1 /*
2  *  linux/mm/nommu.c
3  *
4  *  Replacement code for mm functions to support CPU's that don't
5  *  have any form of memory management unit (thus no virtual memory).
6  *
7  *  See Documentation/nommu-mmap.txt
8  *
9  *  Copyright (c) 2004-2008 David Howells <dhowells@redhat.com>
10  *  Copyright (c) 2000-2003 David McCullough <davidm@snapgear.com>
11  *  Copyright (c) 2000-2001 D Jeff Dionne <jeff@uClinux.org>
12  *  Copyright (c) 2002      Greg Ungerer <gerg@snapgear.com>
13  *  Copyright (c) 2007-2010 Paul Mundt <lethal@linux-sh.org>
14  */
15 
16 #include <linux/module.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/swap.h>
20 #include <linux/file.h>
21 #include <linux/highmem.h>
22 #include <linux/pagemap.h>
23 #include <linux/slab.h>
24 #include <linux/vmalloc.h>
25 #include <linux/tracehook.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/mount.h>
29 #include <linux/personality.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/audit.h>
33 
34 #include <asm/uaccess.h>
35 #include <asm/tlb.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mmu_context.h>
38 #include "internal.h"
39 
40 #if 0
41 #define kenter(FMT, ...) \
42 	printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
43 #define kleave(FMT, ...) \
44 	printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
45 #define kdebug(FMT, ...) \
46 	printk(KERN_DEBUG "xxx" FMT"yyy\n", ##__VA_ARGS__)
47 #else
48 #define kenter(FMT, ...) \
49 	no_printk(KERN_DEBUG "==> %s("FMT")\n", __func__, ##__VA_ARGS__)
50 #define kleave(FMT, ...) \
51 	no_printk(KERN_DEBUG "<== %s()"FMT"\n", __func__, ##__VA_ARGS__)
52 #define kdebug(FMT, ...) \
53 	no_printk(KERN_DEBUG FMT"\n", ##__VA_ARGS__)
54 #endif
55 
56 void *high_memory;
57 struct page *mem_map;
58 unsigned long max_mapnr;
59 unsigned long num_physpages;
60 unsigned long highest_memmap_pfn;
61 struct percpu_counter vm_committed_as;
62 int sysctl_overcommit_memory = OVERCOMMIT_GUESS; /* heuristic overcommit */
63 int sysctl_overcommit_ratio = 50; /* default is 50% */
64 int sysctl_max_map_count = DEFAULT_MAX_MAP_COUNT;
65 int sysctl_nr_trim_pages = CONFIG_NOMMU_INITIAL_TRIM_EXCESS;
66 int heap_stack_gap = 0;
67 
68 atomic_long_t mmap_pages_allocated;
69 
70 EXPORT_SYMBOL(mem_map);
71 EXPORT_SYMBOL(num_physpages);
72 
73 /* list of mapped, potentially shareable regions */
74 static struct kmem_cache *vm_region_jar;
75 struct rb_root nommu_region_tree = RB_ROOT;
76 DECLARE_RWSEM(nommu_region_sem);
77 
78 const struct vm_operations_struct generic_file_vm_ops = {
79 };
80 
81 /*
82  * Return the total memory allocated for this pointer, not
83  * just what the caller asked for.
84  *
85  * Doesn't have to be accurate, i.e. may have races.
86  */
kobjsize(const void * objp)87 unsigned int kobjsize(const void *objp)
88 {
89 	struct page *page;
90 
91 	/*
92 	 * If the object we have should not have ksize performed on it,
93 	 * return size of 0
94 	 */
95 	if (!objp || !virt_addr_valid(objp))
96 		return 0;
97 
98 	page = virt_to_head_page(objp);
99 
100 	/*
101 	 * If the allocator sets PageSlab, we know the pointer came from
102 	 * kmalloc().
103 	 */
104 	if (PageSlab(page))
105 		return ksize(objp);
106 
107 	/*
108 	 * If it's not a compound page, see if we have a matching VMA
109 	 * region. This test is intentionally done in reverse order,
110 	 * so if there's no VMA, we still fall through and hand back
111 	 * PAGE_SIZE for 0-order pages.
112 	 */
113 	if (!PageCompound(page)) {
114 		struct vm_area_struct *vma;
115 
116 		vma = find_vma(current->mm, (unsigned long)objp);
117 		if (vma)
118 			return vma->vm_end - vma->vm_start;
119 	}
120 
121 	/*
122 	 * The ksize() function is only guaranteed to work for pointers
123 	 * returned by kmalloc(). So handle arbitrary pointers here.
124 	 */
125 	return PAGE_SIZE << compound_order(page);
126 }
127 
__get_user_pages(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,int nr_pages,unsigned int foll_flags,struct page ** pages,struct vm_area_struct ** vmas,int * retry)128 int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
129 		     unsigned long start, int nr_pages, unsigned int foll_flags,
130 		     struct page **pages, struct vm_area_struct **vmas,
131 		     int *retry)
132 {
133 	struct vm_area_struct *vma;
134 	unsigned long vm_flags;
135 	int i;
136 
137 	/* calculate required read or write permissions.
138 	 * If FOLL_FORCE is set, we only require the "MAY" flags.
139 	 */
140 	vm_flags  = (foll_flags & FOLL_WRITE) ?
141 			(VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
142 	vm_flags &= (foll_flags & FOLL_FORCE) ?
143 			(VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
144 
145 	for (i = 0; i < nr_pages; i++) {
146 		vma = find_vma(mm, start);
147 		if (!vma)
148 			goto finish_or_fault;
149 
150 		/* protect what we can, including chardevs */
151 		if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
152 		    !(vm_flags & vma->vm_flags))
153 			goto finish_or_fault;
154 
155 		if (pages) {
156 			pages[i] = virt_to_page(start);
157 			if (pages[i])
158 				page_cache_get(pages[i]);
159 		}
160 		if (vmas)
161 			vmas[i] = vma;
162 		start = (start + PAGE_SIZE) & PAGE_MASK;
163 	}
164 
165 	return i;
166 
167 finish_or_fault:
168 	return i ? : -EFAULT;
169 }
170 
171 /*
172  * get a list of pages in an address range belonging to the specified process
173  * and indicate the VMA that covers each page
174  * - this is potentially dodgy as we may end incrementing the page count of a
175  *   slab page or a secondary page from a compound page
176  * - don't permit access to VMAs that don't support it, such as I/O mappings
177  */
get_user_pages(struct task_struct * tsk,struct mm_struct * mm,unsigned long start,int nr_pages,int write,int force,struct page ** pages,struct vm_area_struct ** vmas)178 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
179 	unsigned long start, int nr_pages, int write, int force,
180 	struct page **pages, struct vm_area_struct **vmas)
181 {
182 	int flags = 0;
183 
184 	if (write)
185 		flags |= FOLL_WRITE;
186 	if (force)
187 		flags |= FOLL_FORCE;
188 
189 	return __get_user_pages(tsk, mm, start, nr_pages, flags, pages, vmas,
190 				NULL);
191 }
192 EXPORT_SYMBOL(get_user_pages);
193 
194 /**
195  * follow_pfn - look up PFN at a user virtual address
196  * @vma: memory mapping
197  * @address: user virtual address
198  * @pfn: location to store found PFN
199  *
200  * Only IO mappings and raw PFN mappings are allowed.
201  *
202  * Returns zero and the pfn at @pfn on success, -ve otherwise.
203  */
follow_pfn(struct vm_area_struct * vma,unsigned long address,unsigned long * pfn)204 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
205 	unsigned long *pfn)
206 {
207 	if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
208 		return -EINVAL;
209 
210 	*pfn = address >> PAGE_SHIFT;
211 	return 0;
212 }
213 EXPORT_SYMBOL(follow_pfn);
214 
215 DEFINE_RWLOCK(vmlist_lock);
216 struct vm_struct *vmlist;
217 
vfree(const void * addr)218 void vfree(const void *addr)
219 {
220 	kfree(addr);
221 }
222 EXPORT_SYMBOL(vfree);
223 
__vmalloc(unsigned long size,gfp_t gfp_mask,pgprot_t prot)224 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
225 {
226 	/*
227 	 *  You can't specify __GFP_HIGHMEM with kmalloc() since kmalloc()
228 	 * returns only a logical address.
229 	 */
230 	return kmalloc(size, (gfp_mask | __GFP_COMP) & ~__GFP_HIGHMEM);
231 }
232 EXPORT_SYMBOL(__vmalloc);
233 
vmalloc_user(unsigned long size)234 void *vmalloc_user(unsigned long size)
235 {
236 	void *ret;
237 
238 	ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
239 			PAGE_KERNEL);
240 	if (ret) {
241 		struct vm_area_struct *vma;
242 
243 		down_write(&current->mm->mmap_sem);
244 		vma = find_vma(current->mm, (unsigned long)ret);
245 		if (vma)
246 			vma->vm_flags |= VM_USERMAP;
247 		up_write(&current->mm->mmap_sem);
248 	}
249 
250 	return ret;
251 }
252 EXPORT_SYMBOL(vmalloc_user);
253 
vmalloc_to_page(const void * addr)254 struct page *vmalloc_to_page(const void *addr)
255 {
256 	return virt_to_page(addr);
257 }
258 EXPORT_SYMBOL(vmalloc_to_page);
259 
vmalloc_to_pfn(const void * addr)260 unsigned long vmalloc_to_pfn(const void *addr)
261 {
262 	return page_to_pfn(virt_to_page(addr));
263 }
264 EXPORT_SYMBOL(vmalloc_to_pfn);
265 
vread(char * buf,char * addr,unsigned long count)266 long vread(char *buf, char *addr, unsigned long count)
267 {
268 	memcpy(buf, addr, count);
269 	return count;
270 }
271 
vwrite(char * buf,char * addr,unsigned long count)272 long vwrite(char *buf, char *addr, unsigned long count)
273 {
274 	/* Don't allow overflow */
275 	if ((unsigned long) addr + count < count)
276 		count = -(unsigned long) addr;
277 
278 	memcpy(addr, buf, count);
279 	return(count);
280 }
281 
282 /*
283  *	vmalloc  -  allocate virtually continguos memory
284  *
285  *	@size:		allocation size
286  *
287  *	Allocate enough pages to cover @size from the page level
288  *	allocator and map them into continguos kernel virtual space.
289  *
290  *	For tight control over page level allocator and protection flags
291  *	use __vmalloc() instead.
292  */
vmalloc(unsigned long size)293 void *vmalloc(unsigned long size)
294 {
295        return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL);
296 }
297 EXPORT_SYMBOL(vmalloc);
298 
299 /*
300  *	vzalloc - allocate virtually continguos memory with zero fill
301  *
302  *	@size:		allocation size
303  *
304  *	Allocate enough pages to cover @size from the page level
305  *	allocator and map them into continguos kernel virtual space.
306  *	The memory allocated is set to zero.
307  *
308  *	For tight control over page level allocator and protection flags
309  *	use __vmalloc() instead.
310  */
vzalloc(unsigned long size)311 void *vzalloc(unsigned long size)
312 {
313 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO,
314 			PAGE_KERNEL);
315 }
316 EXPORT_SYMBOL(vzalloc);
317 
318 /**
319  * vmalloc_node - allocate memory on a specific node
320  * @size:	allocation size
321  * @node:	numa node
322  *
323  * Allocate enough pages to cover @size from the page level
324  * allocator and map them into contiguous kernel virtual space.
325  *
326  * For tight control over page level allocator and protection flags
327  * use __vmalloc() instead.
328  */
vmalloc_node(unsigned long size,int node)329 void *vmalloc_node(unsigned long size, int node)
330 {
331 	return vmalloc(size);
332 }
333 EXPORT_SYMBOL(vmalloc_node);
334 
335 /**
336  * vzalloc_node - allocate memory on a specific node with zero fill
337  * @size:	allocation size
338  * @node:	numa node
339  *
340  * Allocate enough pages to cover @size from the page level
341  * allocator and map them into contiguous kernel virtual space.
342  * The memory allocated is set to zero.
343  *
344  * For tight control over page level allocator and protection flags
345  * use __vmalloc() instead.
346  */
vzalloc_node(unsigned long size,int node)347 void *vzalloc_node(unsigned long size, int node)
348 {
349 	return vzalloc(size);
350 }
351 EXPORT_SYMBOL(vzalloc_node);
352 
353 #ifndef PAGE_KERNEL_EXEC
354 # define PAGE_KERNEL_EXEC PAGE_KERNEL
355 #endif
356 
357 /**
358  *	vmalloc_exec  -  allocate virtually contiguous, executable memory
359  *	@size:		allocation size
360  *
361  *	Kernel-internal function to allocate enough pages to cover @size
362  *	the page level allocator and map them into contiguous and
363  *	executable kernel virtual space.
364  *
365  *	For tight control over page level allocator and protection flags
366  *	use __vmalloc() instead.
367  */
368 
vmalloc_exec(unsigned long size)369 void *vmalloc_exec(unsigned long size)
370 {
371 	return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
372 }
373 
374 /**
375  * vmalloc_32  -  allocate virtually contiguous memory (32bit addressable)
376  *	@size:		allocation size
377  *
378  *	Allocate enough 32bit PA addressable pages to cover @size from the
379  *	page level allocator and map them into continguos kernel virtual space.
380  */
vmalloc_32(unsigned long size)381 void *vmalloc_32(unsigned long size)
382 {
383 	return __vmalloc(size, GFP_KERNEL, PAGE_KERNEL);
384 }
385 EXPORT_SYMBOL(vmalloc_32);
386 
387 /**
388  * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
389  *	@size:		allocation size
390  *
391  * The resulting memory area is 32bit addressable and zeroed so it can be
392  * mapped to userspace without leaking data.
393  *
394  * VM_USERMAP is set on the corresponding VMA so that subsequent calls to
395  * remap_vmalloc_range() are permissible.
396  */
vmalloc_32_user(unsigned long size)397 void *vmalloc_32_user(unsigned long size)
398 {
399 	/*
400 	 * We'll have to sort out the ZONE_DMA bits for 64-bit,
401 	 * but for now this can simply use vmalloc_user() directly.
402 	 */
403 	return vmalloc_user(size);
404 }
405 EXPORT_SYMBOL(vmalloc_32_user);
406 
vmap(struct page ** pages,unsigned int count,unsigned long flags,pgprot_t prot)407 void *vmap(struct page **pages, unsigned int count, unsigned long flags, pgprot_t prot)
408 {
409 	BUG();
410 	return NULL;
411 }
412 EXPORT_SYMBOL(vmap);
413 
vunmap(const void * addr)414 void vunmap(const void *addr)
415 {
416 	BUG();
417 }
418 EXPORT_SYMBOL(vunmap);
419 
vm_map_ram(struct page ** pages,unsigned int count,int node,pgprot_t prot)420 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
421 {
422 	BUG();
423 	return NULL;
424 }
425 EXPORT_SYMBOL(vm_map_ram);
426 
vm_unmap_ram(const void * mem,unsigned int count)427 void vm_unmap_ram(const void *mem, unsigned int count)
428 {
429 	BUG();
430 }
431 EXPORT_SYMBOL(vm_unmap_ram);
432 
vm_unmap_aliases(void)433 void vm_unmap_aliases(void)
434 {
435 }
436 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
437 
438 /*
439  * Implement a stub for vmalloc_sync_all() if the architecture chose not to
440  * have one.
441  */
vmalloc_sync_all(void)442 void  __attribute__((weak)) vmalloc_sync_all(void)
443 {
444 }
445 
446 /**
447  *	alloc_vm_area - allocate a range of kernel address space
448  *	@size:		size of the area
449  *
450  *	Returns:	NULL on failure, vm_struct on success
451  *
452  *	This function reserves a range of kernel address space, and
453  *	allocates pagetables to map that range.  No actual mappings
454  *	are created.  If the kernel address space is not shared
455  *	between processes, it syncs the pagetable across all
456  *	processes.
457  */
alloc_vm_area(size_t size)458 struct vm_struct *alloc_vm_area(size_t size)
459 {
460 	BUG();
461 	return NULL;
462 }
463 EXPORT_SYMBOL_GPL(alloc_vm_area);
464 
free_vm_area(struct vm_struct * area)465 void free_vm_area(struct vm_struct *area)
466 {
467 	BUG();
468 }
469 EXPORT_SYMBOL_GPL(free_vm_area);
470 
vm_insert_page(struct vm_area_struct * vma,unsigned long addr,struct page * page)471 int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
472 		   struct page *page)
473 {
474 	return -EINVAL;
475 }
476 EXPORT_SYMBOL(vm_insert_page);
477 
478 /*
479  *  sys_brk() for the most part doesn't need the global kernel
480  *  lock, except when an application is doing something nasty
481  *  like trying to un-brk an area that has already been mapped
482  *  to a regular file.  in this case, the unmapping will need
483  *  to invoke file system routines that need the global lock.
484  */
SYSCALL_DEFINE1(brk,unsigned long,brk)485 SYSCALL_DEFINE1(brk, unsigned long, brk)
486 {
487 	struct mm_struct *mm = current->mm;
488 
489 	if (brk < mm->start_brk || brk > mm->context.end_brk)
490 		return mm->brk;
491 
492 	if (mm->brk == brk)
493 		return mm->brk;
494 
495 	/*
496 	 * Always allow shrinking brk
497 	 */
498 	if (brk <= mm->brk) {
499 		mm->brk = brk;
500 		return brk;
501 	}
502 
503 	/*
504 	 * Ok, looks good - let it rip.
505 	 */
506 	flush_icache_range(mm->brk, brk);
507 	return mm->brk = brk;
508 }
509 
510 /*
511  * initialise the VMA and region record slabs
512  */
mmap_init(void)513 void __init mmap_init(void)
514 {
515 	int ret;
516 
517 	ret = percpu_counter_init(&vm_committed_as, 0);
518 	VM_BUG_ON(ret);
519 	vm_region_jar = KMEM_CACHE(vm_region, SLAB_PANIC);
520 }
521 
522 /*
523  * validate the region tree
524  * - the caller must hold the region lock
525  */
526 #ifdef CONFIG_DEBUG_NOMMU_REGIONS
validate_nommu_regions(void)527 static noinline void validate_nommu_regions(void)
528 {
529 	struct vm_region *region, *last;
530 	struct rb_node *p, *lastp;
531 
532 	lastp = rb_first(&nommu_region_tree);
533 	if (!lastp)
534 		return;
535 
536 	last = rb_entry(lastp, struct vm_region, vm_rb);
537 	BUG_ON(unlikely(last->vm_end <= last->vm_start));
538 	BUG_ON(unlikely(last->vm_top < last->vm_end));
539 
540 	while ((p = rb_next(lastp))) {
541 		region = rb_entry(p, struct vm_region, vm_rb);
542 		last = rb_entry(lastp, struct vm_region, vm_rb);
543 
544 		BUG_ON(unlikely(region->vm_end <= region->vm_start));
545 		BUG_ON(unlikely(region->vm_top < region->vm_end));
546 		BUG_ON(unlikely(region->vm_start < last->vm_top));
547 
548 		lastp = p;
549 	}
550 }
551 #else
validate_nommu_regions(void)552 static void validate_nommu_regions(void)
553 {
554 }
555 #endif
556 
557 /*
558  * add a region into the global tree
559  */
add_nommu_region(struct vm_region * region)560 static void add_nommu_region(struct vm_region *region)
561 {
562 	struct vm_region *pregion;
563 	struct rb_node **p, *parent;
564 
565 	validate_nommu_regions();
566 
567 	parent = NULL;
568 	p = &nommu_region_tree.rb_node;
569 	while (*p) {
570 		parent = *p;
571 		pregion = rb_entry(parent, struct vm_region, vm_rb);
572 		if (region->vm_start < pregion->vm_start)
573 			p = &(*p)->rb_left;
574 		else if (region->vm_start > pregion->vm_start)
575 			p = &(*p)->rb_right;
576 		else if (pregion == region)
577 			return;
578 		else
579 			BUG();
580 	}
581 
582 	rb_link_node(&region->vm_rb, parent, p);
583 	rb_insert_color(&region->vm_rb, &nommu_region_tree);
584 
585 	validate_nommu_regions();
586 }
587 
588 /*
589  * delete a region from the global tree
590  */
delete_nommu_region(struct vm_region * region)591 static void delete_nommu_region(struct vm_region *region)
592 {
593 	BUG_ON(!nommu_region_tree.rb_node);
594 
595 	validate_nommu_regions();
596 	rb_erase(&region->vm_rb, &nommu_region_tree);
597 	validate_nommu_regions();
598 }
599 
600 /*
601  * free a contiguous series of pages
602  */
free_page_series(unsigned long from,unsigned long to)603 static void free_page_series(unsigned long from, unsigned long to)
604 {
605 	for (; from < to; from += PAGE_SIZE) {
606 		struct page *page = virt_to_page(from);
607 
608 		kdebug("- free %lx", from);
609 		atomic_long_dec(&mmap_pages_allocated);
610 		if (page_count(page) != 1)
611 			kdebug("free page %p: refcount not one: %d",
612 			       page, page_count(page));
613 		put_page(page);
614 	}
615 }
616 
617 /*
618  * release a reference to a region
619  * - the caller must hold the region semaphore for writing, which this releases
620  * - the region may not have been added to the tree yet, in which case vm_top
621  *   will equal vm_start
622  */
__put_nommu_region(struct vm_region * region)623 static void __put_nommu_region(struct vm_region *region)
624 	__releases(nommu_region_sem)
625 {
626 	kenter("%p{%d}", region, region->vm_usage);
627 
628 	BUG_ON(!nommu_region_tree.rb_node);
629 
630 	if (--region->vm_usage == 0) {
631 		if (region->vm_top > region->vm_start)
632 			delete_nommu_region(region);
633 		up_write(&nommu_region_sem);
634 
635 		if (region->vm_file)
636 			fput(region->vm_file);
637 
638 		/* IO memory and memory shared directly out of the pagecache
639 		 * from ramfs/tmpfs mustn't be released here */
640 		if (region->vm_flags & VM_MAPPED_COPY) {
641 			kdebug("free series");
642 			free_page_series(region->vm_start, region->vm_top);
643 		}
644 		kmem_cache_free(vm_region_jar, region);
645 	} else {
646 		up_write(&nommu_region_sem);
647 	}
648 }
649 
650 /*
651  * release a reference to a region
652  */
put_nommu_region(struct vm_region * region)653 static void put_nommu_region(struct vm_region *region)
654 {
655 	down_write(&nommu_region_sem);
656 	__put_nommu_region(region);
657 }
658 
659 /*
660  * update protection on a vma
661  */
protect_vma(struct vm_area_struct * vma,unsigned long flags)662 static void protect_vma(struct vm_area_struct *vma, unsigned long flags)
663 {
664 #ifdef CONFIG_MPU
665 	struct mm_struct *mm = vma->vm_mm;
666 	long start = vma->vm_start & PAGE_MASK;
667 	while (start < vma->vm_end) {
668 		protect_page(mm, start, flags);
669 		start += PAGE_SIZE;
670 	}
671 	update_protections(mm);
672 #endif
673 }
674 
675 /*
676  * add a VMA into a process's mm_struct in the appropriate place in the list
677  * and tree and add to the address space's page tree also if not an anonymous
678  * page
679  * - should be called with mm->mmap_sem held writelocked
680  */
add_vma_to_mm(struct mm_struct * mm,struct vm_area_struct * vma)681 static void add_vma_to_mm(struct mm_struct *mm, struct vm_area_struct *vma)
682 {
683 	struct vm_area_struct *pvma, **pp, *next;
684 	struct address_space *mapping;
685 	struct rb_node **p, *parent;
686 
687 	kenter(",%p", vma);
688 
689 	BUG_ON(!vma->vm_region);
690 
691 	mm->map_count++;
692 	vma->vm_mm = mm;
693 
694 	protect_vma(vma, vma->vm_flags);
695 
696 	/* add the VMA to the mapping */
697 	if (vma->vm_file) {
698 		mapping = vma->vm_file->f_mapping;
699 
700 		flush_dcache_mmap_lock(mapping);
701 		vma_prio_tree_insert(vma, &mapping->i_mmap);
702 		flush_dcache_mmap_unlock(mapping);
703 	}
704 
705 	/* add the VMA to the tree */
706 	parent = NULL;
707 	p = &mm->mm_rb.rb_node;
708 	while (*p) {
709 		parent = *p;
710 		pvma = rb_entry(parent, struct vm_area_struct, vm_rb);
711 
712 		/* sort by: start addr, end addr, VMA struct addr in that order
713 		 * (the latter is necessary as we may get identical VMAs) */
714 		if (vma->vm_start < pvma->vm_start)
715 			p = &(*p)->rb_left;
716 		else if (vma->vm_start > pvma->vm_start)
717 			p = &(*p)->rb_right;
718 		else if (vma->vm_end < pvma->vm_end)
719 			p = &(*p)->rb_left;
720 		else if (vma->vm_end > pvma->vm_end)
721 			p = &(*p)->rb_right;
722 		else if (vma < pvma)
723 			p = &(*p)->rb_left;
724 		else if (vma > pvma)
725 			p = &(*p)->rb_right;
726 		else
727 			BUG();
728 	}
729 
730 	rb_link_node(&vma->vm_rb, parent, p);
731 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
732 
733 	/* add VMA to the VMA list also */
734 	for (pp = &mm->mmap; (pvma = *pp); pp = &(*pp)->vm_next) {
735 		if (pvma->vm_start > vma->vm_start)
736 			break;
737 		if (pvma->vm_start < vma->vm_start)
738 			continue;
739 		if (pvma->vm_end < vma->vm_end)
740 			break;
741 	}
742 
743 	next = *pp;
744 	*pp = vma;
745 	vma->vm_next = next;
746 	if (next)
747 		next->vm_prev = vma;
748 }
749 
750 /*
751  * delete a VMA from its owning mm_struct and address space
752  */
delete_vma_from_mm(struct vm_area_struct * vma)753 static void delete_vma_from_mm(struct vm_area_struct *vma)
754 {
755 	struct vm_area_struct **pp;
756 	struct address_space *mapping;
757 	struct mm_struct *mm = vma->vm_mm;
758 
759 	kenter("%p", vma);
760 
761 	protect_vma(vma, 0);
762 
763 	mm->map_count--;
764 	if (mm->mmap_cache == vma)
765 		mm->mmap_cache = NULL;
766 
767 	/* remove the VMA from the mapping */
768 	if (vma->vm_file) {
769 		mapping = vma->vm_file->f_mapping;
770 
771 		flush_dcache_mmap_lock(mapping);
772 		vma_prio_tree_remove(vma, &mapping->i_mmap);
773 		flush_dcache_mmap_unlock(mapping);
774 	}
775 
776 	/* remove from the MM's tree and list */
777 	rb_erase(&vma->vm_rb, &mm->mm_rb);
778 	for (pp = &mm->mmap; *pp; pp = &(*pp)->vm_next) {
779 		if (*pp == vma) {
780 			*pp = vma->vm_next;
781 			break;
782 		}
783 	}
784 
785 	vma->vm_mm = NULL;
786 }
787 
788 /*
789  * destroy a VMA record
790  */
delete_vma(struct mm_struct * mm,struct vm_area_struct * vma)791 static void delete_vma(struct mm_struct *mm, struct vm_area_struct *vma)
792 {
793 	kenter("%p", vma);
794 	if (vma->vm_ops && vma->vm_ops->close)
795 		vma->vm_ops->close(vma);
796 	if (vma->vm_file) {
797 		fput(vma->vm_file);
798 		if (vma->vm_flags & VM_EXECUTABLE)
799 			removed_exe_file_vma(mm);
800 	}
801 	put_nommu_region(vma->vm_region);
802 	kmem_cache_free(vm_area_cachep, vma);
803 }
804 
805 /*
806  * look up the first VMA in which addr resides, NULL if none
807  * - should be called with mm->mmap_sem at least held readlocked
808  */
find_vma(struct mm_struct * mm,unsigned long addr)809 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
810 {
811 	struct vm_area_struct *vma;
812 	struct rb_node *n = mm->mm_rb.rb_node;
813 
814 	/* check the cache first */
815 	vma = mm->mmap_cache;
816 	if (vma && vma->vm_start <= addr && vma->vm_end > addr)
817 		return vma;
818 
819 	/* trawl the tree (there may be multiple mappings in which addr
820 	 * resides) */
821 	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
822 		vma = rb_entry(n, struct vm_area_struct, vm_rb);
823 		if (vma->vm_start > addr)
824 			return NULL;
825 		if (vma->vm_end > addr) {
826 			mm->mmap_cache = vma;
827 			return vma;
828 		}
829 	}
830 
831 	return NULL;
832 }
833 EXPORT_SYMBOL(find_vma);
834 
835 /*
836  * find a VMA
837  * - we don't extend stack VMAs under NOMMU conditions
838  */
find_extend_vma(struct mm_struct * mm,unsigned long addr)839 struct vm_area_struct *find_extend_vma(struct mm_struct *mm, unsigned long addr)
840 {
841 	return find_vma(mm, addr);
842 }
843 
844 /*
845  * expand a stack to a given address
846  * - not supported under NOMMU conditions
847  */
expand_stack(struct vm_area_struct * vma,unsigned long address)848 int expand_stack(struct vm_area_struct *vma, unsigned long address)
849 {
850 	return -ENOMEM;
851 }
852 
853 /*
854  * look up the first VMA exactly that exactly matches addr
855  * - should be called with mm->mmap_sem at least held readlocked
856  */
find_vma_exact(struct mm_struct * mm,unsigned long addr,unsigned long len)857 static struct vm_area_struct *find_vma_exact(struct mm_struct *mm,
858 					     unsigned long addr,
859 					     unsigned long len)
860 {
861 	struct vm_area_struct *vma;
862 	struct rb_node *n = mm->mm_rb.rb_node;
863 	unsigned long end = addr + len;
864 
865 	/* check the cache first */
866 	vma = mm->mmap_cache;
867 	if (vma && vma->vm_start == addr && vma->vm_end == end)
868 		return vma;
869 
870 	/* trawl the tree (there may be multiple mappings in which addr
871 	 * resides) */
872 	for (n = rb_first(&mm->mm_rb); n; n = rb_next(n)) {
873 		vma = rb_entry(n, struct vm_area_struct, vm_rb);
874 		if (vma->vm_start < addr)
875 			continue;
876 		if (vma->vm_start > addr)
877 			return NULL;
878 		if (vma->vm_end == end) {
879 			mm->mmap_cache = vma;
880 			return vma;
881 		}
882 	}
883 
884 	return NULL;
885 }
886 
887 /*
888  * determine whether a mapping should be permitted and, if so, what sort of
889  * mapping we're capable of supporting
890  */
validate_mmap_request(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff,unsigned long * _capabilities)891 static int validate_mmap_request(struct file *file,
892 				 unsigned long addr,
893 				 unsigned long len,
894 				 unsigned long prot,
895 				 unsigned long flags,
896 				 unsigned long pgoff,
897 				 unsigned long *_capabilities)
898 {
899 	unsigned long capabilities, rlen;
900 	unsigned long reqprot = prot;
901 	int ret;
902 
903 	/* do the simple checks first */
904 	if (flags & MAP_FIXED) {
905 		printk(KERN_DEBUG
906 		       "%d: Can't do fixed-address/overlay mmap of RAM\n",
907 		       current->pid);
908 		return -EINVAL;
909 	}
910 
911 	if ((flags & MAP_TYPE) != MAP_PRIVATE &&
912 	    (flags & MAP_TYPE) != MAP_SHARED)
913 		return -EINVAL;
914 
915 	if (!len)
916 		return -EINVAL;
917 
918 	/* Careful about overflows.. */
919 	rlen = PAGE_ALIGN(len);
920 	if (!rlen || rlen > TASK_SIZE)
921 		return -ENOMEM;
922 
923 	/* offset overflow? */
924 	if ((pgoff + (rlen >> PAGE_SHIFT)) < pgoff)
925 		return -EOVERFLOW;
926 
927 	if (file) {
928 		/* validate file mapping requests */
929 		struct address_space *mapping;
930 
931 		/* files must support mmap */
932 		if (!file->f_op || !file->f_op->mmap)
933 			return -ENODEV;
934 
935 		/* work out if what we've got could possibly be shared
936 		 * - we support chardevs that provide their own "memory"
937 		 * - we support files/blockdevs that are memory backed
938 		 */
939 		mapping = file->f_mapping;
940 		if (!mapping)
941 			mapping = file->f_path.dentry->d_inode->i_mapping;
942 
943 		capabilities = 0;
944 		if (mapping && mapping->backing_dev_info)
945 			capabilities = mapping->backing_dev_info->capabilities;
946 
947 		if (!capabilities) {
948 			/* no explicit capabilities set, so assume some
949 			 * defaults */
950 			switch (file->f_path.dentry->d_inode->i_mode & S_IFMT) {
951 			case S_IFREG:
952 			case S_IFBLK:
953 				capabilities = BDI_CAP_MAP_COPY;
954 				break;
955 
956 			case S_IFCHR:
957 				capabilities =
958 					BDI_CAP_MAP_DIRECT |
959 					BDI_CAP_READ_MAP |
960 					BDI_CAP_WRITE_MAP;
961 				break;
962 
963 			default:
964 				return -EINVAL;
965 			}
966 		}
967 
968 		/* eliminate any capabilities that we can't support on this
969 		 * device */
970 		if (!file->f_op->get_unmapped_area)
971 			capabilities &= ~BDI_CAP_MAP_DIRECT;
972 		if (!file->f_op->read)
973 			capabilities &= ~BDI_CAP_MAP_COPY;
974 
975 		/* The file shall have been opened with read permission. */
976 		if (!(file->f_mode & FMODE_READ))
977 			return -EACCES;
978 
979 		if (flags & MAP_SHARED) {
980 			/* do checks for writing, appending and locking */
981 			if ((prot & PROT_WRITE) &&
982 			    !(file->f_mode & FMODE_WRITE))
983 				return -EACCES;
984 
985 			if (IS_APPEND(file->f_path.dentry->d_inode) &&
986 			    (file->f_mode & FMODE_WRITE))
987 				return -EACCES;
988 
989 			if (locks_verify_locked(file->f_path.dentry->d_inode))
990 				return -EAGAIN;
991 
992 			if (!(capabilities & BDI_CAP_MAP_DIRECT))
993 				return -ENODEV;
994 
995 			/* we mustn't privatise shared mappings */
996 			capabilities &= ~BDI_CAP_MAP_COPY;
997 		}
998 		else {
999 			/* we're going to read the file into private memory we
1000 			 * allocate */
1001 			if (!(capabilities & BDI_CAP_MAP_COPY))
1002 				return -ENODEV;
1003 
1004 			/* we don't permit a private writable mapping to be
1005 			 * shared with the backing device */
1006 			if (prot & PROT_WRITE)
1007 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1008 		}
1009 
1010 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1011 			if (((prot & PROT_READ)  && !(capabilities & BDI_CAP_READ_MAP))  ||
1012 			    ((prot & PROT_WRITE) && !(capabilities & BDI_CAP_WRITE_MAP)) ||
1013 			    ((prot & PROT_EXEC)  && !(capabilities & BDI_CAP_EXEC_MAP))
1014 			    ) {
1015 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1016 				if (flags & MAP_SHARED) {
1017 					printk(KERN_WARNING
1018 					       "MAP_SHARED not completely supported on !MMU\n");
1019 					return -EINVAL;
1020 				}
1021 			}
1022 		}
1023 
1024 		/* handle executable mappings and implied executable
1025 		 * mappings */
1026 		if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1027 			if (prot & PROT_EXEC)
1028 				return -EPERM;
1029 		}
1030 		else if ((prot & PROT_READ) && !(prot & PROT_EXEC)) {
1031 			/* handle implication of PROT_EXEC by PROT_READ */
1032 			if (current->personality & READ_IMPLIES_EXEC) {
1033 				if (capabilities & BDI_CAP_EXEC_MAP)
1034 					prot |= PROT_EXEC;
1035 			}
1036 		}
1037 		else if ((prot & PROT_READ) &&
1038 			 (prot & PROT_EXEC) &&
1039 			 !(capabilities & BDI_CAP_EXEC_MAP)
1040 			 ) {
1041 			/* backing file is not executable, try to copy */
1042 			capabilities &= ~BDI_CAP_MAP_DIRECT;
1043 		}
1044 	}
1045 	else {
1046 		/* anonymous mappings are always memory backed and can be
1047 		 * privately mapped
1048 		 */
1049 		capabilities = BDI_CAP_MAP_COPY;
1050 
1051 		/* handle PROT_EXEC implication by PROT_READ */
1052 		if ((prot & PROT_READ) &&
1053 		    (current->personality & READ_IMPLIES_EXEC))
1054 			prot |= PROT_EXEC;
1055 	}
1056 
1057 	/* allow the security API to have its say */
1058 	ret = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1059 	if (ret < 0)
1060 		return ret;
1061 
1062 	/* looks okay */
1063 	*_capabilities = capabilities;
1064 	return 0;
1065 }
1066 
1067 /*
1068  * we've determined that we can make the mapping, now translate what we
1069  * now know into VMA flags
1070  */
determine_vm_flags(struct file * file,unsigned long prot,unsigned long flags,unsigned long capabilities)1071 static unsigned long determine_vm_flags(struct file *file,
1072 					unsigned long prot,
1073 					unsigned long flags,
1074 					unsigned long capabilities)
1075 {
1076 	unsigned long vm_flags;
1077 
1078 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags);
1079 	/* vm_flags |= mm->def_flags; */
1080 
1081 	if (!(capabilities & BDI_CAP_MAP_DIRECT)) {
1082 		/* attempt to share read-only copies of mapped file chunks */
1083 		vm_flags |= VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1084 		if (file && !(prot & PROT_WRITE))
1085 			vm_flags |= VM_MAYSHARE;
1086 	} else {
1087 		/* overlay a shareable mapping on the backing device or inode
1088 		 * if possible - used for chardevs, ramfs/tmpfs/shmfs and
1089 		 * romfs/cramfs */
1090 		vm_flags |= VM_MAYSHARE | (capabilities & BDI_CAP_VMFLAGS);
1091 		if (flags & MAP_SHARED)
1092 			vm_flags |= VM_SHARED;
1093 	}
1094 
1095 	/* refuse to let anyone share private mappings with this process if
1096 	 * it's being traced - otherwise breakpoints set in it may interfere
1097 	 * with another untraced process
1098 	 */
1099 	if ((flags & MAP_PRIVATE) && tracehook_expect_breakpoints(current))
1100 		vm_flags &= ~VM_MAYSHARE;
1101 
1102 	return vm_flags;
1103 }
1104 
1105 /*
1106  * set up a shared mapping on a file (the driver or filesystem provides and
1107  * pins the storage)
1108  */
do_mmap_shared_file(struct vm_area_struct * vma)1109 static int do_mmap_shared_file(struct vm_area_struct *vma)
1110 {
1111 	int ret;
1112 
1113 	ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1114 	if (ret == 0) {
1115 		vma->vm_region->vm_top = vma->vm_region->vm_end;
1116 		return 0;
1117 	}
1118 	if (ret != -ENOSYS)
1119 		return ret;
1120 
1121 	/* getting -ENOSYS indicates that direct mmap isn't possible (as
1122 	 * opposed to tried but failed) so we can only give a suitable error as
1123 	 * it's not possible to make a private copy if MAP_SHARED was given */
1124 	return -ENODEV;
1125 }
1126 
1127 /*
1128  * set up a private mapping or an anonymous shared mapping
1129  */
do_mmap_private(struct vm_area_struct * vma,struct vm_region * region,unsigned long len,unsigned long capabilities)1130 static int do_mmap_private(struct vm_area_struct *vma,
1131 			   struct vm_region *region,
1132 			   unsigned long len,
1133 			   unsigned long capabilities)
1134 {
1135 	struct page *pages;
1136 	unsigned long total, point, n, rlen;
1137 	void *base;
1138 	int ret, order;
1139 
1140 	/* invoke the file's mapping function so that it can keep track of
1141 	 * shared mappings on devices or memory
1142 	 * - VM_MAYSHARE will be set if it may attempt to share
1143 	 */
1144 	if (capabilities & BDI_CAP_MAP_DIRECT) {
1145 		ret = vma->vm_file->f_op->mmap(vma->vm_file, vma);
1146 		if (ret == 0) {
1147 			/* shouldn't return success if we're not sharing */
1148 			BUG_ON(!(vma->vm_flags & VM_MAYSHARE));
1149 			vma->vm_region->vm_top = vma->vm_region->vm_end;
1150 			return 0;
1151 		}
1152 		if (ret != -ENOSYS)
1153 			return ret;
1154 
1155 		/* getting an ENOSYS error indicates that direct mmap isn't
1156 		 * possible (as opposed to tried but failed) so we'll try to
1157 		 * make a private copy of the data and map that instead */
1158 	}
1159 
1160 	rlen = PAGE_ALIGN(len);
1161 
1162 	/* allocate some memory to hold the mapping
1163 	 * - note that this may not return a page-aligned address if the object
1164 	 *   we're allocating is smaller than a page
1165 	 */
1166 	order = get_order(rlen);
1167 	kdebug("alloc order %d for %lx", order, len);
1168 
1169 	pages = alloc_pages(GFP_KERNEL, order);
1170 	if (!pages)
1171 		goto enomem;
1172 
1173 	total = 1 << order;
1174 	atomic_long_add(total, &mmap_pages_allocated);
1175 
1176 	point = rlen >> PAGE_SHIFT;
1177 
1178 	/* we allocated a power-of-2 sized page set, so we may want to trim off
1179 	 * the excess */
1180 	if (sysctl_nr_trim_pages && total - point >= sysctl_nr_trim_pages) {
1181 		while (total > point) {
1182 			order = ilog2(total - point);
1183 			n = 1 << order;
1184 			kdebug("shave %lu/%lu @%lu", n, total - point, total);
1185 			atomic_long_sub(n, &mmap_pages_allocated);
1186 			total -= n;
1187 			set_page_refcounted(pages + total);
1188 			__free_pages(pages + total, order);
1189 		}
1190 	}
1191 
1192 	for (point = 1; point < total; point++)
1193 		set_page_refcounted(&pages[point]);
1194 
1195 	base = page_address(pages);
1196 	region->vm_flags = vma->vm_flags |= VM_MAPPED_COPY;
1197 	region->vm_start = (unsigned long) base;
1198 	region->vm_end   = region->vm_start + rlen;
1199 	region->vm_top   = region->vm_start + (total << PAGE_SHIFT);
1200 
1201 	vma->vm_start = region->vm_start;
1202 	vma->vm_end   = region->vm_start + len;
1203 
1204 	if (vma->vm_file) {
1205 		/* read the contents of a file into the copy */
1206 		mm_segment_t old_fs;
1207 		loff_t fpos;
1208 
1209 		fpos = vma->vm_pgoff;
1210 		fpos <<= PAGE_SHIFT;
1211 
1212 		old_fs = get_fs();
1213 		set_fs(KERNEL_DS);
1214 		ret = vma->vm_file->f_op->read(vma->vm_file, base, rlen, &fpos);
1215 		set_fs(old_fs);
1216 
1217 		if (ret < 0)
1218 			goto error_free;
1219 
1220 		/* clear the last little bit */
1221 		if (ret < rlen)
1222 			memset(base + ret, 0, rlen - ret);
1223 
1224 	}
1225 
1226 	return 0;
1227 
1228 error_free:
1229 	free_page_series(region->vm_start, region->vm_end);
1230 	region->vm_start = vma->vm_start = 0;
1231 	region->vm_end   = vma->vm_end = 0;
1232 	region->vm_top   = 0;
1233 	return ret;
1234 
1235 enomem:
1236 	printk("Allocation of length %lu from process %d (%s) failed\n",
1237 	       len, current->pid, current->comm);
1238 	show_free_areas();
1239 	return -ENOMEM;
1240 }
1241 
1242 /*
1243  * handle mapping creation for uClinux
1244  */
do_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff)1245 unsigned long do_mmap_pgoff(struct file *file,
1246 			    unsigned long addr,
1247 			    unsigned long len,
1248 			    unsigned long prot,
1249 			    unsigned long flags,
1250 			    unsigned long pgoff)
1251 {
1252 	struct vm_area_struct *vma;
1253 	struct vm_region *region;
1254 	struct rb_node *rb;
1255 	unsigned long capabilities, vm_flags, result;
1256 	int ret;
1257 
1258 	kenter(",%lx,%lx,%lx,%lx,%lx", addr, len, prot, flags, pgoff);
1259 
1260 	/* decide whether we should attempt the mapping, and if so what sort of
1261 	 * mapping */
1262 	ret = validate_mmap_request(file, addr, len, prot, flags, pgoff,
1263 				    &capabilities);
1264 	if (ret < 0) {
1265 		kleave(" = %d [val]", ret);
1266 		return ret;
1267 	}
1268 
1269 	/* we ignore the address hint */
1270 	addr = 0;
1271 
1272 	/* we've determined that we can make the mapping, now translate what we
1273 	 * now know into VMA flags */
1274 	vm_flags = determine_vm_flags(file, prot, flags, capabilities);
1275 
1276 	/* we're going to need to record the mapping */
1277 	region = kmem_cache_zalloc(vm_region_jar, GFP_KERNEL);
1278 	if (!region)
1279 		goto error_getting_region;
1280 
1281 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1282 	if (!vma)
1283 		goto error_getting_vma;
1284 
1285 	region->vm_usage = 1;
1286 	region->vm_flags = vm_flags;
1287 	region->vm_pgoff = pgoff;
1288 
1289 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1290 	vma->vm_flags = vm_flags;
1291 	vma->vm_pgoff = pgoff;
1292 
1293 	if (file) {
1294 		region->vm_file = file;
1295 		get_file(file);
1296 		vma->vm_file = file;
1297 		get_file(file);
1298 		if (vm_flags & VM_EXECUTABLE) {
1299 			added_exe_file_vma(current->mm);
1300 			vma->vm_mm = current->mm;
1301 		}
1302 	}
1303 
1304 	down_write(&nommu_region_sem);
1305 
1306 	/* if we want to share, we need to check for regions created by other
1307 	 * mmap() calls that overlap with our proposed mapping
1308 	 * - we can only share with a superset match on most regular files
1309 	 * - shared mappings on character devices and memory backed files are
1310 	 *   permitted to overlap inexactly as far as we are concerned for in
1311 	 *   these cases, sharing is handled in the driver or filesystem rather
1312 	 *   than here
1313 	 */
1314 	if (vm_flags & VM_MAYSHARE) {
1315 		struct vm_region *pregion;
1316 		unsigned long pglen, rpglen, pgend, rpgend, start;
1317 
1318 		pglen = (len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1319 		pgend = pgoff + pglen;
1320 
1321 		for (rb = rb_first(&nommu_region_tree); rb; rb = rb_next(rb)) {
1322 			pregion = rb_entry(rb, struct vm_region, vm_rb);
1323 
1324 			if (!(pregion->vm_flags & VM_MAYSHARE))
1325 				continue;
1326 
1327 			/* search for overlapping mappings on the same file */
1328 			if (pregion->vm_file->f_path.dentry->d_inode !=
1329 			    file->f_path.dentry->d_inode)
1330 				continue;
1331 
1332 			if (pregion->vm_pgoff >= pgend)
1333 				continue;
1334 
1335 			rpglen = pregion->vm_end - pregion->vm_start;
1336 			rpglen = (rpglen + PAGE_SIZE - 1) >> PAGE_SHIFT;
1337 			rpgend = pregion->vm_pgoff + rpglen;
1338 			if (pgoff >= rpgend)
1339 				continue;
1340 
1341 			/* handle inexactly overlapping matches between
1342 			 * mappings */
1343 			if ((pregion->vm_pgoff != pgoff || rpglen != pglen) &&
1344 			    !(pgoff >= pregion->vm_pgoff && pgend <= rpgend)) {
1345 				/* new mapping is not a subset of the region */
1346 				if (!(capabilities & BDI_CAP_MAP_DIRECT))
1347 					goto sharing_violation;
1348 				continue;
1349 			}
1350 
1351 			/* we've found a region we can share */
1352 			pregion->vm_usage++;
1353 			vma->vm_region = pregion;
1354 			start = pregion->vm_start;
1355 			start += (pgoff - pregion->vm_pgoff) << PAGE_SHIFT;
1356 			vma->vm_start = start;
1357 			vma->vm_end = start + len;
1358 
1359 			if (pregion->vm_flags & VM_MAPPED_COPY) {
1360 				kdebug("share copy");
1361 				vma->vm_flags |= VM_MAPPED_COPY;
1362 			} else {
1363 				kdebug("share mmap");
1364 				ret = do_mmap_shared_file(vma);
1365 				if (ret < 0) {
1366 					vma->vm_region = NULL;
1367 					vma->vm_start = 0;
1368 					vma->vm_end = 0;
1369 					pregion->vm_usage--;
1370 					pregion = NULL;
1371 					goto error_just_free;
1372 				}
1373 			}
1374 			fput(region->vm_file);
1375 			kmem_cache_free(vm_region_jar, region);
1376 			region = pregion;
1377 			result = start;
1378 			goto share;
1379 		}
1380 
1381 		/* obtain the address at which to make a shared mapping
1382 		 * - this is the hook for quasi-memory character devices to
1383 		 *   tell us the location of a shared mapping
1384 		 */
1385 		if (capabilities & BDI_CAP_MAP_DIRECT) {
1386 			addr = file->f_op->get_unmapped_area(file, addr, len,
1387 							     pgoff, flags);
1388 			if (IS_ERR((void *) addr)) {
1389 				ret = addr;
1390 				if (ret != (unsigned long) -ENOSYS)
1391 					goto error_just_free;
1392 
1393 				/* the driver refused to tell us where to site
1394 				 * the mapping so we'll have to attempt to copy
1395 				 * it */
1396 				ret = (unsigned long) -ENODEV;
1397 				if (!(capabilities & BDI_CAP_MAP_COPY))
1398 					goto error_just_free;
1399 
1400 				capabilities &= ~BDI_CAP_MAP_DIRECT;
1401 			} else {
1402 				vma->vm_start = region->vm_start = addr;
1403 				vma->vm_end = region->vm_end = addr + len;
1404 			}
1405 		}
1406 	}
1407 
1408 	vma->vm_region = region;
1409 
1410 	/* set up the mapping
1411 	 * - the region is filled in if BDI_CAP_MAP_DIRECT is still set
1412 	 */
1413 	if (file && vma->vm_flags & VM_SHARED)
1414 		ret = do_mmap_shared_file(vma);
1415 	else
1416 		ret = do_mmap_private(vma, region, len, capabilities);
1417 	if (ret < 0)
1418 		goto error_just_free;
1419 	add_nommu_region(region);
1420 
1421 	/* clear anonymous mappings that don't ask for uninitialized data */
1422 	if (!vma->vm_file && !(flags & MAP_UNINITIALIZED))
1423 		memset((void *)region->vm_start, 0,
1424 		       region->vm_end - region->vm_start);
1425 
1426 	/* okay... we have a mapping; now we have to register it */
1427 	result = vma->vm_start;
1428 
1429 	current->mm->total_vm += len >> PAGE_SHIFT;
1430 
1431 share:
1432 	add_vma_to_mm(current->mm, vma);
1433 
1434 	/* we flush the region from the icache only when the first executable
1435 	 * mapping of it is made  */
1436 	if (vma->vm_flags & VM_EXEC && !region->vm_icache_flushed) {
1437 		flush_icache_range(region->vm_start, region->vm_end);
1438 		region->vm_icache_flushed = true;
1439 	}
1440 
1441 	up_write(&nommu_region_sem);
1442 
1443 	kleave(" = %lx", result);
1444 	return result;
1445 
1446 error_just_free:
1447 	up_write(&nommu_region_sem);
1448 error:
1449 	if (region->vm_file)
1450 		fput(region->vm_file);
1451 	kmem_cache_free(vm_region_jar, region);
1452 	if (vma->vm_file)
1453 		fput(vma->vm_file);
1454 	if (vma->vm_flags & VM_EXECUTABLE)
1455 		removed_exe_file_vma(vma->vm_mm);
1456 	kmem_cache_free(vm_area_cachep, vma);
1457 	kleave(" = %d", ret);
1458 	return ret;
1459 
1460 sharing_violation:
1461 	up_write(&nommu_region_sem);
1462 	printk(KERN_WARNING "Attempt to share mismatched mappings\n");
1463 	ret = -EINVAL;
1464 	goto error;
1465 
1466 error_getting_vma:
1467 	kmem_cache_free(vm_region_jar, region);
1468 	printk(KERN_WARNING "Allocation of vma for %lu byte allocation"
1469 	       " from process %d failed\n",
1470 	       len, current->pid);
1471 	show_free_areas();
1472 	return -ENOMEM;
1473 
1474 error_getting_region:
1475 	printk(KERN_WARNING "Allocation of vm region for %lu byte allocation"
1476 	       " from process %d failed\n",
1477 	       len, current->pid);
1478 	show_free_areas();
1479 	return -ENOMEM;
1480 }
1481 EXPORT_SYMBOL(do_mmap_pgoff);
1482 
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1483 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1484 		unsigned long, prot, unsigned long, flags,
1485 		unsigned long, fd, unsigned long, pgoff)
1486 {
1487 	struct file *file = NULL;
1488 	unsigned long retval = -EBADF;
1489 
1490 	audit_mmap_fd(fd, flags);
1491 	if (!(flags & MAP_ANONYMOUS)) {
1492 		file = fget(fd);
1493 		if (!file)
1494 			goto out;
1495 	}
1496 
1497 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1498 
1499 	down_write(&current->mm->mmap_sem);
1500 	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1501 	up_write(&current->mm->mmap_sem);
1502 
1503 	if (file)
1504 		fput(file);
1505 out:
1506 	return retval;
1507 }
1508 
1509 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1510 struct mmap_arg_struct {
1511 	unsigned long addr;
1512 	unsigned long len;
1513 	unsigned long prot;
1514 	unsigned long flags;
1515 	unsigned long fd;
1516 	unsigned long offset;
1517 };
1518 
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1519 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1520 {
1521 	struct mmap_arg_struct a;
1522 
1523 	if (copy_from_user(&a, arg, sizeof(a)))
1524 		return -EFAULT;
1525 	if (a.offset & ~PAGE_MASK)
1526 		return -EINVAL;
1527 
1528 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1529 			      a.offset >> PAGE_SHIFT);
1530 }
1531 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1532 
1533 /*
1534  * split a vma into two pieces at address 'addr', a new vma is allocated either
1535  * for the first part or the tail.
1536  */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)1537 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
1538 	      unsigned long addr, int new_below)
1539 {
1540 	struct vm_area_struct *new;
1541 	struct vm_region *region;
1542 	unsigned long npages;
1543 
1544 	kenter("");
1545 
1546 	/* we're only permitted to split anonymous regions (these should have
1547 	 * only a single usage on the region) */
1548 	if (vma->vm_file)
1549 		return -ENOMEM;
1550 
1551 	if (mm->map_count >= sysctl_max_map_count)
1552 		return -ENOMEM;
1553 
1554 	region = kmem_cache_alloc(vm_region_jar, GFP_KERNEL);
1555 	if (!region)
1556 		return -ENOMEM;
1557 
1558 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
1559 	if (!new) {
1560 		kmem_cache_free(vm_region_jar, region);
1561 		return -ENOMEM;
1562 	}
1563 
1564 	/* most fields are the same, copy all, and then fixup */
1565 	*new = *vma;
1566 	*region = *vma->vm_region;
1567 	new->vm_region = region;
1568 
1569 	npages = (addr - vma->vm_start) >> PAGE_SHIFT;
1570 
1571 	if (new_below) {
1572 		region->vm_top = region->vm_end = new->vm_end = addr;
1573 	} else {
1574 		region->vm_start = new->vm_start = addr;
1575 		region->vm_pgoff = new->vm_pgoff += npages;
1576 	}
1577 
1578 	if (new->vm_ops && new->vm_ops->open)
1579 		new->vm_ops->open(new);
1580 
1581 	delete_vma_from_mm(vma);
1582 	down_write(&nommu_region_sem);
1583 	delete_nommu_region(vma->vm_region);
1584 	if (new_below) {
1585 		vma->vm_region->vm_start = vma->vm_start = addr;
1586 		vma->vm_region->vm_pgoff = vma->vm_pgoff += npages;
1587 	} else {
1588 		vma->vm_region->vm_end = vma->vm_end = addr;
1589 		vma->vm_region->vm_top = addr;
1590 	}
1591 	add_nommu_region(vma->vm_region);
1592 	add_nommu_region(new->vm_region);
1593 	up_write(&nommu_region_sem);
1594 	add_vma_to_mm(mm, vma);
1595 	add_vma_to_mm(mm, new);
1596 	return 0;
1597 }
1598 
1599 /*
1600  * shrink a VMA by removing the specified chunk from either the beginning or
1601  * the end
1602  */
shrink_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long from,unsigned long to)1603 static int shrink_vma(struct mm_struct *mm,
1604 		      struct vm_area_struct *vma,
1605 		      unsigned long from, unsigned long to)
1606 {
1607 	struct vm_region *region;
1608 
1609 	kenter("");
1610 
1611 	/* adjust the VMA's pointers, which may reposition it in the MM's tree
1612 	 * and list */
1613 	delete_vma_from_mm(vma);
1614 	if (from > vma->vm_start)
1615 		vma->vm_end = from;
1616 	else
1617 		vma->vm_start = to;
1618 	add_vma_to_mm(mm, vma);
1619 
1620 	/* cut the backing region down to size */
1621 	region = vma->vm_region;
1622 	BUG_ON(region->vm_usage != 1);
1623 
1624 	down_write(&nommu_region_sem);
1625 	delete_nommu_region(region);
1626 	if (from > region->vm_start) {
1627 		to = region->vm_top;
1628 		region->vm_top = region->vm_end = from;
1629 	} else {
1630 		region->vm_start = to;
1631 	}
1632 	add_nommu_region(region);
1633 	up_write(&nommu_region_sem);
1634 
1635 	free_page_series(from, to);
1636 	return 0;
1637 }
1638 
1639 /*
1640  * release a mapping
1641  * - under NOMMU conditions the chunk to be unmapped must be backed by a single
1642  *   VMA, though it need not cover the whole VMA
1643  */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len)1644 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
1645 {
1646 	struct vm_area_struct *vma;
1647 	struct rb_node *rb;
1648 	unsigned long end = start + len;
1649 	int ret;
1650 
1651 	kenter(",%lx,%zx", start, len);
1652 
1653 	if (len == 0)
1654 		return -EINVAL;
1655 
1656 	/* find the first potentially overlapping VMA */
1657 	vma = find_vma(mm, start);
1658 	if (!vma) {
1659 		static int limit = 0;
1660 		if (limit < 5) {
1661 			printk(KERN_WARNING
1662 			       "munmap of memory not mmapped by process %d"
1663 			       " (%s): 0x%lx-0x%lx\n",
1664 			       current->pid, current->comm,
1665 			       start, start + len - 1);
1666 			limit++;
1667 		}
1668 		return -EINVAL;
1669 	}
1670 
1671 	/* we're allowed to split an anonymous VMA but not a file-backed one */
1672 	if (vma->vm_file) {
1673 		do {
1674 			if (start > vma->vm_start) {
1675 				kleave(" = -EINVAL [miss]");
1676 				return -EINVAL;
1677 			}
1678 			if (end == vma->vm_end)
1679 				goto erase_whole_vma;
1680 			rb = rb_next(&vma->vm_rb);
1681 			vma = rb_entry(rb, struct vm_area_struct, vm_rb);
1682 		} while (rb);
1683 		kleave(" = -EINVAL [split file]");
1684 		return -EINVAL;
1685 	} else {
1686 		/* the chunk must be a subset of the VMA found */
1687 		if (start == vma->vm_start && end == vma->vm_end)
1688 			goto erase_whole_vma;
1689 		if (start < vma->vm_start || end > vma->vm_end) {
1690 			kleave(" = -EINVAL [superset]");
1691 			return -EINVAL;
1692 		}
1693 		if (start & ~PAGE_MASK) {
1694 			kleave(" = -EINVAL [unaligned start]");
1695 			return -EINVAL;
1696 		}
1697 		if (end != vma->vm_end && end & ~PAGE_MASK) {
1698 			kleave(" = -EINVAL [unaligned split]");
1699 			return -EINVAL;
1700 		}
1701 		if (start != vma->vm_start && end != vma->vm_end) {
1702 			ret = split_vma(mm, vma, start, 1);
1703 			if (ret < 0) {
1704 				kleave(" = %d [split]", ret);
1705 				return ret;
1706 			}
1707 		}
1708 		return shrink_vma(mm, vma, start, end);
1709 	}
1710 
1711 erase_whole_vma:
1712 	delete_vma_from_mm(vma);
1713 	delete_vma(mm, vma);
1714 	kleave(" = 0");
1715 	return 0;
1716 }
1717 EXPORT_SYMBOL(do_munmap);
1718 
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)1719 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
1720 {
1721 	int ret;
1722 	struct mm_struct *mm = current->mm;
1723 
1724 	down_write(&mm->mmap_sem);
1725 	ret = do_munmap(mm, addr, len);
1726 	up_write(&mm->mmap_sem);
1727 	return ret;
1728 }
1729 
1730 /*
1731  * release all the mappings made in a process's VM space
1732  */
exit_mmap(struct mm_struct * mm)1733 void exit_mmap(struct mm_struct *mm)
1734 {
1735 	struct vm_area_struct *vma;
1736 
1737 	if (!mm)
1738 		return;
1739 
1740 	kenter("");
1741 
1742 	mm->total_vm = 0;
1743 
1744 	while ((vma = mm->mmap)) {
1745 		mm->mmap = vma->vm_next;
1746 		delete_vma_from_mm(vma);
1747 		delete_vma(mm, vma);
1748 		cond_resched();
1749 	}
1750 
1751 	kleave("");
1752 }
1753 
do_brk(unsigned long addr,unsigned long len)1754 unsigned long do_brk(unsigned long addr, unsigned long len)
1755 {
1756 	return -ENOMEM;
1757 }
1758 
1759 /*
1760  * expand (or shrink) an existing mapping, potentially moving it at the same
1761  * time (controlled by the MREMAP_MAYMOVE flag and available VM space)
1762  *
1763  * under NOMMU conditions, we only permit changing a mapping's size, and only
1764  * as long as it stays within the region allocated by do_mmap_private() and the
1765  * block is not shareable
1766  *
1767  * MREMAP_FIXED is not supported under NOMMU conditions
1768  */
do_mremap(unsigned long addr,unsigned long old_len,unsigned long new_len,unsigned long flags,unsigned long new_addr)1769 unsigned long do_mremap(unsigned long addr,
1770 			unsigned long old_len, unsigned long new_len,
1771 			unsigned long flags, unsigned long new_addr)
1772 {
1773 	struct vm_area_struct *vma;
1774 
1775 	/* insanity checks first */
1776 	if (old_len == 0 || new_len == 0)
1777 		return (unsigned long) -EINVAL;
1778 
1779 	if (addr & ~PAGE_MASK)
1780 		return -EINVAL;
1781 
1782 	if (flags & MREMAP_FIXED && new_addr != addr)
1783 		return (unsigned long) -EINVAL;
1784 
1785 	vma = find_vma_exact(current->mm, addr, old_len);
1786 	if (!vma)
1787 		return (unsigned long) -EINVAL;
1788 
1789 	if (vma->vm_end != vma->vm_start + old_len)
1790 		return (unsigned long) -EFAULT;
1791 
1792 	if (vma->vm_flags & VM_MAYSHARE)
1793 		return (unsigned long) -EPERM;
1794 
1795 	if (new_len > vma->vm_region->vm_end - vma->vm_region->vm_start)
1796 		return (unsigned long) -ENOMEM;
1797 
1798 	/* all checks complete - do it */
1799 	vma->vm_end = vma->vm_start + new_len;
1800 	return vma->vm_start;
1801 }
1802 EXPORT_SYMBOL(do_mremap);
1803 
SYSCALL_DEFINE5(mremap,unsigned long,addr,unsigned long,old_len,unsigned long,new_len,unsigned long,flags,unsigned long,new_addr)1804 SYSCALL_DEFINE5(mremap, unsigned long, addr, unsigned long, old_len,
1805 		unsigned long, new_len, unsigned long, flags,
1806 		unsigned long, new_addr)
1807 {
1808 	unsigned long ret;
1809 
1810 	down_write(&current->mm->mmap_sem);
1811 	ret = do_mremap(addr, old_len, new_len, flags, new_addr);
1812 	up_write(&current->mm->mmap_sem);
1813 	return ret;
1814 }
1815 
follow_page(struct vm_area_struct * vma,unsigned long address,unsigned int foll_flags)1816 struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
1817 			unsigned int foll_flags)
1818 {
1819 	return NULL;
1820 }
1821 
remap_pfn_range(struct vm_area_struct * vma,unsigned long from,unsigned long to,unsigned long size,pgprot_t prot)1822 int remap_pfn_range(struct vm_area_struct *vma, unsigned long from,
1823 		unsigned long to, unsigned long size, pgprot_t prot)
1824 {
1825 	vma->vm_start = vma->vm_pgoff << PAGE_SHIFT;
1826 	return 0;
1827 }
1828 EXPORT_SYMBOL(remap_pfn_range);
1829 
remap_vmalloc_range(struct vm_area_struct * vma,void * addr,unsigned long pgoff)1830 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1831 			unsigned long pgoff)
1832 {
1833 	unsigned int size = vma->vm_end - vma->vm_start;
1834 
1835 	if (!(vma->vm_flags & VM_USERMAP))
1836 		return -EINVAL;
1837 
1838 	vma->vm_start = (unsigned long)(addr + (pgoff << PAGE_SHIFT));
1839 	vma->vm_end = vma->vm_start + size;
1840 
1841 	return 0;
1842 }
1843 EXPORT_SYMBOL(remap_vmalloc_range);
1844 
arch_get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1845 unsigned long arch_get_unmapped_area(struct file *file, unsigned long addr,
1846 	unsigned long len, unsigned long pgoff, unsigned long flags)
1847 {
1848 	return -ENOMEM;
1849 }
1850 
arch_unmap_area(struct mm_struct * mm,unsigned long addr)1851 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1852 {
1853 }
1854 
unmap_mapping_range(struct address_space * mapping,loff_t const holebegin,loff_t const holelen,int even_cows)1855 void unmap_mapping_range(struct address_space *mapping,
1856 			 loff_t const holebegin, loff_t const holelen,
1857 			 int even_cows)
1858 {
1859 }
1860 EXPORT_SYMBOL(unmap_mapping_range);
1861 
1862 /*
1863  * Check that a process has enough memory to allocate a new virtual
1864  * mapping. 0 means there is enough memory for the allocation to
1865  * succeed and -ENOMEM implies there is not.
1866  *
1867  * We currently support three overcommit policies, which are set via the
1868  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
1869  *
1870  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
1871  * Additional code 2002 Jul 20 by Robert Love.
1872  *
1873  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
1874  *
1875  * Note this is a helper function intended to be used by LSMs which
1876  * wish to use this logic.
1877  */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)1878 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
1879 {
1880 	unsigned long free, allowed;
1881 
1882 	vm_acct_memory(pages);
1883 
1884 	/*
1885 	 * Sometimes we want to use more memory than we have
1886 	 */
1887 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
1888 		return 0;
1889 
1890 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
1891 		unsigned long n;
1892 
1893 		free = global_page_state(NR_FILE_PAGES);
1894 		free += nr_swap_pages;
1895 
1896 		/*
1897 		 * Any slabs which are created with the
1898 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
1899 		 * which are reclaimable, under pressure.  The dentry
1900 		 * cache and most inode caches should fall into this
1901 		 */
1902 		free += global_page_state(NR_SLAB_RECLAIMABLE);
1903 
1904 		/*
1905 		 * Leave the last 3% for root
1906 		 */
1907 		if (!cap_sys_admin)
1908 			free -= free / 32;
1909 
1910 		if (free > pages)
1911 			return 0;
1912 
1913 		/*
1914 		 * nr_free_pages() is very expensive on large systems,
1915 		 * only call if we're about to fail.
1916 		 */
1917 		n = nr_free_pages();
1918 
1919 		/*
1920 		 * Leave reserved pages. The pages are not for anonymous pages.
1921 		 */
1922 		if (n <= totalreserve_pages)
1923 			goto error;
1924 		else
1925 			n -= totalreserve_pages;
1926 
1927 		/*
1928 		 * Leave the last 3% for root
1929 		 */
1930 		if (!cap_sys_admin)
1931 			n -= n / 32;
1932 		free += n;
1933 
1934 		if (free > pages)
1935 			return 0;
1936 
1937 		goto error;
1938 	}
1939 
1940 	allowed = totalram_pages * sysctl_overcommit_ratio / 100;
1941 	/*
1942 	 * Leave the last 3% for root
1943 	 */
1944 	if (!cap_sys_admin)
1945 		allowed -= allowed / 32;
1946 	allowed += total_swap_pages;
1947 
1948 	/* Don't let a single process grow too big:
1949 	   leave 3% of the size of this process for other processes */
1950 	if (mm)
1951 		allowed -= mm->total_vm / 32;
1952 
1953 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
1954 		return 0;
1955 
1956 error:
1957 	vm_unacct_memory(pages);
1958 
1959 	return -ENOMEM;
1960 }
1961 
in_gate_area_no_mm(unsigned long addr)1962 int in_gate_area_no_mm(unsigned long addr)
1963 {
1964 	return 0;
1965 }
1966 
filemap_fault(struct vm_area_struct * vma,struct vm_fault * vmf)1967 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1968 {
1969 	BUG();
1970 	return 0;
1971 }
1972 EXPORT_SYMBOL(filemap_fault);
1973 
__access_remote_vm(struct task_struct * tsk,struct mm_struct * mm,unsigned long addr,void * buf,int len,int write)1974 static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
1975 		unsigned long addr, void *buf, int len, int write)
1976 {
1977 	struct vm_area_struct *vma;
1978 
1979 	down_read(&mm->mmap_sem);
1980 
1981 	/* the access must start within one of the target process's mappings */
1982 	vma = find_vma(mm, addr);
1983 	if (vma) {
1984 		/* don't overrun this mapping */
1985 		if (addr + len >= vma->vm_end)
1986 			len = vma->vm_end - addr;
1987 
1988 		/* only read or write mappings where it is permitted */
1989 		if (write && vma->vm_flags & VM_MAYWRITE)
1990 			copy_to_user_page(vma, NULL, addr,
1991 					 (void *) addr, buf, len);
1992 		else if (!write && vma->vm_flags & VM_MAYREAD)
1993 			copy_from_user_page(vma, NULL, addr,
1994 					    buf, (void *) addr, len);
1995 		else
1996 			len = 0;
1997 	} else {
1998 		len = 0;
1999 	}
2000 
2001 	up_read(&mm->mmap_sem);
2002 
2003 	return len;
2004 }
2005 
2006 /**
2007  * @access_remote_vm - access another process' address space
2008  * @mm:		the mm_struct of the target address space
2009  * @addr:	start address to access
2010  * @buf:	source or destination buffer
2011  * @len:	number of bytes to transfer
2012  * @write:	whether the access is a write
2013  *
2014  * The caller must hold a reference on @mm.
2015  */
access_remote_vm(struct mm_struct * mm,unsigned long addr,void * buf,int len,int write)2016 int access_remote_vm(struct mm_struct *mm, unsigned long addr,
2017 		void *buf, int len, int write)
2018 {
2019 	return __access_remote_vm(NULL, mm, addr, buf, len, write);
2020 }
2021 
2022 /*
2023  * Access another process' address space.
2024  * - source/target buffer must be kernel space
2025  */
access_process_vm(struct task_struct * tsk,unsigned long addr,void * buf,int len,int write)2026 int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2027 {
2028 	struct mm_struct *mm;
2029 
2030 	if (addr + len < addr)
2031 		return 0;
2032 
2033 	mm = get_task_mm(tsk);
2034 	if (!mm)
2035 		return 0;
2036 
2037 	len = __access_remote_vm(tsk, mm, addr, buf, len, write);
2038 
2039 	mmput(mm);
2040 	return len;
2041 }
2042 
2043 /**
2044  * nommu_shrink_inode_mappings - Shrink the shared mappings on an inode
2045  * @inode: The inode to check
2046  * @size: The current filesize of the inode
2047  * @newsize: The proposed filesize of the inode
2048  *
2049  * Check the shared mappings on an inode on behalf of a shrinking truncate to
2050  * make sure that that any outstanding VMAs aren't broken and then shrink the
2051  * vm_regions that extend that beyond so that do_mmap_pgoff() doesn't
2052  * automatically grant mappings that are too large.
2053  */
nommu_shrink_inode_mappings(struct inode * inode,size_t size,size_t newsize)2054 int nommu_shrink_inode_mappings(struct inode *inode, size_t size,
2055 				size_t newsize)
2056 {
2057 	struct vm_area_struct *vma;
2058 	struct prio_tree_iter iter;
2059 	struct vm_region *region;
2060 	pgoff_t low, high;
2061 	size_t r_size, r_top;
2062 
2063 	low = newsize >> PAGE_SHIFT;
2064 	high = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
2065 
2066 	down_write(&nommu_region_sem);
2067 
2068 	/* search for VMAs that fall within the dead zone */
2069 	vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2070 			      low, high) {
2071 		/* found one - only interested if it's shared out of the page
2072 		 * cache */
2073 		if (vma->vm_flags & VM_SHARED) {
2074 			up_write(&nommu_region_sem);
2075 			return -ETXTBSY; /* not quite true, but near enough */
2076 		}
2077 	}
2078 
2079 	/* reduce any regions that overlap the dead zone - if in existence,
2080 	 * these will be pointed to by VMAs that don't overlap the dead zone
2081 	 *
2082 	 * we don't check for any regions that start beyond the EOF as there
2083 	 * shouldn't be any
2084 	 */
2085 	vma_prio_tree_foreach(vma, &iter, &inode->i_mapping->i_mmap,
2086 			      0, ULONG_MAX) {
2087 		if (!(vma->vm_flags & VM_SHARED))
2088 			continue;
2089 
2090 		region = vma->vm_region;
2091 		r_size = region->vm_top - region->vm_start;
2092 		r_top = (region->vm_pgoff << PAGE_SHIFT) + r_size;
2093 
2094 		if (r_top > newsize) {
2095 			region->vm_top -= r_top - newsize;
2096 			if (region->vm_end > region->vm_top)
2097 				region->vm_end = region->vm_top;
2098 		}
2099 	}
2100 
2101 	up_write(&nommu_region_sem);
2102 	return 0;
2103 }
2104