1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *
4  * Copyright (C) 2019-2021 Paragon Software GmbH, All rights reserved.
5  *
6  */
7 
8 #include <linux/fs.h>
9 
10 #include "debug.h"
11 #include "ntfs.h"
12 #include "ntfs_fs.h"
13 
compare_attr(const struct ATTRIB * left,enum ATTR_TYPE type,const __le16 * name,u8 name_len,const u16 * upcase)14 static inline int compare_attr(const struct ATTRIB *left, enum ATTR_TYPE type,
15 			       const __le16 *name, u8 name_len,
16 			       const u16 *upcase)
17 {
18 	/* First, compare the type codes. */
19 	int diff = le32_to_cpu(left->type) - le32_to_cpu(type);
20 
21 	if (diff)
22 		return diff;
23 
24 	/* They have the same type code, so we have to compare the names. */
25 	return ntfs_cmp_names(attr_name(left), left->name_len, name, name_len,
26 			      upcase, true);
27 }
28 
29 /*
30  * mi_new_attt_id
31  *
32  * Return: Unused attribute id that is less than mrec->next_attr_id.
33  */
mi_new_attt_id(struct mft_inode * mi)34 static __le16 mi_new_attt_id(struct mft_inode *mi)
35 {
36 	u16 free_id, max_id, t16;
37 	struct MFT_REC *rec = mi->mrec;
38 	struct ATTRIB *attr;
39 	__le16 id;
40 
41 	id = rec->next_attr_id;
42 	free_id = le16_to_cpu(id);
43 	if (free_id < 0x7FFF) {
44 		rec->next_attr_id = cpu_to_le16(free_id + 1);
45 		return id;
46 	}
47 
48 	/* One record can store up to 1024/24 ~= 42 attributes. */
49 	free_id = 0;
50 	max_id = 0;
51 
52 	attr = NULL;
53 
54 	for (;;) {
55 		attr = mi_enum_attr(mi, attr);
56 		if (!attr) {
57 			rec->next_attr_id = cpu_to_le16(max_id + 1);
58 			mi->dirty = true;
59 			return cpu_to_le16(free_id);
60 		}
61 
62 		t16 = le16_to_cpu(attr->id);
63 		if (t16 == free_id) {
64 			free_id += 1;
65 			attr = NULL;
66 		} else if (max_id < t16)
67 			max_id = t16;
68 	}
69 }
70 
mi_get(struct ntfs_sb_info * sbi,CLST rno,struct mft_inode ** mi)71 int mi_get(struct ntfs_sb_info *sbi, CLST rno, struct mft_inode **mi)
72 {
73 	int err;
74 	struct mft_inode *m = kzalloc(sizeof(struct mft_inode), GFP_NOFS);
75 
76 	if (!m)
77 		return -ENOMEM;
78 
79 	err = mi_init(m, sbi, rno);
80 	if (err) {
81 		kfree(m);
82 		return err;
83 	}
84 
85 	err = mi_read(m, false);
86 	if (err) {
87 		mi_put(m);
88 		return err;
89 	}
90 
91 	*mi = m;
92 	return 0;
93 }
94 
mi_put(struct mft_inode * mi)95 void mi_put(struct mft_inode *mi)
96 {
97 	mi_clear(mi);
98 	kfree(mi);
99 }
100 
mi_init(struct mft_inode * mi,struct ntfs_sb_info * sbi,CLST rno)101 int mi_init(struct mft_inode *mi, struct ntfs_sb_info *sbi, CLST rno)
102 {
103 	mi->sbi = sbi;
104 	mi->rno = rno;
105 	mi->mrec = kmalloc(sbi->record_size, GFP_NOFS);
106 	if (!mi->mrec)
107 		return -ENOMEM;
108 
109 	return 0;
110 }
111 
112 /*
113  * mi_read - Read MFT data.
114  */
mi_read(struct mft_inode * mi,bool is_mft)115 int mi_read(struct mft_inode *mi, bool is_mft)
116 {
117 	int err;
118 	struct MFT_REC *rec = mi->mrec;
119 	struct ntfs_sb_info *sbi = mi->sbi;
120 	u32 bpr = sbi->record_size;
121 	u64 vbo = (u64)mi->rno << sbi->record_bits;
122 	struct ntfs_inode *mft_ni = sbi->mft.ni;
123 	struct runs_tree *run = mft_ni ? &mft_ni->file.run : NULL;
124 	struct rw_semaphore *rw_lock = NULL;
125 
126 	if (is_mounted(sbi)) {
127 		if (!is_mft) {
128 			rw_lock = &mft_ni->file.run_lock;
129 			down_read(rw_lock);
130 		}
131 	}
132 
133 	err = ntfs_read_bh(sbi, run, vbo, &rec->rhdr, bpr, &mi->nb);
134 	if (rw_lock)
135 		up_read(rw_lock);
136 	if (!err)
137 		goto ok;
138 
139 	if (err == -E_NTFS_FIXUP) {
140 		mi->dirty = true;
141 		goto ok;
142 	}
143 
144 	if (err != -ENOENT)
145 		goto out;
146 
147 	if (rw_lock) {
148 		ni_lock(mft_ni);
149 		down_write(rw_lock);
150 	}
151 	err = attr_load_runs_vcn(mft_ni, ATTR_DATA, NULL, 0, &mft_ni->file.run,
152 				 vbo >> sbi->cluster_bits);
153 	if (rw_lock) {
154 		up_write(rw_lock);
155 		ni_unlock(mft_ni);
156 	}
157 	if (err)
158 		goto out;
159 
160 	if (rw_lock)
161 		down_read(rw_lock);
162 	err = ntfs_read_bh(sbi, run, vbo, &rec->rhdr, bpr, &mi->nb);
163 	if (rw_lock)
164 		up_read(rw_lock);
165 
166 	if (err == -E_NTFS_FIXUP) {
167 		mi->dirty = true;
168 		goto ok;
169 	}
170 	if (err)
171 		goto out;
172 
173 ok:
174 	/* Check field 'total' only here. */
175 	if (le32_to_cpu(rec->total) != bpr) {
176 		err = -EINVAL;
177 		goto out;
178 	}
179 
180 	return 0;
181 
182 out:
183 	return err;
184 }
185 
mi_enum_attr(struct mft_inode * mi,struct ATTRIB * attr)186 struct ATTRIB *mi_enum_attr(struct mft_inode *mi, struct ATTRIB *attr)
187 {
188 	const struct MFT_REC *rec = mi->mrec;
189 	u32 used = le32_to_cpu(rec->used);
190 	u32 t32, off, asize;
191 	u16 t16;
192 
193 	if (!attr) {
194 		u32 total = le32_to_cpu(rec->total);
195 
196 		off = le16_to_cpu(rec->attr_off);
197 
198 		if (used > total)
199 			return NULL;
200 
201 		if (off >= used || off < MFTRECORD_FIXUP_OFFSET_1 ||
202 		    !IS_ALIGNED(off, 4)) {
203 			return NULL;
204 		}
205 
206 		/* Skip non-resident records. */
207 		if (!is_rec_inuse(rec))
208 			return NULL;
209 
210 		attr = Add2Ptr(rec, off);
211 	} else {
212 		/* Check if input attr inside record. */
213 		off = PtrOffset(rec, attr);
214 		if (off >= used)
215 			return NULL;
216 
217 		asize = le32_to_cpu(attr->size);
218 		if (asize < SIZEOF_RESIDENT) {
219 			/* Impossible 'cause we should not return such attribute. */
220 			return NULL;
221 		}
222 
223 		if (off + asize < off) {
224 			/* overflow check */
225 			return NULL;
226 		}
227 
228 		attr = Add2Ptr(attr, asize);
229 		off += asize;
230 	}
231 
232 	asize = le32_to_cpu(attr->size);
233 
234 	/* Can we use the first field (attr->type). */
235 	if (off + 8 > used) {
236 		static_assert(ALIGN(sizeof(enum ATTR_TYPE), 8) == 8);
237 		return NULL;
238 	}
239 
240 	if (attr->type == ATTR_END) {
241 		/* End of enumeration. */
242 		return NULL;
243 	}
244 
245 	/* 0x100 is last known attribute for now. */
246 	t32 = le32_to_cpu(attr->type);
247 	if ((t32 & 0xf) || (t32 > 0x100))
248 		return NULL;
249 
250 	/* Check boundary. */
251 	if (off + asize > used)
252 		return NULL;
253 
254 	/* Check size of attribute. */
255 	if (!attr->non_res) {
256 		if (asize < SIZEOF_RESIDENT)
257 			return NULL;
258 
259 		t16 = le16_to_cpu(attr->res.data_off);
260 
261 		if (t16 > asize)
262 			return NULL;
263 
264 		t32 = le32_to_cpu(attr->res.data_size);
265 		if (t16 + t32 > asize)
266 			return NULL;
267 
268 		if (attr->name_len &&
269 		    le16_to_cpu(attr->name_off) + sizeof(short) * attr->name_len > t16) {
270 			return NULL;
271 		}
272 
273 		return attr;
274 	}
275 
276 	/* Check some nonresident fields. */
277 	if (attr->name_len &&
278 	    le16_to_cpu(attr->name_off) + sizeof(short) * attr->name_len >
279 		    le16_to_cpu(attr->nres.run_off)) {
280 		return NULL;
281 	}
282 
283 	if (attr->nres.svcn || !is_attr_ext(attr)) {
284 		if (asize + 8 < SIZEOF_NONRESIDENT)
285 			return NULL;
286 
287 		if (attr->nres.c_unit)
288 			return NULL;
289 	} else if (asize + 8 < SIZEOF_NONRESIDENT_EX)
290 		return NULL;
291 
292 	return attr;
293 }
294 
295 /*
296  * mi_find_attr - Find the attribute by type and name and id.
297  */
mi_find_attr(struct mft_inode * mi,struct ATTRIB * attr,enum ATTR_TYPE type,const __le16 * name,size_t name_len,const __le16 * id)298 struct ATTRIB *mi_find_attr(struct mft_inode *mi, struct ATTRIB *attr,
299 			    enum ATTR_TYPE type, const __le16 *name,
300 			    size_t name_len, const __le16 *id)
301 {
302 	u32 type_in = le32_to_cpu(type);
303 	u32 atype;
304 
305 next_attr:
306 	attr = mi_enum_attr(mi, attr);
307 	if (!attr)
308 		return NULL;
309 
310 	atype = le32_to_cpu(attr->type);
311 	if (atype > type_in)
312 		return NULL;
313 
314 	if (atype < type_in)
315 		goto next_attr;
316 
317 	if (attr->name_len != name_len)
318 		goto next_attr;
319 
320 	if (name_len && memcmp(attr_name(attr), name, name_len * sizeof(short)))
321 		goto next_attr;
322 
323 	if (id && *id != attr->id)
324 		goto next_attr;
325 
326 	return attr;
327 }
328 
mi_write(struct mft_inode * mi,int wait)329 int mi_write(struct mft_inode *mi, int wait)
330 {
331 	struct MFT_REC *rec;
332 	int err;
333 	struct ntfs_sb_info *sbi;
334 
335 	if (!mi->dirty)
336 		return 0;
337 
338 	sbi = mi->sbi;
339 	rec = mi->mrec;
340 
341 	err = ntfs_write_bh(sbi, &rec->rhdr, &mi->nb, wait);
342 	if (err)
343 		return err;
344 
345 	if (mi->rno < sbi->mft.recs_mirr)
346 		sbi->flags |= NTFS_FLAGS_MFTMIRR;
347 
348 	mi->dirty = false;
349 
350 	return 0;
351 }
352 
mi_format_new(struct mft_inode * mi,struct ntfs_sb_info * sbi,CLST rno,__le16 flags,bool is_mft)353 int mi_format_new(struct mft_inode *mi, struct ntfs_sb_info *sbi, CLST rno,
354 		  __le16 flags, bool is_mft)
355 {
356 	int err;
357 	u16 seq = 1;
358 	struct MFT_REC *rec;
359 	u64 vbo = (u64)rno << sbi->record_bits;
360 
361 	err = mi_init(mi, sbi, rno);
362 	if (err)
363 		return err;
364 
365 	rec = mi->mrec;
366 
367 	if (rno == MFT_REC_MFT) {
368 		;
369 	} else if (rno < MFT_REC_FREE) {
370 		seq = rno;
371 	} else if (rno >= sbi->mft.used) {
372 		;
373 	} else if (mi_read(mi, is_mft)) {
374 		;
375 	} else if (rec->rhdr.sign == NTFS_FILE_SIGNATURE) {
376 		/* Record is reused. Update its sequence number. */
377 		seq = le16_to_cpu(rec->seq) + 1;
378 		if (!seq)
379 			seq = 1;
380 	}
381 
382 	memcpy(rec, sbi->new_rec, sbi->record_size);
383 
384 	rec->seq = cpu_to_le16(seq);
385 	rec->flags = RECORD_FLAG_IN_USE | flags;
386 
387 	mi->dirty = true;
388 
389 	if (!mi->nb.nbufs) {
390 		struct ntfs_inode *ni = sbi->mft.ni;
391 		bool lock = false;
392 
393 		if (is_mounted(sbi) && !is_mft) {
394 			down_read(&ni->file.run_lock);
395 			lock = true;
396 		}
397 
398 		err = ntfs_get_bh(sbi, &ni->file.run, vbo, sbi->record_size,
399 				  &mi->nb);
400 		if (lock)
401 			up_read(&ni->file.run_lock);
402 	}
403 
404 	return err;
405 }
406 
407 /*
408  * mi_insert_attr - Reserve space for new attribute.
409  *
410  * Return: Not full constructed attribute or NULL if not possible to create.
411  */
mi_insert_attr(struct mft_inode * mi,enum ATTR_TYPE type,const __le16 * name,u8 name_len,u32 asize,u16 name_off)412 struct ATTRIB *mi_insert_attr(struct mft_inode *mi, enum ATTR_TYPE type,
413 			      const __le16 *name, u8 name_len, u32 asize,
414 			      u16 name_off)
415 {
416 	size_t tail;
417 	struct ATTRIB *attr;
418 	__le16 id;
419 	struct MFT_REC *rec = mi->mrec;
420 	struct ntfs_sb_info *sbi = mi->sbi;
421 	u32 used = le32_to_cpu(rec->used);
422 	const u16 *upcase = sbi->upcase;
423 	int diff;
424 
425 	/* Can we insert mi attribute? */
426 	if (used + asize > mi->sbi->record_size)
427 		return NULL;
428 
429 	/*
430 	 * Scan through the list of attributes to find the point
431 	 * at which we should insert it.
432 	 */
433 	attr = NULL;
434 	while ((attr = mi_enum_attr(mi, attr))) {
435 		diff = compare_attr(attr, type, name, name_len, upcase);
436 
437 		if (diff < 0)
438 			continue;
439 
440 		if (!diff && !is_attr_indexed(attr))
441 			return NULL;
442 		break;
443 	}
444 
445 	if (!attr) {
446 		tail = 8; /* Not used, just to suppress warning. */
447 		attr = Add2Ptr(rec, used - 8);
448 	} else {
449 		tail = used - PtrOffset(rec, attr);
450 	}
451 
452 	id = mi_new_attt_id(mi);
453 
454 	memmove(Add2Ptr(attr, asize), attr, tail);
455 	memset(attr, 0, asize);
456 
457 	attr->type = type;
458 	attr->size = cpu_to_le32(asize);
459 	attr->name_len = name_len;
460 	attr->name_off = cpu_to_le16(name_off);
461 	attr->id = id;
462 
463 	memmove(Add2Ptr(attr, name_off), name, name_len * sizeof(short));
464 	rec->used = cpu_to_le32(used + asize);
465 
466 	mi->dirty = true;
467 
468 	return attr;
469 }
470 
471 /*
472  * mi_remove_attr - Remove the attribute from record.
473  *
474  * NOTE: The source attr will point to next attribute.
475  */
mi_remove_attr(struct ntfs_inode * ni,struct mft_inode * mi,struct ATTRIB * attr)476 bool mi_remove_attr(struct ntfs_inode *ni, struct mft_inode *mi,
477 		    struct ATTRIB *attr)
478 {
479 	struct MFT_REC *rec = mi->mrec;
480 	u32 aoff = PtrOffset(rec, attr);
481 	u32 used = le32_to_cpu(rec->used);
482 	u32 asize = le32_to_cpu(attr->size);
483 
484 	if (aoff + asize > used)
485 		return false;
486 
487 	if (ni && is_attr_indexed(attr)) {
488 		le16_add_cpu(&ni->mi.mrec->hard_links, -1);
489 		ni->mi.dirty = true;
490 	}
491 
492 	used -= asize;
493 	memmove(attr, Add2Ptr(attr, asize), used - aoff);
494 	rec->used = cpu_to_le32(used);
495 	mi->dirty = true;
496 
497 	return true;
498 }
499 
500 /* bytes = "new attribute size" - "old attribute size" */
mi_resize_attr(struct mft_inode * mi,struct ATTRIB * attr,int bytes)501 bool mi_resize_attr(struct mft_inode *mi, struct ATTRIB *attr, int bytes)
502 {
503 	struct MFT_REC *rec = mi->mrec;
504 	u32 aoff = PtrOffset(rec, attr);
505 	u32 total, used = le32_to_cpu(rec->used);
506 	u32 nsize, asize = le32_to_cpu(attr->size);
507 	u32 rsize = le32_to_cpu(attr->res.data_size);
508 	int tail = (int)(used - aoff - asize);
509 	int dsize;
510 	char *next;
511 
512 	if (tail < 0 || aoff >= used)
513 		return false;
514 
515 	if (!bytes)
516 		return true;
517 
518 	total = le32_to_cpu(rec->total);
519 	next = Add2Ptr(attr, asize);
520 
521 	if (bytes > 0) {
522 		dsize = ALIGN(bytes, 8);
523 		if (used + dsize > total)
524 			return false;
525 		nsize = asize + dsize;
526 		/* Move tail */
527 		memmove(next + dsize, next, tail);
528 		memset(next, 0, dsize);
529 		used += dsize;
530 		rsize += dsize;
531 	} else {
532 		dsize = ALIGN(-bytes, 8);
533 		if (dsize > asize)
534 			return false;
535 		nsize = asize - dsize;
536 		memmove(next - dsize, next, tail);
537 		used -= dsize;
538 		rsize -= dsize;
539 	}
540 
541 	rec->used = cpu_to_le32(used);
542 	attr->size = cpu_to_le32(nsize);
543 	if (!attr->non_res)
544 		attr->res.data_size = cpu_to_le32(rsize);
545 	mi->dirty = true;
546 
547 	return true;
548 }
549 
mi_pack_runs(struct mft_inode * mi,struct ATTRIB * attr,struct runs_tree * run,CLST len)550 int mi_pack_runs(struct mft_inode *mi, struct ATTRIB *attr,
551 		 struct runs_tree *run, CLST len)
552 {
553 	int err = 0;
554 	struct ntfs_sb_info *sbi = mi->sbi;
555 	u32 new_run_size;
556 	CLST plen;
557 	struct MFT_REC *rec = mi->mrec;
558 	CLST svcn = le64_to_cpu(attr->nres.svcn);
559 	u32 used = le32_to_cpu(rec->used);
560 	u32 aoff = PtrOffset(rec, attr);
561 	u32 asize = le32_to_cpu(attr->size);
562 	char *next = Add2Ptr(attr, asize);
563 	u16 run_off = le16_to_cpu(attr->nres.run_off);
564 	u32 run_size = asize - run_off;
565 	u32 tail = used - aoff - asize;
566 	u32 dsize = sbi->record_size - used;
567 
568 	/* Make a maximum gap in current record. */
569 	memmove(next + dsize, next, tail);
570 
571 	/* Pack as much as possible. */
572 	err = run_pack(run, svcn, len, Add2Ptr(attr, run_off), run_size + dsize,
573 		       &plen);
574 	if (err < 0) {
575 		memmove(next, next + dsize, tail);
576 		return err;
577 	}
578 
579 	new_run_size = ALIGN(err, 8);
580 
581 	memmove(next + new_run_size - run_size, next + dsize, tail);
582 
583 	attr->size = cpu_to_le32(asize + new_run_size - run_size);
584 	attr->nres.evcn = cpu_to_le64(svcn + plen - 1);
585 	rec->used = cpu_to_le32(used + new_run_size - run_size);
586 	mi->dirty = true;
587 
588 	return 0;
589 }
590