1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1994 - 1999, 2000 by Ralf Baechle and others.
7  * Copyright (C) 2005, 2006 by Ralf Baechle (ralf@linux-mips.org)
8  * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
9  * Copyright (C) 2004 Thiemo Seufer
10  * Copyright (C) 2013  Imagination Technologies Ltd.
11  */
12 #include <linux/cpu.h>
13 #include <linux/errno.h>
14 #include <linux/init.h>
15 #include <linux/kallsyms.h>
16 #include <linux/kernel.h>
17 #include <linux/nmi.h>
18 #include <linux/personality.h>
19 #include <linux/prctl.h>
20 #include <linux/random.h>
21 #include <linux/sched.h>
22 #include <linux/sched/debug.h>
23 #include <linux/sched/task_stack.h>
24 
25 #include <asm/abi.h>
26 #include <asm/asm.h>
27 #include <asm/dsemul.h>
28 #include <asm/dsp.h>
29 #include <asm/exec.h>
30 #include <asm/fpu.h>
31 #include <asm/inst.h>
32 #include <asm/irq.h>
33 #include <asm/irq_regs.h>
34 #include <asm/isadep.h>
35 #include <asm/msa.h>
36 #include <asm/mips-cps.h>
37 #include <asm/mipsregs.h>
38 #include <asm/processor.h>
39 #include <asm/reg.h>
40 #include <asm/stacktrace.h>
41 
42 #ifdef CONFIG_HOTPLUG_CPU
arch_cpu_idle_dead(void)43 void __noreturn arch_cpu_idle_dead(void)
44 {
45 	play_dead();
46 }
47 #endif
48 
49 asmlinkage void ret_from_fork(void);
50 asmlinkage void ret_from_kernel_thread(void);
51 
start_thread(struct pt_regs * regs,unsigned long pc,unsigned long sp)52 void start_thread(struct pt_regs * regs, unsigned long pc, unsigned long sp)
53 {
54 	unsigned long status;
55 
56 	/* New thread loses kernel privileges. */
57 	status = regs->cp0_status & ~(ST0_CU0|ST0_CU1|ST0_CU2|ST0_FR|KU_MASK);
58 	status |= KU_USER;
59 	regs->cp0_status = status;
60 	lose_fpu(0);
61 	clear_thread_flag(TIF_MSA_CTX_LIVE);
62 	clear_used_math();
63 #ifdef CONFIG_MIPS_FP_SUPPORT
64 	atomic_set(&current->thread.bd_emu_frame, BD_EMUFRAME_NONE);
65 #endif
66 	init_dsp();
67 	regs->cp0_epc = pc;
68 	regs->regs[29] = sp;
69 }
70 
exit_thread(struct task_struct * tsk)71 void exit_thread(struct task_struct *tsk)
72 {
73 	/*
74 	 * User threads may have allocated a delay slot emulation frame.
75 	 * If so, clean up that allocation.
76 	 */
77 	if (!(current->flags & PF_KTHREAD))
78 		dsemul_thread_cleanup(tsk);
79 }
80 
arch_dup_task_struct(struct task_struct * dst,struct task_struct * src)81 int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
82 {
83 	/*
84 	 * Save any process state which is live in hardware registers to the
85 	 * parent context prior to duplication. This prevents the new child
86 	 * state becoming stale if the parent is preempted before copy_thread()
87 	 * gets a chance to save the parent's live hardware registers to the
88 	 * child context.
89 	 */
90 	preempt_disable();
91 
92 	if (is_msa_enabled())
93 		save_msa(current);
94 	else if (is_fpu_owner())
95 		_save_fp(current);
96 
97 	save_dsp(current);
98 
99 	preempt_enable();
100 
101 	*dst = *src;
102 	return 0;
103 }
104 
105 /*
106  * Copy architecture-specific thread state
107  */
copy_thread(struct task_struct * p,const struct kernel_clone_args * args)108 int copy_thread(struct task_struct *p, const struct kernel_clone_args *args)
109 {
110 	unsigned long clone_flags = args->flags;
111 	unsigned long usp = args->stack;
112 	unsigned long tls = args->tls;
113 	struct thread_info *ti = task_thread_info(p);
114 	struct pt_regs *childregs, *regs = current_pt_regs();
115 	unsigned long childksp;
116 
117 	childksp = (unsigned long)task_stack_page(p) + THREAD_SIZE - 32;
118 
119 	/* set up new TSS. */
120 	childregs = (struct pt_regs *) childksp - 1;
121 	/*  Put the stack after the struct pt_regs.  */
122 	childksp = (unsigned long) childregs;
123 	p->thread.cp0_status = (read_c0_status() & ~(ST0_CU2|ST0_CU1)) | ST0_KERNEL_CUMASK;
124 
125 	/*
126 	 * New tasks lose permission to use the fpu. This accelerates context
127 	 * switching for most programs since they don't use the fpu.
128 	 */
129 	clear_tsk_thread_flag(p, TIF_USEDFPU);
130 	clear_tsk_thread_flag(p, TIF_USEDMSA);
131 	clear_tsk_thread_flag(p, TIF_MSA_CTX_LIVE);
132 
133 #ifdef CONFIG_MIPS_MT_FPAFF
134 	clear_tsk_thread_flag(p, TIF_FPUBOUND);
135 #endif /* CONFIG_MIPS_MT_FPAFF */
136 
137 	if (unlikely(args->fn)) {
138 		/* kernel thread */
139 		unsigned long status = p->thread.cp0_status;
140 		memset(childregs, 0, sizeof(struct pt_regs));
141 		p->thread.reg16 = (unsigned long)args->fn;
142 		p->thread.reg17 = (unsigned long)args->fn_arg;
143 		p->thread.reg29 = childksp;
144 		p->thread.reg31 = (unsigned long) ret_from_kernel_thread;
145 #if defined(CONFIG_CPU_R3000)
146 		status = (status & ~(ST0_KUP | ST0_IEP | ST0_IEC)) |
147 			 ((status & (ST0_KUC | ST0_IEC)) << 2);
148 #else
149 		status |= ST0_EXL;
150 #endif
151 		childregs->cp0_status = status;
152 		return 0;
153 	}
154 
155 	/* user thread */
156 	*childregs = *regs;
157 	childregs->regs[7] = 0; /* Clear error flag */
158 	childregs->regs[2] = 0; /* Child gets zero as return value */
159 	if (usp)
160 		childregs->regs[29] = usp;
161 
162 	p->thread.reg29 = (unsigned long) childregs;
163 	p->thread.reg31 = (unsigned long) ret_from_fork;
164 
165 	childregs->cp0_status &= ~(ST0_CU2|ST0_CU1);
166 
167 #ifdef CONFIG_MIPS_FP_SUPPORT
168 	atomic_set(&p->thread.bd_emu_frame, BD_EMUFRAME_NONE);
169 #endif
170 
171 	if (clone_flags & CLONE_SETTLS)
172 		ti->tp_value = tls;
173 
174 	return 0;
175 }
176 
177 #ifdef CONFIG_STACKPROTECTOR
178 #include <linux/stackprotector.h>
179 unsigned long __stack_chk_guard __read_mostly;
180 EXPORT_SYMBOL(__stack_chk_guard);
181 #endif
182 
183 struct mips_frame_info {
184 	void		*func;
185 	unsigned long	func_size;
186 	int		frame_size;
187 	int		pc_offset;
188 };
189 
190 #define J_TARGET(pc,target)	\
191 		(((unsigned long)(pc) & 0xf0000000) | ((target) << 2))
192 
is_jr_ra_ins(union mips_instruction * ip)193 static inline int is_jr_ra_ins(union mips_instruction *ip)
194 {
195 #ifdef CONFIG_CPU_MICROMIPS
196 	/*
197 	 * jr16 ra
198 	 * jr ra
199 	 */
200 	if (mm_insn_16bit(ip->word >> 16)) {
201 		if (ip->mm16_r5_format.opcode == mm_pool16c_op &&
202 		    ip->mm16_r5_format.rt == mm_jr16_op &&
203 		    ip->mm16_r5_format.imm == 31)
204 			return 1;
205 		return 0;
206 	}
207 
208 	if (ip->r_format.opcode == mm_pool32a_op &&
209 	    ip->r_format.func == mm_pool32axf_op &&
210 	    ((ip->u_format.uimmediate >> 6) & GENMASK(9, 0)) == mm_jalr_op &&
211 	    ip->r_format.rt == 31)
212 		return 1;
213 	return 0;
214 #else
215 	if (ip->r_format.opcode == spec_op &&
216 	    ip->r_format.func == jr_op &&
217 	    ip->r_format.rs == 31)
218 		return 1;
219 	return 0;
220 #endif
221 }
222 
is_ra_save_ins(union mips_instruction * ip,int * poff)223 static inline int is_ra_save_ins(union mips_instruction *ip, int *poff)
224 {
225 #ifdef CONFIG_CPU_MICROMIPS
226 	/*
227 	 * swsp ra,offset
228 	 * swm16 reglist,offset(sp)
229 	 * swm32 reglist,offset(sp)
230 	 * sw32 ra,offset(sp)
231 	 * jradiussp - NOT SUPPORTED
232 	 *
233 	 * microMIPS is way more fun...
234 	 */
235 	if (mm_insn_16bit(ip->word >> 16)) {
236 		switch (ip->mm16_r5_format.opcode) {
237 		case mm_swsp16_op:
238 			if (ip->mm16_r5_format.rt != 31)
239 				return 0;
240 
241 			*poff = ip->mm16_r5_format.imm;
242 			*poff = (*poff << 2) / sizeof(ulong);
243 			return 1;
244 
245 		case mm_pool16c_op:
246 			switch (ip->mm16_m_format.func) {
247 			case mm_swm16_op:
248 				*poff = ip->mm16_m_format.imm;
249 				*poff += 1 + ip->mm16_m_format.rlist;
250 				*poff = (*poff << 2) / sizeof(ulong);
251 				return 1;
252 
253 			default:
254 				return 0;
255 			}
256 
257 		default:
258 			return 0;
259 		}
260 	}
261 
262 	switch (ip->i_format.opcode) {
263 	case mm_sw32_op:
264 		if (ip->i_format.rs != 29)
265 			return 0;
266 		if (ip->i_format.rt != 31)
267 			return 0;
268 
269 		*poff = ip->i_format.simmediate / sizeof(ulong);
270 		return 1;
271 
272 	case mm_pool32b_op:
273 		switch (ip->mm_m_format.func) {
274 		case mm_swm32_func:
275 			if (ip->mm_m_format.rd < 0x10)
276 				return 0;
277 			if (ip->mm_m_format.base != 29)
278 				return 0;
279 
280 			*poff = ip->mm_m_format.simmediate;
281 			*poff += (ip->mm_m_format.rd & 0xf) * sizeof(u32);
282 			*poff /= sizeof(ulong);
283 			return 1;
284 		default:
285 			return 0;
286 		}
287 
288 	default:
289 		return 0;
290 	}
291 #else
292 	/* sw / sd $ra, offset($sp) */
293 	if ((ip->i_format.opcode == sw_op || ip->i_format.opcode == sd_op) &&
294 		ip->i_format.rs == 29 && ip->i_format.rt == 31) {
295 		*poff = ip->i_format.simmediate / sizeof(ulong);
296 		return 1;
297 	}
298 #ifdef CONFIG_CPU_LOONGSON64
299 	if ((ip->loongson3_lswc2_format.opcode == swc2_op) &&
300 		      (ip->loongson3_lswc2_format.ls == 1) &&
301 		      (ip->loongson3_lswc2_format.fr == 0) &&
302 		      (ip->loongson3_lswc2_format.base == 29)) {
303 		if (ip->loongson3_lswc2_format.rt == 31) {
304 			*poff = ip->loongson3_lswc2_format.offset << 1;
305 			return 1;
306 		}
307 		if (ip->loongson3_lswc2_format.rq == 31) {
308 			*poff = (ip->loongson3_lswc2_format.offset << 1) + 1;
309 			return 1;
310 		}
311 	}
312 #endif
313 	return 0;
314 #endif
315 }
316 
is_jump_ins(union mips_instruction * ip)317 static inline int is_jump_ins(union mips_instruction *ip)
318 {
319 #ifdef CONFIG_CPU_MICROMIPS
320 	/*
321 	 * jr16,jrc,jalr16,jalr16
322 	 * jal
323 	 * jalr/jr,jalr.hb/jr.hb,jalrs,jalrs.hb
324 	 * jraddiusp - NOT SUPPORTED
325 	 *
326 	 * microMIPS is kind of more fun...
327 	 */
328 	if (mm_insn_16bit(ip->word >> 16)) {
329 		if ((ip->mm16_r5_format.opcode == mm_pool16c_op &&
330 		    (ip->mm16_r5_format.rt & mm_jr16_op) == mm_jr16_op))
331 			return 1;
332 		return 0;
333 	}
334 
335 	if (ip->j_format.opcode == mm_j32_op)
336 		return 1;
337 	if (ip->j_format.opcode == mm_jal32_op)
338 		return 1;
339 	if (ip->r_format.opcode != mm_pool32a_op ||
340 			ip->r_format.func != mm_pool32axf_op)
341 		return 0;
342 	return ((ip->u_format.uimmediate >> 6) & mm_jalr_op) == mm_jalr_op;
343 #else
344 	if (ip->j_format.opcode == j_op)
345 		return 1;
346 	if (ip->j_format.opcode == jal_op)
347 		return 1;
348 	if (ip->r_format.opcode != spec_op)
349 		return 0;
350 	return ip->r_format.func == jalr_op || ip->r_format.func == jr_op;
351 #endif
352 }
353 
is_sp_move_ins(union mips_instruction * ip,int * frame_size)354 static inline int is_sp_move_ins(union mips_instruction *ip, int *frame_size)
355 {
356 #ifdef CONFIG_CPU_MICROMIPS
357 	unsigned short tmp;
358 
359 	/*
360 	 * addiusp -imm
361 	 * addius5 sp,-imm
362 	 * addiu32 sp,sp,-imm
363 	 * jradiussp - NOT SUPPORTED
364 	 *
365 	 * microMIPS is not more fun...
366 	 */
367 	if (mm_insn_16bit(ip->word >> 16)) {
368 		if (ip->mm16_r3_format.opcode == mm_pool16d_op &&
369 		    ip->mm16_r3_format.simmediate & mm_addiusp_func) {
370 			tmp = ip->mm_b0_format.simmediate >> 1;
371 			tmp = ((tmp & 0x1ff) ^ 0x100) - 0x100;
372 			if ((tmp + 2) < 4) /* 0x0,0x1,0x1fe,0x1ff are special */
373 				tmp ^= 0x100;
374 			*frame_size = -(signed short)(tmp << 2);
375 			return 1;
376 		}
377 		if (ip->mm16_r5_format.opcode == mm_pool16d_op &&
378 		    ip->mm16_r5_format.rt == 29) {
379 			tmp = ip->mm16_r5_format.imm >> 1;
380 			*frame_size = -(signed short)(tmp & 0xf);
381 			return 1;
382 		}
383 		return 0;
384 	}
385 
386 	if (ip->mm_i_format.opcode == mm_addiu32_op &&
387 	    ip->mm_i_format.rt == 29 && ip->mm_i_format.rs == 29) {
388 		*frame_size = -ip->i_format.simmediate;
389 		return 1;
390 	}
391 #else
392 	/* addiu/daddiu sp,sp,-imm */
393 	if (ip->i_format.rs != 29 || ip->i_format.rt != 29)
394 		return 0;
395 
396 	if (ip->i_format.opcode == addiu_op ||
397 	    ip->i_format.opcode == daddiu_op) {
398 		*frame_size = -ip->i_format.simmediate;
399 		return 1;
400 	}
401 #endif
402 	return 0;
403 }
404 
get_frame_info(struct mips_frame_info * info)405 static int get_frame_info(struct mips_frame_info *info)
406 {
407 	bool is_mmips = IS_ENABLED(CONFIG_CPU_MICROMIPS);
408 	union mips_instruction insn, *ip, *ip_end;
409 	unsigned int last_insn_size = 0;
410 	bool saw_jump = false;
411 
412 	info->pc_offset = -1;
413 	info->frame_size = 0;
414 
415 	ip = (void *)msk_isa16_mode((ulong)info->func);
416 	if (!ip)
417 		goto err;
418 
419 	ip_end = (void *)ip + (info->func_size ? info->func_size : 512);
420 
421 	while (ip < ip_end) {
422 		ip = (void *)ip + last_insn_size;
423 
424 		if (is_mmips && mm_insn_16bit(ip->halfword[0])) {
425 			insn.word = ip->halfword[0] << 16;
426 			last_insn_size = 2;
427 		} else if (is_mmips) {
428 			insn.word = ip->halfword[0] << 16 | ip->halfword[1];
429 			last_insn_size = 4;
430 		} else {
431 			insn.word = ip->word;
432 			last_insn_size = 4;
433 		}
434 
435 		if (is_jr_ra_ins(ip)) {
436 			break;
437 		} else if (!info->frame_size) {
438 			is_sp_move_ins(&insn, &info->frame_size);
439 			continue;
440 		} else if (!saw_jump && is_jump_ins(ip)) {
441 			/*
442 			 * If we see a jump instruction, we are finished
443 			 * with the frame save.
444 			 *
445 			 * Some functions can have a shortcut return at
446 			 * the beginning of the function, so don't start
447 			 * looking for jump instruction until we see the
448 			 * frame setup.
449 			 *
450 			 * The RA save instruction can get put into the
451 			 * delay slot of the jump instruction, so look
452 			 * at the next instruction, too.
453 			 */
454 			saw_jump = true;
455 			continue;
456 		}
457 		if (info->pc_offset == -1 &&
458 		    is_ra_save_ins(&insn, &info->pc_offset))
459 			break;
460 		if (saw_jump)
461 			break;
462 	}
463 	if (info->frame_size && info->pc_offset >= 0) /* nested */
464 		return 0;
465 	if (info->pc_offset < 0) /* leaf */
466 		return 1;
467 	/* prologue seems bogus... */
468 err:
469 	return -1;
470 }
471 
472 static struct mips_frame_info schedule_mfi __read_mostly;
473 
474 #ifdef CONFIG_KALLSYMS
get___schedule_addr(void)475 static unsigned long get___schedule_addr(void)
476 {
477 	return kallsyms_lookup_name("__schedule");
478 }
479 #else
get___schedule_addr(void)480 static unsigned long get___schedule_addr(void)
481 {
482 	union mips_instruction *ip = (void *)schedule;
483 	int max_insns = 8;
484 	int i;
485 
486 	for (i = 0; i < max_insns; i++, ip++) {
487 		if (ip->j_format.opcode == j_op)
488 			return J_TARGET(ip, ip->j_format.target);
489 	}
490 	return 0;
491 }
492 #endif
493 
frame_info_init(void)494 static int __init frame_info_init(void)
495 {
496 	unsigned long size = 0;
497 #ifdef CONFIG_KALLSYMS
498 	unsigned long ofs;
499 #endif
500 	unsigned long addr;
501 
502 	addr = get___schedule_addr();
503 	if (!addr)
504 		addr = (unsigned long)schedule;
505 
506 #ifdef CONFIG_KALLSYMS
507 	kallsyms_lookup_size_offset(addr, &size, &ofs);
508 #endif
509 	schedule_mfi.func = (void *)addr;
510 	schedule_mfi.func_size = size;
511 
512 	get_frame_info(&schedule_mfi);
513 
514 	/*
515 	 * Without schedule() frame info, result given by
516 	 * thread_saved_pc() and __get_wchan() are not reliable.
517 	 */
518 	if (schedule_mfi.pc_offset < 0)
519 		printk("Can't analyze schedule() prologue at %p\n", schedule);
520 
521 	return 0;
522 }
523 
524 arch_initcall(frame_info_init);
525 
526 /*
527  * Return saved PC of a blocked thread.
528  */
thread_saved_pc(struct task_struct * tsk)529 static unsigned long thread_saved_pc(struct task_struct *tsk)
530 {
531 	struct thread_struct *t = &tsk->thread;
532 
533 	/* New born processes are a special case */
534 	if (t->reg31 == (unsigned long) ret_from_fork)
535 		return t->reg31;
536 	if (schedule_mfi.pc_offset < 0)
537 		return 0;
538 	return ((unsigned long *)t->reg29)[schedule_mfi.pc_offset];
539 }
540 
541 
542 #ifdef CONFIG_KALLSYMS
543 /* generic stack unwinding function */
unwind_stack_by_address(unsigned long stack_page,unsigned long * sp,unsigned long pc,unsigned long * ra)544 unsigned long notrace unwind_stack_by_address(unsigned long stack_page,
545 					      unsigned long *sp,
546 					      unsigned long pc,
547 					      unsigned long *ra)
548 {
549 	unsigned long low, high, irq_stack_high;
550 	struct mips_frame_info info;
551 	unsigned long size, ofs;
552 	struct pt_regs *regs;
553 	int leaf;
554 
555 	if (!stack_page)
556 		return 0;
557 
558 	/*
559 	 * IRQ stacks start at IRQ_STACK_START
560 	 * task stacks at THREAD_SIZE - 32
561 	 */
562 	low = stack_page;
563 	if (!preemptible() && on_irq_stack(raw_smp_processor_id(), *sp)) {
564 		high = stack_page + IRQ_STACK_START;
565 		irq_stack_high = high;
566 	} else {
567 		high = stack_page + THREAD_SIZE - 32;
568 		irq_stack_high = 0;
569 	}
570 
571 	/*
572 	 * If we reached the top of the interrupt stack, start unwinding
573 	 * the interrupted task stack.
574 	 */
575 	if (unlikely(*sp == irq_stack_high)) {
576 		unsigned long task_sp = *(unsigned long *)*sp;
577 
578 		/*
579 		 * Check that the pointer saved in the IRQ stack head points to
580 		 * something within the stack of the current task
581 		 */
582 		if (!object_is_on_stack((void *)task_sp))
583 			return 0;
584 
585 		/*
586 		 * Follow pointer to tasks kernel stack frame where interrupted
587 		 * state was saved.
588 		 */
589 		regs = (struct pt_regs *)task_sp;
590 		pc = regs->cp0_epc;
591 		if (!user_mode(regs) && __kernel_text_address(pc)) {
592 			*sp = regs->regs[29];
593 			*ra = regs->regs[31];
594 			return pc;
595 		}
596 		return 0;
597 	}
598 	if (!kallsyms_lookup_size_offset(pc, &size, &ofs))
599 		return 0;
600 	/*
601 	 * Return ra if an exception occurred at the first instruction
602 	 */
603 	if (unlikely(ofs == 0)) {
604 		pc = *ra;
605 		*ra = 0;
606 		return pc;
607 	}
608 
609 	info.func = (void *)(pc - ofs);
610 	info.func_size = ofs;	/* analyze from start to ofs */
611 	leaf = get_frame_info(&info);
612 	if (leaf < 0)
613 		return 0;
614 
615 	if (*sp < low || *sp + info.frame_size > high)
616 		return 0;
617 
618 	if (leaf)
619 		/*
620 		 * For some extreme cases, get_frame_info() can
621 		 * consider wrongly a nested function as a leaf
622 		 * one. In that cases avoid to return always the
623 		 * same value.
624 		 */
625 		pc = pc != *ra ? *ra : 0;
626 	else
627 		pc = ((unsigned long *)(*sp))[info.pc_offset];
628 
629 	*sp += info.frame_size;
630 	*ra = 0;
631 	return __kernel_text_address(pc) ? pc : 0;
632 }
633 EXPORT_SYMBOL(unwind_stack_by_address);
634 
635 /* used by show_backtrace() */
unwind_stack(struct task_struct * task,unsigned long * sp,unsigned long pc,unsigned long * ra)636 unsigned long unwind_stack(struct task_struct *task, unsigned long *sp,
637 			   unsigned long pc, unsigned long *ra)
638 {
639 	unsigned long stack_page = 0;
640 	int cpu;
641 
642 	for_each_possible_cpu(cpu) {
643 		if (on_irq_stack(cpu, *sp)) {
644 			stack_page = (unsigned long)irq_stack[cpu];
645 			break;
646 		}
647 	}
648 
649 	if (!stack_page)
650 		stack_page = (unsigned long)task_stack_page(task);
651 
652 	return unwind_stack_by_address(stack_page, sp, pc, ra);
653 }
654 #endif
655 
656 /*
657  * __get_wchan - a maintenance nightmare^W^Wpain in the ass ...
658  */
__get_wchan(struct task_struct * task)659 unsigned long __get_wchan(struct task_struct *task)
660 {
661 	unsigned long pc = 0;
662 #ifdef CONFIG_KALLSYMS
663 	unsigned long sp;
664 	unsigned long ra = 0;
665 #endif
666 
667 	if (!task_stack_page(task))
668 		goto out;
669 
670 	pc = thread_saved_pc(task);
671 
672 #ifdef CONFIG_KALLSYMS
673 	sp = task->thread.reg29 + schedule_mfi.frame_size;
674 
675 	while (in_sched_functions(pc))
676 		pc = unwind_stack(task, &sp, pc, &ra);
677 #endif
678 
679 out:
680 	return pc;
681 }
682 
mips_stack_top(void)683 unsigned long mips_stack_top(void)
684 {
685 	unsigned long top = TASK_SIZE & PAGE_MASK;
686 
687 	if (IS_ENABLED(CONFIG_MIPS_FP_SUPPORT)) {
688 		/* One page for branch delay slot "emulation" */
689 		top -= PAGE_SIZE;
690 	}
691 
692 	/* Space for the VDSO, data page & GIC user page */
693 	top -= PAGE_ALIGN(current->thread.abi->vdso->size);
694 	top -= PAGE_SIZE;
695 	top -= mips_gic_present() ? PAGE_SIZE : 0;
696 
697 	/* Space for cache colour alignment */
698 	if (cpu_has_dc_aliases)
699 		top -= shm_align_mask + 1;
700 
701 	/* Space to randomize the VDSO base */
702 	if (current->flags & PF_RANDOMIZE)
703 		top -= VDSO_RANDOMIZE_SIZE;
704 
705 	return top;
706 }
707 
708 /*
709  * Don't forget that the stack pointer must be aligned on a 8 bytes
710  * boundary for 32-bits ABI and 16 bytes for 64-bits ABI.
711  */
arch_align_stack(unsigned long sp)712 unsigned long arch_align_stack(unsigned long sp)
713 {
714 	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
715 		sp -= get_random_u32_below(PAGE_SIZE);
716 
717 	return sp & ALMASK;
718 }
719 
720 static struct cpumask backtrace_csd_busy;
721 
handle_backtrace(void * info)722 static void handle_backtrace(void *info)
723 {
724 	nmi_cpu_backtrace(get_irq_regs());
725 	cpumask_clear_cpu(smp_processor_id(), &backtrace_csd_busy);
726 }
727 
728 static DEFINE_PER_CPU(call_single_data_t, backtrace_csd) =
729 	CSD_INIT(handle_backtrace, NULL);
730 
raise_backtrace(cpumask_t * mask)731 static void raise_backtrace(cpumask_t *mask)
732 {
733 	call_single_data_t *csd;
734 	int cpu;
735 
736 	for_each_cpu(cpu, mask) {
737 		/*
738 		 * If we previously sent an IPI to the target CPU & it hasn't
739 		 * cleared its bit in the busy cpumask then it didn't handle
740 		 * our previous IPI & it's not safe for us to reuse the
741 		 * call_single_data_t.
742 		 */
743 		if (cpumask_test_and_set_cpu(cpu, &backtrace_csd_busy)) {
744 			pr_warn("Unable to send backtrace IPI to CPU%u - perhaps it hung?\n",
745 				cpu);
746 			continue;
747 		}
748 
749 		csd = &per_cpu(backtrace_csd, cpu);
750 		smp_call_function_single_async(cpu, csd);
751 	}
752 }
753 
arch_trigger_cpumask_backtrace(const cpumask_t * mask,int exclude_cpu)754 void arch_trigger_cpumask_backtrace(const cpumask_t *mask, int exclude_cpu)
755 {
756 	nmi_trigger_cpumask_backtrace(mask, exclude_cpu, raise_backtrace);
757 }
758 
mips_get_process_fp_mode(struct task_struct * task)759 int mips_get_process_fp_mode(struct task_struct *task)
760 {
761 	int value = 0;
762 
763 	if (!test_tsk_thread_flag(task, TIF_32BIT_FPREGS))
764 		value |= PR_FP_MODE_FR;
765 	if (test_tsk_thread_flag(task, TIF_HYBRID_FPREGS))
766 		value |= PR_FP_MODE_FRE;
767 
768 	return value;
769 }
770 
prepare_for_fp_mode_switch(void * unused)771 static long prepare_for_fp_mode_switch(void *unused)
772 {
773 	/*
774 	 * This is icky, but we use this to simply ensure that all CPUs have
775 	 * context switched, regardless of whether they were previously running
776 	 * kernel or user code. This ensures that no CPU that a mode-switching
777 	 * program may execute on keeps its FPU enabled (& in the old mode)
778 	 * throughout the mode switch.
779 	 */
780 	return 0;
781 }
782 
mips_set_process_fp_mode(struct task_struct * task,unsigned int value)783 int mips_set_process_fp_mode(struct task_struct *task, unsigned int value)
784 {
785 	const unsigned int known_bits = PR_FP_MODE_FR | PR_FP_MODE_FRE;
786 	struct task_struct *t;
787 	struct cpumask process_cpus;
788 	int cpu;
789 
790 	/* If nothing to change, return right away, successfully.  */
791 	if (value == mips_get_process_fp_mode(task))
792 		return 0;
793 
794 	/* Only accept a mode change if 64-bit FP enabled for o32.  */
795 	if (!IS_ENABLED(CONFIG_MIPS_O32_FP64_SUPPORT))
796 		return -EOPNOTSUPP;
797 
798 	/* And only for o32 tasks.  */
799 	if (IS_ENABLED(CONFIG_64BIT) && !test_thread_flag(TIF_32BIT_REGS))
800 		return -EOPNOTSUPP;
801 
802 	/* Check the value is valid */
803 	if (value & ~known_bits)
804 		return -EOPNOTSUPP;
805 
806 	/* Setting FRE without FR is not supported.  */
807 	if ((value & (PR_FP_MODE_FR | PR_FP_MODE_FRE)) == PR_FP_MODE_FRE)
808 		return -EOPNOTSUPP;
809 
810 	/* Avoid inadvertently triggering emulation */
811 	if ((value & PR_FP_MODE_FR) && raw_cpu_has_fpu &&
812 	    !(raw_current_cpu_data.fpu_id & MIPS_FPIR_F64))
813 		return -EOPNOTSUPP;
814 	if ((value & PR_FP_MODE_FRE) && raw_cpu_has_fpu && !cpu_has_fre)
815 		return -EOPNOTSUPP;
816 
817 	/* FR = 0 not supported in MIPS R6 */
818 	if (!(value & PR_FP_MODE_FR) && raw_cpu_has_fpu && cpu_has_mips_r6)
819 		return -EOPNOTSUPP;
820 
821 	/* Indicate the new FP mode in each thread */
822 	for_each_thread(task, t) {
823 		/* Update desired FP register width */
824 		if (value & PR_FP_MODE_FR) {
825 			clear_tsk_thread_flag(t, TIF_32BIT_FPREGS);
826 		} else {
827 			set_tsk_thread_flag(t, TIF_32BIT_FPREGS);
828 			clear_tsk_thread_flag(t, TIF_MSA_CTX_LIVE);
829 		}
830 
831 		/* Update desired FP single layout */
832 		if (value & PR_FP_MODE_FRE)
833 			set_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
834 		else
835 			clear_tsk_thread_flag(t, TIF_HYBRID_FPREGS);
836 	}
837 
838 	/*
839 	 * We need to ensure that all threads in the process have switched mode
840 	 * before returning, in order to allow userland to not worry about
841 	 * races. We can do this by forcing all CPUs that any thread in the
842 	 * process may be running on to schedule something else - in this case
843 	 * prepare_for_fp_mode_switch().
844 	 *
845 	 * We begin by generating a mask of all CPUs that any thread in the
846 	 * process may be running on.
847 	 */
848 	cpumask_clear(&process_cpus);
849 	for_each_thread(task, t)
850 		cpumask_set_cpu(task_cpu(t), &process_cpus);
851 
852 	/*
853 	 * Now we schedule prepare_for_fp_mode_switch() on each of those CPUs.
854 	 *
855 	 * The CPUs may have rescheduled already since we switched mode or
856 	 * generated the cpumask, but that doesn't matter. If the task in this
857 	 * process is scheduled out then our scheduling
858 	 * prepare_for_fp_mode_switch() will simply be redundant. If it's
859 	 * scheduled in then it will already have picked up the new FP mode
860 	 * whilst doing so.
861 	 */
862 	cpus_read_lock();
863 	for_each_cpu_and(cpu, &process_cpus, cpu_online_mask)
864 		work_on_cpu(cpu, prepare_for_fp_mode_switch, NULL);
865 	cpus_read_unlock();
866 
867 	return 0;
868 }
869 
870 #if defined(CONFIG_32BIT) || defined(CONFIG_MIPS32_O32)
mips_dump_regs32(u32 * uregs,const struct pt_regs * regs)871 void mips_dump_regs32(u32 *uregs, const struct pt_regs *regs)
872 {
873 	unsigned int i;
874 
875 	for (i = MIPS32_EF_R1; i <= MIPS32_EF_R31; i++) {
876 		/* k0/k1 are copied as zero. */
877 		if (i == MIPS32_EF_R26 || i == MIPS32_EF_R27)
878 			uregs[i] = 0;
879 		else
880 			uregs[i] = regs->regs[i - MIPS32_EF_R0];
881 	}
882 
883 	uregs[MIPS32_EF_LO] = regs->lo;
884 	uregs[MIPS32_EF_HI] = regs->hi;
885 	uregs[MIPS32_EF_CP0_EPC] = regs->cp0_epc;
886 	uregs[MIPS32_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
887 	uregs[MIPS32_EF_CP0_STATUS] = regs->cp0_status;
888 	uregs[MIPS32_EF_CP0_CAUSE] = regs->cp0_cause;
889 }
890 #endif /* CONFIG_32BIT || CONFIG_MIPS32_O32 */
891 
892 #ifdef CONFIG_64BIT
mips_dump_regs64(u64 * uregs,const struct pt_regs * regs)893 void mips_dump_regs64(u64 *uregs, const struct pt_regs *regs)
894 {
895 	unsigned int i;
896 
897 	for (i = MIPS64_EF_R1; i <= MIPS64_EF_R31; i++) {
898 		/* k0/k1 are copied as zero. */
899 		if (i == MIPS64_EF_R26 || i == MIPS64_EF_R27)
900 			uregs[i] = 0;
901 		else
902 			uregs[i] = regs->regs[i - MIPS64_EF_R0];
903 	}
904 
905 	uregs[MIPS64_EF_LO] = regs->lo;
906 	uregs[MIPS64_EF_HI] = regs->hi;
907 	uregs[MIPS64_EF_CP0_EPC] = regs->cp0_epc;
908 	uregs[MIPS64_EF_CP0_BADVADDR] = regs->cp0_badvaddr;
909 	uregs[MIPS64_EF_CP0_STATUS] = regs->cp0_status;
910 	uregs[MIPS64_EF_CP0_CAUSE] = regs->cp0_cause;
911 }
912 #endif /* CONFIG_64BIT */
913