1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *	Izik Eidus
10  *	Andrea Arcangeli
11  *	Chris Wright
12  *	Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16 
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hash.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 
40 #include <asm/tlbflush.h>
41 #include "internal.h"
42 
43 /*
44  * A few notes about the KSM scanning process,
45  * to make it easier to understand the data structures below:
46  *
47  * In order to reduce excessive scanning, KSM sorts the memory pages by their
48  * contents into a data structure that holds pointers to the pages' locations.
49  *
50  * Since the contents of the pages may change at any moment, KSM cannot just
51  * insert the pages into a normal sorted tree and expect it to find anything.
52  * Therefore KSM uses two data structures - the stable and the unstable tree.
53  *
54  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
55  * by their contents.  Because each such page is write-protected, searching on
56  * this tree is fully assured to be working (except when pages are unmapped),
57  * and therefore this tree is called the stable tree.
58  *
59  * In addition to the stable tree, KSM uses a second data structure called the
60  * unstable tree: this tree holds pointers to pages which have been found to
61  * be "unchanged for a period of time".  The unstable tree sorts these pages
62  * by their contents, but since they are not write-protected, KSM cannot rely
63  * upon the unstable tree to work correctly - the unstable tree is liable to
64  * be corrupted as its contents are modified, and so it is called unstable.
65  *
66  * KSM solves this problem by several techniques:
67  *
68  * 1) The unstable tree is flushed every time KSM completes scanning all
69  *    memory areas, and then the tree is rebuilt again from the beginning.
70  * 2) KSM will only insert into the unstable tree, pages whose hash value
71  *    has not changed since the previous scan of all memory areas.
72  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
73  *    colors of the nodes and not on their contents, assuring that even when
74  *    the tree gets "corrupted" it won't get out of balance, so scanning time
75  *    remains the same (also, searching and inserting nodes in an rbtree uses
76  *    the same algorithm, so we have no overhead when we flush and rebuild).
77  * 4) KSM never flushes the stable tree, which means that even if it were to
78  *    take 10 attempts to find a page in the unstable tree, once it is found,
79  *    it is secured in the stable tree.  (When we scan a new page, we first
80  *    compare it against the stable tree, and then against the unstable tree.)
81  */
82 
83 /**
84  * struct mm_slot - ksm information per mm that is being scanned
85  * @link: link to the mm_slots hash list
86  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
87  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
88  * @mm: the mm that this information is valid for
89  */
90 struct mm_slot {
91 	struct hlist_node link;
92 	struct list_head mm_list;
93 	struct rmap_item *rmap_list;
94 	struct mm_struct *mm;
95 };
96 
97 /**
98  * struct ksm_scan - cursor for scanning
99  * @mm_slot: the current mm_slot we are scanning
100  * @address: the next address inside that to be scanned
101  * @rmap_list: link to the next rmap to be scanned in the rmap_list
102  * @seqnr: count of completed full scans (needed when removing unstable node)
103  *
104  * There is only the one ksm_scan instance of this cursor structure.
105  */
106 struct ksm_scan {
107 	struct mm_slot *mm_slot;
108 	unsigned long address;
109 	struct rmap_item **rmap_list;
110 	unsigned long seqnr;
111 };
112 
113 /**
114  * struct stable_node - node of the stable rbtree
115  * @node: rb node of this ksm page in the stable tree
116  * @hlist: hlist head of rmap_items using this ksm page
117  * @kpfn: page frame number of this ksm page
118  */
119 struct stable_node {
120 	struct rb_node node;
121 	struct hlist_head hlist;
122 	unsigned long kpfn;
123 };
124 
125 /**
126  * struct rmap_item - reverse mapping item for virtual addresses
127  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
128  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
129  * @mm: the memory structure this rmap_item is pointing into
130  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
131  * @oldchecksum: previous checksum of the page at that virtual address
132  * @node: rb node of this rmap_item in the unstable tree
133  * @head: pointer to stable_node heading this list in the stable tree
134  * @hlist: link into hlist of rmap_items hanging off that stable_node
135  */
136 struct rmap_item {
137 	struct rmap_item *rmap_list;
138 	struct anon_vma *anon_vma;	/* when stable */
139 	struct mm_struct *mm;
140 	unsigned long address;		/* + low bits used for flags below */
141 	unsigned int oldchecksum;	/* when unstable */
142 	union {
143 		struct rb_node node;	/* when node of unstable tree */
144 		struct {		/* when listed from stable tree */
145 			struct stable_node *head;
146 			struct hlist_node hlist;
147 		};
148 	};
149 };
150 
151 #define SEQNR_MASK	0x0ff	/* low bits of unstable tree seqnr */
152 #define UNSTABLE_FLAG	0x100	/* is a node of the unstable tree */
153 #define STABLE_FLAG	0x200	/* is listed from the stable tree */
154 
155 /* The stable and unstable tree heads */
156 static struct rb_root root_stable_tree = RB_ROOT;
157 static struct rb_root root_unstable_tree = RB_ROOT;
158 
159 #define MM_SLOTS_HASH_SHIFT 10
160 #define MM_SLOTS_HASH_HEADS (1 << MM_SLOTS_HASH_SHIFT)
161 static struct hlist_head mm_slots_hash[MM_SLOTS_HASH_HEADS];
162 
163 static struct mm_slot ksm_mm_head = {
164 	.mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
165 };
166 static struct ksm_scan ksm_scan = {
167 	.mm_slot = &ksm_mm_head,
168 };
169 
170 static struct kmem_cache *rmap_item_cache;
171 static struct kmem_cache *stable_node_cache;
172 static struct kmem_cache *mm_slot_cache;
173 
174 /* The number of nodes in the stable tree */
175 static unsigned long ksm_pages_shared;
176 
177 /* The number of page slots additionally sharing those nodes */
178 static unsigned long ksm_pages_sharing;
179 
180 /* The number of nodes in the unstable tree */
181 static unsigned long ksm_pages_unshared;
182 
183 /* The number of rmap_items in use: to calculate pages_volatile */
184 static unsigned long ksm_rmap_items;
185 
186 /* Number of pages ksmd should scan in one batch */
187 static unsigned int ksm_thread_pages_to_scan = 100;
188 
189 /* Milliseconds ksmd should sleep between batches */
190 static unsigned int ksm_thread_sleep_millisecs = 20;
191 
192 #define KSM_RUN_STOP	0
193 #define KSM_RUN_MERGE	1
194 #define KSM_RUN_UNMERGE	2
195 static unsigned int ksm_run = KSM_RUN_STOP;
196 
197 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
198 static DEFINE_MUTEX(ksm_thread_mutex);
199 static DEFINE_SPINLOCK(ksm_mmlist_lock);
200 
201 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
202 		sizeof(struct __struct), __alignof__(struct __struct),\
203 		(__flags), NULL)
204 
ksm_slab_init(void)205 static int __init ksm_slab_init(void)
206 {
207 	rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
208 	if (!rmap_item_cache)
209 		goto out;
210 
211 	stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
212 	if (!stable_node_cache)
213 		goto out_free1;
214 
215 	mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
216 	if (!mm_slot_cache)
217 		goto out_free2;
218 
219 	return 0;
220 
221 out_free2:
222 	kmem_cache_destroy(stable_node_cache);
223 out_free1:
224 	kmem_cache_destroy(rmap_item_cache);
225 out:
226 	return -ENOMEM;
227 }
228 
ksm_slab_free(void)229 static void __init ksm_slab_free(void)
230 {
231 	kmem_cache_destroy(mm_slot_cache);
232 	kmem_cache_destroy(stable_node_cache);
233 	kmem_cache_destroy(rmap_item_cache);
234 	mm_slot_cache = NULL;
235 }
236 
alloc_rmap_item(void)237 static inline struct rmap_item *alloc_rmap_item(void)
238 {
239 	struct rmap_item *rmap_item;
240 
241 	rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
242 	if (rmap_item)
243 		ksm_rmap_items++;
244 	return rmap_item;
245 }
246 
free_rmap_item(struct rmap_item * rmap_item)247 static inline void free_rmap_item(struct rmap_item *rmap_item)
248 {
249 	ksm_rmap_items--;
250 	rmap_item->mm = NULL;	/* debug safety */
251 	kmem_cache_free(rmap_item_cache, rmap_item);
252 }
253 
alloc_stable_node(void)254 static inline struct stable_node *alloc_stable_node(void)
255 {
256 	return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
257 }
258 
free_stable_node(struct stable_node * stable_node)259 static inline void free_stable_node(struct stable_node *stable_node)
260 {
261 	kmem_cache_free(stable_node_cache, stable_node);
262 }
263 
alloc_mm_slot(void)264 static inline struct mm_slot *alloc_mm_slot(void)
265 {
266 	if (!mm_slot_cache)	/* initialization failed */
267 		return NULL;
268 	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
269 }
270 
free_mm_slot(struct mm_slot * mm_slot)271 static inline void free_mm_slot(struct mm_slot *mm_slot)
272 {
273 	kmem_cache_free(mm_slot_cache, mm_slot);
274 }
275 
get_mm_slot(struct mm_struct * mm)276 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
277 {
278 	struct mm_slot *mm_slot;
279 	struct hlist_head *bucket;
280 	struct hlist_node *node;
281 
282 	bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
283 	hlist_for_each_entry(mm_slot, node, bucket, link) {
284 		if (mm == mm_slot->mm)
285 			return mm_slot;
286 	}
287 	return NULL;
288 }
289 
insert_to_mm_slots_hash(struct mm_struct * mm,struct mm_slot * mm_slot)290 static void insert_to_mm_slots_hash(struct mm_struct *mm,
291 				    struct mm_slot *mm_slot)
292 {
293 	struct hlist_head *bucket;
294 
295 	bucket = &mm_slots_hash[hash_ptr(mm, MM_SLOTS_HASH_SHIFT)];
296 	mm_slot->mm = mm;
297 	hlist_add_head(&mm_slot->link, bucket);
298 }
299 
in_stable_tree(struct rmap_item * rmap_item)300 static inline int in_stable_tree(struct rmap_item *rmap_item)
301 {
302 	return rmap_item->address & STABLE_FLAG;
303 }
304 
305 /*
306  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
307  * page tables after it has passed through ksm_exit() - which, if necessary,
308  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
309  * a special flag: they can just back out as soon as mm_users goes to zero.
310  * ksm_test_exit() is used throughout to make this test for exit: in some
311  * places for correctness, in some places just to avoid unnecessary work.
312  */
ksm_test_exit(struct mm_struct * mm)313 static inline bool ksm_test_exit(struct mm_struct *mm)
314 {
315 	return atomic_read(&mm->mm_users) == 0;
316 }
317 
318 /*
319  * We use break_ksm to break COW on a ksm page: it's a stripped down
320  *
321  *	if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
322  *		put_page(page);
323  *
324  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
325  * in case the application has unmapped and remapped mm,addr meanwhile.
326  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
327  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
328  */
break_ksm(struct vm_area_struct * vma,unsigned long addr)329 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
330 {
331 	struct page *page;
332 	int ret = 0;
333 
334 	do {
335 		cond_resched();
336 		page = follow_page(vma, addr, FOLL_GET);
337 		if (IS_ERR_OR_NULL(page))
338 			break;
339 		if (PageKsm(page))
340 			ret = handle_mm_fault(vma->vm_mm, vma, addr,
341 							FAULT_FLAG_WRITE);
342 		else
343 			ret = VM_FAULT_WRITE;
344 		put_page(page);
345 	} while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
346 	/*
347 	 * We must loop because handle_mm_fault() may back out if there's
348 	 * any difficulty e.g. if pte accessed bit gets updated concurrently.
349 	 *
350 	 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
351 	 * COW has been broken, even if the vma does not permit VM_WRITE;
352 	 * but note that a concurrent fault might break PageKsm for us.
353 	 *
354 	 * VM_FAULT_SIGBUS could occur if we race with truncation of the
355 	 * backing file, which also invalidates anonymous pages: that's
356 	 * okay, that truncation will have unmapped the PageKsm for us.
357 	 *
358 	 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
359 	 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
360 	 * current task has TIF_MEMDIE set, and will be OOM killed on return
361 	 * to user; and ksmd, having no mm, would never be chosen for that.
362 	 *
363 	 * But if the mm is in a limited mem_cgroup, then the fault may fail
364 	 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
365 	 * even ksmd can fail in this way - though it's usually breaking ksm
366 	 * just to undo a merge it made a moment before, so unlikely to oom.
367 	 *
368 	 * That's a pity: we might therefore have more kernel pages allocated
369 	 * than we're counting as nodes in the stable tree; but ksm_do_scan
370 	 * will retry to break_cow on each pass, so should recover the page
371 	 * in due course.  The important thing is to not let VM_MERGEABLE
372 	 * be cleared while any such pages might remain in the area.
373 	 */
374 	return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
375 }
376 
find_mergeable_vma(struct mm_struct * mm,unsigned long addr)377 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
378 		unsigned long addr)
379 {
380 	struct vm_area_struct *vma;
381 	if (ksm_test_exit(mm))
382 		return NULL;
383 	vma = find_vma(mm, addr);
384 	if (!vma || vma->vm_start > addr)
385 		return NULL;
386 	if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
387 		return NULL;
388 	return vma;
389 }
390 
break_cow(struct rmap_item * rmap_item)391 static void break_cow(struct rmap_item *rmap_item)
392 {
393 	struct mm_struct *mm = rmap_item->mm;
394 	unsigned long addr = rmap_item->address;
395 	struct vm_area_struct *vma;
396 
397 	/*
398 	 * It is not an accident that whenever we want to break COW
399 	 * to undo, we also need to drop a reference to the anon_vma.
400 	 */
401 	put_anon_vma(rmap_item->anon_vma);
402 
403 	down_read(&mm->mmap_sem);
404 	vma = find_mergeable_vma(mm, addr);
405 	if (vma)
406 		break_ksm(vma, addr);
407 	up_read(&mm->mmap_sem);
408 }
409 
page_trans_compound_anon(struct page * page)410 static struct page *page_trans_compound_anon(struct page *page)
411 {
412 	if (PageTransCompound(page)) {
413 		struct page *head = compound_trans_head(page);
414 		/*
415 		 * head may actually be splitted and freed from under
416 		 * us but it's ok here.
417 		 */
418 		if (PageAnon(head))
419 			return head;
420 	}
421 	return NULL;
422 }
423 
get_mergeable_page(struct rmap_item * rmap_item)424 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
425 {
426 	struct mm_struct *mm = rmap_item->mm;
427 	unsigned long addr = rmap_item->address;
428 	struct vm_area_struct *vma;
429 	struct page *page;
430 
431 	down_read(&mm->mmap_sem);
432 	vma = find_mergeable_vma(mm, addr);
433 	if (!vma)
434 		goto out;
435 
436 	page = follow_page(vma, addr, FOLL_GET);
437 	if (IS_ERR_OR_NULL(page))
438 		goto out;
439 	if (PageAnon(page) || page_trans_compound_anon(page)) {
440 		flush_anon_page(vma, page, addr);
441 		flush_dcache_page(page);
442 	} else {
443 		put_page(page);
444 out:		page = NULL;
445 	}
446 	up_read(&mm->mmap_sem);
447 	return page;
448 }
449 
remove_node_from_stable_tree(struct stable_node * stable_node)450 static void remove_node_from_stable_tree(struct stable_node *stable_node)
451 {
452 	struct rmap_item *rmap_item;
453 	struct hlist_node *hlist;
454 
455 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
456 		if (rmap_item->hlist.next)
457 			ksm_pages_sharing--;
458 		else
459 			ksm_pages_shared--;
460 		put_anon_vma(rmap_item->anon_vma);
461 		rmap_item->address &= PAGE_MASK;
462 		cond_resched();
463 	}
464 
465 	rb_erase(&stable_node->node, &root_stable_tree);
466 	free_stable_node(stable_node);
467 }
468 
469 /*
470  * get_ksm_page: checks if the page indicated by the stable node
471  * is still its ksm page, despite having held no reference to it.
472  * In which case we can trust the content of the page, and it
473  * returns the gotten page; but if the page has now been zapped,
474  * remove the stale node from the stable tree and return NULL.
475  *
476  * You would expect the stable_node to hold a reference to the ksm page.
477  * But if it increments the page's count, swapping out has to wait for
478  * ksmd to come around again before it can free the page, which may take
479  * seconds or even minutes: much too unresponsive.  So instead we use a
480  * "keyhole reference": access to the ksm page from the stable node peeps
481  * out through its keyhole to see if that page still holds the right key,
482  * pointing back to this stable node.  This relies on freeing a PageAnon
483  * page to reset its page->mapping to NULL, and relies on no other use of
484  * a page to put something that might look like our key in page->mapping.
485  *
486  * include/linux/pagemap.h page_cache_get_speculative() is a good reference,
487  * but this is different - made simpler by ksm_thread_mutex being held, but
488  * interesting for assuming that no other use of the struct page could ever
489  * put our expected_mapping into page->mapping (or a field of the union which
490  * coincides with page->mapping).  The RCU calls are not for KSM at all, but
491  * to keep the page_count protocol described with page_cache_get_speculative.
492  *
493  * Note: it is possible that get_ksm_page() will return NULL one moment,
494  * then page the next, if the page is in between page_freeze_refs() and
495  * page_unfreeze_refs(): this shouldn't be a problem anywhere, the page
496  * is on its way to being freed; but it is an anomaly to bear in mind.
497  */
get_ksm_page(struct stable_node * stable_node)498 static struct page *get_ksm_page(struct stable_node *stable_node)
499 {
500 	struct page *page;
501 	void *expected_mapping;
502 
503 	page = pfn_to_page(stable_node->kpfn);
504 	expected_mapping = (void *)stable_node +
505 				(PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
506 	rcu_read_lock();
507 	if (page->mapping != expected_mapping)
508 		goto stale;
509 	if (!get_page_unless_zero(page))
510 		goto stale;
511 	if (page->mapping != expected_mapping) {
512 		put_page(page);
513 		goto stale;
514 	}
515 	rcu_read_unlock();
516 	return page;
517 stale:
518 	rcu_read_unlock();
519 	remove_node_from_stable_tree(stable_node);
520 	return NULL;
521 }
522 
523 /*
524  * Removing rmap_item from stable or unstable tree.
525  * This function will clean the information from the stable/unstable tree.
526  */
remove_rmap_item_from_tree(struct rmap_item * rmap_item)527 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
528 {
529 	if (rmap_item->address & STABLE_FLAG) {
530 		struct stable_node *stable_node;
531 		struct page *page;
532 
533 		stable_node = rmap_item->head;
534 		page = get_ksm_page(stable_node);
535 		if (!page)
536 			goto out;
537 
538 		lock_page(page);
539 		hlist_del(&rmap_item->hlist);
540 		unlock_page(page);
541 		put_page(page);
542 
543 		if (stable_node->hlist.first)
544 			ksm_pages_sharing--;
545 		else
546 			ksm_pages_shared--;
547 
548 		put_anon_vma(rmap_item->anon_vma);
549 		rmap_item->address &= PAGE_MASK;
550 
551 	} else if (rmap_item->address & UNSTABLE_FLAG) {
552 		unsigned char age;
553 		/*
554 		 * Usually ksmd can and must skip the rb_erase, because
555 		 * root_unstable_tree was already reset to RB_ROOT.
556 		 * But be careful when an mm is exiting: do the rb_erase
557 		 * if this rmap_item was inserted by this scan, rather
558 		 * than left over from before.
559 		 */
560 		age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
561 		BUG_ON(age > 1);
562 		if (!age)
563 			rb_erase(&rmap_item->node, &root_unstable_tree);
564 
565 		ksm_pages_unshared--;
566 		rmap_item->address &= PAGE_MASK;
567 	}
568 out:
569 	cond_resched();		/* we're called from many long loops */
570 }
571 
remove_trailing_rmap_items(struct mm_slot * mm_slot,struct rmap_item ** rmap_list)572 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
573 				       struct rmap_item **rmap_list)
574 {
575 	while (*rmap_list) {
576 		struct rmap_item *rmap_item = *rmap_list;
577 		*rmap_list = rmap_item->rmap_list;
578 		remove_rmap_item_from_tree(rmap_item);
579 		free_rmap_item(rmap_item);
580 	}
581 }
582 
583 /*
584  * Though it's very tempting to unmerge in_stable_tree(rmap_item)s rather
585  * than check every pte of a given vma, the locking doesn't quite work for
586  * that - an rmap_item is assigned to the stable tree after inserting ksm
587  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
588  * rmap_items from parent to child at fork time (so as not to waste time
589  * if exit comes before the next scan reaches it).
590  *
591  * Similarly, although we'd like to remove rmap_items (so updating counts
592  * and freeing memory) when unmerging an area, it's easier to leave that
593  * to the next pass of ksmd - consider, for example, how ksmd might be
594  * in cmp_and_merge_page on one of the rmap_items we would be removing.
595  */
unmerge_ksm_pages(struct vm_area_struct * vma,unsigned long start,unsigned long end)596 static int unmerge_ksm_pages(struct vm_area_struct *vma,
597 			     unsigned long start, unsigned long end)
598 {
599 	unsigned long addr;
600 	int err = 0;
601 
602 	for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
603 		if (ksm_test_exit(vma->vm_mm))
604 			break;
605 		if (signal_pending(current))
606 			err = -ERESTARTSYS;
607 		else
608 			err = break_ksm(vma, addr);
609 	}
610 	return err;
611 }
612 
613 #ifdef CONFIG_SYSFS
614 /*
615  * Only called through the sysfs control interface:
616  */
unmerge_and_remove_all_rmap_items(void)617 static int unmerge_and_remove_all_rmap_items(void)
618 {
619 	struct mm_slot *mm_slot;
620 	struct mm_struct *mm;
621 	struct vm_area_struct *vma;
622 	int err = 0;
623 
624 	spin_lock(&ksm_mmlist_lock);
625 	ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
626 						struct mm_slot, mm_list);
627 	spin_unlock(&ksm_mmlist_lock);
628 
629 	for (mm_slot = ksm_scan.mm_slot;
630 			mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
631 		mm = mm_slot->mm;
632 		down_read(&mm->mmap_sem);
633 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
634 			if (ksm_test_exit(mm))
635 				break;
636 			if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
637 				continue;
638 			err = unmerge_ksm_pages(vma,
639 						vma->vm_start, vma->vm_end);
640 			if (err)
641 				goto error;
642 		}
643 
644 		remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
645 
646 		spin_lock(&ksm_mmlist_lock);
647 		ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
648 						struct mm_slot, mm_list);
649 		if (ksm_test_exit(mm)) {
650 			hlist_del(&mm_slot->link);
651 			list_del(&mm_slot->mm_list);
652 			spin_unlock(&ksm_mmlist_lock);
653 
654 			free_mm_slot(mm_slot);
655 			clear_bit(MMF_VM_MERGEABLE, &mm->flags);
656 			up_read(&mm->mmap_sem);
657 			mmdrop(mm);
658 		} else {
659 			spin_unlock(&ksm_mmlist_lock);
660 			up_read(&mm->mmap_sem);
661 		}
662 	}
663 
664 	ksm_scan.seqnr = 0;
665 	return 0;
666 
667 error:
668 	up_read(&mm->mmap_sem);
669 	spin_lock(&ksm_mmlist_lock);
670 	ksm_scan.mm_slot = &ksm_mm_head;
671 	spin_unlock(&ksm_mmlist_lock);
672 	return err;
673 }
674 #endif /* CONFIG_SYSFS */
675 
calc_checksum(struct page * page)676 static u32 calc_checksum(struct page *page)
677 {
678 	u32 checksum;
679 	void *addr = kmap_atomic(page);
680 	checksum = jhash2(addr, PAGE_SIZE / 4, 17);
681 	kunmap_atomic(addr);
682 	return checksum;
683 }
684 
memcmp_pages(struct page * page1,struct page * page2)685 static int memcmp_pages(struct page *page1, struct page *page2)
686 {
687 	char *addr1, *addr2;
688 	int ret;
689 
690 	addr1 = kmap_atomic(page1);
691 	addr2 = kmap_atomic(page2);
692 	ret = memcmp(addr1, addr2, PAGE_SIZE);
693 	kunmap_atomic(addr2);
694 	kunmap_atomic(addr1);
695 	return ret;
696 }
697 
pages_identical(struct page * page1,struct page * page2)698 static inline int pages_identical(struct page *page1, struct page *page2)
699 {
700 	return !memcmp_pages(page1, page2);
701 }
702 
write_protect_page(struct vm_area_struct * vma,struct page * page,pte_t * orig_pte)703 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
704 			      pte_t *orig_pte)
705 {
706 	struct mm_struct *mm = vma->vm_mm;
707 	unsigned long addr;
708 	pte_t *ptep;
709 	spinlock_t *ptl;
710 	int swapped;
711 	int err = -EFAULT;
712 
713 	addr = page_address_in_vma(page, vma);
714 	if (addr == -EFAULT)
715 		goto out;
716 
717 	BUG_ON(PageTransCompound(page));
718 	ptep = page_check_address(page, mm, addr, &ptl, 0);
719 	if (!ptep)
720 		goto out;
721 
722 	if (pte_write(*ptep) || pte_dirty(*ptep)) {
723 		pte_t entry;
724 
725 		swapped = PageSwapCache(page);
726 		flush_cache_page(vma, addr, page_to_pfn(page));
727 		/*
728 		 * Ok this is tricky, when get_user_pages_fast() run it doesn't
729 		 * take any lock, therefore the check that we are going to make
730 		 * with the pagecount against the mapcount is racey and
731 		 * O_DIRECT can happen right after the check.
732 		 * So we clear the pte and flush the tlb before the check
733 		 * this assure us that no O_DIRECT can happen after the check
734 		 * or in the middle of the check.
735 		 */
736 		entry = ptep_clear_flush(vma, addr, ptep);
737 		/*
738 		 * Check that no O_DIRECT or similar I/O is in progress on the
739 		 * page
740 		 */
741 		if (page_mapcount(page) + 1 + swapped != page_count(page)) {
742 			set_pte_at(mm, addr, ptep, entry);
743 			goto out_unlock;
744 		}
745 		if (pte_dirty(entry))
746 			set_page_dirty(page);
747 		entry = pte_mkclean(pte_wrprotect(entry));
748 		set_pte_at_notify(mm, addr, ptep, entry);
749 	}
750 	*orig_pte = *ptep;
751 	err = 0;
752 
753 out_unlock:
754 	pte_unmap_unlock(ptep, ptl);
755 out:
756 	return err;
757 }
758 
759 /**
760  * replace_page - replace page in vma by new ksm page
761  * @vma:      vma that holds the pte pointing to page
762  * @page:     the page we are replacing by kpage
763  * @kpage:    the ksm page we replace page by
764  * @orig_pte: the original value of the pte
765  *
766  * Returns 0 on success, -EFAULT on failure.
767  */
replace_page(struct vm_area_struct * vma,struct page * page,struct page * kpage,pte_t orig_pte)768 static int replace_page(struct vm_area_struct *vma, struct page *page,
769 			struct page *kpage, pte_t orig_pte)
770 {
771 	struct mm_struct *mm = vma->vm_mm;
772 	pgd_t *pgd;
773 	pud_t *pud;
774 	pmd_t *pmd;
775 	pte_t *ptep;
776 	spinlock_t *ptl;
777 	unsigned long addr;
778 	int err = -EFAULT;
779 
780 	addr = page_address_in_vma(page, vma);
781 	if (addr == -EFAULT)
782 		goto out;
783 
784 	pgd = pgd_offset(mm, addr);
785 	if (!pgd_present(*pgd))
786 		goto out;
787 
788 	pud = pud_offset(pgd, addr);
789 	if (!pud_present(*pud))
790 		goto out;
791 
792 	pmd = pmd_offset(pud, addr);
793 	BUG_ON(pmd_trans_huge(*pmd));
794 	if (!pmd_present(*pmd))
795 		goto out;
796 
797 	ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
798 	if (!pte_same(*ptep, orig_pte)) {
799 		pte_unmap_unlock(ptep, ptl);
800 		goto out;
801 	}
802 
803 	get_page(kpage);
804 	page_add_anon_rmap(kpage, vma, addr);
805 
806 	flush_cache_page(vma, addr, pte_pfn(*ptep));
807 	ptep_clear_flush(vma, addr, ptep);
808 	set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
809 
810 	page_remove_rmap(page);
811 	if (!page_mapped(page))
812 		try_to_free_swap(page);
813 	put_page(page);
814 
815 	pte_unmap_unlock(ptep, ptl);
816 	err = 0;
817 out:
818 	return err;
819 }
820 
page_trans_compound_anon_split(struct page * page)821 static int page_trans_compound_anon_split(struct page *page)
822 {
823 	int ret = 0;
824 	struct page *transhuge_head = page_trans_compound_anon(page);
825 	if (transhuge_head) {
826 		/* Get the reference on the head to split it. */
827 		if (get_page_unless_zero(transhuge_head)) {
828 			/*
829 			 * Recheck we got the reference while the head
830 			 * was still anonymous.
831 			 */
832 			if (PageAnon(transhuge_head))
833 				ret = split_huge_page(transhuge_head);
834 			else
835 				/*
836 				 * Retry later if split_huge_page run
837 				 * from under us.
838 				 */
839 				ret = 1;
840 			put_page(transhuge_head);
841 		} else
842 			/* Retry later if split_huge_page run from under us. */
843 			ret = 1;
844 	}
845 	return ret;
846 }
847 
848 /*
849  * try_to_merge_one_page - take two pages and merge them into one
850  * @vma: the vma that holds the pte pointing to page
851  * @page: the PageAnon page that we want to replace with kpage
852  * @kpage: the PageKsm page that we want to map instead of page,
853  *         or NULL the first time when we want to use page as kpage.
854  *
855  * This function returns 0 if the pages were merged, -EFAULT otherwise.
856  */
try_to_merge_one_page(struct vm_area_struct * vma,struct page * page,struct page * kpage)857 static int try_to_merge_one_page(struct vm_area_struct *vma,
858 				 struct page *page, struct page *kpage)
859 {
860 	pte_t orig_pte = __pte(0);
861 	int err = -EFAULT;
862 
863 	if (page == kpage)			/* ksm page forked */
864 		return 0;
865 
866 	if (!(vma->vm_flags & VM_MERGEABLE))
867 		goto out;
868 	if (PageTransCompound(page) && page_trans_compound_anon_split(page))
869 		goto out;
870 	BUG_ON(PageTransCompound(page));
871 	if (!PageAnon(page))
872 		goto out;
873 
874 	/*
875 	 * We need the page lock to read a stable PageSwapCache in
876 	 * write_protect_page().  We use trylock_page() instead of
877 	 * lock_page() because we don't want to wait here - we
878 	 * prefer to continue scanning and merging different pages,
879 	 * then come back to this page when it is unlocked.
880 	 */
881 	if (!trylock_page(page))
882 		goto out;
883 	/*
884 	 * If this anonymous page is mapped only here, its pte may need
885 	 * to be write-protected.  If it's mapped elsewhere, all of its
886 	 * ptes are necessarily already write-protected.  But in either
887 	 * case, we need to lock and check page_count is not raised.
888 	 */
889 	if (write_protect_page(vma, page, &orig_pte) == 0) {
890 		if (!kpage) {
891 			/*
892 			 * While we hold page lock, upgrade page from
893 			 * PageAnon+anon_vma to PageKsm+NULL stable_node:
894 			 * stable_tree_insert() will update stable_node.
895 			 */
896 			set_page_stable_node(page, NULL);
897 			mark_page_accessed(page);
898 			err = 0;
899 		} else if (pages_identical(page, kpage))
900 			err = replace_page(vma, page, kpage, orig_pte);
901 	}
902 
903 	if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
904 		munlock_vma_page(page);
905 		if (!PageMlocked(kpage)) {
906 			unlock_page(page);
907 			lock_page(kpage);
908 			mlock_vma_page(kpage);
909 			page = kpage;		/* for final unlock */
910 		}
911 	}
912 
913 	unlock_page(page);
914 out:
915 	return err;
916 }
917 
918 /*
919  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
920  * but no new kernel page is allocated: kpage must already be a ksm page.
921  *
922  * This function returns 0 if the pages were merged, -EFAULT otherwise.
923  */
try_to_merge_with_ksm_page(struct rmap_item * rmap_item,struct page * page,struct page * kpage)924 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
925 				      struct page *page, struct page *kpage)
926 {
927 	struct mm_struct *mm = rmap_item->mm;
928 	struct vm_area_struct *vma;
929 	int err = -EFAULT;
930 
931 	down_read(&mm->mmap_sem);
932 	if (ksm_test_exit(mm))
933 		goto out;
934 	vma = find_vma(mm, rmap_item->address);
935 	if (!vma || vma->vm_start > rmap_item->address)
936 		goto out;
937 
938 	err = try_to_merge_one_page(vma, page, kpage);
939 	if (err)
940 		goto out;
941 
942 	/* Must get reference to anon_vma while still holding mmap_sem */
943 	rmap_item->anon_vma = vma->anon_vma;
944 	get_anon_vma(vma->anon_vma);
945 out:
946 	up_read(&mm->mmap_sem);
947 	return err;
948 }
949 
950 /*
951  * try_to_merge_two_pages - take two identical pages and prepare them
952  * to be merged into one page.
953  *
954  * This function returns the kpage if we successfully merged two identical
955  * pages into one ksm page, NULL otherwise.
956  *
957  * Note that this function upgrades page to ksm page: if one of the pages
958  * is already a ksm page, try_to_merge_with_ksm_page should be used.
959  */
try_to_merge_two_pages(struct rmap_item * rmap_item,struct page * page,struct rmap_item * tree_rmap_item,struct page * tree_page)960 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
961 					   struct page *page,
962 					   struct rmap_item *tree_rmap_item,
963 					   struct page *tree_page)
964 {
965 	int err;
966 
967 	err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
968 	if (!err) {
969 		err = try_to_merge_with_ksm_page(tree_rmap_item,
970 							tree_page, page);
971 		/*
972 		 * If that fails, we have a ksm page with only one pte
973 		 * pointing to it: so break it.
974 		 */
975 		if (err)
976 			break_cow(rmap_item);
977 	}
978 	return err ? NULL : page;
979 }
980 
981 /*
982  * stable_tree_search - search for page inside the stable tree
983  *
984  * This function checks if there is a page inside the stable tree
985  * with identical content to the page that we are scanning right now.
986  *
987  * This function returns the stable tree node of identical content if found,
988  * NULL otherwise.
989  */
stable_tree_search(struct page * page)990 static struct page *stable_tree_search(struct page *page)
991 {
992 	struct rb_node *node = root_stable_tree.rb_node;
993 	struct stable_node *stable_node;
994 
995 	stable_node = page_stable_node(page);
996 	if (stable_node) {			/* ksm page forked */
997 		get_page(page);
998 		return page;
999 	}
1000 
1001 	while (node) {
1002 		struct page *tree_page;
1003 		int ret;
1004 
1005 		cond_resched();
1006 		stable_node = rb_entry(node, struct stable_node, node);
1007 		tree_page = get_ksm_page(stable_node);
1008 		if (!tree_page)
1009 			return NULL;
1010 
1011 		ret = memcmp_pages(page, tree_page);
1012 
1013 		if (ret < 0) {
1014 			put_page(tree_page);
1015 			node = node->rb_left;
1016 		} else if (ret > 0) {
1017 			put_page(tree_page);
1018 			node = node->rb_right;
1019 		} else
1020 			return tree_page;
1021 	}
1022 
1023 	return NULL;
1024 }
1025 
1026 /*
1027  * stable_tree_insert - insert rmap_item pointing to new ksm page
1028  * into the stable tree.
1029  *
1030  * This function returns the stable tree node just allocated on success,
1031  * NULL otherwise.
1032  */
stable_tree_insert(struct page * kpage)1033 static struct stable_node *stable_tree_insert(struct page *kpage)
1034 {
1035 	struct rb_node **new = &root_stable_tree.rb_node;
1036 	struct rb_node *parent = NULL;
1037 	struct stable_node *stable_node;
1038 
1039 	while (*new) {
1040 		struct page *tree_page;
1041 		int ret;
1042 
1043 		cond_resched();
1044 		stable_node = rb_entry(*new, struct stable_node, node);
1045 		tree_page = get_ksm_page(stable_node);
1046 		if (!tree_page)
1047 			return NULL;
1048 
1049 		ret = memcmp_pages(kpage, tree_page);
1050 		put_page(tree_page);
1051 
1052 		parent = *new;
1053 		if (ret < 0)
1054 			new = &parent->rb_left;
1055 		else if (ret > 0)
1056 			new = &parent->rb_right;
1057 		else {
1058 			/*
1059 			 * It is not a bug that stable_tree_search() didn't
1060 			 * find this node: because at that time our page was
1061 			 * not yet write-protected, so may have changed since.
1062 			 */
1063 			return NULL;
1064 		}
1065 	}
1066 
1067 	stable_node = alloc_stable_node();
1068 	if (!stable_node)
1069 		return NULL;
1070 
1071 	rb_link_node(&stable_node->node, parent, new);
1072 	rb_insert_color(&stable_node->node, &root_stable_tree);
1073 
1074 	INIT_HLIST_HEAD(&stable_node->hlist);
1075 
1076 	stable_node->kpfn = page_to_pfn(kpage);
1077 	set_page_stable_node(kpage, stable_node);
1078 
1079 	return stable_node;
1080 }
1081 
1082 /*
1083  * unstable_tree_search_insert - search for identical page,
1084  * else insert rmap_item into the unstable tree.
1085  *
1086  * This function searches for a page in the unstable tree identical to the
1087  * page currently being scanned; and if no identical page is found in the
1088  * tree, we insert rmap_item as a new object into the unstable tree.
1089  *
1090  * This function returns pointer to rmap_item found to be identical
1091  * to the currently scanned page, NULL otherwise.
1092  *
1093  * This function does both searching and inserting, because they share
1094  * the same walking algorithm in an rbtree.
1095  */
1096 static
unstable_tree_search_insert(struct rmap_item * rmap_item,struct page * page,struct page ** tree_pagep)1097 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1098 					      struct page *page,
1099 					      struct page **tree_pagep)
1100 
1101 {
1102 	struct rb_node **new = &root_unstable_tree.rb_node;
1103 	struct rb_node *parent = NULL;
1104 
1105 	while (*new) {
1106 		struct rmap_item *tree_rmap_item;
1107 		struct page *tree_page;
1108 		int ret;
1109 
1110 		cond_resched();
1111 		tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1112 		tree_page = get_mergeable_page(tree_rmap_item);
1113 		if (IS_ERR_OR_NULL(tree_page))
1114 			return NULL;
1115 
1116 		/*
1117 		 * Don't substitute a ksm page for a forked page.
1118 		 */
1119 		if (page == tree_page) {
1120 			put_page(tree_page);
1121 			return NULL;
1122 		}
1123 
1124 		ret = memcmp_pages(page, tree_page);
1125 
1126 		parent = *new;
1127 		if (ret < 0) {
1128 			put_page(tree_page);
1129 			new = &parent->rb_left;
1130 		} else if (ret > 0) {
1131 			put_page(tree_page);
1132 			new = &parent->rb_right;
1133 		} else {
1134 			*tree_pagep = tree_page;
1135 			return tree_rmap_item;
1136 		}
1137 	}
1138 
1139 	rmap_item->address |= UNSTABLE_FLAG;
1140 	rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1141 	rb_link_node(&rmap_item->node, parent, new);
1142 	rb_insert_color(&rmap_item->node, &root_unstable_tree);
1143 
1144 	ksm_pages_unshared++;
1145 	return NULL;
1146 }
1147 
1148 /*
1149  * stable_tree_append - add another rmap_item to the linked list of
1150  * rmap_items hanging off a given node of the stable tree, all sharing
1151  * the same ksm page.
1152  */
stable_tree_append(struct rmap_item * rmap_item,struct stable_node * stable_node)1153 static void stable_tree_append(struct rmap_item *rmap_item,
1154 			       struct stable_node *stable_node)
1155 {
1156 	rmap_item->head = stable_node;
1157 	rmap_item->address |= STABLE_FLAG;
1158 	hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1159 
1160 	if (rmap_item->hlist.next)
1161 		ksm_pages_sharing++;
1162 	else
1163 		ksm_pages_shared++;
1164 }
1165 
1166 /*
1167  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1168  * if not, compare checksum to previous and if it's the same, see if page can
1169  * be inserted into the unstable tree, or merged with a page already there and
1170  * both transferred to the stable tree.
1171  *
1172  * @page: the page that we are searching identical page to.
1173  * @rmap_item: the reverse mapping into the virtual address of this page
1174  */
cmp_and_merge_page(struct page * page,struct rmap_item * rmap_item)1175 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1176 {
1177 	struct rmap_item *tree_rmap_item;
1178 	struct page *tree_page = NULL;
1179 	struct stable_node *stable_node;
1180 	struct page *kpage;
1181 	unsigned int checksum;
1182 	int err;
1183 
1184 	remove_rmap_item_from_tree(rmap_item);
1185 
1186 	/* We first start with searching the page inside the stable tree */
1187 	kpage = stable_tree_search(page);
1188 	if (kpage) {
1189 		err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1190 		if (!err) {
1191 			/*
1192 			 * The page was successfully merged:
1193 			 * add its rmap_item to the stable tree.
1194 			 */
1195 			lock_page(kpage);
1196 			stable_tree_append(rmap_item, page_stable_node(kpage));
1197 			unlock_page(kpage);
1198 		}
1199 		put_page(kpage);
1200 		return;
1201 	}
1202 
1203 	/*
1204 	 * If the hash value of the page has changed from the last time
1205 	 * we calculated it, this page is changing frequently: therefore we
1206 	 * don't want to insert it in the unstable tree, and we don't want
1207 	 * to waste our time searching for something identical to it there.
1208 	 */
1209 	checksum = calc_checksum(page);
1210 	if (rmap_item->oldchecksum != checksum) {
1211 		rmap_item->oldchecksum = checksum;
1212 		return;
1213 	}
1214 
1215 	tree_rmap_item =
1216 		unstable_tree_search_insert(rmap_item, page, &tree_page);
1217 	if (tree_rmap_item) {
1218 		kpage = try_to_merge_two_pages(rmap_item, page,
1219 						tree_rmap_item, tree_page);
1220 		put_page(tree_page);
1221 		/*
1222 		 * As soon as we merge this page, we want to remove the
1223 		 * rmap_item of the page we have merged with from the unstable
1224 		 * tree, and insert it instead as new node in the stable tree.
1225 		 */
1226 		if (kpage) {
1227 			remove_rmap_item_from_tree(tree_rmap_item);
1228 
1229 			lock_page(kpage);
1230 			stable_node = stable_tree_insert(kpage);
1231 			if (stable_node) {
1232 				stable_tree_append(tree_rmap_item, stable_node);
1233 				stable_tree_append(rmap_item, stable_node);
1234 			}
1235 			unlock_page(kpage);
1236 
1237 			/*
1238 			 * If we fail to insert the page into the stable tree,
1239 			 * we will have 2 virtual addresses that are pointing
1240 			 * to a ksm page left outside the stable tree,
1241 			 * in which case we need to break_cow on both.
1242 			 */
1243 			if (!stable_node) {
1244 				break_cow(tree_rmap_item);
1245 				break_cow(rmap_item);
1246 			}
1247 		}
1248 	}
1249 }
1250 
get_next_rmap_item(struct mm_slot * mm_slot,struct rmap_item ** rmap_list,unsigned long addr)1251 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1252 					    struct rmap_item **rmap_list,
1253 					    unsigned long addr)
1254 {
1255 	struct rmap_item *rmap_item;
1256 
1257 	while (*rmap_list) {
1258 		rmap_item = *rmap_list;
1259 		if ((rmap_item->address & PAGE_MASK) == addr)
1260 			return rmap_item;
1261 		if (rmap_item->address > addr)
1262 			break;
1263 		*rmap_list = rmap_item->rmap_list;
1264 		remove_rmap_item_from_tree(rmap_item);
1265 		free_rmap_item(rmap_item);
1266 	}
1267 
1268 	rmap_item = alloc_rmap_item();
1269 	if (rmap_item) {
1270 		/* It has already been zeroed */
1271 		rmap_item->mm = mm_slot->mm;
1272 		rmap_item->address = addr;
1273 		rmap_item->rmap_list = *rmap_list;
1274 		*rmap_list = rmap_item;
1275 	}
1276 	return rmap_item;
1277 }
1278 
scan_get_next_rmap_item(struct page ** page)1279 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1280 {
1281 	struct mm_struct *mm;
1282 	struct mm_slot *slot;
1283 	struct vm_area_struct *vma;
1284 	struct rmap_item *rmap_item;
1285 
1286 	if (list_empty(&ksm_mm_head.mm_list))
1287 		return NULL;
1288 
1289 	slot = ksm_scan.mm_slot;
1290 	if (slot == &ksm_mm_head) {
1291 		/*
1292 		 * A number of pages can hang around indefinitely on per-cpu
1293 		 * pagevecs, raised page count preventing write_protect_page
1294 		 * from merging them.  Though it doesn't really matter much,
1295 		 * it is puzzling to see some stuck in pages_volatile until
1296 		 * other activity jostles them out, and they also prevented
1297 		 * LTP's KSM test from succeeding deterministically; so drain
1298 		 * them here (here rather than on entry to ksm_do_scan(),
1299 		 * so we don't IPI too often when pages_to_scan is set low).
1300 		 */
1301 		lru_add_drain_all();
1302 
1303 		root_unstable_tree = RB_ROOT;
1304 
1305 		spin_lock(&ksm_mmlist_lock);
1306 		slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1307 		ksm_scan.mm_slot = slot;
1308 		spin_unlock(&ksm_mmlist_lock);
1309 		/*
1310 		 * Although we tested list_empty() above, a racing __ksm_exit
1311 		 * of the last mm on the list may have removed it since then.
1312 		 */
1313 		if (slot == &ksm_mm_head)
1314 			return NULL;
1315 next_mm:
1316 		ksm_scan.address = 0;
1317 		ksm_scan.rmap_list = &slot->rmap_list;
1318 	}
1319 
1320 	mm = slot->mm;
1321 	down_read(&mm->mmap_sem);
1322 	if (ksm_test_exit(mm))
1323 		vma = NULL;
1324 	else
1325 		vma = find_vma(mm, ksm_scan.address);
1326 
1327 	for (; vma; vma = vma->vm_next) {
1328 		if (!(vma->vm_flags & VM_MERGEABLE))
1329 			continue;
1330 		if (ksm_scan.address < vma->vm_start)
1331 			ksm_scan.address = vma->vm_start;
1332 		if (!vma->anon_vma)
1333 			ksm_scan.address = vma->vm_end;
1334 
1335 		while (ksm_scan.address < vma->vm_end) {
1336 			if (ksm_test_exit(mm))
1337 				break;
1338 			*page = follow_page(vma, ksm_scan.address, FOLL_GET);
1339 			if (IS_ERR_OR_NULL(*page)) {
1340 				ksm_scan.address += PAGE_SIZE;
1341 				cond_resched();
1342 				continue;
1343 			}
1344 			if (PageAnon(*page) ||
1345 			    page_trans_compound_anon(*page)) {
1346 				flush_anon_page(vma, *page, ksm_scan.address);
1347 				flush_dcache_page(*page);
1348 				rmap_item = get_next_rmap_item(slot,
1349 					ksm_scan.rmap_list, ksm_scan.address);
1350 				if (rmap_item) {
1351 					ksm_scan.rmap_list =
1352 							&rmap_item->rmap_list;
1353 					ksm_scan.address += PAGE_SIZE;
1354 				} else
1355 					put_page(*page);
1356 				up_read(&mm->mmap_sem);
1357 				return rmap_item;
1358 			}
1359 			put_page(*page);
1360 			ksm_scan.address += PAGE_SIZE;
1361 			cond_resched();
1362 		}
1363 	}
1364 
1365 	if (ksm_test_exit(mm)) {
1366 		ksm_scan.address = 0;
1367 		ksm_scan.rmap_list = &slot->rmap_list;
1368 	}
1369 	/*
1370 	 * Nuke all the rmap_items that are above this current rmap:
1371 	 * because there were no VM_MERGEABLE vmas with such addresses.
1372 	 */
1373 	remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1374 
1375 	spin_lock(&ksm_mmlist_lock);
1376 	ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1377 						struct mm_slot, mm_list);
1378 	if (ksm_scan.address == 0) {
1379 		/*
1380 		 * We've completed a full scan of all vmas, holding mmap_sem
1381 		 * throughout, and found no VM_MERGEABLE: so do the same as
1382 		 * __ksm_exit does to remove this mm from all our lists now.
1383 		 * This applies either when cleaning up after __ksm_exit
1384 		 * (but beware: we can reach here even before __ksm_exit),
1385 		 * or when all VM_MERGEABLE areas have been unmapped (and
1386 		 * mmap_sem then protects against race with MADV_MERGEABLE).
1387 		 */
1388 		hlist_del(&slot->link);
1389 		list_del(&slot->mm_list);
1390 		spin_unlock(&ksm_mmlist_lock);
1391 
1392 		free_mm_slot(slot);
1393 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1394 		up_read(&mm->mmap_sem);
1395 		mmdrop(mm);
1396 	} else {
1397 		spin_unlock(&ksm_mmlist_lock);
1398 		up_read(&mm->mmap_sem);
1399 	}
1400 
1401 	/* Repeat until we've completed scanning the whole list */
1402 	slot = ksm_scan.mm_slot;
1403 	if (slot != &ksm_mm_head)
1404 		goto next_mm;
1405 
1406 	ksm_scan.seqnr++;
1407 	return NULL;
1408 }
1409 
1410 /**
1411  * ksm_do_scan  - the ksm scanner main worker function.
1412  * @scan_npages - number of pages we want to scan before we return.
1413  */
ksm_do_scan(unsigned int scan_npages)1414 static void ksm_do_scan(unsigned int scan_npages)
1415 {
1416 	struct rmap_item *rmap_item;
1417 	struct page *uninitialized_var(page);
1418 
1419 	while (scan_npages-- && likely(!freezing(current))) {
1420 		cond_resched();
1421 		rmap_item = scan_get_next_rmap_item(&page);
1422 		if (!rmap_item)
1423 			return;
1424 		if (!PageKsm(page) || !in_stable_tree(rmap_item))
1425 			cmp_and_merge_page(page, rmap_item);
1426 		put_page(page);
1427 	}
1428 }
1429 
ksmd_should_run(void)1430 static int ksmd_should_run(void)
1431 {
1432 	return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1433 }
1434 
ksm_scan_thread(void * nothing)1435 static int ksm_scan_thread(void *nothing)
1436 {
1437 	set_freezable();
1438 	set_user_nice(current, 5);
1439 
1440 	while (!kthread_should_stop()) {
1441 		mutex_lock(&ksm_thread_mutex);
1442 		if (ksmd_should_run())
1443 			ksm_do_scan(ksm_thread_pages_to_scan);
1444 		mutex_unlock(&ksm_thread_mutex);
1445 
1446 		try_to_freeze();
1447 
1448 		if (ksmd_should_run()) {
1449 			schedule_timeout_interruptible(
1450 				msecs_to_jiffies(ksm_thread_sleep_millisecs));
1451 		} else {
1452 			wait_event_freezable(ksm_thread_wait,
1453 				ksmd_should_run() || kthread_should_stop());
1454 		}
1455 	}
1456 	return 0;
1457 }
1458 
ksm_madvise(struct vm_area_struct * vma,unsigned long start,unsigned long end,int advice,unsigned long * vm_flags)1459 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1460 		unsigned long end, int advice, unsigned long *vm_flags)
1461 {
1462 	struct mm_struct *mm = vma->vm_mm;
1463 	int err;
1464 
1465 	switch (advice) {
1466 	case MADV_MERGEABLE:
1467 		/*
1468 		 * Be somewhat over-protective for now!
1469 		 */
1470 		if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1471 				 VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1472 				 VM_RESERVED  | VM_HUGETLB | VM_INSERTPAGE |
1473 				 VM_NONLINEAR | VM_MIXEDMAP | VM_SAO))
1474 			return 0;		/* just ignore the advice */
1475 
1476 		if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1477 			err = __ksm_enter(mm);
1478 			if (err)
1479 				return err;
1480 		}
1481 
1482 		*vm_flags |= VM_MERGEABLE;
1483 		break;
1484 
1485 	case MADV_UNMERGEABLE:
1486 		if (!(*vm_flags & VM_MERGEABLE))
1487 			return 0;		/* just ignore the advice */
1488 
1489 		if (vma->anon_vma) {
1490 			err = unmerge_ksm_pages(vma, start, end);
1491 			if (err)
1492 				return err;
1493 		}
1494 
1495 		*vm_flags &= ~VM_MERGEABLE;
1496 		break;
1497 	}
1498 
1499 	return 0;
1500 }
1501 
__ksm_enter(struct mm_struct * mm)1502 int __ksm_enter(struct mm_struct *mm)
1503 {
1504 	struct mm_slot *mm_slot;
1505 	int needs_wakeup;
1506 
1507 	mm_slot = alloc_mm_slot();
1508 	if (!mm_slot)
1509 		return -ENOMEM;
1510 
1511 	/* Check ksm_run too?  Would need tighter locking */
1512 	needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1513 
1514 	spin_lock(&ksm_mmlist_lock);
1515 	insert_to_mm_slots_hash(mm, mm_slot);
1516 	/*
1517 	 * Insert just behind the scanning cursor, to let the area settle
1518 	 * down a little; when fork is followed by immediate exec, we don't
1519 	 * want ksmd to waste time setting up and tearing down an rmap_list.
1520 	 */
1521 	list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1522 	spin_unlock(&ksm_mmlist_lock);
1523 
1524 	set_bit(MMF_VM_MERGEABLE, &mm->flags);
1525 	atomic_inc(&mm->mm_count);
1526 
1527 	if (needs_wakeup)
1528 		wake_up_interruptible(&ksm_thread_wait);
1529 
1530 	return 0;
1531 }
1532 
__ksm_exit(struct mm_struct * mm)1533 void __ksm_exit(struct mm_struct *mm)
1534 {
1535 	struct mm_slot *mm_slot;
1536 	int easy_to_free = 0;
1537 
1538 	/*
1539 	 * This process is exiting: if it's straightforward (as is the
1540 	 * case when ksmd was never running), free mm_slot immediately.
1541 	 * But if it's at the cursor or has rmap_items linked to it, use
1542 	 * mmap_sem to synchronize with any break_cows before pagetables
1543 	 * are freed, and leave the mm_slot on the list for ksmd to free.
1544 	 * Beware: ksm may already have noticed it exiting and freed the slot.
1545 	 */
1546 
1547 	spin_lock(&ksm_mmlist_lock);
1548 	mm_slot = get_mm_slot(mm);
1549 	if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1550 		if (!mm_slot->rmap_list) {
1551 			hlist_del(&mm_slot->link);
1552 			list_del(&mm_slot->mm_list);
1553 			easy_to_free = 1;
1554 		} else {
1555 			list_move(&mm_slot->mm_list,
1556 				  &ksm_scan.mm_slot->mm_list);
1557 		}
1558 	}
1559 	spin_unlock(&ksm_mmlist_lock);
1560 
1561 	if (easy_to_free) {
1562 		free_mm_slot(mm_slot);
1563 		clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1564 		mmdrop(mm);
1565 	} else if (mm_slot) {
1566 		down_write(&mm->mmap_sem);
1567 		up_write(&mm->mmap_sem);
1568 	}
1569 }
1570 
ksm_does_need_to_copy(struct page * page,struct vm_area_struct * vma,unsigned long address)1571 struct page *ksm_does_need_to_copy(struct page *page,
1572 			struct vm_area_struct *vma, unsigned long address)
1573 {
1574 	struct page *new_page;
1575 
1576 	new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1577 	if (new_page) {
1578 		copy_user_highpage(new_page, page, address, vma);
1579 
1580 		SetPageDirty(new_page);
1581 		__SetPageUptodate(new_page);
1582 		SetPageSwapBacked(new_page);
1583 		__set_page_locked(new_page);
1584 
1585 		if (page_evictable(new_page, vma))
1586 			lru_cache_add_lru(new_page, LRU_ACTIVE_ANON);
1587 		else
1588 			add_page_to_unevictable_list(new_page);
1589 	}
1590 
1591 	return new_page;
1592 }
1593 
page_referenced_ksm(struct page * page,struct mem_cgroup * memcg,unsigned long * vm_flags)1594 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1595 			unsigned long *vm_flags)
1596 {
1597 	struct stable_node *stable_node;
1598 	struct rmap_item *rmap_item;
1599 	struct hlist_node *hlist;
1600 	unsigned int mapcount = page_mapcount(page);
1601 	int referenced = 0;
1602 	int search_new_forks = 0;
1603 
1604 	VM_BUG_ON(!PageKsm(page));
1605 	VM_BUG_ON(!PageLocked(page));
1606 
1607 	stable_node = page_stable_node(page);
1608 	if (!stable_node)
1609 		return 0;
1610 again:
1611 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1612 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1613 		struct anon_vma_chain *vmac;
1614 		struct vm_area_struct *vma;
1615 
1616 		anon_vma_lock(anon_vma);
1617 		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1618 			vma = vmac->vma;
1619 			if (rmap_item->address < vma->vm_start ||
1620 			    rmap_item->address >= vma->vm_end)
1621 				continue;
1622 			/*
1623 			 * Initially we examine only the vma which covers this
1624 			 * rmap_item; but later, if there is still work to do,
1625 			 * we examine covering vmas in other mms: in case they
1626 			 * were forked from the original since ksmd passed.
1627 			 */
1628 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1629 				continue;
1630 
1631 			if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1632 				continue;
1633 
1634 			referenced += page_referenced_one(page, vma,
1635 				rmap_item->address, &mapcount, vm_flags);
1636 			if (!search_new_forks || !mapcount)
1637 				break;
1638 		}
1639 		anon_vma_unlock(anon_vma);
1640 		if (!mapcount)
1641 			goto out;
1642 	}
1643 	if (!search_new_forks++)
1644 		goto again;
1645 out:
1646 	return referenced;
1647 }
1648 
try_to_unmap_ksm(struct page * page,enum ttu_flags flags)1649 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1650 {
1651 	struct stable_node *stable_node;
1652 	struct hlist_node *hlist;
1653 	struct rmap_item *rmap_item;
1654 	int ret = SWAP_AGAIN;
1655 	int search_new_forks = 0;
1656 
1657 	VM_BUG_ON(!PageKsm(page));
1658 	VM_BUG_ON(!PageLocked(page));
1659 
1660 	stable_node = page_stable_node(page);
1661 	if (!stable_node)
1662 		return SWAP_FAIL;
1663 again:
1664 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1665 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1666 		struct anon_vma_chain *vmac;
1667 		struct vm_area_struct *vma;
1668 
1669 		anon_vma_lock(anon_vma);
1670 		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1671 			vma = vmac->vma;
1672 			if (rmap_item->address < vma->vm_start ||
1673 			    rmap_item->address >= vma->vm_end)
1674 				continue;
1675 			/*
1676 			 * Initially we examine only the vma which covers this
1677 			 * rmap_item; but later, if there is still work to do,
1678 			 * we examine covering vmas in other mms: in case they
1679 			 * were forked from the original since ksmd passed.
1680 			 */
1681 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1682 				continue;
1683 
1684 			ret = try_to_unmap_one(page, vma,
1685 					rmap_item->address, flags);
1686 			if (ret != SWAP_AGAIN || !page_mapped(page)) {
1687 				anon_vma_unlock(anon_vma);
1688 				goto out;
1689 			}
1690 		}
1691 		anon_vma_unlock(anon_vma);
1692 	}
1693 	if (!search_new_forks++)
1694 		goto again;
1695 out:
1696 	return ret;
1697 }
1698 
1699 #ifdef CONFIG_MIGRATION
rmap_walk_ksm(struct page * page,int (* rmap_one)(struct page *,struct vm_area_struct *,unsigned long,void *),void * arg)1700 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1701 		  struct vm_area_struct *, unsigned long, void *), void *arg)
1702 {
1703 	struct stable_node *stable_node;
1704 	struct hlist_node *hlist;
1705 	struct rmap_item *rmap_item;
1706 	int ret = SWAP_AGAIN;
1707 	int search_new_forks = 0;
1708 
1709 	VM_BUG_ON(!PageKsm(page));
1710 	VM_BUG_ON(!PageLocked(page));
1711 
1712 	stable_node = page_stable_node(page);
1713 	if (!stable_node)
1714 		return ret;
1715 again:
1716 	hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1717 		struct anon_vma *anon_vma = rmap_item->anon_vma;
1718 		struct anon_vma_chain *vmac;
1719 		struct vm_area_struct *vma;
1720 
1721 		anon_vma_lock(anon_vma);
1722 		list_for_each_entry(vmac, &anon_vma->head, same_anon_vma) {
1723 			vma = vmac->vma;
1724 			if (rmap_item->address < vma->vm_start ||
1725 			    rmap_item->address >= vma->vm_end)
1726 				continue;
1727 			/*
1728 			 * Initially we examine only the vma which covers this
1729 			 * rmap_item; but later, if there is still work to do,
1730 			 * we examine covering vmas in other mms: in case they
1731 			 * were forked from the original since ksmd passed.
1732 			 */
1733 			if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1734 				continue;
1735 
1736 			ret = rmap_one(page, vma, rmap_item->address, arg);
1737 			if (ret != SWAP_AGAIN) {
1738 				anon_vma_unlock(anon_vma);
1739 				goto out;
1740 			}
1741 		}
1742 		anon_vma_unlock(anon_vma);
1743 	}
1744 	if (!search_new_forks++)
1745 		goto again;
1746 out:
1747 	return ret;
1748 }
1749 
ksm_migrate_page(struct page * newpage,struct page * oldpage)1750 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
1751 {
1752 	struct stable_node *stable_node;
1753 
1754 	VM_BUG_ON(!PageLocked(oldpage));
1755 	VM_BUG_ON(!PageLocked(newpage));
1756 	VM_BUG_ON(newpage->mapping != oldpage->mapping);
1757 
1758 	stable_node = page_stable_node(newpage);
1759 	if (stable_node) {
1760 		VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
1761 		stable_node->kpfn = page_to_pfn(newpage);
1762 	}
1763 }
1764 #endif /* CONFIG_MIGRATION */
1765 
1766 #ifdef CONFIG_MEMORY_HOTREMOVE
ksm_check_stable_tree(unsigned long start_pfn,unsigned long end_pfn)1767 static struct stable_node *ksm_check_stable_tree(unsigned long start_pfn,
1768 						 unsigned long end_pfn)
1769 {
1770 	struct rb_node *node;
1771 
1772 	for (node = rb_first(&root_stable_tree); node; node = rb_next(node)) {
1773 		struct stable_node *stable_node;
1774 
1775 		stable_node = rb_entry(node, struct stable_node, node);
1776 		if (stable_node->kpfn >= start_pfn &&
1777 		    stable_node->kpfn < end_pfn)
1778 			return stable_node;
1779 	}
1780 	return NULL;
1781 }
1782 
ksm_memory_callback(struct notifier_block * self,unsigned long action,void * arg)1783 static int ksm_memory_callback(struct notifier_block *self,
1784 			       unsigned long action, void *arg)
1785 {
1786 	struct memory_notify *mn = arg;
1787 	struct stable_node *stable_node;
1788 
1789 	switch (action) {
1790 	case MEM_GOING_OFFLINE:
1791 		/*
1792 		 * Keep it very simple for now: just lock out ksmd and
1793 		 * MADV_UNMERGEABLE while any memory is going offline.
1794 		 * mutex_lock_nested() is necessary because lockdep was alarmed
1795 		 * that here we take ksm_thread_mutex inside notifier chain
1796 		 * mutex, and later take notifier chain mutex inside
1797 		 * ksm_thread_mutex to unlock it.   But that's safe because both
1798 		 * are inside mem_hotplug_mutex.
1799 		 */
1800 		mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING);
1801 		break;
1802 
1803 	case MEM_OFFLINE:
1804 		/*
1805 		 * Most of the work is done by page migration; but there might
1806 		 * be a few stable_nodes left over, still pointing to struct
1807 		 * pages which have been offlined: prune those from the tree.
1808 		 */
1809 		while ((stable_node = ksm_check_stable_tree(mn->start_pfn,
1810 					mn->start_pfn + mn->nr_pages)) != NULL)
1811 			remove_node_from_stable_tree(stable_node);
1812 		/* fallthrough */
1813 
1814 	case MEM_CANCEL_OFFLINE:
1815 		mutex_unlock(&ksm_thread_mutex);
1816 		break;
1817 	}
1818 	return NOTIFY_OK;
1819 }
1820 #endif /* CONFIG_MEMORY_HOTREMOVE */
1821 
1822 #ifdef CONFIG_SYSFS
1823 /*
1824  * This all compiles without CONFIG_SYSFS, but is a waste of space.
1825  */
1826 
1827 #define KSM_ATTR_RO(_name) \
1828 	static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1829 #define KSM_ATTR(_name) \
1830 	static struct kobj_attribute _name##_attr = \
1831 		__ATTR(_name, 0644, _name##_show, _name##_store)
1832 
sleep_millisecs_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1833 static ssize_t sleep_millisecs_show(struct kobject *kobj,
1834 				    struct kobj_attribute *attr, char *buf)
1835 {
1836 	return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
1837 }
1838 
sleep_millisecs_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1839 static ssize_t sleep_millisecs_store(struct kobject *kobj,
1840 				     struct kobj_attribute *attr,
1841 				     const char *buf, size_t count)
1842 {
1843 	unsigned long msecs;
1844 	int err;
1845 
1846 	err = strict_strtoul(buf, 10, &msecs);
1847 	if (err || msecs > UINT_MAX)
1848 		return -EINVAL;
1849 
1850 	ksm_thread_sleep_millisecs = msecs;
1851 
1852 	return count;
1853 }
1854 KSM_ATTR(sleep_millisecs);
1855 
pages_to_scan_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1856 static ssize_t pages_to_scan_show(struct kobject *kobj,
1857 				  struct kobj_attribute *attr, char *buf)
1858 {
1859 	return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
1860 }
1861 
pages_to_scan_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1862 static ssize_t pages_to_scan_store(struct kobject *kobj,
1863 				   struct kobj_attribute *attr,
1864 				   const char *buf, size_t count)
1865 {
1866 	int err;
1867 	unsigned long nr_pages;
1868 
1869 	err = strict_strtoul(buf, 10, &nr_pages);
1870 	if (err || nr_pages > UINT_MAX)
1871 		return -EINVAL;
1872 
1873 	ksm_thread_pages_to_scan = nr_pages;
1874 
1875 	return count;
1876 }
1877 KSM_ATTR(pages_to_scan);
1878 
run_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1879 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
1880 			char *buf)
1881 {
1882 	return sprintf(buf, "%u\n", ksm_run);
1883 }
1884 
run_store(struct kobject * kobj,struct kobj_attribute * attr,const char * buf,size_t count)1885 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
1886 			 const char *buf, size_t count)
1887 {
1888 	int err;
1889 	unsigned long flags;
1890 
1891 	err = strict_strtoul(buf, 10, &flags);
1892 	if (err || flags > UINT_MAX)
1893 		return -EINVAL;
1894 	if (flags > KSM_RUN_UNMERGE)
1895 		return -EINVAL;
1896 
1897 	/*
1898 	 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
1899 	 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
1900 	 * breaking COW to free the pages_shared (but leaves mm_slots
1901 	 * on the list for when ksmd may be set running again).
1902 	 */
1903 
1904 	mutex_lock(&ksm_thread_mutex);
1905 	if (ksm_run != flags) {
1906 		ksm_run = flags;
1907 		if (flags & KSM_RUN_UNMERGE) {
1908 			int oom_score_adj;
1909 
1910 			oom_score_adj = test_set_oom_score_adj(OOM_SCORE_ADJ_MAX);
1911 			err = unmerge_and_remove_all_rmap_items();
1912 			compare_swap_oom_score_adj(OOM_SCORE_ADJ_MAX,
1913 								oom_score_adj);
1914 			if (err) {
1915 				ksm_run = KSM_RUN_STOP;
1916 				count = err;
1917 			}
1918 		}
1919 	}
1920 	mutex_unlock(&ksm_thread_mutex);
1921 
1922 	if (flags & KSM_RUN_MERGE)
1923 		wake_up_interruptible(&ksm_thread_wait);
1924 
1925 	return count;
1926 }
1927 KSM_ATTR(run);
1928 
pages_shared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1929 static ssize_t pages_shared_show(struct kobject *kobj,
1930 				 struct kobj_attribute *attr, char *buf)
1931 {
1932 	return sprintf(buf, "%lu\n", ksm_pages_shared);
1933 }
1934 KSM_ATTR_RO(pages_shared);
1935 
pages_sharing_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1936 static ssize_t pages_sharing_show(struct kobject *kobj,
1937 				  struct kobj_attribute *attr, char *buf)
1938 {
1939 	return sprintf(buf, "%lu\n", ksm_pages_sharing);
1940 }
1941 KSM_ATTR_RO(pages_sharing);
1942 
pages_unshared_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1943 static ssize_t pages_unshared_show(struct kobject *kobj,
1944 				   struct kobj_attribute *attr, char *buf)
1945 {
1946 	return sprintf(buf, "%lu\n", ksm_pages_unshared);
1947 }
1948 KSM_ATTR_RO(pages_unshared);
1949 
pages_volatile_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1950 static ssize_t pages_volatile_show(struct kobject *kobj,
1951 				   struct kobj_attribute *attr, char *buf)
1952 {
1953 	long ksm_pages_volatile;
1954 
1955 	ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
1956 				- ksm_pages_sharing - ksm_pages_unshared;
1957 	/*
1958 	 * It was not worth any locking to calculate that statistic,
1959 	 * but it might therefore sometimes be negative: conceal that.
1960 	 */
1961 	if (ksm_pages_volatile < 0)
1962 		ksm_pages_volatile = 0;
1963 	return sprintf(buf, "%ld\n", ksm_pages_volatile);
1964 }
1965 KSM_ATTR_RO(pages_volatile);
1966 
full_scans_show(struct kobject * kobj,struct kobj_attribute * attr,char * buf)1967 static ssize_t full_scans_show(struct kobject *kobj,
1968 			       struct kobj_attribute *attr, char *buf)
1969 {
1970 	return sprintf(buf, "%lu\n", ksm_scan.seqnr);
1971 }
1972 KSM_ATTR_RO(full_scans);
1973 
1974 static struct attribute *ksm_attrs[] = {
1975 	&sleep_millisecs_attr.attr,
1976 	&pages_to_scan_attr.attr,
1977 	&run_attr.attr,
1978 	&pages_shared_attr.attr,
1979 	&pages_sharing_attr.attr,
1980 	&pages_unshared_attr.attr,
1981 	&pages_volatile_attr.attr,
1982 	&full_scans_attr.attr,
1983 	NULL,
1984 };
1985 
1986 static struct attribute_group ksm_attr_group = {
1987 	.attrs = ksm_attrs,
1988 	.name = "ksm",
1989 };
1990 #endif /* CONFIG_SYSFS */
1991 
ksm_init(void)1992 static int __init ksm_init(void)
1993 {
1994 	struct task_struct *ksm_thread;
1995 	int err;
1996 
1997 	err = ksm_slab_init();
1998 	if (err)
1999 		goto out;
2000 
2001 	ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2002 	if (IS_ERR(ksm_thread)) {
2003 		printk(KERN_ERR "ksm: creating kthread failed\n");
2004 		err = PTR_ERR(ksm_thread);
2005 		goto out_free;
2006 	}
2007 
2008 #ifdef CONFIG_SYSFS
2009 	err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2010 	if (err) {
2011 		printk(KERN_ERR "ksm: register sysfs failed\n");
2012 		kthread_stop(ksm_thread);
2013 		goto out_free;
2014 	}
2015 #else
2016 	ksm_run = KSM_RUN_MERGE;	/* no way for user to start it */
2017 
2018 #endif /* CONFIG_SYSFS */
2019 
2020 #ifdef CONFIG_MEMORY_HOTREMOVE
2021 	/*
2022 	 * Choose a high priority since the callback takes ksm_thread_mutex:
2023 	 * later callbacks could only be taking locks which nest within that.
2024 	 */
2025 	hotplug_memory_notifier(ksm_memory_callback, 100);
2026 #endif
2027 	return 0;
2028 
2029 out_free:
2030 	ksm_slab_free();
2031 out:
2032 	return err;
2033 }
2034 module_init(ksm_init)
2035