1 /*
2  * mm/mmap.c
3  *
4  * Written by obz.
5  *
6  * Address space accounting code	<alan@lxorguk.ukuu.org.uk>
7  */
8 
9 #include <linux/kernel.h>
10 #include <linux/slab.h>
11 #include <linux/backing-dev.h>
12 #include <linux/mm.h>
13 #include <linux/shm.h>
14 #include <linux/mman.h>
15 #include <linux/pagemap.h>
16 #include <linux/swap.h>
17 #include <linux/syscalls.h>
18 #include <linux/capability.h>
19 #include <linux/init.h>
20 #include <linux/file.h>
21 #include <linux/fs.h>
22 #include <linux/personality.h>
23 #include <linux/security.h>
24 #include <linux/hugetlb.h>
25 #include <linux/profile.h>
26 #include <linux/export.h>
27 #include <linux/mount.h>
28 #include <linux/mempolicy.h>
29 #include <linux/rmap.h>
30 #include <linux/mmu_notifier.h>
31 #include <linux/perf_event.h>
32 #include <linux/audit.h>
33 #include <linux/khugepaged.h>
34 
35 #include <asm/uaccess.h>
36 #include <asm/cacheflush.h>
37 #include <asm/tlb.h>
38 #include <asm/mmu_context.h>
39 
40 #include "internal.h"
41 
42 #ifndef arch_mmap_check
43 #define arch_mmap_check(addr, len, flags)	(0)
44 #endif
45 
46 #ifndef arch_rebalance_pgtables
47 #define arch_rebalance_pgtables(addr, len)		(addr)
48 #endif
49 
50 static void unmap_region(struct mm_struct *mm,
51 		struct vm_area_struct *vma, struct vm_area_struct *prev,
52 		unsigned long start, unsigned long end);
53 
54 /*
55  * WARNING: the debugging will use recursive algorithms so never enable this
56  * unless you know what you are doing.
57  */
58 #undef DEBUG_MM_RB
59 
60 /* description of effects of mapping type and prot in current implementation.
61  * this is due to the limited x86 page protection hardware.  The expected
62  * behavior is in parens:
63  *
64  * map_type	prot
65  *		PROT_NONE	PROT_READ	PROT_WRITE	PROT_EXEC
66  * MAP_SHARED	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
67  *		w: (no) no	w: (no) no	w: (yes) yes	w: (no) no
68  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
69  *
70  * MAP_PRIVATE	r: (no) no	r: (yes) yes	r: (no) yes	r: (no) yes
71  *		w: (no) no	w: (no) no	w: (copy) copy	w: (no) no
72  *		x: (no) no	x: (no) yes	x: (no) yes	x: (yes) yes
73  *
74  */
75 pgprot_t protection_map[16] = {
76 	__P000, __P001, __P010, __P011, __P100, __P101, __P110, __P111,
77 	__S000, __S001, __S010, __S011, __S100, __S101, __S110, __S111
78 };
79 
vm_get_page_prot(unsigned long vm_flags)80 pgprot_t vm_get_page_prot(unsigned long vm_flags)
81 {
82 	return __pgprot(pgprot_val(protection_map[vm_flags &
83 				(VM_READ|VM_WRITE|VM_EXEC|VM_SHARED)]) |
84 			pgprot_val(arch_vm_get_page_prot(vm_flags)));
85 }
86 EXPORT_SYMBOL(vm_get_page_prot);
87 
88 int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;  /* heuristic overcommit */
89 int sysctl_overcommit_ratio __read_mostly = 50;	/* default is 50% */
90 int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
91 /*
92  * Make sure vm_committed_as in one cacheline and not cacheline shared with
93  * other variables. It can be updated by several CPUs frequently.
94  */
95 struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
96 
97 /*
98  * Check that a process has enough memory to allocate a new virtual
99  * mapping. 0 means there is enough memory for the allocation to
100  * succeed and -ENOMEM implies there is not.
101  *
102  * We currently support three overcommit policies, which are set via the
103  * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
104  *
105  * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
106  * Additional code 2002 Jul 20 by Robert Love.
107  *
108  * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
109  *
110  * Note this is a helper function intended to be used by LSMs which
111  * wish to use this logic.
112  */
__vm_enough_memory(struct mm_struct * mm,long pages,int cap_sys_admin)113 int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
114 {
115 	unsigned long free, allowed;
116 
117 	vm_acct_memory(pages);
118 
119 	/*
120 	 * Sometimes we want to use more memory than we have
121 	 */
122 	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
123 		return 0;
124 
125 	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
126 		free = global_page_state(NR_FREE_PAGES);
127 		free += global_page_state(NR_FILE_PAGES);
128 
129 		/*
130 		 * shmem pages shouldn't be counted as free in this
131 		 * case, they can't be purged, only swapped out, and
132 		 * that won't affect the overall amount of available
133 		 * memory in the system.
134 		 */
135 		free -= global_page_state(NR_SHMEM);
136 
137 		free += nr_swap_pages;
138 
139 		/*
140 		 * Any slabs which are created with the
141 		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
142 		 * which are reclaimable, under pressure.  The dentry
143 		 * cache and most inode caches should fall into this
144 		 */
145 		free += global_page_state(NR_SLAB_RECLAIMABLE);
146 
147 		/*
148 		 * Leave reserved pages. The pages are not for anonymous pages.
149 		 */
150 		if (free <= totalreserve_pages)
151 			goto error;
152 		else
153 			free -= totalreserve_pages;
154 
155 		/*
156 		 * Leave the last 3% for root
157 		 */
158 		if (!cap_sys_admin)
159 			free -= free / 32;
160 
161 		if (free > pages)
162 			return 0;
163 
164 		goto error;
165 	}
166 
167 	allowed = (totalram_pages - hugetlb_total_pages())
168 	       	* sysctl_overcommit_ratio / 100;
169 	/*
170 	 * Leave the last 3% for root
171 	 */
172 	if (!cap_sys_admin)
173 		allowed -= allowed / 32;
174 	allowed += total_swap_pages;
175 
176 	/* Don't let a single process grow too big:
177 	   leave 3% of the size of this process for other processes */
178 	if (mm)
179 		allowed -= mm->total_vm / 32;
180 
181 	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
182 		return 0;
183 error:
184 	vm_unacct_memory(pages);
185 
186 	return -ENOMEM;
187 }
188 
189 /*
190  * Requires inode->i_mapping->i_mmap_mutex
191  */
__remove_shared_vm_struct(struct vm_area_struct * vma,struct file * file,struct address_space * mapping)192 static void __remove_shared_vm_struct(struct vm_area_struct *vma,
193 		struct file *file, struct address_space *mapping)
194 {
195 	if (vma->vm_flags & VM_DENYWRITE)
196 		atomic_inc(&file->f_path.dentry->d_inode->i_writecount);
197 	if (vma->vm_flags & VM_SHARED)
198 		mapping->i_mmap_writable--;
199 
200 	flush_dcache_mmap_lock(mapping);
201 	if (unlikely(vma->vm_flags & VM_NONLINEAR))
202 		list_del_init(&vma->shared.vm_set.list);
203 	else
204 		vma_prio_tree_remove(vma, &mapping->i_mmap);
205 	flush_dcache_mmap_unlock(mapping);
206 }
207 
208 /*
209  * Unlink a file-based vm structure from its prio_tree, to hide
210  * vma from rmap and vmtruncate before freeing its page tables.
211  */
unlink_file_vma(struct vm_area_struct * vma)212 void unlink_file_vma(struct vm_area_struct *vma)
213 {
214 	struct file *file = vma->vm_file;
215 
216 	if (file) {
217 		struct address_space *mapping = file->f_mapping;
218 		mutex_lock(&mapping->i_mmap_mutex);
219 		__remove_shared_vm_struct(vma, file, mapping);
220 		mutex_unlock(&mapping->i_mmap_mutex);
221 	}
222 }
223 
224 /*
225  * Close a vm structure and free it, returning the next.
226  */
remove_vma(struct vm_area_struct * vma)227 static struct vm_area_struct *remove_vma(struct vm_area_struct *vma)
228 {
229 	struct vm_area_struct *next = vma->vm_next;
230 
231 	might_sleep();
232 	if (vma->vm_ops && vma->vm_ops->close)
233 		vma->vm_ops->close(vma);
234 	if (vma->vm_file) {
235 		fput(vma->vm_file);
236 		if (vma->vm_flags & VM_EXECUTABLE)
237 			removed_exe_file_vma(vma->vm_mm);
238 	}
239 	mpol_put(vma_policy(vma));
240 	kmem_cache_free(vm_area_cachep, vma);
241 	return next;
242 }
243 
244 static unsigned long do_brk(unsigned long addr, unsigned long len);
245 
SYSCALL_DEFINE1(brk,unsigned long,brk)246 SYSCALL_DEFINE1(brk, unsigned long, brk)
247 {
248 	unsigned long rlim, retval;
249 	unsigned long newbrk, oldbrk;
250 	struct mm_struct *mm = current->mm;
251 	unsigned long min_brk;
252 
253 	down_write(&mm->mmap_sem);
254 
255 #ifdef CONFIG_COMPAT_BRK
256 	/*
257 	 * CONFIG_COMPAT_BRK can still be overridden by setting
258 	 * randomize_va_space to 2, which will still cause mm->start_brk
259 	 * to be arbitrarily shifted
260 	 */
261 	if (current->brk_randomized)
262 		min_brk = mm->start_brk;
263 	else
264 		min_brk = mm->end_data;
265 #else
266 	min_brk = mm->start_brk;
267 #endif
268 	if (brk < min_brk)
269 		goto out;
270 
271 	/*
272 	 * Check against rlimit here. If this check is done later after the test
273 	 * of oldbrk with newbrk then it can escape the test and let the data
274 	 * segment grow beyond its set limit the in case where the limit is
275 	 * not page aligned -Ram Gupta
276 	 */
277 	rlim = rlimit(RLIMIT_DATA);
278 	if (rlim < RLIM_INFINITY && (brk - mm->start_brk) +
279 			(mm->end_data - mm->start_data) > rlim)
280 		goto out;
281 
282 	newbrk = PAGE_ALIGN(brk);
283 	oldbrk = PAGE_ALIGN(mm->brk);
284 	if (oldbrk == newbrk)
285 		goto set_brk;
286 
287 	/* Always allow shrinking brk. */
288 	if (brk <= mm->brk) {
289 		if (!do_munmap(mm, newbrk, oldbrk-newbrk))
290 			goto set_brk;
291 		goto out;
292 	}
293 
294 	/* Check against existing mmap mappings. */
295 	if (find_vma_intersection(mm, oldbrk, newbrk+PAGE_SIZE))
296 		goto out;
297 
298 	/* Ok, looks good - let it rip. */
299 	if (do_brk(oldbrk, newbrk-oldbrk) != oldbrk)
300 		goto out;
301 set_brk:
302 	mm->brk = brk;
303 out:
304 	retval = mm->brk;
305 	up_write(&mm->mmap_sem);
306 	return retval;
307 }
308 
309 #ifdef DEBUG_MM_RB
browse_rb(struct rb_root * root)310 static int browse_rb(struct rb_root *root)
311 {
312 	int i = 0, j;
313 	struct rb_node *nd, *pn = NULL;
314 	unsigned long prev = 0, pend = 0;
315 
316 	for (nd = rb_first(root); nd; nd = rb_next(nd)) {
317 		struct vm_area_struct *vma;
318 		vma = rb_entry(nd, struct vm_area_struct, vm_rb);
319 		if (vma->vm_start < prev)
320 			printk("vm_start %lx prev %lx\n", vma->vm_start, prev), i = -1;
321 		if (vma->vm_start < pend)
322 			printk("vm_start %lx pend %lx\n", vma->vm_start, pend);
323 		if (vma->vm_start > vma->vm_end)
324 			printk("vm_end %lx < vm_start %lx\n", vma->vm_end, vma->vm_start);
325 		i++;
326 		pn = nd;
327 		prev = vma->vm_start;
328 		pend = vma->vm_end;
329 	}
330 	j = 0;
331 	for (nd = pn; nd; nd = rb_prev(nd)) {
332 		j++;
333 	}
334 	if (i != j)
335 		printk("backwards %d, forwards %d\n", j, i), i = 0;
336 	return i;
337 }
338 
validate_mm(struct mm_struct * mm)339 void validate_mm(struct mm_struct *mm)
340 {
341 	int bug = 0;
342 	int i = 0;
343 	struct vm_area_struct *tmp = mm->mmap;
344 	while (tmp) {
345 		tmp = tmp->vm_next;
346 		i++;
347 	}
348 	if (i != mm->map_count)
349 		printk("map_count %d vm_next %d\n", mm->map_count, i), bug = 1;
350 	i = browse_rb(&mm->mm_rb);
351 	if (i != mm->map_count)
352 		printk("map_count %d rb %d\n", mm->map_count, i), bug = 1;
353 	BUG_ON(bug);
354 }
355 #else
356 #define validate_mm(mm) do { } while (0)
357 #endif
358 
359 static struct vm_area_struct *
find_vma_prepare(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev,struct rb_node *** rb_link,struct rb_node ** rb_parent)360 find_vma_prepare(struct mm_struct *mm, unsigned long addr,
361 		struct vm_area_struct **pprev, struct rb_node ***rb_link,
362 		struct rb_node ** rb_parent)
363 {
364 	struct vm_area_struct * vma;
365 	struct rb_node ** __rb_link, * __rb_parent, * rb_prev;
366 
367 	__rb_link = &mm->mm_rb.rb_node;
368 	rb_prev = __rb_parent = NULL;
369 	vma = NULL;
370 
371 	while (*__rb_link) {
372 		struct vm_area_struct *vma_tmp;
373 
374 		__rb_parent = *__rb_link;
375 		vma_tmp = rb_entry(__rb_parent, struct vm_area_struct, vm_rb);
376 
377 		if (vma_tmp->vm_end > addr) {
378 			vma = vma_tmp;
379 			if (vma_tmp->vm_start <= addr)
380 				break;
381 			__rb_link = &__rb_parent->rb_left;
382 		} else {
383 			rb_prev = __rb_parent;
384 			__rb_link = &__rb_parent->rb_right;
385 		}
386 	}
387 
388 	*pprev = NULL;
389 	if (rb_prev)
390 		*pprev = rb_entry(rb_prev, struct vm_area_struct, vm_rb);
391 	*rb_link = __rb_link;
392 	*rb_parent = __rb_parent;
393 	return vma;
394 }
395 
count_vma_pages_range(struct mm_struct * mm,unsigned long addr,unsigned long end)396 static unsigned long count_vma_pages_range(struct mm_struct *mm,
397 		unsigned long addr, unsigned long end)
398 {
399 	unsigned long nr_pages = 0;
400 	struct vm_area_struct *vma;
401 
402 	/* Find first overlaping mapping */
403 	vma = find_vma_intersection(mm, addr, end);
404 	if (!vma)
405 		return 0;
406 
407 	nr_pages = (min(end, vma->vm_end) -
408 		max(addr, vma->vm_start)) >> PAGE_SHIFT;
409 
410 	/* Iterate over the rest of the overlaps */
411 	for (vma = vma->vm_next; vma; vma = vma->vm_next) {
412 		unsigned long overlap_len;
413 
414 		if (vma->vm_start > end)
415 			break;
416 
417 		overlap_len = min(end, vma->vm_end) - vma->vm_start;
418 		nr_pages += overlap_len >> PAGE_SHIFT;
419 	}
420 
421 	return nr_pages;
422 }
423 
__vma_link_rb(struct mm_struct * mm,struct vm_area_struct * vma,struct rb_node ** rb_link,struct rb_node * rb_parent)424 void __vma_link_rb(struct mm_struct *mm, struct vm_area_struct *vma,
425 		struct rb_node **rb_link, struct rb_node *rb_parent)
426 {
427 	rb_link_node(&vma->vm_rb, rb_parent, rb_link);
428 	rb_insert_color(&vma->vm_rb, &mm->mm_rb);
429 }
430 
__vma_link_file(struct vm_area_struct * vma)431 static void __vma_link_file(struct vm_area_struct *vma)
432 {
433 	struct file *file;
434 
435 	file = vma->vm_file;
436 	if (file) {
437 		struct address_space *mapping = file->f_mapping;
438 
439 		if (vma->vm_flags & VM_DENYWRITE)
440 			atomic_dec(&file->f_path.dentry->d_inode->i_writecount);
441 		if (vma->vm_flags & VM_SHARED)
442 			mapping->i_mmap_writable++;
443 
444 		flush_dcache_mmap_lock(mapping);
445 		if (unlikely(vma->vm_flags & VM_NONLINEAR))
446 			vma_nonlinear_insert(vma, &mapping->i_mmap_nonlinear);
447 		else
448 			vma_prio_tree_insert(vma, &mapping->i_mmap);
449 		flush_dcache_mmap_unlock(mapping);
450 	}
451 }
452 
453 static void
__vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)454 __vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
455 	struct vm_area_struct *prev, struct rb_node **rb_link,
456 	struct rb_node *rb_parent)
457 {
458 	__vma_link_list(mm, vma, prev, rb_parent);
459 	__vma_link_rb(mm, vma, rb_link, rb_parent);
460 }
461 
vma_link(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,struct rb_node ** rb_link,struct rb_node * rb_parent)462 static void vma_link(struct mm_struct *mm, struct vm_area_struct *vma,
463 			struct vm_area_struct *prev, struct rb_node **rb_link,
464 			struct rb_node *rb_parent)
465 {
466 	struct address_space *mapping = NULL;
467 
468 	if (vma->vm_file)
469 		mapping = vma->vm_file->f_mapping;
470 
471 	if (mapping)
472 		mutex_lock(&mapping->i_mmap_mutex);
473 
474 	__vma_link(mm, vma, prev, rb_link, rb_parent);
475 	__vma_link_file(vma);
476 
477 	if (mapping)
478 		mutex_unlock(&mapping->i_mmap_mutex);
479 
480 	mm->map_count++;
481 	validate_mm(mm);
482 }
483 
484 /*
485  * Helper for vma_adjust() in the split_vma insert case: insert a vma into the
486  * mm's list and rbtree.  It has already been inserted into the prio_tree.
487  */
__insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)488 static void __insert_vm_struct(struct mm_struct *mm, struct vm_area_struct *vma)
489 {
490 	struct vm_area_struct *__vma, *prev;
491 	struct rb_node **rb_link, *rb_parent;
492 
493 	__vma = find_vma_prepare(mm, vma->vm_start,&prev, &rb_link, &rb_parent);
494 	BUG_ON(__vma && __vma->vm_start < vma->vm_end);
495 	__vma_link(mm, vma, prev, rb_link, rb_parent);
496 	mm->map_count++;
497 }
498 
499 static inline void
__vma_unlink(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev)500 __vma_unlink(struct mm_struct *mm, struct vm_area_struct *vma,
501 		struct vm_area_struct *prev)
502 {
503 	struct vm_area_struct *next = vma->vm_next;
504 
505 	prev->vm_next = next;
506 	if (next)
507 		next->vm_prev = prev;
508 	rb_erase(&vma->vm_rb, &mm->mm_rb);
509 	if (mm->mmap_cache == vma)
510 		mm->mmap_cache = prev;
511 }
512 
513 /*
514  * We cannot adjust vm_start, vm_end, vm_pgoff fields of a vma that
515  * is already present in an i_mmap tree without adjusting the tree.
516  * The following helper function should be used when such adjustments
517  * are necessary.  The "insert" vma (if any) is to be inserted
518  * before we drop the necessary locks.
519  */
vma_adjust(struct vm_area_struct * vma,unsigned long start,unsigned long end,pgoff_t pgoff,struct vm_area_struct * insert)520 int vma_adjust(struct vm_area_struct *vma, unsigned long start,
521 	unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert)
522 {
523 	struct mm_struct *mm = vma->vm_mm;
524 	struct vm_area_struct *next = vma->vm_next;
525 	struct vm_area_struct *importer = NULL;
526 	struct address_space *mapping = NULL;
527 	struct prio_tree_root *root = NULL;
528 	struct anon_vma *anon_vma = NULL;
529 	struct file *file = vma->vm_file;
530 	long adjust_next = 0;
531 	int remove_next = 0;
532 
533 	if (next && !insert) {
534 		struct vm_area_struct *exporter = NULL;
535 
536 		if (end >= next->vm_end) {
537 			/*
538 			 * vma expands, overlapping all the next, and
539 			 * perhaps the one after too (mprotect case 6).
540 			 */
541 again:			remove_next = 1 + (end > next->vm_end);
542 			end = next->vm_end;
543 			exporter = next;
544 			importer = vma;
545 		} else if (end > next->vm_start) {
546 			/*
547 			 * vma expands, overlapping part of the next:
548 			 * mprotect case 5 shifting the boundary up.
549 			 */
550 			adjust_next = (end - next->vm_start) >> PAGE_SHIFT;
551 			exporter = next;
552 			importer = vma;
553 		} else if (end < vma->vm_end) {
554 			/*
555 			 * vma shrinks, and !insert tells it's not
556 			 * split_vma inserting another: so it must be
557 			 * mprotect case 4 shifting the boundary down.
558 			 */
559 			adjust_next = - ((vma->vm_end - end) >> PAGE_SHIFT);
560 			exporter = vma;
561 			importer = next;
562 		}
563 
564 		/*
565 		 * Easily overlooked: when mprotect shifts the boundary,
566 		 * make sure the expanding vma has anon_vma set if the
567 		 * shrinking vma had, to cover any anon pages imported.
568 		 */
569 		if (exporter && exporter->anon_vma && !importer->anon_vma) {
570 			if (anon_vma_clone(importer, exporter))
571 				return -ENOMEM;
572 			importer->anon_vma = exporter->anon_vma;
573 		}
574 	}
575 
576 	if (file) {
577 		mapping = file->f_mapping;
578 		if (!(vma->vm_flags & VM_NONLINEAR))
579 			root = &mapping->i_mmap;
580 		mutex_lock(&mapping->i_mmap_mutex);
581 		if (insert) {
582 			/*
583 			 * Put into prio_tree now, so instantiated pages
584 			 * are visible to arm/parisc __flush_dcache_page
585 			 * throughout; but we cannot insert into address
586 			 * space until vma start or end is updated.
587 			 */
588 			__vma_link_file(insert);
589 		}
590 	}
591 
592 	vma_adjust_trans_huge(vma, start, end, adjust_next);
593 
594 	/*
595 	 * When changing only vma->vm_end, we don't really need anon_vma
596 	 * lock. This is a fairly rare case by itself, but the anon_vma
597 	 * lock may be shared between many sibling processes.  Skipping
598 	 * the lock for brk adjustments makes a difference sometimes.
599 	 */
600 	if (vma->anon_vma && (importer || start != vma->vm_start)) {
601 		anon_vma = vma->anon_vma;
602 		anon_vma_lock(anon_vma);
603 	}
604 
605 	if (root) {
606 		flush_dcache_mmap_lock(mapping);
607 		vma_prio_tree_remove(vma, root);
608 		if (adjust_next)
609 			vma_prio_tree_remove(next, root);
610 	}
611 
612 	vma->vm_start = start;
613 	vma->vm_end = end;
614 	vma->vm_pgoff = pgoff;
615 	if (adjust_next) {
616 		next->vm_start += adjust_next << PAGE_SHIFT;
617 		next->vm_pgoff += adjust_next;
618 	}
619 
620 	if (root) {
621 		if (adjust_next)
622 			vma_prio_tree_insert(next, root);
623 		vma_prio_tree_insert(vma, root);
624 		flush_dcache_mmap_unlock(mapping);
625 	}
626 
627 	if (remove_next) {
628 		/*
629 		 * vma_merge has merged next into vma, and needs
630 		 * us to remove next before dropping the locks.
631 		 */
632 		__vma_unlink(mm, next, vma);
633 		if (file)
634 			__remove_shared_vm_struct(next, file, mapping);
635 	} else if (insert) {
636 		/*
637 		 * split_vma has split insert from vma, and needs
638 		 * us to insert it before dropping the locks
639 		 * (it may either follow vma or precede it).
640 		 */
641 		__insert_vm_struct(mm, insert);
642 	}
643 
644 	if (anon_vma)
645 		anon_vma_unlock(anon_vma);
646 	if (mapping)
647 		mutex_unlock(&mapping->i_mmap_mutex);
648 
649 	if (remove_next) {
650 		if (file) {
651 			fput(file);
652 			if (next->vm_flags & VM_EXECUTABLE)
653 				removed_exe_file_vma(mm);
654 		}
655 		if (next->anon_vma)
656 			anon_vma_merge(vma, next);
657 		mm->map_count--;
658 		mpol_put(vma_policy(next));
659 		kmem_cache_free(vm_area_cachep, next);
660 		/*
661 		 * In mprotect's case 6 (see comments on vma_merge),
662 		 * we must remove another next too. It would clutter
663 		 * up the code too much to do both in one go.
664 		 */
665 		if (remove_next == 2) {
666 			next = vma->vm_next;
667 			goto again;
668 		}
669 	}
670 
671 	validate_mm(mm);
672 
673 	return 0;
674 }
675 
676 /*
677  * If the vma has a ->close operation then the driver probably needs to release
678  * per-vma resources, so we don't attempt to merge those.
679  */
is_mergeable_vma(struct vm_area_struct * vma,struct file * file,unsigned long vm_flags)680 static inline int is_mergeable_vma(struct vm_area_struct *vma,
681 			struct file *file, unsigned long vm_flags)
682 {
683 	/* VM_CAN_NONLINEAR may get set later by f_op->mmap() */
684 	if ((vma->vm_flags ^ vm_flags) & ~VM_CAN_NONLINEAR)
685 		return 0;
686 	if (vma->vm_file != file)
687 		return 0;
688 	if (vma->vm_ops && vma->vm_ops->close)
689 		return 0;
690 	return 1;
691 }
692 
is_mergeable_anon_vma(struct anon_vma * anon_vma1,struct anon_vma * anon_vma2,struct vm_area_struct * vma)693 static inline int is_mergeable_anon_vma(struct anon_vma *anon_vma1,
694 					struct anon_vma *anon_vma2,
695 					struct vm_area_struct *vma)
696 {
697 	/*
698 	 * The list_is_singular() test is to avoid merging VMA cloned from
699 	 * parents. This can improve scalability caused by anon_vma lock.
700 	 */
701 	if ((!anon_vma1 || !anon_vma2) && (!vma ||
702 		list_is_singular(&vma->anon_vma_chain)))
703 		return 1;
704 	return anon_vma1 == anon_vma2;
705 }
706 
707 /*
708  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
709  * in front of (at a lower virtual address and file offset than) the vma.
710  *
711  * We cannot merge two vmas if they have differently assigned (non-NULL)
712  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
713  *
714  * We don't check here for the merged mmap wrapping around the end of pagecache
715  * indices (16TB on ia32) because do_mmap_pgoff() does not permit mmap's which
716  * wrap, nor mmaps which cover the final page at index -1UL.
717  */
718 static int
can_vma_merge_before(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff)719 can_vma_merge_before(struct vm_area_struct *vma, unsigned long vm_flags,
720 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
721 {
722 	if (is_mergeable_vma(vma, file, vm_flags) &&
723 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
724 		if (vma->vm_pgoff == vm_pgoff)
725 			return 1;
726 	}
727 	return 0;
728 }
729 
730 /*
731  * Return true if we can merge this (vm_flags,anon_vma,file,vm_pgoff)
732  * beyond (at a higher virtual address and file offset than) the vma.
733  *
734  * We cannot merge two vmas if they have differently assigned (non-NULL)
735  * anon_vmas, nor if same anon_vma is assigned but offsets incompatible.
736  */
737 static int
can_vma_merge_after(struct vm_area_struct * vma,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t vm_pgoff)738 can_vma_merge_after(struct vm_area_struct *vma, unsigned long vm_flags,
739 	struct anon_vma *anon_vma, struct file *file, pgoff_t vm_pgoff)
740 {
741 	if (is_mergeable_vma(vma, file, vm_flags) &&
742 	    is_mergeable_anon_vma(anon_vma, vma->anon_vma, vma)) {
743 		pgoff_t vm_pglen;
744 		vm_pglen = (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
745 		if (vma->vm_pgoff + vm_pglen == vm_pgoff)
746 			return 1;
747 	}
748 	return 0;
749 }
750 
751 /*
752  * Given a mapping request (addr,end,vm_flags,file,pgoff), figure out
753  * whether that can be merged with its predecessor or its successor.
754  * Or both (it neatly fills a hole).
755  *
756  * In most cases - when called for mmap, brk or mremap - [addr,end) is
757  * certain not to be mapped by the time vma_merge is called; but when
758  * called for mprotect, it is certain to be already mapped (either at
759  * an offset within prev, or at the start of next), and the flags of
760  * this area are about to be changed to vm_flags - and the no-change
761  * case has already been eliminated.
762  *
763  * The following mprotect cases have to be considered, where AAAA is
764  * the area passed down from mprotect_fixup, never extending beyond one
765  * vma, PPPPPP is the prev vma specified, and NNNNNN the next vma after:
766  *
767  *     AAAA             AAAA                AAAA          AAAA
768  *    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPPPNNNNNN    PPPPNNNNXXXX
769  *    cannot merge    might become    might become    might become
770  *                    PPNNNNNNNNNN    PPPPPPPPPPNN    PPPPPPPPPPPP 6 or
771  *    mmap, brk or    case 4 below    case 5 below    PPPPPPPPXXXX 7 or
772  *    mremap move:                                    PPPPNNNNNNNN 8
773  *        AAAA
774  *    PPPP    NNNN    PPPPPPPPPPPP    PPPPPPPPNNNN    PPPPNNNNNNNN
775  *    might become    case 1 below    case 2 below    case 3 below
776  *
777  * Odd one out? Case 8, because it extends NNNN but needs flags of XXXX:
778  * mprotect_fixup updates vm_flags & vm_page_prot on successful return.
779  */
vma_merge(struct mm_struct * mm,struct vm_area_struct * prev,unsigned long addr,unsigned long end,unsigned long vm_flags,struct anon_vma * anon_vma,struct file * file,pgoff_t pgoff,struct mempolicy * policy)780 struct vm_area_struct *vma_merge(struct mm_struct *mm,
781 			struct vm_area_struct *prev, unsigned long addr,
782 			unsigned long end, unsigned long vm_flags,
783 		     	struct anon_vma *anon_vma, struct file *file,
784 			pgoff_t pgoff, struct mempolicy *policy)
785 {
786 	pgoff_t pglen = (end - addr) >> PAGE_SHIFT;
787 	struct vm_area_struct *area, *next;
788 	int err;
789 
790 	/*
791 	 * We later require that vma->vm_flags == vm_flags,
792 	 * so this tests vma->vm_flags & VM_SPECIAL, too.
793 	 */
794 	if (vm_flags & VM_SPECIAL)
795 		return NULL;
796 
797 	if (prev)
798 		next = prev->vm_next;
799 	else
800 		next = mm->mmap;
801 	area = next;
802 	if (next && next->vm_end == end)		/* cases 6, 7, 8 */
803 		next = next->vm_next;
804 
805 	/*
806 	 * Can it merge with the predecessor?
807 	 */
808 	if (prev && prev->vm_end == addr &&
809   			mpol_equal(vma_policy(prev), policy) &&
810 			can_vma_merge_after(prev, vm_flags,
811 						anon_vma, file, pgoff)) {
812 		/*
813 		 * OK, it can.  Can we now merge in the successor as well?
814 		 */
815 		if (next && end == next->vm_start &&
816 				mpol_equal(policy, vma_policy(next)) &&
817 				can_vma_merge_before(next, vm_flags,
818 					anon_vma, file, pgoff+pglen) &&
819 				is_mergeable_anon_vma(prev->anon_vma,
820 						      next->anon_vma, NULL)) {
821 							/* cases 1, 6 */
822 			err = vma_adjust(prev, prev->vm_start,
823 				next->vm_end, prev->vm_pgoff, NULL);
824 		} else					/* cases 2, 5, 7 */
825 			err = vma_adjust(prev, prev->vm_start,
826 				end, prev->vm_pgoff, NULL);
827 		if (err)
828 			return NULL;
829 		khugepaged_enter_vma_merge(prev);
830 		return prev;
831 	}
832 
833 	/*
834 	 * Can this new request be merged in front of next?
835 	 */
836 	if (next && end == next->vm_start &&
837  			mpol_equal(policy, vma_policy(next)) &&
838 			can_vma_merge_before(next, vm_flags,
839 					anon_vma, file, pgoff+pglen)) {
840 		if (prev && addr < prev->vm_end)	/* case 4 */
841 			err = vma_adjust(prev, prev->vm_start,
842 				addr, prev->vm_pgoff, NULL);
843 		else					/* cases 3, 8 */
844 			err = vma_adjust(area, addr, next->vm_end,
845 				next->vm_pgoff - pglen, NULL);
846 		if (err)
847 			return NULL;
848 		khugepaged_enter_vma_merge(area);
849 		return area;
850 	}
851 
852 	return NULL;
853 }
854 
855 /*
856  * Rough compatbility check to quickly see if it's even worth looking
857  * at sharing an anon_vma.
858  *
859  * They need to have the same vm_file, and the flags can only differ
860  * in things that mprotect may change.
861  *
862  * NOTE! The fact that we share an anon_vma doesn't _have_ to mean that
863  * we can merge the two vma's. For example, we refuse to merge a vma if
864  * there is a vm_ops->close() function, because that indicates that the
865  * driver is doing some kind of reference counting. But that doesn't
866  * really matter for the anon_vma sharing case.
867  */
anon_vma_compatible(struct vm_area_struct * a,struct vm_area_struct * b)868 static int anon_vma_compatible(struct vm_area_struct *a, struct vm_area_struct *b)
869 {
870 	return a->vm_end == b->vm_start &&
871 		mpol_equal(vma_policy(a), vma_policy(b)) &&
872 		a->vm_file == b->vm_file &&
873 		!((a->vm_flags ^ b->vm_flags) & ~(VM_READ|VM_WRITE|VM_EXEC)) &&
874 		b->vm_pgoff == a->vm_pgoff + ((b->vm_start - a->vm_start) >> PAGE_SHIFT);
875 }
876 
877 /*
878  * Do some basic sanity checking to see if we can re-use the anon_vma
879  * from 'old'. The 'a'/'b' vma's are in VM order - one of them will be
880  * the same as 'old', the other will be the new one that is trying
881  * to share the anon_vma.
882  *
883  * NOTE! This runs with mm_sem held for reading, so it is possible that
884  * the anon_vma of 'old' is concurrently in the process of being set up
885  * by another page fault trying to merge _that_. But that's ok: if it
886  * is being set up, that automatically means that it will be a singleton
887  * acceptable for merging, so we can do all of this optimistically. But
888  * we do that ACCESS_ONCE() to make sure that we never re-load the pointer.
889  *
890  * IOW: that the "list_is_singular()" test on the anon_vma_chain only
891  * matters for the 'stable anon_vma' case (ie the thing we want to avoid
892  * is to return an anon_vma that is "complex" due to having gone through
893  * a fork).
894  *
895  * We also make sure that the two vma's are compatible (adjacent,
896  * and with the same memory policies). That's all stable, even with just
897  * a read lock on the mm_sem.
898  */
reusable_anon_vma(struct vm_area_struct * old,struct vm_area_struct * a,struct vm_area_struct * b)899 static struct anon_vma *reusable_anon_vma(struct vm_area_struct *old, struct vm_area_struct *a, struct vm_area_struct *b)
900 {
901 	if (anon_vma_compatible(a, b)) {
902 		struct anon_vma *anon_vma = ACCESS_ONCE(old->anon_vma);
903 
904 		if (anon_vma && list_is_singular(&old->anon_vma_chain))
905 			return anon_vma;
906 	}
907 	return NULL;
908 }
909 
910 /*
911  * find_mergeable_anon_vma is used by anon_vma_prepare, to check
912  * neighbouring vmas for a suitable anon_vma, before it goes off
913  * to allocate a new anon_vma.  It checks because a repetitive
914  * sequence of mprotects and faults may otherwise lead to distinct
915  * anon_vmas being allocated, preventing vma merge in subsequent
916  * mprotect.
917  */
find_mergeable_anon_vma(struct vm_area_struct * vma)918 struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *vma)
919 {
920 	struct anon_vma *anon_vma;
921 	struct vm_area_struct *near;
922 
923 	near = vma->vm_next;
924 	if (!near)
925 		goto try_prev;
926 
927 	anon_vma = reusable_anon_vma(near, vma, near);
928 	if (anon_vma)
929 		return anon_vma;
930 try_prev:
931 	near = vma->vm_prev;
932 	if (!near)
933 		goto none;
934 
935 	anon_vma = reusable_anon_vma(near, near, vma);
936 	if (anon_vma)
937 		return anon_vma;
938 none:
939 	/*
940 	 * There's no absolute need to look only at touching neighbours:
941 	 * we could search further afield for "compatible" anon_vmas.
942 	 * But it would probably just be a waste of time searching,
943 	 * or lead to too many vmas hanging off the same anon_vma.
944 	 * We're trying to allow mprotect remerging later on,
945 	 * not trying to minimize memory used for anon_vmas.
946 	 */
947 	return NULL;
948 }
949 
950 #ifdef CONFIG_PROC_FS
vm_stat_account(struct mm_struct * mm,unsigned long flags,struct file * file,long pages)951 void vm_stat_account(struct mm_struct *mm, unsigned long flags,
952 						struct file *file, long pages)
953 {
954 	const unsigned long stack_flags
955 		= VM_STACK_FLAGS & (VM_GROWSUP|VM_GROWSDOWN);
956 
957 	if (file) {
958 		mm->shared_vm += pages;
959 		if ((flags & (VM_EXEC|VM_WRITE)) == VM_EXEC)
960 			mm->exec_vm += pages;
961 	} else if (flags & stack_flags)
962 		mm->stack_vm += pages;
963 	if (flags & (VM_RESERVED|VM_IO))
964 		mm->reserved_vm += pages;
965 }
966 #endif /* CONFIG_PROC_FS */
967 
968 /*
969  * If a hint addr is less than mmap_min_addr change hint to be as
970  * low as possible but still greater than mmap_min_addr
971  */
round_hint_to_min(unsigned long hint)972 static inline unsigned long round_hint_to_min(unsigned long hint)
973 {
974 	hint &= PAGE_MASK;
975 	if (((void *)hint != NULL) &&
976 	    (hint < mmap_min_addr))
977 		return PAGE_ALIGN(mmap_min_addr);
978 	return hint;
979 }
980 
981 /*
982  * The caller must hold down_write(&current->mm->mmap_sem).
983  */
984 
do_mmap_pgoff(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flags,unsigned long pgoff)985 static unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
986 			unsigned long len, unsigned long prot,
987 			unsigned long flags, unsigned long pgoff)
988 {
989 	struct mm_struct * mm = current->mm;
990 	struct inode *inode;
991 	vm_flags_t vm_flags;
992 	int error;
993 	unsigned long reqprot = prot;
994 
995 	/*
996 	 * Does the application expect PROT_READ to imply PROT_EXEC?
997 	 *
998 	 * (the exception is when the underlying filesystem is noexec
999 	 *  mounted, in which case we dont add PROT_EXEC.)
1000 	 */
1001 	if ((prot & PROT_READ) && (current->personality & READ_IMPLIES_EXEC))
1002 		if (!(file && (file->f_path.mnt->mnt_flags & MNT_NOEXEC)))
1003 			prot |= PROT_EXEC;
1004 
1005 	if (!len)
1006 		return -EINVAL;
1007 
1008 	if (!(flags & MAP_FIXED))
1009 		addr = round_hint_to_min(addr);
1010 
1011 	/* Careful about overflows.. */
1012 	len = PAGE_ALIGN(len);
1013 	if (!len)
1014 		return -ENOMEM;
1015 
1016 	/* offset overflow? */
1017 	if ((pgoff + (len >> PAGE_SHIFT)) < pgoff)
1018                return -EOVERFLOW;
1019 
1020 	/* Too many mappings? */
1021 	if (mm->map_count > sysctl_max_map_count)
1022 		return -ENOMEM;
1023 
1024 	/* Obtain the address to map to. we verify (or select) it and ensure
1025 	 * that it represents a valid section of the address space.
1026 	 */
1027 	addr = get_unmapped_area(file, addr, len, pgoff, flags);
1028 	if (addr & ~PAGE_MASK)
1029 		return addr;
1030 
1031 	/* Do simple checking here so the lower-level routines won't have
1032 	 * to. we assume access permissions have been handled by the open
1033 	 * of the memory object, so we don't do any here.
1034 	 */
1035 	vm_flags = calc_vm_prot_bits(prot) | calc_vm_flag_bits(flags) |
1036 			mm->def_flags | VM_MAYREAD | VM_MAYWRITE | VM_MAYEXEC;
1037 
1038 	if (flags & MAP_LOCKED)
1039 		if (!can_do_mlock())
1040 			return -EPERM;
1041 
1042 	/* mlock MCL_FUTURE? */
1043 	if (vm_flags & VM_LOCKED) {
1044 		unsigned long locked, lock_limit;
1045 		locked = len >> PAGE_SHIFT;
1046 		locked += mm->locked_vm;
1047 		lock_limit = rlimit(RLIMIT_MEMLOCK);
1048 		lock_limit >>= PAGE_SHIFT;
1049 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
1050 			return -EAGAIN;
1051 	}
1052 
1053 	inode = file ? file->f_path.dentry->d_inode : NULL;
1054 
1055 	if (file) {
1056 		switch (flags & MAP_TYPE) {
1057 		case MAP_SHARED:
1058 			if ((prot&PROT_WRITE) && !(file->f_mode&FMODE_WRITE))
1059 				return -EACCES;
1060 
1061 			/*
1062 			 * Make sure we don't allow writing to an append-only
1063 			 * file..
1064 			 */
1065 			if (IS_APPEND(inode) && (file->f_mode & FMODE_WRITE))
1066 				return -EACCES;
1067 
1068 			/*
1069 			 * Make sure there are no mandatory locks on the file.
1070 			 */
1071 			if (locks_verify_locked(inode))
1072 				return -EAGAIN;
1073 
1074 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1075 			if (!(file->f_mode & FMODE_WRITE))
1076 				vm_flags &= ~(VM_MAYWRITE | VM_SHARED);
1077 
1078 			/* fall through */
1079 		case MAP_PRIVATE:
1080 			if (!(file->f_mode & FMODE_READ))
1081 				return -EACCES;
1082 			if (file->f_path.mnt->mnt_flags & MNT_NOEXEC) {
1083 				if (vm_flags & VM_EXEC)
1084 					return -EPERM;
1085 				vm_flags &= ~VM_MAYEXEC;
1086 			}
1087 
1088 			if (!file->f_op || !file->f_op->mmap)
1089 				return -ENODEV;
1090 			break;
1091 
1092 		default:
1093 			return -EINVAL;
1094 		}
1095 	} else {
1096 		switch (flags & MAP_TYPE) {
1097 		case MAP_SHARED:
1098 			/*
1099 			 * Ignore pgoff.
1100 			 */
1101 			pgoff = 0;
1102 			vm_flags |= VM_SHARED | VM_MAYSHARE;
1103 			break;
1104 		case MAP_PRIVATE:
1105 			/*
1106 			 * Set pgoff according to addr for anon_vma.
1107 			 */
1108 			pgoff = addr >> PAGE_SHIFT;
1109 			break;
1110 		default:
1111 			return -EINVAL;
1112 		}
1113 	}
1114 
1115 	error = security_file_mmap(file, reqprot, prot, flags, addr, 0);
1116 	if (error)
1117 		return error;
1118 
1119 	return mmap_region(file, addr, len, flags, vm_flags, pgoff);
1120 }
1121 
do_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long offset)1122 unsigned long do_mmap(struct file *file, unsigned long addr,
1123 	unsigned long len, unsigned long prot,
1124 	unsigned long flag, unsigned long offset)
1125 {
1126 	if (unlikely(offset + PAGE_ALIGN(len) < offset))
1127 		return -EINVAL;
1128 	if (unlikely(offset & ~PAGE_MASK))
1129 		return -EINVAL;
1130 	return do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1131 }
1132 EXPORT_SYMBOL(do_mmap);
1133 
vm_mmap(struct file * file,unsigned long addr,unsigned long len,unsigned long prot,unsigned long flag,unsigned long offset)1134 unsigned long vm_mmap(struct file *file, unsigned long addr,
1135 	unsigned long len, unsigned long prot,
1136 	unsigned long flag, unsigned long offset)
1137 {
1138 	unsigned long ret;
1139 	struct mm_struct *mm = current->mm;
1140 
1141 	down_write(&mm->mmap_sem);
1142 	ret = do_mmap(file, addr, len, prot, flag, offset);
1143 	up_write(&mm->mmap_sem);
1144 	return ret;
1145 }
1146 EXPORT_SYMBOL(vm_mmap);
1147 
SYSCALL_DEFINE6(mmap_pgoff,unsigned long,addr,unsigned long,len,unsigned long,prot,unsigned long,flags,unsigned long,fd,unsigned long,pgoff)1148 SYSCALL_DEFINE6(mmap_pgoff, unsigned long, addr, unsigned long, len,
1149 		unsigned long, prot, unsigned long, flags,
1150 		unsigned long, fd, unsigned long, pgoff)
1151 {
1152 	struct file *file = NULL;
1153 	unsigned long retval = -EBADF;
1154 
1155 	if (!(flags & MAP_ANONYMOUS)) {
1156 		audit_mmap_fd(fd, flags);
1157 		if (unlikely(flags & MAP_HUGETLB))
1158 			return -EINVAL;
1159 		file = fget(fd);
1160 		if (!file)
1161 			goto out;
1162 		if (is_file_hugepages(file))
1163 			len = ALIGN(len, huge_page_size(hstate_file(file)));
1164 	} else if (flags & MAP_HUGETLB) {
1165 		struct user_struct *user = NULL;
1166 
1167 		len = ALIGN(len, huge_page_size(&default_hstate));
1168 		/*
1169 		 * VM_NORESERVE is used because the reservations will be
1170 		 * taken when vm_ops->mmap() is called
1171 		 * A dummy user value is used because we are not locking
1172 		 * memory so no accounting is necessary
1173 		 */
1174 		file = hugetlb_file_setup(HUGETLB_ANON_FILE, len,
1175 						VM_NORESERVE, &user,
1176 						HUGETLB_ANONHUGE_INODE);
1177 		if (IS_ERR(file))
1178 			return PTR_ERR(file);
1179 	}
1180 
1181 	flags &= ~(MAP_EXECUTABLE | MAP_DENYWRITE);
1182 
1183 	down_write(&current->mm->mmap_sem);
1184 	retval = do_mmap_pgoff(file, addr, len, prot, flags, pgoff);
1185 	up_write(&current->mm->mmap_sem);
1186 
1187 	if (file)
1188 		fput(file);
1189 out:
1190 	return retval;
1191 }
1192 
1193 #ifdef __ARCH_WANT_SYS_OLD_MMAP
1194 struct mmap_arg_struct {
1195 	unsigned long addr;
1196 	unsigned long len;
1197 	unsigned long prot;
1198 	unsigned long flags;
1199 	unsigned long fd;
1200 	unsigned long offset;
1201 };
1202 
SYSCALL_DEFINE1(old_mmap,struct mmap_arg_struct __user *,arg)1203 SYSCALL_DEFINE1(old_mmap, struct mmap_arg_struct __user *, arg)
1204 {
1205 	struct mmap_arg_struct a;
1206 
1207 	if (copy_from_user(&a, arg, sizeof(a)))
1208 		return -EFAULT;
1209 	if (a.offset & ~PAGE_MASK)
1210 		return -EINVAL;
1211 
1212 	return sys_mmap_pgoff(a.addr, a.len, a.prot, a.flags, a.fd,
1213 			      a.offset >> PAGE_SHIFT);
1214 }
1215 #endif /* __ARCH_WANT_SYS_OLD_MMAP */
1216 
1217 /*
1218  * Some shared mappigns will want the pages marked read-only
1219  * to track write events. If so, we'll downgrade vm_page_prot
1220  * to the private version (using protection_map[] without the
1221  * VM_SHARED bit).
1222  */
vma_wants_writenotify(struct vm_area_struct * vma)1223 int vma_wants_writenotify(struct vm_area_struct *vma)
1224 {
1225 	vm_flags_t vm_flags = vma->vm_flags;
1226 
1227 	/* If it was private or non-writable, the write bit is already clear */
1228 	if ((vm_flags & (VM_WRITE|VM_SHARED)) != ((VM_WRITE|VM_SHARED)))
1229 		return 0;
1230 
1231 	/* The backer wishes to know when pages are first written to? */
1232 	if (vma->vm_ops && vma->vm_ops->page_mkwrite)
1233 		return 1;
1234 
1235 	/* The open routine did something to the protections already? */
1236 	if (pgprot_val(vma->vm_page_prot) !=
1237 	    pgprot_val(vm_get_page_prot(vm_flags)))
1238 		return 0;
1239 
1240 	/* Specialty mapping? */
1241 	if (vm_flags & (VM_PFNMAP|VM_INSERTPAGE))
1242 		return 0;
1243 
1244 	/* Can the mapping track the dirty pages? */
1245 	return vma->vm_file && vma->vm_file->f_mapping &&
1246 		mapping_cap_account_dirty(vma->vm_file->f_mapping);
1247 }
1248 
1249 /*
1250  * We account for memory if it's a private writeable mapping,
1251  * not hugepages and VM_NORESERVE wasn't set.
1252  */
accountable_mapping(struct file * file,vm_flags_t vm_flags)1253 static inline int accountable_mapping(struct file *file, vm_flags_t vm_flags)
1254 {
1255 	/*
1256 	 * hugetlb has its own accounting separate from the core VM
1257 	 * VM_HUGETLB may not be set yet so we cannot check for that flag.
1258 	 */
1259 	if (file && is_file_hugepages(file))
1260 		return 0;
1261 
1262 	return (vm_flags & (VM_NORESERVE | VM_SHARED | VM_WRITE)) == VM_WRITE;
1263 }
1264 
mmap_region(struct file * file,unsigned long addr,unsigned long len,unsigned long flags,vm_flags_t vm_flags,unsigned long pgoff)1265 unsigned long mmap_region(struct file *file, unsigned long addr,
1266 			  unsigned long len, unsigned long flags,
1267 			  vm_flags_t vm_flags, unsigned long pgoff)
1268 {
1269 	struct mm_struct *mm = current->mm;
1270 	struct vm_area_struct *vma, *prev;
1271 	int correct_wcount = 0;
1272 	int error;
1273 	struct rb_node **rb_link, *rb_parent;
1274 	unsigned long charged = 0;
1275 	struct inode *inode =  file ? file->f_path.dentry->d_inode : NULL;
1276 
1277 	/* Check against address space limit. */
1278 	if (!may_expand_vm(mm, len >> PAGE_SHIFT)) {
1279 		unsigned long nr_pages;
1280 
1281 		/*
1282 		 * MAP_FIXED may remove pages of mappings that intersects with
1283 		 * requested mapping. Account for the pages it would unmap.
1284 		 */
1285 		if (!(vm_flags & MAP_FIXED))
1286 			return -ENOMEM;
1287 
1288 		nr_pages = count_vma_pages_range(mm, addr, addr + len);
1289 
1290 		if (!may_expand_vm(mm, (len >> PAGE_SHIFT) - nr_pages))
1291 			return -ENOMEM;
1292 	}
1293 
1294 	/* Clear old maps */
1295 	error = -ENOMEM;
1296 munmap_back:
1297 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
1298 	if (vma && vma->vm_start < addr + len) {
1299 		if (do_munmap(mm, addr, len))
1300 			return -ENOMEM;
1301 		goto munmap_back;
1302 	}
1303 
1304 	/*
1305 	 * Set 'VM_NORESERVE' if we should not account for the
1306 	 * memory use of this mapping.
1307 	 */
1308 	if ((flags & MAP_NORESERVE)) {
1309 		/* We honor MAP_NORESERVE if allowed to overcommit */
1310 		if (sysctl_overcommit_memory != OVERCOMMIT_NEVER)
1311 			vm_flags |= VM_NORESERVE;
1312 
1313 		/* hugetlb applies strict overcommit unless MAP_NORESERVE */
1314 		if (file && is_file_hugepages(file))
1315 			vm_flags |= VM_NORESERVE;
1316 	}
1317 
1318 	/*
1319 	 * Private writable mapping: check memory availability
1320 	 */
1321 	if (accountable_mapping(file, vm_flags)) {
1322 		charged = len >> PAGE_SHIFT;
1323 		if (security_vm_enough_memory_mm(mm, charged))
1324 			return -ENOMEM;
1325 		vm_flags |= VM_ACCOUNT;
1326 	}
1327 
1328 	/*
1329 	 * Can we just expand an old mapping?
1330 	 */
1331 	vma = vma_merge(mm, prev, addr, addr + len, vm_flags, NULL, file, pgoff, NULL);
1332 	if (vma)
1333 		goto out;
1334 
1335 	/*
1336 	 * Determine the object being mapped and call the appropriate
1337 	 * specific mapper. the address has already been validated, but
1338 	 * not unmapped, but the maps are removed from the list.
1339 	 */
1340 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
1341 	if (!vma) {
1342 		error = -ENOMEM;
1343 		goto unacct_error;
1344 	}
1345 
1346 	vma->vm_mm = mm;
1347 	vma->vm_start = addr;
1348 	vma->vm_end = addr + len;
1349 	vma->vm_flags = vm_flags;
1350 	vma->vm_page_prot = vm_get_page_prot(vm_flags);
1351 	vma->vm_pgoff = pgoff;
1352 	INIT_LIST_HEAD(&vma->anon_vma_chain);
1353 
1354 	error = -EINVAL;	/* when rejecting VM_GROWSDOWN|VM_GROWSUP */
1355 
1356 	if (file) {
1357 		if (vm_flags & (VM_GROWSDOWN|VM_GROWSUP))
1358 			goto free_vma;
1359 		if (vm_flags & VM_DENYWRITE) {
1360 			error = deny_write_access(file);
1361 			if (error)
1362 				goto free_vma;
1363 			correct_wcount = 1;
1364 		}
1365 		vma->vm_file = file;
1366 		get_file(file);
1367 		error = file->f_op->mmap(file, vma);
1368 		if (error)
1369 			goto unmap_and_free_vma;
1370 		if (vm_flags & VM_EXECUTABLE)
1371 			added_exe_file_vma(mm);
1372 
1373 		/* Can addr have changed??
1374 		 *
1375 		 * Answer: Yes, several device drivers can do it in their
1376 		 *         f_op->mmap method. -DaveM
1377 		 */
1378 		addr = vma->vm_start;
1379 		pgoff = vma->vm_pgoff;
1380 		vm_flags = vma->vm_flags;
1381 	} else if (vm_flags & VM_SHARED) {
1382 		if (unlikely(vm_flags & (VM_GROWSDOWN|VM_GROWSUP)))
1383 			goto free_vma;
1384 		error = shmem_zero_setup(vma);
1385 		if (error)
1386 			goto free_vma;
1387 	}
1388 
1389 	if (vma_wants_writenotify(vma)) {
1390 		pgprot_t pprot = vma->vm_page_prot;
1391 
1392 		/* Can vma->vm_page_prot have changed??
1393 		 *
1394 		 * Answer: Yes, drivers may have changed it in their
1395 		 *         f_op->mmap method.
1396 		 *
1397 		 * Ensures that vmas marked as uncached stay that way.
1398 		 */
1399 		vma->vm_page_prot = vm_get_page_prot(vm_flags & ~VM_SHARED);
1400 		if (pgprot_val(pprot) == pgprot_val(pgprot_noncached(pprot)))
1401 			vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1402 	}
1403 
1404 	vma_link(mm, vma, prev, rb_link, rb_parent);
1405 	file = vma->vm_file;
1406 
1407 	/* Once vma denies write, undo our temporary denial count */
1408 	if (correct_wcount)
1409 		atomic_inc(&inode->i_writecount);
1410 out:
1411 	perf_event_mmap(vma);
1412 
1413 	mm->total_vm += len >> PAGE_SHIFT;
1414 	vm_stat_account(mm, vm_flags, file, len >> PAGE_SHIFT);
1415 	if (vm_flags & VM_LOCKED) {
1416 		if (!mlock_vma_pages_range(vma, addr, addr + len))
1417 			mm->locked_vm += (len >> PAGE_SHIFT);
1418 	} else if ((flags & MAP_POPULATE) && !(flags & MAP_NONBLOCK))
1419 		make_pages_present(addr, addr + len);
1420 	return addr;
1421 
1422 unmap_and_free_vma:
1423 	if (correct_wcount)
1424 		atomic_inc(&inode->i_writecount);
1425 	vma->vm_file = NULL;
1426 	fput(file);
1427 
1428 	/* Undo any partial mapping done by a device driver. */
1429 	unmap_region(mm, vma, prev, vma->vm_start, vma->vm_end);
1430 	charged = 0;
1431 free_vma:
1432 	kmem_cache_free(vm_area_cachep, vma);
1433 unacct_error:
1434 	if (charged)
1435 		vm_unacct_memory(charged);
1436 	return error;
1437 }
1438 
1439 /* Get an address range which is currently unmapped.
1440  * For shmat() with addr=0.
1441  *
1442  * Ugly calling convention alert:
1443  * Return value with the low bits set means error value,
1444  * ie
1445  *	if (ret & ~PAGE_MASK)
1446  *		error = ret;
1447  *
1448  * This function "knows" that -ENOMEM has the bits set.
1449  */
1450 #ifndef HAVE_ARCH_UNMAPPED_AREA
1451 unsigned long
arch_get_unmapped_area(struct file * filp,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1452 arch_get_unmapped_area(struct file *filp, unsigned long addr,
1453 		unsigned long len, unsigned long pgoff, unsigned long flags)
1454 {
1455 	struct mm_struct *mm = current->mm;
1456 	struct vm_area_struct *vma;
1457 	unsigned long start_addr;
1458 
1459 	if (len > TASK_SIZE)
1460 		return -ENOMEM;
1461 
1462 	if (flags & MAP_FIXED)
1463 		return addr;
1464 
1465 	if (addr) {
1466 		addr = PAGE_ALIGN(addr);
1467 		vma = find_vma(mm, addr);
1468 		if (TASK_SIZE - len >= addr &&
1469 		    (!vma || addr + len <= vma->vm_start))
1470 			return addr;
1471 	}
1472 	if (len > mm->cached_hole_size) {
1473 	        start_addr = addr = mm->free_area_cache;
1474 	} else {
1475 	        start_addr = addr = TASK_UNMAPPED_BASE;
1476 	        mm->cached_hole_size = 0;
1477 	}
1478 
1479 full_search:
1480 	for (vma = find_vma(mm, addr); ; vma = vma->vm_next) {
1481 		/* At this point:  (!vma || addr < vma->vm_end). */
1482 		if (TASK_SIZE - len < addr) {
1483 			/*
1484 			 * Start a new search - just in case we missed
1485 			 * some holes.
1486 			 */
1487 			if (start_addr != TASK_UNMAPPED_BASE) {
1488 				addr = TASK_UNMAPPED_BASE;
1489 			        start_addr = addr;
1490 				mm->cached_hole_size = 0;
1491 				goto full_search;
1492 			}
1493 			return -ENOMEM;
1494 		}
1495 		if (!vma || addr + len <= vma->vm_start) {
1496 			/*
1497 			 * Remember the place where we stopped the search:
1498 			 */
1499 			mm->free_area_cache = addr + len;
1500 			return addr;
1501 		}
1502 		if (addr + mm->cached_hole_size < vma->vm_start)
1503 		        mm->cached_hole_size = vma->vm_start - addr;
1504 		addr = vma->vm_end;
1505 	}
1506 }
1507 #endif
1508 
arch_unmap_area(struct mm_struct * mm,unsigned long addr)1509 void arch_unmap_area(struct mm_struct *mm, unsigned long addr)
1510 {
1511 	/*
1512 	 * Is this a new hole at the lowest possible address?
1513 	 */
1514 	if (addr >= TASK_UNMAPPED_BASE && addr < mm->free_area_cache)
1515 		mm->free_area_cache = addr;
1516 }
1517 
1518 /*
1519  * This mmap-allocator allocates new areas top-down from below the
1520  * stack's low limit (the base):
1521  */
1522 #ifndef HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1523 unsigned long
arch_get_unmapped_area_topdown(struct file * filp,const unsigned long addr0,const unsigned long len,const unsigned long pgoff,const unsigned long flags)1524 arch_get_unmapped_area_topdown(struct file *filp, const unsigned long addr0,
1525 			  const unsigned long len, const unsigned long pgoff,
1526 			  const unsigned long flags)
1527 {
1528 	struct vm_area_struct *vma;
1529 	struct mm_struct *mm = current->mm;
1530 	unsigned long addr = addr0, start_addr;
1531 
1532 	/* requested length too big for entire address space */
1533 	if (len > TASK_SIZE)
1534 		return -ENOMEM;
1535 
1536 	if (flags & MAP_FIXED)
1537 		return addr;
1538 
1539 	/* requesting a specific address */
1540 	if (addr) {
1541 		addr = PAGE_ALIGN(addr);
1542 		vma = find_vma(mm, addr);
1543 		if (TASK_SIZE - len >= addr &&
1544 				(!vma || addr + len <= vma->vm_start))
1545 			return addr;
1546 	}
1547 
1548 	/* check if free_area_cache is useful for us */
1549 	if (len <= mm->cached_hole_size) {
1550  	        mm->cached_hole_size = 0;
1551  		mm->free_area_cache = mm->mmap_base;
1552  	}
1553 
1554 try_again:
1555 	/* either no address requested or can't fit in requested address hole */
1556 	start_addr = addr = mm->free_area_cache;
1557 
1558 	if (addr < len)
1559 		goto fail;
1560 
1561 	addr -= len;
1562 	do {
1563 		/*
1564 		 * Lookup failure means no vma is above this address,
1565 		 * else if new region fits below vma->vm_start,
1566 		 * return with success:
1567 		 */
1568 		vma = find_vma(mm, addr);
1569 		if (!vma || addr+len <= vma->vm_start)
1570 			/* remember the address as a hint for next time */
1571 			return (mm->free_area_cache = addr);
1572 
1573  		/* remember the largest hole we saw so far */
1574  		if (addr + mm->cached_hole_size < vma->vm_start)
1575  		        mm->cached_hole_size = vma->vm_start - addr;
1576 
1577 		/* try just below the current vma->vm_start */
1578 		addr = vma->vm_start-len;
1579 	} while (len < vma->vm_start);
1580 
1581 fail:
1582 	/*
1583 	 * if hint left us with no space for the requested
1584 	 * mapping then try again:
1585 	 *
1586 	 * Note: this is different with the case of bottomup
1587 	 * which does the fully line-search, but we use find_vma
1588 	 * here that causes some holes skipped.
1589 	 */
1590 	if (start_addr != mm->mmap_base) {
1591 		mm->free_area_cache = mm->mmap_base;
1592 		mm->cached_hole_size = 0;
1593 		goto try_again;
1594 	}
1595 
1596 	/*
1597 	 * A failed mmap() very likely causes application failure,
1598 	 * so fall back to the bottom-up function here. This scenario
1599 	 * can happen with large stack limits and large mmap()
1600 	 * allocations.
1601 	 */
1602 	mm->cached_hole_size = ~0UL;
1603   	mm->free_area_cache = TASK_UNMAPPED_BASE;
1604 	addr = arch_get_unmapped_area(filp, addr0, len, pgoff, flags);
1605 	/*
1606 	 * Restore the topdown base:
1607 	 */
1608 	mm->free_area_cache = mm->mmap_base;
1609 	mm->cached_hole_size = ~0UL;
1610 
1611 	return addr;
1612 }
1613 #endif
1614 
arch_unmap_area_topdown(struct mm_struct * mm,unsigned long addr)1615 void arch_unmap_area_topdown(struct mm_struct *mm, unsigned long addr)
1616 {
1617 	/*
1618 	 * Is this a new hole at the highest possible address?
1619 	 */
1620 	if (addr > mm->free_area_cache)
1621 		mm->free_area_cache = addr;
1622 
1623 	/* dont allow allocations above current base */
1624 	if (mm->free_area_cache > mm->mmap_base)
1625 		mm->free_area_cache = mm->mmap_base;
1626 }
1627 
1628 unsigned long
get_unmapped_area(struct file * file,unsigned long addr,unsigned long len,unsigned long pgoff,unsigned long flags)1629 get_unmapped_area(struct file *file, unsigned long addr, unsigned long len,
1630 		unsigned long pgoff, unsigned long flags)
1631 {
1632 	unsigned long (*get_area)(struct file *, unsigned long,
1633 				  unsigned long, unsigned long, unsigned long);
1634 
1635 	unsigned long error = arch_mmap_check(addr, len, flags);
1636 	if (error)
1637 		return error;
1638 
1639 	/* Careful about overflows.. */
1640 	if (len > TASK_SIZE)
1641 		return -ENOMEM;
1642 
1643 	get_area = current->mm->get_unmapped_area;
1644 	if (file && file->f_op && file->f_op->get_unmapped_area)
1645 		get_area = file->f_op->get_unmapped_area;
1646 	addr = get_area(file, addr, len, pgoff, flags);
1647 	if (IS_ERR_VALUE(addr))
1648 		return addr;
1649 
1650 	if (addr > TASK_SIZE - len)
1651 		return -ENOMEM;
1652 	if (addr & ~PAGE_MASK)
1653 		return -EINVAL;
1654 
1655 	return arch_rebalance_pgtables(addr, len);
1656 }
1657 
1658 EXPORT_SYMBOL(get_unmapped_area);
1659 
1660 /* Look up the first VMA which satisfies  addr < vm_end,  NULL if none. */
find_vma(struct mm_struct * mm,unsigned long addr)1661 struct vm_area_struct *find_vma(struct mm_struct *mm, unsigned long addr)
1662 {
1663 	struct vm_area_struct *vma = NULL;
1664 
1665 	if (mm) {
1666 		/* Check the cache first. */
1667 		/* (Cache hit rate is typically around 35%.) */
1668 		vma = ACCESS_ONCE(mm->mmap_cache);
1669 		if (!(vma && vma->vm_end > addr && vma->vm_start <= addr)) {
1670 			struct rb_node * rb_node;
1671 
1672 			rb_node = mm->mm_rb.rb_node;
1673 			vma = NULL;
1674 
1675 			while (rb_node) {
1676 				struct vm_area_struct * vma_tmp;
1677 
1678 				vma_tmp = rb_entry(rb_node,
1679 						struct vm_area_struct, vm_rb);
1680 
1681 				if (vma_tmp->vm_end > addr) {
1682 					vma = vma_tmp;
1683 					if (vma_tmp->vm_start <= addr)
1684 						break;
1685 					rb_node = rb_node->rb_left;
1686 				} else
1687 					rb_node = rb_node->rb_right;
1688 			}
1689 			if (vma)
1690 				mm->mmap_cache = vma;
1691 		}
1692 	}
1693 	return vma;
1694 }
1695 
1696 EXPORT_SYMBOL(find_vma);
1697 
1698 /*
1699  * Same as find_vma, but also return a pointer to the previous VMA in *pprev.
1700  */
1701 struct vm_area_struct *
find_vma_prev(struct mm_struct * mm,unsigned long addr,struct vm_area_struct ** pprev)1702 find_vma_prev(struct mm_struct *mm, unsigned long addr,
1703 			struct vm_area_struct **pprev)
1704 {
1705 	struct vm_area_struct *vma;
1706 
1707 	vma = find_vma(mm, addr);
1708 	if (vma) {
1709 		*pprev = vma->vm_prev;
1710 	} else {
1711 		struct rb_node *rb_node = mm->mm_rb.rb_node;
1712 		*pprev = NULL;
1713 		while (rb_node) {
1714 			*pprev = rb_entry(rb_node, struct vm_area_struct, vm_rb);
1715 			rb_node = rb_node->rb_right;
1716 		}
1717 	}
1718 	return vma;
1719 }
1720 
1721 /*
1722  * Verify that the stack growth is acceptable and
1723  * update accounting. This is shared with both the
1724  * grow-up and grow-down cases.
1725  */
acct_stack_growth(struct vm_area_struct * vma,unsigned long size,unsigned long grow)1726 static int acct_stack_growth(struct vm_area_struct *vma, unsigned long size, unsigned long grow)
1727 {
1728 	struct mm_struct *mm = vma->vm_mm;
1729 	struct rlimit *rlim = current->signal->rlim;
1730 	unsigned long new_start;
1731 
1732 	/* address space limit tests */
1733 	if (!may_expand_vm(mm, grow))
1734 		return -ENOMEM;
1735 
1736 	/* Stack limit test */
1737 	if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur))
1738 		return -ENOMEM;
1739 
1740 	/* mlock limit tests */
1741 	if (vma->vm_flags & VM_LOCKED) {
1742 		unsigned long locked;
1743 		unsigned long limit;
1744 		locked = mm->locked_vm + grow;
1745 		limit = ACCESS_ONCE(rlim[RLIMIT_MEMLOCK].rlim_cur);
1746 		limit >>= PAGE_SHIFT;
1747 		if (locked > limit && !capable(CAP_IPC_LOCK))
1748 			return -ENOMEM;
1749 	}
1750 
1751 	/* Check to ensure the stack will not grow into a hugetlb-only region */
1752 	new_start = (vma->vm_flags & VM_GROWSUP) ? vma->vm_start :
1753 			vma->vm_end - size;
1754 	if (is_hugepage_only_range(vma->vm_mm, new_start, size))
1755 		return -EFAULT;
1756 
1757 	/*
1758 	 * Overcommit..  This must be the final test, as it will
1759 	 * update security statistics.
1760 	 */
1761 	if (security_vm_enough_memory_mm(mm, grow))
1762 		return -ENOMEM;
1763 
1764 	/* Ok, everything looks good - let it rip */
1765 	mm->total_vm += grow;
1766 	if (vma->vm_flags & VM_LOCKED)
1767 		mm->locked_vm += grow;
1768 	vm_stat_account(mm, vma->vm_flags, vma->vm_file, grow);
1769 	return 0;
1770 }
1771 
1772 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
1773 /*
1774  * PA-RISC uses this for its stack; IA64 for its Register Backing Store.
1775  * vma is the last one with address > vma->vm_end.  Have to extend vma.
1776  */
expand_upwards(struct vm_area_struct * vma,unsigned long address)1777 int expand_upwards(struct vm_area_struct *vma, unsigned long address)
1778 {
1779 	int error;
1780 
1781 	if (!(vma->vm_flags & VM_GROWSUP))
1782 		return -EFAULT;
1783 
1784 	/*
1785 	 * We must make sure the anon_vma is allocated
1786 	 * so that the anon_vma locking is not a noop.
1787 	 */
1788 	if (unlikely(anon_vma_prepare(vma)))
1789 		return -ENOMEM;
1790 	vma_lock_anon_vma(vma);
1791 
1792 	/*
1793 	 * vma->vm_start/vm_end cannot change under us because the caller
1794 	 * is required to hold the mmap_sem in read mode.  We need the
1795 	 * anon_vma lock to serialize against concurrent expand_stacks.
1796 	 * Also guard against wrapping around to address 0.
1797 	 */
1798 	if (address < PAGE_ALIGN(address+4))
1799 		address = PAGE_ALIGN(address+4);
1800 	else {
1801 		vma_unlock_anon_vma(vma);
1802 		return -ENOMEM;
1803 	}
1804 	error = 0;
1805 
1806 	/* Somebody else might have raced and expanded it already */
1807 	if (address > vma->vm_end) {
1808 		unsigned long size, grow;
1809 
1810 		size = address - vma->vm_start;
1811 		grow = (address - vma->vm_end) >> PAGE_SHIFT;
1812 
1813 		error = -ENOMEM;
1814 		if (vma->vm_pgoff + (size >> PAGE_SHIFT) >= vma->vm_pgoff) {
1815 			error = acct_stack_growth(vma, size, grow);
1816 			if (!error) {
1817 				vma->vm_end = address;
1818 				perf_event_mmap(vma);
1819 			}
1820 		}
1821 	}
1822 	vma_unlock_anon_vma(vma);
1823 	khugepaged_enter_vma_merge(vma);
1824 	return error;
1825 }
1826 #endif /* CONFIG_STACK_GROWSUP || CONFIG_IA64 */
1827 
1828 /*
1829  * vma is the first one with address < vma->vm_start.  Have to extend vma.
1830  */
expand_downwards(struct vm_area_struct * vma,unsigned long address)1831 int expand_downwards(struct vm_area_struct *vma,
1832 				   unsigned long address)
1833 {
1834 	int error;
1835 
1836 	/*
1837 	 * We must make sure the anon_vma is allocated
1838 	 * so that the anon_vma locking is not a noop.
1839 	 */
1840 	if (unlikely(anon_vma_prepare(vma)))
1841 		return -ENOMEM;
1842 
1843 	address &= PAGE_MASK;
1844 	error = security_file_mmap(NULL, 0, 0, 0, address, 1);
1845 	if (error)
1846 		return error;
1847 
1848 	vma_lock_anon_vma(vma);
1849 
1850 	/*
1851 	 * vma->vm_start/vm_end cannot change under us because the caller
1852 	 * is required to hold the mmap_sem in read mode.  We need the
1853 	 * anon_vma lock to serialize against concurrent expand_stacks.
1854 	 */
1855 
1856 	/* Somebody else might have raced and expanded it already */
1857 	if (address < vma->vm_start) {
1858 		unsigned long size, grow;
1859 
1860 		size = vma->vm_end - address;
1861 		grow = (vma->vm_start - address) >> PAGE_SHIFT;
1862 
1863 		error = -ENOMEM;
1864 		if (grow <= vma->vm_pgoff) {
1865 			error = acct_stack_growth(vma, size, grow);
1866 			if (!error) {
1867 				vma->vm_start = address;
1868 				vma->vm_pgoff -= grow;
1869 				perf_event_mmap(vma);
1870 			}
1871 		}
1872 	}
1873 	vma_unlock_anon_vma(vma);
1874 	khugepaged_enter_vma_merge(vma);
1875 	return error;
1876 }
1877 
1878 /*
1879  * Note how expand_stack() refuses to expand the stack all the way to
1880  * abut the next virtual mapping, *unless* that mapping itself is also
1881  * a stack mapping. We want to leave room for a guard page, after all
1882  * (the guard page itself is not added here, that is done by the
1883  * actual page faulting logic)
1884  *
1885  * This matches the behavior of the guard page logic (see mm/memory.c:
1886  * check_stack_guard_page()), which only allows the guard page to be
1887  * removed under these circumstances.
1888  */
1889 #ifdef CONFIG_STACK_GROWSUP
expand_stack(struct vm_area_struct * vma,unsigned long address)1890 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1891 {
1892 	struct vm_area_struct *next;
1893 
1894 	address &= PAGE_MASK;
1895 	next = vma->vm_next;
1896 	if (next && next->vm_start == address + PAGE_SIZE) {
1897 		if (!(next->vm_flags & VM_GROWSUP))
1898 			return -ENOMEM;
1899 	}
1900 	return expand_upwards(vma, address);
1901 }
1902 
1903 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)1904 find_extend_vma(struct mm_struct *mm, unsigned long addr)
1905 {
1906 	struct vm_area_struct *vma, *prev;
1907 
1908 	addr &= PAGE_MASK;
1909 	vma = find_vma_prev(mm, addr, &prev);
1910 	if (vma && (vma->vm_start <= addr))
1911 		return vma;
1912 	if (!prev || expand_stack(prev, addr))
1913 		return NULL;
1914 	if (prev->vm_flags & VM_LOCKED) {
1915 		mlock_vma_pages_range(prev, addr, prev->vm_end);
1916 	}
1917 	return prev;
1918 }
1919 #else
expand_stack(struct vm_area_struct * vma,unsigned long address)1920 int expand_stack(struct vm_area_struct *vma, unsigned long address)
1921 {
1922 	struct vm_area_struct *prev;
1923 
1924 	address &= PAGE_MASK;
1925 	prev = vma->vm_prev;
1926 	if (prev && prev->vm_end == address) {
1927 		if (!(prev->vm_flags & VM_GROWSDOWN))
1928 			return -ENOMEM;
1929 	}
1930 	return expand_downwards(vma, address);
1931 }
1932 
1933 struct vm_area_struct *
find_extend_vma(struct mm_struct * mm,unsigned long addr)1934 find_extend_vma(struct mm_struct * mm, unsigned long addr)
1935 {
1936 	struct vm_area_struct * vma;
1937 	unsigned long start;
1938 
1939 	addr &= PAGE_MASK;
1940 	vma = find_vma(mm,addr);
1941 	if (!vma)
1942 		return NULL;
1943 	if (vma->vm_start <= addr)
1944 		return vma;
1945 	if (!(vma->vm_flags & VM_GROWSDOWN))
1946 		return NULL;
1947 	start = vma->vm_start;
1948 	if (expand_stack(vma, addr))
1949 		return NULL;
1950 	if (vma->vm_flags & VM_LOCKED) {
1951 		mlock_vma_pages_range(vma, addr, start);
1952 	}
1953 	return vma;
1954 }
1955 #endif
1956 
1957 /*
1958  * Ok - we have the memory areas we should free on the vma list,
1959  * so release them, and do the vma updates.
1960  *
1961  * Called with the mm semaphore held.
1962  */
remove_vma_list(struct mm_struct * mm,struct vm_area_struct * vma)1963 static void remove_vma_list(struct mm_struct *mm, struct vm_area_struct *vma)
1964 {
1965 	/* Update high watermark before we lower total_vm */
1966 	update_hiwater_vm(mm);
1967 	do {
1968 		long nrpages = vma_pages(vma);
1969 
1970 		mm->total_vm -= nrpages;
1971 		vm_stat_account(mm, vma->vm_flags, vma->vm_file, -nrpages);
1972 		vma = remove_vma(vma);
1973 	} while (vma);
1974 	validate_mm(mm);
1975 }
1976 
1977 /*
1978  * Get rid of page table information in the indicated region.
1979  *
1980  * Called with the mm semaphore held.
1981  */
unmap_region(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long start,unsigned long end)1982 static void unmap_region(struct mm_struct *mm,
1983 		struct vm_area_struct *vma, struct vm_area_struct *prev,
1984 		unsigned long start, unsigned long end)
1985 {
1986 	struct vm_area_struct *next = prev? prev->vm_next: mm->mmap;
1987 	struct mmu_gather tlb;
1988 	unsigned long nr_accounted = 0;
1989 
1990 	lru_add_drain();
1991 	tlb_gather_mmu(&tlb, mm, 0);
1992 	update_hiwater_rss(mm);
1993 	unmap_vmas(&tlb, vma, start, end, &nr_accounted, NULL);
1994 	vm_unacct_memory(nr_accounted);
1995 	free_pgtables(&tlb, vma, prev ? prev->vm_end : FIRST_USER_ADDRESS,
1996 				 next ? next->vm_start : USER_PGTABLES_CEILING);
1997 	tlb_finish_mmu(&tlb, start, end);
1998 }
1999 
2000 /*
2001  * Create a list of vma's touched by the unmap, removing them from the mm's
2002  * vma list as we go..
2003  */
2004 static void
detach_vmas_to_be_unmapped(struct mm_struct * mm,struct vm_area_struct * vma,struct vm_area_struct * prev,unsigned long end)2005 detach_vmas_to_be_unmapped(struct mm_struct *mm, struct vm_area_struct *vma,
2006 	struct vm_area_struct *prev, unsigned long end)
2007 {
2008 	struct vm_area_struct **insertion_point;
2009 	struct vm_area_struct *tail_vma = NULL;
2010 	unsigned long addr;
2011 
2012 	insertion_point = (prev ? &prev->vm_next : &mm->mmap);
2013 	vma->vm_prev = NULL;
2014 	do {
2015 		rb_erase(&vma->vm_rb, &mm->mm_rb);
2016 		mm->map_count--;
2017 		tail_vma = vma;
2018 		vma = vma->vm_next;
2019 	} while (vma && vma->vm_start < end);
2020 	*insertion_point = vma;
2021 	if (vma)
2022 		vma->vm_prev = prev;
2023 	tail_vma->vm_next = NULL;
2024 	if (mm->unmap_area == arch_unmap_area)
2025 		addr = prev ? prev->vm_end : mm->mmap_base;
2026 	else
2027 		addr = vma ?  vma->vm_start : mm->mmap_base;
2028 	mm->unmap_area(mm, addr);
2029 	mm->mmap_cache = NULL;		/* Kill the cache. */
2030 }
2031 
2032 /*
2033  * __split_vma() bypasses sysctl_max_map_count checking.  We use this on the
2034  * munmap path where it doesn't make sense to fail.
2035  */
__split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2036 static int __split_vma(struct mm_struct * mm, struct vm_area_struct * vma,
2037 	      unsigned long addr, int new_below)
2038 {
2039 	struct mempolicy *pol;
2040 	struct vm_area_struct *new;
2041 	int err = -ENOMEM;
2042 
2043 	if (is_vm_hugetlb_page(vma) && (addr &
2044 					~(huge_page_mask(hstate_vma(vma)))))
2045 		return -EINVAL;
2046 
2047 	new = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2048 	if (!new)
2049 		goto out_err;
2050 
2051 	/* most fields are the same, copy all, and then fixup */
2052 	*new = *vma;
2053 
2054 	INIT_LIST_HEAD(&new->anon_vma_chain);
2055 
2056 	if (new_below)
2057 		new->vm_end = addr;
2058 	else {
2059 		new->vm_start = addr;
2060 		new->vm_pgoff += ((addr - vma->vm_start) >> PAGE_SHIFT);
2061 	}
2062 
2063 	pol = mpol_dup(vma_policy(vma));
2064 	if (IS_ERR(pol)) {
2065 		err = PTR_ERR(pol);
2066 		goto out_free_vma;
2067 	}
2068 	vma_set_policy(new, pol);
2069 
2070 	if (anon_vma_clone(new, vma))
2071 		goto out_free_mpol;
2072 
2073 	if (new->vm_file) {
2074 		get_file(new->vm_file);
2075 		if (vma->vm_flags & VM_EXECUTABLE)
2076 			added_exe_file_vma(mm);
2077 	}
2078 
2079 	if (new->vm_ops && new->vm_ops->open)
2080 		new->vm_ops->open(new);
2081 
2082 	if (new_below)
2083 		err = vma_adjust(vma, addr, vma->vm_end, vma->vm_pgoff +
2084 			((addr - new->vm_start) >> PAGE_SHIFT), new);
2085 	else
2086 		err = vma_adjust(vma, vma->vm_start, addr, vma->vm_pgoff, new);
2087 
2088 	/* Success. */
2089 	if (!err)
2090 		return 0;
2091 
2092 	/* Clean everything up if vma_adjust failed. */
2093 	if (new->vm_ops && new->vm_ops->close)
2094 		new->vm_ops->close(new);
2095 	if (new->vm_file) {
2096 		if (vma->vm_flags & VM_EXECUTABLE)
2097 			removed_exe_file_vma(mm);
2098 		fput(new->vm_file);
2099 	}
2100 	unlink_anon_vmas(new);
2101  out_free_mpol:
2102 	mpol_put(pol);
2103  out_free_vma:
2104 	kmem_cache_free(vm_area_cachep, new);
2105  out_err:
2106 	return err;
2107 }
2108 
2109 /*
2110  * Split a vma into two pieces at address 'addr', a new vma is allocated
2111  * either for the first part or the tail.
2112  */
split_vma(struct mm_struct * mm,struct vm_area_struct * vma,unsigned long addr,int new_below)2113 int split_vma(struct mm_struct *mm, struct vm_area_struct *vma,
2114 	      unsigned long addr, int new_below)
2115 {
2116 	if (mm->map_count >= sysctl_max_map_count)
2117 		return -ENOMEM;
2118 
2119 	return __split_vma(mm, vma, addr, new_below);
2120 }
2121 
2122 /* Munmap is split into 2 main parts -- this part which finds
2123  * what needs doing, and the areas themselves, which do the
2124  * work.  This now handles partial unmappings.
2125  * Jeremy Fitzhardinge <jeremy@goop.org>
2126  */
do_munmap(struct mm_struct * mm,unsigned long start,size_t len)2127 int do_munmap(struct mm_struct *mm, unsigned long start, size_t len)
2128 {
2129 	unsigned long end;
2130 	struct vm_area_struct *vma, *prev, *last;
2131 
2132 	if ((start & ~PAGE_MASK) || start > TASK_SIZE || len > TASK_SIZE-start)
2133 		return -EINVAL;
2134 
2135 	if ((len = PAGE_ALIGN(len)) == 0)
2136 		return -EINVAL;
2137 
2138 	/* Find the first overlapping VMA */
2139 	vma = find_vma(mm, start);
2140 	if (!vma)
2141 		return 0;
2142 	prev = vma->vm_prev;
2143 	/* we have  start < vma->vm_end  */
2144 
2145 	/* if it doesn't overlap, we have nothing.. */
2146 	end = start + len;
2147 	if (vma->vm_start >= end)
2148 		return 0;
2149 
2150 	/*
2151 	 * If we need to split any vma, do it now to save pain later.
2152 	 *
2153 	 * Note: mremap's move_vma VM_ACCOUNT handling assumes a partially
2154 	 * unmapped vm_area_struct will remain in use: so lower split_vma
2155 	 * places tmp vma above, and higher split_vma places tmp vma below.
2156 	 */
2157 	if (start > vma->vm_start) {
2158 		int error;
2159 
2160 		/*
2161 		 * Make sure that map_count on return from munmap() will
2162 		 * not exceed its limit; but let map_count go just above
2163 		 * its limit temporarily, to help free resources as expected.
2164 		 */
2165 		if (end < vma->vm_end && mm->map_count >= sysctl_max_map_count)
2166 			return -ENOMEM;
2167 
2168 		error = __split_vma(mm, vma, start, 0);
2169 		if (error)
2170 			return error;
2171 		prev = vma;
2172 	}
2173 
2174 	/* Does it split the last one? */
2175 	last = find_vma(mm, end);
2176 	if (last && end > last->vm_start) {
2177 		int error = __split_vma(mm, last, end, 1);
2178 		if (error)
2179 			return error;
2180 	}
2181 	vma = prev? prev->vm_next: mm->mmap;
2182 
2183 	/*
2184 	 * unlock any mlock()ed ranges before detaching vmas
2185 	 */
2186 	if (mm->locked_vm) {
2187 		struct vm_area_struct *tmp = vma;
2188 		while (tmp && tmp->vm_start < end) {
2189 			if (tmp->vm_flags & VM_LOCKED) {
2190 				mm->locked_vm -= vma_pages(tmp);
2191 				munlock_vma_pages_all(tmp);
2192 			}
2193 			tmp = tmp->vm_next;
2194 		}
2195 	}
2196 
2197 	/*
2198 	 * Remove the vma's, and unmap the actual pages
2199 	 */
2200 	detach_vmas_to_be_unmapped(mm, vma, prev, end);
2201 	unmap_region(mm, vma, prev, start, end);
2202 
2203 	/* Fix up all other VM information */
2204 	remove_vma_list(mm, vma);
2205 
2206 	return 0;
2207 }
2208 EXPORT_SYMBOL(do_munmap);
2209 
vm_munmap(unsigned long start,size_t len)2210 int vm_munmap(unsigned long start, size_t len)
2211 {
2212 	int ret;
2213 	struct mm_struct *mm = current->mm;
2214 
2215 	down_write(&mm->mmap_sem);
2216 	ret = do_munmap(mm, start, len);
2217 	up_write(&mm->mmap_sem);
2218 	return ret;
2219 }
2220 EXPORT_SYMBOL(vm_munmap);
2221 
SYSCALL_DEFINE2(munmap,unsigned long,addr,size_t,len)2222 SYSCALL_DEFINE2(munmap, unsigned long, addr, size_t, len)
2223 {
2224 	profile_munmap(addr);
2225 	return vm_munmap(addr, len);
2226 }
2227 
verify_mm_writelocked(struct mm_struct * mm)2228 static inline void verify_mm_writelocked(struct mm_struct *mm)
2229 {
2230 #ifdef CONFIG_DEBUG_VM
2231 	if (unlikely(down_read_trylock(&mm->mmap_sem))) {
2232 		WARN_ON(1);
2233 		up_read(&mm->mmap_sem);
2234 	}
2235 #endif
2236 }
2237 
2238 /*
2239  *  this is really a simplified "do_mmap".  it only handles
2240  *  anonymous maps.  eventually we may be able to do some
2241  *  brk-specific accounting here.
2242  */
do_brk(unsigned long addr,unsigned long len)2243 static unsigned long do_brk(unsigned long addr, unsigned long len)
2244 {
2245 	struct mm_struct * mm = current->mm;
2246 	struct vm_area_struct * vma, * prev;
2247 	unsigned long flags;
2248 	struct rb_node ** rb_link, * rb_parent;
2249 	pgoff_t pgoff = addr >> PAGE_SHIFT;
2250 	int error;
2251 
2252 	len = PAGE_ALIGN(len);
2253 	if (!len)
2254 		return addr;
2255 
2256 	error = security_file_mmap(NULL, 0, 0, 0, addr, 1);
2257 	if (error)
2258 		return error;
2259 
2260 	flags = VM_DATA_DEFAULT_FLAGS | VM_ACCOUNT | mm->def_flags;
2261 
2262 	error = get_unmapped_area(NULL, addr, len, 0, MAP_FIXED);
2263 	if (error & ~PAGE_MASK)
2264 		return error;
2265 
2266 	/*
2267 	 * mlock MCL_FUTURE?
2268 	 */
2269 	if (mm->def_flags & VM_LOCKED) {
2270 		unsigned long locked, lock_limit;
2271 		locked = len >> PAGE_SHIFT;
2272 		locked += mm->locked_vm;
2273 		lock_limit = rlimit(RLIMIT_MEMLOCK);
2274 		lock_limit >>= PAGE_SHIFT;
2275 		if (locked > lock_limit && !capable(CAP_IPC_LOCK))
2276 			return -EAGAIN;
2277 	}
2278 
2279 	/*
2280 	 * mm->mmap_sem is required to protect against another thread
2281 	 * changing the mappings in case we sleep.
2282 	 */
2283 	verify_mm_writelocked(mm);
2284 
2285 	/*
2286 	 * Clear old maps.  this also does some error checking for us
2287 	 */
2288  munmap_back:
2289 	vma = find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2290 	if (vma && vma->vm_start < addr + len) {
2291 		if (do_munmap(mm, addr, len))
2292 			return -ENOMEM;
2293 		goto munmap_back;
2294 	}
2295 
2296 	/* Check against address space limits *after* clearing old maps... */
2297 	if (!may_expand_vm(mm, len >> PAGE_SHIFT))
2298 		return -ENOMEM;
2299 
2300 	if (mm->map_count > sysctl_max_map_count)
2301 		return -ENOMEM;
2302 
2303 	if (security_vm_enough_memory_mm(mm, len >> PAGE_SHIFT))
2304 		return -ENOMEM;
2305 
2306 	/* Can we just expand an old private anonymous mapping? */
2307 	vma = vma_merge(mm, prev, addr, addr + len, flags,
2308 					NULL, NULL, pgoff, NULL);
2309 	if (vma)
2310 		goto out;
2311 
2312 	/*
2313 	 * create a vma struct for an anonymous mapping
2314 	 */
2315 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2316 	if (!vma) {
2317 		vm_unacct_memory(len >> PAGE_SHIFT);
2318 		return -ENOMEM;
2319 	}
2320 
2321 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2322 	vma->vm_mm = mm;
2323 	vma->vm_start = addr;
2324 	vma->vm_end = addr + len;
2325 	vma->vm_pgoff = pgoff;
2326 	vma->vm_flags = flags;
2327 	vma->vm_page_prot = vm_get_page_prot(flags);
2328 	vma_link(mm, vma, prev, rb_link, rb_parent);
2329 out:
2330 	perf_event_mmap(vma);
2331 	mm->total_vm += len >> PAGE_SHIFT;
2332 	if (flags & VM_LOCKED) {
2333 		if (!mlock_vma_pages_range(vma, addr, addr + len))
2334 			mm->locked_vm += (len >> PAGE_SHIFT);
2335 	}
2336 	return addr;
2337 }
2338 
vm_brk(unsigned long addr,unsigned long len)2339 unsigned long vm_brk(unsigned long addr, unsigned long len)
2340 {
2341 	struct mm_struct *mm = current->mm;
2342 	unsigned long ret;
2343 
2344 	down_write(&mm->mmap_sem);
2345 	ret = do_brk(addr, len);
2346 	up_write(&mm->mmap_sem);
2347 	return ret;
2348 }
2349 EXPORT_SYMBOL(vm_brk);
2350 
2351 /* Release all mmaps. */
exit_mmap(struct mm_struct * mm)2352 void exit_mmap(struct mm_struct *mm)
2353 {
2354 	struct mmu_gather tlb;
2355 	struct vm_area_struct *vma;
2356 	unsigned long nr_accounted = 0;
2357 
2358 	/* mm's last user has gone, and its about to be pulled down */
2359 	mmu_notifier_release(mm);
2360 
2361 	if (mm->locked_vm) {
2362 		vma = mm->mmap;
2363 		while (vma) {
2364 			if (vma->vm_flags & VM_LOCKED)
2365 				munlock_vma_pages_all(vma);
2366 			vma = vma->vm_next;
2367 		}
2368 	}
2369 
2370 	arch_exit_mmap(mm);
2371 
2372 	vma = mm->mmap;
2373 	if (!vma)	/* Can happen if dup_mmap() received an OOM */
2374 		return;
2375 
2376 	lru_add_drain();
2377 	flush_cache_mm(mm);
2378 	tlb_gather_mmu(&tlb, mm, 1);
2379 	/* update_hiwater_rss(mm) here? but nobody should be looking */
2380 	/* Use -1 here to ensure all VMAs in the mm are unmapped */
2381 	unmap_vmas(&tlb, vma, 0, -1, &nr_accounted, NULL);
2382 	vm_unacct_memory(nr_accounted);
2383 
2384 	free_pgtables(&tlb, vma, FIRST_USER_ADDRESS, USER_PGTABLES_CEILING);
2385 	tlb_finish_mmu(&tlb, 0, -1);
2386 
2387 	/*
2388 	 * Walk the list again, actually closing and freeing it,
2389 	 * with preemption enabled, without holding any MM locks.
2390 	 */
2391 	while (vma)
2392 		vma = remove_vma(vma);
2393 
2394 	BUG_ON(mm->nr_ptes > (FIRST_USER_ADDRESS+PMD_SIZE-1)>>PMD_SHIFT);
2395 }
2396 
2397 /* Insert vm structure into process list sorted by address
2398  * and into the inode's i_mmap tree.  If vm_file is non-NULL
2399  * then i_mmap_mutex is taken here.
2400  */
insert_vm_struct(struct mm_struct * mm,struct vm_area_struct * vma)2401 int insert_vm_struct(struct mm_struct * mm, struct vm_area_struct * vma)
2402 {
2403 	struct vm_area_struct * __vma, * prev;
2404 	struct rb_node ** rb_link, * rb_parent;
2405 
2406 	/*
2407 	 * The vm_pgoff of a purely anonymous vma should be irrelevant
2408 	 * until its first write fault, when page's anon_vma and index
2409 	 * are set.  But now set the vm_pgoff it will almost certainly
2410 	 * end up with (unless mremap moves it elsewhere before that
2411 	 * first wfault), so /proc/pid/maps tells a consistent story.
2412 	 *
2413 	 * By setting it to reflect the virtual start address of the
2414 	 * vma, merges and splits can happen in a seamless way, just
2415 	 * using the existing file pgoff checks and manipulations.
2416 	 * Similarly in do_mmap_pgoff and in do_brk.
2417 	 */
2418 	if (!vma->vm_file) {
2419 		BUG_ON(vma->anon_vma);
2420 		vma->vm_pgoff = vma->vm_start >> PAGE_SHIFT;
2421 	}
2422 	__vma = find_vma_prepare(mm,vma->vm_start,&prev,&rb_link,&rb_parent);
2423 	if (__vma && __vma->vm_start < vma->vm_end)
2424 		return -ENOMEM;
2425 	if ((vma->vm_flags & VM_ACCOUNT) &&
2426 	     security_vm_enough_memory_mm(mm, vma_pages(vma)))
2427 		return -ENOMEM;
2428 	vma_link(mm, vma, prev, rb_link, rb_parent);
2429 	return 0;
2430 }
2431 
2432 /*
2433  * Copy the vma structure to a new location in the same mm,
2434  * prior to moving page table entries, to effect an mremap move.
2435  */
copy_vma(struct vm_area_struct ** vmap,unsigned long addr,unsigned long len,pgoff_t pgoff)2436 struct vm_area_struct *copy_vma(struct vm_area_struct **vmap,
2437 	unsigned long addr, unsigned long len, pgoff_t pgoff)
2438 {
2439 	struct vm_area_struct *vma = *vmap;
2440 	unsigned long vma_start = vma->vm_start;
2441 	struct mm_struct *mm = vma->vm_mm;
2442 	struct vm_area_struct *new_vma, *prev;
2443 	struct rb_node **rb_link, *rb_parent;
2444 	struct mempolicy *pol;
2445 	bool faulted_in_anon_vma = true;
2446 
2447 	/*
2448 	 * If anonymous vma has not yet been faulted, update new pgoff
2449 	 * to match new location, to increase its chance of merging.
2450 	 */
2451 	if (unlikely(!vma->vm_file && !vma->anon_vma)) {
2452 		pgoff = addr >> PAGE_SHIFT;
2453 		faulted_in_anon_vma = false;
2454 	}
2455 
2456 	find_vma_prepare(mm, addr, &prev, &rb_link, &rb_parent);
2457 	new_vma = vma_merge(mm, prev, addr, addr + len, vma->vm_flags,
2458 			vma->anon_vma, vma->vm_file, pgoff, vma_policy(vma));
2459 	if (new_vma) {
2460 		/*
2461 		 * Source vma may have been merged into new_vma
2462 		 */
2463 		if (unlikely(vma_start >= new_vma->vm_start &&
2464 			     vma_start < new_vma->vm_end)) {
2465 			/*
2466 			 * The only way we can get a vma_merge with
2467 			 * self during an mremap is if the vma hasn't
2468 			 * been faulted in yet and we were allowed to
2469 			 * reset the dst vma->vm_pgoff to the
2470 			 * destination address of the mremap to allow
2471 			 * the merge to happen. mremap must change the
2472 			 * vm_pgoff linearity between src and dst vmas
2473 			 * (in turn preventing a vma_merge) to be
2474 			 * safe. It is only safe to keep the vm_pgoff
2475 			 * linear if there are no pages mapped yet.
2476 			 */
2477 			VM_BUG_ON(faulted_in_anon_vma);
2478 			*vmap = new_vma;
2479 		} else
2480 			anon_vma_moveto_tail(new_vma);
2481 	} else {
2482 		new_vma = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL);
2483 		if (new_vma) {
2484 			*new_vma = *vma;
2485 			pol = mpol_dup(vma_policy(vma));
2486 			if (IS_ERR(pol))
2487 				goto out_free_vma;
2488 			INIT_LIST_HEAD(&new_vma->anon_vma_chain);
2489 			if (anon_vma_clone(new_vma, vma))
2490 				goto out_free_mempol;
2491 			vma_set_policy(new_vma, pol);
2492 			new_vma->vm_start = addr;
2493 			new_vma->vm_end = addr + len;
2494 			new_vma->vm_pgoff = pgoff;
2495 			if (new_vma->vm_file) {
2496 				get_file(new_vma->vm_file);
2497 				if (vma->vm_flags & VM_EXECUTABLE)
2498 					added_exe_file_vma(mm);
2499 			}
2500 			if (new_vma->vm_ops && new_vma->vm_ops->open)
2501 				new_vma->vm_ops->open(new_vma);
2502 			vma_link(mm, new_vma, prev, rb_link, rb_parent);
2503 		}
2504 	}
2505 	return new_vma;
2506 
2507  out_free_mempol:
2508 	mpol_put(pol);
2509  out_free_vma:
2510 	kmem_cache_free(vm_area_cachep, new_vma);
2511 	return NULL;
2512 }
2513 
2514 /*
2515  * Return true if the calling process may expand its vm space by the passed
2516  * number of pages
2517  */
may_expand_vm(struct mm_struct * mm,unsigned long npages)2518 int may_expand_vm(struct mm_struct *mm, unsigned long npages)
2519 {
2520 	unsigned long cur = mm->total_vm;	/* pages */
2521 	unsigned long lim;
2522 
2523 	lim = rlimit(RLIMIT_AS) >> PAGE_SHIFT;
2524 
2525 	if (cur + npages > lim)
2526 		return 0;
2527 	return 1;
2528 }
2529 
2530 
special_mapping_fault(struct vm_area_struct * vma,struct vm_fault * vmf)2531 static int special_mapping_fault(struct vm_area_struct *vma,
2532 				struct vm_fault *vmf)
2533 {
2534 	pgoff_t pgoff;
2535 	struct page **pages;
2536 
2537 	/*
2538 	 * special mappings have no vm_file, and in that case, the mm
2539 	 * uses vm_pgoff internally. So we have to subtract it from here.
2540 	 * We are allowed to do this because we are the mm; do not copy
2541 	 * this code into drivers!
2542 	 */
2543 	pgoff = vmf->pgoff - vma->vm_pgoff;
2544 
2545 	for (pages = vma->vm_private_data; pgoff && *pages; ++pages)
2546 		pgoff--;
2547 
2548 	if (*pages) {
2549 		struct page *page = *pages;
2550 		get_page(page);
2551 		vmf->page = page;
2552 		return 0;
2553 	}
2554 
2555 	return VM_FAULT_SIGBUS;
2556 }
2557 
2558 /*
2559  * Having a close hook prevents vma merging regardless of flags.
2560  */
special_mapping_close(struct vm_area_struct * vma)2561 static void special_mapping_close(struct vm_area_struct *vma)
2562 {
2563 }
2564 
2565 static const struct vm_operations_struct special_mapping_vmops = {
2566 	.close = special_mapping_close,
2567 	.fault = special_mapping_fault,
2568 };
2569 
2570 /*
2571  * Called with mm->mmap_sem held for writing.
2572  * Insert a new vma covering the given region, with the given flags.
2573  * Its pages are supplied by the given array of struct page *.
2574  * The array can be shorter than len >> PAGE_SHIFT if it's null-terminated.
2575  * The region past the last page supplied will always produce SIGBUS.
2576  * The array pointer and the pages it points to are assumed to stay alive
2577  * for as long as this mapping might exist.
2578  */
install_special_mapping(struct mm_struct * mm,unsigned long addr,unsigned long len,unsigned long vm_flags,struct page ** pages)2579 int install_special_mapping(struct mm_struct *mm,
2580 			    unsigned long addr, unsigned long len,
2581 			    unsigned long vm_flags, struct page **pages)
2582 {
2583 	int ret;
2584 	struct vm_area_struct *vma;
2585 
2586 	vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
2587 	if (unlikely(vma == NULL))
2588 		return -ENOMEM;
2589 
2590 	INIT_LIST_HEAD(&vma->anon_vma_chain);
2591 	vma->vm_mm = mm;
2592 	vma->vm_start = addr;
2593 	vma->vm_end = addr + len;
2594 
2595 	vma->vm_flags = vm_flags | mm->def_flags | VM_DONTEXPAND;
2596 	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2597 
2598 	vma->vm_ops = &special_mapping_vmops;
2599 	vma->vm_private_data = pages;
2600 
2601 	ret = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
2602 	if (ret)
2603 		goto out;
2604 
2605 	ret = insert_vm_struct(mm, vma);
2606 	if (ret)
2607 		goto out;
2608 
2609 	mm->total_vm += len >> PAGE_SHIFT;
2610 
2611 	perf_event_mmap(vma);
2612 
2613 	return 0;
2614 
2615 out:
2616 	kmem_cache_free(vm_area_cachep, vma);
2617 	return ret;
2618 }
2619 
2620 static DEFINE_MUTEX(mm_all_locks_mutex);
2621 
vm_lock_anon_vma(struct mm_struct * mm,struct anon_vma * anon_vma)2622 static void vm_lock_anon_vma(struct mm_struct *mm, struct anon_vma *anon_vma)
2623 {
2624 	if (!test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2625 		/*
2626 		 * The LSB of head.next can't change from under us
2627 		 * because we hold the mm_all_locks_mutex.
2628 		 */
2629 		mutex_lock_nest_lock(&anon_vma->root->mutex, &mm->mmap_sem);
2630 		/*
2631 		 * We can safely modify head.next after taking the
2632 		 * anon_vma->root->mutex. If some other vma in this mm shares
2633 		 * the same anon_vma we won't take it again.
2634 		 *
2635 		 * No need of atomic instructions here, head.next
2636 		 * can't change from under us thanks to the
2637 		 * anon_vma->root->mutex.
2638 		 */
2639 		if (__test_and_set_bit(0, (unsigned long *)
2640 				       &anon_vma->root->head.next))
2641 			BUG();
2642 	}
2643 }
2644 
vm_lock_mapping(struct mm_struct * mm,struct address_space * mapping)2645 static void vm_lock_mapping(struct mm_struct *mm, struct address_space *mapping)
2646 {
2647 	if (!test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2648 		/*
2649 		 * AS_MM_ALL_LOCKS can't change from under us because
2650 		 * we hold the mm_all_locks_mutex.
2651 		 *
2652 		 * Operations on ->flags have to be atomic because
2653 		 * even if AS_MM_ALL_LOCKS is stable thanks to the
2654 		 * mm_all_locks_mutex, there may be other cpus
2655 		 * changing other bitflags in parallel to us.
2656 		 */
2657 		if (test_and_set_bit(AS_MM_ALL_LOCKS, &mapping->flags))
2658 			BUG();
2659 		mutex_lock_nest_lock(&mapping->i_mmap_mutex, &mm->mmap_sem);
2660 	}
2661 }
2662 
2663 /*
2664  * This operation locks against the VM for all pte/vma/mm related
2665  * operations that could ever happen on a certain mm. This includes
2666  * vmtruncate, try_to_unmap, and all page faults.
2667  *
2668  * The caller must take the mmap_sem in write mode before calling
2669  * mm_take_all_locks(). The caller isn't allowed to release the
2670  * mmap_sem until mm_drop_all_locks() returns.
2671  *
2672  * mmap_sem in write mode is required in order to block all operations
2673  * that could modify pagetables and free pages without need of
2674  * altering the vma layout (for example populate_range() with
2675  * nonlinear vmas). It's also needed in write mode to avoid new
2676  * anon_vmas to be associated with existing vmas.
2677  *
2678  * A single task can't take more than one mm_take_all_locks() in a row
2679  * or it would deadlock.
2680  *
2681  * The LSB in anon_vma->head.next and the AS_MM_ALL_LOCKS bitflag in
2682  * mapping->flags avoid to take the same lock twice, if more than one
2683  * vma in this mm is backed by the same anon_vma or address_space.
2684  *
2685  * We can take all the locks in random order because the VM code
2686  * taking i_mmap_mutex or anon_vma->mutex outside the mmap_sem never
2687  * takes more than one of them in a row. Secondly we're protected
2688  * against a concurrent mm_take_all_locks() by the mm_all_locks_mutex.
2689  *
2690  * mm_take_all_locks() and mm_drop_all_locks are expensive operations
2691  * that may have to take thousand of locks.
2692  *
2693  * mm_take_all_locks() can fail if it's interrupted by signals.
2694  */
mm_take_all_locks(struct mm_struct * mm)2695 int mm_take_all_locks(struct mm_struct *mm)
2696 {
2697 	struct vm_area_struct *vma;
2698 	struct anon_vma_chain *avc;
2699 
2700 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2701 
2702 	mutex_lock(&mm_all_locks_mutex);
2703 
2704 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2705 		if (signal_pending(current))
2706 			goto out_unlock;
2707 		if (vma->vm_file && vma->vm_file->f_mapping)
2708 			vm_lock_mapping(mm, vma->vm_file->f_mapping);
2709 	}
2710 
2711 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2712 		if (signal_pending(current))
2713 			goto out_unlock;
2714 		if (vma->anon_vma)
2715 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2716 				vm_lock_anon_vma(mm, avc->anon_vma);
2717 	}
2718 
2719 	return 0;
2720 
2721 out_unlock:
2722 	mm_drop_all_locks(mm);
2723 	return -EINTR;
2724 }
2725 
vm_unlock_anon_vma(struct anon_vma * anon_vma)2726 static void vm_unlock_anon_vma(struct anon_vma *anon_vma)
2727 {
2728 	if (test_bit(0, (unsigned long *) &anon_vma->root->head.next)) {
2729 		/*
2730 		 * The LSB of head.next can't change to 0 from under
2731 		 * us because we hold the mm_all_locks_mutex.
2732 		 *
2733 		 * We must however clear the bitflag before unlocking
2734 		 * the vma so the users using the anon_vma->head will
2735 		 * never see our bitflag.
2736 		 *
2737 		 * No need of atomic instructions here, head.next
2738 		 * can't change from under us until we release the
2739 		 * anon_vma->root->mutex.
2740 		 */
2741 		if (!__test_and_clear_bit(0, (unsigned long *)
2742 					  &anon_vma->root->head.next))
2743 			BUG();
2744 		anon_vma_unlock(anon_vma);
2745 	}
2746 }
2747 
vm_unlock_mapping(struct address_space * mapping)2748 static void vm_unlock_mapping(struct address_space *mapping)
2749 {
2750 	if (test_bit(AS_MM_ALL_LOCKS, &mapping->flags)) {
2751 		/*
2752 		 * AS_MM_ALL_LOCKS can't change to 0 from under us
2753 		 * because we hold the mm_all_locks_mutex.
2754 		 */
2755 		mutex_unlock(&mapping->i_mmap_mutex);
2756 		if (!test_and_clear_bit(AS_MM_ALL_LOCKS,
2757 					&mapping->flags))
2758 			BUG();
2759 	}
2760 }
2761 
2762 /*
2763  * The mmap_sem cannot be released by the caller until
2764  * mm_drop_all_locks() returns.
2765  */
mm_drop_all_locks(struct mm_struct * mm)2766 void mm_drop_all_locks(struct mm_struct *mm)
2767 {
2768 	struct vm_area_struct *vma;
2769 	struct anon_vma_chain *avc;
2770 
2771 	BUG_ON(down_read_trylock(&mm->mmap_sem));
2772 	BUG_ON(!mutex_is_locked(&mm_all_locks_mutex));
2773 
2774 	for (vma = mm->mmap; vma; vma = vma->vm_next) {
2775 		if (vma->anon_vma)
2776 			list_for_each_entry(avc, &vma->anon_vma_chain, same_vma)
2777 				vm_unlock_anon_vma(avc->anon_vma);
2778 		if (vma->vm_file && vma->vm_file->f_mapping)
2779 			vm_unlock_mapping(vma->vm_file->f_mapping);
2780 	}
2781 
2782 	mutex_unlock(&mm_all_locks_mutex);
2783 }
2784 
2785 /*
2786  * initialise the VMA slab
2787  */
mmap_init(void)2788 void __init mmap_init(void)
2789 {
2790 	int ret;
2791 
2792 	ret = percpu_counter_init(&vm_committed_as, 0);
2793 	VM_BUG_ON(ret);
2794 }
2795