1 /*
2 * Copyright (c) 2013-2015, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2020, Intel Corporation. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34
35 #include <linux/kref.h>
36 #include <linux/random.h>
37 #include <linux/debugfs.h>
38 #include <linux/export.h>
39 #include <linux/delay.h>
40 #include <linux/dma-buf.h>
41 #include <linux/dma-resv.h>
42 #include <rdma/ib_umem_odp.h>
43 #include "dm.h"
44 #include "mlx5_ib.h"
45 #include "umr.h"
46
47 enum {
48 MAX_PENDING_REG_MR = 8,
49 };
50
51 #define MLX5_UMR_ALIGN 2048
52
53 static void
54 create_mkey_callback(int status, struct mlx5_async_work *context);
55 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
56 u64 iova, int access_flags,
57 unsigned int page_size, bool populate);
58
set_mkc_access_pd_addr_fields(void * mkc,int acc,u64 start_addr,struct ib_pd * pd)59 static void set_mkc_access_pd_addr_fields(void *mkc, int acc, u64 start_addr,
60 struct ib_pd *pd)
61 {
62 struct mlx5_ib_dev *dev = to_mdev(pd->device);
63
64 MLX5_SET(mkc, mkc, a, !!(acc & IB_ACCESS_REMOTE_ATOMIC));
65 MLX5_SET(mkc, mkc, rw, !!(acc & IB_ACCESS_REMOTE_WRITE));
66 MLX5_SET(mkc, mkc, rr, !!(acc & IB_ACCESS_REMOTE_READ));
67 MLX5_SET(mkc, mkc, lw, !!(acc & IB_ACCESS_LOCAL_WRITE));
68 MLX5_SET(mkc, mkc, lr, 1);
69
70 if ((acc & IB_ACCESS_RELAXED_ORDERING) &&
71 pcie_relaxed_ordering_enabled(dev->mdev->pdev)) {
72 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_write))
73 MLX5_SET(mkc, mkc, relaxed_ordering_write, 1);
74 if (MLX5_CAP_GEN(dev->mdev, relaxed_ordering_read))
75 MLX5_SET(mkc, mkc, relaxed_ordering_read, 1);
76 }
77
78 MLX5_SET(mkc, mkc, pd, to_mpd(pd)->pdn);
79 MLX5_SET(mkc, mkc, qpn, 0xffffff);
80 MLX5_SET64(mkc, mkc, start_addr, start_addr);
81 }
82
assign_mkey_variant(struct mlx5_ib_dev * dev,u32 * mkey,u32 * in)83 static void assign_mkey_variant(struct mlx5_ib_dev *dev, u32 *mkey, u32 *in)
84 {
85 u8 key = atomic_inc_return(&dev->mkey_var);
86 void *mkc;
87
88 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
89 MLX5_SET(mkc, mkc, mkey_7_0, key);
90 *mkey = key;
91 }
92
mlx5_ib_create_mkey(struct mlx5_ib_dev * dev,struct mlx5_ib_mkey * mkey,u32 * in,int inlen)93 static int mlx5_ib_create_mkey(struct mlx5_ib_dev *dev,
94 struct mlx5_ib_mkey *mkey, u32 *in, int inlen)
95 {
96 int ret;
97
98 assign_mkey_variant(dev, &mkey->key, in);
99 ret = mlx5_core_create_mkey(dev->mdev, &mkey->key, in, inlen);
100 if (!ret)
101 init_waitqueue_head(&mkey->wait);
102
103 return ret;
104 }
105
mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey * async_create)106 static int mlx5_ib_create_mkey_cb(struct mlx5r_async_create_mkey *async_create)
107 {
108 struct mlx5_ib_dev *dev = async_create->ent->dev;
109 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
110 size_t outlen = MLX5_ST_SZ_BYTES(create_mkey_out);
111
112 MLX5_SET(create_mkey_in, async_create->in, opcode,
113 MLX5_CMD_OP_CREATE_MKEY);
114 assign_mkey_variant(dev, &async_create->mkey, async_create->in);
115 return mlx5_cmd_exec_cb(&dev->async_ctx, async_create->in, inlen,
116 async_create->out, outlen, create_mkey_callback,
117 &async_create->cb_work);
118 }
119
120 static int mkey_cache_max_order(struct mlx5_ib_dev *dev);
121 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent);
122
destroy_mkey(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr)123 static int destroy_mkey(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr)
124 {
125 WARN_ON(xa_load(&dev->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)));
126
127 return mlx5_core_destroy_mkey(dev->mdev, mr->mmkey.key);
128 }
129
create_mkey_warn(struct mlx5_ib_dev * dev,int status,void * out)130 static void create_mkey_warn(struct mlx5_ib_dev *dev, int status, void *out)
131 {
132 if (status == -ENXIO) /* core driver is not available */
133 return;
134
135 mlx5_ib_warn(dev, "async reg mr failed. status %d\n", status);
136 if (status != -EREMOTEIO) /* driver specific failure */
137 return;
138
139 /* Failed in FW, print cmd out failure details */
140 mlx5_cmd_out_err(dev->mdev, MLX5_CMD_OP_CREATE_MKEY, 0, out);
141 }
142
143
push_mkey(struct mlx5_cache_ent * ent,bool limit_pendings,void * to_store)144 static int push_mkey(struct mlx5_cache_ent *ent, bool limit_pendings,
145 void *to_store)
146 {
147 XA_STATE(xas, &ent->mkeys, 0);
148 void *curr;
149
150 xa_lock_irq(&ent->mkeys);
151 if (limit_pendings &&
152 (ent->reserved - ent->stored) > MAX_PENDING_REG_MR) {
153 xa_unlock_irq(&ent->mkeys);
154 return -EAGAIN;
155 }
156 while (1) {
157 /*
158 * This is cmpxchg (NULL, XA_ZERO_ENTRY) however this version
159 * doesn't transparently unlock. Instead we set the xas index to
160 * the current value of reserved every iteration.
161 */
162 xas_set(&xas, ent->reserved);
163 curr = xas_load(&xas);
164 if (!curr) {
165 if (to_store && ent->stored == ent->reserved)
166 xas_store(&xas, to_store);
167 else
168 xas_store(&xas, XA_ZERO_ENTRY);
169 if (xas_valid(&xas)) {
170 ent->reserved++;
171 if (to_store) {
172 if (ent->stored != ent->reserved)
173 __xa_store(&ent->mkeys,
174 ent->stored,
175 to_store,
176 GFP_KERNEL);
177 ent->stored++;
178 queue_adjust_cache_locked(ent);
179 WRITE_ONCE(ent->dev->cache.last_add,
180 jiffies);
181 }
182 }
183 }
184 xa_unlock_irq(&ent->mkeys);
185
186 /*
187 * Notice xas_nomem() must always be called as it cleans
188 * up any cached allocation.
189 */
190 if (!xas_nomem(&xas, GFP_KERNEL))
191 break;
192 xa_lock_irq(&ent->mkeys);
193 }
194 if (xas_error(&xas))
195 return xas_error(&xas);
196 if (WARN_ON(curr))
197 return -EINVAL;
198 return 0;
199 }
200
undo_push_reserve_mkey(struct mlx5_cache_ent * ent)201 static void undo_push_reserve_mkey(struct mlx5_cache_ent *ent)
202 {
203 void *old;
204
205 ent->reserved--;
206 old = __xa_erase(&ent->mkeys, ent->reserved);
207 WARN_ON(old);
208 }
209
push_to_reserved(struct mlx5_cache_ent * ent,u32 mkey)210 static void push_to_reserved(struct mlx5_cache_ent *ent, u32 mkey)
211 {
212 void *old;
213
214 old = __xa_store(&ent->mkeys, ent->stored, xa_mk_value(mkey), 0);
215 WARN_ON(old);
216 ent->stored++;
217 }
218
pop_stored_mkey(struct mlx5_cache_ent * ent)219 static u32 pop_stored_mkey(struct mlx5_cache_ent *ent)
220 {
221 void *old, *xa_mkey;
222
223 ent->stored--;
224 ent->reserved--;
225
226 if (ent->stored == ent->reserved) {
227 xa_mkey = __xa_erase(&ent->mkeys, ent->stored);
228 WARN_ON(!xa_mkey);
229 return (u32)xa_to_value(xa_mkey);
230 }
231
232 xa_mkey = __xa_store(&ent->mkeys, ent->stored, XA_ZERO_ENTRY,
233 GFP_KERNEL);
234 WARN_ON(!xa_mkey || xa_is_err(xa_mkey));
235 old = __xa_erase(&ent->mkeys, ent->reserved);
236 WARN_ON(old);
237 return (u32)xa_to_value(xa_mkey);
238 }
239
create_mkey_callback(int status,struct mlx5_async_work * context)240 static void create_mkey_callback(int status, struct mlx5_async_work *context)
241 {
242 struct mlx5r_async_create_mkey *mkey_out =
243 container_of(context, struct mlx5r_async_create_mkey, cb_work);
244 struct mlx5_cache_ent *ent = mkey_out->ent;
245 struct mlx5_ib_dev *dev = ent->dev;
246 unsigned long flags;
247
248 if (status) {
249 create_mkey_warn(dev, status, mkey_out->out);
250 kfree(mkey_out);
251 xa_lock_irqsave(&ent->mkeys, flags);
252 undo_push_reserve_mkey(ent);
253 WRITE_ONCE(dev->fill_delay, 1);
254 xa_unlock_irqrestore(&ent->mkeys, flags);
255 mod_timer(&dev->delay_timer, jiffies + HZ);
256 return;
257 }
258
259 mkey_out->mkey |= mlx5_idx_to_mkey(
260 MLX5_GET(create_mkey_out, mkey_out->out, mkey_index));
261 WRITE_ONCE(dev->cache.last_add, jiffies);
262
263 xa_lock_irqsave(&ent->mkeys, flags);
264 push_to_reserved(ent, mkey_out->mkey);
265 /* If we are doing fill_to_high_water then keep going. */
266 queue_adjust_cache_locked(ent);
267 xa_unlock_irqrestore(&ent->mkeys, flags);
268 kfree(mkey_out);
269 }
270
get_mkc_octo_size(unsigned int access_mode,unsigned int ndescs)271 static int get_mkc_octo_size(unsigned int access_mode, unsigned int ndescs)
272 {
273 int ret = 0;
274
275 switch (access_mode) {
276 case MLX5_MKC_ACCESS_MODE_MTT:
277 ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
278 sizeof(struct mlx5_mtt));
279 break;
280 case MLX5_MKC_ACCESS_MODE_KSM:
281 ret = DIV_ROUND_UP(ndescs, MLX5_IB_UMR_OCTOWORD /
282 sizeof(struct mlx5_klm));
283 break;
284 default:
285 WARN_ON(1);
286 }
287 return ret;
288 }
289
set_cache_mkc(struct mlx5_cache_ent * ent,void * mkc)290 static void set_cache_mkc(struct mlx5_cache_ent *ent, void *mkc)
291 {
292 set_mkc_access_pd_addr_fields(mkc, 0, 0, ent->dev->umrc.pd);
293 MLX5_SET(mkc, mkc, free, 1);
294 MLX5_SET(mkc, mkc, umr_en, 1);
295 MLX5_SET(mkc, mkc, access_mode_1_0, ent->access_mode & 0x3);
296 MLX5_SET(mkc, mkc, access_mode_4_2, (ent->access_mode >> 2) & 0x7);
297
298 MLX5_SET(mkc, mkc, translations_octword_size,
299 get_mkc_octo_size(ent->access_mode, ent->ndescs));
300 MLX5_SET(mkc, mkc, log_page_size, ent->page);
301 }
302
303 /* Asynchronously schedule new MRs to be populated in the cache. */
add_keys(struct mlx5_cache_ent * ent,unsigned int num)304 static int add_keys(struct mlx5_cache_ent *ent, unsigned int num)
305 {
306 struct mlx5r_async_create_mkey *async_create;
307 void *mkc;
308 int err = 0;
309 int i;
310
311 for (i = 0; i < num; i++) {
312 async_create = kzalloc(sizeof(struct mlx5r_async_create_mkey),
313 GFP_KERNEL);
314 if (!async_create)
315 return -ENOMEM;
316 mkc = MLX5_ADDR_OF(create_mkey_in, async_create->in,
317 memory_key_mkey_entry);
318 set_cache_mkc(ent, mkc);
319 async_create->ent = ent;
320
321 err = push_mkey(ent, true, NULL);
322 if (err)
323 goto free_async_create;
324
325 err = mlx5_ib_create_mkey_cb(async_create);
326 if (err) {
327 mlx5_ib_warn(ent->dev, "create mkey failed %d\n", err);
328 goto err_undo_reserve;
329 }
330 }
331
332 return 0;
333
334 err_undo_reserve:
335 xa_lock_irq(&ent->mkeys);
336 undo_push_reserve_mkey(ent);
337 xa_unlock_irq(&ent->mkeys);
338 free_async_create:
339 kfree(async_create);
340 return err;
341 }
342
343 /* Synchronously create a MR in the cache */
create_cache_mkey(struct mlx5_cache_ent * ent,u32 * mkey)344 static int create_cache_mkey(struct mlx5_cache_ent *ent, u32 *mkey)
345 {
346 size_t inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
347 void *mkc;
348 u32 *in;
349 int err;
350
351 in = kzalloc(inlen, GFP_KERNEL);
352 if (!in)
353 return -ENOMEM;
354 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
355 set_cache_mkc(ent, mkc);
356
357 err = mlx5_core_create_mkey(ent->dev->mdev, mkey, in, inlen);
358 if (err)
359 goto free_in;
360
361 WRITE_ONCE(ent->dev->cache.last_add, jiffies);
362 free_in:
363 kfree(in);
364 return err;
365 }
366
remove_cache_mr_locked(struct mlx5_cache_ent * ent)367 static void remove_cache_mr_locked(struct mlx5_cache_ent *ent)
368 {
369 u32 mkey;
370
371 lockdep_assert_held(&ent->mkeys.xa_lock);
372 if (!ent->stored)
373 return;
374 mkey = pop_stored_mkey(ent);
375 xa_unlock_irq(&ent->mkeys);
376 mlx5_core_destroy_mkey(ent->dev->mdev, mkey);
377 xa_lock_irq(&ent->mkeys);
378 }
379
resize_available_mrs(struct mlx5_cache_ent * ent,unsigned int target,bool limit_fill)380 static int resize_available_mrs(struct mlx5_cache_ent *ent, unsigned int target,
381 bool limit_fill)
382 __acquires(&ent->mkeys) __releases(&ent->mkeys)
383 {
384 int err;
385
386 lockdep_assert_held(&ent->mkeys.xa_lock);
387
388 while (true) {
389 if (limit_fill)
390 target = ent->limit * 2;
391 if (target == ent->reserved)
392 return 0;
393 if (target > ent->reserved) {
394 u32 todo = target - ent->reserved;
395
396 xa_unlock_irq(&ent->mkeys);
397 err = add_keys(ent, todo);
398 if (err == -EAGAIN)
399 usleep_range(3000, 5000);
400 xa_lock_irq(&ent->mkeys);
401 if (err) {
402 if (err != -EAGAIN)
403 return err;
404 } else
405 return 0;
406 } else {
407 remove_cache_mr_locked(ent);
408 }
409 }
410 }
411
size_write(struct file * filp,const char __user * buf,size_t count,loff_t * pos)412 static ssize_t size_write(struct file *filp, const char __user *buf,
413 size_t count, loff_t *pos)
414 {
415 struct mlx5_cache_ent *ent = filp->private_data;
416 u32 target;
417 int err;
418
419 err = kstrtou32_from_user(buf, count, 0, &target);
420 if (err)
421 return err;
422
423 /*
424 * Target is the new value of total_mrs the user requests, however we
425 * cannot free MRs that are in use. Compute the target value for stored
426 * mkeys.
427 */
428 xa_lock_irq(&ent->mkeys);
429 if (target < ent->in_use) {
430 err = -EINVAL;
431 goto err_unlock;
432 }
433 target = target - ent->in_use;
434 if (target < ent->limit || target > ent->limit*2) {
435 err = -EINVAL;
436 goto err_unlock;
437 }
438 err = resize_available_mrs(ent, target, false);
439 if (err)
440 goto err_unlock;
441 xa_unlock_irq(&ent->mkeys);
442
443 return count;
444
445 err_unlock:
446 xa_unlock_irq(&ent->mkeys);
447 return err;
448 }
449
size_read(struct file * filp,char __user * buf,size_t count,loff_t * pos)450 static ssize_t size_read(struct file *filp, char __user *buf, size_t count,
451 loff_t *pos)
452 {
453 struct mlx5_cache_ent *ent = filp->private_data;
454 char lbuf[20];
455 int err;
456
457 err = snprintf(lbuf, sizeof(lbuf), "%ld\n", ent->stored + ent->in_use);
458 if (err < 0)
459 return err;
460
461 return simple_read_from_buffer(buf, count, pos, lbuf, err);
462 }
463
464 static const struct file_operations size_fops = {
465 .owner = THIS_MODULE,
466 .open = simple_open,
467 .write = size_write,
468 .read = size_read,
469 };
470
limit_write(struct file * filp,const char __user * buf,size_t count,loff_t * pos)471 static ssize_t limit_write(struct file *filp, const char __user *buf,
472 size_t count, loff_t *pos)
473 {
474 struct mlx5_cache_ent *ent = filp->private_data;
475 u32 var;
476 int err;
477
478 err = kstrtou32_from_user(buf, count, 0, &var);
479 if (err)
480 return err;
481
482 /*
483 * Upon set we immediately fill the cache to high water mark implied by
484 * the limit.
485 */
486 xa_lock_irq(&ent->mkeys);
487 ent->limit = var;
488 err = resize_available_mrs(ent, 0, true);
489 xa_unlock_irq(&ent->mkeys);
490 if (err)
491 return err;
492 return count;
493 }
494
limit_read(struct file * filp,char __user * buf,size_t count,loff_t * pos)495 static ssize_t limit_read(struct file *filp, char __user *buf, size_t count,
496 loff_t *pos)
497 {
498 struct mlx5_cache_ent *ent = filp->private_data;
499 char lbuf[20];
500 int err;
501
502 err = snprintf(lbuf, sizeof(lbuf), "%d\n", ent->limit);
503 if (err < 0)
504 return err;
505
506 return simple_read_from_buffer(buf, count, pos, lbuf, err);
507 }
508
509 static const struct file_operations limit_fops = {
510 .owner = THIS_MODULE,
511 .open = simple_open,
512 .write = limit_write,
513 .read = limit_read,
514 };
515
someone_adding(struct mlx5_mkey_cache * cache)516 static bool someone_adding(struct mlx5_mkey_cache *cache)
517 {
518 unsigned int i;
519
520 for (i = 0; i < MAX_MKEY_CACHE_ENTRIES; i++) {
521 struct mlx5_cache_ent *ent = &cache->ent[i];
522 bool ret;
523
524 xa_lock_irq(&ent->mkeys);
525 ret = ent->stored < ent->limit;
526 xa_unlock_irq(&ent->mkeys);
527 if (ret)
528 return true;
529 }
530 return false;
531 }
532
533 /*
534 * Check if the bucket is outside the high/low water mark and schedule an async
535 * update. The cache refill has hysteresis, once the low water mark is hit it is
536 * refilled up to the high mark.
537 */
queue_adjust_cache_locked(struct mlx5_cache_ent * ent)538 static void queue_adjust_cache_locked(struct mlx5_cache_ent *ent)
539 {
540 lockdep_assert_held(&ent->mkeys.xa_lock);
541
542 if (ent->disabled || READ_ONCE(ent->dev->fill_delay))
543 return;
544 if (ent->stored < ent->limit) {
545 ent->fill_to_high_water = true;
546 mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
547 } else if (ent->fill_to_high_water &&
548 ent->reserved < 2 * ent->limit) {
549 /*
550 * Once we start populating due to hitting a low water mark
551 * continue until we pass the high water mark.
552 */
553 mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
554 } else if (ent->stored == 2 * ent->limit) {
555 ent->fill_to_high_water = false;
556 } else if (ent->stored > 2 * ent->limit) {
557 /* Queue deletion of excess entries */
558 ent->fill_to_high_water = false;
559 if (ent->stored != ent->reserved)
560 queue_delayed_work(ent->dev->cache.wq, &ent->dwork,
561 msecs_to_jiffies(1000));
562 else
563 mod_delayed_work(ent->dev->cache.wq, &ent->dwork, 0);
564 }
565 }
566
__cache_work_func(struct mlx5_cache_ent * ent)567 static void __cache_work_func(struct mlx5_cache_ent *ent)
568 {
569 struct mlx5_ib_dev *dev = ent->dev;
570 struct mlx5_mkey_cache *cache = &dev->cache;
571 int err;
572
573 xa_lock_irq(&ent->mkeys);
574 if (ent->disabled)
575 goto out;
576
577 if (ent->fill_to_high_water && ent->reserved < 2 * ent->limit &&
578 !READ_ONCE(dev->fill_delay)) {
579 xa_unlock_irq(&ent->mkeys);
580 err = add_keys(ent, 1);
581 xa_lock_irq(&ent->mkeys);
582 if (ent->disabled)
583 goto out;
584 if (err) {
585 /*
586 * EAGAIN only happens if there are pending MRs, so we
587 * will be rescheduled when storing them. The only
588 * failure path here is ENOMEM.
589 */
590 if (err != -EAGAIN) {
591 mlx5_ib_warn(
592 dev,
593 "command failed order %d, err %d\n",
594 ent->order, err);
595 queue_delayed_work(cache->wq, &ent->dwork,
596 msecs_to_jiffies(1000));
597 }
598 }
599 } else if (ent->stored > 2 * ent->limit) {
600 bool need_delay;
601
602 /*
603 * The remove_cache_mr() logic is performed as garbage
604 * collection task. Such task is intended to be run when no
605 * other active processes are running.
606 *
607 * The need_resched() will return TRUE if there are user tasks
608 * to be activated in near future.
609 *
610 * In such case, we don't execute remove_cache_mr() and postpone
611 * the garbage collection work to try to run in next cycle, in
612 * order to free CPU resources to other tasks.
613 */
614 xa_unlock_irq(&ent->mkeys);
615 need_delay = need_resched() || someone_adding(cache) ||
616 !time_after(jiffies,
617 READ_ONCE(cache->last_add) + 300 * HZ);
618 xa_lock_irq(&ent->mkeys);
619 if (ent->disabled)
620 goto out;
621 if (need_delay) {
622 queue_delayed_work(cache->wq, &ent->dwork, 300 * HZ);
623 goto out;
624 }
625 remove_cache_mr_locked(ent);
626 queue_adjust_cache_locked(ent);
627 }
628 out:
629 xa_unlock_irq(&ent->mkeys);
630 }
631
delayed_cache_work_func(struct work_struct * work)632 static void delayed_cache_work_func(struct work_struct *work)
633 {
634 struct mlx5_cache_ent *ent;
635
636 ent = container_of(work, struct mlx5_cache_ent, dwork.work);
637 __cache_work_func(ent);
638 }
639
mlx5_mr_cache_alloc(struct mlx5_ib_dev * dev,struct mlx5_cache_ent * ent,int access_flags)640 struct mlx5_ib_mr *mlx5_mr_cache_alloc(struct mlx5_ib_dev *dev,
641 struct mlx5_cache_ent *ent,
642 int access_flags)
643 {
644 struct mlx5_ib_mr *mr;
645 int err;
646
647 if (!mlx5r_umr_can_reconfig(dev, 0, access_flags))
648 return ERR_PTR(-EOPNOTSUPP);
649
650 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
651 if (!mr)
652 return ERR_PTR(-ENOMEM);
653
654 xa_lock_irq(&ent->mkeys);
655 ent->in_use++;
656
657 if (!ent->stored) {
658 queue_adjust_cache_locked(ent);
659 ent->miss++;
660 xa_unlock_irq(&ent->mkeys);
661 err = create_cache_mkey(ent, &mr->mmkey.key);
662 if (err) {
663 xa_lock_irq(&ent->mkeys);
664 ent->in_use--;
665 xa_unlock_irq(&ent->mkeys);
666 kfree(mr);
667 return ERR_PTR(err);
668 }
669 } else {
670 mr->mmkey.key = pop_stored_mkey(ent);
671 queue_adjust_cache_locked(ent);
672 xa_unlock_irq(&ent->mkeys);
673 }
674 mr->mmkey.cache_ent = ent;
675 mr->mmkey.type = MLX5_MKEY_MR;
676 init_waitqueue_head(&mr->mmkey.wait);
677 return mr;
678 }
679
clean_keys(struct mlx5_ib_dev * dev,int c)680 static void clean_keys(struct mlx5_ib_dev *dev, int c)
681 {
682 struct mlx5_mkey_cache *cache = &dev->cache;
683 struct mlx5_cache_ent *ent = &cache->ent[c];
684 u32 mkey;
685
686 cancel_delayed_work(&ent->dwork);
687 xa_lock_irq(&ent->mkeys);
688 while (ent->stored) {
689 mkey = pop_stored_mkey(ent);
690 xa_unlock_irq(&ent->mkeys);
691 mlx5_core_destroy_mkey(dev->mdev, mkey);
692 xa_lock_irq(&ent->mkeys);
693 }
694 xa_unlock_irq(&ent->mkeys);
695 }
696
mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev * dev)697 static void mlx5_mkey_cache_debugfs_cleanup(struct mlx5_ib_dev *dev)
698 {
699 if (!mlx5_debugfs_root || dev->is_rep)
700 return;
701
702 debugfs_remove_recursive(dev->cache.root);
703 dev->cache.root = NULL;
704 }
705
mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev * dev)706 static void mlx5_mkey_cache_debugfs_init(struct mlx5_ib_dev *dev)
707 {
708 struct mlx5_mkey_cache *cache = &dev->cache;
709 struct mlx5_cache_ent *ent;
710 struct dentry *dir;
711 int i;
712
713 if (!mlx5_debugfs_root || dev->is_rep)
714 return;
715
716 cache->root = debugfs_create_dir("mr_cache", mlx5_debugfs_get_dev_root(dev->mdev));
717
718 for (i = 0; i < MAX_MKEY_CACHE_ENTRIES; i++) {
719 ent = &cache->ent[i];
720 sprintf(ent->name, "%d", ent->order);
721 dir = debugfs_create_dir(ent->name, cache->root);
722 debugfs_create_file("size", 0600, dir, ent, &size_fops);
723 debugfs_create_file("limit", 0600, dir, ent, &limit_fops);
724 debugfs_create_ulong("cur", 0400, dir, &ent->stored);
725 debugfs_create_u32("miss", 0600, dir, &ent->miss);
726 }
727 }
728
delay_time_func(struct timer_list * t)729 static void delay_time_func(struct timer_list *t)
730 {
731 struct mlx5_ib_dev *dev = from_timer(dev, t, delay_timer);
732
733 WRITE_ONCE(dev->fill_delay, 0);
734 }
735
mlx5_mkey_cache_init(struct mlx5_ib_dev * dev)736 int mlx5_mkey_cache_init(struct mlx5_ib_dev *dev)
737 {
738 struct mlx5_mkey_cache *cache = &dev->cache;
739 struct mlx5_cache_ent *ent;
740 int i;
741
742 mutex_init(&dev->slow_path_mutex);
743 cache->wq = alloc_ordered_workqueue("mkey_cache", WQ_MEM_RECLAIM);
744 if (!cache->wq) {
745 mlx5_ib_warn(dev, "failed to create work queue\n");
746 return -ENOMEM;
747 }
748
749 mlx5_cmd_init_async_ctx(dev->mdev, &dev->async_ctx);
750 timer_setup(&dev->delay_timer, delay_time_func, 0);
751 for (i = 0; i < MAX_MKEY_CACHE_ENTRIES; i++) {
752 ent = &cache->ent[i];
753 xa_init_flags(&ent->mkeys, XA_FLAGS_LOCK_IRQ);
754 ent->order = i + 2;
755 ent->dev = dev;
756 ent->limit = 0;
757
758 INIT_DELAYED_WORK(&ent->dwork, delayed_cache_work_func);
759
760 if (i > MKEY_CACHE_LAST_STD_ENTRY) {
761 mlx5_odp_init_mkey_cache_entry(ent);
762 continue;
763 }
764
765 if (ent->order > mkey_cache_max_order(dev))
766 continue;
767
768 ent->page = PAGE_SHIFT;
769 ent->ndescs = 1 << ent->order;
770 ent->access_mode = MLX5_MKC_ACCESS_MODE_MTT;
771 if ((dev->mdev->profile.mask & MLX5_PROF_MASK_MR_CACHE) &&
772 !dev->is_rep && mlx5_core_is_pf(dev->mdev) &&
773 mlx5r_umr_can_load_pas(dev, 0))
774 ent->limit = dev->mdev->profile.mr_cache[i].limit;
775 else
776 ent->limit = 0;
777 xa_lock_irq(&ent->mkeys);
778 queue_adjust_cache_locked(ent);
779 xa_unlock_irq(&ent->mkeys);
780 }
781
782 mlx5_mkey_cache_debugfs_init(dev);
783
784 return 0;
785 }
786
mlx5_mkey_cache_cleanup(struct mlx5_ib_dev * dev)787 int mlx5_mkey_cache_cleanup(struct mlx5_ib_dev *dev)
788 {
789 unsigned int i;
790
791 if (!dev->cache.wq)
792 return 0;
793
794 for (i = 0; i < MAX_MKEY_CACHE_ENTRIES; i++) {
795 struct mlx5_cache_ent *ent = &dev->cache.ent[i];
796
797 xa_lock_irq(&ent->mkeys);
798 ent->disabled = true;
799 xa_unlock_irq(&ent->mkeys);
800 cancel_delayed_work_sync(&ent->dwork);
801 }
802
803 mlx5_mkey_cache_debugfs_cleanup(dev);
804 mlx5_cmd_cleanup_async_ctx(&dev->async_ctx);
805
806 for (i = 0; i < MAX_MKEY_CACHE_ENTRIES; i++)
807 clean_keys(dev, i);
808
809 destroy_workqueue(dev->cache.wq);
810 del_timer_sync(&dev->delay_timer);
811
812 return 0;
813 }
814
mlx5_ib_get_dma_mr(struct ib_pd * pd,int acc)815 struct ib_mr *mlx5_ib_get_dma_mr(struct ib_pd *pd, int acc)
816 {
817 struct mlx5_ib_dev *dev = to_mdev(pd->device);
818 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
819 struct mlx5_ib_mr *mr;
820 void *mkc;
821 u32 *in;
822 int err;
823
824 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
825 if (!mr)
826 return ERR_PTR(-ENOMEM);
827
828 in = kzalloc(inlen, GFP_KERNEL);
829 if (!in) {
830 err = -ENOMEM;
831 goto err_free;
832 }
833
834 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
835
836 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_PA);
837 MLX5_SET(mkc, mkc, length64, 1);
838 set_mkc_access_pd_addr_fields(mkc, acc | IB_ACCESS_RELAXED_ORDERING, 0,
839 pd);
840
841 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
842 if (err)
843 goto err_in;
844
845 kfree(in);
846 mr->mmkey.type = MLX5_MKEY_MR;
847 mr->ibmr.lkey = mr->mmkey.key;
848 mr->ibmr.rkey = mr->mmkey.key;
849 mr->umem = NULL;
850
851 return &mr->ibmr;
852
853 err_in:
854 kfree(in);
855
856 err_free:
857 kfree(mr);
858
859 return ERR_PTR(err);
860 }
861
get_octo_len(u64 addr,u64 len,int page_shift)862 static int get_octo_len(u64 addr, u64 len, int page_shift)
863 {
864 u64 page_size = 1ULL << page_shift;
865 u64 offset;
866 int npages;
867
868 offset = addr & (page_size - 1);
869 npages = ALIGN(len + offset, page_size) >> page_shift;
870 return (npages + 1) / 2;
871 }
872
mkey_cache_max_order(struct mlx5_ib_dev * dev)873 static int mkey_cache_max_order(struct mlx5_ib_dev *dev)
874 {
875 if (MLX5_CAP_GEN(dev->mdev, umr_extended_translation_offset))
876 return MKEY_CACHE_LAST_STD_ENTRY + 2;
877 return MLX5_MAX_UMR_SHIFT;
878 }
879
mkey_cache_ent_from_order(struct mlx5_ib_dev * dev,unsigned int order)880 static struct mlx5_cache_ent *mkey_cache_ent_from_order(struct mlx5_ib_dev *dev,
881 unsigned int order)
882 {
883 struct mlx5_mkey_cache *cache = &dev->cache;
884
885 if (order < cache->ent[0].order)
886 return &cache->ent[0];
887 order = order - cache->ent[0].order;
888 if (order > MKEY_CACHE_LAST_STD_ENTRY)
889 return NULL;
890 return &cache->ent[order];
891 }
892
set_mr_fields(struct mlx5_ib_dev * dev,struct mlx5_ib_mr * mr,u64 length,int access_flags,u64 iova)893 static void set_mr_fields(struct mlx5_ib_dev *dev, struct mlx5_ib_mr *mr,
894 u64 length, int access_flags, u64 iova)
895 {
896 mr->ibmr.lkey = mr->mmkey.key;
897 mr->ibmr.rkey = mr->mmkey.key;
898 mr->ibmr.length = length;
899 mr->ibmr.device = &dev->ib_dev;
900 mr->ibmr.iova = iova;
901 mr->access_flags = access_flags;
902 }
903
mlx5_umem_dmabuf_default_pgsz(struct ib_umem * umem,u64 iova)904 static unsigned int mlx5_umem_dmabuf_default_pgsz(struct ib_umem *umem,
905 u64 iova)
906 {
907 /*
908 * The alignment of iova has already been checked upon entering
909 * UVERBS_METHOD_REG_DMABUF_MR
910 */
911 umem->iova = iova;
912 return PAGE_SIZE;
913 }
914
alloc_cacheable_mr(struct ib_pd * pd,struct ib_umem * umem,u64 iova,int access_flags)915 static struct mlx5_ib_mr *alloc_cacheable_mr(struct ib_pd *pd,
916 struct ib_umem *umem, u64 iova,
917 int access_flags)
918 {
919 struct mlx5_ib_dev *dev = to_mdev(pd->device);
920 struct mlx5_cache_ent *ent;
921 struct mlx5_ib_mr *mr;
922 unsigned int page_size;
923
924 if (umem->is_dmabuf)
925 page_size = mlx5_umem_dmabuf_default_pgsz(umem, iova);
926 else
927 page_size = mlx5_umem_find_best_pgsz(umem, mkc, log_page_size,
928 0, iova);
929 if (WARN_ON(!page_size))
930 return ERR_PTR(-EINVAL);
931 ent = mkey_cache_ent_from_order(
932 dev, order_base_2(ib_umem_num_dma_blocks(umem, page_size)));
933 /*
934 * Matches access in alloc_cache_mr(). If the MR can't come from the
935 * cache then synchronously create an uncached one.
936 */
937 if (!ent || ent->limit == 0 ||
938 !mlx5r_umr_can_reconfig(dev, 0, access_flags) ||
939 mlx5_umem_needs_ats(dev, umem, access_flags)) {
940 mutex_lock(&dev->slow_path_mutex);
941 mr = reg_create(pd, umem, iova, access_flags, page_size, false);
942 mutex_unlock(&dev->slow_path_mutex);
943 return mr;
944 }
945
946 mr = mlx5_mr_cache_alloc(dev, ent, access_flags);
947 if (IS_ERR(mr))
948 return mr;
949
950 mr->ibmr.pd = pd;
951 mr->umem = umem;
952 mr->page_shift = order_base_2(page_size);
953 set_mr_fields(dev, mr, umem->length, access_flags, iova);
954
955 return mr;
956 }
957
958 /*
959 * If ibmr is NULL it will be allocated by reg_create.
960 * Else, the given ibmr will be used.
961 */
reg_create(struct ib_pd * pd,struct ib_umem * umem,u64 iova,int access_flags,unsigned int page_size,bool populate)962 static struct mlx5_ib_mr *reg_create(struct ib_pd *pd, struct ib_umem *umem,
963 u64 iova, int access_flags,
964 unsigned int page_size, bool populate)
965 {
966 struct mlx5_ib_dev *dev = to_mdev(pd->device);
967 struct mlx5_ib_mr *mr;
968 __be64 *pas;
969 void *mkc;
970 int inlen;
971 u32 *in;
972 int err;
973 bool pg_cap = !!(MLX5_CAP_GEN(dev->mdev, pg));
974
975 if (!page_size)
976 return ERR_PTR(-EINVAL);
977 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
978 if (!mr)
979 return ERR_PTR(-ENOMEM);
980
981 mr->ibmr.pd = pd;
982 mr->access_flags = access_flags;
983 mr->page_shift = order_base_2(page_size);
984
985 inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
986 if (populate)
987 inlen += sizeof(*pas) *
988 roundup(ib_umem_num_dma_blocks(umem, page_size), 2);
989 in = kvzalloc(inlen, GFP_KERNEL);
990 if (!in) {
991 err = -ENOMEM;
992 goto err_1;
993 }
994 pas = (__be64 *)MLX5_ADDR_OF(create_mkey_in, in, klm_pas_mtt);
995 if (populate) {
996 if (WARN_ON(access_flags & IB_ACCESS_ON_DEMAND)) {
997 err = -EINVAL;
998 goto err_2;
999 }
1000 mlx5_ib_populate_pas(umem, 1UL << mr->page_shift, pas,
1001 pg_cap ? MLX5_IB_MTT_PRESENT : 0);
1002 }
1003
1004 /* The pg_access bit allows setting the access flags
1005 * in the page list submitted with the command. */
1006 MLX5_SET(create_mkey_in, in, pg_access, !!(pg_cap));
1007
1008 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1009 set_mkc_access_pd_addr_fields(mkc, access_flags, iova,
1010 populate ? pd : dev->umrc.pd);
1011 MLX5_SET(mkc, mkc, free, !populate);
1012 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_MTT);
1013 MLX5_SET(mkc, mkc, umr_en, 1);
1014
1015 MLX5_SET64(mkc, mkc, len, umem->length);
1016 MLX5_SET(mkc, mkc, bsf_octword_size, 0);
1017 MLX5_SET(mkc, mkc, translations_octword_size,
1018 get_octo_len(iova, umem->length, mr->page_shift));
1019 MLX5_SET(mkc, mkc, log_page_size, mr->page_shift);
1020 if (mlx5_umem_needs_ats(dev, umem, access_flags))
1021 MLX5_SET(mkc, mkc, ma_translation_mode, 1);
1022 if (populate) {
1023 MLX5_SET(create_mkey_in, in, translations_octword_actual_size,
1024 get_octo_len(iova, umem->length, mr->page_shift));
1025 }
1026
1027 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1028 if (err) {
1029 mlx5_ib_warn(dev, "create mkey failed\n");
1030 goto err_2;
1031 }
1032 mr->mmkey.type = MLX5_MKEY_MR;
1033 mr->umem = umem;
1034 set_mr_fields(dev, mr, umem->length, access_flags, iova);
1035 kvfree(in);
1036
1037 mlx5_ib_dbg(dev, "mkey = 0x%x\n", mr->mmkey.key);
1038
1039 return mr;
1040
1041 err_2:
1042 kvfree(in);
1043 err_1:
1044 kfree(mr);
1045 return ERR_PTR(err);
1046 }
1047
mlx5_ib_get_dm_mr(struct ib_pd * pd,u64 start_addr,u64 length,int acc,int mode)1048 static struct ib_mr *mlx5_ib_get_dm_mr(struct ib_pd *pd, u64 start_addr,
1049 u64 length, int acc, int mode)
1050 {
1051 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1052 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1053 struct mlx5_ib_mr *mr;
1054 void *mkc;
1055 u32 *in;
1056 int err;
1057
1058 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1059 if (!mr)
1060 return ERR_PTR(-ENOMEM);
1061
1062 in = kzalloc(inlen, GFP_KERNEL);
1063 if (!in) {
1064 err = -ENOMEM;
1065 goto err_free;
1066 }
1067
1068 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1069
1070 MLX5_SET(mkc, mkc, access_mode_1_0, mode & 0x3);
1071 MLX5_SET(mkc, mkc, access_mode_4_2, (mode >> 2) & 0x7);
1072 MLX5_SET64(mkc, mkc, len, length);
1073 set_mkc_access_pd_addr_fields(mkc, acc, start_addr, pd);
1074
1075 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1076 if (err)
1077 goto err_in;
1078
1079 kfree(in);
1080
1081 set_mr_fields(dev, mr, length, acc, start_addr);
1082
1083 return &mr->ibmr;
1084
1085 err_in:
1086 kfree(in);
1087
1088 err_free:
1089 kfree(mr);
1090
1091 return ERR_PTR(err);
1092 }
1093
mlx5_ib_advise_mr(struct ib_pd * pd,enum ib_uverbs_advise_mr_advice advice,u32 flags,struct ib_sge * sg_list,u32 num_sge,struct uverbs_attr_bundle * attrs)1094 int mlx5_ib_advise_mr(struct ib_pd *pd,
1095 enum ib_uverbs_advise_mr_advice advice,
1096 u32 flags,
1097 struct ib_sge *sg_list,
1098 u32 num_sge,
1099 struct uverbs_attr_bundle *attrs)
1100 {
1101 if (advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH &&
1102 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_WRITE &&
1103 advice != IB_UVERBS_ADVISE_MR_ADVICE_PREFETCH_NO_FAULT)
1104 return -EOPNOTSUPP;
1105
1106 return mlx5_ib_advise_mr_prefetch(pd, advice, flags,
1107 sg_list, num_sge);
1108 }
1109
mlx5_ib_reg_dm_mr(struct ib_pd * pd,struct ib_dm * dm,struct ib_dm_mr_attr * attr,struct uverbs_attr_bundle * attrs)1110 struct ib_mr *mlx5_ib_reg_dm_mr(struct ib_pd *pd, struct ib_dm *dm,
1111 struct ib_dm_mr_attr *attr,
1112 struct uverbs_attr_bundle *attrs)
1113 {
1114 struct mlx5_ib_dm *mdm = to_mdm(dm);
1115 struct mlx5_core_dev *dev = to_mdev(dm->device)->mdev;
1116 u64 start_addr = mdm->dev_addr + attr->offset;
1117 int mode;
1118
1119 switch (mdm->type) {
1120 case MLX5_IB_UAPI_DM_TYPE_MEMIC:
1121 if (attr->access_flags & ~MLX5_IB_DM_MEMIC_ALLOWED_ACCESS)
1122 return ERR_PTR(-EINVAL);
1123
1124 mode = MLX5_MKC_ACCESS_MODE_MEMIC;
1125 start_addr -= pci_resource_start(dev->pdev, 0);
1126 break;
1127 case MLX5_IB_UAPI_DM_TYPE_STEERING_SW_ICM:
1128 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_SW_ICM:
1129 case MLX5_IB_UAPI_DM_TYPE_HEADER_MODIFY_PATTERN_SW_ICM:
1130 if (attr->access_flags & ~MLX5_IB_DM_SW_ICM_ALLOWED_ACCESS)
1131 return ERR_PTR(-EINVAL);
1132
1133 mode = MLX5_MKC_ACCESS_MODE_SW_ICM;
1134 break;
1135 default:
1136 return ERR_PTR(-EINVAL);
1137 }
1138
1139 return mlx5_ib_get_dm_mr(pd, start_addr, attr->length,
1140 attr->access_flags, mode);
1141 }
1142
create_real_mr(struct ib_pd * pd,struct ib_umem * umem,u64 iova,int access_flags)1143 static struct ib_mr *create_real_mr(struct ib_pd *pd, struct ib_umem *umem,
1144 u64 iova, int access_flags)
1145 {
1146 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1147 struct mlx5_ib_mr *mr = NULL;
1148 bool xlt_with_umr;
1149 int err;
1150
1151 xlt_with_umr = mlx5r_umr_can_load_pas(dev, umem->length);
1152 if (xlt_with_umr) {
1153 mr = alloc_cacheable_mr(pd, umem, iova, access_flags);
1154 } else {
1155 unsigned int page_size = mlx5_umem_find_best_pgsz(
1156 umem, mkc, log_page_size, 0, iova);
1157
1158 mutex_lock(&dev->slow_path_mutex);
1159 mr = reg_create(pd, umem, iova, access_flags, page_size, true);
1160 mutex_unlock(&dev->slow_path_mutex);
1161 }
1162 if (IS_ERR(mr)) {
1163 ib_umem_release(umem);
1164 return ERR_CAST(mr);
1165 }
1166
1167 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1168
1169 atomic_add(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1170
1171 if (xlt_with_umr) {
1172 /*
1173 * If the MR was created with reg_create then it will be
1174 * configured properly but left disabled. It is safe to go ahead
1175 * and configure it again via UMR while enabling it.
1176 */
1177 err = mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ENABLE);
1178 if (err) {
1179 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1180 return ERR_PTR(err);
1181 }
1182 }
1183 return &mr->ibmr;
1184 }
1185
create_user_odp_mr(struct ib_pd * pd,u64 start,u64 length,u64 iova,int access_flags,struct ib_udata * udata)1186 static struct ib_mr *create_user_odp_mr(struct ib_pd *pd, u64 start, u64 length,
1187 u64 iova, int access_flags,
1188 struct ib_udata *udata)
1189 {
1190 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1191 struct ib_umem_odp *odp;
1192 struct mlx5_ib_mr *mr;
1193 int err;
1194
1195 if (!IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1196 return ERR_PTR(-EOPNOTSUPP);
1197
1198 err = mlx5r_odp_create_eq(dev, &dev->odp_pf_eq);
1199 if (err)
1200 return ERR_PTR(err);
1201 if (!start && length == U64_MAX) {
1202 if (iova != 0)
1203 return ERR_PTR(-EINVAL);
1204 if (!(dev->odp_caps.general_caps & IB_ODP_SUPPORT_IMPLICIT))
1205 return ERR_PTR(-EINVAL);
1206
1207 mr = mlx5_ib_alloc_implicit_mr(to_mpd(pd), access_flags);
1208 if (IS_ERR(mr))
1209 return ERR_CAST(mr);
1210 return &mr->ibmr;
1211 }
1212
1213 /* ODP requires xlt update via umr to work. */
1214 if (!mlx5r_umr_can_load_pas(dev, length))
1215 return ERR_PTR(-EINVAL);
1216
1217 odp = ib_umem_odp_get(&dev->ib_dev, start, length, access_flags,
1218 &mlx5_mn_ops);
1219 if (IS_ERR(odp))
1220 return ERR_CAST(odp);
1221
1222 mr = alloc_cacheable_mr(pd, &odp->umem, iova, access_flags);
1223 if (IS_ERR(mr)) {
1224 ib_umem_release(&odp->umem);
1225 return ERR_CAST(mr);
1226 }
1227 xa_init(&mr->implicit_children);
1228
1229 odp->private = mr;
1230 err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1231 if (err)
1232 goto err_dereg_mr;
1233
1234 err = mlx5_ib_init_odp_mr(mr);
1235 if (err)
1236 goto err_dereg_mr;
1237 return &mr->ibmr;
1238
1239 err_dereg_mr:
1240 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1241 return ERR_PTR(err);
1242 }
1243
mlx5_ib_reg_user_mr(struct ib_pd * pd,u64 start,u64 length,u64 iova,int access_flags,struct ib_udata * udata)1244 struct ib_mr *mlx5_ib_reg_user_mr(struct ib_pd *pd, u64 start, u64 length,
1245 u64 iova, int access_flags,
1246 struct ib_udata *udata)
1247 {
1248 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1249 struct ib_umem *umem;
1250
1251 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1252 return ERR_PTR(-EOPNOTSUPP);
1253
1254 mlx5_ib_dbg(dev, "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1255 start, iova, length, access_flags);
1256
1257 if (access_flags & IB_ACCESS_ON_DEMAND)
1258 return create_user_odp_mr(pd, start, length, iova, access_flags,
1259 udata);
1260 umem = ib_umem_get(&dev->ib_dev, start, length, access_flags);
1261 if (IS_ERR(umem))
1262 return ERR_CAST(umem);
1263 return create_real_mr(pd, umem, iova, access_flags);
1264 }
1265
mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment * attach)1266 static void mlx5_ib_dmabuf_invalidate_cb(struct dma_buf_attachment *attach)
1267 {
1268 struct ib_umem_dmabuf *umem_dmabuf = attach->importer_priv;
1269 struct mlx5_ib_mr *mr = umem_dmabuf->private;
1270
1271 dma_resv_assert_held(umem_dmabuf->attach->dmabuf->resv);
1272
1273 if (!umem_dmabuf->sgt)
1274 return;
1275
1276 mlx5r_umr_update_mr_pas(mr, MLX5_IB_UPD_XLT_ZAP);
1277 ib_umem_dmabuf_unmap_pages(umem_dmabuf);
1278 }
1279
1280 static struct dma_buf_attach_ops mlx5_ib_dmabuf_attach_ops = {
1281 .allow_peer2peer = 1,
1282 .move_notify = mlx5_ib_dmabuf_invalidate_cb,
1283 };
1284
mlx5_ib_reg_user_mr_dmabuf(struct ib_pd * pd,u64 offset,u64 length,u64 virt_addr,int fd,int access_flags,struct ib_udata * udata)1285 struct ib_mr *mlx5_ib_reg_user_mr_dmabuf(struct ib_pd *pd, u64 offset,
1286 u64 length, u64 virt_addr,
1287 int fd, int access_flags,
1288 struct ib_udata *udata)
1289 {
1290 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1291 struct mlx5_ib_mr *mr = NULL;
1292 struct ib_umem_dmabuf *umem_dmabuf;
1293 int err;
1294
1295 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM) ||
1296 !IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING))
1297 return ERR_PTR(-EOPNOTSUPP);
1298
1299 mlx5_ib_dbg(dev,
1300 "offset 0x%llx, virt_addr 0x%llx, length 0x%llx, fd %d, access_flags 0x%x\n",
1301 offset, virt_addr, length, fd, access_flags);
1302
1303 /* dmabuf requires xlt update via umr to work. */
1304 if (!mlx5r_umr_can_load_pas(dev, length))
1305 return ERR_PTR(-EINVAL);
1306
1307 umem_dmabuf = ib_umem_dmabuf_get(&dev->ib_dev, offset, length, fd,
1308 access_flags,
1309 &mlx5_ib_dmabuf_attach_ops);
1310 if (IS_ERR(umem_dmabuf)) {
1311 mlx5_ib_dbg(dev, "umem_dmabuf get failed (%ld)\n",
1312 PTR_ERR(umem_dmabuf));
1313 return ERR_CAST(umem_dmabuf);
1314 }
1315
1316 mr = alloc_cacheable_mr(pd, &umem_dmabuf->umem, virt_addr,
1317 access_flags);
1318 if (IS_ERR(mr)) {
1319 ib_umem_release(&umem_dmabuf->umem);
1320 return ERR_CAST(mr);
1321 }
1322
1323 mlx5_ib_dbg(dev, "mkey 0x%x\n", mr->mmkey.key);
1324
1325 atomic_add(ib_umem_num_pages(mr->umem), &dev->mdev->priv.reg_pages);
1326 umem_dmabuf->private = mr;
1327 err = mlx5r_store_odp_mkey(dev, &mr->mmkey);
1328 if (err)
1329 goto err_dereg_mr;
1330
1331 err = mlx5_ib_init_dmabuf_mr(mr);
1332 if (err)
1333 goto err_dereg_mr;
1334 return &mr->ibmr;
1335
1336 err_dereg_mr:
1337 mlx5_ib_dereg_mr(&mr->ibmr, NULL);
1338 return ERR_PTR(err);
1339 }
1340
1341 /*
1342 * True if the change in access flags can be done via UMR, only some access
1343 * flags can be updated.
1344 */
can_use_umr_rereg_access(struct mlx5_ib_dev * dev,unsigned int current_access_flags,unsigned int target_access_flags)1345 static bool can_use_umr_rereg_access(struct mlx5_ib_dev *dev,
1346 unsigned int current_access_flags,
1347 unsigned int target_access_flags)
1348 {
1349 unsigned int diffs = current_access_flags ^ target_access_flags;
1350
1351 if (diffs & ~(IB_ACCESS_LOCAL_WRITE | IB_ACCESS_REMOTE_WRITE |
1352 IB_ACCESS_REMOTE_READ | IB_ACCESS_RELAXED_ORDERING))
1353 return false;
1354 return mlx5r_umr_can_reconfig(dev, current_access_flags,
1355 target_access_flags);
1356 }
1357
can_use_umr_rereg_pas(struct mlx5_ib_mr * mr,struct ib_umem * new_umem,int new_access_flags,u64 iova,unsigned long * page_size)1358 static bool can_use_umr_rereg_pas(struct mlx5_ib_mr *mr,
1359 struct ib_umem *new_umem,
1360 int new_access_flags, u64 iova,
1361 unsigned long *page_size)
1362 {
1363 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1364
1365 /* We only track the allocated sizes of MRs from the cache */
1366 if (!mr->mmkey.cache_ent)
1367 return false;
1368 if (!mlx5r_umr_can_load_pas(dev, new_umem->length))
1369 return false;
1370
1371 *page_size =
1372 mlx5_umem_find_best_pgsz(new_umem, mkc, log_page_size, 0, iova);
1373 if (WARN_ON(!*page_size))
1374 return false;
1375 return (1ULL << mr->mmkey.cache_ent->order) >=
1376 ib_umem_num_dma_blocks(new_umem, *page_size);
1377 }
1378
umr_rereg_pas(struct mlx5_ib_mr * mr,struct ib_pd * pd,int access_flags,int flags,struct ib_umem * new_umem,u64 iova,unsigned long page_size)1379 static int umr_rereg_pas(struct mlx5_ib_mr *mr, struct ib_pd *pd,
1380 int access_flags, int flags, struct ib_umem *new_umem,
1381 u64 iova, unsigned long page_size)
1382 {
1383 struct mlx5_ib_dev *dev = to_mdev(mr->ibmr.device);
1384 int upd_flags = MLX5_IB_UPD_XLT_ADDR | MLX5_IB_UPD_XLT_ENABLE;
1385 struct ib_umem *old_umem = mr->umem;
1386 int err;
1387
1388 /*
1389 * To keep everything simple the MR is revoked before we start to mess
1390 * with it. This ensure the change is atomic relative to any use of the
1391 * MR.
1392 */
1393 err = mlx5r_umr_revoke_mr(mr);
1394 if (err)
1395 return err;
1396
1397 if (flags & IB_MR_REREG_PD) {
1398 mr->ibmr.pd = pd;
1399 upd_flags |= MLX5_IB_UPD_XLT_PD;
1400 }
1401 if (flags & IB_MR_REREG_ACCESS) {
1402 mr->access_flags = access_flags;
1403 upd_flags |= MLX5_IB_UPD_XLT_ACCESS;
1404 }
1405
1406 mr->ibmr.iova = iova;
1407 mr->ibmr.length = new_umem->length;
1408 mr->page_shift = order_base_2(page_size);
1409 mr->umem = new_umem;
1410 err = mlx5r_umr_update_mr_pas(mr, upd_flags);
1411 if (err) {
1412 /*
1413 * The MR is revoked at this point so there is no issue to free
1414 * new_umem.
1415 */
1416 mr->umem = old_umem;
1417 return err;
1418 }
1419
1420 atomic_sub(ib_umem_num_pages(old_umem), &dev->mdev->priv.reg_pages);
1421 ib_umem_release(old_umem);
1422 atomic_add(ib_umem_num_pages(new_umem), &dev->mdev->priv.reg_pages);
1423 return 0;
1424 }
1425
mlx5_ib_rereg_user_mr(struct ib_mr * ib_mr,int flags,u64 start,u64 length,u64 iova,int new_access_flags,struct ib_pd * new_pd,struct ib_udata * udata)1426 struct ib_mr *mlx5_ib_rereg_user_mr(struct ib_mr *ib_mr, int flags, u64 start,
1427 u64 length, u64 iova, int new_access_flags,
1428 struct ib_pd *new_pd,
1429 struct ib_udata *udata)
1430 {
1431 struct mlx5_ib_dev *dev = to_mdev(ib_mr->device);
1432 struct mlx5_ib_mr *mr = to_mmr(ib_mr);
1433 int err;
1434
1435 if (!IS_ENABLED(CONFIG_INFINIBAND_USER_MEM))
1436 return ERR_PTR(-EOPNOTSUPP);
1437
1438 mlx5_ib_dbg(
1439 dev,
1440 "start 0x%llx, iova 0x%llx, length 0x%llx, access_flags 0x%x\n",
1441 start, iova, length, new_access_flags);
1442
1443 if (flags & ~(IB_MR_REREG_TRANS | IB_MR_REREG_PD | IB_MR_REREG_ACCESS))
1444 return ERR_PTR(-EOPNOTSUPP);
1445
1446 if (!(flags & IB_MR_REREG_ACCESS))
1447 new_access_flags = mr->access_flags;
1448 if (!(flags & IB_MR_REREG_PD))
1449 new_pd = ib_mr->pd;
1450
1451 if (!(flags & IB_MR_REREG_TRANS)) {
1452 struct ib_umem *umem;
1453
1454 /* Fast path for PD/access change */
1455 if (can_use_umr_rereg_access(dev, mr->access_flags,
1456 new_access_flags)) {
1457 err = mlx5r_umr_rereg_pd_access(mr, new_pd,
1458 new_access_flags);
1459 if (err)
1460 return ERR_PTR(err);
1461 return NULL;
1462 }
1463 /* DM or ODP MR's don't have a normal umem so we can't re-use it */
1464 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1465 goto recreate;
1466
1467 /*
1468 * Only one active MR can refer to a umem at one time, revoke
1469 * the old MR before assigning the umem to the new one.
1470 */
1471 err = mlx5r_umr_revoke_mr(mr);
1472 if (err)
1473 return ERR_PTR(err);
1474 umem = mr->umem;
1475 mr->umem = NULL;
1476 atomic_sub(ib_umem_num_pages(umem), &dev->mdev->priv.reg_pages);
1477
1478 return create_real_mr(new_pd, umem, mr->ibmr.iova,
1479 new_access_flags);
1480 }
1481
1482 /*
1483 * DM doesn't have a PAS list so we can't re-use it, odp/dmabuf does
1484 * but the logic around releasing the umem is different
1485 */
1486 if (!mr->umem || is_odp_mr(mr) || is_dmabuf_mr(mr))
1487 goto recreate;
1488
1489 if (!(new_access_flags & IB_ACCESS_ON_DEMAND) &&
1490 can_use_umr_rereg_access(dev, mr->access_flags, new_access_flags)) {
1491 struct ib_umem *new_umem;
1492 unsigned long page_size;
1493
1494 new_umem = ib_umem_get(&dev->ib_dev, start, length,
1495 new_access_flags);
1496 if (IS_ERR(new_umem))
1497 return ERR_CAST(new_umem);
1498
1499 /* Fast path for PAS change */
1500 if (can_use_umr_rereg_pas(mr, new_umem, new_access_flags, iova,
1501 &page_size)) {
1502 err = umr_rereg_pas(mr, new_pd, new_access_flags, flags,
1503 new_umem, iova, page_size);
1504 if (err) {
1505 ib_umem_release(new_umem);
1506 return ERR_PTR(err);
1507 }
1508 return NULL;
1509 }
1510 return create_real_mr(new_pd, new_umem, iova, new_access_flags);
1511 }
1512
1513 /*
1514 * Everything else has no state we can preserve, just create a new MR
1515 * from scratch
1516 */
1517 recreate:
1518 return mlx5_ib_reg_user_mr(new_pd, start, length, iova,
1519 new_access_flags, udata);
1520 }
1521
1522 static int
mlx5_alloc_priv_descs(struct ib_device * device,struct mlx5_ib_mr * mr,int ndescs,int desc_size)1523 mlx5_alloc_priv_descs(struct ib_device *device,
1524 struct mlx5_ib_mr *mr,
1525 int ndescs,
1526 int desc_size)
1527 {
1528 struct mlx5_ib_dev *dev = to_mdev(device);
1529 struct device *ddev = &dev->mdev->pdev->dev;
1530 int size = ndescs * desc_size;
1531 int add_size;
1532 int ret;
1533
1534 add_size = max_t(int, MLX5_UMR_ALIGN - ARCH_KMALLOC_MINALIGN, 0);
1535
1536 mr->descs_alloc = kzalloc(size + add_size, GFP_KERNEL);
1537 if (!mr->descs_alloc)
1538 return -ENOMEM;
1539
1540 mr->descs = PTR_ALIGN(mr->descs_alloc, MLX5_UMR_ALIGN);
1541
1542 mr->desc_map = dma_map_single(ddev, mr->descs, size, DMA_TO_DEVICE);
1543 if (dma_mapping_error(ddev, mr->desc_map)) {
1544 ret = -ENOMEM;
1545 goto err;
1546 }
1547
1548 return 0;
1549 err:
1550 kfree(mr->descs_alloc);
1551
1552 return ret;
1553 }
1554
1555 static void
mlx5_free_priv_descs(struct mlx5_ib_mr * mr)1556 mlx5_free_priv_descs(struct mlx5_ib_mr *mr)
1557 {
1558 if (!mr->umem && mr->descs) {
1559 struct ib_device *device = mr->ibmr.device;
1560 int size = mr->max_descs * mr->desc_size;
1561 struct mlx5_ib_dev *dev = to_mdev(device);
1562
1563 dma_unmap_single(&dev->mdev->pdev->dev, mr->desc_map, size,
1564 DMA_TO_DEVICE);
1565 kfree(mr->descs_alloc);
1566 mr->descs = NULL;
1567 }
1568 }
1569
mlx5_ib_dereg_mr(struct ib_mr * ibmr,struct ib_udata * udata)1570 int mlx5_ib_dereg_mr(struct ib_mr *ibmr, struct ib_udata *udata)
1571 {
1572 struct mlx5_ib_mr *mr = to_mmr(ibmr);
1573 struct mlx5_ib_dev *dev = to_mdev(ibmr->device);
1574 int rc;
1575
1576 /*
1577 * Any async use of the mr must hold the refcount, once the refcount
1578 * goes to zero no other thread, such as ODP page faults, prefetch, any
1579 * UMR activity, etc can touch the mkey. Thus it is safe to destroy it.
1580 */
1581 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
1582 refcount_read(&mr->mmkey.usecount) != 0 &&
1583 xa_erase(&mr_to_mdev(mr)->odp_mkeys, mlx5_base_mkey(mr->mmkey.key)))
1584 mlx5r_deref_wait_odp_mkey(&mr->mmkey);
1585
1586 if (ibmr->type == IB_MR_TYPE_INTEGRITY) {
1587 xa_cmpxchg(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1588 mr->sig, NULL, GFP_KERNEL);
1589
1590 if (mr->mtt_mr) {
1591 rc = mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
1592 if (rc)
1593 return rc;
1594 mr->mtt_mr = NULL;
1595 }
1596 if (mr->klm_mr) {
1597 rc = mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
1598 if (rc)
1599 return rc;
1600 mr->klm_mr = NULL;
1601 }
1602
1603 if (mlx5_core_destroy_psv(dev->mdev,
1604 mr->sig->psv_memory.psv_idx))
1605 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1606 mr->sig->psv_memory.psv_idx);
1607 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1608 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1609 mr->sig->psv_wire.psv_idx);
1610 kfree(mr->sig);
1611 mr->sig = NULL;
1612 }
1613
1614 /* Stop DMA */
1615 if (mr->mmkey.cache_ent) {
1616 xa_lock_irq(&mr->mmkey.cache_ent->mkeys);
1617 mr->mmkey.cache_ent->in_use--;
1618 xa_unlock_irq(&mr->mmkey.cache_ent->mkeys);
1619
1620 if (mlx5r_umr_revoke_mr(mr) ||
1621 push_mkey(mr->mmkey.cache_ent, false,
1622 xa_mk_value(mr->mmkey.key)))
1623 mr->mmkey.cache_ent = NULL;
1624 }
1625 if (!mr->mmkey.cache_ent) {
1626 rc = destroy_mkey(to_mdev(mr->ibmr.device), mr);
1627 if (rc)
1628 return rc;
1629 }
1630
1631 if (mr->umem) {
1632 bool is_odp = is_odp_mr(mr);
1633
1634 if (!is_odp)
1635 atomic_sub(ib_umem_num_pages(mr->umem),
1636 &dev->mdev->priv.reg_pages);
1637 ib_umem_release(mr->umem);
1638 if (is_odp)
1639 mlx5_ib_free_odp_mr(mr);
1640 }
1641
1642 if (!mr->mmkey.cache_ent)
1643 mlx5_free_priv_descs(mr);
1644
1645 kfree(mr);
1646 return 0;
1647 }
1648
mlx5_set_umr_free_mkey(struct ib_pd * pd,u32 * in,int ndescs,int access_mode,int page_shift)1649 static void mlx5_set_umr_free_mkey(struct ib_pd *pd, u32 *in, int ndescs,
1650 int access_mode, int page_shift)
1651 {
1652 void *mkc;
1653
1654 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1655
1656 /* This is only used from the kernel, so setting the PD is OK. */
1657 set_mkc_access_pd_addr_fields(mkc, IB_ACCESS_RELAXED_ORDERING, 0, pd);
1658 MLX5_SET(mkc, mkc, free, 1);
1659 MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1660 MLX5_SET(mkc, mkc, access_mode_1_0, access_mode & 0x3);
1661 MLX5_SET(mkc, mkc, access_mode_4_2, (access_mode >> 2) & 0x7);
1662 MLX5_SET(mkc, mkc, umr_en, 1);
1663 MLX5_SET(mkc, mkc, log_page_size, page_shift);
1664 }
1665
_mlx5_alloc_mkey_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int ndescs,int desc_size,int page_shift,int access_mode,u32 * in,int inlen)1666 static int _mlx5_alloc_mkey_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1667 int ndescs, int desc_size, int page_shift,
1668 int access_mode, u32 *in, int inlen)
1669 {
1670 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1671 int err;
1672
1673 mr->access_mode = access_mode;
1674 mr->desc_size = desc_size;
1675 mr->max_descs = ndescs;
1676
1677 err = mlx5_alloc_priv_descs(pd->device, mr, ndescs, desc_size);
1678 if (err)
1679 return err;
1680
1681 mlx5_set_umr_free_mkey(pd, in, ndescs, access_mode, page_shift);
1682
1683 err = mlx5_ib_create_mkey(dev, &mr->mmkey, in, inlen);
1684 if (err)
1685 goto err_free_descs;
1686
1687 mr->mmkey.type = MLX5_MKEY_MR;
1688 mr->ibmr.lkey = mr->mmkey.key;
1689 mr->ibmr.rkey = mr->mmkey.key;
1690
1691 return 0;
1692
1693 err_free_descs:
1694 mlx5_free_priv_descs(mr);
1695 return err;
1696 }
1697
mlx5_ib_alloc_pi_mr(struct ib_pd * pd,u32 max_num_sg,u32 max_num_meta_sg,int desc_size,int access_mode)1698 static struct mlx5_ib_mr *mlx5_ib_alloc_pi_mr(struct ib_pd *pd,
1699 u32 max_num_sg, u32 max_num_meta_sg,
1700 int desc_size, int access_mode)
1701 {
1702 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1703 int ndescs = ALIGN(max_num_sg + max_num_meta_sg, 4);
1704 int page_shift = 0;
1705 struct mlx5_ib_mr *mr;
1706 u32 *in;
1707 int err;
1708
1709 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1710 if (!mr)
1711 return ERR_PTR(-ENOMEM);
1712
1713 mr->ibmr.pd = pd;
1714 mr->ibmr.device = pd->device;
1715
1716 in = kzalloc(inlen, GFP_KERNEL);
1717 if (!in) {
1718 err = -ENOMEM;
1719 goto err_free;
1720 }
1721
1722 if (access_mode == MLX5_MKC_ACCESS_MODE_MTT)
1723 page_shift = PAGE_SHIFT;
1724
1725 err = _mlx5_alloc_mkey_descs(pd, mr, ndescs, desc_size, page_shift,
1726 access_mode, in, inlen);
1727 if (err)
1728 goto err_free_in;
1729
1730 mr->umem = NULL;
1731 kfree(in);
1732
1733 return mr;
1734
1735 err_free_in:
1736 kfree(in);
1737 err_free:
1738 kfree(mr);
1739 return ERR_PTR(err);
1740 }
1741
mlx5_alloc_mem_reg_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int ndescs,u32 * in,int inlen)1742 static int mlx5_alloc_mem_reg_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1743 int ndescs, u32 *in, int inlen)
1744 {
1745 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_mtt),
1746 PAGE_SHIFT, MLX5_MKC_ACCESS_MODE_MTT, in,
1747 inlen);
1748 }
1749
mlx5_alloc_sg_gaps_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int ndescs,u32 * in,int inlen)1750 static int mlx5_alloc_sg_gaps_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1751 int ndescs, u32 *in, int inlen)
1752 {
1753 return _mlx5_alloc_mkey_descs(pd, mr, ndescs, sizeof(struct mlx5_klm),
1754 0, MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1755 }
1756
mlx5_alloc_integrity_descs(struct ib_pd * pd,struct mlx5_ib_mr * mr,int max_num_sg,int max_num_meta_sg,u32 * in,int inlen)1757 static int mlx5_alloc_integrity_descs(struct ib_pd *pd, struct mlx5_ib_mr *mr,
1758 int max_num_sg, int max_num_meta_sg,
1759 u32 *in, int inlen)
1760 {
1761 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1762 u32 psv_index[2];
1763 void *mkc;
1764 int err;
1765
1766 mr->sig = kzalloc(sizeof(*mr->sig), GFP_KERNEL);
1767 if (!mr->sig)
1768 return -ENOMEM;
1769
1770 /* create mem & wire PSVs */
1771 err = mlx5_core_create_psv(dev->mdev, to_mpd(pd)->pdn, 2, psv_index);
1772 if (err)
1773 goto err_free_sig;
1774
1775 mr->sig->psv_memory.psv_idx = psv_index[0];
1776 mr->sig->psv_wire.psv_idx = psv_index[1];
1777
1778 mr->sig->sig_status_checked = true;
1779 mr->sig->sig_err_exists = false;
1780 /* Next UMR, Arm SIGERR */
1781 ++mr->sig->sigerr_count;
1782 mr->klm_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1783 sizeof(struct mlx5_klm),
1784 MLX5_MKC_ACCESS_MODE_KLMS);
1785 if (IS_ERR(mr->klm_mr)) {
1786 err = PTR_ERR(mr->klm_mr);
1787 goto err_destroy_psv;
1788 }
1789 mr->mtt_mr = mlx5_ib_alloc_pi_mr(pd, max_num_sg, max_num_meta_sg,
1790 sizeof(struct mlx5_mtt),
1791 MLX5_MKC_ACCESS_MODE_MTT);
1792 if (IS_ERR(mr->mtt_mr)) {
1793 err = PTR_ERR(mr->mtt_mr);
1794 goto err_free_klm_mr;
1795 }
1796
1797 /* Set bsf descriptors for mkey */
1798 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1799 MLX5_SET(mkc, mkc, bsf_en, 1);
1800 MLX5_SET(mkc, mkc, bsf_octword_size, MLX5_MKEY_BSF_OCTO_SIZE);
1801
1802 err = _mlx5_alloc_mkey_descs(pd, mr, 4, sizeof(struct mlx5_klm), 0,
1803 MLX5_MKC_ACCESS_MODE_KLMS, in, inlen);
1804 if (err)
1805 goto err_free_mtt_mr;
1806
1807 err = xa_err(xa_store(&dev->sig_mrs, mlx5_base_mkey(mr->mmkey.key),
1808 mr->sig, GFP_KERNEL));
1809 if (err)
1810 goto err_free_descs;
1811 return 0;
1812
1813 err_free_descs:
1814 destroy_mkey(dev, mr);
1815 mlx5_free_priv_descs(mr);
1816 err_free_mtt_mr:
1817 mlx5_ib_dereg_mr(&mr->mtt_mr->ibmr, NULL);
1818 mr->mtt_mr = NULL;
1819 err_free_klm_mr:
1820 mlx5_ib_dereg_mr(&mr->klm_mr->ibmr, NULL);
1821 mr->klm_mr = NULL;
1822 err_destroy_psv:
1823 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_memory.psv_idx))
1824 mlx5_ib_warn(dev, "failed to destroy mem psv %d\n",
1825 mr->sig->psv_memory.psv_idx);
1826 if (mlx5_core_destroy_psv(dev->mdev, mr->sig->psv_wire.psv_idx))
1827 mlx5_ib_warn(dev, "failed to destroy wire psv %d\n",
1828 mr->sig->psv_wire.psv_idx);
1829 err_free_sig:
1830 kfree(mr->sig);
1831
1832 return err;
1833 }
1834
__mlx5_ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg,u32 max_num_meta_sg)1835 static struct ib_mr *__mlx5_ib_alloc_mr(struct ib_pd *pd,
1836 enum ib_mr_type mr_type, u32 max_num_sg,
1837 u32 max_num_meta_sg)
1838 {
1839 struct mlx5_ib_dev *dev = to_mdev(pd->device);
1840 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1841 int ndescs = ALIGN(max_num_sg, 4);
1842 struct mlx5_ib_mr *mr;
1843 u32 *in;
1844 int err;
1845
1846 mr = kzalloc(sizeof(*mr), GFP_KERNEL);
1847 if (!mr)
1848 return ERR_PTR(-ENOMEM);
1849
1850 in = kzalloc(inlen, GFP_KERNEL);
1851 if (!in) {
1852 err = -ENOMEM;
1853 goto err_free;
1854 }
1855
1856 mr->ibmr.device = pd->device;
1857 mr->umem = NULL;
1858
1859 switch (mr_type) {
1860 case IB_MR_TYPE_MEM_REG:
1861 err = mlx5_alloc_mem_reg_descs(pd, mr, ndescs, in, inlen);
1862 break;
1863 case IB_MR_TYPE_SG_GAPS:
1864 err = mlx5_alloc_sg_gaps_descs(pd, mr, ndescs, in, inlen);
1865 break;
1866 case IB_MR_TYPE_INTEGRITY:
1867 err = mlx5_alloc_integrity_descs(pd, mr, max_num_sg,
1868 max_num_meta_sg, in, inlen);
1869 break;
1870 default:
1871 mlx5_ib_warn(dev, "Invalid mr type %d\n", mr_type);
1872 err = -EINVAL;
1873 }
1874
1875 if (err)
1876 goto err_free_in;
1877
1878 kfree(in);
1879
1880 return &mr->ibmr;
1881
1882 err_free_in:
1883 kfree(in);
1884 err_free:
1885 kfree(mr);
1886 return ERR_PTR(err);
1887 }
1888
mlx5_ib_alloc_mr(struct ib_pd * pd,enum ib_mr_type mr_type,u32 max_num_sg)1889 struct ib_mr *mlx5_ib_alloc_mr(struct ib_pd *pd, enum ib_mr_type mr_type,
1890 u32 max_num_sg)
1891 {
1892 return __mlx5_ib_alloc_mr(pd, mr_type, max_num_sg, 0);
1893 }
1894
mlx5_ib_alloc_mr_integrity(struct ib_pd * pd,u32 max_num_sg,u32 max_num_meta_sg)1895 struct ib_mr *mlx5_ib_alloc_mr_integrity(struct ib_pd *pd,
1896 u32 max_num_sg, u32 max_num_meta_sg)
1897 {
1898 return __mlx5_ib_alloc_mr(pd, IB_MR_TYPE_INTEGRITY, max_num_sg,
1899 max_num_meta_sg);
1900 }
1901
mlx5_ib_alloc_mw(struct ib_mw * ibmw,struct ib_udata * udata)1902 int mlx5_ib_alloc_mw(struct ib_mw *ibmw, struct ib_udata *udata)
1903 {
1904 struct mlx5_ib_dev *dev = to_mdev(ibmw->device);
1905 int inlen = MLX5_ST_SZ_BYTES(create_mkey_in);
1906 struct mlx5_ib_mw *mw = to_mmw(ibmw);
1907 unsigned int ndescs;
1908 u32 *in = NULL;
1909 void *mkc;
1910 int err;
1911 struct mlx5_ib_alloc_mw req = {};
1912 struct {
1913 __u32 comp_mask;
1914 __u32 response_length;
1915 } resp = {};
1916
1917 err = ib_copy_from_udata(&req, udata, min(udata->inlen, sizeof(req)));
1918 if (err)
1919 return err;
1920
1921 if (req.comp_mask || req.reserved1 || req.reserved2)
1922 return -EOPNOTSUPP;
1923
1924 if (udata->inlen > sizeof(req) &&
1925 !ib_is_udata_cleared(udata, sizeof(req),
1926 udata->inlen - sizeof(req)))
1927 return -EOPNOTSUPP;
1928
1929 ndescs = req.num_klms ? roundup(req.num_klms, 4) : roundup(1, 4);
1930
1931 in = kzalloc(inlen, GFP_KERNEL);
1932 if (!in) {
1933 err = -ENOMEM;
1934 goto free;
1935 }
1936
1937 mkc = MLX5_ADDR_OF(create_mkey_in, in, memory_key_mkey_entry);
1938
1939 MLX5_SET(mkc, mkc, free, 1);
1940 MLX5_SET(mkc, mkc, translations_octword_size, ndescs);
1941 MLX5_SET(mkc, mkc, pd, to_mpd(ibmw->pd)->pdn);
1942 MLX5_SET(mkc, mkc, umr_en, 1);
1943 MLX5_SET(mkc, mkc, lr, 1);
1944 MLX5_SET(mkc, mkc, access_mode_1_0, MLX5_MKC_ACCESS_MODE_KLMS);
1945 MLX5_SET(mkc, mkc, en_rinval, !!((ibmw->type == IB_MW_TYPE_2)));
1946 MLX5_SET(mkc, mkc, qpn, 0xffffff);
1947
1948 err = mlx5_ib_create_mkey(dev, &mw->mmkey, in, inlen);
1949 if (err)
1950 goto free;
1951
1952 mw->mmkey.type = MLX5_MKEY_MW;
1953 ibmw->rkey = mw->mmkey.key;
1954 mw->mmkey.ndescs = ndescs;
1955
1956 resp.response_length =
1957 min(offsetofend(typeof(resp), response_length), udata->outlen);
1958 if (resp.response_length) {
1959 err = ib_copy_to_udata(udata, &resp, resp.response_length);
1960 if (err)
1961 goto free_mkey;
1962 }
1963
1964 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING)) {
1965 err = mlx5r_store_odp_mkey(dev, &mw->mmkey);
1966 if (err)
1967 goto free_mkey;
1968 }
1969
1970 kfree(in);
1971 return 0;
1972
1973 free_mkey:
1974 mlx5_core_destroy_mkey(dev->mdev, mw->mmkey.key);
1975 free:
1976 kfree(in);
1977 return err;
1978 }
1979
mlx5_ib_dealloc_mw(struct ib_mw * mw)1980 int mlx5_ib_dealloc_mw(struct ib_mw *mw)
1981 {
1982 struct mlx5_ib_dev *dev = to_mdev(mw->device);
1983 struct mlx5_ib_mw *mmw = to_mmw(mw);
1984
1985 if (IS_ENABLED(CONFIG_INFINIBAND_ON_DEMAND_PAGING) &&
1986 xa_erase(&dev->odp_mkeys, mlx5_base_mkey(mmw->mmkey.key)))
1987 /*
1988 * pagefault_single_data_segment() may be accessing mmw
1989 * if the user bound an ODP MR to this MW.
1990 */
1991 mlx5r_deref_wait_odp_mkey(&mmw->mmkey);
1992
1993 return mlx5_core_destroy_mkey(dev->mdev, mmw->mmkey.key);
1994 }
1995
mlx5_ib_check_mr_status(struct ib_mr * ibmr,u32 check_mask,struct ib_mr_status * mr_status)1996 int mlx5_ib_check_mr_status(struct ib_mr *ibmr, u32 check_mask,
1997 struct ib_mr_status *mr_status)
1998 {
1999 struct mlx5_ib_mr *mmr = to_mmr(ibmr);
2000 int ret = 0;
2001
2002 if (check_mask & ~IB_MR_CHECK_SIG_STATUS) {
2003 pr_err("Invalid status check mask\n");
2004 ret = -EINVAL;
2005 goto done;
2006 }
2007
2008 mr_status->fail_status = 0;
2009 if (check_mask & IB_MR_CHECK_SIG_STATUS) {
2010 if (!mmr->sig) {
2011 ret = -EINVAL;
2012 pr_err("signature status check requested on a non-signature enabled MR\n");
2013 goto done;
2014 }
2015
2016 mmr->sig->sig_status_checked = true;
2017 if (!mmr->sig->sig_err_exists)
2018 goto done;
2019
2020 if (ibmr->lkey == mmr->sig->err_item.key)
2021 memcpy(&mr_status->sig_err, &mmr->sig->err_item,
2022 sizeof(mr_status->sig_err));
2023 else {
2024 mr_status->sig_err.err_type = IB_SIG_BAD_GUARD;
2025 mr_status->sig_err.sig_err_offset = 0;
2026 mr_status->sig_err.key = mmr->sig->err_item.key;
2027 }
2028
2029 mmr->sig->sig_err_exists = false;
2030 mr_status->fail_status |= IB_MR_CHECK_SIG_STATUS;
2031 }
2032
2033 done:
2034 return ret;
2035 }
2036
2037 static int
mlx5_ib_map_pa_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2038 mlx5_ib_map_pa_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2039 int data_sg_nents, unsigned int *data_sg_offset,
2040 struct scatterlist *meta_sg, int meta_sg_nents,
2041 unsigned int *meta_sg_offset)
2042 {
2043 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2044 unsigned int sg_offset = 0;
2045 int n = 0;
2046
2047 mr->meta_length = 0;
2048 if (data_sg_nents == 1) {
2049 n++;
2050 mr->mmkey.ndescs = 1;
2051 if (data_sg_offset)
2052 sg_offset = *data_sg_offset;
2053 mr->data_length = sg_dma_len(data_sg) - sg_offset;
2054 mr->data_iova = sg_dma_address(data_sg) + sg_offset;
2055 if (meta_sg_nents == 1) {
2056 n++;
2057 mr->meta_ndescs = 1;
2058 if (meta_sg_offset)
2059 sg_offset = *meta_sg_offset;
2060 else
2061 sg_offset = 0;
2062 mr->meta_length = sg_dma_len(meta_sg) - sg_offset;
2063 mr->pi_iova = sg_dma_address(meta_sg) + sg_offset;
2064 }
2065 ibmr->length = mr->data_length + mr->meta_length;
2066 }
2067
2068 return n;
2069 }
2070
2071 static int
mlx5_ib_sg_to_klms(struct mlx5_ib_mr * mr,struct scatterlist * sgl,unsigned short sg_nents,unsigned int * sg_offset_p,struct scatterlist * meta_sgl,unsigned short meta_sg_nents,unsigned int * meta_sg_offset_p)2072 mlx5_ib_sg_to_klms(struct mlx5_ib_mr *mr,
2073 struct scatterlist *sgl,
2074 unsigned short sg_nents,
2075 unsigned int *sg_offset_p,
2076 struct scatterlist *meta_sgl,
2077 unsigned short meta_sg_nents,
2078 unsigned int *meta_sg_offset_p)
2079 {
2080 struct scatterlist *sg = sgl;
2081 struct mlx5_klm *klms = mr->descs;
2082 unsigned int sg_offset = sg_offset_p ? *sg_offset_p : 0;
2083 u32 lkey = mr->ibmr.pd->local_dma_lkey;
2084 int i, j = 0;
2085
2086 mr->ibmr.iova = sg_dma_address(sg) + sg_offset;
2087 mr->ibmr.length = 0;
2088
2089 for_each_sg(sgl, sg, sg_nents, i) {
2090 if (unlikely(i >= mr->max_descs))
2091 break;
2092 klms[i].va = cpu_to_be64(sg_dma_address(sg) + sg_offset);
2093 klms[i].bcount = cpu_to_be32(sg_dma_len(sg) - sg_offset);
2094 klms[i].key = cpu_to_be32(lkey);
2095 mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2096
2097 sg_offset = 0;
2098 }
2099
2100 if (sg_offset_p)
2101 *sg_offset_p = sg_offset;
2102
2103 mr->mmkey.ndescs = i;
2104 mr->data_length = mr->ibmr.length;
2105
2106 if (meta_sg_nents) {
2107 sg = meta_sgl;
2108 sg_offset = meta_sg_offset_p ? *meta_sg_offset_p : 0;
2109 for_each_sg(meta_sgl, sg, meta_sg_nents, j) {
2110 if (unlikely(i + j >= mr->max_descs))
2111 break;
2112 klms[i + j].va = cpu_to_be64(sg_dma_address(sg) +
2113 sg_offset);
2114 klms[i + j].bcount = cpu_to_be32(sg_dma_len(sg) -
2115 sg_offset);
2116 klms[i + j].key = cpu_to_be32(lkey);
2117 mr->ibmr.length += sg_dma_len(sg) - sg_offset;
2118
2119 sg_offset = 0;
2120 }
2121 if (meta_sg_offset_p)
2122 *meta_sg_offset_p = sg_offset;
2123
2124 mr->meta_ndescs = j;
2125 mr->meta_length = mr->ibmr.length - mr->data_length;
2126 }
2127
2128 return i + j;
2129 }
2130
mlx5_set_page(struct ib_mr * ibmr,u64 addr)2131 static int mlx5_set_page(struct ib_mr *ibmr, u64 addr)
2132 {
2133 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2134 __be64 *descs;
2135
2136 if (unlikely(mr->mmkey.ndescs == mr->max_descs))
2137 return -ENOMEM;
2138
2139 descs = mr->descs;
2140 descs[mr->mmkey.ndescs++] = cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2141
2142 return 0;
2143 }
2144
mlx5_set_page_pi(struct ib_mr * ibmr,u64 addr)2145 static int mlx5_set_page_pi(struct ib_mr *ibmr, u64 addr)
2146 {
2147 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2148 __be64 *descs;
2149
2150 if (unlikely(mr->mmkey.ndescs + mr->meta_ndescs == mr->max_descs))
2151 return -ENOMEM;
2152
2153 descs = mr->descs;
2154 descs[mr->mmkey.ndescs + mr->meta_ndescs++] =
2155 cpu_to_be64(addr | MLX5_EN_RD | MLX5_EN_WR);
2156
2157 return 0;
2158 }
2159
2160 static int
mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2161 mlx5_ib_map_mtt_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2162 int data_sg_nents, unsigned int *data_sg_offset,
2163 struct scatterlist *meta_sg, int meta_sg_nents,
2164 unsigned int *meta_sg_offset)
2165 {
2166 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2167 struct mlx5_ib_mr *pi_mr = mr->mtt_mr;
2168 int n;
2169
2170 pi_mr->mmkey.ndescs = 0;
2171 pi_mr->meta_ndescs = 0;
2172 pi_mr->meta_length = 0;
2173
2174 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2175 pi_mr->desc_size * pi_mr->max_descs,
2176 DMA_TO_DEVICE);
2177
2178 pi_mr->ibmr.page_size = ibmr->page_size;
2179 n = ib_sg_to_pages(&pi_mr->ibmr, data_sg, data_sg_nents, data_sg_offset,
2180 mlx5_set_page);
2181 if (n != data_sg_nents)
2182 return n;
2183
2184 pi_mr->data_iova = pi_mr->ibmr.iova;
2185 pi_mr->data_length = pi_mr->ibmr.length;
2186 pi_mr->ibmr.length = pi_mr->data_length;
2187 ibmr->length = pi_mr->data_length;
2188
2189 if (meta_sg_nents) {
2190 u64 page_mask = ~((u64)ibmr->page_size - 1);
2191 u64 iova = pi_mr->data_iova;
2192
2193 n += ib_sg_to_pages(&pi_mr->ibmr, meta_sg, meta_sg_nents,
2194 meta_sg_offset, mlx5_set_page_pi);
2195
2196 pi_mr->meta_length = pi_mr->ibmr.length;
2197 /*
2198 * PI address for the HW is the offset of the metadata address
2199 * relative to the first data page address.
2200 * It equals to first data page address + size of data pages +
2201 * metadata offset at the first metadata page
2202 */
2203 pi_mr->pi_iova = (iova & page_mask) +
2204 pi_mr->mmkey.ndescs * ibmr->page_size +
2205 (pi_mr->ibmr.iova & ~page_mask);
2206 /*
2207 * In order to use one MTT MR for data and metadata, we register
2208 * also the gaps between the end of the data and the start of
2209 * the metadata (the sig MR will verify that the HW will access
2210 * to right addresses). This mapping is safe because we use
2211 * internal mkey for the registration.
2212 */
2213 pi_mr->ibmr.length = pi_mr->pi_iova + pi_mr->meta_length - iova;
2214 pi_mr->ibmr.iova = iova;
2215 ibmr->length += pi_mr->meta_length;
2216 }
2217
2218 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2219 pi_mr->desc_size * pi_mr->max_descs,
2220 DMA_TO_DEVICE);
2221
2222 return n;
2223 }
2224
2225 static int
mlx5_ib_map_klm_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2226 mlx5_ib_map_klm_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2227 int data_sg_nents, unsigned int *data_sg_offset,
2228 struct scatterlist *meta_sg, int meta_sg_nents,
2229 unsigned int *meta_sg_offset)
2230 {
2231 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2232 struct mlx5_ib_mr *pi_mr = mr->klm_mr;
2233 int n;
2234
2235 pi_mr->mmkey.ndescs = 0;
2236 pi_mr->meta_ndescs = 0;
2237 pi_mr->meta_length = 0;
2238
2239 ib_dma_sync_single_for_cpu(ibmr->device, pi_mr->desc_map,
2240 pi_mr->desc_size * pi_mr->max_descs,
2241 DMA_TO_DEVICE);
2242
2243 n = mlx5_ib_sg_to_klms(pi_mr, data_sg, data_sg_nents, data_sg_offset,
2244 meta_sg, meta_sg_nents, meta_sg_offset);
2245
2246 ib_dma_sync_single_for_device(ibmr->device, pi_mr->desc_map,
2247 pi_mr->desc_size * pi_mr->max_descs,
2248 DMA_TO_DEVICE);
2249
2250 /* This is zero-based memory region */
2251 pi_mr->data_iova = 0;
2252 pi_mr->ibmr.iova = 0;
2253 pi_mr->pi_iova = pi_mr->data_length;
2254 ibmr->length = pi_mr->ibmr.length;
2255
2256 return n;
2257 }
2258
mlx5_ib_map_mr_sg_pi(struct ib_mr * ibmr,struct scatterlist * data_sg,int data_sg_nents,unsigned int * data_sg_offset,struct scatterlist * meta_sg,int meta_sg_nents,unsigned int * meta_sg_offset)2259 int mlx5_ib_map_mr_sg_pi(struct ib_mr *ibmr, struct scatterlist *data_sg,
2260 int data_sg_nents, unsigned int *data_sg_offset,
2261 struct scatterlist *meta_sg, int meta_sg_nents,
2262 unsigned int *meta_sg_offset)
2263 {
2264 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2265 struct mlx5_ib_mr *pi_mr = NULL;
2266 int n;
2267
2268 WARN_ON(ibmr->type != IB_MR_TYPE_INTEGRITY);
2269
2270 mr->mmkey.ndescs = 0;
2271 mr->data_length = 0;
2272 mr->data_iova = 0;
2273 mr->meta_ndescs = 0;
2274 mr->pi_iova = 0;
2275 /*
2276 * As a performance optimization, if possible, there is no need to
2277 * perform UMR operation to register the data/metadata buffers.
2278 * First try to map the sg lists to PA descriptors with local_dma_lkey.
2279 * Fallback to UMR only in case of a failure.
2280 */
2281 n = mlx5_ib_map_pa_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2282 data_sg_offset, meta_sg, meta_sg_nents,
2283 meta_sg_offset);
2284 if (n == data_sg_nents + meta_sg_nents)
2285 goto out;
2286 /*
2287 * As a performance optimization, if possible, there is no need to map
2288 * the sg lists to KLM descriptors. First try to map the sg lists to MTT
2289 * descriptors and fallback to KLM only in case of a failure.
2290 * It's more efficient for the HW to work with MTT descriptors
2291 * (especially in high load).
2292 * Use KLM (indirect access) only if it's mandatory.
2293 */
2294 pi_mr = mr->mtt_mr;
2295 n = mlx5_ib_map_mtt_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2296 data_sg_offset, meta_sg, meta_sg_nents,
2297 meta_sg_offset);
2298 if (n == data_sg_nents + meta_sg_nents)
2299 goto out;
2300
2301 pi_mr = mr->klm_mr;
2302 n = mlx5_ib_map_klm_mr_sg_pi(ibmr, data_sg, data_sg_nents,
2303 data_sg_offset, meta_sg, meta_sg_nents,
2304 meta_sg_offset);
2305 if (unlikely(n != data_sg_nents + meta_sg_nents))
2306 return -ENOMEM;
2307
2308 out:
2309 /* This is zero-based memory region */
2310 ibmr->iova = 0;
2311 mr->pi_mr = pi_mr;
2312 if (pi_mr)
2313 ibmr->sig_attrs->meta_length = pi_mr->meta_length;
2314 else
2315 ibmr->sig_attrs->meta_length = mr->meta_length;
2316
2317 return 0;
2318 }
2319
mlx5_ib_map_mr_sg(struct ib_mr * ibmr,struct scatterlist * sg,int sg_nents,unsigned int * sg_offset)2320 int mlx5_ib_map_mr_sg(struct ib_mr *ibmr, struct scatterlist *sg, int sg_nents,
2321 unsigned int *sg_offset)
2322 {
2323 struct mlx5_ib_mr *mr = to_mmr(ibmr);
2324 int n;
2325
2326 mr->mmkey.ndescs = 0;
2327
2328 ib_dma_sync_single_for_cpu(ibmr->device, mr->desc_map,
2329 mr->desc_size * mr->max_descs,
2330 DMA_TO_DEVICE);
2331
2332 if (mr->access_mode == MLX5_MKC_ACCESS_MODE_KLMS)
2333 n = mlx5_ib_sg_to_klms(mr, sg, sg_nents, sg_offset, NULL, 0,
2334 NULL);
2335 else
2336 n = ib_sg_to_pages(ibmr, sg, sg_nents, sg_offset,
2337 mlx5_set_page);
2338
2339 ib_dma_sync_single_for_device(ibmr->device, mr->desc_map,
2340 mr->desc_size * mr->max_descs,
2341 DMA_TO_DEVICE);
2342
2343 return n;
2344 }
2345