1 /*
2 * Copyright (c) 2006, 2007 Cisco Systems, Inc. All rights reserved.
3 * Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34 #include <linux/errno.h>
35 #include <linux/slab.h>
36 #include <linux/mm.h>
37 #include <linux/bitmap.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/vmalloc.h>
40
41 #include "mlx4.h"
42
mlx4_bitmap_alloc(struct mlx4_bitmap * bitmap)43 u32 mlx4_bitmap_alloc(struct mlx4_bitmap *bitmap)
44 {
45 u32 obj;
46
47 spin_lock(&bitmap->lock);
48
49 obj = find_next_zero_bit(bitmap->table, bitmap->max, bitmap->last);
50 if (obj >= bitmap->max) {
51 bitmap->top = (bitmap->top + bitmap->max + bitmap->reserved_top)
52 & bitmap->mask;
53 obj = find_first_zero_bit(bitmap->table, bitmap->max);
54 }
55
56 if (obj < bitmap->max) {
57 set_bit(obj, bitmap->table);
58 bitmap->last = (obj + 1);
59 if (bitmap->last == bitmap->max)
60 bitmap->last = 0;
61 obj |= bitmap->top;
62 } else
63 obj = -1;
64
65 if (obj != -1)
66 --bitmap->avail;
67
68 spin_unlock(&bitmap->lock);
69
70 return obj;
71 }
72
mlx4_bitmap_free(struct mlx4_bitmap * bitmap,u32 obj)73 void mlx4_bitmap_free(struct mlx4_bitmap *bitmap, u32 obj)
74 {
75 mlx4_bitmap_free_range(bitmap, obj, 1);
76 }
77
mlx4_bitmap_alloc_range(struct mlx4_bitmap * bitmap,int cnt,int align)78 u32 mlx4_bitmap_alloc_range(struct mlx4_bitmap *bitmap, int cnt, int align)
79 {
80 u32 obj;
81
82 if (likely(cnt == 1 && align == 1))
83 return mlx4_bitmap_alloc(bitmap);
84
85 spin_lock(&bitmap->lock);
86
87 obj = bitmap_find_next_zero_area(bitmap->table, bitmap->max,
88 bitmap->last, cnt, align - 1);
89 if (obj >= bitmap->max) {
90 bitmap->top = (bitmap->top + bitmap->max + bitmap->reserved_top)
91 & bitmap->mask;
92 obj = bitmap_find_next_zero_area(bitmap->table, bitmap->max,
93 0, cnt, align - 1);
94 }
95
96 if (obj < bitmap->max) {
97 bitmap_set(bitmap->table, obj, cnt);
98 if (obj == bitmap->last) {
99 bitmap->last = (obj + cnt);
100 if (bitmap->last >= bitmap->max)
101 bitmap->last = 0;
102 }
103 obj |= bitmap->top;
104 } else
105 obj = -1;
106
107 if (obj != -1)
108 bitmap->avail -= cnt;
109
110 spin_unlock(&bitmap->lock);
111
112 return obj;
113 }
114
mlx4_bitmap_avail(struct mlx4_bitmap * bitmap)115 u32 mlx4_bitmap_avail(struct mlx4_bitmap *bitmap)
116 {
117 return bitmap->avail;
118 }
119
mlx4_bitmap_free_range(struct mlx4_bitmap * bitmap,u32 obj,int cnt)120 void mlx4_bitmap_free_range(struct mlx4_bitmap *bitmap, u32 obj, int cnt)
121 {
122 obj &= bitmap->max + bitmap->reserved_top - 1;
123
124 spin_lock(&bitmap->lock);
125 bitmap_clear(bitmap->table, obj, cnt);
126 bitmap->last = min(bitmap->last, obj);
127 bitmap->top = (bitmap->top + bitmap->max + bitmap->reserved_top)
128 & bitmap->mask;
129 bitmap->avail += cnt;
130 spin_unlock(&bitmap->lock);
131 }
132
mlx4_bitmap_init(struct mlx4_bitmap * bitmap,u32 num,u32 mask,u32 reserved_bot,u32 reserved_top)133 int mlx4_bitmap_init(struct mlx4_bitmap *bitmap, u32 num, u32 mask,
134 u32 reserved_bot, u32 reserved_top)
135 {
136 /* num must be a power of 2 */
137 if (num != roundup_pow_of_two(num))
138 return -EINVAL;
139
140 bitmap->last = 0;
141 bitmap->top = 0;
142 bitmap->max = num - reserved_top;
143 bitmap->mask = mask;
144 bitmap->reserved_top = reserved_top;
145 bitmap->avail = num - reserved_top - reserved_bot;
146 spin_lock_init(&bitmap->lock);
147 bitmap->table = kzalloc(BITS_TO_LONGS(bitmap->max) *
148 sizeof (long), GFP_KERNEL);
149 if (!bitmap->table)
150 return -ENOMEM;
151
152 bitmap_set(bitmap->table, 0, reserved_bot);
153
154 return 0;
155 }
156
mlx4_bitmap_cleanup(struct mlx4_bitmap * bitmap)157 void mlx4_bitmap_cleanup(struct mlx4_bitmap *bitmap)
158 {
159 kfree(bitmap->table);
160 }
161
162 /*
163 * Handling for queue buffers -- we allocate a bunch of memory and
164 * register it in a memory region at HCA virtual address 0. If the
165 * requested size is > max_direct, we split the allocation into
166 * multiple pages, so we don't require too much contiguous memory.
167 */
168
mlx4_buf_alloc(struct mlx4_dev * dev,int size,int max_direct,struct mlx4_buf * buf)169 int mlx4_buf_alloc(struct mlx4_dev *dev, int size, int max_direct,
170 struct mlx4_buf *buf)
171 {
172 dma_addr_t t;
173
174 if (size <= max_direct) {
175 buf->nbufs = 1;
176 buf->npages = 1;
177 buf->page_shift = get_order(size) + PAGE_SHIFT;
178 buf->direct.buf = dma_alloc_coherent(&dev->pdev->dev,
179 size, &t, GFP_KERNEL);
180 if (!buf->direct.buf)
181 return -ENOMEM;
182
183 buf->direct.map = t;
184
185 while (t & ((1 << buf->page_shift) - 1)) {
186 --buf->page_shift;
187 buf->npages *= 2;
188 }
189
190 memset(buf->direct.buf, 0, size);
191 } else {
192 int i;
193
194 buf->direct.buf = NULL;
195 buf->nbufs = (size + PAGE_SIZE - 1) / PAGE_SIZE;
196 buf->npages = buf->nbufs;
197 buf->page_shift = PAGE_SHIFT;
198 buf->page_list = kcalloc(buf->nbufs, sizeof(*buf->page_list),
199 GFP_KERNEL);
200 if (!buf->page_list)
201 return -ENOMEM;
202
203 for (i = 0; i < buf->nbufs; ++i) {
204 buf->page_list[i].buf =
205 dma_alloc_coherent(&dev->pdev->dev, PAGE_SIZE,
206 &t, GFP_KERNEL);
207 if (!buf->page_list[i].buf)
208 goto err_free;
209
210 buf->page_list[i].map = t;
211
212 memset(buf->page_list[i].buf, 0, PAGE_SIZE);
213 }
214
215 if (BITS_PER_LONG == 64) {
216 struct page **pages;
217 pages = kmalloc(sizeof *pages * buf->nbufs, GFP_KERNEL);
218 if (!pages)
219 goto err_free;
220 for (i = 0; i < buf->nbufs; ++i)
221 pages[i] = virt_to_page(buf->page_list[i].buf);
222 buf->direct.buf = vmap(pages, buf->nbufs, VM_MAP, PAGE_KERNEL);
223 kfree(pages);
224 if (!buf->direct.buf)
225 goto err_free;
226 }
227 }
228
229 return 0;
230
231 err_free:
232 mlx4_buf_free(dev, size, buf);
233
234 return -ENOMEM;
235 }
236 EXPORT_SYMBOL_GPL(mlx4_buf_alloc);
237
mlx4_buf_free(struct mlx4_dev * dev,int size,struct mlx4_buf * buf)238 void mlx4_buf_free(struct mlx4_dev *dev, int size, struct mlx4_buf *buf)
239 {
240 int i;
241
242 if (buf->nbufs == 1)
243 dma_free_coherent(&dev->pdev->dev, size, buf->direct.buf,
244 buf->direct.map);
245 else {
246 if (BITS_PER_LONG == 64 && buf->direct.buf)
247 vunmap(buf->direct.buf);
248
249 for (i = 0; i < buf->nbufs; ++i)
250 if (buf->page_list[i].buf)
251 dma_free_coherent(&dev->pdev->dev, PAGE_SIZE,
252 buf->page_list[i].buf,
253 buf->page_list[i].map);
254 kfree(buf->page_list);
255 }
256 }
257 EXPORT_SYMBOL_GPL(mlx4_buf_free);
258
mlx4_alloc_db_pgdir(struct device * dma_device)259 static struct mlx4_db_pgdir *mlx4_alloc_db_pgdir(struct device *dma_device)
260 {
261 struct mlx4_db_pgdir *pgdir;
262
263 pgdir = kzalloc(sizeof *pgdir, GFP_KERNEL);
264 if (!pgdir)
265 return NULL;
266
267 bitmap_fill(pgdir->order1, MLX4_DB_PER_PAGE / 2);
268 pgdir->bits[0] = pgdir->order0;
269 pgdir->bits[1] = pgdir->order1;
270 pgdir->db_page = dma_alloc_coherent(dma_device, PAGE_SIZE,
271 &pgdir->db_dma, GFP_KERNEL);
272 if (!pgdir->db_page) {
273 kfree(pgdir);
274 return NULL;
275 }
276
277 return pgdir;
278 }
279
mlx4_alloc_db_from_pgdir(struct mlx4_db_pgdir * pgdir,struct mlx4_db * db,int order)280 static int mlx4_alloc_db_from_pgdir(struct mlx4_db_pgdir *pgdir,
281 struct mlx4_db *db, int order)
282 {
283 int o;
284 int i;
285
286 for (o = order; o <= 1; ++o) {
287 i = find_first_bit(pgdir->bits[o], MLX4_DB_PER_PAGE >> o);
288 if (i < MLX4_DB_PER_PAGE >> o)
289 goto found;
290 }
291
292 return -ENOMEM;
293
294 found:
295 clear_bit(i, pgdir->bits[o]);
296
297 i <<= o;
298
299 if (o > order)
300 set_bit(i ^ 1, pgdir->bits[order]);
301
302 db->u.pgdir = pgdir;
303 db->index = i;
304 db->db = pgdir->db_page + db->index;
305 db->dma = pgdir->db_dma + db->index * 4;
306 db->order = order;
307
308 return 0;
309 }
310
mlx4_db_alloc(struct mlx4_dev * dev,struct mlx4_db * db,int order)311 int mlx4_db_alloc(struct mlx4_dev *dev, struct mlx4_db *db, int order)
312 {
313 struct mlx4_priv *priv = mlx4_priv(dev);
314 struct mlx4_db_pgdir *pgdir;
315 int ret = 0;
316
317 mutex_lock(&priv->pgdir_mutex);
318
319 list_for_each_entry(pgdir, &priv->pgdir_list, list)
320 if (!mlx4_alloc_db_from_pgdir(pgdir, db, order))
321 goto out;
322
323 pgdir = mlx4_alloc_db_pgdir(&(dev->pdev->dev));
324 if (!pgdir) {
325 ret = -ENOMEM;
326 goto out;
327 }
328
329 list_add(&pgdir->list, &priv->pgdir_list);
330
331 /* This should never fail -- we just allocated an empty page: */
332 WARN_ON(mlx4_alloc_db_from_pgdir(pgdir, db, order));
333
334 out:
335 mutex_unlock(&priv->pgdir_mutex);
336
337 return ret;
338 }
339 EXPORT_SYMBOL_GPL(mlx4_db_alloc);
340
mlx4_db_free(struct mlx4_dev * dev,struct mlx4_db * db)341 void mlx4_db_free(struct mlx4_dev *dev, struct mlx4_db *db)
342 {
343 struct mlx4_priv *priv = mlx4_priv(dev);
344 int o;
345 int i;
346
347 mutex_lock(&priv->pgdir_mutex);
348
349 o = db->order;
350 i = db->index;
351
352 if (db->order == 0 && test_bit(i ^ 1, db->u.pgdir->order0)) {
353 clear_bit(i ^ 1, db->u.pgdir->order0);
354 ++o;
355 }
356 i >>= o;
357 set_bit(i, db->u.pgdir->bits[o]);
358
359 if (bitmap_full(db->u.pgdir->order1, MLX4_DB_PER_PAGE / 2)) {
360 dma_free_coherent(&(dev->pdev->dev), PAGE_SIZE,
361 db->u.pgdir->db_page, db->u.pgdir->db_dma);
362 list_del(&db->u.pgdir->list);
363 kfree(db->u.pgdir);
364 }
365
366 mutex_unlock(&priv->pgdir_mutex);
367 }
368 EXPORT_SYMBOL_GPL(mlx4_db_free);
369
mlx4_alloc_hwq_res(struct mlx4_dev * dev,struct mlx4_hwq_resources * wqres,int size,int max_direct)370 int mlx4_alloc_hwq_res(struct mlx4_dev *dev, struct mlx4_hwq_resources *wqres,
371 int size, int max_direct)
372 {
373 int err;
374
375 err = mlx4_db_alloc(dev, &wqres->db, 1);
376 if (err)
377 return err;
378
379 *wqres->db.db = 0;
380
381 err = mlx4_buf_alloc(dev, size, max_direct, &wqres->buf);
382 if (err)
383 goto err_db;
384
385 err = mlx4_mtt_init(dev, wqres->buf.npages, wqres->buf.page_shift,
386 &wqres->mtt);
387 if (err)
388 goto err_buf;
389
390 err = mlx4_buf_write_mtt(dev, &wqres->mtt, &wqres->buf);
391 if (err)
392 goto err_mtt;
393
394 return 0;
395
396 err_mtt:
397 mlx4_mtt_cleanup(dev, &wqres->mtt);
398 err_buf:
399 mlx4_buf_free(dev, size, &wqres->buf);
400 err_db:
401 mlx4_db_free(dev, &wqres->db);
402
403 return err;
404 }
405 EXPORT_SYMBOL_GPL(mlx4_alloc_hwq_res);
406
mlx4_free_hwq_res(struct mlx4_dev * dev,struct mlx4_hwq_resources * wqres,int size)407 void mlx4_free_hwq_res(struct mlx4_dev *dev, struct mlx4_hwq_resources *wqres,
408 int size)
409 {
410 mlx4_mtt_cleanup(dev, &wqres->mtt);
411 mlx4_buf_free(dev, size, &wqres->buf);
412 mlx4_db_free(dev, &wqres->db);
413 }
414 EXPORT_SYMBOL_GPL(mlx4_free_hwq_res);
415