1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Block driver for media (i.e., flash cards)
4 *
5 * Copyright 2002 Hewlett-Packard Company
6 * Copyright 2005-2008 Pierre Ossman
7 *
8 * Use consistent with the GNU GPL is permitted,
9 * provided that this copyright notice is
10 * preserved in its entirety in all copies and derived works.
11 *
12 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
13 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
14 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 *
16 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 *
18 * Author: Andrew Christian
19 * 28 May 2002
20 */
21 #include <linux/moduleparam.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24
25 #include <linux/kernel.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/errno.h>
29 #include <linux/hdreg.h>
30 #include <linux/kdev_t.h>
31 #include <linux/kref.h>
32 #include <linux/blkdev.h>
33 #include <linux/cdev.h>
34 #include <linux/mutex.h>
35 #include <linux/scatterlist.h>
36 #include <linux/string_helpers.h>
37 #include <linux/delay.h>
38 #include <linux/capability.h>
39 #include <linux/compat.h>
40 #include <linux/pm_runtime.h>
41 #include <linux/idr.h>
42 #include <linux/debugfs.h>
43
44 #include <linux/mmc/ioctl.h>
45 #include <linux/mmc/card.h>
46 #include <linux/mmc/host.h>
47 #include <linux/mmc/mmc.h>
48 #include <linux/mmc/sd.h>
49
50 #include <linux/uaccess.h>
51
52 #include "queue.h"
53 #include "block.h"
54 #include "core.h"
55 #include "card.h"
56 #include "crypto.h"
57 #include "host.h"
58 #include "bus.h"
59 #include "mmc_ops.h"
60 #include "quirks.h"
61 #include "sd_ops.h"
62
63 MODULE_ALIAS("mmc:block");
64 #ifdef MODULE_PARAM_PREFIX
65 #undef MODULE_PARAM_PREFIX
66 #endif
67 #define MODULE_PARAM_PREFIX "mmcblk."
68
69 /*
70 * Set a 10 second timeout for polling write request busy state. Note, mmc core
71 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
72 * second software timer to timeout the whole request, so 10 seconds should be
73 * ample.
74 */
75 #define MMC_BLK_TIMEOUT_MS (10 * 1000)
76 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
77 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
78
79 static DEFINE_MUTEX(block_mutex);
80
81 /*
82 * The defaults come from config options but can be overriden by module
83 * or bootarg options.
84 */
85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
86
87 /*
88 * We've only got one major, so number of mmcblk devices is
89 * limited to (1 << 20) / number of minors per device. It is also
90 * limited by the MAX_DEVICES below.
91 */
92 static int max_devices;
93
94 #define MAX_DEVICES 256
95
96 static DEFINE_IDA(mmc_blk_ida);
97 static DEFINE_IDA(mmc_rpmb_ida);
98
99 struct mmc_blk_busy_data {
100 struct mmc_card *card;
101 u32 status;
102 };
103
104 /*
105 * There is one mmc_blk_data per slot.
106 */
107 struct mmc_blk_data {
108 struct device *parent;
109 struct gendisk *disk;
110 struct mmc_queue queue;
111 struct list_head part;
112 struct list_head rpmbs;
113
114 unsigned int flags;
115 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
116 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
117
118 struct kref kref;
119 unsigned int read_only;
120 unsigned int part_type;
121 unsigned int reset_done;
122 #define MMC_BLK_READ BIT(0)
123 #define MMC_BLK_WRITE BIT(1)
124 #define MMC_BLK_DISCARD BIT(2)
125 #define MMC_BLK_SECDISCARD BIT(3)
126 #define MMC_BLK_CQE_RECOVERY BIT(4)
127 #define MMC_BLK_TRIM BIT(5)
128
129 /*
130 * Only set in main mmc_blk_data associated
131 * with mmc_card with dev_set_drvdata, and keeps
132 * track of the current selected device partition.
133 */
134 unsigned int part_curr;
135 #define MMC_BLK_PART_INVALID UINT_MAX /* Unknown partition active */
136 int area_type;
137
138 /* debugfs files (only in main mmc_blk_data) */
139 struct dentry *status_dentry;
140 struct dentry *ext_csd_dentry;
141 };
142
143 /* Device type for RPMB character devices */
144 static dev_t mmc_rpmb_devt;
145
146 /* Bus type for RPMB character devices */
147 static struct bus_type mmc_rpmb_bus_type = {
148 .name = "mmc_rpmb",
149 };
150
151 /**
152 * struct mmc_rpmb_data - special RPMB device type for these areas
153 * @dev: the device for the RPMB area
154 * @chrdev: character device for the RPMB area
155 * @id: unique device ID number
156 * @part_index: partition index (0 on first)
157 * @md: parent MMC block device
158 * @node: list item, so we can put this device on a list
159 */
160 struct mmc_rpmb_data {
161 struct device dev;
162 struct cdev chrdev;
163 int id;
164 unsigned int part_index;
165 struct mmc_blk_data *md;
166 struct list_head node;
167 };
168
169 static DEFINE_MUTEX(open_lock);
170
171 module_param(perdev_minors, int, 0444);
172 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
173
174 static inline int mmc_blk_part_switch(struct mmc_card *card,
175 unsigned int part_type);
176 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
177 struct mmc_card *card,
178 int recovery_mode,
179 struct mmc_queue *mq);
180 static void mmc_blk_hsq_req_done(struct mmc_request *mrq);
181 static int mmc_spi_err_check(struct mmc_card *card);
182 static int mmc_blk_busy_cb(void *cb_data, bool *busy);
183
mmc_blk_get(struct gendisk * disk)184 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
185 {
186 struct mmc_blk_data *md;
187
188 mutex_lock(&open_lock);
189 md = disk->private_data;
190 if (md && !kref_get_unless_zero(&md->kref))
191 md = NULL;
192 mutex_unlock(&open_lock);
193
194 return md;
195 }
196
mmc_get_devidx(struct gendisk * disk)197 static inline int mmc_get_devidx(struct gendisk *disk)
198 {
199 int devidx = disk->first_minor / perdev_minors;
200 return devidx;
201 }
202
mmc_blk_kref_release(struct kref * ref)203 static void mmc_blk_kref_release(struct kref *ref)
204 {
205 struct mmc_blk_data *md = container_of(ref, struct mmc_blk_data, kref);
206 int devidx;
207
208 devidx = mmc_get_devidx(md->disk);
209 ida_simple_remove(&mmc_blk_ida, devidx);
210
211 mutex_lock(&open_lock);
212 md->disk->private_data = NULL;
213 mutex_unlock(&open_lock);
214
215 put_disk(md->disk);
216 kfree(md);
217 }
218
mmc_blk_put(struct mmc_blk_data * md)219 static void mmc_blk_put(struct mmc_blk_data *md)
220 {
221 kref_put(&md->kref, mmc_blk_kref_release);
222 }
223
power_ro_lock_show(struct device * dev,struct device_attribute * attr,char * buf)224 static ssize_t power_ro_lock_show(struct device *dev,
225 struct device_attribute *attr, char *buf)
226 {
227 int ret;
228 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
229 struct mmc_card *card = md->queue.card;
230 int locked = 0;
231
232 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
233 locked = 2;
234 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
235 locked = 1;
236
237 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
238
239 mmc_blk_put(md);
240
241 return ret;
242 }
243
power_ro_lock_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)244 static ssize_t power_ro_lock_store(struct device *dev,
245 struct device_attribute *attr, const char *buf, size_t count)
246 {
247 int ret;
248 struct mmc_blk_data *md, *part_md;
249 struct mmc_queue *mq;
250 struct request *req;
251 unsigned long set;
252
253 if (kstrtoul(buf, 0, &set))
254 return -EINVAL;
255
256 if (set != 1)
257 return count;
258
259 md = mmc_blk_get(dev_to_disk(dev));
260 mq = &md->queue;
261
262 /* Dispatch locking to the block layer */
263 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_OUT, 0);
264 if (IS_ERR(req)) {
265 count = PTR_ERR(req);
266 goto out_put;
267 }
268 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
269 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
270 blk_execute_rq(req, false);
271 ret = req_to_mmc_queue_req(req)->drv_op_result;
272 blk_mq_free_request(req);
273
274 if (!ret) {
275 pr_info("%s: Locking boot partition ro until next power on\n",
276 md->disk->disk_name);
277 set_disk_ro(md->disk, 1);
278
279 list_for_each_entry(part_md, &md->part, part)
280 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
281 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
282 set_disk_ro(part_md->disk, 1);
283 }
284 }
285 out_put:
286 mmc_blk_put(md);
287 return count;
288 }
289
290 static DEVICE_ATTR(ro_lock_until_next_power_on, 0,
291 power_ro_lock_show, power_ro_lock_store);
292
force_ro_show(struct device * dev,struct device_attribute * attr,char * buf)293 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
294 char *buf)
295 {
296 int ret;
297 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
298
299 ret = snprintf(buf, PAGE_SIZE, "%d\n",
300 get_disk_ro(dev_to_disk(dev)) ^
301 md->read_only);
302 mmc_blk_put(md);
303 return ret;
304 }
305
force_ro_store(struct device * dev,struct device_attribute * attr,const char * buf,size_t count)306 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
307 const char *buf, size_t count)
308 {
309 int ret;
310 char *end;
311 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
312 unsigned long set = simple_strtoul(buf, &end, 0);
313 if (end == buf) {
314 ret = -EINVAL;
315 goto out;
316 }
317
318 set_disk_ro(dev_to_disk(dev), set || md->read_only);
319 ret = count;
320 out:
321 mmc_blk_put(md);
322 return ret;
323 }
324
325 static DEVICE_ATTR(force_ro, 0644, force_ro_show, force_ro_store);
326
327 static struct attribute *mmc_disk_attrs[] = {
328 &dev_attr_force_ro.attr,
329 &dev_attr_ro_lock_until_next_power_on.attr,
330 NULL,
331 };
332
mmc_disk_attrs_is_visible(struct kobject * kobj,struct attribute * a,int n)333 static umode_t mmc_disk_attrs_is_visible(struct kobject *kobj,
334 struct attribute *a, int n)
335 {
336 struct device *dev = kobj_to_dev(kobj);
337 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
338 umode_t mode = a->mode;
339
340 if (a == &dev_attr_ro_lock_until_next_power_on.attr &&
341 (md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
342 md->queue.card->ext_csd.boot_ro_lockable) {
343 mode = S_IRUGO;
344 if (!(md->queue.card->ext_csd.boot_ro_lock &
345 EXT_CSD_BOOT_WP_B_PWR_WP_DIS))
346 mode |= S_IWUSR;
347 }
348
349 mmc_blk_put(md);
350 return mode;
351 }
352
353 static const struct attribute_group mmc_disk_attr_group = {
354 .is_visible = mmc_disk_attrs_is_visible,
355 .attrs = mmc_disk_attrs,
356 };
357
358 static const struct attribute_group *mmc_disk_attr_groups[] = {
359 &mmc_disk_attr_group,
360 NULL,
361 };
362
mmc_blk_open(struct gendisk * disk,blk_mode_t mode)363 static int mmc_blk_open(struct gendisk *disk, blk_mode_t mode)
364 {
365 struct mmc_blk_data *md = mmc_blk_get(disk);
366 int ret = -ENXIO;
367
368 mutex_lock(&block_mutex);
369 if (md) {
370 ret = 0;
371 if ((mode & BLK_OPEN_WRITE) && md->read_only) {
372 mmc_blk_put(md);
373 ret = -EROFS;
374 }
375 }
376 mutex_unlock(&block_mutex);
377
378 return ret;
379 }
380
mmc_blk_release(struct gendisk * disk)381 static void mmc_blk_release(struct gendisk *disk)
382 {
383 struct mmc_blk_data *md = disk->private_data;
384
385 mutex_lock(&block_mutex);
386 mmc_blk_put(md);
387 mutex_unlock(&block_mutex);
388 }
389
390 static int
mmc_blk_getgeo(struct block_device * bdev,struct hd_geometry * geo)391 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
392 {
393 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
394 geo->heads = 4;
395 geo->sectors = 16;
396 return 0;
397 }
398
399 struct mmc_blk_ioc_data {
400 struct mmc_ioc_cmd ic;
401 unsigned char *buf;
402 u64 buf_bytes;
403 unsigned int flags;
404 #define MMC_BLK_IOC_DROP BIT(0) /* drop this mrq */
405 #define MMC_BLK_IOC_SBC BIT(1) /* use mrq.sbc */
406
407 struct mmc_rpmb_data *rpmb;
408 };
409
mmc_blk_ioctl_copy_from_user(struct mmc_ioc_cmd __user * user)410 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
411 struct mmc_ioc_cmd __user *user)
412 {
413 struct mmc_blk_ioc_data *idata;
414 int err;
415
416 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
417 if (!idata) {
418 err = -ENOMEM;
419 goto out;
420 }
421
422 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
423 err = -EFAULT;
424 goto idata_err;
425 }
426
427 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
428 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
429 err = -EOVERFLOW;
430 goto idata_err;
431 }
432
433 if (!idata->buf_bytes) {
434 idata->buf = NULL;
435 return idata;
436 }
437
438 idata->buf = memdup_user((void __user *)(unsigned long)
439 idata->ic.data_ptr, idata->buf_bytes);
440 if (IS_ERR(idata->buf)) {
441 err = PTR_ERR(idata->buf);
442 goto idata_err;
443 }
444
445 return idata;
446
447 idata_err:
448 kfree(idata);
449 out:
450 return ERR_PTR(err);
451 }
452
mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user * ic_ptr,struct mmc_blk_ioc_data * idata)453 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
454 struct mmc_blk_ioc_data *idata)
455 {
456 struct mmc_ioc_cmd *ic = &idata->ic;
457
458 if (copy_to_user(&(ic_ptr->response), ic->response,
459 sizeof(ic->response)))
460 return -EFAULT;
461
462 if (!idata->ic.write_flag) {
463 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
464 idata->buf, idata->buf_bytes))
465 return -EFAULT;
466 }
467
468 return 0;
469 }
470
__mmc_blk_ioctl_cmd(struct mmc_card * card,struct mmc_blk_data * md,struct mmc_blk_ioc_data ** idatas,int i)471 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
472 struct mmc_blk_ioc_data **idatas, int i)
473 {
474 struct mmc_command cmd = {}, sbc = {};
475 struct mmc_data data = {};
476 struct mmc_request mrq = {};
477 struct scatterlist sg;
478 bool r1b_resp;
479 unsigned int busy_timeout_ms;
480 int err;
481 unsigned int target_part;
482 struct mmc_blk_ioc_data *idata = idatas[i];
483 struct mmc_blk_ioc_data *prev_idata = NULL;
484
485 if (!card || !md || !idata)
486 return -EINVAL;
487
488 if (idata->flags & MMC_BLK_IOC_DROP)
489 return 0;
490
491 if (idata->flags & MMC_BLK_IOC_SBC)
492 prev_idata = idatas[i - 1];
493
494 /*
495 * The RPMB accesses comes in from the character device, so we
496 * need to target these explicitly. Else we just target the
497 * partition type for the block device the ioctl() was issued
498 * on.
499 */
500 if (idata->rpmb) {
501 /* Support multiple RPMB partitions */
502 target_part = idata->rpmb->part_index;
503 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
504 } else {
505 target_part = md->part_type;
506 }
507
508 cmd.opcode = idata->ic.opcode;
509 cmd.arg = idata->ic.arg;
510 cmd.flags = idata->ic.flags;
511
512 if (idata->buf_bytes) {
513 data.sg = &sg;
514 data.sg_len = 1;
515 data.blksz = idata->ic.blksz;
516 data.blocks = idata->ic.blocks;
517
518 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
519
520 if (idata->ic.write_flag)
521 data.flags = MMC_DATA_WRITE;
522 else
523 data.flags = MMC_DATA_READ;
524
525 /* data.flags must already be set before doing this. */
526 mmc_set_data_timeout(&data, card);
527
528 /* Allow overriding the timeout_ns for empirical tuning. */
529 if (idata->ic.data_timeout_ns)
530 data.timeout_ns = idata->ic.data_timeout_ns;
531
532 mrq.data = &data;
533 }
534
535 mrq.cmd = &cmd;
536
537 err = mmc_blk_part_switch(card, target_part);
538 if (err)
539 return err;
540
541 if (idata->ic.is_acmd) {
542 err = mmc_app_cmd(card->host, card);
543 if (err)
544 return err;
545 }
546
547 if (idata->rpmb || prev_idata) {
548 sbc.opcode = MMC_SET_BLOCK_COUNT;
549 /*
550 * We don't do any blockcount validation because the max size
551 * may be increased by a future standard. We just copy the
552 * 'Reliable Write' bit here.
553 */
554 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
555 if (prev_idata)
556 sbc.arg = prev_idata->ic.arg;
557 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
558 mrq.sbc = &sbc;
559 }
560
561 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
562 (cmd.opcode == MMC_SWITCH))
563 return mmc_sanitize(card, idata->ic.cmd_timeout_ms);
564
565 /* If it's an R1B response we need some more preparations. */
566 busy_timeout_ms = idata->ic.cmd_timeout_ms ? : MMC_BLK_TIMEOUT_MS;
567 r1b_resp = (cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B;
568 if (r1b_resp)
569 mmc_prepare_busy_cmd(card->host, &cmd, busy_timeout_ms);
570
571 mmc_wait_for_req(card->host, &mrq);
572 memcpy(&idata->ic.response, cmd.resp, sizeof(cmd.resp));
573
574 if (prev_idata) {
575 memcpy(&prev_idata->ic.response, sbc.resp, sizeof(sbc.resp));
576 if (sbc.error) {
577 dev_err(mmc_dev(card->host), "%s: sbc error %d\n",
578 __func__, sbc.error);
579 return sbc.error;
580 }
581 }
582
583 if (cmd.error) {
584 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
585 __func__, cmd.error);
586 return cmd.error;
587 }
588 if (data.error) {
589 dev_err(mmc_dev(card->host), "%s: data error %d\n",
590 __func__, data.error);
591 return data.error;
592 }
593
594 /*
595 * Make sure the cache of the PARTITION_CONFIG register and
596 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
597 * changed it successfully.
598 */
599 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
600 (cmd.opcode == MMC_SWITCH)) {
601 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
602 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
603
604 /*
605 * Update cache so the next mmc_blk_part_switch call operates
606 * on up-to-date data.
607 */
608 card->ext_csd.part_config = value;
609 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
610 }
611
612 /*
613 * Make sure to update CACHE_CTRL in case it was changed. The cache
614 * will get turned back on if the card is re-initialized, e.g.
615 * suspend/resume or hw reset in recovery.
616 */
617 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_CACHE_CTRL) &&
618 (cmd.opcode == MMC_SWITCH)) {
619 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg) & 1;
620
621 card->ext_csd.cache_ctrl = value;
622 }
623
624 /*
625 * According to the SD specs, some commands require a delay after
626 * issuing the command.
627 */
628 if (idata->ic.postsleep_min_us)
629 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
630
631 if (mmc_host_is_spi(card->host)) {
632 if (idata->ic.write_flag || r1b_resp || cmd.flags & MMC_RSP_SPI_BUSY)
633 return mmc_spi_err_check(card);
634 return err;
635 }
636
637 /*
638 * Ensure RPMB, writes and R1B responses are completed by polling with
639 * CMD13. Note that, usually we don't need to poll when using HW busy
640 * detection, but here it's needed since some commands may indicate the
641 * error through the R1 status bits.
642 */
643 if (idata->rpmb || idata->ic.write_flag || r1b_resp) {
644 struct mmc_blk_busy_data cb_data = {
645 .card = card,
646 };
647
648 err = __mmc_poll_for_busy(card->host, 0, busy_timeout_ms,
649 &mmc_blk_busy_cb, &cb_data);
650
651 idata->ic.response[0] = cb_data.status;
652 }
653
654 return err;
655 }
656
mmc_blk_ioctl_cmd(struct mmc_blk_data * md,struct mmc_ioc_cmd __user * ic_ptr,struct mmc_rpmb_data * rpmb)657 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
658 struct mmc_ioc_cmd __user *ic_ptr,
659 struct mmc_rpmb_data *rpmb)
660 {
661 struct mmc_blk_ioc_data *idata;
662 struct mmc_blk_ioc_data *idatas[1];
663 struct mmc_queue *mq;
664 struct mmc_card *card;
665 int err = 0, ioc_err = 0;
666 struct request *req;
667
668 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
669 if (IS_ERR(idata))
670 return PTR_ERR(idata);
671 /* This will be NULL on non-RPMB ioctl():s */
672 idata->rpmb = rpmb;
673
674 card = md->queue.card;
675 if (IS_ERR(card)) {
676 err = PTR_ERR(card);
677 goto cmd_done;
678 }
679
680 /*
681 * Dispatch the ioctl() into the block request queue.
682 */
683 mq = &md->queue;
684 req = blk_mq_alloc_request(mq->queue,
685 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
686 if (IS_ERR(req)) {
687 err = PTR_ERR(req);
688 goto cmd_done;
689 }
690 idatas[0] = idata;
691 req_to_mmc_queue_req(req)->drv_op =
692 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
693 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
694 req_to_mmc_queue_req(req)->drv_op_data = idatas;
695 req_to_mmc_queue_req(req)->ioc_count = 1;
696 blk_execute_rq(req, false);
697 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
698 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
699 blk_mq_free_request(req);
700
701 cmd_done:
702 kfree(idata->buf);
703 kfree(idata);
704 return ioc_err ? ioc_err : err;
705 }
706
mmc_blk_ioctl_multi_cmd(struct mmc_blk_data * md,struct mmc_ioc_multi_cmd __user * user,struct mmc_rpmb_data * rpmb)707 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
708 struct mmc_ioc_multi_cmd __user *user,
709 struct mmc_rpmb_data *rpmb)
710 {
711 struct mmc_blk_ioc_data **idata = NULL;
712 struct mmc_ioc_cmd __user *cmds = user->cmds;
713 struct mmc_card *card;
714 struct mmc_queue *mq;
715 int err = 0, ioc_err = 0;
716 __u64 num_of_cmds;
717 unsigned int i, n;
718 struct request *req;
719
720 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
721 sizeof(num_of_cmds)))
722 return -EFAULT;
723
724 if (!num_of_cmds)
725 return 0;
726
727 if (num_of_cmds > MMC_IOC_MAX_CMDS)
728 return -EINVAL;
729
730 n = num_of_cmds;
731 idata = kcalloc(n, sizeof(*idata), GFP_KERNEL);
732 if (!idata)
733 return -ENOMEM;
734
735 for (i = 0; i < n; i++) {
736 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
737 if (IS_ERR(idata[i])) {
738 err = PTR_ERR(idata[i]);
739 n = i;
740 goto cmd_err;
741 }
742 /* This will be NULL on non-RPMB ioctl():s */
743 idata[i]->rpmb = rpmb;
744 }
745
746 card = md->queue.card;
747 if (IS_ERR(card)) {
748 err = PTR_ERR(card);
749 goto cmd_err;
750 }
751
752
753 /*
754 * Dispatch the ioctl()s into the block request queue.
755 */
756 mq = &md->queue;
757 req = blk_mq_alloc_request(mq->queue,
758 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
759 if (IS_ERR(req)) {
760 err = PTR_ERR(req);
761 goto cmd_err;
762 }
763 req_to_mmc_queue_req(req)->drv_op =
764 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
765 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
766 req_to_mmc_queue_req(req)->drv_op_data = idata;
767 req_to_mmc_queue_req(req)->ioc_count = n;
768 blk_execute_rq(req, false);
769 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
770
771 /* copy to user if data and response */
772 for (i = 0; i < n && !err; i++)
773 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
774
775 blk_mq_free_request(req);
776
777 cmd_err:
778 for (i = 0; i < n; i++) {
779 kfree(idata[i]->buf);
780 kfree(idata[i]);
781 }
782 kfree(idata);
783 return ioc_err ? ioc_err : err;
784 }
785
mmc_blk_check_blkdev(struct block_device * bdev)786 static int mmc_blk_check_blkdev(struct block_device *bdev)
787 {
788 /*
789 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
790 * whole block device, not on a partition. This prevents overspray
791 * between sibling partitions.
792 */
793 if (!capable(CAP_SYS_RAWIO) || bdev_is_partition(bdev))
794 return -EPERM;
795 return 0;
796 }
797
mmc_blk_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)798 static int mmc_blk_ioctl(struct block_device *bdev, blk_mode_t mode,
799 unsigned int cmd, unsigned long arg)
800 {
801 struct mmc_blk_data *md;
802 int ret;
803
804 switch (cmd) {
805 case MMC_IOC_CMD:
806 ret = mmc_blk_check_blkdev(bdev);
807 if (ret)
808 return ret;
809 md = mmc_blk_get(bdev->bd_disk);
810 if (!md)
811 return -EINVAL;
812 ret = mmc_blk_ioctl_cmd(md,
813 (struct mmc_ioc_cmd __user *)arg,
814 NULL);
815 mmc_blk_put(md);
816 return ret;
817 case MMC_IOC_MULTI_CMD:
818 ret = mmc_blk_check_blkdev(bdev);
819 if (ret)
820 return ret;
821 md = mmc_blk_get(bdev->bd_disk);
822 if (!md)
823 return -EINVAL;
824 ret = mmc_blk_ioctl_multi_cmd(md,
825 (struct mmc_ioc_multi_cmd __user *)arg,
826 NULL);
827 mmc_blk_put(md);
828 return ret;
829 default:
830 return -EINVAL;
831 }
832 }
833
834 #ifdef CONFIG_COMPAT
mmc_blk_compat_ioctl(struct block_device * bdev,blk_mode_t mode,unsigned int cmd,unsigned long arg)835 static int mmc_blk_compat_ioctl(struct block_device *bdev, blk_mode_t mode,
836 unsigned int cmd, unsigned long arg)
837 {
838 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
839 }
840 #endif
841
mmc_blk_alternative_gpt_sector(struct gendisk * disk,sector_t * sector)842 static int mmc_blk_alternative_gpt_sector(struct gendisk *disk,
843 sector_t *sector)
844 {
845 struct mmc_blk_data *md;
846 int ret;
847
848 md = mmc_blk_get(disk);
849 if (!md)
850 return -EINVAL;
851
852 if (md->queue.card)
853 ret = mmc_card_alternative_gpt_sector(md->queue.card, sector);
854 else
855 ret = -ENODEV;
856
857 mmc_blk_put(md);
858
859 return ret;
860 }
861
862 static const struct block_device_operations mmc_bdops = {
863 .open = mmc_blk_open,
864 .release = mmc_blk_release,
865 .getgeo = mmc_blk_getgeo,
866 .owner = THIS_MODULE,
867 .ioctl = mmc_blk_ioctl,
868 #ifdef CONFIG_COMPAT
869 .compat_ioctl = mmc_blk_compat_ioctl,
870 #endif
871 .alternative_gpt_sector = mmc_blk_alternative_gpt_sector,
872 };
873
mmc_blk_part_switch_pre(struct mmc_card * card,unsigned int part_type)874 static int mmc_blk_part_switch_pre(struct mmc_card *card,
875 unsigned int part_type)
876 {
877 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_RPMB;
878 int ret = 0;
879
880 if ((part_type & mask) == mask) {
881 if (card->ext_csd.cmdq_en) {
882 ret = mmc_cmdq_disable(card);
883 if (ret)
884 return ret;
885 }
886 mmc_retune_pause(card->host);
887 }
888
889 return ret;
890 }
891
mmc_blk_part_switch_post(struct mmc_card * card,unsigned int part_type)892 static int mmc_blk_part_switch_post(struct mmc_card *card,
893 unsigned int part_type)
894 {
895 const unsigned int mask = EXT_CSD_PART_CONFIG_ACC_RPMB;
896 int ret = 0;
897
898 if ((part_type & mask) == mask) {
899 mmc_retune_unpause(card->host);
900 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
901 ret = mmc_cmdq_enable(card);
902 }
903
904 return ret;
905 }
906
mmc_blk_part_switch(struct mmc_card * card,unsigned int part_type)907 static inline int mmc_blk_part_switch(struct mmc_card *card,
908 unsigned int part_type)
909 {
910 int ret = 0;
911 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
912
913 if (main_md->part_curr == part_type)
914 return 0;
915
916 if (mmc_card_mmc(card)) {
917 u8 part_config = card->ext_csd.part_config;
918
919 ret = mmc_blk_part_switch_pre(card, part_type);
920 if (ret)
921 return ret;
922
923 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
924 part_config |= part_type;
925
926 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
927 EXT_CSD_PART_CONFIG, part_config,
928 card->ext_csd.part_time);
929 if (ret) {
930 mmc_blk_part_switch_post(card, part_type);
931 return ret;
932 }
933
934 card->ext_csd.part_config = part_config;
935
936 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
937 }
938
939 main_md->part_curr = part_type;
940 return ret;
941 }
942
mmc_sd_num_wr_blocks(struct mmc_card * card,u32 * written_blocks)943 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
944 {
945 int err;
946 u32 result;
947 __be32 *blocks;
948
949 struct mmc_request mrq = {};
950 struct mmc_command cmd = {};
951 struct mmc_data data = {};
952
953 struct scatterlist sg;
954
955 err = mmc_app_cmd(card->host, card);
956 if (err)
957 return err;
958
959 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
960 cmd.arg = 0;
961 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
962
963 data.blksz = 4;
964 data.blocks = 1;
965 data.flags = MMC_DATA_READ;
966 data.sg = &sg;
967 data.sg_len = 1;
968 mmc_set_data_timeout(&data, card);
969
970 mrq.cmd = &cmd;
971 mrq.data = &data;
972
973 blocks = kmalloc(4, GFP_KERNEL);
974 if (!blocks)
975 return -ENOMEM;
976
977 sg_init_one(&sg, blocks, 4);
978
979 mmc_wait_for_req(card->host, &mrq);
980
981 result = ntohl(*blocks);
982 kfree(blocks);
983
984 if (cmd.error || data.error)
985 return -EIO;
986
987 *written_blocks = result;
988
989 return 0;
990 }
991
mmc_blk_clock_khz(struct mmc_host * host)992 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
993 {
994 if (host->actual_clock)
995 return host->actual_clock / 1000;
996
997 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
998 if (host->ios.clock)
999 return host->ios.clock / 2000;
1000
1001 /* How can there be no clock */
1002 WARN_ON_ONCE(1);
1003 return 100; /* 100 kHz is minimum possible value */
1004 }
1005
mmc_blk_data_timeout_ms(struct mmc_host * host,struct mmc_data * data)1006 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
1007 struct mmc_data *data)
1008 {
1009 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
1010 unsigned int khz;
1011
1012 if (data->timeout_clks) {
1013 khz = mmc_blk_clock_khz(host);
1014 ms += DIV_ROUND_UP(data->timeout_clks, khz);
1015 }
1016
1017 return ms;
1018 }
1019
1020 /*
1021 * Attempts to reset the card and get back to the requested partition.
1022 * Therefore any error here must result in cancelling the block layer
1023 * request, it must not be reattempted without going through the mmc_blk
1024 * partition sanity checks.
1025 */
mmc_blk_reset(struct mmc_blk_data * md,struct mmc_host * host,int type)1026 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1027 int type)
1028 {
1029 int err;
1030 struct mmc_blk_data *main_md = dev_get_drvdata(&host->card->dev);
1031
1032 if (md->reset_done & type)
1033 return -EEXIST;
1034
1035 md->reset_done |= type;
1036 err = mmc_hw_reset(host->card);
1037 /*
1038 * A successful reset will leave the card in the main partition, but
1039 * upon failure it might not be, so set it to MMC_BLK_PART_INVALID
1040 * in that case.
1041 */
1042 main_md->part_curr = err ? MMC_BLK_PART_INVALID : main_md->part_type;
1043 if (err)
1044 return err;
1045 /* Ensure we switch back to the correct partition */
1046 if (mmc_blk_part_switch(host->card, md->part_type))
1047 /*
1048 * We have failed to get back into the correct
1049 * partition, so we need to abort the whole request.
1050 */
1051 return -ENODEV;
1052 return 0;
1053 }
1054
mmc_blk_reset_success(struct mmc_blk_data * md,int type)1055 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1056 {
1057 md->reset_done &= ~type;
1058 }
1059
mmc_blk_check_sbc(struct mmc_queue_req * mq_rq)1060 static void mmc_blk_check_sbc(struct mmc_queue_req *mq_rq)
1061 {
1062 struct mmc_blk_ioc_data **idata = mq_rq->drv_op_data;
1063 int i;
1064
1065 for (i = 1; i < mq_rq->ioc_count; i++) {
1066 if (idata[i - 1]->ic.opcode == MMC_SET_BLOCK_COUNT &&
1067 mmc_op_multi(idata[i]->ic.opcode)) {
1068 idata[i - 1]->flags |= MMC_BLK_IOC_DROP;
1069 idata[i]->flags |= MMC_BLK_IOC_SBC;
1070 }
1071 }
1072 }
1073
1074 /*
1075 * The non-block commands come back from the block layer after it queued it and
1076 * processed it with all other requests and then they get issued in this
1077 * function.
1078 */
mmc_blk_issue_drv_op(struct mmc_queue * mq,struct request * req)1079 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1080 {
1081 struct mmc_queue_req *mq_rq;
1082 struct mmc_card *card = mq->card;
1083 struct mmc_blk_data *md = mq->blkdata;
1084 struct mmc_blk_ioc_data **idata;
1085 bool rpmb_ioctl;
1086 u8 **ext_csd;
1087 u32 status;
1088 int ret;
1089 int i;
1090
1091 mq_rq = req_to_mmc_queue_req(req);
1092 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1093
1094 switch (mq_rq->drv_op) {
1095 case MMC_DRV_OP_IOCTL:
1096 if (card->ext_csd.cmdq_en) {
1097 ret = mmc_cmdq_disable(card);
1098 if (ret)
1099 break;
1100 }
1101
1102 mmc_blk_check_sbc(mq_rq);
1103
1104 fallthrough;
1105 case MMC_DRV_OP_IOCTL_RPMB:
1106 idata = mq_rq->drv_op_data;
1107 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1108 ret = __mmc_blk_ioctl_cmd(card, md, idata, i);
1109 if (ret)
1110 break;
1111 }
1112 /* Always switch back to main area after RPMB access */
1113 if (rpmb_ioctl)
1114 mmc_blk_part_switch(card, 0);
1115 else if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
1116 mmc_cmdq_enable(card);
1117 break;
1118 case MMC_DRV_OP_BOOT_WP:
1119 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1120 card->ext_csd.boot_ro_lock |
1121 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1122 card->ext_csd.part_time);
1123 if (ret)
1124 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1125 md->disk->disk_name, ret);
1126 else
1127 card->ext_csd.boot_ro_lock |=
1128 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1129 break;
1130 case MMC_DRV_OP_GET_CARD_STATUS:
1131 ret = mmc_send_status(card, &status);
1132 if (!ret)
1133 ret = status;
1134 break;
1135 case MMC_DRV_OP_GET_EXT_CSD:
1136 ext_csd = mq_rq->drv_op_data;
1137 ret = mmc_get_ext_csd(card, ext_csd);
1138 break;
1139 default:
1140 pr_err("%s: unknown driver specific operation\n",
1141 md->disk->disk_name);
1142 ret = -EINVAL;
1143 break;
1144 }
1145 mq_rq->drv_op_result = ret;
1146 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1147 }
1148
mmc_blk_issue_erase_rq(struct mmc_queue * mq,struct request * req,int type,unsigned int erase_arg)1149 static void mmc_blk_issue_erase_rq(struct mmc_queue *mq, struct request *req,
1150 int type, unsigned int erase_arg)
1151 {
1152 struct mmc_blk_data *md = mq->blkdata;
1153 struct mmc_card *card = md->queue.card;
1154 unsigned int from, nr;
1155 int err = 0;
1156 blk_status_t status = BLK_STS_OK;
1157
1158 if (!mmc_can_erase(card)) {
1159 status = BLK_STS_NOTSUPP;
1160 goto fail;
1161 }
1162
1163 from = blk_rq_pos(req);
1164 nr = blk_rq_sectors(req);
1165
1166 do {
1167 err = 0;
1168 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1169 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1170 INAND_CMD38_ARG_EXT_CSD,
1171 erase_arg == MMC_TRIM_ARG ?
1172 INAND_CMD38_ARG_TRIM :
1173 INAND_CMD38_ARG_ERASE,
1174 card->ext_csd.generic_cmd6_time);
1175 }
1176 if (!err)
1177 err = mmc_erase(card, from, nr, erase_arg);
1178 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1179 if (err)
1180 status = BLK_STS_IOERR;
1181 else
1182 mmc_blk_reset_success(md, type);
1183 fail:
1184 blk_mq_end_request(req, status);
1185 }
1186
mmc_blk_issue_trim_rq(struct mmc_queue * mq,struct request * req)1187 static void mmc_blk_issue_trim_rq(struct mmc_queue *mq, struct request *req)
1188 {
1189 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_TRIM, MMC_TRIM_ARG);
1190 }
1191
mmc_blk_issue_discard_rq(struct mmc_queue * mq,struct request * req)1192 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1193 {
1194 struct mmc_blk_data *md = mq->blkdata;
1195 struct mmc_card *card = md->queue.card;
1196 unsigned int arg = card->erase_arg;
1197
1198 if (mmc_card_broken_sd_discard(card))
1199 arg = SD_ERASE_ARG;
1200
1201 mmc_blk_issue_erase_rq(mq, req, MMC_BLK_DISCARD, arg);
1202 }
1203
mmc_blk_issue_secdiscard_rq(struct mmc_queue * mq,struct request * req)1204 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1205 struct request *req)
1206 {
1207 struct mmc_blk_data *md = mq->blkdata;
1208 struct mmc_card *card = md->queue.card;
1209 unsigned int from, nr, arg;
1210 int err = 0, type = MMC_BLK_SECDISCARD;
1211 blk_status_t status = BLK_STS_OK;
1212
1213 if (!(mmc_can_secure_erase_trim(card))) {
1214 status = BLK_STS_NOTSUPP;
1215 goto out;
1216 }
1217
1218 from = blk_rq_pos(req);
1219 nr = blk_rq_sectors(req);
1220
1221 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1222 arg = MMC_SECURE_TRIM1_ARG;
1223 else
1224 arg = MMC_SECURE_ERASE_ARG;
1225
1226 retry:
1227 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1228 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1229 INAND_CMD38_ARG_EXT_CSD,
1230 arg == MMC_SECURE_TRIM1_ARG ?
1231 INAND_CMD38_ARG_SECTRIM1 :
1232 INAND_CMD38_ARG_SECERASE,
1233 card->ext_csd.generic_cmd6_time);
1234 if (err)
1235 goto out_retry;
1236 }
1237
1238 err = mmc_erase(card, from, nr, arg);
1239 if (err == -EIO)
1240 goto out_retry;
1241 if (err) {
1242 status = BLK_STS_IOERR;
1243 goto out;
1244 }
1245
1246 if (arg == MMC_SECURE_TRIM1_ARG) {
1247 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1248 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1249 INAND_CMD38_ARG_EXT_CSD,
1250 INAND_CMD38_ARG_SECTRIM2,
1251 card->ext_csd.generic_cmd6_time);
1252 if (err)
1253 goto out_retry;
1254 }
1255
1256 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1257 if (err == -EIO)
1258 goto out_retry;
1259 if (err) {
1260 status = BLK_STS_IOERR;
1261 goto out;
1262 }
1263 }
1264
1265 out_retry:
1266 if (err && !mmc_blk_reset(md, card->host, type))
1267 goto retry;
1268 if (!err)
1269 mmc_blk_reset_success(md, type);
1270 out:
1271 blk_mq_end_request(req, status);
1272 }
1273
mmc_blk_issue_flush(struct mmc_queue * mq,struct request * req)1274 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1275 {
1276 struct mmc_blk_data *md = mq->blkdata;
1277 struct mmc_card *card = md->queue.card;
1278 int ret = 0;
1279
1280 ret = mmc_flush_cache(card->host);
1281 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1282 }
1283
1284 /*
1285 * Reformat current write as a reliable write, supporting
1286 * both legacy and the enhanced reliable write MMC cards.
1287 * In each transfer we'll handle only as much as a single
1288 * reliable write can handle, thus finish the request in
1289 * partial completions.
1290 */
mmc_apply_rel_rw(struct mmc_blk_request * brq,struct mmc_card * card,struct request * req)1291 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1292 struct mmc_card *card,
1293 struct request *req)
1294 {
1295 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1296 /* Legacy mode imposes restrictions on transfers. */
1297 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1298 brq->data.blocks = 1;
1299
1300 if (brq->data.blocks > card->ext_csd.rel_sectors)
1301 brq->data.blocks = card->ext_csd.rel_sectors;
1302 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1303 brq->data.blocks = 1;
1304 }
1305 }
1306
1307 #define CMD_ERRORS_EXCL_OOR \
1308 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1309 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1310 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1311 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1312 R1_CC_ERROR | /* Card controller error */ \
1313 R1_ERROR) /* General/unknown error */
1314
1315 #define CMD_ERRORS \
1316 (CMD_ERRORS_EXCL_OOR | \
1317 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1318
mmc_blk_eval_resp_error(struct mmc_blk_request * brq)1319 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1320 {
1321 u32 val;
1322
1323 /*
1324 * Per the SD specification(physical layer version 4.10)[1],
1325 * section 4.3.3, it explicitly states that "When the last
1326 * block of user area is read using CMD18, the host should
1327 * ignore OUT_OF_RANGE error that may occur even the sequence
1328 * is correct". And JESD84-B51 for eMMC also has a similar
1329 * statement on section 6.8.3.
1330 *
1331 * Multiple block read/write could be done by either predefined
1332 * method, namely CMD23, or open-ending mode. For open-ending mode,
1333 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1334 *
1335 * However the spec[1] doesn't tell us whether we should also
1336 * ignore that for predefined method. But per the spec[1], section
1337 * 4.15 Set Block Count Command, it says"If illegal block count
1338 * is set, out of range error will be indicated during read/write
1339 * operation (For example, data transfer is stopped at user area
1340 * boundary)." In another word, we could expect a out of range error
1341 * in the response for the following CMD18/25. And if argument of
1342 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1343 * we could also expect to get a -ETIMEDOUT or any error number from
1344 * the host drivers due to missing data response(for write)/data(for
1345 * read), as the cards will stop the data transfer by itself per the
1346 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1347 */
1348
1349 if (!brq->stop.error) {
1350 bool oor_with_open_end;
1351 /* If there is no error yet, check R1 response */
1352
1353 val = brq->stop.resp[0] & CMD_ERRORS;
1354 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1355
1356 if (val && !oor_with_open_end)
1357 brq->stop.error = -EIO;
1358 }
1359 }
1360
mmc_blk_data_prep(struct mmc_queue * mq,struct mmc_queue_req * mqrq,int recovery_mode,bool * do_rel_wr_p,bool * do_data_tag_p)1361 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1362 int recovery_mode, bool *do_rel_wr_p,
1363 bool *do_data_tag_p)
1364 {
1365 struct mmc_blk_data *md = mq->blkdata;
1366 struct mmc_card *card = md->queue.card;
1367 struct mmc_blk_request *brq = &mqrq->brq;
1368 struct request *req = mmc_queue_req_to_req(mqrq);
1369 bool do_rel_wr, do_data_tag;
1370
1371 /*
1372 * Reliable writes are used to implement Forced Unit Access and
1373 * are supported only on MMCs.
1374 */
1375 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1376 rq_data_dir(req) == WRITE &&
1377 (md->flags & MMC_BLK_REL_WR);
1378
1379 memset(brq, 0, sizeof(struct mmc_blk_request));
1380
1381 mmc_crypto_prepare_req(mqrq);
1382
1383 brq->mrq.data = &brq->data;
1384 brq->mrq.tag = req->tag;
1385
1386 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1387 brq->stop.arg = 0;
1388
1389 if (rq_data_dir(req) == READ) {
1390 brq->data.flags = MMC_DATA_READ;
1391 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1392 } else {
1393 brq->data.flags = MMC_DATA_WRITE;
1394 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1395 }
1396
1397 brq->data.blksz = 512;
1398 brq->data.blocks = blk_rq_sectors(req);
1399 brq->data.blk_addr = blk_rq_pos(req);
1400
1401 /*
1402 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1403 * The eMMC will give "high" priority tasks priority over "simple"
1404 * priority tasks. Here we always set "simple" priority by not setting
1405 * MMC_DATA_PRIO.
1406 */
1407
1408 /*
1409 * The block layer doesn't support all sector count
1410 * restrictions, so we need to be prepared for too big
1411 * requests.
1412 */
1413 if (brq->data.blocks > card->host->max_blk_count)
1414 brq->data.blocks = card->host->max_blk_count;
1415
1416 if (brq->data.blocks > 1) {
1417 /*
1418 * Some SD cards in SPI mode return a CRC error or even lock up
1419 * completely when trying to read the last block using a
1420 * multiblock read command.
1421 */
1422 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1423 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1424 get_capacity(md->disk)))
1425 brq->data.blocks--;
1426
1427 /*
1428 * After a read error, we redo the request one (native) sector
1429 * at a time in order to accurately determine which
1430 * sectors can be read successfully.
1431 */
1432 if (recovery_mode)
1433 brq->data.blocks = queue_physical_block_size(mq->queue) >> 9;
1434
1435 /*
1436 * Some controllers have HW issues while operating
1437 * in multiple I/O mode
1438 */
1439 if (card->host->ops->multi_io_quirk)
1440 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1441 (rq_data_dir(req) == READ) ?
1442 MMC_DATA_READ : MMC_DATA_WRITE,
1443 brq->data.blocks);
1444 }
1445
1446 if (do_rel_wr) {
1447 mmc_apply_rel_rw(brq, card, req);
1448 brq->data.flags |= MMC_DATA_REL_WR;
1449 }
1450
1451 /*
1452 * Data tag is used only during writing meta data to speed
1453 * up write and any subsequent read of this meta data
1454 */
1455 do_data_tag = card->ext_csd.data_tag_unit_size &&
1456 (req->cmd_flags & REQ_META) &&
1457 (rq_data_dir(req) == WRITE) &&
1458 ((brq->data.blocks * brq->data.blksz) >=
1459 card->ext_csd.data_tag_unit_size);
1460
1461 if (do_data_tag)
1462 brq->data.flags |= MMC_DATA_DAT_TAG;
1463
1464 mmc_set_data_timeout(&brq->data, card);
1465
1466 brq->data.sg = mqrq->sg;
1467 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1468
1469 /*
1470 * Adjust the sg list so it is the same size as the
1471 * request.
1472 */
1473 if (brq->data.blocks != blk_rq_sectors(req)) {
1474 int i, data_size = brq->data.blocks << 9;
1475 struct scatterlist *sg;
1476
1477 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1478 data_size -= sg->length;
1479 if (data_size <= 0) {
1480 sg->length += data_size;
1481 i++;
1482 break;
1483 }
1484 }
1485 brq->data.sg_len = i;
1486 }
1487
1488 if (do_rel_wr_p)
1489 *do_rel_wr_p = do_rel_wr;
1490
1491 if (do_data_tag_p)
1492 *do_data_tag_p = do_data_tag;
1493 }
1494
1495 #define MMC_CQE_RETRIES 2
1496
mmc_blk_cqe_complete_rq(struct mmc_queue * mq,struct request * req)1497 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1498 {
1499 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1500 struct mmc_request *mrq = &mqrq->brq.mrq;
1501 struct request_queue *q = req->q;
1502 struct mmc_host *host = mq->card->host;
1503 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
1504 unsigned long flags;
1505 bool put_card;
1506 int err;
1507
1508 mmc_cqe_post_req(host, mrq);
1509
1510 if (mrq->cmd && mrq->cmd->error)
1511 err = mrq->cmd->error;
1512 else if (mrq->data && mrq->data->error)
1513 err = mrq->data->error;
1514 else
1515 err = 0;
1516
1517 if (err) {
1518 if (mqrq->retries++ < MMC_CQE_RETRIES)
1519 blk_mq_requeue_request(req, true);
1520 else
1521 blk_mq_end_request(req, BLK_STS_IOERR);
1522 } else if (mrq->data) {
1523 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1524 blk_mq_requeue_request(req, true);
1525 else
1526 __blk_mq_end_request(req, BLK_STS_OK);
1527 } else if (mq->in_recovery) {
1528 blk_mq_requeue_request(req, true);
1529 } else {
1530 blk_mq_end_request(req, BLK_STS_OK);
1531 }
1532
1533 spin_lock_irqsave(&mq->lock, flags);
1534
1535 mq->in_flight[issue_type] -= 1;
1536
1537 put_card = (mmc_tot_in_flight(mq) == 0);
1538
1539 mmc_cqe_check_busy(mq);
1540
1541 spin_unlock_irqrestore(&mq->lock, flags);
1542
1543 if (!mq->cqe_busy)
1544 blk_mq_run_hw_queues(q, true);
1545
1546 if (put_card)
1547 mmc_put_card(mq->card, &mq->ctx);
1548 }
1549
mmc_blk_cqe_recovery(struct mmc_queue * mq)1550 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1551 {
1552 struct mmc_card *card = mq->card;
1553 struct mmc_host *host = card->host;
1554 int err;
1555
1556 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1557
1558 err = mmc_cqe_recovery(host);
1559 if (err)
1560 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1561 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1562
1563 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1564 }
1565
mmc_blk_cqe_req_done(struct mmc_request * mrq)1566 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1567 {
1568 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1569 brq.mrq);
1570 struct request *req = mmc_queue_req_to_req(mqrq);
1571 struct request_queue *q = req->q;
1572 struct mmc_queue *mq = q->queuedata;
1573
1574 /*
1575 * Block layer timeouts race with completions which means the normal
1576 * completion path cannot be used during recovery.
1577 */
1578 if (mq->in_recovery)
1579 mmc_blk_cqe_complete_rq(mq, req);
1580 else if (likely(!blk_should_fake_timeout(req->q)))
1581 blk_mq_complete_request(req);
1582 }
1583
mmc_blk_cqe_start_req(struct mmc_host * host,struct mmc_request * mrq)1584 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1585 {
1586 mrq->done = mmc_blk_cqe_req_done;
1587 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1588
1589 return mmc_cqe_start_req(host, mrq);
1590 }
1591
mmc_blk_cqe_prep_dcmd(struct mmc_queue_req * mqrq,struct request * req)1592 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1593 struct request *req)
1594 {
1595 struct mmc_blk_request *brq = &mqrq->brq;
1596
1597 memset(brq, 0, sizeof(*brq));
1598
1599 brq->mrq.cmd = &brq->cmd;
1600 brq->mrq.tag = req->tag;
1601
1602 return &brq->mrq;
1603 }
1604
mmc_blk_cqe_issue_flush(struct mmc_queue * mq,struct request * req)1605 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1606 {
1607 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1608 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1609
1610 mrq->cmd->opcode = MMC_SWITCH;
1611 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1612 (EXT_CSD_FLUSH_CACHE << 16) |
1613 (1 << 8) |
1614 EXT_CSD_CMD_SET_NORMAL;
1615 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1616
1617 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1618 }
1619
mmc_blk_hsq_issue_rw_rq(struct mmc_queue * mq,struct request * req)1620 static int mmc_blk_hsq_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1621 {
1622 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1623 struct mmc_host *host = mq->card->host;
1624 int err;
1625
1626 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
1627 mqrq->brq.mrq.done = mmc_blk_hsq_req_done;
1628 mmc_pre_req(host, &mqrq->brq.mrq);
1629
1630 err = mmc_cqe_start_req(host, &mqrq->brq.mrq);
1631 if (err)
1632 mmc_post_req(host, &mqrq->brq.mrq, err);
1633
1634 return err;
1635 }
1636
mmc_blk_cqe_issue_rw_rq(struct mmc_queue * mq,struct request * req)1637 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1638 {
1639 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1640 struct mmc_host *host = mq->card->host;
1641
1642 if (host->hsq_enabled)
1643 return mmc_blk_hsq_issue_rw_rq(mq, req);
1644
1645 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1646
1647 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1648 }
1649
mmc_blk_rw_rq_prep(struct mmc_queue_req * mqrq,struct mmc_card * card,int recovery_mode,struct mmc_queue * mq)1650 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1651 struct mmc_card *card,
1652 int recovery_mode,
1653 struct mmc_queue *mq)
1654 {
1655 u32 readcmd, writecmd;
1656 struct mmc_blk_request *brq = &mqrq->brq;
1657 struct request *req = mmc_queue_req_to_req(mqrq);
1658 struct mmc_blk_data *md = mq->blkdata;
1659 bool do_rel_wr, do_data_tag;
1660
1661 mmc_blk_data_prep(mq, mqrq, recovery_mode, &do_rel_wr, &do_data_tag);
1662
1663 brq->mrq.cmd = &brq->cmd;
1664
1665 brq->cmd.arg = blk_rq_pos(req);
1666 if (!mmc_card_blockaddr(card))
1667 brq->cmd.arg <<= 9;
1668 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1669
1670 if (brq->data.blocks > 1 || do_rel_wr) {
1671 /* SPI multiblock writes terminate using a special
1672 * token, not a STOP_TRANSMISSION request.
1673 */
1674 if (!mmc_host_is_spi(card->host) ||
1675 rq_data_dir(req) == READ)
1676 brq->mrq.stop = &brq->stop;
1677 readcmd = MMC_READ_MULTIPLE_BLOCK;
1678 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1679 } else {
1680 brq->mrq.stop = NULL;
1681 readcmd = MMC_READ_SINGLE_BLOCK;
1682 writecmd = MMC_WRITE_BLOCK;
1683 }
1684 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1685
1686 /*
1687 * Pre-defined multi-block transfers are preferable to
1688 * open ended-ones (and necessary for reliable writes).
1689 * However, it is not sufficient to just send CMD23,
1690 * and avoid the final CMD12, as on an error condition
1691 * CMD12 (stop) needs to be sent anyway. This, coupled
1692 * with Auto-CMD23 enhancements provided by some
1693 * hosts, means that the complexity of dealing
1694 * with this is best left to the host. If CMD23 is
1695 * supported by card and host, we'll fill sbc in and let
1696 * the host deal with handling it correctly. This means
1697 * that for hosts that don't expose MMC_CAP_CMD23, no
1698 * change of behavior will be observed.
1699 *
1700 * N.B: Some MMC cards experience perf degradation.
1701 * We'll avoid using CMD23-bounded multiblock writes for
1702 * these, while retaining features like reliable writes.
1703 */
1704 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1705 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1706 do_data_tag)) {
1707 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1708 brq->sbc.arg = brq->data.blocks |
1709 (do_rel_wr ? (1 << 31) : 0) |
1710 (do_data_tag ? (1 << 29) : 0);
1711 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1712 brq->mrq.sbc = &brq->sbc;
1713 }
1714 }
1715
1716 #define MMC_MAX_RETRIES 5
1717 #define MMC_DATA_RETRIES 2
1718 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1719
mmc_blk_send_stop(struct mmc_card * card,unsigned int timeout)1720 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1721 {
1722 struct mmc_command cmd = {
1723 .opcode = MMC_STOP_TRANSMISSION,
1724 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1725 /* Some hosts wait for busy anyway, so provide a busy timeout */
1726 .busy_timeout = timeout,
1727 };
1728
1729 return mmc_wait_for_cmd(card->host, &cmd, 5);
1730 }
1731
mmc_blk_fix_state(struct mmc_card * card,struct request * req)1732 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1733 {
1734 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1735 struct mmc_blk_request *brq = &mqrq->brq;
1736 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1737 int err;
1738
1739 mmc_retune_hold_now(card->host);
1740
1741 mmc_blk_send_stop(card, timeout);
1742
1743 err = mmc_poll_for_busy(card, timeout, false, MMC_BUSY_IO);
1744
1745 mmc_retune_release(card->host);
1746
1747 return err;
1748 }
1749
1750 #define MMC_READ_SINGLE_RETRIES 2
1751
1752 /* Single (native) sector read during recovery */
mmc_blk_read_single(struct mmc_queue * mq,struct request * req)1753 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1754 {
1755 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1756 struct mmc_request *mrq = &mqrq->brq.mrq;
1757 struct mmc_card *card = mq->card;
1758 struct mmc_host *host = card->host;
1759 blk_status_t error = BLK_STS_OK;
1760 size_t bytes_per_read = queue_physical_block_size(mq->queue);
1761
1762 do {
1763 u32 status;
1764 int err;
1765 int retries = 0;
1766
1767 while (retries++ <= MMC_READ_SINGLE_RETRIES) {
1768 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1769
1770 mmc_wait_for_req(host, mrq);
1771
1772 err = mmc_send_status(card, &status);
1773 if (err)
1774 goto error_exit;
1775
1776 if (!mmc_host_is_spi(host) &&
1777 !mmc_ready_for_data(status)) {
1778 err = mmc_blk_fix_state(card, req);
1779 if (err)
1780 goto error_exit;
1781 }
1782
1783 if (!mrq->cmd->error)
1784 break;
1785 }
1786
1787 if (mrq->cmd->error ||
1788 mrq->data->error ||
1789 (!mmc_host_is_spi(host) &&
1790 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1791 error = BLK_STS_IOERR;
1792 else
1793 error = BLK_STS_OK;
1794
1795 } while (blk_update_request(req, error, bytes_per_read));
1796
1797 return;
1798
1799 error_exit:
1800 mrq->data->bytes_xfered = 0;
1801 blk_update_request(req, BLK_STS_IOERR, bytes_per_read);
1802 /* Let it try the remaining request again */
1803 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1804 mqrq->retries = MMC_MAX_RETRIES - 1;
1805 }
1806
mmc_blk_oor_valid(struct mmc_blk_request * brq)1807 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1808 {
1809 return !!brq->mrq.sbc;
1810 }
1811
mmc_blk_stop_err_bits(struct mmc_blk_request * brq)1812 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1813 {
1814 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1815 }
1816
1817 /*
1818 * Check for errors the host controller driver might not have seen such as
1819 * response mode errors or invalid card state.
1820 */
mmc_blk_status_error(struct request * req,u32 status)1821 static bool mmc_blk_status_error(struct request *req, u32 status)
1822 {
1823 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1824 struct mmc_blk_request *brq = &mqrq->brq;
1825 struct mmc_queue *mq = req->q->queuedata;
1826 u32 stop_err_bits;
1827
1828 if (mmc_host_is_spi(mq->card->host))
1829 return false;
1830
1831 stop_err_bits = mmc_blk_stop_err_bits(brq);
1832
1833 return brq->cmd.resp[0] & CMD_ERRORS ||
1834 brq->stop.resp[0] & stop_err_bits ||
1835 status & stop_err_bits ||
1836 (rq_data_dir(req) == WRITE && !mmc_ready_for_data(status));
1837 }
1838
mmc_blk_cmd_started(struct mmc_blk_request * brq)1839 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1840 {
1841 return !brq->sbc.error && !brq->cmd.error &&
1842 !(brq->cmd.resp[0] & CMD_ERRORS);
1843 }
1844
1845 /*
1846 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1847 * policy:
1848 * 1. A request that has transferred at least some data is considered
1849 * successful and will be requeued if there is remaining data to
1850 * transfer.
1851 * 2. Otherwise the number of retries is incremented and the request
1852 * will be requeued if there are remaining retries.
1853 * 3. Otherwise the request will be errored out.
1854 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1855 * mqrq->retries. So there are only 4 possible actions here:
1856 * 1. do not accept the bytes_xfered value i.e. set it to zero
1857 * 2. change mqrq->retries to determine the number of retries
1858 * 3. try to reset the card
1859 * 4. read one sector at a time
1860 */
mmc_blk_mq_rw_recovery(struct mmc_queue * mq,struct request * req)1861 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1862 {
1863 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1864 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1865 struct mmc_blk_request *brq = &mqrq->brq;
1866 struct mmc_blk_data *md = mq->blkdata;
1867 struct mmc_card *card = mq->card;
1868 u32 status;
1869 u32 blocks;
1870 int err;
1871
1872 /*
1873 * Some errors the host driver might not have seen. Set the number of
1874 * bytes transferred to zero in that case.
1875 */
1876 err = __mmc_send_status(card, &status, 0);
1877 if (err || mmc_blk_status_error(req, status))
1878 brq->data.bytes_xfered = 0;
1879
1880 mmc_retune_release(card->host);
1881
1882 /*
1883 * Try again to get the status. This also provides an opportunity for
1884 * re-tuning.
1885 */
1886 if (err)
1887 err = __mmc_send_status(card, &status, 0);
1888
1889 /*
1890 * Nothing more to do after the number of bytes transferred has been
1891 * updated and there is no card.
1892 */
1893 if (err && mmc_detect_card_removed(card->host))
1894 return;
1895
1896 /* Try to get back to "tran" state */
1897 if (!mmc_host_is_spi(mq->card->host) &&
1898 (err || !mmc_ready_for_data(status)))
1899 err = mmc_blk_fix_state(mq->card, req);
1900
1901 /*
1902 * Special case for SD cards where the card might record the number of
1903 * blocks written.
1904 */
1905 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1906 rq_data_dir(req) == WRITE) {
1907 if (mmc_sd_num_wr_blocks(card, &blocks))
1908 brq->data.bytes_xfered = 0;
1909 else
1910 brq->data.bytes_xfered = blocks << 9;
1911 }
1912
1913 /* Reset if the card is in a bad state */
1914 if (!mmc_host_is_spi(mq->card->host) &&
1915 err && mmc_blk_reset(md, card->host, type)) {
1916 pr_err("%s: recovery failed!\n", req->q->disk->disk_name);
1917 mqrq->retries = MMC_NO_RETRIES;
1918 return;
1919 }
1920
1921 /*
1922 * If anything was done, just return and if there is anything remaining
1923 * on the request it will get requeued.
1924 */
1925 if (brq->data.bytes_xfered)
1926 return;
1927
1928 /* Reset before last retry */
1929 if (mqrq->retries + 1 == MMC_MAX_RETRIES &&
1930 mmc_blk_reset(md, card->host, type))
1931 return;
1932
1933 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1934 if (brq->sbc.error || brq->cmd.error)
1935 return;
1936
1937 /* Reduce the remaining retries for data errors */
1938 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1939 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1940 return;
1941 }
1942
1943 if (rq_data_dir(req) == READ && brq->data.blocks >
1944 queue_physical_block_size(mq->queue) >> 9) {
1945 /* Read one (native) sector at a time */
1946 mmc_blk_read_single(mq, req);
1947 return;
1948 }
1949 }
1950
mmc_blk_rq_error(struct mmc_blk_request * brq)1951 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1952 {
1953 mmc_blk_eval_resp_error(brq);
1954
1955 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1956 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1957 }
1958
mmc_spi_err_check(struct mmc_card * card)1959 static int mmc_spi_err_check(struct mmc_card *card)
1960 {
1961 u32 status = 0;
1962 int err;
1963
1964 /*
1965 * SPI does not have a TRAN state we have to wait on, instead the
1966 * card is ready again when it no longer holds the line LOW.
1967 * We still have to ensure two things here before we know the write
1968 * was successful:
1969 * 1. The card has not disconnected during busy and we actually read our
1970 * own pull-up, thinking it was still connected, so ensure it
1971 * still responds.
1972 * 2. Check for any error bits, in particular R1_SPI_IDLE to catch a
1973 * just reconnected card after being disconnected during busy.
1974 */
1975 err = __mmc_send_status(card, &status, 0);
1976 if (err)
1977 return err;
1978 /* All R1 and R2 bits of SPI are errors in our case */
1979 if (status)
1980 return -EIO;
1981 return 0;
1982 }
1983
mmc_blk_busy_cb(void * cb_data,bool * busy)1984 static int mmc_blk_busy_cb(void *cb_data, bool *busy)
1985 {
1986 struct mmc_blk_busy_data *data = cb_data;
1987 u32 status = 0;
1988 int err;
1989
1990 err = mmc_send_status(data->card, &status);
1991 if (err)
1992 return err;
1993
1994 /* Accumulate response error bits. */
1995 data->status |= status;
1996
1997 *busy = !mmc_ready_for_data(status);
1998 return 0;
1999 }
2000
mmc_blk_card_busy(struct mmc_card * card,struct request * req)2001 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
2002 {
2003 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2004 struct mmc_blk_busy_data cb_data;
2005 int err;
2006
2007 if (rq_data_dir(req) == READ)
2008 return 0;
2009
2010 if (mmc_host_is_spi(card->host)) {
2011 err = mmc_spi_err_check(card);
2012 if (err)
2013 mqrq->brq.data.bytes_xfered = 0;
2014 return err;
2015 }
2016
2017 cb_data.card = card;
2018 cb_data.status = 0;
2019 err = __mmc_poll_for_busy(card->host, 0, MMC_BLK_TIMEOUT_MS,
2020 &mmc_blk_busy_cb, &cb_data);
2021
2022 /*
2023 * Do not assume data transferred correctly if there are any error bits
2024 * set.
2025 */
2026 if (cb_data.status & mmc_blk_stop_err_bits(&mqrq->brq)) {
2027 mqrq->brq.data.bytes_xfered = 0;
2028 err = err ? err : -EIO;
2029 }
2030
2031 /* Copy the exception bit so it will be seen later on */
2032 if (mmc_card_mmc(card) && cb_data.status & R1_EXCEPTION_EVENT)
2033 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
2034
2035 return err;
2036 }
2037
mmc_blk_rw_reset_success(struct mmc_queue * mq,struct request * req)2038 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
2039 struct request *req)
2040 {
2041 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
2042
2043 mmc_blk_reset_success(mq->blkdata, type);
2044 }
2045
mmc_blk_mq_complete_rq(struct mmc_queue * mq,struct request * req)2046 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
2047 {
2048 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2049 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
2050
2051 if (nr_bytes) {
2052 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
2053 blk_mq_requeue_request(req, true);
2054 else
2055 __blk_mq_end_request(req, BLK_STS_OK);
2056 } else if (!blk_rq_bytes(req)) {
2057 __blk_mq_end_request(req, BLK_STS_IOERR);
2058 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
2059 blk_mq_requeue_request(req, true);
2060 } else {
2061 if (mmc_card_removed(mq->card))
2062 req->rq_flags |= RQF_QUIET;
2063 blk_mq_end_request(req, BLK_STS_IOERR);
2064 }
2065 }
2066
mmc_blk_urgent_bkops_needed(struct mmc_queue * mq,struct mmc_queue_req * mqrq)2067 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
2068 struct mmc_queue_req *mqrq)
2069 {
2070 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
2071 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
2072 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
2073 }
2074
mmc_blk_urgent_bkops(struct mmc_queue * mq,struct mmc_queue_req * mqrq)2075 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
2076 struct mmc_queue_req *mqrq)
2077 {
2078 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
2079 mmc_run_bkops(mq->card);
2080 }
2081
mmc_blk_hsq_req_done(struct mmc_request * mrq)2082 static void mmc_blk_hsq_req_done(struct mmc_request *mrq)
2083 {
2084 struct mmc_queue_req *mqrq =
2085 container_of(mrq, struct mmc_queue_req, brq.mrq);
2086 struct request *req = mmc_queue_req_to_req(mqrq);
2087 struct request_queue *q = req->q;
2088 struct mmc_queue *mq = q->queuedata;
2089 struct mmc_host *host = mq->card->host;
2090 unsigned long flags;
2091
2092 if (mmc_blk_rq_error(&mqrq->brq) ||
2093 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2094 spin_lock_irqsave(&mq->lock, flags);
2095 mq->recovery_needed = true;
2096 mq->recovery_req = req;
2097 spin_unlock_irqrestore(&mq->lock, flags);
2098
2099 host->cqe_ops->cqe_recovery_start(host);
2100
2101 schedule_work(&mq->recovery_work);
2102 return;
2103 }
2104
2105 mmc_blk_rw_reset_success(mq, req);
2106
2107 /*
2108 * Block layer timeouts race with completions which means the normal
2109 * completion path cannot be used during recovery.
2110 */
2111 if (mq->in_recovery)
2112 mmc_blk_cqe_complete_rq(mq, req);
2113 else if (likely(!blk_should_fake_timeout(req->q)))
2114 blk_mq_complete_request(req);
2115 }
2116
mmc_blk_mq_complete(struct request * req)2117 void mmc_blk_mq_complete(struct request *req)
2118 {
2119 struct mmc_queue *mq = req->q->queuedata;
2120 struct mmc_host *host = mq->card->host;
2121
2122 if (host->cqe_enabled)
2123 mmc_blk_cqe_complete_rq(mq, req);
2124 else if (likely(!blk_should_fake_timeout(req->q)))
2125 mmc_blk_mq_complete_rq(mq, req);
2126 }
2127
mmc_blk_mq_poll_completion(struct mmc_queue * mq,struct request * req)2128 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
2129 struct request *req)
2130 {
2131 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2132 struct mmc_host *host = mq->card->host;
2133
2134 if (mmc_blk_rq_error(&mqrq->brq) ||
2135 mmc_blk_card_busy(mq->card, req)) {
2136 mmc_blk_mq_rw_recovery(mq, req);
2137 } else {
2138 mmc_blk_rw_reset_success(mq, req);
2139 mmc_retune_release(host);
2140 }
2141
2142 mmc_blk_urgent_bkops(mq, mqrq);
2143 }
2144
mmc_blk_mq_dec_in_flight(struct mmc_queue * mq,enum mmc_issue_type issue_type)2145 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, enum mmc_issue_type issue_type)
2146 {
2147 unsigned long flags;
2148 bool put_card;
2149
2150 spin_lock_irqsave(&mq->lock, flags);
2151
2152 mq->in_flight[issue_type] -= 1;
2153
2154 put_card = (mmc_tot_in_flight(mq) == 0);
2155
2156 spin_unlock_irqrestore(&mq->lock, flags);
2157
2158 if (put_card)
2159 mmc_put_card(mq->card, &mq->ctx);
2160 }
2161
mmc_blk_mq_post_req(struct mmc_queue * mq,struct request * req,bool can_sleep)2162 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req,
2163 bool can_sleep)
2164 {
2165 enum mmc_issue_type issue_type = mmc_issue_type(mq, req);
2166 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2167 struct mmc_request *mrq = &mqrq->brq.mrq;
2168 struct mmc_host *host = mq->card->host;
2169
2170 mmc_post_req(host, mrq, 0);
2171
2172 /*
2173 * Block layer timeouts race with completions which means the normal
2174 * completion path cannot be used during recovery.
2175 */
2176 if (mq->in_recovery) {
2177 mmc_blk_mq_complete_rq(mq, req);
2178 } else if (likely(!blk_should_fake_timeout(req->q))) {
2179 if (can_sleep)
2180 blk_mq_complete_request_direct(req, mmc_blk_mq_complete);
2181 else
2182 blk_mq_complete_request(req);
2183 }
2184
2185 mmc_blk_mq_dec_in_flight(mq, issue_type);
2186 }
2187
mmc_blk_mq_recovery(struct mmc_queue * mq)2188 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2189 {
2190 struct request *req = mq->recovery_req;
2191 struct mmc_host *host = mq->card->host;
2192 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2193
2194 mq->recovery_req = NULL;
2195 mq->rw_wait = false;
2196
2197 if (mmc_blk_rq_error(&mqrq->brq)) {
2198 mmc_retune_hold_now(host);
2199 mmc_blk_mq_rw_recovery(mq, req);
2200 }
2201
2202 mmc_blk_urgent_bkops(mq, mqrq);
2203
2204 mmc_blk_mq_post_req(mq, req, true);
2205 }
2206
mmc_blk_mq_complete_prev_req(struct mmc_queue * mq,struct request ** prev_req)2207 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2208 struct request **prev_req)
2209 {
2210 if (mmc_host_done_complete(mq->card->host))
2211 return;
2212
2213 mutex_lock(&mq->complete_lock);
2214
2215 if (!mq->complete_req)
2216 goto out_unlock;
2217
2218 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2219
2220 if (prev_req)
2221 *prev_req = mq->complete_req;
2222 else
2223 mmc_blk_mq_post_req(mq, mq->complete_req, true);
2224
2225 mq->complete_req = NULL;
2226
2227 out_unlock:
2228 mutex_unlock(&mq->complete_lock);
2229 }
2230
mmc_blk_mq_complete_work(struct work_struct * work)2231 void mmc_blk_mq_complete_work(struct work_struct *work)
2232 {
2233 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2234 complete_work);
2235
2236 mmc_blk_mq_complete_prev_req(mq, NULL);
2237 }
2238
mmc_blk_mq_req_done(struct mmc_request * mrq)2239 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2240 {
2241 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2242 brq.mrq);
2243 struct request *req = mmc_queue_req_to_req(mqrq);
2244 struct request_queue *q = req->q;
2245 struct mmc_queue *mq = q->queuedata;
2246 struct mmc_host *host = mq->card->host;
2247 unsigned long flags;
2248
2249 if (!mmc_host_done_complete(host)) {
2250 bool waiting;
2251
2252 /*
2253 * We cannot complete the request in this context, so record
2254 * that there is a request to complete, and that a following
2255 * request does not need to wait (although it does need to
2256 * complete complete_req first).
2257 */
2258 spin_lock_irqsave(&mq->lock, flags);
2259 mq->complete_req = req;
2260 mq->rw_wait = false;
2261 waiting = mq->waiting;
2262 spin_unlock_irqrestore(&mq->lock, flags);
2263
2264 /*
2265 * If 'waiting' then the waiting task will complete this
2266 * request, otherwise queue a work to do it. Note that
2267 * complete_work may still race with the dispatch of a following
2268 * request.
2269 */
2270 if (waiting)
2271 wake_up(&mq->wait);
2272 else
2273 queue_work(mq->card->complete_wq, &mq->complete_work);
2274
2275 return;
2276 }
2277
2278 /* Take the recovery path for errors or urgent background operations */
2279 if (mmc_blk_rq_error(&mqrq->brq) ||
2280 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2281 spin_lock_irqsave(&mq->lock, flags);
2282 mq->recovery_needed = true;
2283 mq->recovery_req = req;
2284 spin_unlock_irqrestore(&mq->lock, flags);
2285 wake_up(&mq->wait);
2286 schedule_work(&mq->recovery_work);
2287 return;
2288 }
2289
2290 mmc_blk_rw_reset_success(mq, req);
2291
2292 mq->rw_wait = false;
2293 wake_up(&mq->wait);
2294
2295 /* context unknown */
2296 mmc_blk_mq_post_req(mq, req, false);
2297 }
2298
mmc_blk_rw_wait_cond(struct mmc_queue * mq,int * err)2299 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2300 {
2301 unsigned long flags;
2302 bool done;
2303
2304 /*
2305 * Wait while there is another request in progress, but not if recovery
2306 * is needed. Also indicate whether there is a request waiting to start.
2307 */
2308 spin_lock_irqsave(&mq->lock, flags);
2309 if (mq->recovery_needed) {
2310 *err = -EBUSY;
2311 done = true;
2312 } else {
2313 done = !mq->rw_wait;
2314 }
2315 mq->waiting = !done;
2316 spin_unlock_irqrestore(&mq->lock, flags);
2317
2318 return done;
2319 }
2320
mmc_blk_rw_wait(struct mmc_queue * mq,struct request ** prev_req)2321 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2322 {
2323 int err = 0;
2324
2325 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2326
2327 /* Always complete the previous request if there is one */
2328 mmc_blk_mq_complete_prev_req(mq, prev_req);
2329
2330 return err;
2331 }
2332
mmc_blk_mq_issue_rw_rq(struct mmc_queue * mq,struct request * req)2333 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2334 struct request *req)
2335 {
2336 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2337 struct mmc_host *host = mq->card->host;
2338 struct request *prev_req = NULL;
2339 int err = 0;
2340
2341 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2342
2343 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2344
2345 mmc_pre_req(host, &mqrq->brq.mrq);
2346
2347 err = mmc_blk_rw_wait(mq, &prev_req);
2348 if (err)
2349 goto out_post_req;
2350
2351 mq->rw_wait = true;
2352
2353 err = mmc_start_request(host, &mqrq->brq.mrq);
2354
2355 if (prev_req)
2356 mmc_blk_mq_post_req(mq, prev_req, true);
2357
2358 if (err)
2359 mq->rw_wait = false;
2360
2361 /* Release re-tuning here where there is no synchronization required */
2362 if (err || mmc_host_done_complete(host))
2363 mmc_retune_release(host);
2364
2365 out_post_req:
2366 if (err)
2367 mmc_post_req(host, &mqrq->brq.mrq, err);
2368
2369 return err;
2370 }
2371
mmc_blk_wait_for_idle(struct mmc_queue * mq,struct mmc_host * host)2372 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2373 {
2374 if (host->cqe_enabled)
2375 return host->cqe_ops->cqe_wait_for_idle(host);
2376
2377 return mmc_blk_rw_wait(mq, NULL);
2378 }
2379
mmc_blk_mq_issue_rq(struct mmc_queue * mq,struct request * req)2380 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2381 {
2382 struct mmc_blk_data *md = mq->blkdata;
2383 struct mmc_card *card = md->queue.card;
2384 struct mmc_host *host = card->host;
2385 int ret;
2386
2387 ret = mmc_blk_part_switch(card, md->part_type);
2388 if (ret)
2389 return MMC_REQ_FAILED_TO_START;
2390
2391 switch (mmc_issue_type(mq, req)) {
2392 case MMC_ISSUE_SYNC:
2393 ret = mmc_blk_wait_for_idle(mq, host);
2394 if (ret)
2395 return MMC_REQ_BUSY;
2396 switch (req_op(req)) {
2397 case REQ_OP_DRV_IN:
2398 case REQ_OP_DRV_OUT:
2399 mmc_blk_issue_drv_op(mq, req);
2400 break;
2401 case REQ_OP_DISCARD:
2402 mmc_blk_issue_discard_rq(mq, req);
2403 break;
2404 case REQ_OP_SECURE_ERASE:
2405 mmc_blk_issue_secdiscard_rq(mq, req);
2406 break;
2407 case REQ_OP_WRITE_ZEROES:
2408 mmc_blk_issue_trim_rq(mq, req);
2409 break;
2410 case REQ_OP_FLUSH:
2411 mmc_blk_issue_flush(mq, req);
2412 break;
2413 default:
2414 WARN_ON_ONCE(1);
2415 return MMC_REQ_FAILED_TO_START;
2416 }
2417 return MMC_REQ_FINISHED;
2418 case MMC_ISSUE_DCMD:
2419 case MMC_ISSUE_ASYNC:
2420 switch (req_op(req)) {
2421 case REQ_OP_FLUSH:
2422 if (!mmc_cache_enabled(host)) {
2423 blk_mq_end_request(req, BLK_STS_OK);
2424 return MMC_REQ_FINISHED;
2425 }
2426 ret = mmc_blk_cqe_issue_flush(mq, req);
2427 break;
2428 case REQ_OP_WRITE:
2429 card->written_flag = true;
2430 fallthrough;
2431 case REQ_OP_READ:
2432 if (host->cqe_enabled)
2433 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2434 else
2435 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2436 break;
2437 default:
2438 WARN_ON_ONCE(1);
2439 ret = -EINVAL;
2440 }
2441 if (!ret)
2442 return MMC_REQ_STARTED;
2443 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2444 default:
2445 WARN_ON_ONCE(1);
2446 return MMC_REQ_FAILED_TO_START;
2447 }
2448 }
2449
mmc_blk_readonly(struct mmc_card * card)2450 static inline int mmc_blk_readonly(struct mmc_card *card)
2451 {
2452 return mmc_card_readonly(card) ||
2453 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2454 }
2455
mmc_blk_alloc_req(struct mmc_card * card,struct device * parent,sector_t size,bool default_ro,const char * subname,int area_type,unsigned int part_type)2456 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2457 struct device *parent,
2458 sector_t size,
2459 bool default_ro,
2460 const char *subname,
2461 int area_type,
2462 unsigned int part_type)
2463 {
2464 struct mmc_blk_data *md;
2465 int devidx, ret;
2466 char cap_str[10];
2467 bool cache_enabled = false;
2468 bool fua_enabled = false;
2469
2470 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2471 if (devidx < 0) {
2472 /*
2473 * We get -ENOSPC because there are no more any available
2474 * devidx. The reason may be that, either userspace haven't yet
2475 * unmounted the partitions, which postpones mmc_blk_release()
2476 * from being called, or the device has more partitions than
2477 * what we support.
2478 */
2479 if (devidx == -ENOSPC)
2480 dev_err(mmc_dev(card->host),
2481 "no more device IDs available\n");
2482
2483 return ERR_PTR(devidx);
2484 }
2485
2486 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2487 if (!md) {
2488 ret = -ENOMEM;
2489 goto out;
2490 }
2491
2492 md->area_type = area_type;
2493
2494 /*
2495 * Set the read-only status based on the supported commands
2496 * and the write protect switch.
2497 */
2498 md->read_only = mmc_blk_readonly(card);
2499
2500 md->disk = mmc_init_queue(&md->queue, card);
2501 if (IS_ERR(md->disk)) {
2502 ret = PTR_ERR(md->disk);
2503 goto err_kfree;
2504 }
2505
2506 INIT_LIST_HEAD(&md->part);
2507 INIT_LIST_HEAD(&md->rpmbs);
2508 kref_init(&md->kref);
2509
2510 md->queue.blkdata = md;
2511 md->part_type = part_type;
2512
2513 md->disk->major = MMC_BLOCK_MAJOR;
2514 md->disk->minors = perdev_minors;
2515 md->disk->first_minor = devidx * perdev_minors;
2516 md->disk->fops = &mmc_bdops;
2517 md->disk->private_data = md;
2518 md->parent = parent;
2519 set_disk_ro(md->disk, md->read_only || default_ro);
2520 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2521 md->disk->flags |= GENHD_FL_NO_PART;
2522
2523 /*
2524 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2525 *
2526 * - be set for removable media with permanent block devices
2527 * - be unset for removable block devices with permanent media
2528 *
2529 * Since MMC block devices clearly fall under the second
2530 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2531 * should use the block device creation/destruction hotplug
2532 * messages to tell when the card is present.
2533 */
2534
2535 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2536 "mmcblk%u%s", card->host->index, subname ? subname : "");
2537
2538 set_capacity(md->disk, size);
2539
2540 if (mmc_host_cmd23(card->host)) {
2541 if ((mmc_card_mmc(card) &&
2542 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2543 (mmc_card_sd(card) &&
2544 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2545 md->flags |= MMC_BLK_CMD23;
2546 }
2547
2548 if (md->flags & MMC_BLK_CMD23 &&
2549 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2550 card->ext_csd.rel_sectors)) {
2551 md->flags |= MMC_BLK_REL_WR;
2552 fua_enabled = true;
2553 cache_enabled = true;
2554 }
2555 if (mmc_cache_enabled(card->host))
2556 cache_enabled = true;
2557
2558 blk_queue_write_cache(md->queue.queue, cache_enabled, fua_enabled);
2559
2560 string_get_size((u64)size, 512, STRING_UNITS_2,
2561 cap_str, sizeof(cap_str));
2562 pr_info("%s: %s %s %s%s\n",
2563 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2564 cap_str, md->read_only ? " (ro)" : "");
2565
2566 /* used in ->open, must be set before add_disk: */
2567 if (area_type == MMC_BLK_DATA_AREA_MAIN)
2568 dev_set_drvdata(&card->dev, md);
2569 ret = device_add_disk(md->parent, md->disk, mmc_disk_attr_groups);
2570 if (ret)
2571 goto err_put_disk;
2572 return md;
2573
2574 err_put_disk:
2575 put_disk(md->disk);
2576 blk_mq_free_tag_set(&md->queue.tag_set);
2577 err_kfree:
2578 kfree(md);
2579 out:
2580 ida_simple_remove(&mmc_blk_ida, devidx);
2581 return ERR_PTR(ret);
2582 }
2583
mmc_blk_alloc(struct mmc_card * card)2584 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2585 {
2586 sector_t size;
2587
2588 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2589 /*
2590 * The EXT_CSD sector count is in number or 512 byte
2591 * sectors.
2592 */
2593 size = card->ext_csd.sectors;
2594 } else {
2595 /*
2596 * The CSD capacity field is in units of read_blkbits.
2597 * set_capacity takes units of 512 bytes.
2598 */
2599 size = (typeof(sector_t))card->csd.capacity
2600 << (card->csd.read_blkbits - 9);
2601 }
2602
2603 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2604 MMC_BLK_DATA_AREA_MAIN, 0);
2605 }
2606
mmc_blk_alloc_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_type,sector_t size,bool default_ro,const char * subname,int area_type)2607 static int mmc_blk_alloc_part(struct mmc_card *card,
2608 struct mmc_blk_data *md,
2609 unsigned int part_type,
2610 sector_t size,
2611 bool default_ro,
2612 const char *subname,
2613 int area_type)
2614 {
2615 struct mmc_blk_data *part_md;
2616
2617 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2618 subname, area_type, part_type);
2619 if (IS_ERR(part_md))
2620 return PTR_ERR(part_md);
2621 list_add(&part_md->part, &md->part);
2622
2623 return 0;
2624 }
2625
2626 /**
2627 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2628 * @filp: the character device file
2629 * @cmd: the ioctl() command
2630 * @arg: the argument from userspace
2631 *
2632 * This will essentially just redirect the ioctl()s coming in over to
2633 * the main block device spawning the RPMB character device.
2634 */
mmc_rpmb_ioctl(struct file * filp,unsigned int cmd,unsigned long arg)2635 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2636 unsigned long arg)
2637 {
2638 struct mmc_rpmb_data *rpmb = filp->private_data;
2639 int ret;
2640
2641 switch (cmd) {
2642 case MMC_IOC_CMD:
2643 ret = mmc_blk_ioctl_cmd(rpmb->md,
2644 (struct mmc_ioc_cmd __user *)arg,
2645 rpmb);
2646 break;
2647 case MMC_IOC_MULTI_CMD:
2648 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2649 (struct mmc_ioc_multi_cmd __user *)arg,
2650 rpmb);
2651 break;
2652 default:
2653 ret = -EINVAL;
2654 break;
2655 }
2656
2657 return ret;
2658 }
2659
2660 #ifdef CONFIG_COMPAT
mmc_rpmb_ioctl_compat(struct file * filp,unsigned int cmd,unsigned long arg)2661 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2662 unsigned long arg)
2663 {
2664 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2665 }
2666 #endif
2667
mmc_rpmb_chrdev_open(struct inode * inode,struct file * filp)2668 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2669 {
2670 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2671 struct mmc_rpmb_data, chrdev);
2672
2673 get_device(&rpmb->dev);
2674 filp->private_data = rpmb;
2675 mmc_blk_get(rpmb->md->disk);
2676
2677 return nonseekable_open(inode, filp);
2678 }
2679
mmc_rpmb_chrdev_release(struct inode * inode,struct file * filp)2680 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2681 {
2682 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2683 struct mmc_rpmb_data, chrdev);
2684
2685 mmc_blk_put(rpmb->md);
2686 put_device(&rpmb->dev);
2687
2688 return 0;
2689 }
2690
2691 static const struct file_operations mmc_rpmb_fileops = {
2692 .release = mmc_rpmb_chrdev_release,
2693 .open = mmc_rpmb_chrdev_open,
2694 .owner = THIS_MODULE,
2695 .llseek = no_llseek,
2696 .unlocked_ioctl = mmc_rpmb_ioctl,
2697 #ifdef CONFIG_COMPAT
2698 .compat_ioctl = mmc_rpmb_ioctl_compat,
2699 #endif
2700 };
2701
mmc_blk_rpmb_device_release(struct device * dev)2702 static void mmc_blk_rpmb_device_release(struct device *dev)
2703 {
2704 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2705
2706 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2707 kfree(rpmb);
2708 }
2709
mmc_blk_alloc_rpmb_part(struct mmc_card * card,struct mmc_blk_data * md,unsigned int part_index,sector_t size,const char * subname)2710 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2711 struct mmc_blk_data *md,
2712 unsigned int part_index,
2713 sector_t size,
2714 const char *subname)
2715 {
2716 int devidx, ret;
2717 char rpmb_name[DISK_NAME_LEN];
2718 char cap_str[10];
2719 struct mmc_rpmb_data *rpmb;
2720
2721 /* This creates the minor number for the RPMB char device */
2722 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2723 if (devidx < 0)
2724 return devidx;
2725
2726 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2727 if (!rpmb) {
2728 ida_simple_remove(&mmc_rpmb_ida, devidx);
2729 return -ENOMEM;
2730 }
2731
2732 snprintf(rpmb_name, sizeof(rpmb_name),
2733 "mmcblk%u%s", card->host->index, subname ? subname : "");
2734
2735 rpmb->id = devidx;
2736 rpmb->part_index = part_index;
2737 rpmb->dev.init_name = rpmb_name;
2738 rpmb->dev.bus = &mmc_rpmb_bus_type;
2739 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2740 rpmb->dev.parent = &card->dev;
2741 rpmb->dev.release = mmc_blk_rpmb_device_release;
2742 device_initialize(&rpmb->dev);
2743 dev_set_drvdata(&rpmb->dev, rpmb);
2744 rpmb->md = md;
2745
2746 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2747 rpmb->chrdev.owner = THIS_MODULE;
2748 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2749 if (ret) {
2750 pr_err("%s: could not add character device\n", rpmb_name);
2751 goto out_put_device;
2752 }
2753
2754 list_add(&rpmb->node, &md->rpmbs);
2755
2756 string_get_size((u64)size, 512, STRING_UNITS_2,
2757 cap_str, sizeof(cap_str));
2758
2759 pr_info("%s: %s %s %s, chardev (%d:%d)\n",
2760 rpmb_name, mmc_card_id(card), mmc_card_name(card), cap_str,
2761 MAJOR(mmc_rpmb_devt), rpmb->id);
2762
2763 return 0;
2764
2765 out_put_device:
2766 put_device(&rpmb->dev);
2767 return ret;
2768 }
2769
mmc_blk_remove_rpmb_part(struct mmc_rpmb_data * rpmb)2770 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2771
2772 {
2773 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2774 put_device(&rpmb->dev);
2775 }
2776
2777 /* MMC Physical partitions consist of two boot partitions and
2778 * up to four general purpose partitions.
2779 * For each partition enabled in EXT_CSD a block device will be allocatedi
2780 * to provide access to the partition.
2781 */
2782
mmc_blk_alloc_parts(struct mmc_card * card,struct mmc_blk_data * md)2783 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2784 {
2785 int idx, ret;
2786
2787 if (!mmc_card_mmc(card))
2788 return 0;
2789
2790 for (idx = 0; idx < card->nr_parts; idx++) {
2791 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2792 /*
2793 * RPMB partitions does not provide block access, they
2794 * are only accessed using ioctl():s. Thus create
2795 * special RPMB block devices that do not have a
2796 * backing block queue for these.
2797 */
2798 ret = mmc_blk_alloc_rpmb_part(card, md,
2799 card->part[idx].part_cfg,
2800 card->part[idx].size >> 9,
2801 card->part[idx].name);
2802 if (ret)
2803 return ret;
2804 } else if (card->part[idx].size) {
2805 ret = mmc_blk_alloc_part(card, md,
2806 card->part[idx].part_cfg,
2807 card->part[idx].size >> 9,
2808 card->part[idx].force_ro,
2809 card->part[idx].name,
2810 card->part[idx].area_type);
2811 if (ret)
2812 return ret;
2813 }
2814 }
2815
2816 return 0;
2817 }
2818
mmc_blk_remove_req(struct mmc_blk_data * md)2819 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2820 {
2821 /*
2822 * Flush remaining requests and free queues. It is freeing the queue
2823 * that stops new requests from being accepted.
2824 */
2825 del_gendisk(md->disk);
2826 mmc_cleanup_queue(&md->queue);
2827 mmc_blk_put(md);
2828 }
2829
mmc_blk_remove_parts(struct mmc_card * card,struct mmc_blk_data * md)2830 static void mmc_blk_remove_parts(struct mmc_card *card,
2831 struct mmc_blk_data *md)
2832 {
2833 struct list_head *pos, *q;
2834 struct mmc_blk_data *part_md;
2835 struct mmc_rpmb_data *rpmb;
2836
2837 /* Remove RPMB partitions */
2838 list_for_each_safe(pos, q, &md->rpmbs) {
2839 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2840 list_del(pos);
2841 mmc_blk_remove_rpmb_part(rpmb);
2842 }
2843 /* Remove block partitions */
2844 list_for_each_safe(pos, q, &md->part) {
2845 part_md = list_entry(pos, struct mmc_blk_data, part);
2846 list_del(pos);
2847 mmc_blk_remove_req(part_md);
2848 }
2849 }
2850
2851 #ifdef CONFIG_DEBUG_FS
2852
mmc_dbg_card_status_get(void * data,u64 * val)2853 static int mmc_dbg_card_status_get(void *data, u64 *val)
2854 {
2855 struct mmc_card *card = data;
2856 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2857 struct mmc_queue *mq = &md->queue;
2858 struct request *req;
2859 int ret;
2860
2861 /* Ask the block layer about the card status */
2862 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2863 if (IS_ERR(req))
2864 return PTR_ERR(req);
2865 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2866 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2867 blk_execute_rq(req, false);
2868 ret = req_to_mmc_queue_req(req)->drv_op_result;
2869 if (ret >= 0) {
2870 *val = ret;
2871 ret = 0;
2872 }
2873 blk_mq_free_request(req);
2874
2875 return ret;
2876 }
2877 DEFINE_DEBUGFS_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2878 NULL, "%08llx\n");
2879
2880 /* That is two digits * 512 + 1 for newline */
2881 #define EXT_CSD_STR_LEN 1025
2882
mmc_ext_csd_open(struct inode * inode,struct file * filp)2883 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2884 {
2885 struct mmc_card *card = inode->i_private;
2886 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2887 struct mmc_queue *mq = &md->queue;
2888 struct request *req;
2889 char *buf;
2890 ssize_t n = 0;
2891 u8 *ext_csd;
2892 int err, i;
2893
2894 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2895 if (!buf)
2896 return -ENOMEM;
2897
2898 /* Ask the block layer for the EXT CSD */
2899 req = blk_mq_alloc_request(mq->queue, REQ_OP_DRV_IN, 0);
2900 if (IS_ERR(req)) {
2901 err = PTR_ERR(req);
2902 goto out_free;
2903 }
2904 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2905 req_to_mmc_queue_req(req)->drv_op_result = -EIO;
2906 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2907 blk_execute_rq(req, false);
2908 err = req_to_mmc_queue_req(req)->drv_op_result;
2909 blk_mq_free_request(req);
2910 if (err) {
2911 pr_err("FAILED %d\n", err);
2912 goto out_free;
2913 }
2914
2915 for (i = 0; i < 512; i++)
2916 n += sprintf(buf + n, "%02x", ext_csd[i]);
2917 n += sprintf(buf + n, "\n");
2918
2919 if (n != EXT_CSD_STR_LEN) {
2920 err = -EINVAL;
2921 kfree(ext_csd);
2922 goto out_free;
2923 }
2924
2925 filp->private_data = buf;
2926 kfree(ext_csd);
2927 return 0;
2928
2929 out_free:
2930 kfree(buf);
2931 return err;
2932 }
2933
mmc_ext_csd_read(struct file * filp,char __user * ubuf,size_t cnt,loff_t * ppos)2934 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2935 size_t cnt, loff_t *ppos)
2936 {
2937 char *buf = filp->private_data;
2938
2939 return simple_read_from_buffer(ubuf, cnt, ppos,
2940 buf, EXT_CSD_STR_LEN);
2941 }
2942
mmc_ext_csd_release(struct inode * inode,struct file * file)2943 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2944 {
2945 kfree(file->private_data);
2946 return 0;
2947 }
2948
2949 static const struct file_operations mmc_dbg_ext_csd_fops = {
2950 .open = mmc_ext_csd_open,
2951 .read = mmc_ext_csd_read,
2952 .release = mmc_ext_csd_release,
2953 .llseek = default_llseek,
2954 };
2955
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2956 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2957 {
2958 struct dentry *root;
2959
2960 if (!card->debugfs_root)
2961 return;
2962
2963 root = card->debugfs_root;
2964
2965 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2966 md->status_dentry =
2967 debugfs_create_file_unsafe("status", 0400, root,
2968 card,
2969 &mmc_dbg_card_status_fops);
2970 }
2971
2972 if (mmc_card_mmc(card)) {
2973 md->ext_csd_dentry =
2974 debugfs_create_file("ext_csd", S_IRUSR, root, card,
2975 &mmc_dbg_ext_csd_fops);
2976 }
2977 }
2978
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2979 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2980 struct mmc_blk_data *md)
2981 {
2982 if (!card->debugfs_root)
2983 return;
2984
2985 debugfs_remove(md->status_dentry);
2986 md->status_dentry = NULL;
2987
2988 debugfs_remove(md->ext_csd_dentry);
2989 md->ext_csd_dentry = NULL;
2990 }
2991
2992 #else
2993
mmc_blk_add_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2994 static void mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2995 {
2996 }
2997
mmc_blk_remove_debugfs(struct mmc_card * card,struct mmc_blk_data * md)2998 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2999 struct mmc_blk_data *md)
3000 {
3001 }
3002
3003 #endif /* CONFIG_DEBUG_FS */
3004
mmc_blk_probe(struct mmc_card * card)3005 static int mmc_blk_probe(struct mmc_card *card)
3006 {
3007 struct mmc_blk_data *md;
3008 int ret = 0;
3009
3010 /*
3011 * Check that the card supports the command class(es) we need.
3012 */
3013 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
3014 return -ENODEV;
3015
3016 mmc_fixup_device(card, mmc_blk_fixups);
3017
3018 card->complete_wq = alloc_workqueue("mmc_complete",
3019 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3020 if (!card->complete_wq) {
3021 pr_err("Failed to create mmc completion workqueue");
3022 return -ENOMEM;
3023 }
3024
3025 md = mmc_blk_alloc(card);
3026 if (IS_ERR(md)) {
3027 ret = PTR_ERR(md);
3028 goto out_free;
3029 }
3030
3031 ret = mmc_blk_alloc_parts(card, md);
3032 if (ret)
3033 goto out;
3034
3035 /* Add two debugfs entries */
3036 mmc_blk_add_debugfs(card, md);
3037
3038 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
3039 pm_runtime_use_autosuspend(&card->dev);
3040
3041 /*
3042 * Don't enable runtime PM for SD-combo cards here. Leave that
3043 * decision to be taken during the SDIO init sequence instead.
3044 */
3045 if (!mmc_card_sd_combo(card)) {
3046 pm_runtime_set_active(&card->dev);
3047 pm_runtime_enable(&card->dev);
3048 }
3049
3050 return 0;
3051
3052 out:
3053 mmc_blk_remove_parts(card, md);
3054 mmc_blk_remove_req(md);
3055 out_free:
3056 destroy_workqueue(card->complete_wq);
3057 return ret;
3058 }
3059
mmc_blk_remove(struct mmc_card * card)3060 static void mmc_blk_remove(struct mmc_card *card)
3061 {
3062 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3063
3064 mmc_blk_remove_debugfs(card, md);
3065 mmc_blk_remove_parts(card, md);
3066 pm_runtime_get_sync(&card->dev);
3067 if (md->part_curr != md->part_type) {
3068 mmc_claim_host(card->host);
3069 mmc_blk_part_switch(card, md->part_type);
3070 mmc_release_host(card->host);
3071 }
3072 if (!mmc_card_sd_combo(card))
3073 pm_runtime_disable(&card->dev);
3074 pm_runtime_put_noidle(&card->dev);
3075 mmc_blk_remove_req(md);
3076 destroy_workqueue(card->complete_wq);
3077 }
3078
_mmc_blk_suspend(struct mmc_card * card)3079 static int _mmc_blk_suspend(struct mmc_card *card)
3080 {
3081 struct mmc_blk_data *part_md;
3082 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3083
3084 if (md) {
3085 mmc_queue_suspend(&md->queue);
3086 list_for_each_entry(part_md, &md->part, part) {
3087 mmc_queue_suspend(&part_md->queue);
3088 }
3089 }
3090 return 0;
3091 }
3092
mmc_blk_shutdown(struct mmc_card * card)3093 static void mmc_blk_shutdown(struct mmc_card *card)
3094 {
3095 _mmc_blk_suspend(card);
3096 }
3097
3098 #ifdef CONFIG_PM_SLEEP
mmc_blk_suspend(struct device * dev)3099 static int mmc_blk_suspend(struct device *dev)
3100 {
3101 struct mmc_card *card = mmc_dev_to_card(dev);
3102
3103 return _mmc_blk_suspend(card);
3104 }
3105
mmc_blk_resume(struct device * dev)3106 static int mmc_blk_resume(struct device *dev)
3107 {
3108 struct mmc_blk_data *part_md;
3109 struct mmc_blk_data *md = dev_get_drvdata(dev);
3110
3111 if (md) {
3112 /*
3113 * Resume involves the card going into idle state,
3114 * so current partition is always the main one.
3115 */
3116 md->part_curr = md->part_type;
3117 mmc_queue_resume(&md->queue);
3118 list_for_each_entry(part_md, &md->part, part) {
3119 mmc_queue_resume(&part_md->queue);
3120 }
3121 }
3122 return 0;
3123 }
3124 #endif
3125
3126 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3127
3128 static struct mmc_driver mmc_driver = {
3129 .drv = {
3130 .name = "mmcblk",
3131 .pm = &mmc_blk_pm_ops,
3132 },
3133 .probe = mmc_blk_probe,
3134 .remove = mmc_blk_remove,
3135 .shutdown = mmc_blk_shutdown,
3136 };
3137
mmc_blk_init(void)3138 static int __init mmc_blk_init(void)
3139 {
3140 int res;
3141
3142 res = bus_register(&mmc_rpmb_bus_type);
3143 if (res < 0) {
3144 pr_err("mmcblk: could not register RPMB bus type\n");
3145 return res;
3146 }
3147 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3148 if (res < 0) {
3149 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3150 goto out_bus_unreg;
3151 }
3152
3153 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3154 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3155
3156 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3157
3158 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3159 if (res)
3160 goto out_chrdev_unreg;
3161
3162 res = mmc_register_driver(&mmc_driver);
3163 if (res)
3164 goto out_blkdev_unreg;
3165
3166 return 0;
3167
3168 out_blkdev_unreg:
3169 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3170 out_chrdev_unreg:
3171 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3172 out_bus_unreg:
3173 bus_unregister(&mmc_rpmb_bus_type);
3174 return res;
3175 }
3176
mmc_blk_exit(void)3177 static void __exit mmc_blk_exit(void)
3178 {
3179 mmc_unregister_driver(&mmc_driver);
3180 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3181 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3182 bus_unregister(&mmc_rpmb_bus_type);
3183 }
3184
3185 module_init(mmc_blk_init);
3186 module_exit(mmc_blk_exit);
3187
3188 MODULE_LICENSE("GPL");
3189 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");
3190