1 /*
2  *  Copyright (C) 2003,2004 Aurelien Alleaume <slts@free.fr>
3  *
4  *  This program is free software; you can redistribute it and/or modify
5  *  it under the terms of the GNU General Public License as published by
6  *  the Free Software Foundation; either version 2 of the License
7  *
8  *  This program is distributed in the hope that it will be useful,
9  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
10  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
11  *  GNU General Public License for more details.
12  *
13  *  You should have received a copy of the GNU General Public License
14  *  along with this program; if not, write to the Free Software
15  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
16  *
17  */
18 
19 #include "prismcompat.h"
20 #include "islpci_dev.h"
21 #include "islpci_mgt.h"
22 #include "isl_oid.h"
23 #include "oid_mgt.h"
24 #include "isl_ioctl.h"
25 
26 /* to convert between channel and freq */
27 const int frequency_list_bg[] = { 2412, 2417, 2422, 2427, 2432, 2437, 2442,
28 	2447, 2452, 2457, 2462, 2467, 2472, 2484
29 };
30 
31 int
channel_of_freq(int f)32 channel_of_freq(int f)
33 {
34 	int c = 0;
35 
36 	if ((f >= 2412) && (f <= 2484)) {
37 		while ((c < 14) && (f != frequency_list_bg[c]))
38 			c++;
39 		return (c >= 14) ? 0 : ++c;
40 	} else if ((f >= (int) 5000) && (f <= (int) 6000)) {
41 		return ( (f - 5000) / 5 );
42 	} else
43 		return 0;
44 }
45 
46 #define OID_STRUCT(name,oid,s,t) [name] = {oid, 0, sizeof(s), t}
47 #define OID_STRUCT_C(name,oid,s,t) OID_STRUCT(name,oid,s,t | OID_FLAG_CACHED)
48 #define OID_U32(name,oid) OID_STRUCT(name,oid,u32,OID_TYPE_U32)
49 #define OID_U32_C(name,oid) OID_STRUCT_C(name,oid,u32,OID_TYPE_U32)
50 #define OID_STRUCT_MLME(name,oid) OID_STRUCT(name,oid,struct obj_mlme,OID_TYPE_MLME)
51 #define OID_STRUCT_MLMEEX(name,oid) OID_STRUCT(name,oid,struct obj_mlmeex,OID_TYPE_MLMEEX)
52 
53 #define OID_UNKNOWN(name,oid) OID_STRUCT(name,oid,0,0)
54 
55 struct oid_t isl_oid[] = {
56 	OID_STRUCT(GEN_OID_MACADDRESS, 0x00000000, u8[6], OID_TYPE_ADDR),
57 	OID_U32(GEN_OID_LINKSTATE, 0x00000001),
58 	OID_UNKNOWN(GEN_OID_WATCHDOG, 0x00000002),
59 	OID_UNKNOWN(GEN_OID_MIBOP, 0x00000003),
60 	OID_UNKNOWN(GEN_OID_OPTIONS, 0x00000004),
61 	OID_UNKNOWN(GEN_OID_LEDCONFIG, 0x00000005),
62 
63 	/* 802.11 */
64 	OID_U32_C(DOT11_OID_BSSTYPE, 0x10000000),
65 	OID_STRUCT_C(DOT11_OID_BSSID, 0x10000001, u8[6], OID_TYPE_RAW),
66 	OID_STRUCT_C(DOT11_OID_SSID, 0x10000002, struct obj_ssid,
67 		     OID_TYPE_SSID),
68 	OID_U32(DOT11_OID_STATE, 0x10000003),
69 	OID_U32(DOT11_OID_AID, 0x10000004),
70 	OID_STRUCT(DOT11_OID_COUNTRYSTRING, 0x10000005, u8[4], OID_TYPE_RAW),
71 	OID_STRUCT_C(DOT11_OID_SSIDOVERRIDE, 0x10000006, struct obj_ssid,
72 		     OID_TYPE_SSID),
73 
74 	OID_U32(DOT11_OID_MEDIUMLIMIT, 0x11000000),
75 	OID_U32_C(DOT11_OID_BEACONPERIOD, 0x11000001),
76 	OID_U32(DOT11_OID_DTIMPERIOD, 0x11000002),
77 	OID_U32(DOT11_OID_ATIMWINDOW, 0x11000003),
78 	OID_U32(DOT11_OID_LISTENINTERVAL, 0x11000004),
79 	OID_U32(DOT11_OID_CFPPERIOD, 0x11000005),
80 	OID_U32(DOT11_OID_CFPDURATION, 0x11000006),
81 
82 	OID_U32_C(DOT11_OID_AUTHENABLE, 0x12000000),
83 	OID_U32_C(DOT11_OID_PRIVACYINVOKED, 0x12000001),
84 	OID_U32_C(DOT11_OID_EXUNENCRYPTED, 0x12000002),
85 	OID_U32_C(DOT11_OID_DEFKEYID, 0x12000003),
86 	[DOT11_OID_DEFKEYX] = {0x12000004, 3, sizeof (struct obj_key),
87 			       OID_FLAG_CACHED | OID_TYPE_KEY},	/* DOT11_OID_DEFKEY1,...DOT11_OID_DEFKEY4 */
88 	OID_UNKNOWN(DOT11_OID_STAKEY, 0x12000008),
89 	OID_U32(DOT11_OID_REKEYTHRESHOLD, 0x12000009),
90 	OID_UNKNOWN(DOT11_OID_STASC, 0x1200000a),
91 
92 	OID_U32(DOT11_OID_PRIVTXREJECTED, 0x1a000000),
93 	OID_U32(DOT11_OID_PRIVRXPLAIN, 0x1a000001),
94 	OID_U32(DOT11_OID_PRIVRXFAILED, 0x1a000002),
95 	OID_U32(DOT11_OID_PRIVRXNOKEY, 0x1a000003),
96 
97 	OID_U32_C(DOT11_OID_RTSTHRESH, 0x13000000),
98 	OID_U32_C(DOT11_OID_FRAGTHRESH, 0x13000001),
99 	OID_U32_C(DOT11_OID_SHORTRETRIES, 0x13000002),
100 	OID_U32_C(DOT11_OID_LONGRETRIES, 0x13000003),
101 	OID_U32_C(DOT11_OID_MAXTXLIFETIME, 0x13000004),
102 	OID_U32(DOT11_OID_MAXRXLIFETIME, 0x13000005),
103 	OID_U32(DOT11_OID_AUTHRESPTIMEOUT, 0x13000006),
104 	OID_U32(DOT11_OID_ASSOCRESPTIMEOUT, 0x13000007),
105 
106 	OID_UNKNOWN(DOT11_OID_ALOFT_TABLE, 0x1d000000),
107 	OID_UNKNOWN(DOT11_OID_ALOFT_CTRL_TABLE, 0x1d000001),
108 	OID_UNKNOWN(DOT11_OID_ALOFT_RETREAT, 0x1d000002),
109 	OID_UNKNOWN(DOT11_OID_ALOFT_PROGRESS, 0x1d000003),
110 	OID_U32(DOT11_OID_ALOFT_FIXEDRATE, 0x1d000004),
111 	OID_UNKNOWN(DOT11_OID_ALOFT_RSSIGRAPH, 0x1d000005),
112 	OID_UNKNOWN(DOT11_OID_ALOFT_CONFIG, 0x1d000006),
113 
114 	[DOT11_OID_VDCFX] = {0x1b000000, 7, 0, 0},
115 	OID_U32(DOT11_OID_MAXFRAMEBURST, 0x1b000008),
116 
117 	OID_U32(DOT11_OID_PSM, 0x14000000),
118 	OID_U32(DOT11_OID_CAMTIMEOUT, 0x14000001),
119 	OID_U32(DOT11_OID_RECEIVEDTIMS, 0x14000002),
120 	OID_U32(DOT11_OID_ROAMPREFERENCE, 0x14000003),
121 
122 	OID_U32(DOT11_OID_BRIDGELOCAL, 0x15000000),
123 	OID_U32(DOT11_OID_CLIENTS, 0x15000001),
124 	OID_U32(DOT11_OID_CLIENTSASSOCIATED, 0x15000002),
125 	[DOT11_OID_CLIENTX] = {0x15000003, 2006, 0, 0},	/* DOT11_OID_CLIENTX,...DOT11_OID_CLIENT2007 */
126 
127 	OID_STRUCT(DOT11_OID_CLIENTFIND, 0x150007DB, u8[6], OID_TYPE_ADDR),
128 	OID_STRUCT(DOT11_OID_WDSLINKADD, 0x150007DC, u8[6], OID_TYPE_ADDR),
129 	OID_STRUCT(DOT11_OID_WDSLINKREMOVE, 0x150007DD, u8[6], OID_TYPE_ADDR),
130 	OID_STRUCT(DOT11_OID_EAPAUTHSTA, 0x150007DE, u8[6], OID_TYPE_ADDR),
131 	OID_STRUCT(DOT11_OID_EAPUNAUTHSTA, 0x150007DF, u8[6], OID_TYPE_ADDR),
132 	OID_U32_C(DOT11_OID_DOT1XENABLE, 0x150007E0),
133 	OID_UNKNOWN(DOT11_OID_MICFAILURE, 0x150007E1),
134 	OID_UNKNOWN(DOT11_OID_REKEYINDICATE, 0x150007E2),
135 
136 	OID_U32(DOT11_OID_MPDUTXSUCCESSFUL, 0x16000000),
137 	OID_U32(DOT11_OID_MPDUTXONERETRY, 0x16000001),
138 	OID_U32(DOT11_OID_MPDUTXMULTIPLERETRIES, 0x16000002),
139 	OID_U32(DOT11_OID_MPDUTXFAILED, 0x16000003),
140 	OID_U32(DOT11_OID_MPDURXSUCCESSFUL, 0x16000004),
141 	OID_U32(DOT11_OID_MPDURXDUPS, 0x16000005),
142 	OID_U32(DOT11_OID_RTSSUCCESSFUL, 0x16000006),
143 	OID_U32(DOT11_OID_RTSFAILED, 0x16000007),
144 	OID_U32(DOT11_OID_ACKFAILED, 0x16000008),
145 	OID_U32(DOT11_OID_FRAMERECEIVES, 0x16000009),
146 	OID_U32(DOT11_OID_FRAMEERRORS, 0x1600000A),
147 	OID_U32(DOT11_OID_FRAMEABORTS, 0x1600000B),
148 	OID_U32(DOT11_OID_FRAMEABORTSPHY, 0x1600000C),
149 
150 	OID_U32(DOT11_OID_SLOTTIME, 0x17000000),
151 	OID_U32(DOT11_OID_CWMIN, 0x17000001),
152 	OID_U32(DOT11_OID_CWMAX, 0x17000002),
153 	OID_U32(DOT11_OID_ACKWINDOW, 0x17000003),
154 	OID_U32(DOT11_OID_ANTENNARX, 0x17000004),
155 	OID_U32(DOT11_OID_ANTENNATX, 0x17000005),
156 	OID_U32(DOT11_OID_ANTENNADIVERSITY, 0x17000006),
157 	OID_U32_C(DOT11_OID_CHANNEL, 0x17000007),
158 	OID_U32_C(DOT11_OID_EDTHRESHOLD, 0x17000008),
159 	OID_U32(DOT11_OID_PREAMBLESETTINGS, 0x17000009),
160 	OID_STRUCT(DOT11_OID_RATES, 0x1700000A, u8[IWMAX_BITRATES + 1],
161 		   OID_TYPE_RAW),
162 	OID_U32(DOT11_OID_CCAMODESUPPORTED, 0x1700000B),
163 	OID_U32(DOT11_OID_CCAMODE, 0x1700000C),
164 	OID_UNKNOWN(DOT11_OID_RSSIVECTOR, 0x1700000D),
165 	OID_UNKNOWN(DOT11_OID_OUTPUTPOWERTABLE, 0x1700000E),
166 	OID_U32(DOT11_OID_OUTPUTPOWER, 0x1700000F),
167 	OID_STRUCT(DOT11_OID_SUPPORTEDRATES, 0x17000010,
168 		   u8[IWMAX_BITRATES + 1], OID_TYPE_RAW),
169 	OID_U32_C(DOT11_OID_FREQUENCY, 0x17000011),
170 	[DOT11_OID_SUPPORTEDFREQUENCIES] =
171 	    {0x17000012, 0, sizeof (struct obj_frequencies)
172 	     + sizeof (u16) * IWMAX_FREQ, OID_TYPE_FREQUENCIES},
173 
174 	OID_U32(DOT11_OID_NOISEFLOOR, 0x17000013),
175 	OID_STRUCT(DOT11_OID_FREQUENCYACTIVITY, 0x17000014, u8[IWMAX_FREQ + 1],
176 		   OID_TYPE_RAW),
177 	OID_UNKNOWN(DOT11_OID_IQCALIBRATIONTABLE, 0x17000015),
178 	OID_U32(DOT11_OID_NONERPPROTECTION, 0x17000016),
179 	OID_U32(DOT11_OID_SLOTSETTINGS, 0x17000017),
180 	OID_U32(DOT11_OID_NONERPTIMEOUT, 0x17000018),
181 	OID_U32(DOT11_OID_PROFILES, 0x17000019),
182 	OID_STRUCT(DOT11_OID_EXTENDEDRATES, 0x17000020,
183 		   u8[IWMAX_BITRATES + 1], OID_TYPE_RAW),
184 
185 	OID_STRUCT_MLME(DOT11_OID_DEAUTHENTICATE, 0x18000000),
186 	OID_STRUCT_MLME(DOT11_OID_AUTHENTICATE, 0x18000001),
187 	OID_STRUCT_MLME(DOT11_OID_DISASSOCIATE, 0x18000002),
188 	OID_STRUCT_MLME(DOT11_OID_ASSOCIATE, 0x18000003),
189 	OID_UNKNOWN(DOT11_OID_SCAN, 0x18000004),
190 	OID_STRUCT_MLMEEX(DOT11_OID_BEACON, 0x18000005),
191 	OID_STRUCT_MLMEEX(DOT11_OID_PROBE, 0x18000006),
192 	OID_STRUCT_MLMEEX(DOT11_OID_DEAUTHENTICATEEX, 0x18000007),
193 	OID_STRUCT_MLMEEX(DOT11_OID_AUTHENTICATEEX, 0x18000008),
194 	OID_STRUCT_MLMEEX(DOT11_OID_DISASSOCIATEEX, 0x18000009),
195 	OID_STRUCT_MLMEEX(DOT11_OID_ASSOCIATEEX, 0x1800000A),
196 	OID_STRUCT_MLMEEX(DOT11_OID_REASSOCIATE, 0x1800000B),
197 	OID_STRUCT_MLMEEX(DOT11_OID_REASSOCIATEEX, 0x1800000C),
198 
199 	OID_U32(DOT11_OID_NONERPSTATUS, 0x1E000000),
200 
201 	OID_U32(DOT11_OID_STATIMEOUT, 0x19000000),
202 	OID_U32_C(DOT11_OID_MLMEAUTOLEVEL, 0x19000001),
203 	OID_U32(DOT11_OID_BSSTIMEOUT, 0x19000002),
204 	[DOT11_OID_ATTACHMENT] = {0x19000003, 0,
205 		sizeof(struct obj_attachment), OID_TYPE_ATTACH},
206 	OID_STRUCT_C(DOT11_OID_PSMBUFFER, 0x19000004, struct obj_buffer,
207 		     OID_TYPE_BUFFER),
208 
209 	OID_U32(DOT11_OID_BSSS, 0x1C000000),
210 	[DOT11_OID_BSSX] = {0x1C000001, 63, sizeof (struct obj_bss),
211 			    OID_TYPE_BSS},	/*DOT11_OID_BSS1,...,DOT11_OID_BSS64 */
212 	OID_STRUCT(DOT11_OID_BSSFIND, 0x1C000042, struct obj_bss, OID_TYPE_BSS),
213 	[DOT11_OID_BSSLIST] = {0x1C000043, 0, sizeof (struct
214 						      obj_bsslist) +
215 			       sizeof (struct obj_bss[IWMAX_BSS]),
216 			       OID_TYPE_BSSLIST},
217 
218 	OID_UNKNOWN(OID_INL_TUNNEL, 0xFF020000),
219 	OID_UNKNOWN(OID_INL_MEMADDR, 0xFF020001),
220 	OID_UNKNOWN(OID_INL_MEMORY, 0xFF020002),
221 	OID_U32_C(OID_INL_MODE, 0xFF020003),
222 	OID_UNKNOWN(OID_INL_COMPONENT_NR, 0xFF020004),
223 	OID_STRUCT(OID_INL_VERSION, 0xFF020005, u8[8], OID_TYPE_RAW),
224 	OID_UNKNOWN(OID_INL_INTERFACE_ID, 0xFF020006),
225 	OID_UNKNOWN(OID_INL_COMPONENT_ID, 0xFF020007),
226 	OID_U32_C(OID_INL_CONFIG, 0xFF020008),
227 	OID_U32_C(OID_INL_DOT11D_CONFORMANCE, 0xFF02000C),
228 	OID_U32(OID_INL_PHYCAPABILITIES, 0xFF02000D),
229 	OID_U32_C(OID_INL_OUTPUTPOWER, 0xFF02000F),
230 
231 };
232 
233 int
mgt_init(islpci_private * priv)234 mgt_init(islpci_private *priv)
235 {
236 	int i;
237 
238 	priv->mib = kmalloc(OID_NUM_LAST * sizeof (void *), GFP_KERNEL);
239 	if (!priv->mib)
240 		return -ENOMEM;
241 
242 	memset(priv->mib, 0, OID_NUM_LAST * sizeof (void *));
243 
244 	/* Alloc the cache */
245 	for (i = 0; i < OID_NUM_LAST; i++) {
246 		if (isl_oid[i].flags & OID_FLAG_CACHED) {
247 			priv->mib[i] = kmalloc(isl_oid[i].size *
248 					       (isl_oid[i].range + 1),
249 					       GFP_KERNEL);
250 			if (!priv->mib[i])
251 				return -ENOMEM;
252 			memset(priv->mib[i], 0,
253 			       isl_oid[i].size * (isl_oid[i].range + 1));
254 		} else
255 			priv->mib[i] = NULL;
256 	}
257 
258 	init_rwsem(&priv->mib_sem);
259 	prism54_mib_init(priv);
260 
261 	return 0;
262 }
263 
264 void
mgt_clean(islpci_private * priv)265 mgt_clean(islpci_private *priv)
266 {
267 	int i;
268 
269 	if (!priv->mib)
270 		return;
271 	for (i = 0; i < OID_NUM_LAST; i++)
272 		if (priv->mib[i]) {
273 			kfree(priv->mib[i]);
274 			priv->mib[i] = NULL;
275 		}
276 	kfree(priv->mib);
277 	priv->mib = NULL;
278 }
279 
280 void
mgt_le_to_cpu(int type,void * data)281 mgt_le_to_cpu(int type, void *data)
282 {
283 	switch (type) {
284 	case OID_TYPE_U32:
285 		*(u32 *) data = le32_to_cpu(*(u32 *) data);
286 		break;
287 	case OID_TYPE_BUFFER:{
288 			struct obj_buffer *buff = data;
289 			buff->size = le32_to_cpu(buff->size);
290 			buff->addr = le32_to_cpu(buff->addr);
291 			break;
292 		}
293 	case OID_TYPE_BSS:{
294 			struct obj_bss *bss = data;
295 			bss->age = le16_to_cpu(bss->age);
296 			bss->channel = le16_to_cpu(bss->channel);
297 			bss->capinfo = le16_to_cpu(bss->capinfo);
298 			bss->rates = le16_to_cpu(bss->rates);
299 			bss->basic_rates = le16_to_cpu(bss->basic_rates);
300 			break;
301 		}
302 	case OID_TYPE_BSSLIST:{
303 			struct obj_bsslist *list = data;
304 			int i;
305 			list->nr = le32_to_cpu(list->nr);
306 			for (i = 0; i < list->nr; i++)
307 				mgt_le_to_cpu(OID_TYPE_BSS, &list->bsslist[i]);
308 			break;
309 		}
310 	case OID_TYPE_FREQUENCIES:{
311 			struct obj_frequencies *freq = data;
312 			int i;
313 			freq->nr = le16_to_cpu(freq->nr);
314 			for (i = 0; i < freq->nr; i++)
315 				freq->mhz[i] = le16_to_cpu(freq->mhz[i]);
316 			break;
317 		}
318 	case OID_TYPE_MLME:{
319 			struct obj_mlme *mlme = data;
320 			mlme->id = le16_to_cpu(mlme->id);
321 			mlme->state = le16_to_cpu(mlme->state);
322 			mlme->code = le16_to_cpu(mlme->code);
323 			break;
324 		}
325 	case OID_TYPE_MLMEEX:{
326 			struct obj_mlmeex *mlme = data;
327 			mlme->id = le16_to_cpu(mlme->id);
328 			mlme->state = le16_to_cpu(mlme->state);
329 			mlme->code = le16_to_cpu(mlme->code);
330 			mlme->size = le16_to_cpu(mlme->size);
331 			break;
332 		}
333 	case OID_TYPE_ATTACH:{
334 			struct obj_attachment *attach = data;
335 			attach->id = le16_to_cpu(attach->id);
336 			attach->size = le16_to_cpu(attach->size);;
337 			break;
338 	}
339 	case OID_TYPE_SSID:
340 	case OID_TYPE_KEY:
341 	case OID_TYPE_ADDR:
342 	case OID_TYPE_RAW:
343 		break;
344 	default:
345 		BUG();
346 	}
347 }
348 
349 static void
mgt_cpu_to_le(int type,void * data)350 mgt_cpu_to_le(int type, void *data)
351 {
352 	switch (type) {
353 	case OID_TYPE_U32:
354 		*(u32 *) data = cpu_to_le32(*(u32 *) data);
355 		break;
356 	case OID_TYPE_BUFFER:{
357 			struct obj_buffer *buff = data;
358 			buff->size = cpu_to_le32(buff->size);
359 			buff->addr = cpu_to_le32(buff->addr);
360 			break;
361 		}
362 	case OID_TYPE_BSS:{
363 			struct obj_bss *bss = data;
364 			bss->age = cpu_to_le16(bss->age);
365 			bss->channel = cpu_to_le16(bss->channel);
366 			bss->capinfo = cpu_to_le16(bss->capinfo);
367 			bss->rates = cpu_to_le16(bss->rates);
368 			bss->basic_rates = cpu_to_le16(bss->basic_rates);
369 			break;
370 		}
371 	case OID_TYPE_BSSLIST:{
372 			struct obj_bsslist *list = data;
373 			int i;
374 			list->nr = cpu_to_le32(list->nr);
375 			for (i = 0; i < list->nr; i++)
376 				mgt_cpu_to_le(OID_TYPE_BSS, &list->bsslist[i]);
377 			break;
378 		}
379 	case OID_TYPE_FREQUENCIES:{
380 			struct obj_frequencies *freq = data;
381 			int i;
382 			freq->nr = cpu_to_le16(freq->nr);
383 			for (i = 0; i < freq->nr; i++)
384 				freq->mhz[i] = cpu_to_le16(freq->mhz[i]);
385 			break;
386 		}
387 	case OID_TYPE_MLME:{
388 			struct obj_mlme *mlme = data;
389 			mlme->id = cpu_to_le16(mlme->id);
390 			mlme->state = cpu_to_le16(mlme->state);
391 			mlme->code = cpu_to_le16(mlme->code);
392 			break;
393 		}
394 	case OID_TYPE_MLMEEX:{
395 			struct obj_mlmeex *mlme = data;
396 			mlme->id = cpu_to_le16(mlme->id);
397 			mlme->state = cpu_to_le16(mlme->state);
398 			mlme->code = cpu_to_le16(mlme->code);
399 			mlme->size = cpu_to_le16(mlme->size);
400 			break;
401 		}
402 	case OID_TYPE_ATTACH:{
403 			struct obj_attachment *attach = data;
404 			attach->id = cpu_to_le16(attach->id);
405 			attach->size = cpu_to_le16(attach->size);;
406 			break;
407 	}
408 	case OID_TYPE_SSID:
409 	case OID_TYPE_KEY:
410 	case OID_TYPE_ADDR:
411 	case OID_TYPE_RAW:
412 		break;
413 	default:
414 		BUG();
415 	}
416 }
417 
418 /* Note : data is modified during this function */
419 
420 int
mgt_set_request(islpci_private * priv,enum oid_num_t n,int extra,void * data)421 mgt_set_request(islpci_private *priv, enum oid_num_t n, int extra, void *data)
422 {
423 	int ret = 0;
424 	struct islpci_mgmtframe *response = NULL;
425 	int response_op = PIMFOR_OP_ERROR;
426 	int dlen;
427 	void *cache, *_data = data;
428 	u32 oid;
429 
430 	BUG_ON(OID_NUM_LAST <= n);
431 	BUG_ON(extra > isl_oid[n].range);
432 
433 	if (!priv->mib)
434 		/* memory has been freed */
435 		return -1;
436 
437 	dlen = isl_oid[n].size;
438 	cache = priv->mib[n];
439 	cache += (cache ? extra * dlen : 0);
440 	oid = isl_oid[n].oid + extra;
441 
442 	if (_data == NULL)
443 		/* we are requested to re-set a cached value */
444 		_data = cache;
445 	else
446 		mgt_cpu_to_le(isl_oid[n].flags & OID_FLAG_TYPE, _data);
447 	/* If we are going to write to the cache, we don't want anyone to read
448 	 * it -> acquire write lock.
449 	 * Else we could acquire a read lock to be sure we don't bother the
450 	 * commit process (which takes a write lock). But I'm not sure if it's
451 	 * needed.
452 	 */
453 	if (cache)
454 		down_write(&priv->mib_sem);
455 
456 	if (islpci_get_state(priv) >= PRV_STATE_READY) {
457 		ret = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_SET, oid,
458 					     _data, dlen, &response);
459 		if (!ret) {
460 			response_op = response->header->operation;
461 			islpci_mgt_release(response);
462 		}
463 		if (ret || response_op == PIMFOR_OP_ERROR)
464 			ret = -EIO;
465 	} else if (!cache)
466 		ret = -EIO;
467 
468 	if (cache) {
469 		if (!ret && data)
470 			memcpy(cache, _data, dlen);
471 		up_write(&priv->mib_sem);
472 	}
473 
474 	/* re-set given data to what it was */
475 	if (data)
476 		mgt_le_to_cpu(isl_oid[n].flags & OID_FLAG_TYPE, data);
477 
478 	return ret;
479 }
480 
481 /* None of these are cached */
482 int
mgt_set_varlen(islpci_private * priv,enum oid_num_t n,void * data,int extra_len)483 mgt_set_varlen(islpci_private *priv, enum oid_num_t n, void *data, int extra_len)
484 {
485 	int ret = 0;
486 	struct islpci_mgmtframe *response;
487 	int response_op = PIMFOR_OP_ERROR;
488 	int dlen;
489 	u32 oid;
490 
491 	BUG_ON(OID_NUM_LAST <= n);
492 
493 	dlen = isl_oid[n].size;
494 	oid = isl_oid[n].oid;
495 
496 	mgt_cpu_to_le(isl_oid[n].flags & OID_FLAG_TYPE, data);
497 
498 	if (islpci_get_state(priv) >= PRV_STATE_READY) {
499 		ret = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_SET, oid,
500 					     data, dlen + extra_len, &response);
501 		if (!ret) {
502 			response_op = response->header->operation;
503 			islpci_mgt_release(response);
504 		}
505 		if (ret || response_op == PIMFOR_OP_ERROR)
506 			ret = -EIO;
507 	} else
508 		ret = -EIO;
509 
510 	/* re-set given data to what it was */
511 	if (data)
512 		mgt_le_to_cpu(isl_oid[n].flags & OID_FLAG_TYPE, data);
513 
514 	return ret;
515 }
516 
517 int
mgt_get_request(islpci_private * priv,enum oid_num_t n,int extra,void * data,union oid_res_t * res)518 mgt_get_request(islpci_private *priv, enum oid_num_t n, int extra, void *data,
519 		union oid_res_t *res)
520 {
521 
522 	int ret = -EIO;
523 	int reslen = 0;
524 	struct islpci_mgmtframe *response = NULL;
525 
526 	int dlen;
527 	void *cache, *_res = NULL;
528 	u32 oid;
529 
530 	BUG_ON(OID_NUM_LAST <= n);
531 	BUG_ON(extra > isl_oid[n].range);
532 
533 	res->ptr = NULL;
534 
535 	if (!priv->mib)
536 		/* memory has been freed */
537 		return -1;
538 
539 	dlen = isl_oid[n].size;
540 	cache = priv->mib[n];
541 	cache += cache ? extra * dlen : 0;
542 	oid = isl_oid[n].oid + extra;
543 	reslen = dlen;
544 
545 	if (cache)
546 		down_read(&priv->mib_sem);
547 
548 	if (islpci_get_state(priv) >= PRV_STATE_READY) {
549 		ret = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_GET,
550 					     oid, data, dlen, &response);
551 		if (ret || !response ||
552 		    response->header->operation == PIMFOR_OP_ERROR) {
553 			if (response)
554 				islpci_mgt_release(response);
555 			ret = -EIO;
556 		}
557 		if (!ret) {
558 			_res = response->data;
559 			reslen = response->header->length;
560 		}
561 	} else if (cache) {
562 		_res = cache;
563 		ret = 0;
564 	}
565 	if ((isl_oid[n].flags & OID_FLAG_TYPE) == OID_TYPE_U32)
566 		res->u = ret ? 0 : le32_to_cpu(*(u32 *) _res);
567 	else {
568 		res->ptr = kmalloc(reslen, GFP_KERNEL);
569 		BUG_ON(res->ptr == NULL);
570 		if (ret)
571 			memset(res->ptr, 0, reslen);
572 		else {
573 			memcpy(res->ptr, _res, reslen);
574 			mgt_le_to_cpu(isl_oid[n].flags & OID_FLAG_TYPE,
575 				      res->ptr);
576 		}
577 	}
578 	if (cache)
579 		up_read(&priv->mib_sem);
580 
581 	if (response && !ret)
582 		islpci_mgt_release(response);
583 
584 	if (reslen > isl_oid[n].size)
585 		printk(KERN_DEBUG
586 		       "mgt_get_request(0x%x): received data length was bigger "
587 		       "than expected (%d > %d). Memory is probably corrupted...",
588 		       oid, reslen, isl_oid[n].size);
589 
590 	return ret;
591 }
592 
593 /* lock outside */
594 int
mgt_commit_list(islpci_private * priv,enum oid_num_t * l,int n)595 mgt_commit_list(islpci_private *priv, enum oid_num_t *l, int n)
596 {
597 	int i, ret = 0;
598 	struct islpci_mgmtframe *response;
599 
600 	for (i = 0; i < n; i++) {
601 		struct oid_t *t = &(isl_oid[l[i]]);
602 		void *data = priv->mib[l[i]];
603 		int j = 0;
604 		u32 oid = t->oid;
605 		BUG_ON(data == NULL);
606 		while (j <= t->range) {
607 			int r = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_SET,
608 						      oid, data, t->size,
609 						      &response);
610 			if (response) {
611 				r |= (response->header->operation == PIMFOR_OP_ERROR);
612 				islpci_mgt_release(response);
613 			}
614 			if (r)
615 				printk(KERN_ERR "%s: mgt_commit_list: failure. "
616 					"oid=%08x err=%d\n",
617 					priv->ndev->name, oid, r);
618 			ret |= r;
619 			j++;
620 			oid++;
621 			data += t->size;
622 		}
623 	}
624 	return ret;
625 }
626 
627 /* Lock outside */
628 
629 void
mgt_set(islpci_private * priv,enum oid_num_t n,void * data)630 mgt_set(islpci_private *priv, enum oid_num_t n, void *data)
631 {
632 	BUG_ON(OID_NUM_LAST <= n);
633 	BUG_ON(priv->mib[n] == NULL);
634 
635 	memcpy(priv->mib[n], data, isl_oid[n].size);
636 	mgt_cpu_to_le(isl_oid[n].flags & OID_FLAG_TYPE, priv->mib[n]);
637 }
638 
639 void
mgt_get(islpci_private * priv,enum oid_num_t n,void * res)640 mgt_get(islpci_private *priv, enum oid_num_t n, void *res)
641 {
642 	BUG_ON(OID_NUM_LAST <= n);
643 	BUG_ON(priv->mib[n] == NULL);
644 	BUG_ON(res == NULL);
645 
646 	memcpy(res, priv->mib[n], isl_oid[n].size);
647 	mgt_le_to_cpu(isl_oid[n].flags & OID_FLAG_TYPE, res);
648 }
649 
650 /* Commits the cache. Lock outside. */
651 
652 static enum oid_num_t commit_part1[] = {
653 	OID_INL_CONFIG,
654 	OID_INL_MODE,
655 	DOT11_OID_BSSTYPE,
656 	DOT11_OID_CHANNEL,
657 	DOT11_OID_MLMEAUTOLEVEL
658 };
659 
660 static enum oid_num_t commit_part2[] = {
661 	DOT11_OID_SSID,
662 	DOT11_OID_PSMBUFFER,
663 	DOT11_OID_AUTHENABLE,
664 	DOT11_OID_PRIVACYINVOKED,
665 	DOT11_OID_EXUNENCRYPTED,
666 	DOT11_OID_DEFKEYX,	/* MULTIPLE */
667 	DOT11_OID_DEFKEYID,
668 	DOT11_OID_DOT1XENABLE,
669 	OID_INL_DOT11D_CONFORMANCE,
670 	/* Do not initialize this - fw < 1.0.4.3 rejects it
671 	OID_INL_OUTPUTPOWER,
672 	*/
673 };
674 
675 /* update the MAC addr. */
676 static int
mgt_update_addr(islpci_private * priv)677 mgt_update_addr(islpci_private *priv)
678 {
679 	struct islpci_mgmtframe *res;
680 	int ret;
681 
682 	ret = islpci_mgt_transaction(priv->ndev, PIMFOR_OP_GET,
683 				     isl_oid[GEN_OID_MACADDRESS].oid, NULL,
684 				     isl_oid[GEN_OID_MACADDRESS].size, &res);
685 
686 	if ((ret == 0) && res && (res->header->operation != PIMFOR_OP_ERROR))
687 		memcpy(priv->ndev->dev_addr, res->data, 6);
688 	else
689 		ret = -EIO;
690 	if (res)
691 		islpci_mgt_release(res);
692 
693 	if (ret)
694 		printk(KERN_ERR "%s: mgt_update_addr: failure\n", priv->ndev->name);
695 	return ret;
696 }
697 
698 #define VEC_SIZE(a) (sizeof(a)/sizeof(a[0]))
699 
700 int
mgt_commit(islpci_private * priv)701 mgt_commit(islpci_private *priv)
702 {
703 	int rvalue;
704 	u32 u;
705 
706 	if (islpci_get_state(priv) < PRV_STATE_INIT)
707 		return 0;
708 
709 	rvalue = mgt_commit_list(priv, commit_part1, VEC_SIZE(commit_part1));
710 
711 	if (priv->iw_mode != IW_MODE_MONITOR)
712 		rvalue |= mgt_commit_list(priv, commit_part2, VEC_SIZE(commit_part2));
713 
714 	u = OID_INL_MODE;
715 	rvalue |= mgt_commit_list(priv, &u, 1);
716 	rvalue |= mgt_update_addr(priv);
717 
718 	if (rvalue) {
719 		/* some request have failed. The device might be in an
720 		   incoherent state. We should reset it ! */
721 		printk(KERN_DEBUG "%s: mgt_commit: failure\n", priv->ndev->name);
722 	}
723 	return rvalue;
724 }
725 
726 /* The following OIDs need to be "unlatched":
727  *
728  * MEDIUMLIMIT,BEACONPERIOD,DTIMPERIOD,ATIMWINDOW,LISTENINTERVAL
729  * FREQUENCY,EXTENDEDRATES.
730  *
731  * The way to do this is to set ESSID. Note though that they may get
732  * unlatch before though by setting another OID. */
733 void
mgt_unlatch_all(islpci_private * priv)734 mgt_unlatch_all(islpci_private *priv)
735 {
736 	u32 u;
737 	int rvalue = 0;
738 
739 	if (islpci_get_state(priv) < PRV_STATE_INIT)
740 		return;
741 
742 	u = DOT11_OID_SSID;
743 	rvalue = mgt_commit_list(priv, &u, 1);
744 	/* Necessary if in MANUAL RUN mode? */
745 #if 0
746 	u = OID_INL_MODE;
747 	rvalue |= mgt_commit_list(priv, &u, 1);
748 
749 	u = DOT11_OID_MLMEAUTOLEVEL;
750 	rvalue |= mgt_commit_list(priv, &u, 1);
751 
752 	u = OID_INL_MODE;
753 	rvalue |= mgt_commit_list(priv, &u, 1);
754 #endif
755 
756 	if (rvalue)
757 		printk(KERN_DEBUG "%s: Unlatching OIDs failed\n", priv->ndev->name);
758 }
759 
760 /* This will tell you if you are allowed to answer a mlme(ex) request .*/
761 
762 int
mgt_mlme_answer(islpci_private * priv)763 mgt_mlme_answer(islpci_private *priv)
764 {
765 	u32 mlmeautolevel;
766 	/* Acquire a read lock because if we are in a mode change, it's
767 	 * possible to answer true, while the card is leaving master to managed
768 	 * mode. Answering to a mlme in this situation could hang the card.
769 	 */
770 	down_read(&priv->mib_sem);
771 	mlmeautolevel =
772 	    le32_to_cpu(*(u32 *) priv->mib[DOT11_OID_MLMEAUTOLEVEL]);
773 	up_read(&priv->mib_sem);
774 
775 	return ((priv->iw_mode == IW_MODE_MASTER) &&
776 		(mlmeautolevel >= DOT11_MLME_INTERMEDIATE));
777 }
778 
779 enum oid_num_t
mgt_oidtonum(u32 oid)780 mgt_oidtonum(u32 oid)
781 {
782 	int i;
783 
784 	for (i = 0; i < OID_NUM_LAST; i++)
785 		if (isl_oid[i].oid == oid)
786 			return i;
787 
788 	printk(KERN_DEBUG "looking for an unknown oid 0x%x", oid);
789 
790 	return OID_NUM_LAST;
791 }
792 
793 int
mgt_response_to_str(enum oid_num_t n,union oid_res_t * r,char * str)794 mgt_response_to_str(enum oid_num_t n, union oid_res_t *r, char *str)
795 {
796 	switch (isl_oid[n].flags & OID_FLAG_TYPE) {
797 	case OID_TYPE_U32:
798 		return snprintf(str, PRIV_STR_SIZE, "%u\n", r->u);
799 		break;
800 	case OID_TYPE_BUFFER:{
801 			struct obj_buffer *buff = r->ptr;
802 			return snprintf(str, PRIV_STR_SIZE,
803 					"size=%u\naddr=0x%X\n", buff->size,
804 					buff->addr);
805 		}
806 		break;
807 	case OID_TYPE_BSS:{
808 			struct obj_bss *bss = r->ptr;
809 			return snprintf(str, PRIV_STR_SIZE,
810 					"age=%u\nchannel=%u\n"
811 					"capinfo=0x%X\nrates=0x%X\n"
812 					"basic_rates=0x%X\n", bss->age,
813 					bss->channel, bss->capinfo,
814 					bss->rates, bss->basic_rates);
815 		}
816 		break;
817 	case OID_TYPE_BSSLIST:{
818 			struct obj_bsslist *list = r->ptr;
819 			int i, k;
820 			k = snprintf(str, PRIV_STR_SIZE, "nr=%u\n", list->nr);
821 			for (i = 0; i < list->nr; i++)
822 				k += snprintf(str + k, PRIV_STR_SIZE - k,
823 					      "bss[%u] : \nage=%u\nchannel=%u\n"
824 					      "capinfo=0x%X\nrates=0x%X\n"
825 					      "basic_rates=0x%X\n",
826 					      i, list->bsslist[i].age,
827 					      list->bsslist[i].channel,
828 					      list->bsslist[i].capinfo,
829 					      list->bsslist[i].rates,
830 					      list->bsslist[i].basic_rates);
831 			return k;
832 		}
833 		break;
834 	case OID_TYPE_FREQUENCIES:{
835 			struct obj_frequencies *freq = r->ptr;
836 			int i, t;
837 			printk("nr : %u\n", freq->nr);
838 			t = snprintf(str, PRIV_STR_SIZE, "nr=%u\n", freq->nr);
839 			for (i = 0; i < freq->nr; i++)
840 				t += snprintf(str + t, PRIV_STR_SIZE - t,
841 					      "mhz[%u]=%u\n", i, freq->mhz[i]);
842 			return t;
843 		}
844 		break;
845 	case OID_TYPE_MLME:{
846 			struct obj_mlme *mlme = r->ptr;
847 			return snprintf(str, PRIV_STR_SIZE,
848 					"id=0x%X\nstate=0x%X\ncode=0x%X\n",
849 					mlme->id, mlme->state, mlme->code);
850 		}
851 		break;
852 	case OID_TYPE_MLMEEX:{
853 			struct obj_mlmeex *mlme = r->ptr;
854 			return snprintf(str, PRIV_STR_SIZE,
855 					"id=0x%X\nstate=0x%X\n"
856 					"code=0x%X\nsize=0x%X\n", mlme->id,
857 					mlme->state, mlme->code, mlme->size);
858 		}
859 		break;
860 	case OID_TYPE_ATTACH:{
861 			struct obj_attachment *attach = r->ptr;
862 			return snprintf(str, PRIV_STR_SIZE,
863 					"id=%d\nsize=%d\n",
864 					attach->id,
865 					attach->size);
866 		}
867 		break;
868 	case OID_TYPE_SSID:{
869 			struct obj_ssid *ssid = r->ptr;
870 			return snprintf(str, PRIV_STR_SIZE,
871 					"length=%u\noctets=%.*s\n",
872 					ssid->length, ssid->length,
873 					ssid->octets);
874 		}
875 		break;
876 	case OID_TYPE_KEY:{
877 			struct obj_key *key = r->ptr;
878 			int t, i;
879 			t = snprintf(str, PRIV_STR_SIZE,
880 				     "type=0x%X\nlength=0x%X\nkey=0x",
881 				     key->type, key->length);
882 			for (i = 0; i < key->length; i++)
883 				t += snprintf(str + t, PRIV_STR_SIZE - t,
884 					      "%02X:", key->key[i]);
885 			t += snprintf(str + t, PRIV_STR_SIZE - t, "\n");
886 			return t;
887 		}
888 		break;
889 	case OID_TYPE_RAW:
890 	case OID_TYPE_ADDR:{
891 			unsigned char *buff = r->ptr;
892 			int t, i;
893 			t = snprintf(str, PRIV_STR_SIZE, "hex data=");
894 			for (i = 0; i < isl_oid[n].size; i++)
895 				t += snprintf(str + t, PRIV_STR_SIZE - t,
896 					      "%02X:", buff[i]);
897 			t += snprintf(str + t, PRIV_STR_SIZE - t, "\n");
898 			return t;
899 		}
900 		break;
901 	default:
902 		BUG();
903 	}
904 	return 0;
905 }
906