq);
1894
1895 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1896 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1897 }
1898
mmc_spi_err_check(struct mmc_card * card)1899 static int mmc_spi_err_check(struct mmc_card *card)
1900 {
1901 u32 status = 0;
1902 int err;
1903
1904 /*
1905 * SPI does not have a TRAN state we have to wait on, instead the
1906 * card is ready again when it no longer holds the line LOW.
1907 * We still have to ensure two things here before we know the write
1908 * was successful:
1909 * 1. The card has not disconnected during busy and we actually read our
1910 * own pull-up, thinking it was still connected, so ensure it
1911 * still responds.
1912 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1913 * just reconnected card after being disconnected during busy.
1914 */
1915 err = __mmc_send_status(card, &status, 0);
1916 if (err)
1917 return err;
1918 /* All R1 and R2 bits of SPI are errors in our case */
1919 if (status)
1920 return -EIO;
1921 return 0;
1922 }
1923
mmc_blk_busy_cb(void * cb_data,bool * busy)1924 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1925 {
1926 struct mmc_blk_busy_data *data = cb_data;
1927 u32 status = 0;
1928 int err;
1929
1930 err = mmc_send_status(data->card, &status);
1931 if (err)
1932 return err;
1933
1934 /* Accumulate response error bits. */
1935 data->status |= status;
1936
1937 *busy = !mmc_ready_for_data(status);
1938 return 0;
1939 }
1940
mmc_blk_card_busy(struct mmc_card * card,struct request * req)1941 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1942 {
1943 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1944 struct mmc_blk_busy_data cb_data;
1945 int err;
1946
1947 if (rq_data_dir(req) == READ)
1948 return 0;
1949
1950 if (mmc_host_is_spi(card->host)) {
1951 err = mmc_spi_err_check(card);
1952 if (err)
1953 mqrq->brq.data.bytes_xfered = 0;
1954 return err;
1955 }
1956
1957 cb_data.card = card;
1958 cb_data.status = 0;
1959 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
1960 &mmc_blk_busy_cb, &cb_data);
1961
1962 /*
1963 * Do not assume data transferred correctly if there are any error bits
1964 * set.
1965 */
1966 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1967 mqrq->brq.data.bytes_xfered = 0;
1968 err = err ? err : -EIO;
1969 }
1970
1971 /* Copy the exception bit so it will be seen later on */
1972 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
1973 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1974
1975 return err;
1976 }
1977
mmc_blk_rw_reset_success(struct mmc_queue * mq,struct request * req)1978 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1979 struct request *req)
1980 {
1981 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1982
1983 mmc_blk_reset_success(mq->blkdata, type);
1984 }
1985
mmc_blk_mq_complete_rq(struct mmc_queue * mq,struct request * req)1986 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1987 {
1988 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1989 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1990
1991 if (nr_bytes) {
1992 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1993 blk_mq_requeue_request(req, true);
1994 else
1995 __blk_mq_end_request(req, BLK_STS_OK);
1996 } else if (!blk_rq_bytes(req)) {
1997 __blk_mq_end_request(req, BLK_STS_IOERR);
1998 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1999 blk_mq_requeue_request(req, true);
2000 } else {
2001 if (mmc_card_removed(mq->card))
2002 req->rq_flags |= RQF_QUIET;
2003 blk_mq_end_request(req, BLK_STS_IOERR);
2004 }
2005 }
2006
mmc_blk_urgent_bkops_needed(struct mmc_queue * mq,struct mmc_queue_req * mqrq)2007 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2008 struct mmc_queue_req *mqrq)
2009 {
2010 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2011 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2012 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2013 }
2014
mmc_blk_urgent_bkops(struct mmc_queue * mq,struct mmc_queue_req * mqrq)2015 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2016 struct mmc_queue_req *mqrq)
2017 {
2018 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2019 mmc_run_bkops(mq->card);
2020 }
2021
mmc_blk_hsq_req_done(struct mmc_request * mrq)2022 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2023 {
2024 struct mmc_queue_req *mqrq =
2025 container_of(mrq, struct mmc_queue_req, brq.mrq);
2026 struct request *req = mmc_queue_req_to_req(mqrq);
2027 struct request_queue *q = req->q;
2028 struct mmc_queue *mq = q->queuedata;
2029 struct mmc_host *host = mq->card->host;
2030 unsigned long flags;
2031
2032 if (mmc_blk_rq_error(&mqrq->brq) ||
2033 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2034 spin_lock_irqsave(&mq->lock, flags);
2035 mq->recovery_needed = true;
2036 mq->recovery_req = req;
2037 spin_unlock_irqrestore(&mq->lock, flags);
2038
2039 host->cqe_ops->cqe_recovery_start(host);
2040
2041 schedule_work(&mq->recovery_work);
2042 return;
2043 }
2044
2045 mmc_blk_rw_reset_success(mq, req);
2046
2047 /*
2048 * Block layer timeouts race with completions which means the normal
2049 * completion path cannot be used during recovery.
2050 */
2051 if (mq->in_recovery)
2052 mmc_blk_cqe_complete_rq(mq, req);
2053 else if (likely(!blk_should_fake_timeout(req->q)))
2054 blk_mq_complete_request(req);
2055 }
2056
mmc_blk_mq_complete(struct request * req)2057 void mmc_blk_mq_complete(struct request *req)
2058 {
2059 struct mmc_queue *mq = req->q->queuedata;
2060 struct mmc_host *host = mq->card->host;
2061
2062 if (host->cqe_enabled)
2063 mmc_blk_cqe_complete_rq(mq, req);
2064 else if (likely(!blk_should_fake_timeout(req->q)))
2065 mmc_blk_mq_complete_rq(mq, req);
2066 }
2067
mmc_blk_mq_poll_completion(struct mmc_queue * mq,struct request * req)2068 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2069 struct request *req)
2070 {
2071 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2072 struct mmc_host *host = mq->card->host;
2073
2074 if (mmc_blk_rq_error(&mqrq->brq) ||
2075 mmc_blk_card_busy(mq->card, req)) {
2076 mmc_blk_mq_rw_recovery(mq, req);
2077 } else {
2078 mmc_blk_rw_reset_success(mq, req);
2079 mmc_retune_release(host);
2080 }
2081
2082 mmc_blk_urgent_bkops(mq, mqrq);
2083 }
2084
mmc_blk_mq_dec_in_flight(struct mmc_queue * mq,struct request * req)2085 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
2086 {
2087 unsigned long flags;
2088 bool put_card;
2089
2090 spin_lock_irqsave(&mq->lock, flags);
2091
2092 mq->in_flight[mmc_issue_type(mq, req)] -= 1;
2093
2094 put_card = (mmc_tot_in_flight(mq) == 0);
2095
2096 spin_unlock_irqrestore(&mq->lock, flags);
2097
2098 if (put_card)
2099 mmc_put_card(mq->card, &mq->ctx);
2100 }
2101
mmc_blk_mq_post_req(struct mmc_queue * mq,struct request * req,bool can_sleep)2102 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2103 bool can_sleep)
2104 {
2105 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2106 struct mmc_request *mrq = &mqrq->brq.mrq;
2107 struct mmc_host *host = mq->card->host;
2108
2109 mmc_post_req(host, mrq, 0);
2110
2111 /*
2112 * Block layer timeouts race with completions which means the normal
2113 * completion path cannot be used during recovery.
2114 */
2115 if (mq->in_recovery) {
2116 mmc_blk_mq_complete_rq(mq, req);
2117 } else if (likely(!blk_should_fake_timeout(req->q))) {
2118 if (can_sleep)
2119 blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2120 else
2121 blk_mq_complete_request(req);
2122 }
2123
2124 mmc_blk_mq_dec_in_flight(mq, req);
2125 }
2126
mmc_blk_mq_recovery(struct mmc_queue * mq)2127 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2128 {
2129 struct request *req = mq->recovery_req;
2130 struct mmc_host *host = mq->card->host;
2131 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2132
2133 mq->recovery_req = NULL;
2134 mq->rw_wait = false;
2135
2136 if (mmc_blk_rq_error(&mqrq->brq)) {
2137 mmc_retune_hold_now(host);
2138 mmc_blk_mq_rw_recovery(mq, req);
2139 }
2140
2141 mmc_blk_urgent_bkops(mq, mqrq);
2142
2143 mmc_blk_mq_post_req(mq, req, true);
2144 }
2145
mmc_blk_mq_complete_prev_req(struct mmc_queue * mq,struct request ** prev_req)2146 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2147 struct request **prev_req)
2148 {
2149 if (mmc_host_done_complete(mq->card->host))
2150 return;
2151
2152 mutex_lock(&mq->complete_lock);
2153
2154 if (!mq->complete_req)
2155 goto out_unlock;
2156
2157 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2158
2159 if (prev_req)
2160 *prev_req = mq->complete_req;
2161 else
2162 mmc_blk_mq_post_req(mq, mq->complete_req, true);
2163
2164 mq->complete_req = NULL;
2165
2166 out_unlock:
2167 mutex_unlock(&mq->complete_lock);
2168 }
2169
mmc_blk_mq_complete_work(struct work_struct * work)2170 void mmc_blk_mq_complete_work(struct work_struct *work)
2171 {
2172 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2173 complete_work);
2174
2175 mmc_blk_mq_complete_prev_req(mq, NULL);
2176 }
2177
mmc_blk_mq_req_done(struct mmc_request * mrq)2178 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2179 {
2180 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2181 brq.mrq);
2182 struct request *req = mmc_queue_req_to_req(mqrq);
2183 struct request_queue *q = req->q;
2184 struct mmc_queue *mq = q->queuedata;
2185 struct mmc_host *host = mq->card->host;
2186 unsigned long flags;
2187
2188 if (!mmc_host_done_complete(host)) {
2189 bool waiting;
2190
2191 /*
2192 * We cannot complete the request in this context, so record
2193 * that there is a request to complete, and that a following
2194 * request does not need to wait (although it does need to
2195 * complete complete_req first).
2196 */
2197 spin_lock_irqsave(&mq->lock, flags);
2198 mq->complete_req = req;
2199 mq->rw_wait = false;
2200 waiting = mq->waiting;
2201 spin_unlock_irqrestore(&mq->lock, flags);
2202
2203 /*
2204 * If 'waiting' then the waiting task will complete this
2205 * request, otherwise queue a work to do it. Note that
2206 * complete_work may still race with the dispatch of a following
2207 * request.
2208 */
2209 if (waiting)
2210 wake_up(&mq->wait);
2211 else
2212 queue_work(mq->card->complete_wq, &mq->complete_work);
2213
2214 return;
2215 }
2216
2217 /* Take the recovery path for errors or urgent background operations */
2218 if (mmc_blk_rq_error(&mqrq->brq) ||
2219 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2220 spin_lock_irqsave(&mq->lock, flags);
2221 mq->recovery_needed = true;
2222 mq->recovery_req = req;
2223 spin_unlock_irqrestore(&mq->lock, flags);
2224 wake_up(&mq->wait);
2225 schedule_work(&mq->recovery_work);
2226 return;
2227 }
2228
2229 mmc_blk_rw_reset_success(mq, req);
2230
2231 mq->rw_wait = false;
2232 wake_up(&mq->wait);
2233
2234 /* context unknown */
2235 mmc_blk_mq_post_req(mq, req, false);
2236 }
2237
mmc_blk_rw_wait_cond(struct mmc_queue * mq,int * err)2238 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2239 {
2240 unsigned long flags;
2241 bool done;
2242
2243 /*
2244 * Wait while there is another request in progress, but not if recovery
2245 * is needed. Also indicate whether there is a request waiting to start.
2246 */
2247 spin_lock_irqsave(&mq->lock, flags);
2248 if (mq->recovery_needed) {
2249 *err = -EBUSY;
2250 done = true;
2251 } else {
2252 done = !mq->rw_wait;
2253 }
2254 mq->waiting = !done;
2255 spin_unlock_irqrestore(&mq->lock, flags);
2256
2257 return done;
2258 }
2259
mmc_blk_rw_wait(struct mmc_queue * mq,struct request ** prev_req)2260 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2261 {
2262 int err = 0;
2263
2264 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2265
2266 /* Always complete the previous request if there is one */
2267 mmc_blk_mq_complete_prev_req(mq, prev_req);
2268
2269 return err;
2270 }
2271
mmc_blk_mq_issue_rw_rq(struct mmc_queue * mq,struct request * req)2272 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2273 struct request *req)
2274 {
2275 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2276 struct mmc_host *host = mq->card->host;
2277 struct request *prev_req = NULL;
2278 int err = 0;
2279
2280 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2281
2282 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2283
2284 mmc_pre_req(host, &mqrq->brq.mrq);
2285
2286 err = mmc_blk_rw_wait(mq, &prev_req);
2287 if (err)
2288 goto out_post_req;
2289
2290 mq->rw_wait = true;
2291
2292 err = mmc_start_request(host, &mqrq->brq.mrq);
2293
2294 if (prev_req)
2295 mmc_blk_mq_post_req(mq, prev_req, true);
2296
2297 if (err)
2298 mq->rw_wait = false;
2299
2300 /* Release re-tuning here where there is no synchronization required */
2301 if (err || mmc_host_done_complete(host))
2302 mmc_retune_release(host);
2303
2304 out_post_req:
2305 if (err)
2306 mmc_post_req(host, &mqrq->brq.mrq, err);
2307
2308 return err;
2309 }
2310
mmc_blk_wait_for_idle(struct mmc_queue * mq,struct mmc_host * host)2311 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2312 {
2313 if (host->cqe_enabled)
2314 return host->cqe_ops->cqe_wait_for_idle(host);
2315
2316 return mmc_blk_rw_wait(mq, NULL);
2317 }
2318
mmc_blk_mq_issue_rq(struct mmc_queue * mq,struct request * req)2319 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2320 {
2321 struct mmc_blk_data *md = mq->blkdata;
2322 struct mmc_card *card = md->queue.card;
2323 struct mmc_host *host = card->host;
2324 int ret;
2325
2326 ret = mmc_blk_part_switch(card, md->part_type);
2327 if (ret)
2328 return MMC_REQ_FAILED_TO_START;
2329
2330 switch (mmc_issue_type(mq, req)) {
2331 case MMC_ISSUE_SYNC:
2332 ret = mmc_blk_wait_for_idle(mq, host);
2333 if (ret)
2334 return MMC_REQ_BUSY;
2335 switch (req_op(req)) {
2336 case REQ_OP_DRV_IN:
2337 case REQ_OP_DRV_OUT:
2338 mmc_blk_issue_drv_op(mq, req);
2339 break;
2340 case REQ_OP_DISCARD:
2341 mmc_blk_issue_discard_rq(mq, req);
2342 break;
2343 case REQ_OP_SECURE_ERASE:
2344 mmc_blk_issue_secdiscard_rq(mq, req);
2345 break;
2346 case REQ_OP_WRITE_ZEROES:
2347 mmc_blk_issue_trim_rq(mq, req);
2348 break;
2349 case REQ_OP_FLUSH:
2350 mmc_blk_issue_flush(mq, req);
2351 break;
2352 default:
2353 WARN_ON_ONCE(1);
2354 return MMC_REQ_FAILED_TO_START;
2355 }
2356 return MMC_REQ_FINISHED;
2357 case MMC_ISSUE_DCMD:
2358 case MMC_ISSUE_ASYNC:
2359 switch (req_op(req)) {
2360 case REQ_OP_FLUSH:
2361 if (!mmc_cache_enabled(host)) {
2362 blk_mq_end_request(req, BLK_STS_OK);
2363 return MMC_REQ_FINISHED;
2364 }
2365 ret = mmc_blk_cqe_issue_flush(mq, req);
2366 break;
2367 case REQ_OP_READ:
2368 case REQ_OP_WRITE:
2369 if (host->cqe_enabled)
2370 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2371 else
2372 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2373 break;
2374 default:
2375 WARN_ON_ONCE(1);
2376 ret = -EINVAL;
2377 }
2378 if (!ret)
2379 return MMC_REQ_STARTED;
2380 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2381 default:
2382 WARN_ON_ONCE(1);
2383 return MMC_REQ_FAILED_TO_START;
2384 }
2385 }
2386
mmc_blk_readonly(struct mmc_card * card)2387 static inline int mmc_blk_readonly(struct mmc_card *card)
2388 {
2389 return mmc_card_readonly(card) ||
2390 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2391 }
2392
mmc_blk_alloc_req(struct mmc_card * card,struct device * parent,sector_t size,bool default_ro,const char * subname,int area_type,unsigned int part_type)2393 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2394 struct device *parent,
2395 sector_t size,
2396 bool default_ro,
2397 const char *subname,
2398 int area_type,
2399 unsigned int part_type)
2400 {
2401 struct mmc_blk_data *md;
2402 int devidx, ret;
2403 char cap_str[10];
2404 bool cache_enabled = false;
2405 bool fua_enabled = false;
2406
2407 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2408 if (devidx < 0) {
2409 /*
2410 * We get -ENOSPC because there are no more any available
2411 * devidx. The reason may be that, either userspace haven't yet
2412 * unmounted the partitions, which postpones mmc_blk_release()
2413 * from being called, or the device has more partitions than
2414 * what we support.
2415 */
2416 if (devidx == -ENOSPC)
2417 dev_err(mmc_dev(card->host),
2418 "no more device IDs available\n");
2419
2420 return ERR_PTR(devidx);
2421 }
2422
2423 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2424 if (!md) {
2425 ret = -ENOMEM;
2426 goto out;
2427 }
2428
2429 md->area_type = area_type;
2430
2431 /*
2432 * Set the read-only status based on the supported commands
2433 * and the write protect switch.
2434 */
2435 md->read_only = mmc_blk_readonly(card);
2436
2437 md->disk = mmc_init_queue(&md->queue, card);
2438 if (IS_ERR(md->disk)) {
2439 ret = PTR_ERR(md->disk);
2440 goto err_kfree;
2441 }
2442
2443 INIT_LIST_HEAD(&md->part);
2444 INIT_LIST_HEAD(&md->rpmbs);
2445 kref_init(&md->kref);
2446
2447 md->queue.blkdata = md;
2448 md->part_type = part_type;
2449
2450 md->disk->major = MMC_BLOCK_MAJOR;
2451 md->disk->minors = perdev_minors;
2452 md->disk->first_minor = devidx * perdev_minors;
2453 md->disk->fops = &mmc_bdops;
2454 md->disk->private_data = md;
2455 md->parent = parent;
2456 set_disk_ro(md->disk, md->read_only || default_ro);
2457 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2458 md->disk->flags |= GENHD_FL_NO_PART;
2459
2460 /*
2461 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2462 *
2463 * - be set for removable media with permanent block devices
2464 * - be unset for removable block devices with permanent media
2465 *
2466 * Since MMC block devices clearly fall under the second
2467 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2468 * should use the block device creation/destruction hotplug
2469 * messages to tell when the card is present.
2470 */
2471
2472 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2473 "mmcblk%u%s", card->host->index, subname ? subname : "");
2474
2475 set_capacity(md->disk, size);
2476
2477 if (mmc_host_cmd23(card->host)) {
2478 if ((mmc_card_mmc(card) &&
2479 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2480 (mmc_card_sd(card) &&
2481 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2482 md->flags |= MMC_BLK_CMD23;
2483 }
2484
2485 if (md->flags & MMC_BLK_CMD23 &&
2486 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2487 card->ext_csd.rel_sectors)) {
2488 md->flags |= MMC_BLK_REL_WR;
2489 fua_enabled = true;
2490 cache_enabled = true;
2491 }
2492 if (mmc_cache_enabled(card->host))
2493 cache_enabled = true;
2494
2495 blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2496
2497 string_get_size((u64)size, 512, STRING_UNITS_2,
2498 cap_str, sizeof(cap_str));
2499 pr_info("%s: %s %s %s %s\n",
2500 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2501 cap_str, md->read_only ? "(ro)" : "");
2502
2503 /* used in ->open, must be set before add_disk: */
2504 if (area_type == MMC_BLK_DATA_AREA_MAIN)
2505 dev_set_drvdata(&card->dev, md);
2506 ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2507 if (ret)
2508 goto err_cleanup_queue;
2509 return md;
2510
2511 err_cleanup_queue:
2512 blk_cleanup_queue(md->disk->queue);
2513 blk_mq_free_tag_set(&md->queue.tag_set);
2514 err_kfree:
2515 kfree(md);
2516 out:
2517 ida_simple_remove(&mmc_blk_ida, devidx);
2518 return ERR_PTR(ret);
2519 }
2520
mmc_blk_alloc(struct mmc_card * card)2521 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2522 {
2523 sector_t size;
2524
2525 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2526 /*
2527 * The EXT_CSD sector count is in number or 512 byte
2528 * sectors.
2529 */
2530 size = card->ext_csd.sectors;
2531 } else {
2532 /*
2533 * The CSD capacity field is in units of read_blkbits.
2534 * set_capacity takes units of 512 bytes.
2535 */
2536 size = (typeof(sector_t))card->csd.capacity
2537 << (card->csd.read_blkbits - 9);
2538 }
2539
2540 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2541 MMC_BLK_DATA_AREA_MAIN, 0);
2542 }
2543
mmc_blk_alloc_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_type,sector_t size,bool default_ro,const char * subname,int area_type)2544 static int mmc_blk_alloc_part(struct mmc_card *card,
2545 struct mmc_blk_data *md,
2546 unsigned int part_type,
2547 sector_t size,
2548 bool default_ro,
2549 const char *subname,
2550 int area_type)
2551 {
2552 struct mmc_blk_data *part_md;
2553
2554 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2555 subname, area_type, part_type);
2556 if (IS_ERR(part_md))
2557 return PTR_ERR(part_md);
2558 list_add(&part_md->part, &md->part);
2559
2560 return 0;
2561 }
2562
2563 /**
2564 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2565 * @filp: the character device file
2566 * @cmd: the ioctl() command
2567 * @arg: the argument from userspace
2568 *
2569 * This will essentially just redirect the ioctl()s coming in over to
2570 * the main block device spawning the RPMB character device.
2571 */
mmc_rpmb_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2572 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2573 unsigned long arg)
2574 {
2575 struct mmc_rpmb_data *rpmb = filp->private_data;
2576 int ret;
2577
2578 switch (cmd) {
2579 case MMC_IOC_CMD:
2580 ret = mmc_blk_ioctl_cmd(rpmb->md,
2581 (struct mmc_ioc_cmd __user *)arg,
2582 rpmb);
2583 break;
2584 case MMC_IOC_MULTI_CMD:
2585 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2586 (struct mmc_ioc_multi_cmd __user *)arg,
2587 rpmb);
2588 break;
2589 default:
2590 ret = -EINVAL;
2591 break;
2592 }
2593
2594 return ret;
2595 }
2596
2597 #ifdef CONFIG_COMPAT
mmc_rpmb_ioctl_compat(struct file * filp,unsigned int cmd,unsigned long arg)2598 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2599 unsigned long arg)
2600 {
2601 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2602 }
2603 #endif
2604
mmc_rpmb_chrdev_open(struct inode * inode,struct file * filp)2605 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2606 {
2607 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2608 struct mmc_rpmb_data, chrdev);
2609
2610 get_device(&rpmb->dev);
2611 filp->private_data = rpmb;
2612 mmc_blk_get(rpmb->md->disk);
2613
2614 return nonseekable_open(inode, filp);
2615 }
2616
mmc_rpmb_chrdev_release(struct inode * inode,struct file * filp)2617 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2618 {
2619 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2620 struct mmc_rpmb_data, chrdev);
2621
2622 mmc_blk_put(rpmb->md);
2623 put_device(&rpmb->dev);
2624
2625 return 0;
2626 }
2627
2628 static const struct file_operations mmc_rpmb_fileops = {
2629 .release = mmc_rpmb_chrdev_release,
2630 .open = mmc_rpmb_chrdev_open,
2631 .owner = THIS_MODULE,
2632 .llseek = no_llseek,
2633 .unlocked_ioctl = mmc_rpmb_ioctl,
2634 #ifdef CONFIG_COMPAT
2635 .compat_ioctl = mmc_rpmb_ioctl_compat,
2636 #endif
2637 };
2638
mmc_blk_rpmb_device_release(struct device * dev)2639 static void mmc_blk_rpmb_device_release(struct device *dev)
2640 {
2641 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2642
2643 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2644 kfree(rpmb);
2645 }
2646
mmc_blk_alloc_rpmb_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_index,sector_t size,const char * subname)2647 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2648 struct mmc_blk_data *md,
2649 unsigned int part_index,
2650 sector_t size,
2651 const char *subname)
2652 {
2653 int devidx, ret;
2654 char rpmb_name[DISK_NAME_LEN];
2655 char cap_str[10];
2656 struct mmc_rpmb_data *rpmb;
2657
2658 /* This creates the minor number for the RPMB char device */
2659 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2660 if (devidx < 0)
2661 return devidx;
2662
2663 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2664 if (!rpmb) {
2665 ida_simple_remove(&mmc_rpmb_ida, devidx);
2666 return -ENOMEM;
2667 }
2668
2669 snprintf(rpmb_name, sizeof(rpmb_name),
2670 "mmcblk%u%s", card->host->index, subname ? subname : "");
2671
2672 rpmb->id = devidx;
2673 rpmb->part_index = part_index;
2674 rpmb->dev.init_name = rpmb_name;
2675 rpmb->dev.bus = &mmc_rpmb_bus_type;
2676 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2677 rpmb->dev.parent = &card->dev;
2678 rpmb->dev.release = mmc_blk_rpmb_device_release;
2679 device_initialize(&rpmb->dev);
2680 dev_set_drvdata(&rpmb->dev, rpmb);
2681 rpmb->md = md;
2682
2683 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2684 rpmb->chrdev.owner = THIS_MODULE;
2685 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2686 if (ret) {
2687 pr_err("%s: could not add character device\n", rpmb_name);
2688 goto out_put_device;
2689 }
2690
2691 list_add(&rpmb->node, &md->rpmbs);
2692
2693 string_get_size((u64)size, 512, STRING_UNITS_2,
2694 cap_str, sizeof(cap_str));
2695
2696 pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2697 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2698 MAJOR(mmc_rpmb_devt), rpmb->id);
2699
2700 return 0;
2701
2702 out_put_device:
2703 put_device(&rpmb->dev);
2704 return ret;
2705 }
2706
mmc_blk_remove_rpmb_part(struct mmc_rpmb_data * rpmb)2707 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2708
2709 {
2710 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2711 put_device(&rpmb->dev);
2712 }
2713
2714 /* MMC Physical partitions consist of two boot partitions and
2715 * up to four general purpose partitions.
2716 * For each partition enabled in EXT_CSD a block device will be allocatedi
2717 * to provide access to the partition.
2718 */
2719
mmc_blk_alloc_parts(struct mmc_card * card,struct mmc_blk_data * md)2720 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2721 {
2722 int idx, ret;
2723
2724 if (!mmc_card_mmc(card))
2725 return 0;
2726
2727 for (idx = 0; idx < card->nr_parts; idx++) {
2728 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2729 /*
2730 * RPMB partitions does not provide block access, they
2731 * are only accessed using ioctl():s. Thus create
2732 * special RPMB block devices that do not have a
2733 * backing block queue for these.
2734 */
2735 ret = mmc_blk_alloc_rpmb_part(card, md,
2736 card->part[idx].part_cfg,
2737 card->part[idx].size >> 9,
2738 card->part[idx].name);
2739 if (ret)
2740 return ret;
2741 } else if (card->part[idx].size) {
2742 ret = mmc_blk_alloc_part(card, md,
2743 card->part[idx].part_cfg,
2744 card->part[idx].size >> 9,
2745 card->part[idx].force_ro,
2746 card->part[idx].name,
2747 card->part[idx].area_type);
2748 if (ret)
2749 return ret;
2750 }
2751 }
2752
2753 return 0;
2754 }
2755
mmc_blk_remove_req(struct mmc_blk_data * md)2756 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2757 {
2758 /*
2759 * Flush remaining requests and free queues. It is freeing the queue
2760 * that stops new requests from being accepted.
2761 */
2762 del_gendisk(md->disk);
2763 mmc_cleanup_queue(&md->queue);
2764 mmc_blk_put(md);
2765 }
2766
mmc_blk_remove_parts(struct mmc_card * card,struct mmc_blk_data * md)2767 static void mmc_blk_remove_parts(struct mmc_card *card,
2768 struct mmc_blk_data *md)
2769 {
2770 struct list_head *pos, *q;
2771 struct mmc_blk_data *part_md;
2772 struct mmc_rpmb_data *rpmb;
2773
2774 /* Remove RPMB partitions */
2775 list_for_each_safe(pos, q, &md->rpmbs) {
2776 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2777 list_del(pos);
2778 mmc_blk_remove_rpmb_part(rpmb);
2779 }
2780 /* Remove block partitions */
2781 list_for_each_safe(pos, q, &md->part) {
2782 part_md = list_entry(pos, struct mmc_blk_data, part);
2783 list_del(pos);
2784 mmc_blk_remove_req(part_md);
2785 }
2786 }
2787
2788 #ifdef CONFIG_DEBUG_FS
2789
mmc_dbg_card_status_get(void * data,u64 * val)2790 static int mmc_dbg_card_status_get(void *data, u64 *val)
2791 {
2792 struct mmc_card *card = data;
2793 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2794 struct mmc_queue *mq = &md->queue;
2795 struct request *req;
2796 int ret;
2797
2798 /* Ask the block layer about the card status */
2799 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2800 if (IS_ERR(req))
2801 return PTR_ERR(req);
2802 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2803 blk_execute_rq(req, false);
2804 ret = req_to_mmc_queue_req(req)->drv_op_result;
2805 if (ret >= 0) {
2806 *val = ret;
2807 ret = 0;
2808 }
2809 blk_mq_free_request(req);
2810
2811 return ret;
2812 }
2813 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2814 NULL, "%08llx\n");
2815
2816 /* That is two digits * 512 + 1 for newline */
2817 #define EXT_CSD_STR_LEN 1025
2818
mmc_ext_csd_open(struct inode * inode,struct file * filp)2819 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2820 {
2821 struct mmc_card *card = inode->i_private;
2822 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2823 struct mmc_queue *mq = &md->queue;
2824 struct request *req;
2825 char *buf;
2826 ssize_t n = 0;
2827 u8 *ext_csd;
2828 int err, i;
2829
2830 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2831 if (!buf)
2832 return -ENOMEM;
2833
2834 /* Ask the block layer for the EXT CSD */
2835 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2836 if (IS_ERR(req)) {
2837 err = PTR_ERR(req);
2838 goto out_free;
2839 }
2840 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2841 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2842 blk_execute_rq(req, false);
2843 err = req_to_mmc_queue_req(req)->drv_op_result;
2844 blk_mq_free_request(req);
2845 if (err) {
2846 pr_err("FAILED %d\n", err);
2847 goto out_free;
2848 }
2849
2850 for (i = 0; i < 512; i++)
2851 n += sprintf(buf + n, "%02x", ext_csd[i]);
2852 n += sprintf(buf + n, "\n");
2853
2854 if (n != EXT_CSD_STR_LEN) {
2855 err = -EINVAL;
2856 kfree(ext_csd);
2857 goto out_free;
2858 }
2859
2860 filp->private_data = buf;
2861 kfree(ext_csd);
2862 return 0;
2863
2864 out_free:
2865 kfree(buf);
2866 return err;
2867 }
2868
mmc_ext_csd_read(struct file * filp,char __user * ubuf,size_t cnt,loff_t * ppos)2869 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2870 size_t cnt, loff_t *ppos)
2871 {
2872 char *buf = filp->private_data;
2873
2874 return simple_read_from_buffer(ubuf, cnt, ppos,
2875 buf, EXT_CSD_STR_LEN);
2876 }
2877
mmc_ext_csd_release(struct inode * inode,struct file * file)2878 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2879 {
2880 kfree(file->private_data);
2881 return 0;
2882 }
2883
2884 static const struct file_operations mmc_dbg_ext_csd_fops = {
2885 .open = mmc_ext_csd_open,
2886 .read = mmc_ext_csd_read,
2887 .release = mmc_ext_csd_release,
2888 .llseek = default_llseek,
2889 };
2890
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2891 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2892 {
2893 struct dentry *root;
2894
2895 if (!card->debugfs_root)
2896 return 0;
2897
2898 root = card->debugfs_root;
2899
2900 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2901 md->status_dentry =
2902 debugfs_create_file_unsafe("status", 0400, root,
2903 card,
2904 &mmc_dbg_card_status_fops);
2905 if (!md->status_dentry)
2906 return -EIO;
2907 }
2908
2909 if (mmc_card_mmc(card)) {
2910 md->ext_csd_dentry =
2911 debugfs_create_file("ext_csd", S_IRUSR, root, card,
2912 &mmc_dbg_ext_csd_fops);
2913 if (!md->ext_csd_dentry)
2914 return -EIO;
2915 }
2916
2917 return 0;
2918 }
2919
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2920 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2921 struct mmc_blk_data *md)
2922 {
2923 if (!card->debugfs_root)
2924 return;
2925
2926 if (!IS_ERR_OR_NULL(md->status_dentry)) {
2927 debugfs_remove(md->status_dentry);
2928 md->status_dentry = NULL;
2929 }
2930
2931 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2932 debugfs_remove(md->ext_csd_dentry);
2933 md->ext_csd_dentry = NULL;
2934 }
2935 }
2936
2937 #else
2938
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2939 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2940 {
2941 return 0;
2942 }
2943
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2944 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2945 struct mmc_blk_data *md)
2946 {
2947 }
2948
2949 #endif /* CONFIG_DEBUG_FS */
2950
mmc_blk_probe(struct mmc_card * card)2951 static int mmc_blk_probe(struct mmc_card *card)
2952 {
2953 struct mmc_blk_data *md;
2954 int ret = 0;
2955
2956 /*
2957 * Check that the card supports the command class(es) we need.
2958 */
2959 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2960 return -ENODEV;
2961
2962 mmc_fixup_device(card, mmc_blk_fixups);
2963
2964 card->complete_wq = alloc_workqueue("mmc_complete",
2965 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
2966 if (!card->complete_wq) {
2967 pr_err("Failed to create mmc completion workqueue");
2968 return -ENOMEM;
2969 }
2970
2971 md = mmc_blk_alloc(card);
2972 if (IS_ERR(md)) {
2973 ret = PTR_ERR(md);
2974 goto out_free;
2975 }
2976
2977 ret = mmc_blk_alloc_parts(card, md);
2978 if (ret)
2979 goto out;
2980
2981 /* Add two debugfs entries */
2982 mmc_blk_add_debugfs(card, md);
2983
2984 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2985 pm_runtime_use_autosuspend(&card->dev);
2986
2987 /*
2988 * Don't enable runtime PM for SD-combo cards here. Leave that
2989 * decision to be taken during the SDIO init sequence instead.
2990 */
2991 if (card->type != MMC_TYPE_SD_COMBO) {
2992 pm_runtime_set_active(&card->dev);
2993 pm_runtime_enable(&card->dev);
2994 }
2995
2996 return 0;
2997
2998 out:
2999 mmc_blk_remove_parts(card, md);
3000 mmc_blk_remove_req(md);
3001 out_free:
3002 destroy_workqueue(card->complete_wq);
3003 return ret;
3004 }
3005
mmc_blk_remove(struct mmc_card * card)3006 static void mmc_blk_remove(struct mmc_card *card)
3007 {
3008 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3009
3010 mmc_blk_remove_debugfs(card, md);
3011 mmc_blk_remove_parts(card, md);
3012 pm_runtime_get_sync(&card->dev);
3013 if (md->part_curr != md->part_type) {
3014 mmc_claim_host(card->host);
3015 mmc_blk_part_switch(card, md->part_type);
3016 mmc_release_host(card->host);
3017 }
3018 if (card->type != MMC_TYPE_SD_COMBO)
3019 pm_runtime_disable(&card->dev);
3020 pm_runtime_put_noidle(&card->dev);
3021 mmc_blk_remove_req(md);
3022 dev_set_drvdata(&card->dev, NULL);
3023 destroy_workqueue(card->complete_wq);
3024 }
3025
_mmc_blk_suspend(struct mmc_card * card)3026 static int _mmc_blk_suspend(struct mmc_card *card)
3027 {
3028 struct mmc_blk_data *part_md;
3029 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3030
3031 if (md) {
3032 mmc_queue_suspend(&md->queue);
3033 list_for_each_entry(part_md, &md->part, part) {
3034 mmc_queue_suspend(&part_md->queue);
3035 }
3036 }
3037 return 0;
3038 }
3039
mmc_blk_shutdown(struct mmc_card * card)3040 static void mmc_blk_shutdown(struct mmc_card *card)
3041 {
3042 _mmc_blk_suspend(card);
3043 }
3044
3045 #ifdef CONFIG_PM_SLEEP
mmc_blk_suspend(struct device * dev)3046 static int mmc_blk_suspend(struct device *dev)
3047 {
3048 struct mmc_card *card = mmc_dev_to_card(dev);
3049
3050 return _mmc_blk_suspend(card);
3051 }
3052
mmc_blk_resume(struct device * dev)3053 static int mmc_blk_resume(struct device *dev)
3054 {
3055 struct mmc_blk_data *part_md;
3056 struct mmc_blk_data *md = dev_get_drvdata(dev);
3057
3058 if (md) {
3059 /*
3060 * Resume involves the card going into idle state,
3061 * so current partition is always the main one.
3062 */
3063 md->part_curr = md->part_type;
3064 mmc_queue_resume(&md->queue);
3065 list_for_each_entry(part_md, &md->part, part) {
3066 mmc_queue_resume(&part_md->queue);
3067 }
3068 }
3069 return 0;
3070 }
3071 #endif
3072
3073 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3074
3075 static struct mmc_driver mmc_driver = {
3076 .drv = {
3077 .name = "mmcblk",
3078 .pm = &mmc_blk_pm_ops,
3079 },
3080 .probe = mmc_blk_probe,
3081 .remove = mmc_blk_remove,
3082 .shutdown = mmc_blk_shutdown,
3083 };
3084
mmc_blk_init(void)3085 static int __init mmc_blk_init(void)
3086 {
3087 int res;
3088
3089 res = bus_register(&mmc_rpmb_bus_type);
3090 if (res < 0) {
3091 pr_err("mmcblk: could not register RPMB bus type\n");
3092 return res;
3093 }
3094 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3095 if (res < 0) {
3096 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3097 goto out_bus_unreg;
3098 }
3099
3100 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3101 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3102
3103 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3104
3105 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3106 if (res)
3107 goto out_chrdev_unreg;
3108
3109 res = mmc_register_driver(&mmc_driver);
3110 if (res)
3111 goto out_blkdev_unreg;
3112
3113 return 0;
3114
3115 out_blkdev_unreg:
3116 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3117 out_chrdev_unreg:
3118 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3119 out_bus_unreg:
3120 bus_unregister(&mmc_rpmb_bus_type);
3121 return res;
3122 }
3123
mmc_blk_exit(void)3124 static void __exit mmc_blk_exit(void)
3125 {
3126 mmc_unregister_driver(&mmc_driver);
3127 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3128 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3129 bus_unregister(&mmc_rpmb_bus_type);
3130 }
3131
3132 module_init(mmc_blk_init);
3133 module_exit(mmc_blk_exit);
3134
3135 MODULE_LICENSE("GPL");
3136 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3137
3138