1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/memory_hotplug.c
4 *
5 * Copyright (C)
6 */
7
8 #include <linux/stddef.h>
9 #include <linux/mm.h>
10 #include <linux/sched/signal.h>
11 #include <linux/swap.h>
12 #include <linux/interrupt.h>
13 #include <linux/pagemap.h>
14 #include <linux/compiler.h>
15 #include <linux/export.h>
16 #include <linux/pagevec.h>
17 #include <linux/writeback.h>
18 #include <linux/slab.h>
19 #include <linux/sysctl.h>
20 #include <linux/cpu.h>
21 #include <linux/memory.h>
22 #include <linux/memremap.h>
23 #include <linux/memory_hotplug.h>
24 #include <linux/vmalloc.h>
25 #include <linux/ioport.h>
26 #include <linux/delay.h>
27 #include <linux/migrate.h>
28 #include <linux/page-isolation.h>
29 #include <linux/pfn.h>
30 #include <linux/suspend.h>
31 #include <linux/mm_inline.h>
32 #include <linux/firmware-map.h>
33 #include <linux/stop_machine.h>
34 #include <linux/hugetlb.h>
35 #include <linux/memblock.h>
36 #include <linux/compaction.h>
37 #include <linux/rmap.h>
38 #include <linux/module.h>
39
40 #include <asm/tlbflush.h>
41
42 #include "internal.h"
43 #include "shuffle.h"
44
45 #ifdef CONFIG_MHP_MEMMAP_ON_MEMORY
memmap_on_memory_set(const char * val,const struct kernel_param * kp)46 static int memmap_on_memory_set(const char *val, const struct kernel_param *kp)
47 {
48 if (hugetlb_optimize_vmemmap_enabled())
49 return 0;
50 return param_set_bool(val, kp);
51 }
52
53 static const struct kernel_param_ops memmap_on_memory_ops = {
54 .flags = KERNEL_PARAM_OPS_FL_NOARG,
55 .set = memmap_on_memory_set,
56 .get = param_get_bool,
57 };
58
59 /*
60 * memory_hotplug.memmap_on_memory parameter
61 */
62 static bool memmap_on_memory __ro_after_init;
63 module_param_cb(memmap_on_memory, &memmap_on_memory_ops, &memmap_on_memory, 0444);
64 MODULE_PARM_DESC(memmap_on_memory, "Enable memmap on memory for memory hotplug");
65
mhp_memmap_on_memory(void)66 bool mhp_memmap_on_memory(void)
67 {
68 return memmap_on_memory;
69 }
70 #endif
71
72 enum {
73 ONLINE_POLICY_CONTIG_ZONES = 0,
74 ONLINE_POLICY_AUTO_MOVABLE,
75 };
76
77 static const char * const online_policy_to_str[] = {
78 [ONLINE_POLICY_CONTIG_ZONES] = "contig-zones",
79 [ONLINE_POLICY_AUTO_MOVABLE] = "auto-movable",
80 };
81
set_online_policy(const char * val,const struct kernel_param * kp)82 static int set_online_policy(const char *val, const struct kernel_param *kp)
83 {
84 int ret = sysfs_match_string(online_policy_to_str, val);
85
86 if (ret < 0)
87 return ret;
88 *((int *)kp->arg) = ret;
89 return 0;
90 }
91
get_online_policy(char * buffer,const struct kernel_param * kp)92 static int get_online_policy(char *buffer, const struct kernel_param *kp)
93 {
94 return sprintf(buffer, "%s\n", online_policy_to_str[*((int *)kp->arg)]);
95 }
96
97 /*
98 * memory_hotplug.online_policy: configure online behavior when onlining without
99 * specifying a zone (MMOP_ONLINE)
100 *
101 * "contig-zones": keep zone contiguous
102 * "auto-movable": online memory to ZONE_MOVABLE if the configuration
103 * (auto_movable_ratio, auto_movable_numa_aware) allows for it
104 */
105 static int online_policy __read_mostly = ONLINE_POLICY_CONTIG_ZONES;
106 static const struct kernel_param_ops online_policy_ops = {
107 .set = set_online_policy,
108 .get = get_online_policy,
109 };
110 module_param_cb(online_policy, &online_policy_ops, &online_policy, 0644);
111 MODULE_PARM_DESC(online_policy,
112 "Set the online policy (\"contig-zones\", \"auto-movable\") "
113 "Default: \"contig-zones\"");
114
115 /*
116 * memory_hotplug.auto_movable_ratio: specify maximum MOVABLE:KERNEL ratio
117 *
118 * The ratio represent an upper limit and the kernel might decide to not
119 * online some memory to ZONE_MOVABLE -- e.g., because hotplugged KERNEL memory
120 * doesn't allow for more MOVABLE memory.
121 */
122 static unsigned int auto_movable_ratio __read_mostly = 301;
123 module_param(auto_movable_ratio, uint, 0644);
124 MODULE_PARM_DESC(auto_movable_ratio,
125 "Set the maximum ratio of MOVABLE:KERNEL memory in the system "
126 "in percent for \"auto-movable\" online policy. Default: 301");
127
128 /*
129 * memory_hotplug.auto_movable_numa_aware: consider numa node stats
130 */
131 #ifdef CONFIG_NUMA
132 static bool auto_movable_numa_aware __read_mostly = true;
133 module_param(auto_movable_numa_aware, bool, 0644);
134 MODULE_PARM_DESC(auto_movable_numa_aware,
135 "Consider numa node stats in addition to global stats in "
136 "\"auto-movable\" online policy. Default: true");
137 #endif /* CONFIG_NUMA */
138
139 /*
140 * online_page_callback contains pointer to current page onlining function.
141 * Initially it is generic_online_page(). If it is required it could be
142 * changed by calling set_online_page_callback() for callback registration
143 * and restore_online_page_callback() for generic callback restore.
144 */
145
146 static online_page_callback_t online_page_callback = generic_online_page;
147 static DEFINE_MUTEX(online_page_callback_lock);
148
149 DEFINE_STATIC_PERCPU_RWSEM(mem_hotplug_lock);
150
get_online_mems(void)151 void get_online_mems(void)
152 {
153 percpu_down_read(&mem_hotplug_lock);
154 }
155
put_online_mems(void)156 void put_online_mems(void)
157 {
158 percpu_up_read(&mem_hotplug_lock);
159 }
160
161 bool movable_node_enabled = false;
162
163 #ifndef CONFIG_MEMORY_HOTPLUG_DEFAULT_ONLINE
164 int mhp_default_online_type = MMOP_OFFLINE;
165 #else
166 int mhp_default_online_type = MMOP_ONLINE;
167 #endif
168
setup_memhp_default_state(char * str)169 static int __init setup_memhp_default_state(char *str)
170 {
171 const int online_type = mhp_online_type_from_str(str);
172
173 if (online_type >= 0)
174 mhp_default_online_type = online_type;
175
176 return 1;
177 }
178 __setup("memhp_default_state=", setup_memhp_default_state);
179
mem_hotplug_begin(void)180 void mem_hotplug_begin(void)
181 {
182 cpus_read_lock();
183 percpu_down_write(&mem_hotplug_lock);
184 }
185
mem_hotplug_done(void)186 void mem_hotplug_done(void)
187 {
188 percpu_up_write(&mem_hotplug_lock);
189 cpus_read_unlock();
190 }
191
192 u64 max_mem_size = U64_MAX;
193
194 /* add this memory to iomem resource */
register_memory_resource(u64 start,u64 size,const char * resource_name)195 static struct resource *register_memory_resource(u64 start, u64 size,
196 const char *resource_name)
197 {
198 struct resource *res;
199 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
200
201 if (strcmp(resource_name, "System RAM"))
202 flags |= IORESOURCE_SYSRAM_DRIVER_MANAGED;
203
204 if (!mhp_range_allowed(start, size, true))
205 return ERR_PTR(-E2BIG);
206
207 /*
208 * Make sure value parsed from 'mem=' only restricts memory adding
209 * while booting, so that memory hotplug won't be impacted. Please
210 * refer to document of 'mem=' in kernel-parameters.txt for more
211 * details.
212 */
213 if (start + size > max_mem_size && system_state < SYSTEM_RUNNING)
214 return ERR_PTR(-E2BIG);
215
216 /*
217 * Request ownership of the new memory range. This might be
218 * a child of an existing resource that was present but
219 * not marked as busy.
220 */
221 res = __request_region(&iomem_resource, start, size,
222 resource_name, flags);
223
224 if (!res) {
225 pr_debug("Unable to reserve System RAM region: %016llx->%016llx\n",
226 start, start + size);
227 return ERR_PTR(-EEXIST);
228 }
229 return res;
230 }
231
release_memory_resource(struct resource * res)232 static void release_memory_resource(struct resource *res)
233 {
234 if (!res)
235 return;
236 release_resource(res);
237 kfree(res);
238 }
239
check_pfn_span(unsigned long pfn,unsigned long nr_pages,const char * reason)240 static int check_pfn_span(unsigned long pfn, unsigned long nr_pages,
241 const char *reason)
242 {
243 /*
244 * Disallow all operations smaller than a sub-section and only
245 * allow operations smaller than a section for
246 * SPARSEMEM_VMEMMAP. Note that check_hotplug_memory_range()
247 * enforces a larger memory_block_size_bytes() granularity for
248 * memory that will be marked online, so this check should only
249 * fire for direct arch_{add,remove}_memory() users outside of
250 * add_memory_resource().
251 */
252 unsigned long min_align;
253
254 if (IS_ENABLED(CONFIG_SPARSEMEM_VMEMMAP))
255 min_align = PAGES_PER_SUBSECTION;
256 else
257 min_align = PAGES_PER_SECTION;
258 if (!IS_ALIGNED(pfn, min_align)
259 || !IS_ALIGNED(nr_pages, min_align)) {
260 WARN(1, "Misaligned __%s_pages start: %#lx end: #%lx\n",
261 reason, pfn, pfn + nr_pages - 1);
262 return -EINVAL;
263 }
264 return 0;
265 }
266
267 /*
268 * Return page for the valid pfn only if the page is online. All pfn
269 * walkers which rely on the fully initialized page->flags and others
270 * should use this rather than pfn_valid && pfn_to_page
271 */
pfn_to_online_page(unsigned long pfn)272 struct page *pfn_to_online_page(unsigned long pfn)
273 {
274 unsigned long nr = pfn_to_section_nr(pfn);
275 struct dev_pagemap *pgmap;
276 struct mem_section *ms;
277
278 if (nr >= NR_MEM_SECTIONS)
279 return NULL;
280
281 ms = __nr_to_section(nr);
282 if (!online_section(ms))
283 return NULL;
284
285 /*
286 * Save some code text when online_section() +
287 * pfn_section_valid() are sufficient.
288 */
289 if (IS_ENABLED(CONFIG_HAVE_ARCH_PFN_VALID) && !pfn_valid(pfn))
290 return NULL;
291
292 if (!pfn_section_valid(ms, pfn))
293 return NULL;
294
295 if (!online_device_section(ms))
296 return pfn_to_page(pfn);
297
298 /*
299 * Slowpath: when ZONE_DEVICE collides with
300 * ZONE_{NORMAL,MOVABLE} within the same section some pfns in
301 * the section may be 'offline' but 'valid'. Only
302 * get_dev_pagemap() can determine sub-section online status.
303 */
304 pgmap = get_dev_pagemap(pfn, NULL);
305 put_dev_pagemap(pgmap);
306
307 /* The presence of a pgmap indicates ZONE_DEVICE offline pfn */
308 if (pgmap)
309 return NULL;
310
311 return pfn_to_page(pfn);
312 }
313 EXPORT_SYMBOL_GPL(pfn_to_online_page);
314
__add_pages(int nid,unsigned long pfn,unsigned long nr_pages,struct mhp_params * params)315 int __ref __add_pages(int nid, unsigned long pfn, unsigned long nr_pages,
316 struct mhp_params *params)
317 {
318 const unsigned long end_pfn = pfn + nr_pages;
319 unsigned long cur_nr_pages;
320 int err;
321 struct vmem_altmap *altmap = params->altmap;
322
323 if (WARN_ON_ONCE(!pgprot_val(params->pgprot)))
324 return -EINVAL;
325
326 VM_BUG_ON(!mhp_range_allowed(PFN_PHYS(pfn), nr_pages * PAGE_SIZE, false));
327
328 if (altmap) {
329 /*
330 * Validate altmap is within bounds of the total request
331 */
332 if (altmap->base_pfn != pfn
333 || vmem_altmap_offset(altmap) > nr_pages) {
334 pr_warn_once("memory add fail, invalid altmap\n");
335 return -EINVAL;
336 }
337 altmap->alloc = 0;
338 }
339
340 err = check_pfn_span(pfn, nr_pages, "add");
341 if (err)
342 return err;
343
344 for (; pfn < end_pfn; pfn += cur_nr_pages) {
345 /* Select all remaining pages up to the next section boundary */
346 cur_nr_pages = min(end_pfn - pfn,
347 SECTION_ALIGN_UP(pfn + 1) - pfn);
348 err = sparse_add_section(nid, pfn, cur_nr_pages, altmap,
349 params->pgmap);
350 if (err)
351 break;
352 cond_resched();
353 }
354 vmemmap_populate_print_last();
355 return err;
356 }
357
358 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
find_smallest_section_pfn(int nid,struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)359 static unsigned long find_smallest_section_pfn(int nid, struct zone *zone,
360 unsigned long start_pfn,
361 unsigned long end_pfn)
362 {
363 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SUBSECTION) {
364 if (unlikely(!pfn_to_online_page(start_pfn)))
365 continue;
366
367 if (unlikely(pfn_to_nid(start_pfn) != nid))
368 continue;
369
370 if (zone != page_zone(pfn_to_page(start_pfn)))
371 continue;
372
373 return start_pfn;
374 }
375
376 return 0;
377 }
378
379 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
find_biggest_section_pfn(int nid,struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)380 static unsigned long find_biggest_section_pfn(int nid, struct zone *zone,
381 unsigned long start_pfn,
382 unsigned long end_pfn)
383 {
384 unsigned long pfn;
385
386 /* pfn is the end pfn of a memory section. */
387 pfn = end_pfn - 1;
388 for (; pfn >= start_pfn; pfn -= PAGES_PER_SUBSECTION) {
389 if (unlikely(!pfn_to_online_page(pfn)))
390 continue;
391
392 if (unlikely(pfn_to_nid(pfn) != nid))
393 continue;
394
395 if (zone != page_zone(pfn_to_page(pfn)))
396 continue;
397
398 return pfn;
399 }
400
401 return 0;
402 }
403
shrink_zone_span(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn)404 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
405 unsigned long end_pfn)
406 {
407 unsigned long pfn;
408 int nid = zone_to_nid(zone);
409
410 if (zone->zone_start_pfn == start_pfn) {
411 /*
412 * If the section is smallest section in the zone, it need
413 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
414 * In this case, we find second smallest valid mem_section
415 * for shrinking zone.
416 */
417 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
418 zone_end_pfn(zone));
419 if (pfn) {
420 zone->spanned_pages = zone_end_pfn(zone) - pfn;
421 zone->zone_start_pfn = pfn;
422 } else {
423 zone->zone_start_pfn = 0;
424 zone->spanned_pages = 0;
425 }
426 } else if (zone_end_pfn(zone) == end_pfn) {
427 /*
428 * If the section is biggest section in the zone, it need
429 * shrink zone->spanned_pages.
430 * In this case, we find second biggest valid mem_section for
431 * shrinking zone.
432 */
433 pfn = find_biggest_section_pfn(nid, zone, zone->zone_start_pfn,
434 start_pfn);
435 if (pfn)
436 zone->spanned_pages = pfn - zone->zone_start_pfn + 1;
437 else {
438 zone->zone_start_pfn = 0;
439 zone->spanned_pages = 0;
440 }
441 }
442 }
443
update_pgdat_span(struct pglist_data * pgdat)444 static void update_pgdat_span(struct pglist_data *pgdat)
445 {
446 unsigned long node_start_pfn = 0, node_end_pfn = 0;
447 struct zone *zone;
448
449 for (zone = pgdat->node_zones;
450 zone < pgdat->node_zones + MAX_NR_ZONES; zone++) {
451 unsigned long end_pfn = zone_end_pfn(zone);
452
453 /* No need to lock the zones, they can't change. */
454 if (!zone->spanned_pages)
455 continue;
456 if (!node_end_pfn) {
457 node_start_pfn = zone->zone_start_pfn;
458 node_end_pfn = end_pfn;
459 continue;
460 }
461
462 if (end_pfn > node_end_pfn)
463 node_end_pfn = end_pfn;
464 if (zone->zone_start_pfn < node_start_pfn)
465 node_start_pfn = zone->zone_start_pfn;
466 }
467
468 pgdat->node_start_pfn = node_start_pfn;
469 pgdat->node_spanned_pages = node_end_pfn - node_start_pfn;
470 }
471
remove_pfn_range_from_zone(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)472 void __ref remove_pfn_range_from_zone(struct zone *zone,
473 unsigned long start_pfn,
474 unsigned long nr_pages)
475 {
476 const unsigned long end_pfn = start_pfn + nr_pages;
477 struct pglist_data *pgdat = zone->zone_pgdat;
478 unsigned long pfn, cur_nr_pages;
479
480 /* Poison struct pages because they are now uninitialized again. */
481 for (pfn = start_pfn; pfn < end_pfn; pfn += cur_nr_pages) {
482 cond_resched();
483
484 /* Select all remaining pages up to the next section boundary */
485 cur_nr_pages =
486 min(end_pfn - pfn, SECTION_ALIGN_UP(pfn + 1) - pfn);
487 page_init_poison(pfn_to_page(pfn),
488 sizeof(struct page) * cur_nr_pages);
489 }
490
491 /*
492 * Zone shrinking code cannot properly deal with ZONE_DEVICE. So
493 * we will not try to shrink the zones - which is okay as
494 * set_zone_contiguous() cannot deal with ZONE_DEVICE either way.
495 */
496 if (zone_is_zone_device(zone))
497 return;
498
499 clear_zone_contiguous(zone);
500
501 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
502 update_pgdat_span(pgdat);
503
504 set_zone_contiguous(zone);
505 }
506
__remove_section(unsigned long pfn,unsigned long nr_pages,unsigned long map_offset,struct vmem_altmap * altmap)507 static void __remove_section(unsigned long pfn, unsigned long nr_pages,
508 unsigned long map_offset,
509 struct vmem_altmap *altmap)
510 {
511 struct mem_section *ms = __pfn_to_section(pfn);
512
513 if (WARN_ON_ONCE(!valid_section(ms)))
514 return;
515
516 sparse_remove_section(ms, pfn, nr_pages, map_offset, altmap);
517 }
518
519 /**
520 * __remove_pages() - remove sections of pages
521 * @pfn: starting pageframe (must be aligned to start of a section)
522 * @nr_pages: number of pages to remove (must be multiple of section size)
523 * @altmap: alternative device page map or %NULL if default memmap is used
524 *
525 * Generic helper function to remove section mappings and sysfs entries
526 * for the section of the memory we are removing. Caller needs to make
527 * sure that pages are marked reserved and zones are adjust properly by
528 * calling offline_pages().
529 */
__remove_pages(unsigned long pfn,unsigned long nr_pages,struct vmem_altmap * altmap)530 void __remove_pages(unsigned long pfn, unsigned long nr_pages,
531 struct vmem_altmap *altmap)
532 {
533 const unsigned long end_pfn = pfn + nr_pages;
534 unsigned long cur_nr_pages;
535 unsigned long map_offset = 0;
536
537 map_offset = vmem_altmap_offset(altmap);
538
539 if (check_pfn_span(pfn, nr_pages, "remove"))
540 return;
541
542 for (; pfn < end_pfn; pfn += cur_nr_pages) {
543 cond_resched();
544 /* Select all remaining pages up to the next section boundary */
545 cur_nr_pages = min(end_pfn - pfn,
546 SECTION_ALIGN_UP(pfn + 1) - pfn);
547 __remove_section(pfn, cur_nr_pages, map_offset, altmap);
548 map_offset = 0;
549 }
550 }
551
set_online_page_callback(online_page_callback_t callback)552 int set_online_page_callback(online_page_callback_t callback)
553 {
554 int rc = -EINVAL;
555
556 get_online_mems();
557 mutex_lock(&online_page_callback_lock);
558
559 if (online_page_callback == generic_online_page) {
560 online_page_callback = callback;
561 rc = 0;
562 }
563
564 mutex_unlock(&online_page_callback_lock);
565 put_online_mems();
566
567 return rc;
568 }
569 EXPORT_SYMBOL_GPL(set_online_page_callback);
570
restore_online_page_callback(online_page_callback_t callback)571 int restore_online_page_callback(online_page_callback_t callback)
572 {
573 int rc = -EINVAL;
574
575 get_online_mems();
576 mutex_lock(&online_page_callback_lock);
577
578 if (online_page_callback == callback) {
579 online_page_callback = generic_online_page;
580 rc = 0;
581 }
582
583 mutex_unlock(&online_page_callback_lock);
584 put_online_mems();
585
586 return rc;
587 }
588 EXPORT_SYMBOL_GPL(restore_online_page_callback);
589
generic_online_page(struct page * page,unsigned int order)590 void generic_online_page(struct page *page, unsigned int order)
591 {
592 /*
593 * Freeing the page with debug_pagealloc enabled will try to unmap it,
594 * so we should map it first. This is better than introducing a special
595 * case in page freeing fast path.
596 */
597 debug_pagealloc_map_pages(page, 1 << order);
598 __free_pages_core(page, order);
599 totalram_pages_add(1UL << order);
600 }
601 EXPORT_SYMBOL_GPL(generic_online_page);
602
online_pages_range(unsigned long start_pfn,unsigned long nr_pages)603 static void online_pages_range(unsigned long start_pfn, unsigned long nr_pages)
604 {
605 const unsigned long end_pfn = start_pfn + nr_pages;
606 unsigned long pfn;
607
608 /*
609 * Online the pages in MAX_ORDER - 1 aligned chunks. The callback might
610 * decide to not expose all pages to the buddy (e.g., expose them
611 * later). We account all pages as being online and belonging to this
612 * zone ("present").
613 * When using memmap_on_memory, the range might not be aligned to
614 * MAX_ORDER_NR_PAGES - 1, but pageblock aligned. __ffs() will detect
615 * this and the first chunk to online will be pageblock_nr_pages.
616 */
617 for (pfn = start_pfn; pfn < end_pfn;) {
618 int order = min(MAX_ORDER - 1UL, __ffs(pfn));
619
620 (*online_page_callback)(pfn_to_page(pfn), order);
621 pfn += (1UL << order);
622 }
623
624 /* mark all involved sections as online */
625 online_mem_sections(start_pfn, end_pfn);
626 }
627
628 /* check which state of node_states will be changed when online memory */
node_states_check_changes_online(unsigned long nr_pages,struct zone * zone,struct memory_notify * arg)629 static void node_states_check_changes_online(unsigned long nr_pages,
630 struct zone *zone, struct memory_notify *arg)
631 {
632 int nid = zone_to_nid(zone);
633
634 arg->status_change_nid = NUMA_NO_NODE;
635 arg->status_change_nid_normal = NUMA_NO_NODE;
636
637 if (!node_state(nid, N_MEMORY))
638 arg->status_change_nid = nid;
639 if (zone_idx(zone) <= ZONE_NORMAL && !node_state(nid, N_NORMAL_MEMORY))
640 arg->status_change_nid_normal = nid;
641 }
642
node_states_set_node(int node,struct memory_notify * arg)643 static void node_states_set_node(int node, struct memory_notify *arg)
644 {
645 if (arg->status_change_nid_normal >= 0)
646 node_set_state(node, N_NORMAL_MEMORY);
647
648 if (arg->status_change_nid >= 0)
649 node_set_state(node, N_MEMORY);
650 }
651
resize_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)652 static void __meminit resize_zone_range(struct zone *zone, unsigned long start_pfn,
653 unsigned long nr_pages)
654 {
655 unsigned long old_end_pfn = zone_end_pfn(zone);
656
657 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
658 zone->zone_start_pfn = start_pfn;
659
660 zone->spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - zone->zone_start_pfn;
661 }
662
resize_pgdat_range(struct pglist_data * pgdat,unsigned long start_pfn,unsigned long nr_pages)663 static void __meminit resize_pgdat_range(struct pglist_data *pgdat, unsigned long start_pfn,
664 unsigned long nr_pages)
665 {
666 unsigned long old_end_pfn = pgdat_end_pfn(pgdat);
667
668 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
669 pgdat->node_start_pfn = start_pfn;
670
671 pgdat->node_spanned_pages = max(start_pfn + nr_pages, old_end_pfn) - pgdat->node_start_pfn;
672
673 }
674
section_taint_zone_device(unsigned long pfn)675 static void section_taint_zone_device(unsigned long pfn)
676 {
677 struct mem_section *ms = __pfn_to_section(pfn);
678
679 ms->section_mem_map |= SECTION_TAINT_ZONE_DEVICE;
680 }
681
682 /*
683 * Associate the pfn range with the given zone, initializing the memmaps
684 * and resizing the pgdat/zone data to span the added pages. After this
685 * call, all affected pages are PG_reserved.
686 *
687 * All aligned pageblocks are initialized to the specified migratetype
688 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
689 * zone stats (e.g., nr_isolate_pageblock) are touched.
690 */
move_pfn_range_to_zone(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct vmem_altmap * altmap,int migratetype)691 void __ref move_pfn_range_to_zone(struct zone *zone, unsigned long start_pfn,
692 unsigned long nr_pages,
693 struct vmem_altmap *altmap, int migratetype)
694 {
695 struct pglist_data *pgdat = zone->zone_pgdat;
696 int nid = pgdat->node_id;
697
698 clear_zone_contiguous(zone);
699
700 if (zone_is_empty(zone))
701 init_currently_empty_zone(zone, start_pfn, nr_pages);
702 resize_zone_range(zone, start_pfn, nr_pages);
703 resize_pgdat_range(pgdat, start_pfn, nr_pages);
704
705 /*
706 * Subsection population requires care in pfn_to_online_page().
707 * Set the taint to enable the slow path detection of
708 * ZONE_DEVICE pages in an otherwise ZONE_{NORMAL,MOVABLE}
709 * section.
710 */
711 if (zone_is_zone_device(zone)) {
712 if (!IS_ALIGNED(start_pfn, PAGES_PER_SECTION))
713 section_taint_zone_device(start_pfn);
714 if (!IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION))
715 section_taint_zone_device(start_pfn + nr_pages);
716 }
717
718 /*
719 * TODO now we have a visible range of pages which are not associated
720 * with their zone properly. Not nice but set_pfnblock_flags_mask
721 * expects the zone spans the pfn range. All the pages in the range
722 * are reserved so nobody should be touching them so we should be safe
723 */
724 memmap_init_range(nr_pages, nid, zone_idx(zone), start_pfn, 0,
725 MEMINIT_HOTPLUG, altmap, migratetype);
726
727 set_zone_contiguous(zone);
728 }
729
730 struct auto_movable_stats {
731 unsigned long kernel_early_pages;
732 unsigned long movable_pages;
733 };
734
auto_movable_stats_account_zone(struct auto_movable_stats * stats,struct zone * zone)735 static void auto_movable_stats_account_zone(struct auto_movable_stats *stats,
736 struct zone *zone)
737 {
738 if (zone_idx(zone) == ZONE_MOVABLE) {
739 stats->movable_pages += zone->present_pages;
740 } else {
741 stats->kernel_early_pages += zone->present_early_pages;
742 #ifdef CONFIG_CMA
743 /*
744 * CMA pages (never on hotplugged memory) behave like
745 * ZONE_MOVABLE.
746 */
747 stats->movable_pages += zone->cma_pages;
748 stats->kernel_early_pages -= zone->cma_pages;
749 #endif /* CONFIG_CMA */
750 }
751 }
752 struct auto_movable_group_stats {
753 unsigned long movable_pages;
754 unsigned long req_kernel_early_pages;
755 };
756
auto_movable_stats_account_group(struct memory_group * group,void * arg)757 static int auto_movable_stats_account_group(struct memory_group *group,
758 void *arg)
759 {
760 const int ratio = READ_ONCE(auto_movable_ratio);
761 struct auto_movable_group_stats *stats = arg;
762 long pages;
763
764 /*
765 * We don't support modifying the config while the auto-movable online
766 * policy is already enabled. Just avoid the division by zero below.
767 */
768 if (!ratio)
769 return 0;
770
771 /*
772 * Calculate how many early kernel pages this group requires to
773 * satisfy the configured zone ratio.
774 */
775 pages = group->present_movable_pages * 100 / ratio;
776 pages -= group->present_kernel_pages;
777
778 if (pages > 0)
779 stats->req_kernel_early_pages += pages;
780 stats->movable_pages += group->present_movable_pages;
781 return 0;
782 }
783
auto_movable_can_online_movable(int nid,struct memory_group * group,unsigned long nr_pages)784 static bool auto_movable_can_online_movable(int nid, struct memory_group *group,
785 unsigned long nr_pages)
786 {
787 unsigned long kernel_early_pages, movable_pages;
788 struct auto_movable_group_stats group_stats = {};
789 struct auto_movable_stats stats = {};
790 pg_data_t *pgdat = NODE_DATA(nid);
791 struct zone *zone;
792 int i;
793
794 /* Walk all relevant zones and collect MOVABLE vs. KERNEL stats. */
795 if (nid == NUMA_NO_NODE) {
796 /* TODO: cache values */
797 for_each_populated_zone(zone)
798 auto_movable_stats_account_zone(&stats, zone);
799 } else {
800 for (i = 0; i < MAX_NR_ZONES; i++) {
801 zone = pgdat->node_zones + i;
802 if (populated_zone(zone))
803 auto_movable_stats_account_zone(&stats, zone);
804 }
805 }
806
807 kernel_early_pages = stats.kernel_early_pages;
808 movable_pages = stats.movable_pages;
809
810 /*
811 * Kernel memory inside dynamic memory group allows for more MOVABLE
812 * memory within the same group. Remove the effect of all but the
813 * current group from the stats.
814 */
815 walk_dynamic_memory_groups(nid, auto_movable_stats_account_group,
816 group, &group_stats);
817 if (kernel_early_pages <= group_stats.req_kernel_early_pages)
818 return false;
819 kernel_early_pages -= group_stats.req_kernel_early_pages;
820 movable_pages -= group_stats.movable_pages;
821
822 if (group && group->is_dynamic)
823 kernel_early_pages += group->present_kernel_pages;
824
825 /*
826 * Test if we could online the given number of pages to ZONE_MOVABLE
827 * and still stay in the configured ratio.
828 */
829 movable_pages += nr_pages;
830 return movable_pages <= (auto_movable_ratio * kernel_early_pages) / 100;
831 }
832
833 /*
834 * Returns a default kernel memory zone for the given pfn range.
835 * If no kernel zone covers this pfn range it will automatically go
836 * to the ZONE_NORMAL.
837 */
default_kernel_zone_for_pfn(int nid,unsigned long start_pfn,unsigned long nr_pages)838 static struct zone *default_kernel_zone_for_pfn(int nid, unsigned long start_pfn,
839 unsigned long nr_pages)
840 {
841 struct pglist_data *pgdat = NODE_DATA(nid);
842 int zid;
843
844 for (zid = 0; zid < ZONE_NORMAL; zid++) {
845 struct zone *zone = &pgdat->node_zones[zid];
846
847 if (zone_intersects(zone, start_pfn, nr_pages))
848 return zone;
849 }
850
851 return &pgdat->node_zones[ZONE_NORMAL];
852 }
853
854 /*
855 * Determine to which zone to online memory dynamically based on user
856 * configuration and system stats. We care about the following ratio:
857 *
858 * MOVABLE : KERNEL
859 *
860 * Whereby MOVABLE is memory in ZONE_MOVABLE and KERNEL is memory in
861 * one of the kernel zones. CMA pages inside one of the kernel zones really
862 * behaves like ZONE_MOVABLE, so we treat them accordingly.
863 *
864 * We don't allow for hotplugged memory in a KERNEL zone to increase the
865 * amount of MOVABLE memory we can have, so we end up with:
866 *
867 * MOVABLE : KERNEL_EARLY
868 *
869 * Whereby KERNEL_EARLY is memory in one of the kernel zones, available sinze
870 * boot. We base our calculation on KERNEL_EARLY internally, because:
871 *
872 * a) Hotplugged memory in one of the kernel zones can sometimes still get
873 * hotunplugged, especially when hot(un)plugging individual memory blocks.
874 * There is no coordination across memory devices, therefore "automatic"
875 * hotunplugging, as implemented in hypervisors, could result in zone
876 * imbalances.
877 * b) Early/boot memory in one of the kernel zones can usually not get
878 * hotunplugged again (e.g., no firmware interface to unplug, fragmented
879 * with unmovable allocations). While there are corner cases where it might
880 * still work, it is barely relevant in practice.
881 *
882 * Exceptions are dynamic memory groups, which allow for more MOVABLE
883 * memory within the same memory group -- because in that case, there is
884 * coordination within the single memory device managed by a single driver.
885 *
886 * We rely on "present pages" instead of "managed pages", as the latter is
887 * highly unreliable and dynamic in virtualized environments, and does not
888 * consider boot time allocations. For example, memory ballooning adjusts the
889 * managed pages when inflating/deflating the balloon, and balloon compaction
890 * can even migrate inflated pages between zones.
891 *
892 * Using "present pages" is better but some things to keep in mind are:
893 *
894 * a) Some memblock allocations, such as for the crashkernel area, are
895 * effectively unused by the kernel, yet they account to "present pages".
896 * Fortunately, these allocations are comparatively small in relevant setups
897 * (e.g., fraction of system memory).
898 * b) Some hotplugged memory blocks in virtualized environments, esecially
899 * hotplugged by virtio-mem, look like they are completely present, however,
900 * only parts of the memory block are actually currently usable.
901 * "present pages" is an upper limit that can get reached at runtime. As
902 * we base our calculations on KERNEL_EARLY, this is not an issue.
903 */
auto_movable_zone_for_pfn(int nid,struct memory_group * group,unsigned long pfn,unsigned long nr_pages)904 static struct zone *auto_movable_zone_for_pfn(int nid,
905 struct memory_group *group,
906 unsigned long pfn,
907 unsigned long nr_pages)
908 {
909 unsigned long online_pages = 0, max_pages, end_pfn;
910 struct page *page;
911
912 if (!auto_movable_ratio)
913 goto kernel_zone;
914
915 if (group && !group->is_dynamic) {
916 max_pages = group->s.max_pages;
917 online_pages = group->present_movable_pages;
918
919 /* If anything is !MOVABLE online the rest !MOVABLE. */
920 if (group->present_kernel_pages)
921 goto kernel_zone;
922 } else if (!group || group->d.unit_pages == nr_pages) {
923 max_pages = nr_pages;
924 } else {
925 max_pages = group->d.unit_pages;
926 /*
927 * Take a look at all online sections in the current unit.
928 * We can safely assume that all pages within a section belong
929 * to the same zone, because dynamic memory groups only deal
930 * with hotplugged memory.
931 */
932 pfn = ALIGN_DOWN(pfn, group->d.unit_pages);
933 end_pfn = pfn + group->d.unit_pages;
934 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
935 page = pfn_to_online_page(pfn);
936 if (!page)
937 continue;
938 /* If anything is !MOVABLE online the rest !MOVABLE. */
939 if (page_zonenum(page) != ZONE_MOVABLE)
940 goto kernel_zone;
941 online_pages += PAGES_PER_SECTION;
942 }
943 }
944
945 /*
946 * Online MOVABLE if we could *currently* online all remaining parts
947 * MOVABLE. We expect to (add+) online them immediately next, so if
948 * nobody interferes, all will be MOVABLE if possible.
949 */
950 nr_pages = max_pages - online_pages;
951 if (!auto_movable_can_online_movable(NUMA_NO_NODE, group, nr_pages))
952 goto kernel_zone;
953
954 #ifdef CONFIG_NUMA
955 if (auto_movable_numa_aware &&
956 !auto_movable_can_online_movable(nid, group, nr_pages))
957 goto kernel_zone;
958 #endif /* CONFIG_NUMA */
959
960 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
961 kernel_zone:
962 return default_kernel_zone_for_pfn(nid, pfn, nr_pages);
963 }
964
default_zone_for_pfn(int nid,unsigned long start_pfn,unsigned long nr_pages)965 static inline struct zone *default_zone_for_pfn(int nid, unsigned long start_pfn,
966 unsigned long nr_pages)
967 {
968 struct zone *kernel_zone = default_kernel_zone_for_pfn(nid, start_pfn,
969 nr_pages);
970 struct zone *movable_zone = &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
971 bool in_kernel = zone_intersects(kernel_zone, start_pfn, nr_pages);
972 bool in_movable = zone_intersects(movable_zone, start_pfn, nr_pages);
973
974 /*
975 * We inherit the existing zone in a simple case where zones do not
976 * overlap in the given range
977 */
978 if (in_kernel ^ in_movable)
979 return (in_kernel) ? kernel_zone : movable_zone;
980
981 /*
982 * If the range doesn't belong to any zone or two zones overlap in the
983 * given range then we use movable zone only if movable_node is
984 * enabled because we always online to a kernel zone by default.
985 */
986 return movable_node_enabled ? movable_zone : kernel_zone;
987 }
988
zone_for_pfn_range(int online_type,int nid,struct memory_group * group,unsigned long start_pfn,unsigned long nr_pages)989 struct zone *zone_for_pfn_range(int online_type, int nid,
990 struct memory_group *group, unsigned long start_pfn,
991 unsigned long nr_pages)
992 {
993 if (online_type == MMOP_ONLINE_KERNEL)
994 return default_kernel_zone_for_pfn(nid, start_pfn, nr_pages);
995
996 if (online_type == MMOP_ONLINE_MOVABLE)
997 return &NODE_DATA(nid)->node_zones[ZONE_MOVABLE];
998
999 if (online_policy == ONLINE_POLICY_AUTO_MOVABLE)
1000 return auto_movable_zone_for_pfn(nid, group, start_pfn, nr_pages);
1001
1002 return default_zone_for_pfn(nid, start_pfn, nr_pages);
1003 }
1004
1005 /*
1006 * This function should only be called by memory_block_{online,offline},
1007 * and {online,offline}_pages.
1008 */
adjust_present_page_count(struct page * page,struct memory_group * group,long nr_pages)1009 void adjust_present_page_count(struct page *page, struct memory_group *group,
1010 long nr_pages)
1011 {
1012 struct zone *zone = page_zone(page);
1013 const bool movable = zone_idx(zone) == ZONE_MOVABLE;
1014
1015 /*
1016 * We only support onlining/offlining/adding/removing of complete
1017 * memory blocks; therefore, either all is either early or hotplugged.
1018 */
1019 if (early_section(__pfn_to_section(page_to_pfn(page))))
1020 zone->present_early_pages += nr_pages;
1021 zone->present_pages += nr_pages;
1022 zone->zone_pgdat->node_present_pages += nr_pages;
1023
1024 if (group && movable)
1025 group->present_movable_pages += nr_pages;
1026 else if (group && !movable)
1027 group->present_kernel_pages += nr_pages;
1028 }
1029
mhp_init_memmap_on_memory(unsigned long pfn,unsigned long nr_pages,struct zone * zone)1030 int mhp_init_memmap_on_memory(unsigned long pfn, unsigned long nr_pages,
1031 struct zone *zone)
1032 {
1033 unsigned long end_pfn = pfn + nr_pages;
1034 int ret;
1035
1036 ret = kasan_add_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1037 if (ret)
1038 return ret;
1039
1040 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_UNMOVABLE);
1041
1042 /*
1043 * It might be that the vmemmap_pages fully span sections. If that is
1044 * the case, mark those sections online here as otherwise they will be
1045 * left offline.
1046 */
1047 if (nr_pages >= PAGES_PER_SECTION)
1048 online_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1049
1050 return ret;
1051 }
1052
mhp_deinit_memmap_on_memory(unsigned long pfn,unsigned long nr_pages)1053 void mhp_deinit_memmap_on_memory(unsigned long pfn, unsigned long nr_pages)
1054 {
1055 unsigned long end_pfn = pfn + nr_pages;
1056
1057 /*
1058 * It might be that the vmemmap_pages fully span sections. If that is
1059 * the case, mark those sections offline here as otherwise they will be
1060 * left online.
1061 */
1062 if (nr_pages >= PAGES_PER_SECTION)
1063 offline_mem_sections(pfn, ALIGN_DOWN(end_pfn, PAGES_PER_SECTION));
1064
1065 /*
1066 * The pages associated with this vmemmap have been offlined, so
1067 * we can reset its state here.
1068 */
1069 remove_pfn_range_from_zone(page_zone(pfn_to_page(pfn)), pfn, nr_pages);
1070 kasan_remove_zero_shadow(__va(PFN_PHYS(pfn)), PFN_PHYS(nr_pages));
1071 }
1072
online_pages(unsigned long pfn,unsigned long nr_pages,struct zone * zone,struct memory_group * group)1073 int __ref online_pages(unsigned long pfn, unsigned long nr_pages,
1074 struct zone *zone, struct memory_group *group)
1075 {
1076 unsigned long flags;
1077 int need_zonelists_rebuild = 0;
1078 const int nid = zone_to_nid(zone);
1079 int ret;
1080 struct memory_notify arg;
1081
1082 /*
1083 * {on,off}lining is constrained to full memory sections (or more
1084 * precisely to memory blocks from the user space POV).
1085 * memmap_on_memory is an exception because it reserves initial part
1086 * of the physical memory space for vmemmaps. That space is pageblock
1087 * aligned.
1088 */
1089 if (WARN_ON_ONCE(!nr_pages ||
1090 !IS_ALIGNED(pfn, pageblock_nr_pages) ||
1091 !IS_ALIGNED(pfn + nr_pages, PAGES_PER_SECTION)))
1092 return -EINVAL;
1093
1094 mem_hotplug_begin();
1095
1096 /* associate pfn range with the zone */
1097 move_pfn_range_to_zone(zone, pfn, nr_pages, NULL, MIGRATE_ISOLATE);
1098
1099 arg.start_pfn = pfn;
1100 arg.nr_pages = nr_pages;
1101 node_states_check_changes_online(nr_pages, zone, &arg);
1102
1103 ret = memory_notify(MEM_GOING_ONLINE, &arg);
1104 ret = notifier_to_errno(ret);
1105 if (ret)
1106 goto failed_addition;
1107
1108 /*
1109 * Fixup the number of isolated pageblocks before marking the sections
1110 * onlining, such that undo_isolate_page_range() works correctly.
1111 */
1112 spin_lock_irqsave(&zone->lock, flags);
1113 zone->nr_isolate_pageblock += nr_pages / pageblock_nr_pages;
1114 spin_unlock_irqrestore(&zone->lock, flags);
1115
1116 /*
1117 * If this zone is not populated, then it is not in zonelist.
1118 * This means the page allocator ignores this zone.
1119 * So, zonelist must be updated after online.
1120 */
1121 if (!populated_zone(zone)) {
1122 need_zonelists_rebuild = 1;
1123 setup_zone_pageset(zone);
1124 }
1125
1126 online_pages_range(pfn, nr_pages);
1127 adjust_present_page_count(pfn_to_page(pfn), group, nr_pages);
1128
1129 node_states_set_node(nid, &arg);
1130 if (need_zonelists_rebuild)
1131 build_all_zonelists(NULL);
1132
1133 /* Basic onlining is complete, allow allocation of onlined pages. */
1134 undo_isolate_page_range(pfn, pfn + nr_pages, MIGRATE_MOVABLE);
1135
1136 /*
1137 * Freshly onlined pages aren't shuffled (e.g., all pages are placed to
1138 * the tail of the freelist when undoing isolation). Shuffle the whole
1139 * zone to make sure the just onlined pages are properly distributed
1140 * across the whole freelist - to create an initial shuffle.
1141 */
1142 shuffle_zone(zone);
1143
1144 /* reinitialise watermarks and update pcp limits */
1145 init_per_zone_wmark_min();
1146
1147 kswapd_run(nid);
1148 kcompactd_run(nid);
1149
1150 writeback_set_ratelimit();
1151
1152 memory_notify(MEM_ONLINE, &arg);
1153 mem_hotplug_done();
1154 return 0;
1155
1156 failed_addition:
1157 pr_debug("online_pages [mem %#010llx-%#010llx] failed\n",
1158 (unsigned long long) pfn << PAGE_SHIFT,
1159 (((unsigned long long) pfn + nr_pages) << PAGE_SHIFT) - 1);
1160 memory_notify(MEM_CANCEL_ONLINE, &arg);
1161 remove_pfn_range_from_zone(zone, pfn, nr_pages);
1162 mem_hotplug_done();
1163 return ret;
1164 }
1165
reset_node_present_pages(pg_data_t * pgdat)1166 static void reset_node_present_pages(pg_data_t *pgdat)
1167 {
1168 struct zone *z;
1169
1170 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1171 z->present_pages = 0;
1172
1173 pgdat->node_present_pages = 0;
1174 }
1175
1176 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
hotadd_init_pgdat(int nid)1177 static pg_data_t __ref *hotadd_init_pgdat(int nid)
1178 {
1179 struct pglist_data *pgdat;
1180
1181 /*
1182 * NODE_DATA is preallocated (free_area_init) but its internal
1183 * state is not allocated completely. Add missing pieces.
1184 * Completely offline nodes stay around and they just need
1185 * reintialization.
1186 */
1187 pgdat = NODE_DATA(nid);
1188
1189 /* init node's zones as empty zones, we don't have any present pages.*/
1190 free_area_init_core_hotplug(pgdat);
1191
1192 /*
1193 * The node we allocated has no zone fallback lists. For avoiding
1194 * to access not-initialized zonelist, build here.
1195 */
1196 build_all_zonelists(pgdat);
1197
1198 /*
1199 * When memory is hot-added, all the memory is in offline state. So
1200 * clear all zones' present_pages because they will be updated in
1201 * online_pages() and offline_pages().
1202 * TODO: should be in free_area_init_core_hotplug?
1203 */
1204 reset_node_managed_pages(pgdat);
1205 reset_node_present_pages(pgdat);
1206
1207 return pgdat;
1208 }
1209
1210 /*
1211 * __try_online_node - online a node if offlined
1212 * @nid: the node ID
1213 * @set_node_online: Whether we want to online the node
1214 * called by cpu_up() to online a node without onlined memory.
1215 *
1216 * Returns:
1217 * 1 -> a new node has been allocated
1218 * 0 -> the node is already online
1219 * -ENOMEM -> the node could not be allocated
1220 */
__try_online_node(int nid,bool set_node_online)1221 static int __try_online_node(int nid, bool set_node_online)
1222 {
1223 pg_data_t *pgdat;
1224 int ret = 1;
1225
1226 if (node_online(nid))
1227 return 0;
1228
1229 pgdat = hotadd_init_pgdat(nid);
1230 if (!pgdat) {
1231 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1232 ret = -ENOMEM;
1233 goto out;
1234 }
1235
1236 if (set_node_online) {
1237 node_set_online(nid);
1238 ret = register_one_node(nid);
1239 BUG_ON(ret);
1240 }
1241 out:
1242 return ret;
1243 }
1244
1245 /*
1246 * Users of this function always want to online/register the node
1247 */
try_online_node(int nid)1248 int try_online_node(int nid)
1249 {
1250 int ret;
1251
1252 mem_hotplug_begin();
1253 ret = __try_online_node(nid, true);
1254 mem_hotplug_done();
1255 return ret;
1256 }
1257
check_hotplug_memory_range(u64 start,u64 size)1258 static int check_hotplug_memory_range(u64 start, u64 size)
1259 {
1260 /* memory range must be block size aligned */
1261 if (!size || !IS_ALIGNED(start, memory_block_size_bytes()) ||
1262 !IS_ALIGNED(size, memory_block_size_bytes())) {
1263 pr_err("Block size [%#lx] unaligned hotplug range: start %#llx, size %#llx",
1264 memory_block_size_bytes(), start, size);
1265 return -EINVAL;
1266 }
1267
1268 return 0;
1269 }
1270
online_memory_block(struct memory_block * mem,void * arg)1271 static int online_memory_block(struct memory_block *mem, void *arg)
1272 {
1273 mem->online_type = mhp_default_online_type;
1274 return device_online(&mem->dev);
1275 }
1276
mhp_supports_memmap_on_memory(unsigned long size)1277 bool mhp_supports_memmap_on_memory(unsigned long size)
1278 {
1279 unsigned long nr_vmemmap_pages = size / PAGE_SIZE;
1280 unsigned long vmemmap_size = nr_vmemmap_pages * sizeof(struct page);
1281 unsigned long remaining_size = size - vmemmap_size;
1282
1283 /*
1284 * Besides having arch support and the feature enabled at runtime, we
1285 * need a few more assumptions to hold true:
1286 *
1287 * a) We span a single memory block: memory onlining/offlinin;g happens
1288 * in memory block granularity. We don't want the vmemmap of online
1289 * memory blocks to reside on offline memory blocks. In the future,
1290 * we might want to support variable-sized memory blocks to make the
1291 * feature more versatile.
1292 *
1293 * b) The vmemmap pages span complete PMDs: We don't want vmemmap code
1294 * to populate memory from the altmap for unrelated parts (i.e.,
1295 * other memory blocks)
1296 *
1297 * c) The vmemmap pages (and thereby the pages that will be exposed to
1298 * the buddy) have to cover full pageblocks: memory onlining/offlining
1299 * code requires applicable ranges to be page-aligned, for example, to
1300 * set the migratetypes properly.
1301 *
1302 * TODO: Although we have a check here to make sure that vmemmap pages
1303 * fully populate a PMD, it is not the right place to check for
1304 * this. A much better solution involves improving vmemmap code
1305 * to fallback to base pages when trying to populate vmemmap using
1306 * altmap as an alternative source of memory, and we do not exactly
1307 * populate a single PMD.
1308 */
1309 return mhp_memmap_on_memory() &&
1310 size == memory_block_size_bytes() &&
1311 IS_ALIGNED(vmemmap_size, PMD_SIZE) &&
1312 IS_ALIGNED(remaining_size, (pageblock_nr_pages << PAGE_SHIFT));
1313 }
1314
1315 /*
1316 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1317 * and online/offline operations (triggered e.g. by sysfs).
1318 *
1319 * we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG
1320 */
add_memory_resource(int nid,struct resource * res,mhp_t mhp_flags)1321 int __ref add_memory_resource(int nid, struct resource *res, mhp_t mhp_flags)
1322 {
1323 struct mhp_params params = { .pgprot = pgprot_mhp(PAGE_KERNEL) };
1324 enum memblock_flags memblock_flags = MEMBLOCK_NONE;
1325 struct vmem_altmap mhp_altmap = {};
1326 struct memory_group *group = NULL;
1327 u64 start, size;
1328 bool new_node = false;
1329 int ret;
1330
1331 start = res->start;
1332 size = resource_size(res);
1333
1334 ret = check_hotplug_memory_range(start, size);
1335 if (ret)
1336 return ret;
1337
1338 if (mhp_flags & MHP_NID_IS_MGID) {
1339 group = memory_group_find_by_id(nid);
1340 if (!group)
1341 return -EINVAL;
1342 nid = group->nid;
1343 }
1344
1345 if (!node_possible(nid)) {
1346 WARN(1, "node %d was absent from the node_possible_map\n", nid);
1347 return -EINVAL;
1348 }
1349
1350 mem_hotplug_begin();
1351
1352 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
1353 if (res->flags & IORESOURCE_SYSRAM_DRIVER_MANAGED)
1354 memblock_flags = MEMBLOCK_DRIVER_MANAGED;
1355 ret = memblock_add_node(start, size, nid, memblock_flags);
1356 if (ret)
1357 goto error_mem_hotplug_end;
1358 }
1359
1360 ret = __try_online_node(nid, false);
1361 if (ret < 0)
1362 goto error;
1363 new_node = ret;
1364
1365 /*
1366 * Self hosted memmap array
1367 */
1368 if (mhp_flags & MHP_MEMMAP_ON_MEMORY) {
1369 if (!mhp_supports_memmap_on_memory(size)) {
1370 ret = -EINVAL;
1371 goto error;
1372 }
1373 mhp_altmap.free = PHYS_PFN(size);
1374 mhp_altmap.base_pfn = PHYS_PFN(start);
1375 params.altmap = &mhp_altmap;
1376 }
1377
1378 /* call arch's memory hotadd */
1379 ret = arch_add_memory(nid, start, size, ¶ms);
1380 if (ret < 0)
1381 goto error;
1382
1383 /* create memory block devices after memory was added */
1384 ret = create_memory_block_devices(start, size, mhp_altmap.alloc,
1385 group);
1386 if (ret) {
1387 arch_remove_memory(start, size, NULL);
1388 goto error;
1389 }
1390
1391 if (new_node) {
1392 /* If sysfs file of new node can't be created, cpu on the node
1393 * can't be hot-added. There is no rollback way now.
1394 * So, check by BUG_ON() to catch it reluctantly..
1395 * We online node here. We can't roll back from here.
1396 */
1397 node_set_online(nid);
1398 ret = __register_one_node(nid);
1399 BUG_ON(ret);
1400 }
1401
1402 register_memory_blocks_under_node(nid, PFN_DOWN(start),
1403 PFN_UP(start + size - 1),
1404 MEMINIT_HOTPLUG);
1405
1406 /* create new memmap entry */
1407 if (!strcmp(res->name, "System RAM"))
1408 firmware_map_add_hotplug(start, start + size, "System RAM");
1409
1410 /* device_online() will take the lock when calling online_pages() */
1411 mem_hotplug_done();
1412
1413 /*
1414 * In case we're allowed to merge the resource, flag it and trigger
1415 * merging now that adding succeeded.
1416 */
1417 if (mhp_flags & MHP_MERGE_RESOURCE)
1418 merge_system_ram_resource(res);
1419
1420 /* online pages if requested */
1421 if (mhp_default_online_type != MMOP_OFFLINE)
1422 walk_memory_blocks(start, size, NULL, online_memory_block);
1423
1424 return ret;
1425 error:
1426 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK))
1427 memblock_remove(start, size);
1428 error_mem_hotplug_end:
1429 mem_hotplug_done();
1430 return ret;
1431 }
1432
1433 /* requires device_hotplug_lock, see add_memory_resource() */
__add_memory(int nid,u64 start,u64 size,mhp_t mhp_flags)1434 int __ref __add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1435 {
1436 struct resource *res;
1437 int ret;
1438
1439 res = register_memory_resource(start, size, "System RAM");
1440 if (IS_ERR(res))
1441 return PTR_ERR(res);
1442
1443 ret = add_memory_resource(nid, res, mhp_flags);
1444 if (ret < 0)
1445 release_memory_resource(res);
1446 return ret;
1447 }
1448
add_memory(int nid,u64 start,u64 size,mhp_t mhp_flags)1449 int add_memory(int nid, u64 start, u64 size, mhp_t mhp_flags)
1450 {
1451 int rc;
1452
1453 lock_device_hotplug();
1454 rc = __add_memory(nid, start, size, mhp_flags);
1455 unlock_device_hotplug();
1456
1457 return rc;
1458 }
1459 EXPORT_SYMBOL_GPL(add_memory);
1460
1461 /*
1462 * Add special, driver-managed memory to the system as system RAM. Such
1463 * memory is not exposed via the raw firmware-provided memmap as system
1464 * RAM, instead, it is detected and added by a driver - during cold boot,
1465 * after a reboot, and after kexec.
1466 *
1467 * Reasons why this memory should not be used for the initial memmap of a
1468 * kexec kernel or for placing kexec images:
1469 * - The booting kernel is in charge of determining how this memory will be
1470 * used (e.g., use persistent memory as system RAM)
1471 * - Coordination with a hypervisor is required before this memory
1472 * can be used (e.g., inaccessible parts).
1473 *
1474 * For this memory, no entries in /sys/firmware/memmap ("raw firmware-provided
1475 * memory map") are created. Also, the created memory resource is flagged
1476 * with IORESOURCE_SYSRAM_DRIVER_MANAGED, so in-kernel users can special-case
1477 * this memory as well (esp., not place kexec images onto it).
1478 *
1479 * The resource_name (visible via /proc/iomem) has to have the format
1480 * "System RAM ($DRIVER)".
1481 */
add_memory_driver_managed(int nid,u64 start,u64 size,const char * resource_name,mhp_t mhp_flags)1482 int add_memory_driver_managed(int nid, u64 start, u64 size,
1483 const char *resource_name, mhp_t mhp_flags)
1484 {
1485 struct resource *res;
1486 int rc;
1487
1488 if (!resource_name ||
1489 strstr(resource_name, "System RAM (") != resource_name ||
1490 resource_name[strlen(resource_name) - 1] != ')')
1491 return -EINVAL;
1492
1493 lock_device_hotplug();
1494
1495 res = register_memory_resource(start, size, resource_name);
1496 if (IS_ERR(res)) {
1497 rc = PTR_ERR(res);
1498 goto out_unlock;
1499 }
1500
1501 rc = add_memory_resource(nid, res, mhp_flags);
1502 if (rc < 0)
1503 release_memory_resource(res);
1504
1505 out_unlock:
1506 unlock_device_hotplug();
1507 return rc;
1508 }
1509 EXPORT_SYMBOL_GPL(add_memory_driver_managed);
1510
1511 /*
1512 * Platforms should define arch_get_mappable_range() that provides
1513 * maximum possible addressable physical memory range for which the
1514 * linear mapping could be created. The platform returned address
1515 * range must adhere to these following semantics.
1516 *
1517 * - range.start <= range.end
1518 * - Range includes both end points [range.start..range.end]
1519 *
1520 * There is also a fallback definition provided here, allowing the
1521 * entire possible physical address range in case any platform does
1522 * not define arch_get_mappable_range().
1523 */
arch_get_mappable_range(void)1524 struct range __weak arch_get_mappable_range(void)
1525 {
1526 struct range mhp_range = {
1527 .start = 0UL,
1528 .end = -1ULL,
1529 };
1530 return mhp_range;
1531 }
1532
mhp_get_pluggable_range(bool need_mapping)1533 struct range mhp_get_pluggable_range(bool need_mapping)
1534 {
1535 const u64 max_phys = (1ULL << MAX_PHYSMEM_BITS) - 1;
1536 struct range mhp_range;
1537
1538 if (need_mapping) {
1539 mhp_range = arch_get_mappable_range();
1540 if (mhp_range.start > max_phys) {
1541 mhp_range.start = 0;
1542 mhp_range.end = 0;
1543 }
1544 mhp_range.end = min_t(u64, mhp_range.end, max_phys);
1545 } else {
1546 mhp_range.start = 0;
1547 mhp_range.end = max_phys;
1548 }
1549 return mhp_range;
1550 }
1551 EXPORT_SYMBOL_GPL(mhp_get_pluggable_range);
1552
mhp_range_allowed(u64 start,u64 size,bool need_mapping)1553 bool mhp_range_allowed(u64 start, u64 size, bool need_mapping)
1554 {
1555 struct range mhp_range = mhp_get_pluggable_range(need_mapping);
1556 u64 end = start + size;
1557
1558 if (start < end && start >= mhp_range.start && (end - 1) <= mhp_range.end)
1559 return true;
1560
1561 pr_warn("Hotplug memory [%#llx-%#llx] exceeds maximum addressable range [%#llx-%#llx]\n",
1562 start, end, mhp_range.start, mhp_range.end);
1563 return false;
1564 }
1565
1566 #ifdef CONFIG_MEMORY_HOTREMOVE
1567 /*
1568 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages,
1569 * non-lru movable pages and hugepages). Will skip over most unmovable
1570 * pages (esp., pages that can be skipped when offlining), but bail out on
1571 * definitely unmovable pages.
1572 *
1573 * Returns:
1574 * 0 in case a movable page is found and movable_pfn was updated.
1575 * -ENOENT in case no movable page was found.
1576 * -EBUSY in case a definitely unmovable page was found.
1577 */
scan_movable_pages(unsigned long start,unsigned long end,unsigned long * movable_pfn)1578 static int scan_movable_pages(unsigned long start, unsigned long end,
1579 unsigned long *movable_pfn)
1580 {
1581 unsigned long pfn;
1582
1583 for (pfn = start; pfn < end; pfn++) {
1584 struct page *page, *head;
1585 unsigned long skip;
1586
1587 if (!pfn_valid(pfn))
1588 continue;
1589 page = pfn_to_page(pfn);
1590 if (PageLRU(page))
1591 goto found;
1592 if (__PageMovable(page))
1593 goto found;
1594
1595 /*
1596 * PageOffline() pages that are not marked __PageMovable() and
1597 * have a reference count > 0 (after MEM_GOING_OFFLINE) are
1598 * definitely unmovable. If their reference count would be 0,
1599 * they could at least be skipped when offlining memory.
1600 */
1601 if (PageOffline(page) && page_count(page))
1602 return -EBUSY;
1603
1604 if (!PageHuge(page))
1605 continue;
1606 head = compound_head(page);
1607 /*
1608 * This test is racy as we hold no reference or lock. The
1609 * hugetlb page could have been free'ed and head is no longer
1610 * a hugetlb page before the following check. In such unlikely
1611 * cases false positives and negatives are possible. Calling
1612 * code must deal with these scenarios.
1613 */
1614 if (HPageMigratable(head))
1615 goto found;
1616 skip = compound_nr(head) - (page - head);
1617 pfn += skip - 1;
1618 }
1619 return -ENOENT;
1620 found:
1621 *movable_pfn = pfn;
1622 return 0;
1623 }
1624
1625 static int
do_migrate_range(unsigned long start_pfn,unsigned long end_pfn)1626 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1627 {
1628 unsigned long pfn;
1629 struct page *page, *head;
1630 int ret = 0;
1631 LIST_HEAD(source);
1632 static DEFINE_RATELIMIT_STATE(migrate_rs, DEFAULT_RATELIMIT_INTERVAL,
1633 DEFAULT_RATELIMIT_BURST);
1634
1635 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1636 struct folio *folio;
1637
1638 if (!pfn_valid(pfn))
1639 continue;
1640 page = pfn_to_page(pfn);
1641 folio = page_folio(page);
1642 head = &folio->page;
1643
1644 if (PageHuge(page)) {
1645 pfn = page_to_pfn(head) + compound_nr(head) - 1;
1646 isolate_hugetlb(head, &source);
1647 continue;
1648 } else if (PageTransHuge(page))
1649 pfn = page_to_pfn(head) + thp_nr_pages(page) - 1;
1650
1651 /*
1652 * HWPoison pages have elevated reference counts so the migration would
1653 * fail on them. It also doesn't make any sense to migrate them in the
1654 * first place. Still try to unmap such a page in case it is still mapped
1655 * (e.g. current hwpoison implementation doesn't unmap KSM pages but keep
1656 * the unmap as the catch all safety net).
1657 */
1658 if (PageHWPoison(page)) {
1659 if (WARN_ON(folio_test_lru(folio)))
1660 folio_isolate_lru(folio);
1661 if (folio_mapped(folio))
1662 try_to_unmap(folio, TTU_IGNORE_MLOCK);
1663 continue;
1664 }
1665
1666 if (!get_page_unless_zero(page))
1667 continue;
1668 /*
1669 * We can skip free pages. And we can deal with pages on
1670 * LRU and non-lru movable pages.
1671 */
1672 if (PageLRU(page))
1673 ret = isolate_lru_page(page);
1674 else
1675 ret = isolate_movable_page(page, ISOLATE_UNEVICTABLE);
1676 if (!ret) { /* Success */
1677 list_add_tail(&page->lru, &source);
1678 if (!__PageMovable(page))
1679 inc_node_page_state(page, NR_ISOLATED_ANON +
1680 page_is_file_lru(page));
1681
1682 } else {
1683 if (__ratelimit(&migrate_rs)) {
1684 pr_warn("failed to isolate pfn %lx\n", pfn);
1685 dump_page(page, "isolation failed");
1686 }
1687 }
1688 put_page(page);
1689 }
1690 if (!list_empty(&source)) {
1691 nodemask_t nmask = node_states[N_MEMORY];
1692 struct migration_target_control mtc = {
1693 .nmask = &nmask,
1694 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
1695 };
1696
1697 /*
1698 * We have checked that migration range is on a single zone so
1699 * we can use the nid of the first page to all the others.
1700 */
1701 mtc.nid = page_to_nid(list_first_entry(&source, struct page, lru));
1702
1703 /*
1704 * try to allocate from a different node but reuse this node
1705 * if there are no other online nodes to be used (e.g. we are
1706 * offlining a part of the only existing node)
1707 */
1708 node_clear(mtc.nid, nmask);
1709 if (nodes_empty(nmask))
1710 node_set(mtc.nid, nmask);
1711 ret = migrate_pages(&source, alloc_migration_target, NULL,
1712 (unsigned long)&mtc, MIGRATE_SYNC, MR_MEMORY_HOTPLUG, NULL);
1713 if (ret) {
1714 list_for_each_entry(page, &source, lru) {
1715 if (__ratelimit(&migrate_rs)) {
1716 pr_warn("migrating pfn %lx failed ret:%d\n",
1717 page_to_pfn(page), ret);
1718 dump_page(page, "migration failure");
1719 }
1720 }
1721 putback_movable_pages(&source);
1722 }
1723 }
1724
1725 return ret;
1726 }
1727
cmdline_parse_movable_node(char * p)1728 static int __init cmdline_parse_movable_node(char *p)
1729 {
1730 movable_node_enabled = true;
1731 return 0;
1732 }
1733 early_param("movable_node", cmdline_parse_movable_node);
1734
1735 /* check which state of node_states will be changed when offline memory */
node_states_check_changes_offline(unsigned long nr_pages,struct zone * zone,struct memory_notify * arg)1736 static void node_states_check_changes_offline(unsigned long nr_pages,
1737 struct zone *zone, struct memory_notify *arg)
1738 {
1739 struct pglist_data *pgdat = zone->zone_pgdat;
1740 unsigned long present_pages = 0;
1741 enum zone_type zt;
1742
1743 arg->status_change_nid = NUMA_NO_NODE;
1744 arg->status_change_nid_normal = NUMA_NO_NODE;
1745
1746 /*
1747 * Check whether node_states[N_NORMAL_MEMORY] will be changed.
1748 * If the memory to be offline is within the range
1749 * [0..ZONE_NORMAL], and it is the last present memory there,
1750 * the zones in that range will become empty after the offlining,
1751 * thus we can determine that we need to clear the node from
1752 * node_states[N_NORMAL_MEMORY].
1753 */
1754 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1755 present_pages += pgdat->node_zones[zt].present_pages;
1756 if (zone_idx(zone) <= ZONE_NORMAL && nr_pages >= present_pages)
1757 arg->status_change_nid_normal = zone_to_nid(zone);
1758
1759 /*
1760 * We have accounted the pages from [0..ZONE_NORMAL); ZONE_HIGHMEM
1761 * does not apply as we don't support 32bit.
1762 * Here we count the possible pages from ZONE_MOVABLE.
1763 * If after having accounted all the pages, we see that the nr_pages
1764 * to be offlined is over or equal to the accounted pages,
1765 * we know that the node will become empty, and so, we can clear
1766 * it for N_MEMORY as well.
1767 */
1768 present_pages += pgdat->node_zones[ZONE_MOVABLE].present_pages;
1769
1770 if (nr_pages >= present_pages)
1771 arg->status_change_nid = zone_to_nid(zone);
1772 }
1773
node_states_clear_node(int node,struct memory_notify * arg)1774 static void node_states_clear_node(int node, struct memory_notify *arg)
1775 {
1776 if (arg->status_change_nid_normal >= 0)
1777 node_clear_state(node, N_NORMAL_MEMORY);
1778
1779 if (arg->status_change_nid >= 0)
1780 node_clear_state(node, N_MEMORY);
1781 }
1782
count_system_ram_pages_cb(unsigned long start_pfn,unsigned long nr_pages,void * data)1783 static int count_system_ram_pages_cb(unsigned long start_pfn,
1784 unsigned long nr_pages, void *data)
1785 {
1786 unsigned long *nr_system_ram_pages = data;
1787
1788 *nr_system_ram_pages += nr_pages;
1789 return 0;
1790 }
1791
offline_pages(unsigned long start_pfn,unsigned long nr_pages,struct zone * zone,struct memory_group * group)1792 int __ref offline_pages(unsigned long start_pfn, unsigned long nr_pages,
1793 struct zone *zone, struct memory_group *group)
1794 {
1795 const unsigned long end_pfn = start_pfn + nr_pages;
1796 unsigned long pfn, system_ram_pages = 0;
1797 const int node = zone_to_nid(zone);
1798 unsigned long flags;
1799 struct memory_notify arg;
1800 char *reason;
1801 int ret;
1802
1803 /*
1804 * {on,off}lining is constrained to full memory sections (or more
1805 * precisely to memory blocks from the user space POV).
1806 * memmap_on_memory is an exception because it reserves initial part
1807 * of the physical memory space for vmemmaps. That space is pageblock
1808 * aligned.
1809 */
1810 if (WARN_ON_ONCE(!nr_pages ||
1811 !IS_ALIGNED(start_pfn, pageblock_nr_pages) ||
1812 !IS_ALIGNED(start_pfn + nr_pages, PAGES_PER_SECTION)))
1813 return -EINVAL;
1814
1815 mem_hotplug_begin();
1816
1817 /*
1818 * Don't allow to offline memory blocks that contain holes.
1819 * Consequently, memory blocks with holes can never get onlined
1820 * via the hotplug path - online_pages() - as hotplugged memory has
1821 * no holes. This way, we e.g., don't have to worry about marking
1822 * memory holes PG_reserved, don't need pfn_valid() checks, and can
1823 * avoid using walk_system_ram_range() later.
1824 */
1825 walk_system_ram_range(start_pfn, nr_pages, &system_ram_pages,
1826 count_system_ram_pages_cb);
1827 if (system_ram_pages != nr_pages) {
1828 ret = -EINVAL;
1829 reason = "memory holes";
1830 goto failed_removal;
1831 }
1832
1833 /*
1834 * We only support offlining of memory blocks managed by a single zone,
1835 * checked by calling code. This is just a sanity check that we might
1836 * want to remove in the future.
1837 */
1838 if (WARN_ON_ONCE(page_zone(pfn_to_page(start_pfn)) != zone ||
1839 page_zone(pfn_to_page(end_pfn - 1)) != zone)) {
1840 ret = -EINVAL;
1841 reason = "multizone range";
1842 goto failed_removal;
1843 }
1844
1845 /*
1846 * Disable pcplists so that page isolation cannot race with freeing
1847 * in a way that pages from isolated pageblock are left on pcplists.
1848 */
1849 zone_pcp_disable(zone);
1850 lru_cache_disable();
1851
1852 /* set above range as isolated */
1853 ret = start_isolate_page_range(start_pfn, end_pfn,
1854 MIGRATE_MOVABLE,
1855 MEMORY_OFFLINE | REPORT_FAILURE,
1856 GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL);
1857 if (ret) {
1858 reason = "failure to isolate range";
1859 goto failed_removal_pcplists_disabled;
1860 }
1861
1862 arg.start_pfn = start_pfn;
1863 arg.nr_pages = nr_pages;
1864 node_states_check_changes_offline(nr_pages, zone, &arg);
1865
1866 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1867 ret = notifier_to_errno(ret);
1868 if (ret) {
1869 reason = "notifier failure";
1870 goto failed_removal_isolated;
1871 }
1872
1873 do {
1874 pfn = start_pfn;
1875 do {
1876 if (signal_pending(current)) {
1877 ret = -EINTR;
1878 reason = "signal backoff";
1879 goto failed_removal_isolated;
1880 }
1881
1882 cond_resched();
1883
1884 ret = scan_movable_pages(pfn, end_pfn, &pfn);
1885 if (!ret) {
1886 /*
1887 * TODO: fatal migration failures should bail
1888 * out
1889 */
1890 do_migrate_range(pfn, end_pfn);
1891 }
1892 } while (!ret);
1893
1894 if (ret != -ENOENT) {
1895 reason = "unmovable page";
1896 goto failed_removal_isolated;
1897 }
1898
1899 /*
1900 * Dissolve free hugepages in the memory block before doing
1901 * offlining actually in order to make hugetlbfs's object
1902 * counting consistent.
1903 */
1904 ret = dissolve_free_huge_pages(start_pfn, end_pfn);
1905 if (ret) {
1906 reason = "failure to dissolve huge pages";
1907 goto failed_removal_isolated;
1908 }
1909
1910 ret = test_pages_isolated(start_pfn, end_pfn, MEMORY_OFFLINE);
1911
1912 } while (ret);
1913
1914 /* Mark all sections offline and remove free pages from the buddy. */
1915 __offline_isolated_pages(start_pfn, end_pfn);
1916 pr_debug("Offlined Pages %ld\n", nr_pages);
1917
1918 /*
1919 * The memory sections are marked offline, and the pageblock flags
1920 * effectively stale; nobody should be touching them. Fixup the number
1921 * of isolated pageblocks, memory onlining will properly revert this.
1922 */
1923 spin_lock_irqsave(&zone->lock, flags);
1924 zone->nr_isolate_pageblock -= nr_pages / pageblock_nr_pages;
1925 spin_unlock_irqrestore(&zone->lock, flags);
1926
1927 lru_cache_enable();
1928 zone_pcp_enable(zone);
1929
1930 /* removal success */
1931 adjust_managed_page_count(pfn_to_page(start_pfn), -nr_pages);
1932 adjust_present_page_count(pfn_to_page(start_pfn), group, -nr_pages);
1933
1934 /* reinitialise watermarks and update pcp limits */
1935 init_per_zone_wmark_min();
1936
1937 if (!populated_zone(zone)) {
1938 zone_pcp_reset(zone);
1939 build_all_zonelists(NULL);
1940 }
1941
1942 node_states_clear_node(node, &arg);
1943 if (arg.status_change_nid >= 0) {
1944 kswapd_stop(node);
1945 kcompactd_stop(node);
1946 }
1947
1948 writeback_set_ratelimit();
1949
1950 memory_notify(MEM_OFFLINE, &arg);
1951 remove_pfn_range_from_zone(zone, start_pfn, nr_pages);
1952 mem_hotplug_done();
1953 return 0;
1954
1955 failed_removal_isolated:
1956 /* pushback to free area */
1957 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1958 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1959 failed_removal_pcplists_disabled:
1960 lru_cache_enable();
1961 zone_pcp_enable(zone);
1962 failed_removal:
1963 pr_debug("memory offlining [mem %#010llx-%#010llx] failed due to %s\n",
1964 (unsigned long long) start_pfn << PAGE_SHIFT,
1965 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1,
1966 reason);
1967 mem_hotplug_done();
1968 return ret;
1969 }
1970
check_memblock_offlined_cb(struct memory_block * mem,void * arg)1971 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1972 {
1973 int ret = !is_memblock_offlined(mem);
1974 int *nid = arg;
1975
1976 *nid = mem->nid;
1977 if (unlikely(ret)) {
1978 phys_addr_t beginpa, endpa;
1979
1980 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1981 endpa = beginpa + memory_block_size_bytes() - 1;
1982 pr_warn("removing memory fails, because memory [%pa-%pa] is onlined\n",
1983 &beginpa, &endpa);
1984
1985 return -EBUSY;
1986 }
1987 return 0;
1988 }
1989
get_nr_vmemmap_pages_cb(struct memory_block * mem,void * arg)1990 static int get_nr_vmemmap_pages_cb(struct memory_block *mem, void *arg)
1991 {
1992 /*
1993 * If not set, continue with the next block.
1994 */
1995 return mem->nr_vmemmap_pages;
1996 }
1997
check_cpu_on_node(int nid)1998 static int check_cpu_on_node(int nid)
1999 {
2000 int cpu;
2001
2002 for_each_present_cpu(cpu) {
2003 if (cpu_to_node(cpu) == nid)
2004 /*
2005 * the cpu on this node isn't removed, and we can't
2006 * offline this node.
2007 */
2008 return -EBUSY;
2009 }
2010
2011 return 0;
2012 }
2013
check_no_memblock_for_node_cb(struct memory_block * mem,void * arg)2014 static int check_no_memblock_for_node_cb(struct memory_block *mem, void *arg)
2015 {
2016 int nid = *(int *)arg;
2017
2018 /*
2019 * If a memory block belongs to multiple nodes, the stored nid is not
2020 * reliable. However, such blocks are always online (e.g., cannot get
2021 * offlined) and, therefore, are still spanned by the node.
2022 */
2023 return mem->nid == nid ? -EEXIST : 0;
2024 }
2025
2026 /**
2027 * try_offline_node
2028 * @nid: the node ID
2029 *
2030 * Offline a node if all memory sections and cpus of the node are removed.
2031 *
2032 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2033 * and online/offline operations before this call.
2034 */
try_offline_node(int nid)2035 void try_offline_node(int nid)
2036 {
2037 int rc;
2038
2039 /*
2040 * If the node still spans pages (especially ZONE_DEVICE), don't
2041 * offline it. A node spans memory after move_pfn_range_to_zone(),
2042 * e.g., after the memory block was onlined.
2043 */
2044 if (node_spanned_pages(nid))
2045 return;
2046
2047 /*
2048 * Especially offline memory blocks might not be spanned by the
2049 * node. They will get spanned by the node once they get onlined.
2050 * However, they link to the node in sysfs and can get onlined later.
2051 */
2052 rc = for_each_memory_block(&nid, check_no_memblock_for_node_cb);
2053 if (rc)
2054 return;
2055
2056 if (check_cpu_on_node(nid))
2057 return;
2058
2059 /*
2060 * all memory/cpu of this node are removed, we can offline this
2061 * node now.
2062 */
2063 node_set_offline(nid);
2064 unregister_one_node(nid);
2065 }
2066 EXPORT_SYMBOL(try_offline_node);
2067
try_remove_memory(u64 start,u64 size)2068 static int __ref try_remove_memory(u64 start, u64 size)
2069 {
2070 struct vmem_altmap mhp_altmap = {};
2071 struct vmem_altmap *altmap = NULL;
2072 unsigned long nr_vmemmap_pages;
2073 int rc = 0, nid = NUMA_NO_NODE;
2074
2075 BUG_ON(check_hotplug_memory_range(start, size));
2076
2077 /*
2078 * All memory blocks must be offlined before removing memory. Check
2079 * whether all memory blocks in question are offline and return error
2080 * if this is not the case.
2081 *
2082 * While at it, determine the nid. Note that if we'd have mixed nodes,
2083 * we'd only try to offline the last determined one -- which is good
2084 * enough for the cases we care about.
2085 */
2086 rc = walk_memory_blocks(start, size, &nid, check_memblock_offlined_cb);
2087 if (rc)
2088 return rc;
2089
2090 /*
2091 * We only support removing memory added with MHP_MEMMAP_ON_MEMORY in
2092 * the same granularity it was added - a single memory block.
2093 */
2094 if (mhp_memmap_on_memory()) {
2095 nr_vmemmap_pages = walk_memory_blocks(start, size, NULL,
2096 get_nr_vmemmap_pages_cb);
2097 if (nr_vmemmap_pages) {
2098 if (size != memory_block_size_bytes()) {
2099 pr_warn("Refuse to remove %#llx - %#llx,"
2100 "wrong granularity\n",
2101 start, start + size);
2102 return -EINVAL;
2103 }
2104
2105 /*
2106 * Let remove_pmd_table->free_hugepage_table do the
2107 * right thing if we used vmem_altmap when hot-adding
2108 * the range.
2109 */
2110 mhp_altmap.alloc = nr_vmemmap_pages;
2111 altmap = &mhp_altmap;
2112 }
2113 }
2114
2115 /* remove memmap entry */
2116 firmware_map_remove(start, start + size, "System RAM");
2117
2118 /*
2119 * Memory block device removal under the device_hotplug_lock is
2120 * a barrier against racing online attempts.
2121 */
2122 remove_memory_block_devices(start, size);
2123
2124 mem_hotplug_begin();
2125
2126 arch_remove_memory(start, size, altmap);
2127
2128 if (IS_ENABLED(CONFIG_ARCH_KEEP_MEMBLOCK)) {
2129 memblock_phys_free(start, size);
2130 memblock_remove(start, size);
2131 }
2132
2133 release_mem_region_adjustable(start, size);
2134
2135 if (nid != NUMA_NO_NODE)
2136 try_offline_node(nid);
2137
2138 mem_hotplug_done();
2139 return 0;
2140 }
2141
2142 /**
2143 * __remove_memory - Remove memory if every memory block is offline
2144 * @start: physical address of the region to remove
2145 * @size: size of the region to remove
2146 *
2147 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2148 * and online/offline operations before this call, as required by
2149 * try_offline_node().
2150 */
__remove_memory(u64 start,u64 size)2151 void __remove_memory(u64 start, u64 size)
2152 {
2153
2154 /*
2155 * trigger BUG() if some memory is not offlined prior to calling this
2156 * function
2157 */
2158 if (try_remove_memory(start, size))
2159 BUG();
2160 }
2161
2162 /*
2163 * Remove memory if every memory block is offline, otherwise return -EBUSY is
2164 * some memory is not offline
2165 */
remove_memory(u64 start,u64 size)2166 int remove_memory(u64 start, u64 size)
2167 {
2168 int rc;
2169
2170 lock_device_hotplug();
2171 rc = try_remove_memory(start, size);
2172 unlock_device_hotplug();
2173
2174 return rc;
2175 }
2176 EXPORT_SYMBOL_GPL(remove_memory);
2177
try_offline_memory_block(struct memory_block * mem,void * arg)2178 static int try_offline_memory_block(struct memory_block *mem, void *arg)
2179 {
2180 uint8_t online_type = MMOP_ONLINE_KERNEL;
2181 uint8_t **online_types = arg;
2182 struct page *page;
2183 int rc;
2184
2185 /*
2186 * Sense the online_type via the zone of the memory block. Offlining
2187 * with multiple zones within one memory block will be rejected
2188 * by offlining code ... so we don't care about that.
2189 */
2190 page = pfn_to_online_page(section_nr_to_pfn(mem->start_section_nr));
2191 if (page && zone_idx(page_zone(page)) == ZONE_MOVABLE)
2192 online_type = MMOP_ONLINE_MOVABLE;
2193
2194 rc = device_offline(&mem->dev);
2195 /*
2196 * Default is MMOP_OFFLINE - change it only if offlining succeeded,
2197 * so try_reonline_memory_block() can do the right thing.
2198 */
2199 if (!rc)
2200 **online_types = online_type;
2201
2202 (*online_types)++;
2203 /* Ignore if already offline. */
2204 return rc < 0 ? rc : 0;
2205 }
2206
try_reonline_memory_block(struct memory_block * mem,void * arg)2207 static int try_reonline_memory_block(struct memory_block *mem, void *arg)
2208 {
2209 uint8_t **online_types = arg;
2210 int rc;
2211
2212 if (**online_types != MMOP_OFFLINE) {
2213 mem->online_type = **online_types;
2214 rc = device_online(&mem->dev);
2215 if (rc < 0)
2216 pr_warn("%s: Failed to re-online memory: %d",
2217 __func__, rc);
2218 }
2219
2220 /* Continue processing all remaining memory blocks. */
2221 (*online_types)++;
2222 return 0;
2223 }
2224
2225 /*
2226 * Try to offline and remove memory. Might take a long time to finish in case
2227 * memory is still in use. Primarily useful for memory devices that logically
2228 * unplugged all memory (so it's no longer in use) and want to offline + remove
2229 * that memory.
2230 */
offline_and_remove_memory(u64 start,u64 size)2231 int offline_and_remove_memory(u64 start, u64 size)
2232 {
2233 const unsigned long mb_count = size / memory_block_size_bytes();
2234 uint8_t *online_types, *tmp;
2235 int rc;
2236
2237 if (!IS_ALIGNED(start, memory_block_size_bytes()) ||
2238 !IS_ALIGNED(size, memory_block_size_bytes()) || !size)
2239 return -EINVAL;
2240
2241 /*
2242 * We'll remember the old online type of each memory block, so we can
2243 * try to revert whatever we did when offlining one memory block fails
2244 * after offlining some others succeeded.
2245 */
2246 online_types = kmalloc_array(mb_count, sizeof(*online_types),
2247 GFP_KERNEL);
2248 if (!online_types)
2249 return -ENOMEM;
2250 /*
2251 * Initialize all states to MMOP_OFFLINE, so when we abort processing in
2252 * try_offline_memory_block(), we'll skip all unprocessed blocks in
2253 * try_reonline_memory_block().
2254 */
2255 memset(online_types, MMOP_OFFLINE, mb_count);
2256
2257 lock_device_hotplug();
2258
2259 tmp = online_types;
2260 rc = walk_memory_blocks(start, size, &tmp, try_offline_memory_block);
2261
2262 /*
2263 * In case we succeeded to offline all memory, remove it.
2264 * This cannot fail as it cannot get onlined in the meantime.
2265 */
2266 if (!rc) {
2267 rc = try_remove_memory(start, size);
2268 if (rc)
2269 pr_err("%s: Failed to remove memory: %d", __func__, rc);
2270 }
2271
2272 /*
2273 * Rollback what we did. While memory onlining might theoretically fail
2274 * (nacked by a notifier), it barely ever happens.
2275 */
2276 if (rc) {
2277 tmp = online_types;
2278 walk_memory_blocks(start, size, &tmp,
2279 try_reonline_memory_block);
2280 }
2281 unlock_device_hotplug();
2282
2283 kfree(online_types);
2284 return rc;
2285 }
2286 EXPORT_SYMBOL_GPL(offline_and_remove_memory);
2287 #endif /* CONFIG_MEMORY_HOTREMOVE */
2288