1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/drivers/mmc/core/mmc.c
4 *
5 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
6 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 */
9
10 #include <linux/err.h>
11 #include <linux/of.h>
12 #include <linux/slab.h>
13 #include <linux/stat.h>
14 #include <linux/pm_runtime.h>
15 #include <linux/random.h>
16 #include <linux/sysfs.h>
17
18 #include <linux/mmc/host.h>
19 #include <linux/mmc/card.h>
20 #include <linux/mmc/mmc.h>
21
22 #include "core.h"
23 #include "card.h"
24 #include "host.h"
25 #include "bus.h"
26 #include "mmc_ops.h"
27 #include "quirks.h"
28 #include "sd_ops.h"
29 #include "pwrseq.h"
30
31 #define DEFAULT_CMD6_TIMEOUT_MS 500
32 #define MIN_CACHE_EN_TIMEOUT_MS 1600
33 #define CACHE_FLUSH_TIMEOUT_MS 30000 /* 30s */
34
35 static const unsigned int tran_exp[] = {
36 10000, 100000, 1000000, 10000000,
37 0, 0, 0, 0
38 };
39
40 static const unsigned char tran_mant[] = {
41 0, 10, 12, 13, 15, 20, 25, 30,
42 35, 40, 45, 50, 55, 60, 70, 80,
43 };
44
45 static const unsigned int taac_exp[] = {
46 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
47 };
48
49 static const unsigned int taac_mant[] = {
50 0, 10, 12, 13, 15, 20, 25, 30,
51 35, 40, 45, 50, 55, 60, 70, 80,
52 };
53
54 #define UNSTUFF_BITS(resp,start,size) \
55 ({ \
56 const int __size = size; \
57 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
58 const int __off = 3 - ((start) / 32); \
59 const int __shft = (start) & 31; \
60 u32 __res; \
61 \
62 __res = resp[__off] >> __shft; \
63 if (__size + __shft > 32) \
64 __res |= resp[__off-1] << ((32 - __shft) % 32); \
65 __res & __mask; \
66 })
67
68 /*
69 * Given the decoded CSD structure, decode the raw CID to our CID structure.
70 */
mmc_decode_cid(struct mmc_card * card)71 static int mmc_decode_cid(struct mmc_card *card)
72 {
73 u32 *resp = card->raw_cid;
74
75 /*
76 * Add the raw card ID (cid) data to the entropy pool. It doesn't
77 * matter that not all of it is unique, it's just bonus entropy.
78 */
79 add_device_randomness(&card->raw_cid, sizeof(card->raw_cid));
80
81 /*
82 * The selection of the format here is based upon published
83 * specs from sandisk and from what people have reported.
84 */
85 switch (card->csd.mmca_vsn) {
86 case 0: /* MMC v1.0 - v1.2 */
87 case 1: /* MMC v1.4 */
88 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
89 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
90 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
91 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
92 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
93 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
94 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
95 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
96 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
97 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
98 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
99 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
100 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
101 break;
102
103 case 2: /* MMC v2.0 - v2.2 */
104 case 3: /* MMC v3.1 - v3.3 */
105 case 4: /* MMC v4 */
106 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
107 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
108 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
109 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
110 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
111 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
112 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
113 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
114 card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
115 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
116 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
117 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
118 break;
119
120 default:
121 pr_err("%s: card has unknown MMCA version %d\n",
122 mmc_hostname(card->host), card->csd.mmca_vsn);
123 return -EINVAL;
124 }
125
126 return 0;
127 }
128
mmc_set_erase_size(struct mmc_card * card)129 static void mmc_set_erase_size(struct mmc_card *card)
130 {
131 if (card->ext_csd.erase_group_def & 1)
132 card->erase_size = card->ext_csd.hc_erase_size;
133 else
134 card->erase_size = card->csd.erase_size;
135
136 mmc_init_erase(card);
137 }
138
139 /*
140 * Given a 128-bit response, decode to our card CSD structure.
141 */
mmc_decode_csd(struct mmc_card * card)142 static int mmc_decode_csd(struct mmc_card *card)
143 {
144 struct mmc_csd *csd = &card->csd;
145 unsigned int e, m, a, b;
146 u32 *resp = card->raw_csd;
147
148 /*
149 * We only understand CSD structure v1.1 and v1.2.
150 * v1.2 has extra information in bits 15, 11 and 10.
151 * We also support eMMC v4.4 & v4.41.
152 */
153 csd->structure = UNSTUFF_BITS(resp, 126, 2);
154 if (csd->structure == 0) {
155 pr_err("%s: unrecognised CSD structure version %d\n",
156 mmc_hostname(card->host), csd->structure);
157 return -EINVAL;
158 }
159
160 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
161 m = UNSTUFF_BITS(resp, 115, 4);
162 e = UNSTUFF_BITS(resp, 112, 3);
163 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
164 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
165
166 m = UNSTUFF_BITS(resp, 99, 4);
167 e = UNSTUFF_BITS(resp, 96, 3);
168 csd->max_dtr = tran_exp[e] * tran_mant[m];
169 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
170
171 e = UNSTUFF_BITS(resp, 47, 3);
172 m = UNSTUFF_BITS(resp, 62, 12);
173 csd->capacity = (1 + m) << (e + 2);
174
175 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
176 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
177 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
178 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
179 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
180 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
181 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
182 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
183
184 if (csd->write_blkbits >= 9) {
185 a = UNSTUFF_BITS(resp, 42, 5);
186 b = UNSTUFF_BITS(resp, 37, 5);
187 csd->erase_size = (a + 1) * (b + 1);
188 csd->erase_size <<= csd->write_blkbits - 9;
189 }
190
191 return 0;
192 }
193
mmc_select_card_type(struct mmc_card * card)194 static void mmc_select_card_type(struct mmc_card *card)
195 {
196 struct mmc_host *host = card->host;
197 u8 card_type = card->ext_csd.raw_card_type;
198 u32 caps = host->caps, caps2 = host->caps2;
199 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
200 unsigned int avail_type = 0;
201
202 if (caps & MMC_CAP_MMC_HIGHSPEED &&
203 card_type & EXT_CSD_CARD_TYPE_HS_26) {
204 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
205 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
206 }
207
208 if (caps & MMC_CAP_MMC_HIGHSPEED &&
209 card_type & EXT_CSD_CARD_TYPE_HS_52) {
210 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
211 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
212 }
213
214 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
215 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
216 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
217 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
218 }
219
220 if (caps & MMC_CAP_1_2V_DDR &&
221 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
222 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
223 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
224 }
225
226 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
227 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
228 hs200_max_dtr = MMC_HS200_MAX_DTR;
229 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
230 }
231
232 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
233 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
234 hs200_max_dtr = MMC_HS200_MAX_DTR;
235 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
236 }
237
238 if (caps2 & MMC_CAP2_HS400_1_8V &&
239 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
240 hs200_max_dtr = MMC_HS200_MAX_DTR;
241 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
242 }
243
244 if (caps2 & MMC_CAP2_HS400_1_2V &&
245 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
246 hs200_max_dtr = MMC_HS200_MAX_DTR;
247 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
248 }
249
250 if ((caps2 & MMC_CAP2_HS400_ES) &&
251 card->ext_csd.strobe_support &&
252 (avail_type & EXT_CSD_CARD_TYPE_HS400))
253 avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
254
255 card->ext_csd.hs_max_dtr = hs_max_dtr;
256 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
257 card->mmc_avail_type = avail_type;
258 }
259
mmc_manage_enhanced_area(struct mmc_card * card,u8 * ext_csd)260 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
261 {
262 u8 hc_erase_grp_sz, hc_wp_grp_sz;
263
264 /*
265 * Disable these attributes by default
266 */
267 card->ext_csd.enhanced_area_offset = -EINVAL;
268 card->ext_csd.enhanced_area_size = -EINVAL;
269
270 /*
271 * Enhanced area feature support -- check whether the eMMC
272 * card has the Enhanced area enabled. If so, export enhanced
273 * area offset and size to user by adding sysfs interface.
274 */
275 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
276 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
277 if (card->ext_csd.partition_setting_completed) {
278 hc_erase_grp_sz =
279 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
280 hc_wp_grp_sz =
281 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
282
283 /*
284 * calculate the enhanced data area offset, in bytes
285 */
286 card->ext_csd.enhanced_area_offset =
287 (((unsigned long long)ext_csd[139]) << 24) +
288 (((unsigned long long)ext_csd[138]) << 16) +
289 (((unsigned long long)ext_csd[137]) << 8) +
290 (((unsigned long long)ext_csd[136]));
291 if (mmc_card_blockaddr(card))
292 card->ext_csd.enhanced_area_offset <<= 9;
293 /*
294 * calculate the enhanced data area size, in kilobytes
295 */
296 card->ext_csd.enhanced_area_size =
297 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
298 ext_csd[140];
299 card->ext_csd.enhanced_area_size *=
300 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
301 card->ext_csd.enhanced_area_size <<= 9;
302 } else {
303 pr_warn("%s: defines enhanced area without partition setting complete\n",
304 mmc_hostname(card->host));
305 }
306 }
307 }
308
mmc_part_add(struct mmc_card * card,u64 size,unsigned int part_cfg,char * name,int idx,bool ro,int area_type)309 static void mmc_part_add(struct mmc_card *card, u64 size,
310 unsigned int part_cfg, char *name, int idx, bool ro,
311 int area_type)
312 {
313 card->part[card->nr_parts].size = size;
314 card->part[card->nr_parts].part_cfg = part_cfg;
315 sprintf(card->part[card->nr_parts].name, name, idx);
316 card->part[card->nr_parts].force_ro = ro;
317 card->part[card->nr_parts].area_type = area_type;
318 card->nr_parts++;
319 }
320
mmc_manage_gp_partitions(struct mmc_card * card,u8 * ext_csd)321 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
322 {
323 int idx;
324 u8 hc_erase_grp_sz, hc_wp_grp_sz;
325 u64 part_size;
326
327 /*
328 * General purpose partition feature support --
329 * If ext_csd has the size of general purpose partitions,
330 * set size, part_cfg, partition name in mmc_part.
331 */
332 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
333 EXT_CSD_PART_SUPPORT_PART_EN) {
334 hc_erase_grp_sz =
335 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
336 hc_wp_grp_sz =
337 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
338
339 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
340 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
341 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
342 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
343 continue;
344 if (card->ext_csd.partition_setting_completed == 0) {
345 pr_warn("%s: has partition size defined without partition complete\n",
346 mmc_hostname(card->host));
347 break;
348 }
349 part_size =
350 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
351 << 16) +
352 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
353 << 8) +
354 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
355 part_size *= (hc_erase_grp_sz * hc_wp_grp_sz);
356 mmc_part_add(card, part_size << 19,
357 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
358 "gp%d", idx, false,
359 MMC_BLK_DATA_AREA_GP);
360 }
361 }
362 }
363
364 /* Minimum partition switch timeout in milliseconds */
365 #define MMC_MIN_PART_SWITCH_TIME 300
366
367 /*
368 * Decode extended CSD.
369 */
mmc_decode_ext_csd(struct mmc_card * card,u8 * ext_csd)370 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
371 {
372 int err = 0, idx;
373 u64 part_size;
374 struct device_node *np;
375 bool broken_hpi = false;
376
377 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
378 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
379 if (card->csd.structure == 3) {
380 if (card->ext_csd.raw_ext_csd_structure > 2) {
381 pr_err("%s: unrecognised EXT_CSD structure "
382 "version %d\n", mmc_hostname(card->host),
383 card->ext_csd.raw_ext_csd_structure);
384 err = -EINVAL;
385 goto out;
386 }
387 }
388
389 np = mmc_of_find_child_device(card->host, 0);
390 if (np && of_device_is_compatible(np, "mmc-card"))
391 broken_hpi = of_property_read_bool(np, "broken-hpi");
392 of_node_put(np);
393
394 /*
395 * The EXT_CSD format is meant to be forward compatible. As long
396 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
397 * are authorized, see JEDEC JESD84-B50 section B.8.
398 */
399 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
400
401 /* fixup device after ext_csd revision field is updated */
402 mmc_fixup_device(card, mmc_ext_csd_fixups);
403
404 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
405 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
406 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
407 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
408 if (card->ext_csd.rev >= 2) {
409 card->ext_csd.sectors =
410 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
411 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
412 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
413 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
414
415 /* Cards with density > 2GiB are sector addressed */
416 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
417 mmc_card_set_blockaddr(card);
418 }
419
420 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
421 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
422 mmc_select_card_type(card);
423
424 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
425 card->ext_csd.raw_erase_timeout_mult =
426 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
427 card->ext_csd.raw_hc_erase_grp_size =
428 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
429 card->ext_csd.raw_boot_mult =
430 ext_csd[EXT_CSD_BOOT_MULT];
431 if (card->ext_csd.rev >= 3) {
432 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
433 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
434
435 /* EXT_CSD value is in units of 10ms, but we store in ms */
436 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
437
438 /* Sleep / awake timeout in 100ns units */
439 if (sa_shift > 0 && sa_shift <= 0x17)
440 card->ext_csd.sa_timeout =
441 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
442 card->ext_csd.erase_group_def =
443 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
444 card->ext_csd.hc_erase_timeout = 300 *
445 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
446 card->ext_csd.hc_erase_size =
447 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
448
449 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
450
451 /*
452 * There are two boot regions of equal size, defined in
453 * multiples of 128K.
454 */
455 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
456 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
457 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
458 mmc_part_add(card, part_size,
459 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
460 "boot%d", idx, true,
461 MMC_BLK_DATA_AREA_BOOT);
462 }
463 }
464 }
465
466 card->ext_csd.raw_hc_erase_gap_size =
467 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
468 card->ext_csd.raw_sec_trim_mult =
469 ext_csd[EXT_CSD_SEC_TRIM_MULT];
470 card->ext_csd.raw_sec_erase_mult =
471 ext_csd[EXT_CSD_SEC_ERASE_MULT];
472 card->ext_csd.raw_sec_feature_support =
473 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
474 card->ext_csd.raw_trim_mult =
475 ext_csd[EXT_CSD_TRIM_MULT];
476 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
477 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
478 if (card->ext_csd.rev >= 4) {
479 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
480 EXT_CSD_PART_SETTING_COMPLETED)
481 card->ext_csd.partition_setting_completed = 1;
482 else
483 card->ext_csd.partition_setting_completed = 0;
484
485 mmc_manage_enhanced_area(card, ext_csd);
486
487 mmc_manage_gp_partitions(card, ext_csd);
488
489 card->ext_csd.sec_trim_mult =
490 ext_csd[EXT_CSD_SEC_TRIM_MULT];
491 card->ext_csd.sec_erase_mult =
492 ext_csd[EXT_CSD_SEC_ERASE_MULT];
493 card->ext_csd.sec_feature_support =
494 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
495 card->ext_csd.trim_timeout = 300 *
496 ext_csd[EXT_CSD_TRIM_MULT];
497
498 /*
499 * Note that the call to mmc_part_add above defaults to read
500 * only. If this default assumption is changed, the call must
501 * take into account the value of boot_locked below.
502 */
503 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
504 card->ext_csd.boot_ro_lockable = true;
505
506 /* Save power class values */
507 card->ext_csd.raw_pwr_cl_52_195 =
508 ext_csd[EXT_CSD_PWR_CL_52_195];
509 card->ext_csd.raw_pwr_cl_26_195 =
510 ext_csd[EXT_CSD_PWR_CL_26_195];
511 card->ext_csd.raw_pwr_cl_52_360 =
512 ext_csd[EXT_CSD_PWR_CL_52_360];
513 card->ext_csd.raw_pwr_cl_26_360 =
514 ext_csd[EXT_CSD_PWR_CL_26_360];
515 card->ext_csd.raw_pwr_cl_200_195 =
516 ext_csd[EXT_CSD_PWR_CL_200_195];
517 card->ext_csd.raw_pwr_cl_200_360 =
518 ext_csd[EXT_CSD_PWR_CL_200_360];
519 card->ext_csd.raw_pwr_cl_ddr_52_195 =
520 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
521 card->ext_csd.raw_pwr_cl_ddr_52_360 =
522 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
523 card->ext_csd.raw_pwr_cl_ddr_200_360 =
524 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
525 }
526
527 if (card->ext_csd.rev >= 5) {
528 /* Adjust production date as per JEDEC JESD84-B451 */
529 if (card->cid.year < 2010)
530 card->cid.year += 16;
531
532 /* check whether the eMMC card supports BKOPS */
533 if (ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
534 card->ext_csd.bkops = 1;
535 card->ext_csd.man_bkops_en =
536 (ext_csd[EXT_CSD_BKOPS_EN] &
537 EXT_CSD_MANUAL_BKOPS_MASK);
538 card->ext_csd.raw_bkops_status =
539 ext_csd[EXT_CSD_BKOPS_STATUS];
540 if (card->ext_csd.man_bkops_en)
541 pr_debug("%s: MAN_BKOPS_EN bit is set\n",
542 mmc_hostname(card->host));
543 card->ext_csd.auto_bkops_en =
544 (ext_csd[EXT_CSD_BKOPS_EN] &
545 EXT_CSD_AUTO_BKOPS_MASK);
546 if (card->ext_csd.auto_bkops_en)
547 pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
548 mmc_hostname(card->host));
549 }
550
551 /* check whether the eMMC card supports HPI */
552 if (!mmc_card_broken_hpi(card) &&
553 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
554 card->ext_csd.hpi = 1;
555 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
556 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
557 else
558 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
559 /*
560 * Indicate the maximum timeout to close
561 * a command interrupted by HPI
562 */
563 card->ext_csd.out_of_int_time =
564 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
565 }
566
567 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
568 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
569
570 /*
571 * RPMB regions are defined in multiples of 128K.
572 */
573 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
574 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
575 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
576 EXT_CSD_PART_CONFIG_ACC_RPMB,
577 "rpmb", 0, false,
578 MMC_BLK_DATA_AREA_RPMB);
579 }
580 }
581
582 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
583 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
584 card->erased_byte = 0xFF;
585 else
586 card->erased_byte = 0x0;
587
588 /* eMMC v4.5 or later */
589 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
590 if (card->ext_csd.rev >= 6) {
591 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
592
593 card->ext_csd.generic_cmd6_time = 10 *
594 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
595 card->ext_csd.power_off_longtime = 10 *
596 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
597
598 card->ext_csd.cache_size =
599 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
600 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
601 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
602 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
603
604 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
605 card->ext_csd.data_sector_size = 4096;
606 else
607 card->ext_csd.data_sector_size = 512;
608
609 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
610 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
611 card->ext_csd.data_tag_unit_size =
612 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
613 (card->ext_csd.data_sector_size);
614 } else {
615 card->ext_csd.data_tag_unit_size = 0;
616 }
617
618 card->ext_csd.max_packed_writes =
619 ext_csd[EXT_CSD_MAX_PACKED_WRITES];
620 card->ext_csd.max_packed_reads =
621 ext_csd[EXT_CSD_MAX_PACKED_READS];
622 } else {
623 card->ext_csd.data_sector_size = 512;
624 }
625
626 /*
627 * GENERIC_CMD6_TIME is to be used "unless a specific timeout is defined
628 * when accessing a specific field", so use it here if there is no
629 * PARTITION_SWITCH_TIME.
630 */
631 if (!card->ext_csd.part_time)
632 card->ext_csd.part_time = card->ext_csd.generic_cmd6_time;
633 /* Some eMMC set the value too low so set a minimum */
634 if (card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
635 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
636
637 /* eMMC v5 or later */
638 if (card->ext_csd.rev >= 7) {
639 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
640 MMC_FIRMWARE_LEN);
641 card->ext_csd.ffu_capable =
642 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
643 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
644
645 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
646 card->ext_csd.device_life_time_est_typ_a =
647 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
648 card->ext_csd.device_life_time_est_typ_b =
649 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
650 }
651
652 /* eMMC v5.1 or later */
653 if (card->ext_csd.rev >= 8) {
654 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
655 EXT_CSD_CMDQ_SUPPORTED;
656 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
657 EXT_CSD_CMDQ_DEPTH_MASK) + 1;
658 /* Exclude inefficiently small queue depths */
659 if (card->ext_csd.cmdq_depth <= 2) {
660 card->ext_csd.cmdq_support = false;
661 card->ext_csd.cmdq_depth = 0;
662 }
663 if (card->ext_csd.cmdq_support) {
664 pr_debug("%s: Command Queue supported depth %u\n",
665 mmc_hostname(card->host),
666 card->ext_csd.cmdq_depth);
667 }
668 card->ext_csd.enhanced_rpmb_supported =
669 (card->ext_csd.rel_param &
670 EXT_CSD_WR_REL_PARAM_EN_RPMB_REL_WR);
671 }
672 out:
673 return err;
674 }
675
mmc_read_ext_csd(struct mmc_card * card)676 static int mmc_read_ext_csd(struct mmc_card *card)
677 {
678 u8 *ext_csd;
679 int err;
680
681 if (!mmc_can_ext_csd(card))
682 return 0;
683
684 err = mmc_get_ext_csd(card, &ext_csd);
685 if (err) {
686 /* If the host or the card can't do the switch,
687 * fail more gracefully. */
688 if ((err != -EINVAL)
689 && (err != -ENOSYS)
690 && (err != -EFAULT))
691 return err;
692
693 /*
694 * High capacity cards should have this "magic" size
695 * stored in their CSD.
696 */
697 if (card->csd.capacity == (4096 * 512)) {
698 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
699 mmc_hostname(card->host));
700 } else {
701 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
702 mmc_hostname(card->host));
703 err = 0;
704 }
705
706 return err;
707 }
708
709 err = mmc_decode_ext_csd(card, ext_csd);
710 kfree(ext_csd);
711 return err;
712 }
713
mmc_compare_ext_csds(struct mmc_card * card,unsigned bus_width)714 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
715 {
716 u8 *bw_ext_csd;
717 int err;
718
719 if (bus_width == MMC_BUS_WIDTH_1)
720 return 0;
721
722 err = mmc_get_ext_csd(card, &bw_ext_csd);
723 if (err)
724 return err;
725
726 /* only compare read only fields */
727 err = !((card->ext_csd.raw_partition_support ==
728 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
729 (card->ext_csd.raw_erased_mem_count ==
730 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
731 (card->ext_csd.rev ==
732 bw_ext_csd[EXT_CSD_REV]) &&
733 (card->ext_csd.raw_ext_csd_structure ==
734 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
735 (card->ext_csd.raw_card_type ==
736 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
737 (card->ext_csd.raw_s_a_timeout ==
738 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
739 (card->ext_csd.raw_hc_erase_gap_size ==
740 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
741 (card->ext_csd.raw_erase_timeout_mult ==
742 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
743 (card->ext_csd.raw_hc_erase_grp_size ==
744 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
745 (card->ext_csd.raw_sec_trim_mult ==
746 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
747 (card->ext_csd.raw_sec_erase_mult ==
748 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
749 (card->ext_csd.raw_sec_feature_support ==
750 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
751 (card->ext_csd.raw_trim_mult ==
752 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
753 (card->ext_csd.raw_sectors[0] ==
754 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
755 (card->ext_csd.raw_sectors[1] ==
756 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
757 (card->ext_csd.raw_sectors[2] ==
758 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
759 (card->ext_csd.raw_sectors[3] ==
760 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
761 (card->ext_csd.raw_pwr_cl_52_195 ==
762 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
763 (card->ext_csd.raw_pwr_cl_26_195 ==
764 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
765 (card->ext_csd.raw_pwr_cl_52_360 ==
766 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
767 (card->ext_csd.raw_pwr_cl_26_360 ==
768 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
769 (card->ext_csd.raw_pwr_cl_200_195 ==
770 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
771 (card->ext_csd.raw_pwr_cl_200_360 ==
772 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
773 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
774 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
775 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
776 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
777 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
778 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
779
780 if (err)
781 err = -EINVAL;
782
783 kfree(bw_ext_csd);
784 return err;
785 }
786
787 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
788 card->raw_cid[2], card->raw_cid[3]);
789 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
790 card->raw_csd[2], card->raw_csd[3]);
791 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
792 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
793 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
794 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
795 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
796 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
797 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
798 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
799 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
800 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
801 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
802 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
803 card->ext_csd.device_life_time_est_typ_a,
804 card->ext_csd.device_life_time_est_typ_b);
805 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
806 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
807 card->ext_csd.enhanced_area_offset);
808 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
809 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
810 MMC_DEV_ATTR(enhanced_rpmb_supported, "%#x\n",
811 card->ext_csd.enhanced_rpmb_supported);
812 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
813 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
814 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
815 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
816
mmc_fwrev_show(struct device * dev,struct device_attribute * attr,char * buf)817 static ssize_t mmc_fwrev_show(struct device *dev,
818 struct device_attribute *attr,
819 char *buf)
820 {
821 struct mmc_card *card = mmc_dev_to_card(dev);
822
823 if (card->ext_csd.rev < 7)
824 return sysfs_emit(buf, "0x%x\n", card->cid.fwrev);
825 else
826 return sysfs_emit(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
827 card->ext_csd.fwrev);
828 }
829
830 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
831
mmc_dsr_show(struct device * dev,struct device_attribute * attr,char * buf)832 static ssize_t mmc_dsr_show(struct device *dev,
833 struct device_attribute *attr,
834 char *buf)
835 {
836 struct mmc_card *card = mmc_dev_to_card(dev);
837 struct mmc_host *host = card->host;
838
839 if (card->csd.dsr_imp && host->dsr_req)
840 return sysfs_emit(buf, "0x%x\n", host->dsr);
841 else
842 /* return default DSR value */
843 return sysfs_emit(buf, "0x%x\n", 0x404);
844 }
845
846 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
847
848 static struct attribute *mmc_std_attrs[] = {
849 &dev_attr_cid.attr,
850 &dev_attr_csd.attr,
851 &dev_attr_date.attr,
852 &dev_attr_erase_size.attr,
853 &dev_attr_preferred_erase_size.attr,
854 &dev_attr_fwrev.attr,
855 &dev_attr_ffu_capable.attr,
856 &dev_attr_hwrev.attr,
857 &dev_attr_manfid.attr,
858 &dev_attr_name.attr,
859 &dev_attr_oemid.attr,
860 &dev_attr_prv.attr,
861 &dev_attr_rev.attr,
862 &dev_attr_pre_eol_info.attr,
863 &dev_attr_life_time.attr,
864 &dev_attr_serial.attr,
865 &dev_attr_enhanced_area_offset.attr,
866 &dev_attr_enhanced_area_size.attr,
867 &dev_attr_raw_rpmb_size_mult.attr,
868 &dev_attr_enhanced_rpmb_supported.attr,
869 &dev_attr_rel_sectors.attr,
870 &dev_attr_ocr.attr,
871 &dev_attr_rca.attr,
872 &dev_attr_dsr.attr,
873 &dev_attr_cmdq_en.attr,
874 NULL,
875 };
876 ATTRIBUTE_GROUPS(mmc_std);
877
878 static struct device_type mmc_type = {
879 .groups = mmc_std_groups,
880 };
881
882 /*
883 * Select the PowerClass for the current bus width
884 * If power class is defined for 4/8 bit bus in the
885 * extended CSD register, select it by executing the
886 * mmc_switch command.
887 */
__mmc_select_powerclass(struct mmc_card * card,unsigned int bus_width)888 static int __mmc_select_powerclass(struct mmc_card *card,
889 unsigned int bus_width)
890 {
891 struct mmc_host *host = card->host;
892 struct mmc_ext_csd *ext_csd = &card->ext_csd;
893 unsigned int pwrclass_val = 0;
894 int err = 0;
895
896 switch (1 << host->ios.vdd) {
897 case MMC_VDD_165_195:
898 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
899 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
900 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
901 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
902 ext_csd->raw_pwr_cl_52_195 :
903 ext_csd->raw_pwr_cl_ddr_52_195;
904 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
905 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
906 break;
907 case MMC_VDD_27_28:
908 case MMC_VDD_28_29:
909 case MMC_VDD_29_30:
910 case MMC_VDD_30_31:
911 case MMC_VDD_31_32:
912 case MMC_VDD_32_33:
913 case MMC_VDD_33_34:
914 case MMC_VDD_34_35:
915 case MMC_VDD_35_36:
916 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
917 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
918 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
919 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
920 ext_csd->raw_pwr_cl_52_360 :
921 ext_csd->raw_pwr_cl_ddr_52_360;
922 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
923 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
924 ext_csd->raw_pwr_cl_ddr_200_360 :
925 ext_csd->raw_pwr_cl_200_360;
926 break;
927 default:
928 pr_warn("%s: Voltage range not supported for power class\n",
929 mmc_hostname(host));
930 return -EINVAL;
931 }
932
933 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
934 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
935 EXT_CSD_PWR_CL_8BIT_SHIFT;
936 else
937 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
938 EXT_CSD_PWR_CL_4BIT_SHIFT;
939
940 /* If the power class is different from the default value */
941 if (pwrclass_val > 0) {
942 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
943 EXT_CSD_POWER_CLASS,
944 pwrclass_val,
945 card->ext_csd.generic_cmd6_time);
946 }
947
948 return err;
949 }
950
mmc_select_powerclass(struct mmc_card * card)951 static int mmc_select_powerclass(struct mmc_card *card)
952 {
953 struct mmc_host *host = card->host;
954 u32 bus_width, ext_csd_bits;
955 int err, ddr;
956
957 /* Power class selection is supported for versions >= 4.0 */
958 if (!mmc_can_ext_csd(card))
959 return 0;
960
961 bus_width = host->ios.bus_width;
962 /* Power class values are defined only for 4/8 bit bus */
963 if (bus_width == MMC_BUS_WIDTH_1)
964 return 0;
965
966 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
967 if (ddr)
968 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
969 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
970 else
971 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
972 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
973
974 err = __mmc_select_powerclass(card, ext_csd_bits);
975 if (err)
976 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
977 mmc_hostname(host), 1 << bus_width, ddr);
978
979 return err;
980 }
981
982 /*
983 * Set the bus speed for the selected speed mode.
984 */
mmc_set_bus_speed(struct mmc_card * card)985 static void mmc_set_bus_speed(struct mmc_card *card)
986 {
987 unsigned int max_dtr = (unsigned int)-1;
988
989 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
990 max_dtr > card->ext_csd.hs200_max_dtr)
991 max_dtr = card->ext_csd.hs200_max_dtr;
992 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
993 max_dtr = card->ext_csd.hs_max_dtr;
994 else if (max_dtr > card->csd.max_dtr)
995 max_dtr = card->csd.max_dtr;
996
997 mmc_set_clock(card->host, max_dtr);
998 }
999
1000 /*
1001 * Select the bus width amoung 4-bit and 8-bit(SDR).
1002 * If the bus width is changed successfully, return the selected width value.
1003 * Zero is returned instead of error value if the wide width is not supported.
1004 */
mmc_select_bus_width(struct mmc_card * card)1005 static int mmc_select_bus_width(struct mmc_card *card)
1006 {
1007 static unsigned ext_csd_bits[] = {
1008 EXT_CSD_BUS_WIDTH_8,
1009 EXT_CSD_BUS_WIDTH_4,
1010 };
1011 static unsigned bus_widths[] = {
1012 MMC_BUS_WIDTH_8,
1013 MMC_BUS_WIDTH_4,
1014 };
1015 struct mmc_host *host = card->host;
1016 unsigned idx, bus_width = 0;
1017 int err = 0;
1018
1019 if (!mmc_can_ext_csd(card) ||
1020 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1021 return 0;
1022
1023 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1024
1025 /*
1026 * Unlike SD, MMC cards dont have a configuration register to notify
1027 * supported bus width. So bus test command should be run to identify
1028 * the supported bus width or compare the ext csd values of current
1029 * bus width and ext csd values of 1 bit mode read earlier.
1030 */
1031 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1032 /*
1033 * Host is capable of 8bit transfer, then switch
1034 * the device to work in 8bit transfer mode. If the
1035 * mmc switch command returns error then switch to
1036 * 4bit transfer mode. On success set the corresponding
1037 * bus width on the host.
1038 */
1039 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1040 EXT_CSD_BUS_WIDTH,
1041 ext_csd_bits[idx],
1042 card->ext_csd.generic_cmd6_time);
1043 if (err)
1044 continue;
1045
1046 bus_width = bus_widths[idx];
1047 mmc_set_bus_width(host, bus_width);
1048
1049 /*
1050 * If controller can't handle bus width test,
1051 * compare ext_csd previously read in 1 bit mode
1052 * against ext_csd at new bus width
1053 */
1054 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1055 err = mmc_compare_ext_csds(card, bus_width);
1056 else
1057 err = mmc_bus_test(card, bus_width);
1058
1059 if (!err) {
1060 err = bus_width;
1061 break;
1062 } else {
1063 pr_warn("%s: switch to bus width %d failed\n",
1064 mmc_hostname(host), 1 << bus_width);
1065 }
1066 }
1067
1068 return err;
1069 }
1070
1071 /*
1072 * Switch to the high-speed mode
1073 */
mmc_select_hs(struct mmc_card * card)1074 static int mmc_select_hs(struct mmc_card *card)
1075 {
1076 int err;
1077
1078 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1079 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1080 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1081 true, true, MMC_CMD_RETRIES);
1082 if (err)
1083 pr_warn("%s: switch to high-speed failed, err:%d\n",
1084 mmc_hostname(card->host), err);
1085
1086 return err;
1087 }
1088
1089 /*
1090 * Activate wide bus and DDR if supported.
1091 */
mmc_select_hs_ddr(struct mmc_card * card)1092 static int mmc_select_hs_ddr(struct mmc_card *card)
1093 {
1094 struct mmc_host *host = card->host;
1095 u32 bus_width, ext_csd_bits;
1096 int err = 0;
1097
1098 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1099 return 0;
1100
1101 bus_width = host->ios.bus_width;
1102 if (bus_width == MMC_BUS_WIDTH_1)
1103 return 0;
1104
1105 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1106 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1107
1108 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1109 EXT_CSD_BUS_WIDTH,
1110 ext_csd_bits,
1111 card->ext_csd.generic_cmd6_time,
1112 MMC_TIMING_MMC_DDR52,
1113 true, true, MMC_CMD_RETRIES);
1114 if (err) {
1115 pr_err("%s: switch to bus width %d ddr failed\n",
1116 mmc_hostname(host), 1 << bus_width);
1117 return err;
1118 }
1119
1120 /*
1121 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1122 * signaling.
1123 *
1124 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1125 *
1126 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1127 * in the JEDEC spec for DDR.
1128 *
1129 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1130 * host controller can support this, like some of the SDHCI
1131 * controller which connect to an eMMC device. Some of these
1132 * host controller still needs to use 1.8v vccq for supporting
1133 * DDR mode.
1134 *
1135 * So the sequence will be:
1136 * if (host and device can both support 1.2v IO)
1137 * use 1.2v IO;
1138 * else if (host and device can both support 1.8v IO)
1139 * use 1.8v IO;
1140 * so if host and device can only support 3.3v IO, this is the
1141 * last choice.
1142 *
1143 * WARNING: eMMC rules are NOT the same as SD DDR
1144 */
1145 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1146 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1147 if (!err)
1148 return 0;
1149 }
1150
1151 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1152 host->caps & MMC_CAP_1_8V_DDR)
1153 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1154
1155 /* make sure vccq is 3.3v after switching disaster */
1156 if (err)
1157 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1158
1159 return err;
1160 }
1161
mmc_select_hs400(struct mmc_card * card)1162 static int mmc_select_hs400(struct mmc_card *card)
1163 {
1164 struct mmc_host *host = card->host;
1165 unsigned int max_dtr;
1166 int err = 0;
1167 u8 val;
1168
1169 /*
1170 * HS400 mode requires 8-bit bus width
1171 */
1172 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1173 host->ios.bus_width == MMC_BUS_WIDTH_8))
1174 return 0;
1175
1176 /* Switch card to HS mode */
1177 val = EXT_CSD_TIMING_HS;
1178 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1179 EXT_CSD_HS_TIMING, val,
1180 card->ext_csd.generic_cmd6_time, 0,
1181 false, true, MMC_CMD_RETRIES);
1182 if (err) {
1183 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1184 mmc_hostname(host), err);
1185 return err;
1186 }
1187
1188 /* Prepare host to downgrade to HS timing */
1189 if (host->ops->hs400_downgrade)
1190 host->ops->hs400_downgrade(host);
1191
1192 /* Set host controller to HS timing */
1193 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1194
1195 /* Reduce frequency to HS frequency */
1196 max_dtr = card->ext_csd.hs_max_dtr;
1197 mmc_set_clock(host, max_dtr);
1198
1199 err = mmc_switch_status(card, true);
1200 if (err)
1201 goto out_err;
1202
1203 if (host->ops->hs400_prepare_ddr)
1204 host->ops->hs400_prepare_ddr(host);
1205
1206 /* Switch card to DDR */
1207 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1208 EXT_CSD_BUS_WIDTH,
1209 EXT_CSD_DDR_BUS_WIDTH_8,
1210 card->ext_csd.generic_cmd6_time);
1211 if (err) {
1212 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1213 mmc_hostname(host), err);
1214 return err;
1215 }
1216
1217 /* Switch card to HS400 */
1218 val = EXT_CSD_TIMING_HS400 |
1219 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1220 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1221 EXT_CSD_HS_TIMING, val,
1222 card->ext_csd.generic_cmd6_time, 0,
1223 false, true, MMC_CMD_RETRIES);
1224 if (err) {
1225 pr_err("%s: switch to hs400 failed, err:%d\n",
1226 mmc_hostname(host), err);
1227 return err;
1228 }
1229
1230 /* Set host controller to HS400 timing and frequency */
1231 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1232 mmc_set_bus_speed(card);
1233
1234 if (host->ops->execute_hs400_tuning) {
1235 mmc_retune_disable(host);
1236 err = host->ops->execute_hs400_tuning(host, card);
1237 mmc_retune_enable(host);
1238 if (err)
1239 goto out_err;
1240 }
1241
1242 if (host->ops->hs400_complete)
1243 host->ops->hs400_complete(host);
1244
1245 err = mmc_switch_status(card, true);
1246 if (err)
1247 goto out_err;
1248
1249 return 0;
1250
1251 out_err:
1252 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1253 __func__, err);
1254 return err;
1255 }
1256
mmc_hs200_to_hs400(struct mmc_card * card)1257 int mmc_hs200_to_hs400(struct mmc_card *card)
1258 {
1259 return mmc_select_hs400(card);
1260 }
1261
mmc_hs400_to_hs200(struct mmc_card * card)1262 int mmc_hs400_to_hs200(struct mmc_card *card)
1263 {
1264 struct mmc_host *host = card->host;
1265 unsigned int max_dtr;
1266 int err;
1267 u8 val;
1268
1269 /* Reduce frequency to HS */
1270 max_dtr = card->ext_csd.hs_max_dtr;
1271 mmc_set_clock(host, max_dtr);
1272
1273 /* Switch HS400 to HS DDR */
1274 val = EXT_CSD_TIMING_HS;
1275 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1276 val, card->ext_csd.generic_cmd6_time, 0,
1277 false, true, MMC_CMD_RETRIES);
1278 if (err)
1279 goto out_err;
1280
1281 if (host->ops->hs400_downgrade)
1282 host->ops->hs400_downgrade(host);
1283
1284 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1285
1286 err = mmc_switch_status(card, true);
1287 if (err)
1288 goto out_err;
1289
1290 /* Switch HS DDR to HS */
1291 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1292 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1293 0, false, true, MMC_CMD_RETRIES);
1294 if (err)
1295 goto out_err;
1296
1297 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1298
1299 err = mmc_switch_status(card, true);
1300 if (err)
1301 goto out_err;
1302
1303 /* Switch HS to HS200 */
1304 val = EXT_CSD_TIMING_HS200 |
1305 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1306 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1307 val, card->ext_csd.generic_cmd6_time, 0,
1308 false, true, MMC_CMD_RETRIES);
1309 if (err)
1310 goto out_err;
1311
1312 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1313
1314 /*
1315 * For HS200, CRC errors are not a reliable way to know the switch
1316 * failed. If there really is a problem, we would expect tuning will
1317 * fail and the result ends up the same.
1318 */
1319 err = mmc_switch_status(card, false);
1320 if (err)
1321 goto out_err;
1322
1323 mmc_set_bus_speed(card);
1324
1325 /* Prepare tuning for HS400 mode. */
1326 if (host->ops->prepare_hs400_tuning)
1327 host->ops->prepare_hs400_tuning(host, &host->ios);
1328
1329 return 0;
1330
1331 out_err:
1332 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1333 __func__, err);
1334 return err;
1335 }
1336
mmc_select_driver_type(struct mmc_card * card)1337 static void mmc_select_driver_type(struct mmc_card *card)
1338 {
1339 int card_drv_type, drive_strength, drv_type = 0;
1340 int fixed_drv_type = card->host->fixed_drv_type;
1341
1342 card_drv_type = card->ext_csd.raw_driver_strength |
1343 mmc_driver_type_mask(0);
1344
1345 if (fixed_drv_type >= 0)
1346 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1347 ? fixed_drv_type : 0;
1348 else
1349 drive_strength = mmc_select_drive_strength(card,
1350 card->ext_csd.hs200_max_dtr,
1351 card_drv_type, &drv_type);
1352
1353 card->drive_strength = drive_strength;
1354
1355 if (drv_type)
1356 mmc_set_driver_type(card->host, drv_type);
1357 }
1358
mmc_select_hs400es(struct mmc_card * card)1359 static int mmc_select_hs400es(struct mmc_card *card)
1360 {
1361 struct mmc_host *host = card->host;
1362 int err = -EINVAL;
1363 u8 val;
1364
1365 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1366 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1367
1368 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1369 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1370
1371 /* If fails try again during next card power cycle */
1372 if (err)
1373 goto out_err;
1374
1375 err = mmc_select_bus_width(card);
1376 if (err != MMC_BUS_WIDTH_8) {
1377 pr_err("%s: switch to 8bit bus width failed, err:%d\n",
1378 mmc_hostname(host), err);
1379 err = err < 0 ? err : -ENOTSUPP;
1380 goto out_err;
1381 }
1382
1383 /* Switch card to HS mode */
1384 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1385 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1386 card->ext_csd.generic_cmd6_time, 0,
1387 false, true, MMC_CMD_RETRIES);
1388 if (err) {
1389 pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1390 mmc_hostname(host), err);
1391 goto out_err;
1392 }
1393
1394 /*
1395 * Bump to HS timing and frequency. Some cards don't handle
1396 * SEND_STATUS reliably at the initial frequency.
1397 */
1398 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1399 mmc_set_bus_speed(card);
1400
1401 err = mmc_switch_status(card, true);
1402 if (err)
1403 goto out_err;
1404
1405 /* Switch card to DDR with strobe bit */
1406 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1407 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1408 EXT_CSD_BUS_WIDTH,
1409 val,
1410 card->ext_csd.generic_cmd6_time);
1411 if (err) {
1412 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1413 mmc_hostname(host), err);
1414 goto out_err;
1415 }
1416
1417 mmc_select_driver_type(card);
1418
1419 /* Switch card to HS400 */
1420 val = EXT_CSD_TIMING_HS400 |
1421 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1422 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1423 EXT_CSD_HS_TIMING, val,
1424 card->ext_csd.generic_cmd6_time, 0,
1425 false, true, MMC_CMD_RETRIES);
1426 if (err) {
1427 pr_err("%s: switch to hs400es failed, err:%d\n",
1428 mmc_hostname(host), err);
1429 goto out_err;
1430 }
1431
1432 /* Set host controller to HS400 timing and frequency */
1433 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1434
1435 /* Controller enable enhanced strobe function */
1436 host->ios.enhanced_strobe = true;
1437 if (host->ops->hs400_enhanced_strobe)
1438 host->ops->hs400_enhanced_strobe(host, &host->ios);
1439
1440 err = mmc_switch_status(card, true);
1441 if (err)
1442 goto out_err;
1443
1444 return 0;
1445
1446 out_err:
1447 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1448 __func__, err);
1449 return err;
1450 }
1451
1452 /*
1453 * For device supporting HS200 mode, the following sequence
1454 * should be done before executing the tuning process.
1455 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1456 * 2. switch to HS200 mode
1457 * 3. set the clock to > 52Mhz and <=200MHz
1458 */
mmc_select_hs200(struct mmc_card * card)1459 static int mmc_select_hs200(struct mmc_card *card)
1460 {
1461 struct mmc_host *host = card->host;
1462 unsigned int old_timing, old_signal_voltage, old_clock;
1463 int err = -EINVAL;
1464 u8 val;
1465
1466 old_signal_voltage = host->ios.signal_voltage;
1467 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1468 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1469
1470 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1471 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1472
1473 /* If fails try again during next card power cycle */
1474 if (err)
1475 return err;
1476
1477 mmc_select_driver_type(card);
1478
1479 /*
1480 * Set the bus width(4 or 8) with host's support and
1481 * switch to HS200 mode if bus width is set successfully.
1482 */
1483 err = mmc_select_bus_width(card);
1484 if (err > 0) {
1485 val = EXT_CSD_TIMING_HS200 |
1486 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1487 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1488 EXT_CSD_HS_TIMING, val,
1489 card->ext_csd.generic_cmd6_time, 0,
1490 false, true, MMC_CMD_RETRIES);
1491 if (err)
1492 goto err;
1493
1494 /*
1495 * Bump to HS timing and frequency. Some cards don't handle
1496 * SEND_STATUS reliably at the initial frequency.
1497 * NB: We can't move to full (HS200) speeds until after we've
1498 * successfully switched over.
1499 */
1500 old_timing = host->ios.timing;
1501 old_clock = host->ios.clock;
1502 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1503 mmc_set_clock(card->host, card->ext_csd.hs_max_dtr);
1504
1505 /*
1506 * For HS200, CRC errors are not a reliable way to know the
1507 * switch failed. If there really is a problem, we would expect
1508 * tuning will fail and the result ends up the same.
1509 */
1510 err = mmc_switch_status(card, false);
1511
1512 /*
1513 * mmc_select_timing() assumes timing has not changed if
1514 * it is a switch error.
1515 */
1516 if (err == -EBADMSG) {
1517 mmc_set_clock(host, old_clock);
1518 mmc_set_timing(host, old_timing);
1519 }
1520 }
1521 err:
1522 if (err) {
1523 /* fall back to the old signal voltage, if fails report error */
1524 if (mmc_set_signal_voltage(host, old_signal_voltage))
1525 err = -EIO;
1526
1527 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1528 __func__, err);
1529 }
1530 return err;
1531 }
1532
1533 /*
1534 * Activate High Speed, HS200 or HS400ES mode if supported.
1535 */
mmc_select_timing(struct mmc_card * card)1536 static int mmc_select_timing(struct mmc_card *card)
1537 {
1538 int err = 0;
1539
1540 if (!mmc_can_ext_csd(card))
1541 goto bus_speed;
1542
1543 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES) {
1544 err = mmc_select_hs400es(card);
1545 goto out;
1546 }
1547
1548 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200) {
1549 err = mmc_select_hs200(card);
1550 if (err == -EBADMSG)
1551 card->mmc_avail_type &= ~EXT_CSD_CARD_TYPE_HS200;
1552 else
1553 goto out;
1554 }
1555
1556 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1557 err = mmc_select_hs(card);
1558
1559 out:
1560 if (err && err != -EBADMSG)
1561 return err;
1562
1563 bus_speed:
1564 /*
1565 * Set the bus speed to the selected bus timing.
1566 * If timing is not selected, backward compatible is the default.
1567 */
1568 mmc_set_bus_speed(card);
1569 return 0;
1570 }
1571
1572 /*
1573 * Execute tuning sequence to seek the proper bus operating
1574 * conditions for HS200 and HS400, which sends CMD21 to the device.
1575 */
mmc_hs200_tuning(struct mmc_card * card)1576 static int mmc_hs200_tuning(struct mmc_card *card)
1577 {
1578 struct mmc_host *host = card->host;
1579
1580 /*
1581 * Timing should be adjusted to the HS400 target
1582 * operation frequency for tuning process
1583 */
1584 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1585 host->ios.bus_width == MMC_BUS_WIDTH_8)
1586 if (host->ops->prepare_hs400_tuning)
1587 host->ops->prepare_hs400_tuning(host, &host->ios);
1588
1589 return mmc_execute_tuning(card);
1590 }
1591
1592 /*
1593 * Handle the detection and initialisation of a card.
1594 *
1595 * In the case of a resume, "oldcard" will contain the card
1596 * we're trying to reinitialise.
1597 */
mmc_init_card(struct mmc_host * host,u32 ocr,struct mmc_card * oldcard)1598 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1599 struct mmc_card *oldcard)
1600 {
1601 struct mmc_card *card;
1602 int err;
1603 u32 cid[4];
1604 u32 rocr;
1605
1606 WARN_ON(!host->claimed);
1607
1608 /* Set correct bus mode for MMC before attempting init */
1609 if (!mmc_host_is_spi(host))
1610 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1611
1612 /*
1613 * Since we're changing the OCR value, we seem to
1614 * need to tell some cards to go back to the idle
1615 * state. We wait 1ms to give cards time to
1616 * respond.
1617 * mmc_go_idle is needed for eMMC that are asleep
1618 */
1619 mmc_go_idle(host);
1620
1621 /* The extra bit indicates that we support high capacity */
1622 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1623 if (err)
1624 goto err;
1625
1626 /*
1627 * For SPI, enable CRC as appropriate.
1628 */
1629 if (mmc_host_is_spi(host)) {
1630 err = mmc_spi_set_crc(host, use_spi_crc);
1631 if (err)
1632 goto err;
1633 }
1634
1635 /*
1636 * Fetch CID from card.
1637 */
1638 err = mmc_send_cid(host, cid);
1639 if (err)
1640 goto err;
1641
1642 if (oldcard) {
1643 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1644 pr_debug("%s: Perhaps the card was replaced\n",
1645 mmc_hostname(host));
1646 err = -ENOENT;
1647 goto err;
1648 }
1649
1650 card = oldcard;
1651 } else {
1652 /*
1653 * Allocate card structure.
1654 */
1655 card = mmc_alloc_card(host, &mmc_type);
1656 if (IS_ERR(card)) {
1657 err = PTR_ERR(card);
1658 goto err;
1659 }
1660
1661 card->ocr = ocr;
1662 card->type = MMC_TYPE_MMC;
1663 card->rca = 1;
1664 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1665 }
1666
1667 /*
1668 * Call the optional HC's init_card function to handle quirks.
1669 */
1670 if (host->ops->init_card)
1671 host->ops->init_card(host, card);
1672
1673 /*
1674 * For native busses: set card RCA and quit open drain mode.
1675 */
1676 if (!mmc_host_is_spi(host)) {
1677 err = mmc_set_relative_addr(card);
1678 if (err)
1679 goto free_card;
1680
1681 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1682 }
1683
1684 if (!oldcard) {
1685 /*
1686 * Fetch CSD from card.
1687 */
1688 err = mmc_send_csd(card, card->raw_csd);
1689 if (err)
1690 goto free_card;
1691
1692 err = mmc_decode_csd(card);
1693 if (err)
1694 goto free_card;
1695 err = mmc_decode_cid(card);
1696 if (err)
1697 goto free_card;
1698 }
1699
1700 /*
1701 * handling only for cards supporting DSR and hosts requesting
1702 * DSR configuration
1703 */
1704 if (card->csd.dsr_imp && host->dsr_req)
1705 mmc_set_dsr(host);
1706
1707 /*
1708 * Select card, as all following commands rely on that.
1709 */
1710 if (!mmc_host_is_spi(host)) {
1711 err = mmc_select_card(card);
1712 if (err)
1713 goto free_card;
1714 }
1715
1716 if (!oldcard) {
1717 /* Read extended CSD. */
1718 err = mmc_read_ext_csd(card);
1719 if (err)
1720 goto free_card;
1721
1722 /*
1723 * If doing byte addressing, check if required to do sector
1724 * addressing. Handle the case of <2GB cards needing sector
1725 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1726 * ocr register has bit 30 set for sector addressing.
1727 */
1728 if (rocr & BIT(30))
1729 mmc_card_set_blockaddr(card);
1730
1731 /* Erase size depends on CSD and Extended CSD */
1732 mmc_set_erase_size(card);
1733 }
1734
1735 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1736 if (card->ext_csd.rev >= 3) {
1737 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1738 EXT_CSD_ERASE_GROUP_DEF, 1,
1739 card->ext_csd.generic_cmd6_time);
1740
1741 if (err && err != -EBADMSG)
1742 goto free_card;
1743
1744 if (err) {
1745 /*
1746 * Just disable enhanced area off & sz
1747 * will try to enable ERASE_GROUP_DEF
1748 * during next time reinit
1749 */
1750 card->ext_csd.enhanced_area_offset = -EINVAL;
1751 card->ext_csd.enhanced_area_size = -EINVAL;
1752 } else {
1753 card->ext_csd.erase_group_def = 1;
1754 /*
1755 * enable ERASE_GRP_DEF successfully.
1756 * This will affect the erase size, so
1757 * here need to reset erase size
1758 */
1759 mmc_set_erase_size(card);
1760 }
1761 }
1762
1763 /*
1764 * Ensure eMMC user default partition is enabled
1765 */
1766 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1767 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1768 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1769 card->ext_csd.part_config,
1770 card->ext_csd.part_time);
1771 if (err && err != -EBADMSG)
1772 goto free_card;
1773 }
1774
1775 /*
1776 * Enable power_off_notification byte in the ext_csd register
1777 */
1778 if (card->ext_csd.rev >= 6) {
1779 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1780 EXT_CSD_POWER_OFF_NOTIFICATION,
1781 EXT_CSD_POWER_ON,
1782 card->ext_csd.generic_cmd6_time);
1783 if (err && err != -EBADMSG)
1784 goto free_card;
1785
1786 /*
1787 * The err can be -EBADMSG or 0,
1788 * so check for success and update the flag
1789 */
1790 if (!err)
1791 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1792 }
1793
1794 /* set erase_arg */
1795 if (mmc_can_discard(card))
1796 card->erase_arg = MMC_DISCARD_ARG;
1797 else if (mmc_can_trim(card))
1798 card->erase_arg = MMC_TRIM_ARG;
1799 else
1800 card->erase_arg = MMC_ERASE_ARG;
1801
1802 /*
1803 * Select timing interface
1804 */
1805 err = mmc_select_timing(card);
1806 if (err)
1807 goto free_card;
1808
1809 if (mmc_card_hs200(card)) {
1810 host->doing_init_tune = 1;
1811
1812 err = mmc_hs200_tuning(card);
1813 if (!err)
1814 err = mmc_select_hs400(card);
1815
1816 host->doing_init_tune = 0;
1817
1818 if (err)
1819 goto free_card;
1820
1821 } else if (!mmc_card_hs400es(card)) {
1822 /* Select the desired bus width optionally */
1823 err = mmc_select_bus_width(card);
1824 if (err > 0 && mmc_card_hs(card)) {
1825 err = mmc_select_hs_ddr(card);
1826 if (err)
1827 goto free_card;
1828 }
1829 }
1830
1831 /*
1832 * Choose the power class with selected bus interface
1833 */
1834 mmc_select_powerclass(card);
1835
1836 /*
1837 * Enable HPI feature (if supported)
1838 */
1839 if (card->ext_csd.hpi) {
1840 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1841 EXT_CSD_HPI_MGMT, 1,
1842 card->ext_csd.generic_cmd6_time);
1843 if (err && err != -EBADMSG)
1844 goto free_card;
1845 if (err) {
1846 pr_warn("%s: Enabling HPI failed\n",
1847 mmc_hostname(card->host));
1848 card->ext_csd.hpi_en = 0;
1849 } else {
1850 card->ext_csd.hpi_en = 1;
1851 }
1852 }
1853
1854 /*
1855 * If cache size is higher than 0, this indicates the existence of cache
1856 * and it can be turned on. Note that some eMMCs from Micron has been
1857 * reported to need ~800 ms timeout, while enabling the cache after
1858 * sudden power failure tests. Let's extend the timeout to a minimum of
1859 * DEFAULT_CACHE_EN_TIMEOUT_MS and do it for all cards.
1860 */
1861 if (card->ext_csd.cache_size > 0) {
1862 unsigned int timeout_ms = MIN_CACHE_EN_TIMEOUT_MS;
1863
1864 timeout_ms = max(card->ext_csd.generic_cmd6_time, timeout_ms);
1865 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1866 EXT_CSD_CACHE_CTRL, 1, timeout_ms);
1867 if (err && err != -EBADMSG)
1868 goto free_card;
1869
1870 /*
1871 * Only if no error, cache is turned on successfully.
1872 */
1873 if (err) {
1874 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1875 mmc_hostname(card->host), err);
1876 card->ext_csd.cache_ctrl = 0;
1877 } else {
1878 card->ext_csd.cache_ctrl = 1;
1879 }
1880 }
1881
1882 /*
1883 * Enable Command Queue if supported. Note that Packed Commands cannot
1884 * be used with Command Queue.
1885 */
1886 card->ext_csd.cmdq_en = false;
1887 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1888 err = mmc_cmdq_enable(card);
1889 if (err && err != -EBADMSG)
1890 goto free_card;
1891 if (err) {
1892 pr_warn("%s: Enabling CMDQ failed\n",
1893 mmc_hostname(card->host));
1894 card->ext_csd.cmdq_support = false;
1895 card->ext_csd.cmdq_depth = 0;
1896 }
1897 }
1898 /*
1899 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1900 * disabled for a time, so a flag is needed to indicate to re-enable the
1901 * Command Queue.
1902 */
1903 card->reenable_cmdq = card->ext_csd.cmdq_en;
1904
1905 if (host->cqe_ops && !host->cqe_enabled) {
1906 err = host->cqe_ops->cqe_enable(host, card);
1907 if (!err) {
1908 host->cqe_enabled = true;
1909
1910 if (card->ext_csd.cmdq_en) {
1911 pr_info("%s: Command Queue Engine enabled\n",
1912 mmc_hostname(host));
1913 } else {
1914 host->hsq_enabled = true;
1915 pr_info("%s: Host Software Queue enabled\n",
1916 mmc_hostname(host));
1917 }
1918 }
1919 }
1920
1921 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1922 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1923 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1924 mmc_hostname(host));
1925 err = -EINVAL;
1926 goto free_card;
1927 }
1928
1929 if (!oldcard)
1930 host->card = card;
1931
1932 return 0;
1933
1934 free_card:
1935 if (!oldcard)
1936 mmc_remove_card(card);
1937 err:
1938 return err;
1939 }
1940
mmc_can_sleep(struct mmc_card * card)1941 static int mmc_can_sleep(struct mmc_card *card)
1942 {
1943 return card->ext_csd.rev >= 3;
1944 }
1945
mmc_sleep_busy_cb(void * cb_data,bool * busy)1946 static int mmc_sleep_busy_cb(void *cb_data, bool *busy)
1947 {
1948 struct mmc_host *host = cb_data;
1949
1950 *busy = host->ops->card_busy(host);
1951 return 0;
1952 }
1953
mmc_sleep(struct mmc_host * host)1954 static int mmc_sleep(struct mmc_host *host)
1955 {
1956 struct mmc_command cmd = {};
1957 struct mmc_card *card = host->card;
1958 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1959 bool use_r1b_resp;
1960 int err;
1961
1962 /* Re-tuning can't be done once the card is deselected */
1963 mmc_retune_hold(host);
1964
1965 err = mmc_deselect_cards(host);
1966 if (err)
1967 goto out_release;
1968
1969 cmd.opcode = MMC_SLEEP_AWAKE;
1970 cmd.arg = card->rca << 16;
1971 cmd.arg |= 1 << 15;
1972 use_r1b_resp = mmc_prepare_busy_cmd(host, &cmd, timeout_ms);
1973
1974 err = mmc_wait_for_cmd(host, &cmd, 0);
1975 if (err)
1976 goto out_release;
1977
1978 /*
1979 * If the host does not wait while the card signals busy, then we can
1980 * try to poll, but only if the host supports HW polling, as the
1981 * SEND_STATUS cmd is not allowed. If we can't poll, then we simply need
1982 * to wait the sleep/awake timeout.
1983 */
1984 if (host->caps & MMC_CAP_WAIT_WHILE_BUSY && use_r1b_resp)
1985 goto out_release;
1986
1987 if (!host->ops->card_busy) {
1988 mmc_delay(timeout_ms);
1989 goto out_release;
1990 }
1991
1992 err = __mmc_poll_for_busy(host, 0, timeout_ms, &mmc_sleep_busy_cb, host);
1993
1994 out_release:
1995 mmc_retune_release(host);
1996 return err;
1997 }
1998
mmc_can_poweroff_notify(const struct mmc_card * card)1999 static int mmc_can_poweroff_notify(const struct mmc_card *card)
2000 {
2001 return card &&
2002 mmc_card_mmc(card) &&
2003 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
2004 }
2005
mmc_poweroff_notify(struct mmc_card * card,unsigned int notify_type)2006 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
2007 {
2008 unsigned int timeout = card->ext_csd.generic_cmd6_time;
2009 int err;
2010
2011 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
2012 if (notify_type == EXT_CSD_POWER_OFF_LONG)
2013 timeout = card->ext_csd.power_off_longtime;
2014
2015 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
2016 EXT_CSD_POWER_OFF_NOTIFICATION,
2017 notify_type, timeout, 0, false, false, MMC_CMD_RETRIES);
2018 if (err)
2019 pr_err("%s: Power Off Notification timed out, %u\n",
2020 mmc_hostname(card->host), timeout);
2021
2022 /* Disable the power off notification after the switch operation. */
2023 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
2024
2025 return err;
2026 }
2027
2028 /*
2029 * Host is being removed. Free up the current card.
2030 */
mmc_remove(struct mmc_host * host)2031 static void mmc_remove(struct mmc_host *host)
2032 {
2033 mmc_remove_card(host->card);
2034 host->card = NULL;
2035 }
2036
2037 /*
2038 * Card detection - card is alive.
2039 */
mmc_alive(struct mmc_host * host)2040 static int mmc_alive(struct mmc_host *host)
2041 {
2042 return mmc_send_status(host->card, NULL);
2043 }
2044
2045 /*
2046 * Card detection callback from host.
2047 */
mmc_detect(struct mmc_host * host)2048 static void mmc_detect(struct mmc_host *host)
2049 {
2050 int err;
2051
2052 mmc_get_card(host->card, NULL);
2053
2054 /*
2055 * Just check if our card has been removed.
2056 */
2057 err = _mmc_detect_card_removed(host);
2058
2059 mmc_put_card(host->card, NULL);
2060
2061 if (err) {
2062 mmc_remove(host);
2063
2064 mmc_claim_host(host);
2065 mmc_detach_bus(host);
2066 mmc_power_off(host);
2067 mmc_release_host(host);
2068 }
2069 }
2070
_mmc_cache_enabled(struct mmc_host * host)2071 static bool _mmc_cache_enabled(struct mmc_host *host)
2072 {
2073 return host->card->ext_csd.cache_size > 0 &&
2074 host->card->ext_csd.cache_ctrl & 1;
2075 }
2076
2077 /*
2078 * Flush the internal cache of the eMMC to non-volatile storage.
2079 */
_mmc_flush_cache(struct mmc_host * host)2080 static int _mmc_flush_cache(struct mmc_host *host)
2081 {
2082 int err = 0;
2083
2084 if (_mmc_cache_enabled(host)) {
2085 err = mmc_switch(host->card, EXT_CSD_CMD_SET_NORMAL,
2086 EXT_CSD_FLUSH_CACHE, 1,
2087 CACHE_FLUSH_TIMEOUT_MS);
2088 if (err)
2089 pr_err("%s: cache flush error %d\n",
2090 mmc_hostname(host), err);
2091 }
2092
2093 return err;
2094 }
2095
_mmc_suspend(struct mmc_host * host,bool is_suspend)2096 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
2097 {
2098 int err = 0;
2099 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
2100 EXT_CSD_POWER_OFF_LONG;
2101
2102 mmc_claim_host(host);
2103
2104 if (mmc_card_suspended(host->card))
2105 goto out;
2106
2107 err = _mmc_flush_cache(host);
2108 if (err)
2109 goto out;
2110
2111 if (mmc_can_poweroff_notify(host->card) &&
2112 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend ||
2113 (host->caps2 & MMC_CAP2_FULL_PWR_CYCLE_IN_SUSPEND)))
2114 err = mmc_poweroff_notify(host->card, notify_type);
2115 else if (mmc_can_sleep(host->card))
2116 err = mmc_sleep(host);
2117 else if (!mmc_host_is_spi(host))
2118 err = mmc_deselect_cards(host);
2119
2120 if (!err) {
2121 mmc_power_off(host);
2122 mmc_card_set_suspended(host->card);
2123 }
2124 out:
2125 mmc_release_host(host);
2126 return err;
2127 }
2128
2129 /*
2130 * Suspend callback
2131 */
mmc_suspend(struct mmc_host * host)2132 static int mmc_suspend(struct mmc_host *host)
2133 {
2134 int err;
2135
2136 err = _mmc_suspend(host, true);
2137 if (!err) {
2138 pm_runtime_disable(&host->card->dev);
2139 pm_runtime_set_suspended(&host->card->dev);
2140 }
2141
2142 return err;
2143 }
2144
2145 /*
2146 * This function tries to determine if the same card is still present
2147 * and, if so, restore all state to it.
2148 */
_mmc_resume(struct mmc_host * host)2149 static int _mmc_resume(struct mmc_host *host)
2150 {
2151 int err = 0;
2152
2153 mmc_claim_host(host);
2154
2155 if (!mmc_card_suspended(host->card))
2156 goto out;
2157
2158 mmc_power_up(host, host->card->ocr);
2159 err = mmc_init_card(host, host->card->ocr, host->card);
2160 mmc_card_clr_suspended(host->card);
2161
2162 out:
2163 mmc_release_host(host);
2164 return err;
2165 }
2166
2167 /*
2168 * Shutdown callback
2169 */
mmc_shutdown(struct mmc_host * host)2170 static int mmc_shutdown(struct mmc_host *host)
2171 {
2172 int err = 0;
2173
2174 /*
2175 * In a specific case for poweroff notify, we need to resume the card
2176 * before we can shutdown it properly.
2177 */
2178 if (mmc_can_poweroff_notify(host->card) &&
2179 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2180 err = _mmc_resume(host);
2181
2182 if (!err)
2183 err = _mmc_suspend(host, false);
2184
2185 return err;
2186 }
2187
2188 /*
2189 * Callback for resume.
2190 */
mmc_resume(struct mmc_host * host)2191 static int mmc_resume(struct mmc_host *host)
2192 {
2193 pm_runtime_enable(&host->card->dev);
2194 return 0;
2195 }
2196
2197 /*
2198 * Callback for runtime_suspend.
2199 */
mmc_runtime_suspend(struct mmc_host * host)2200 static int mmc_runtime_suspend(struct mmc_host *host)
2201 {
2202 int err;
2203
2204 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2205 return 0;
2206
2207 err = _mmc_suspend(host, true);
2208 if (err)
2209 pr_err("%s: error %d doing aggressive suspend\n",
2210 mmc_hostname(host), err);
2211
2212 return err;
2213 }
2214
2215 /*
2216 * Callback for runtime_resume.
2217 */
mmc_runtime_resume(struct mmc_host * host)2218 static int mmc_runtime_resume(struct mmc_host *host)
2219 {
2220 int err;
2221
2222 err = _mmc_resume(host);
2223 if (err && err != -ENOMEDIUM)
2224 pr_err("%s: error %d doing runtime resume\n",
2225 mmc_hostname(host), err);
2226
2227 return 0;
2228 }
2229
mmc_can_reset(struct mmc_card * card)2230 static int mmc_can_reset(struct mmc_card *card)
2231 {
2232 u8 rst_n_function;
2233
2234 rst_n_function = card->ext_csd.rst_n_function;
2235 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2236 return 0;
2237 return 1;
2238 }
2239
_mmc_hw_reset(struct mmc_host * host)2240 static int _mmc_hw_reset(struct mmc_host *host)
2241 {
2242 struct mmc_card *card = host->card;
2243
2244 /*
2245 * In the case of recovery, we can't expect flushing the cache to work
2246 * always, but we have a go and ignore errors.
2247 */
2248 _mmc_flush_cache(host);
2249
2250 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->card_hw_reset &&
2251 mmc_can_reset(card)) {
2252 /* If the card accept RST_n signal, send it. */
2253 mmc_set_clock(host, host->f_init);
2254 host->ops->card_hw_reset(host);
2255 /* Set initial state and call mmc_set_ios */
2256 mmc_set_initial_state(host);
2257 } else {
2258 /* Do a brute force power cycle */
2259 mmc_power_cycle(host, card->ocr);
2260 mmc_pwrseq_reset(host);
2261 }
2262 return mmc_init_card(host, card->ocr, card);
2263 }
2264
2265 static const struct mmc_bus_ops mmc_ops = {
2266 .remove = mmc_remove,
2267 .detect = mmc_detect,
2268 .suspend = mmc_suspend,
2269 .resume = mmc_resume,
2270 .runtime_suspend = mmc_runtime_suspend,
2271 .runtime_resume = mmc_runtime_resume,
2272 .alive = mmc_alive,
2273 .shutdown = mmc_shutdown,
2274 .hw_reset = _mmc_hw_reset,
2275 .cache_enabled = _mmc_cache_enabled,
2276 .flush_cache = _mmc_flush_cache,
2277 };
2278
2279 /*
2280 * Starting point for MMC card init.
2281 */
mmc_attach_mmc(struct mmc_host * host)2282 int mmc_attach_mmc(struct mmc_host *host)
2283 {
2284 int err;
2285 u32 ocr, rocr;
2286
2287 WARN_ON(!host->claimed);
2288
2289 /* Set correct bus mode for MMC before attempting attach */
2290 if (!mmc_host_is_spi(host))
2291 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2292
2293 err = mmc_send_op_cond(host, 0, &ocr);
2294 if (err)
2295 return err;
2296
2297 mmc_attach_bus(host, &mmc_ops);
2298 if (host->ocr_avail_mmc)
2299 host->ocr_avail = host->ocr_avail_mmc;
2300
2301 /*
2302 * We need to get OCR a different way for SPI.
2303 */
2304 if (mmc_host_is_spi(host)) {
2305 err = mmc_spi_read_ocr(host, 1, &ocr);
2306 if (err)
2307 goto err;
2308 }
2309
2310 rocr = mmc_select_voltage(host, ocr);
2311
2312 /*
2313 * Can we support the voltage of the card?
2314 */
2315 if (!rocr) {
2316 err = -EINVAL;
2317 goto err;
2318 }
2319
2320 /*
2321 * Detect and init the card.
2322 */
2323 err = mmc_init_card(host, rocr, NULL);
2324 if (err)
2325 goto err;
2326
2327 mmc_release_host(host);
2328 err = mmc_add_card(host->card);
2329 if (err)
2330 goto remove_card;
2331
2332 mmc_claim_host(host);
2333 return 0;
2334
2335 remove_card:
2336 mmc_remove_card(host->card);
2337 mmc_claim_host(host);
2338 host->card = NULL;
2339 err:
2340 mmc_detach_bus(host);
2341
2342 pr_err("%s: error %d whilst initialising MMC card\n",
2343 mmc_hostname(host), err);
2344
2345 return err;
2346 }
2347